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Abstract

This thesis investigates production-inventory systems where replenishments are
received every period (for example every day or shift), but where production
plans are determined less frequently (weekly, fortnightly, or monthly). Such
systems are said to use staggered deliveries. This practice is common in industry,
but the theoretical knowledge is limited to a small set of inventory models, none
of which include capacity costs. This thesis uses time series analysis to expand
our understanding of staggered deliveries from the perspectives of inventory
and production-inventory control.

The contribution to inventory theory consists in the development of an
optimal policy for autocorrelated demand and linear inventory costs, including
exact expressions for costs, availability, and fill rate. In addition the thesis
identifies a procedure for finding the optimal order cycle length, when a once-
per-cycle audit cost is present. Notably, constant safety stocks are suboptimal,
and cause both availability and fill rate to fluctuate over the cycle. Instead,
the safety stocks should vary over time, causing the availability, but not the fill
rate, to be constant.

The contribution to production-inventory theory comes from two perspec-
tives: First, an optimal policy is derived for quadratic inventory and capacity
costs; second, four pragmatic policies are tested, each affording a different
approach to production smoothing and the allocation of overtime work (once
per cycle, or an equal amount of overtime every period). Assuming independent
and identically distributed demand, these models reveal that all overtime or
idling should be allocated to the first period of each cycle. Furthermore, it
is shown that the order cycle length provides a crude production smoothing
mechanism. Should a company with long reorder cycles decide to plan more
often, the capacity costs may increase. Therefore, supply chains should imple-
ment a replenishment policy capable of production smoothing before the order
cycle length is reduced.
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Chapter 1

Introduction

This thesis is concerned with production planning and inventory management,
and seeks to find policies (decision rules) that result in low inventory and
capacity costs. The particular topic of this thesis is the situation that appears
when production plans are made on a weekly or monthly basis, but when
production takes place every day. Such production systems are said to use
staggered deliveries.

This chapter highlights the related concepts of order cycles and staggered
deliveries (first used in this context by Flynn and Garstka, 1990). Their
interaction with familiar production and inventory control (PIC) concepts is
explained. Research questions are identified to provide a clear focus. Then, a
path to the resolution of these questions is provided in an outline of this thesis.
The main contributions to knowledge are also presented.

1.1 Background

In 1924, General Motors (GM) switched from making new production plans
once every three months, to making them once every ten days. This was not the
only supply chain modification made by GM in the 1920’s, but it was perhaps
the most important. By the end of the decade, GM’s total inventory turnover
had increased from about two, to seven and a half inventory turns per annum
(Sloan, 1963, pp. 129–139).

Toyota also considered short order cycles as desirable. In the 1980’s they
operated with a ten-day order cycle, and considered reducing it to weekly or
daily cycles (Shingo, 1989, p. 129). Ohno (1988, p. 51) illustrates that long
reorder cycles may be problematic. First, the inventory level can drift away
from its intended value, as the fixed production plan ignores recent changes
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CHAPTER 1. INTRODUCTION 2

in demand. This inventory discrepancy will need to be corrected, requiring
significant overtime work as the production plan is updated.

Order cycles are also central to Period Batch Control (PBC), a production
concept used in the manufacture of the Spitfire aircraft. For PBC, Burbidge
(1989, p. 159) states that the order cycle should be as short as capacity permits.
Burbidge (1983) even includes this as one of his five golden rules to avoid
bankruptcy, and states that weekly or biweekly order cycles are preferable to
monthly cycles, if such short cycles can be implemented.

To this day, there is no definitive solution to selecting the best order cycle
length. Informal enquiries with companies reveal that actual order cycle lengths
span from a single shift, up to a month (Table 1.1). Similar results were obtained
in a questionnaire survey of 292 Swedish companies; of those that used periodic
review, 21% planned on a daily basis, 37% planned on a weekly basis, and 42%
planned fortnightly or less frequently (Jonsson and Mattsson, 2013). We may
speculate about the reasons for selecting a particular order cycle length. On the
one hand, the order cycle should be short enough for us to respond to demand
in a timely manner. But with a short order cycle follows the burden and the
potential cost of releasing new plans frequently, not to forget the consequences
on capacity utilization when production must respond to short-term demand
fluctuations. On this basis, we seem to be dealing with a trade-off problem
where demand uncertainty is involved.

Uncertainty in both demand and supply drives companies to use safety
stocks, safety time, and safety capacity as buffers, to safeguard against lost
sales. Nonetheless, buffering is expensive, and companies must not only identify
the right amount of buffering, but also find ways to reduce the need for it. In

Table 1.1: Observed industrial planning cycles. (Hedenstierna and Disney,
2014)

Company Industry Location Order cycle When
Tesco Retail UK Shift or daily 2005
Anonymous Electronics USA Weekly 2010
Harman Kardon Audio equipment UK Weekly 2001
P&G Household goods Worldwide Weekly 2000
Princes Beverages UK Weekly 2003
Anonymous Coinage Western Europe Weekly 2015
TRW Automotive Worldwide Weekly 1999
BATa Consumer goods Worldwide Monthly 2012
Renishaw Measuring equip. UK, India Monthly 2014

a Reported in Hedenstierna (2009).
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principle, this can be done by finding variables that drive cost, and then by
reducing the variability they exhibit (Simchi-Levi, 2002). Many supply chain
concepts work this way, including postponement (Pagh and Cooper, 1998),
consolidation of stock-keeping units (Lee et al., 1993), warehouse centralization
(Maister, 1976), vendor-managed inventory (Disney and Towill, 2002), capacity
consolidation and production rate levelling (Hedenstierna and Disney, 2012).
These concepts can be used either to reduce the total variability in the system,
or to shift variability from one type of buffer to another (Burbidge, 1961).

Inventory centralization is an example of the first type, where the total
variability is reduced according to the square root law for inventories (Maister,
1976), while the latter can be demonstrated with production smoothing, as
levelling the production rate tends to decrease its variability, while increasing
the variability of the finished goods inventory (John et al., 1994).

Before delving into the complexities of the order cycle in production and
inventory systems, we require a firm understanding of both inventories, pro-
duction, and the concept of staggered deliveries.

1.1.1 Inventory systems

Inventories store products for future consumption, often as a protective measure
against supply or demand uncertainty. In itself, the term inventory refers to an
accumulation of goods, whose stored quantity (the inventory level) increases
with receipts, and decreases with consumption.

Inventories may appear straightforward, but once we take into account
how inventory levels are measured, and how receipts are regulated, a more
complicated picture emerges. Several aspects come into play:

• The inspection period provides the time between measurement of inventory
levels. Delivery performance and inventory costs are also computed at
this interval. This thesis assumes an inspection frequency of unity, so it
takes place for every discrete time point t ∈ Z. Periods with a negative
time index are feasible, in the sense that the results are unaffected by
the sign of the period. In practical terms, the timescale can be defined so
that periods with a negative time index refer to periods that occurred
before the system was operational, should we require information about
past demand and other system states.

• The order cycle length, is a strictly positive integer, P ∈ Z+, that provides
the time between occasions when order quantities are determined. We
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assume a constant order cycle length.

• The lot size provides the number of units produced or procured in a single
lot. It may vary over time. A lot with constant size is referred to as a
batch. Small production lots are often considered as desirable, as they
lead to the concept of a one-piece-flow.

• The lot frequency provides the number of lots produced per order cycle.
Except for a brief discussion on the consequences of the lot size, this thesis
assumes that at least one lot may be completed between two subsequent
inventory inspections (P lots per order cycle).

• The lead time, L ∈ Z∗, is a nonnegative integer that provides the time
between the issuance of an order, and the receipt of the first lot into
inventory. Taking into account the sequence-of-events delay that is
inherent in discrete-time systems, a staggered order placed at time t
results in the first lot being received and accounted for at time t+ L+ 1.
The last lot will have been received and registered at time t+L+P . The
lead time L may be constant or variable — In this thesis we assume it is
constant.

It is often assumed that the lot frequency coincides with the inspection period,
but this is not necessarily true. In Just-in-Time (JIT) systems, it is common
to aim for small batch quantities in production, but this does not mean that
inventory levels are tallied more than once, or perhaps a few times, per day.

In the same way, the order cycle length need not match the inspection period.
We can choose to make a production plan only once per week, and at this point
in time determine the orders to be produced in every single day throughout
the week. Such a set-up is termed staggered deliveries. An illustration of this is
presented in Figure 1.1; where orders are placed every seven periods (P = 7),
as indicated by the tick marks.

t t+P t+2P

New orders are planned every P periods, nothing in between

P orders P orders ...

Figure 1.1: Illustration of a planning cycle with length P .

Inventory inspection

Inventory inspection refers to recording inventory levels, and the inspection
period refers to the time between inspections. We inspect for three reasons:
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1. To determine the timing or quantity of replenishment orders.

2. To calculate delivery performance, including availability, fill rate, and
ready rate.

3. To calculate inventory costs that relate to the inventory level.

A single inventory system can use different inspection periods for each point
above. This thesis assumes that inspections to calculate service and cost
performance (2 and 3) occur at the same time. We use the term inspection
period to denote the duration between two such events. The term order cycle
refers to the duration between ordering events (1). The inspection period
reveals little about an inventory system, unless one also knows the frequency of
receipts. There are three cases of particular interest, illustrated in Figure 1.2.

The first case is when inventory inspections are more frequent than receipts.
Then the measured inventory level will include some amount of cycle stock. A
famous example is the classical economic order quantity (EOQ) model, where
inspection is continuous (the inspection period approaches zero), but where
receipts are discrete lots (Harris, 1990). The second case is when inventory
inspections occur with the same frequency as receipts. Now we no longer
measure cycle stock, but only the end-of-period inventory. It can be applied in
continuous time (John et al., 1994) and in discrete-time (Dejonckheere et al.,
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Figure 1.2: Relation between the lot frequency and the inspection interval.
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2003). The third case has inventory inspections occurring less frequently than
receipts. The measured inventory levels are identical to the second case if we
do not account for temporary shortages that are filled in the same period as
they occur. A JIT system with reasonably small batch sizes will be of this
type.

This thesis investigates case 2, and by extension case 3, if service levels
and inventory costs are applied only when the inventory level is inspected. In
an industrial setting, we expect to see these cases realized for high-volume
products that are produced almost every day. Such products tend to be called
runners in the runners-repeaters-strangers classification (Slack, 2015).

1.1.2 Production and inventory control with staggered
deliveries

Definition 1.1. The term staggered deliveries refers to production and inven-
tory systems where the inventory receipts for multiple, subsequent inspection
periods are determined at a single point in time (Flynn and Garstka, 1990).

Example 1.2 (Staggered deliveries).

(a) Inventory is monitored at 18:00 every day, including weekends.

(b) Production plans for the following week (Monday to Sunday: 7 days, 21
available shifts) are made every Friday night.

(c) Output can be generated every day.

In this example, the inspection period is one day. The production plan deter-
mines all the orders to be produced from Monday morning to the following
Sunday night. This cycle spans seven inventory inspections. Since we determine
the production quantity, and hence the receipt quantity, for multiple inspection
periods at once, we use staggered deliveries in our planning.

Ordering rules and costs under staggered deliveries

When staggering deliveries, we must consider any constraints on the size of
orders from period to period. With linear holding and backlog costs, it is
known that a staggered order-up-to (OUT) policy is optimal, where the receipt
quantity in each period can be set freely (type 1 in Figure 1.3). There may also
be other costs to consider. One of these may be nonlinear capacity costs, where
a fixed rate of production commences at a low unit cost, while production
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Figure 1.3: Approaches to restricting overtime work.

above this fixed quantity costs extra. This is the case with emergency orders
(Rosenshine and Obee, 1976) or overtime costs (Holt et al., 1960). Another
interesting aspect is that of allowing a single or only a few periods in which
overtime can be worked (Chiang, 2009; Figure 1.3, type 2), or if overtime is
distributed equally among all periods (type 3).

1.1.3 Performance: Costs and service levels

The concepts discussed earlier need some basis for comparison. We shall
consider the cost of using any one policy, and the resulting service levels.

Cost types

Inventory costs are commonly assumed to be linear functions of on-hand
inventory, the holding cost, and of backorders, the backorder cost (Axsäter,
2006, pp. 44–45). The usual justification for holding costs is that tied-up capital
can be employed elsewhere, but it can also include storage costs, shrinkage, and
insurance, if these costs are proportional to the on-hand inventory. Backorder
costs are less intuitive. In systems where every backorder is a lost sale, the
backorder cost is at least as large as the gross margin. If customers disfavour
unreliable suppliers, the cost may be greater (Cachon and Terwiesch, 2009, p.
304). As it is difficult to quantify, the backorder cost can also be a numerical
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representation of managers’ aversion to backorders.
Payroll and overtime costs are of particular interest for systems with stag-

gered deliveries, as there are different ways to manage overtime and idling
(Figure 1.3). As an hour of overtime work tends to cost more than an hour
of work during the working week, it is common to assume a piecewise-linear
cost function (Holt et al., 1960, p. 54). Then, per period, there is a constant
marginal cost of production up to the regular capacity limit, after which over-
time work comes into effect. Passing this limit increases the marginal cost of
production, as illustrated by the solid line in Figure 1.4.

C
o
st

Quantity

Piecewise linear

Quadratic approximation

C
a
p
a
ci

ty
 le

ve
l

Figure 1.4: Piecewise-linear capacity costs and a quadratic approximation.

The inventory and capacity cost models are both piecewise linear. These
costs can be approximated by quadratic cost functions (Holt et al., 1960, pp.
52–60), as this simplifies the analytical treatment. Furthermore, minimization
of the quadratic cost is equivalent to the minimization of the variance of a
system’s output variables. Quadratic cost models are therefore helpful when we
seek to model demand amplification (bullwhip), as this is proportional to the
variance of orders (Lee et al., 1997). In Figure 1.4, the dotted line represents
a quadratic function that estimates the piecewise-linear function. For details
about estimating quadratic costs, see Holt et al. (1960).

The cost of making a new production plan / order decision is called the
audit cost. It is incurred once per order cycle (Flynn and Garstka, 1990).
Other setup costs are ignored, including a schedule change cost (Tang and
Grubbström, 2002), changeover costs in production, and other specific costs.
This delimitation is intentional, for it allows us to focus on the trade-off between
inventory costs and capacity or audit costs.
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Service levels

The backorder cost is one way to express the undesirability of shortages, but
there is a more direct approach via service levels, which measure the ability
to satisfy demand. For a single product, common service measures are the
availability (S1), also called cycle service level, which is the probability of not
encountering a stockout in any period; the fill rate (S2), which is the long run
fraction of demand that can be satisfied immediately; and the ready rate (S3),
which is the fraction of time when the on-hand inventory is positive (Axsäter,
2006, p. 94). The characteristics and merits of these measures are discussued
in Chapter 2.

1.2 Problem definition

This thesis investigates staggered deliveries and their consequences. We have
already seen that the relation between the inspection interval and the lot size
matters, and that cost assumptions can involve overtime work or emergency
orders. We aim to develop a broad understanding of the subject, particularly
regarding capacity costs and service levels.

1.2.1 Motivation

The author’s interest in cyclical planning started with an investigation of the
Western European supply chain at a global consumer goods company, where
production volumes were determined once per month. Some products had
so little demand that only one lot per month was produced, and some were
produced in multiple lots per month, indicating a staggered system. The
literature provided no adequate method for implementing this in a simulation
or mathematical model.

Cyclical planning appeared once again when the author came into contact
with a manager at a durable goods factory in Sweden. The production setting
could be described as weekly production cycles with staggered deliveries. Prod-
ucts were called off daily by customers, which suggests a need for the daily
monitoring of service levels. Due to the high labour content in assembly, labour
costs, including overtime costs, were a major concern.

Although the research topic was inspired by industrial observations, no data
was used from either of the mentioned companies.



CHAPTER 1. INTRODUCTION 10

1.2.2 Research questions

1. What is the inventory-optimal policy under staggered deliveries and au-
tocorrelated demand? In many cases, demand has memory, in the sense
that the present demand is influenced by the demand of the past. Lee
et al. (2000) showed the industrial prevalence of this, by identifying the
weekly sales of 150 out of 165 items at a supermarket as significantly au-
tocorrelated. The literature on staggered deliveries ignores this, assuming
independent and identically distributed (i.i.d.) demand, and in a single
case independent, but not identically distributed demand (Lian et al.,
2006). By identifying the optimal policy for autocorrelated demand, we
learn how demand forecasts should be applied under staggered deliveries.

2. How do costs and service levels develop under staggered deliveries and
autocorrelated demand? So far Flynn and Garstka (1990) showed the
cost implications for i.i.d. demand, and Lian et al. (2006) provided
the average availability under the same conditions. We seek to expand
this to autocorrelated demand, and to provide the exact fill rate under
staggered deliveries. This will provide us with deeper insights about the
consequences of staggering deliveries.

3. Under inventory costs and audit costs, can an optimal order cycle length
be identified when demand is autocorrelated? Flynn and Garstka (1997)
identified the optimal order cycle length when demand was i.i.d. Auto-
correlated demand is known to influence inventory costs in non-staggered
systems, and we may anticipate that the optimal length of the order cycle
is affected by demand autocorrelation.

4. How can a linear production smoothing policy be applied under staggered
deliveries and i.i.d. demand? Linear production smoothing policies are
used industrially, and their theoretical properties are well documented.
Staggered deliveries have been justified as a way for creating smooth
production plans (Chiang, 2009), but the consequences on bullwhip and
capacity costs have not yet been explored, although both concepts, as
will become apparent, are intertwined.

5. How do overtime work rules affect the performance of systems with stag-
gered deliveries? Overtime may be collected into single shifts, or dis-
tributed evenly over a production cycle. Understanding how this affects
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costs and service is integral to understanding production systems with
staggered deliveries.

6. Can an optimum order cycle length be identified when capacity and inven-
tory costs are present? How does the order cycle length affect capacity
costs? This question is important for companies considering to modify
their order cycles, as it may turn out that costs increase when ordering
too frequently.

7. How does the order cycle length interact with production smoothing?
Policies with non-unit order cycle lengths intrinsically contain a smoothing
mechanism, as there is a temporal pooling effect. We are interested to
understand how a given order cycle length affects the additional amount
of smoothing required.

1.3 Thesis outline

This chapter has presented the research area and some important concepts.
A literature review follows, where the current knowledge is presented, and
research gaps are identified. Chapter 3 presents the methodology. This includes
the philosophical underpinnings of the research, as well as the step-by-step
approach to this research. The model development is divided into two parts,
the first being Chapter 4, which provides the inventory-optimal policy under
autocorrelated demand, and evaluates the performance of this policy. This
addresses research questions (RQ) 1 and 2 directly, which leads to the resolution
of RQ 3, also appearing in this chapter. The second model, developed in Chapter
5, investigates the case of production smoothing via a proportional policy for
i.i.d. demand. This includes the optimal policy under quadratic cost, as well as
policies with pragmatic overtime strategies, addressing RQ 4 and RQ 5. The
answer these questions leads to the resolution of RQ 6 and RQ 7, presented
in the same chapter. Chapter 6 presents simulation results to validate the
analytical results, and Chapter 7 concludes this dissertation by reviewing and
answering the research questions, and by identifying the managerial implications
of this investigation. Future research opportunities are also noted.

To make the thesis self-contained, proofs for the optimal safety stock and
capacity levels are presented in Appendix A. Appendix B contains some large
proofs, which are related to the development of policies for staggered deliveries
in Chapters 4 and 5. The existing theory on the fill rate was not strong enough
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Chapter 1
Introduction

Chapter 2
Literature review

Chapter 3
Methodology

Chapter 6
Verification and validation

Chapter 4
Staggered OUT policy

for autocorrelated
demand

Bullwhip and
capacity costs

Chapter 5

Chapter 7
Conclusion

Figure 1.5: The chapters of this thesis and their interdependencies.

to accommodate autocorrelated demand, if negative demand is interpreted as
returns. Therefore, a new expression for calculating the fill rate had to be
developed. This is presented in Appendix C.

1.4 Contribution to knowledge

This work expands on knowledge by developing new insights about PIC systems
with staggered deliveries. Important developments are:

1. The optimal staggered policy is identified for autocorrelated demand,
when holding, backlog, and audit costs are present (RQ 1). This is
accompanied by exact expressions for availability and fill rate for each
period of the cycle (RQ 2), as well as an exact procedure for identifying
the optimal order cycle length (RQ 3). Several important properties of
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this system are also identified, as well as the consequences of maintaining
a fixed safety stock, rather than an optimal time-varying safety stock.

2. The optimal staggered policy that minimizes the quadratic costs of
inventory and production (i.e. the bullwhip-optimal policy) under i.i.d.
demand is identified (RQ 4).

3. An investigation of four pragmatic policies operating under inventory
costs and capacity costs is conducted (RQ 4). The approach extends in
principle to any linear control policy. It is shown that staggered systems
operating under a myopic policy may have an optimal order cycle greater
than unity (RQ 6), due to a pooling effect that reduces capacity costs
(RQ 7). Furthermore, this investigation shows that under piecewise-linear
costs, it is best to perform all the required overtime work in the first
period of each cycle (RQ 5). However, when considering inventory and
capacity costs only, without an audit cost, it is better to use a policy
capable of smoothing, and not to stagger deliveries (RQ 7).

4. A more specific definition of the fill rate is developed, providing reasonable
results when negative demand represents returns. This definition is
realized for the optimal staggered policy under autocorrelated, normally
distributed demand. Although necessary for RQ 3, it is also useful in a
wider context, as Disney et al. (2015) show.

1.5 Summary

Companies have order cycles ranging from a shift, up to a month or more. In
many cases, we expect there to be several deliveries and inventory inspection per
cycle, in which case we have staggered deliveries. Even so, the consequences of
staggered deliveries are not well documented. It is the purpose of this thesis to
shed light upon this phenomenon, so that we can understand the consequences
of our production policies and find ways for improvement.



Chapter 2

Literature review

This chapter presents a literature review of the field of production and inventory
control, first consisting of a general introduction to the field based on historically
significant or well-cited sources; second, presenting a structured literature review
of the narrow area which concerns cyclical ordering in inventory systems; and
third, providing a brief overview of the literature on delivery performance.

To ensure a good match with the research questions, this literature review
is focused on aggregate planning and control, i.e. determining the production
requirements in the master production schedule (MPS). Other contributions
are noted more briefly. Following the literature review, we reflect upon the
state of the art for staggered delivery systems, and identify relevant research
gaps, by comparing the literature on staggered inventory systems to that of
non-staggered systems.

2.1 Theoretical overview

The following overview attempts to capture major developments in inventory
control, and in PIC. As this field is broad, the goal is to identify different
branches of research in this area, and to highlight important contributions
within each branch. To classify as important, a work should be historically
relevant, provide a foundational result, introduce new concepts or policies, or
be particularly well-cited (as per Harzing’s Publish or Perish). The focus lies
on quantitative studies, with the occasional case study interspersed.

14
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2.1.1 Inventory control

Fundamentals

The EOQ model of 1913 is likely to be the first step towards a quantitative
theory of inventory control (Harris, 1990). Under some assumptions, it shows
that the order quantity can be used to balance the cost of holding inventory
and the fixed cost of placing an order. This was later extended by Wagner and
Whitin (1958) to consider (known) time-varying demands and setup costs. The
assumptions may not reflect a realistic industrial setting, but it demonstated
that the ordering decision can be used to obtain an economic optimum by
balancing conflicting costs. The EOQ assumptions can be compared with an
argument by Lansburgh (1928, p. 398), who mentions that companies may
tolerate a temporary inventory build-up to prevent idle capacity. In contrast to
Harris, Lansburgh suggests that inventory levels (for each stock-keeping unit)
are kept between a maximum and a minimum, with specific order quantities
determined by judgment.

A limitation of the EOQ model is the assumption of constant demand.
When seeking the optimal policy under stochastic demand, it was first found
that the base stock policy (also known as the OUT policy) is optimal when the
order cost is zero (Bellman, 2003, p. 153-182). The OUT policy observes the
inventory position, and then places an order such that the inventory position is
raised to a predetermined target level. When a fixed order cost is added, the
optimal policy is of the (s,S) type (Scarf, 1959; Veinott, 1966). This policy
operates by not ordering until the inventory position falls down to, or below, s;
when this occurs, an order is placed to raise the inventory position to S, where
s ≤ S.

Forecasting for inventory control

To a large extent, the performance of inventory systems depends on the quality
of forecasts. Gardner (1990) demonstrates this, and presents an example
where a damped trend provides the best cost / service trade-off, outperforming
exponential smoothing, linear regression, and naïve forecasts. The damped
trend forecast is again connected to inventory control in Li et al. (2014), where
the stability boundaries for this forecast are identified. Babai and Dallery
(2009) present three dynamic inventory policies (variations of the reorder-point
and OUT policies) that take forecasts into account. Under nonstationary
demand, and with reliable forecasts, the dynamic policies outperformed the
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(conventional) static policies; however when forecasts were unreliable, the static
policies performed better (Babai and Dallery, 2009). In the same vein, Sethi
et al. (2003) show that the optimal policy under fixed order costs and forecast
updates is of the (s,S) type, with an adaption for the forecast updates. If the
demand observations are sampled less frequently than the inventory system
operates, the resulting forecast may be temporally aggregated. Rostami-Tabar
et al. (2013) shows that a temporally aggregated exponential smoothing forecast
outperforms (by mean squared error) a non-aggregated forecast of the same kind
if demand is MA(1), or AR(1) with a low or moderate positive autocorrelation.
As mentioned in Petropoulos et al. (2014), one must also consider the possibility
of cross-sectional aggregation, i.e. aggregation across products, and to select
an appropriate forecasting algorithm for the chosen level of aggregation.

Multi-product and multi-echelon systems

In this section, we have so far considered single-product inventories, but the
theory also expands to simultaneous control of multiple products. With linear
holding and backorder costs, but no fixed ordering cost, Veinott (1965) shows
that the OUT policy is optimal. A well-known heuristic for multi-product
ordering is given by Roundy (1986). A pragmatic way to manage multi-product
systems is via ABC classification, where products are grouped into categories
(usually three), based on some criteria, for example the expected revenue per
product (Teunter et al., 2010). However, it may be better to classify products
not by volume, but by a ratio involving holding costs, backorder costs, and the
frequency of replenishment, as Teunter et al. (2010) demonstrate.

A supply chain may comprise several linked inventory installations, and
is then termed a multi-echelon supply chain. The simplest case represents
two serially linked inventories, but complex networks with multiple nodes of
consumption, and of origin, are also tenable. Clark and Scarf (1960) identified
the optimal policy for serially linked systems under similar assumptions as Scarf
(1959), and characterized the optimal policy for each echelon: It is an (s,S)-
type policy which, apart from the conventional inventory position, requires full
knowledge of all inventory and WIP levels downstream of the echelon of interest.
This result also implies that each echelon should operate without regard to any
upstream installations — a result that agrees with Bellman’s (2003) principle of
optimality (discussed in the following chapter). As with single-echelon models,
multi-echelon supply chains can also be configured for target service levels; Diks
et al. (1996) present a review. Owing to their complexity, multi-echelon systems
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are prone to disruptions in supply and demand; the effects of such disruptions
can be mitigated by appropriate dimensioning of safety stocks (Schmitt and
Singh, 2012).

When different echelons have conflicting economic interests, full information
sharing may not be tenable. The consequences of withholding information is
investigated by Lee et al. (2000), who find that the upstream echelon of a two-tier
supply chain suffers when information is lacking, particularly when demand is
significantly autocorrelated and when lead times are long. Not all multi-echelon
supply chains are centrally controlled, as the previous references imply. The
decision makers in each echelon may have conflicting objectives, encouraging
policies that are locally optimal, but detrimental to the supply chain as a whole.
To alleviate these effects, Lee and Whang (1999) propose transfer pricing
(retailer pays only the variable cost of goods), consignment (retailer inventory
is owned by supplier), an additional backlog penalty (self-explanatory), and
shortage reimbursement (supplier penalized for inadequate deliveries). The
second of these points is a half-way step towards vendor-managed inventory
(VMI), which refers to arrangements where the supplier places replenishment
orders on behalf of its customers. VMI does not refer to any specific policy
or arrangement, but commonly, there will be an agreement on permissible
minimum and maximum inventory levels (Jonsson and Mattsson, 2005, pp.
455–458). Another possible implementation uses reorder points and minimum
order quantities (Holmström, 1998). VMI also appears in multiproduct settings,
but due to complexity, heuristic policies are used (see e.g. Cárdenas-Barrón
et al., 2012).

2.1.2 Delivery performance

There is more to inventory management than cost balancing. Hadley and
Whitin (1963, p. 217) introduce the ratio of incurred backorders to average
demand (over a year). The complement of this ratio (i.e. the long-run fraction
of filled orders) would later be known as the fill rate. Inventories are often
maintained so that demand may be satisfied from stock. There are several
ways to measure how well demand is satisfied:

• As the fraction of items delivered immediately

• As the fraction of periods in which all orders are filled immediately

• As the fraction of customer orders which are completed immediately

• As the fraction of order lines filled immediately
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• As the fraction of products, by dollar value, filled immediately.

These service measures can provide quite different results, and it is important
to select an appropriate one. In a single-product setting we have only

1. Availability, the probability of satisfying all demand within an order cycle

2. Fill rate, the fraction of demand filled immediately

3. Ready rate, the fraction of time when there is no shortage.

In periodic inventory systems, availability tends to be straightforward to calcu-
late.

S1 = P(κ ≥ 0), (2.1)

where κ is the inventory level at the end of the inventory cycle (See Figure 2.1),
and P is the probability.
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Figure 2.1: Starting and ending inventory levels in an inventory cycle.

The fill rate is a popular service measure among practitioners (Guijarro
et al., 2012), and is considered as a more appropriate service measure than
availability (Axsäter, 2006, p. 95). The formulae for calculating the exact fill
rate often make restrictive assumptions, even in general cases. For his general
fill rate formula, Axsäter (2006) requires inventory cycles to be periodic, but
does not require lead times to be multiples of the inspection period. Axsäter’s
fill rate expression is only exact for non-negative demand. It has the form

S2 = 1−
E
[
(κ)−

]
− E

[
(η)−

]
µ

, (2.2)
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where η is the inventory level at the start of the inventory cycle, µ = E [η − κ]
is the expected demand over the inventory cycle, E is the expectation operator,
and (x)− = max(−x, 0). Teunter (2009) provides an equivalent expression that
is more concise,

S2 =
E
[
(η)+

]
− E

[
(κ)+

]
µ

, (2.3)

where (x)+ = max(x, 0). For the OUT policy, an exact fill rate expression is
given by Sobel (2004). It was later refined by Zhang and Zhang (2007), to
accomodate for lead times that are not a multiple of the review period. Both
approaches assume non-negative demand that is independent and identically
distributed, and a constant lead time. Both of these are special cases of the fill
rate expression used by Axsäter (2006) and Teunter (2009).

When fill rates are high, it is common to use the approximation

S2 ≈ 1− (κ)−

µ
= (κ)+

µ
, (2.4)

Note that µ = η − κ. When demand is normally distributed and the replenish-
ment policy is specified, some specific fill rate expressions can be obtained.

Axsäter (2006) provides approximations for both the continuous-time and
the discrete-time reorder-point policy. Teunter (2009) provides the discrete-time
case as well. Silver and Bischak (2011) investigate the discrete-time case under
normally distributed demand, identifying an approximate fill rate expression for
demand with a low coefficient of variation. The exact fill rate under normally
distributed demand was first given by Johnson et al. (1995), where the effect of
negative demand is taken into account. As with the other fill rates, it assumes
i.i.d. demand and an order-up-to policy.

2.1.3 Production and inventory control

Genesis

With Production and Inventory Control (PIC) we shall refer to systems whose
performance is not only determined by the variations in inventory levels, but also
by the variations of the order rate, which tend to be an important consideration
when finite capacity or overtime costs are in place.

The first documented approach to this is likely to be Simon (1952), who
defined the problem using differential equations and the Laplace transform.
Simon showed that there was a trade-off between the amplitude of the order
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rate and the inventory level, when sinusoidal demand is assumed. This work
is extended to a practical application in Simon and Holt (1954), who claim
that the Eastman Kodak Company effectively managed to remove seasonal
variations from its production rates, and also provided a solution for how this
can be done. With monthly ordering, the suggested order rate was

ot+k+L = d̂+ 0.04(i∗ − it), (2.5)

where ot+k+L denotes the orders to be received in month t + k + L, d̂, is a
12-month moving average forecast, i∗ is the desired safety stock level, and it is
the current inventory. Note the strong damping of the inventory error. Simon’s
approach to PIC is developed and documented in Holt et al. (1960), where
evidence of successful industrial applications is documented.

The policy above can be compared to the OUT policy described in Arrow
et al. (1951) and refined in Bellman (2003). The OUT policy is optimal when
there are convex inventory costs and no other costs. In every period there is
a target inventory position, x∗t and an observed inventory position xt. The
optimal order decision is then to raise the inventory position to the target value,
i.e. x∗t = ot + xt. At roughly the same time as Simon’s initial paper, Tustin
(1953) published The Mechanism of Economic Systems, wherein a PIC system
with lead times was investigated. A conclusion reached by Tustin was

“. . . it is possible for a trading system to show phenomena of an
oscillatory kind, quite apart from price phenomena, due to no more
than the efforts of traders to maintain stocks in the face of delays
in delivery. The possibility is indeed an obvious one.” (Tustin, 1953,
p. 98)

This phenomenon gained notoriety following Forrester (1958), who proposed
Industrial Dynamics (a type of discrete-time simulation, often with nonlinear
components), to model and understand excessive order rate fluctuations in
industry. The example was a multi-echelon supply chain, in which demand,
backlogs, capacity, cash flow, information, and orders were accounted for.

Howard (1963) investigated another policy, where the order quantity was
equal to a proportion of the sum of the last two recorded inventory levels,

ot = α [(i∗ − it) + (i∗ − it−1)] . (2.6)

Using Z-transform techniques and the impulse response, Howard showed that
the special case α = 1/2 produces an underdamped system.
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Deziel and Eilon (1967) present a discrete-time model, analogous to Simon
(1952), which took an inventory-optimal ordering rule (Vassian, 1955) and
added a proportional feedback controller to allow for damping of the order rate.
Simon (1956) showed that a linear feedback policy is optimal under quadratic
costs. Another optimal policy was characterized in Sobel (1970) under the
assumption of convex inventory costs, and convex, piecewise-linear production
costs. This result is related to Beckmann (1961), who investigated a system
without overtime, but with a specific cost for changing the capacity level.

The modern era

The proportional feedback rule was again investigated by Towill (1982), who
identified the variance amplification ratio of the order rate and inventory to
white noise demand for continuous PIC systems with an exponential smoothing
forecast and no work-in-progress (WIP) feedback. In a development, John
et al. (1994) presented a generalization of this, the Automated Pipeline and
Inventory Order Based Production Control System (APIOBPCS), with separate
proportional feedback controllers for WIP, and inventory errors. APIOBPCS
variants have been implemented at Lexmark (Disney et al., 2013), and at Tesco
(Potter and Disney, 2010).

An investigation of the effect of various parameter setting can be found
in Disney and Towill (2003) and Zhou et al. (2010); one important insight is
that the Deziel-Eilon rule, where the feedback parameters are equal, has easily
recognizable stability limits and also provides good performance without unnec-
essary oscillations in the order rate. Further work on APIOBPCS includes the
application of demand signals using the Fourier Transform (Dejonckheere et al.,
2003), the performance of systems with VMI (Disney and Towill, 2002), and
the application of costs to both inventory and orders (Disney and Grubbström,
2004; Hosoda and Disney, 2012). In the last reference, the optimal capacity
from labour appears to have a newsvendor-type solution (we confirm this for
arbitrary distributions in Appendix A). When the future production require-
ments are known, the optimal staffing rule is obtainable from an algorithm by
Rao (1990), resembling the well-known Wagner-Whitin algorithm (Wagner and
Whitin, 1958).

The problem of excessive order rate fluctuations gained notoriety as the
bullwhip effect (for brevity: bullwhip) following Lee et al. (1997). Bullwhip is
present when the variance of orders exceeds the variance of demand, and the
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condition is usually stated
var(ot)
var(dt)

> 1. (2.7)

This formula is used as a test to see if the ordering policy amplifies demand
fluctuations (a possiblility Tustin [1953] predicted), or if the policy attenuates
them (when the ratio is less than unity). Lee et al. (1997) identifies four
potential causes of bullwhip:

• Demand signal processing

• Rationing gaming

• Order batching

• Price variations

Bullwhip is not always detrimental. The causes illustrated by Lee et al. (1997)
use policies where there is a cost of inventory, but no cost related to bullwhip,
or to the production decision. Therefore, we should ignore the bullwhip effect,
when there is no penalty associated with it. However, when capacity costs are
present the bullwhip effect should be considered — In an example, Metters
(1997) finds that bullwhip mitigation can reduce relevant costs by 10%–30%.
The potential benefits of targeting bullwhip are the greatest under quadratic
cost models, like the ones used in Holt et al. (1960). For this cost setting, a
full-state policy is optimal for ARMA(p,q) demand, as shown by Gaalman
(2006). For a comprehensive review of bullwhip research, see Wang and Disney
(2016).

The multiechelon aspect also appears in PIC systems. For example, Disney
and Towill (2002) develop a VMI policy capable of production smoothing by
expanding APIOBPCS to a VMI setting, identifying transfer function for orders
and inventory levels, as well as the stability criteria for the policy.

2.2 Structured review

One research question is centred on the implications of cyclical ordering, and
the following section pinpoints the current literature on this specific topic via a
structured literature review, which was done according to Table 2.1. Apart from
this search, the reference lists of relevant papers in the search were investigated
for additional contributions, in particular by searching reference lists for authors
of other germane papers, and for relevant paper titles. Scopus returned 351
hits, and Web of Knowledge returned nine. Following an inspection of the
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Table 2.1: Specification of literature search

Search engines: Scopus, Web of Knowledge
Time period: Published before 2015-07-20
Publication type: Journal papers
Language: English
Search parameters: Scopus: Title and keywords

Web of Knowledge: Topic
Search keywords: (inventory AND “*order period”) OR

(inventory AND “*order cycle”) OR
(inventory AND “*replenishment cycle”)
(inventory AND “staggered deliveries”)

abstracts, a majority of the papers did not distinguish between order cycles
and inspection periods or batch frequency. After a detailed inspection of the
papers, fifteen were relevant — Out of these, six were of moderate relevance,
and nine addressed staggered deliveries explicitly.

The moderately relevant papers are termed so, because they contain models
that are either not staggered, or because the staggering is in response to a known
production requirement, which has more to do with detailed scheduling than
with aggregate planning. Bradley and Conway (2003), Kaku and Krajewski
(1995) and Nathan and Venkataraman (1998) are closest to shop floor control,
as they consider scheduling and set-up times. The most essential division of
these papers pertains to the level of aggregation which each paper investigates.
Modigliani and Hohn (1955) is also related to these as it assumes known future
demand over a fixed planning horizon. These papers also make very specific
assumptions about the production system, limiting the insights gained to a
narrow set of production systems. Other relevant papers operating on an
aggregate level (MPS) include Tang and Grubbström (2002), where there is a
conditional schedule change cost that may be incurred once per period; and
Zhao and Lee (1993), presenting a simulation model of multi-level MRP systems
where the MPS may be frozen. Zhao and Lee (1993) finds that longer order
cycles can stabilize production, and that forecast errors degrade performance.

The nine remaining papers take an aggregate approach to staggered deliver-
ies, where the production volume per period is the variable of interest. Despite
investigating the same concept, the terminology varies: Five papers with James
Flynn as an author refer to staggered deliveries, Chiang (2009) calls it a periodic
review replenishment model, Lian et al. (2006) talks about the frozen period,
Prak et al. (2015) uses periodic review and continuous ordering, and Chiang
(2001) uses the term order splitting. The last term is more commonly used in
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the context of splitting orders not across time, but over multiple suppliers, as in
Kelle and Silver (1990) (not a staggered deliveries paper). The papers identified
from the literature search make it clear that the effects of the order cycle are
compared either to a fixed or binary cost per cycle or delivery, or to a capacity
cost or constraint. It is worth noting that non-trivial order cycle lengths are
investigated in very few papers, with vastly different assumptions and modelling
approaches, even though several notable industrialists (see Chapter 1) have
mentioned it as a pertinent problem. The following section summarizes the
main insights from the papers that treat staggered deliveries on the level of
aggregated planning.

2.2.1 Staggered deliveries

Only a handful of the papers from the structured literature review addressed
staggered deliveries, where multiple consecutive orders are planned at a single
point in time.

Optimal policy
Flynn and Garstka (1990)

Optimal order cycle length
Flynn and Garstka (1997)

Multiproduct extension
Flynn (2001)

Fixed order cost
Flynn (2000)

Cycle length heuristic
Flynn (2008)

Forecast order policy
Lian et al. (2006)

Continuous receipts
Prak et al. (2014)

Lot splitting policy
Chiang (2001)

Pragmatic policy
Chiang (2009)

Figure 2.2: Interdependencies between the papers with staggered deliveries

The first of these is Flynn and Garstka (1990), which proves a staggered
variation of the OUT policy to be optimal under convex inventory costs, i.i.d.
demand, and a non-negative ordering constraint. Apart from the inventory cost,
Flynn and Garstka considered an audit cost, incurred once per order cycle. The
audit cost reflects the cost of inspecting the inventory level and determining the
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order quantity. When the model is constrained to piecewise-linear inventory
costs, the optimal OUT level for each period corresponds to a critical fractile,
i.e. optimal OUT levels produce a certain probability of ending each period
with positive inventory. This holds for both finite and infinite time horizons.
Notably, all order cycles but the terminal one (in finite-horizon cases) have the
same set of OUT levels.

Building on these results, Flynn and Garstka (1997) present a procedure
for identifying the optimal order cycle length, which can be greater than one
period if the audit cost is sufficiently high — More specifically, they show that
the optimal order cycle length increases with the audit cost. In addition, Flynn
and Garstka identify a lower bound for the average cost per period, and suggest
two heuristics for finding the optimal order cycle length. The main benefit of
these heuristics is the ease of implementation compared to the exact procedure.

A fixed cost for ordering a sequence of P orders (that is not incurred if
all order quantities in a cycle are zero) is introduced in Flynn (2000), who
identifies the optimal policy under this setting as a staggered (s,S)-type policy.
Flynn also proves that an optimal order cycle length exists, and provides an
algorithm for its computation. This exact procedure is tested against four
heuristics, which perform well when demand is normally distributed, with a
coefficient of variation no greater than 50%. Flynn (2008) develops another
heuristic, which is asymptotically optimal for normally distributed demand.

The model in Flynn and Garstka (1990) is also expanded to a multi-product
scenario in Flynn (2001), where each product has a specific order cycle length.
Flynn (2001) identifies the OUT policy as optimal regardless of the products’
order cycle lengths, proves that an optimal set of order cycle lengths exists,
and presents sufficient optimality conditions for the set of order cycle lengths.
To identify the parameter settings of the optimal policy, Flynn (2001) uses a
branch-and-bound algorithm, which performs well when the number of products
is no greater than ten. When there are more products, Flynn suggests two
heuristics which are demonstrated to compute faster, but with an error in the
estimated cost of up to 2.59%.

Staggered deliveries are studied in relation to lot splitting in Chiang (2001),
where inventory costs are incurred periodically, and a single-lot approach is
compared with two lots or more. A fixed order cost, a cost per lot, and holding
costs are considered. Backlog costs are not included, but their equivalent can
be found in a service level (availability) constraint. The lot-splitting policy is
essentially an OUT policy (applied to an entire order cycle) which is divided
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into P receipts that need not be equal, as each receipt quantity is weighted
differently between the periods in a cycle. Chiang (2001) demonstrates that
lot-splitting can be beneficial when the audit cost is significant, presenting
numerical examples with savings of 7%–12%.

Another staggered policy appears in Chiang (2009), where the order quantity
in the beginning of the cycle is arbitrary (until a target inventory position
has been reached), and constant in the remaining periods of each cycle. This
ensures that the production rate is constant in all but a few periods. Chiang
(2009) studies this policy with and without a non-negative ordering constraint.
As one would expect, the unconstrained policy achieves a lower cost, and also
has the benefit of only having a variable production quantity in the first period
of the cycle, and constant production in the remaining; this does not hold for
the constrained policy, as production may be reduced when necessary (but
not increased), in the periods following the first. Chiang’s numerical examples
investigate several values for the audit cost, indicating that for either of the
two policies, the optimal order cycle length increases with the audit cost.

Real demand data and forecasts are applied to staggered deliveries in Lian
et al. (2006), who present a simplified policy based on a single safety stock
for the cycle, and on the forecasts of individual periods. Holding, backlog and
audit costs are considered, implying that a staggered OUT policy is optimal.
The performance of the simplified policy is compared with the optimal policy
(which adds time–varying safety stocks), indicating that the policy performs
reasonably well. For their numerical example, the savings potential of switching
to the optimal policy is less than 2%. Lian et al. (2006) also investigate the
optimal order cycle length, and identify this by enumeration. Notably, the
optimal length in their numerical example depends on the policy used: For the
optimal policy the optimal order cycle length is three periods, whereas it is five
periods for the simplified policy with forecasts.

Prak et al. (2015) investigate a system with discrete audits and continuously
staggered receipts, finding that a staggered OUT policy is optimal. In a
numerical example, they compare continuous ordering with periodic ordering,
and identify a savings potential of 30%− 60% under continuous ordering. The
current state of research on staggered deliveries is summarized in Table 2.2.
Notably, almost all models use some variation of the OUT policy, and they
differ by how the OUT levels are calculated.
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Table 2.2: Classification of the papers on staggered deliveries.

Paper Policy Type
P ∗

treatment Notes
Flynn and Garstka (1990) OUT Optimal — —
Flynn and Garstka (1997) OUT Optimal Analytical —
Flynn (2000) (S,s) Optimal Analytical Fixed order

cost
Flynn (2001) OUT Optimal Analytical Multi-

product
Chiang (2001) OUTa Heuristic — Lot

splitting
Lian et al. (2006) OUT Heuristic Numerical Forecasting,

S1 service b

Flynn (2008) OUT Optimal Analytical —
Chiang (2009) OUT Heuristic Numerical —
Prak et al. (2015) OUT Optimal — Continuous

time
a OUT policy over the cycle; all receipt quantities within each cycle are
identical.

b Average long-run availability calculated over all periods simultaneously.

2.2.2 Identifying research gaps

To get an understanding of the state of staggered delivery research, the papers
about staggered deliveries were compared with major themes in the non-
staggered literature. As the research on staggered deliveries is limited, many
results which are fundamental to the non-staggered literature do not exist (e.g.
fill rates, capacity costs, multiechelon systems). Figure 2.3 presents the state of
the staggered delivery research based on eight classes of criteria that are derived
from our general review of inventory control and PIC. The figure mentions
only the first papers to expand staggered deliveries in a particular direction, as
these papers reflect the recognition and treatment of research gaps.

Figure 2.3 reveals the following about the state of staggered research: All
models up until now have been single-echelon, starting with Flynn and Garstka
(1990), which also constitutes an optimal policy under inventory costs and an
audit cost. As there is still much to be explored in this setting, all research
questions, RQ 1–7, concern single-echelon systems. The first suboptimal, but
pragmatic, policy was the order-splitting policy of Chiang (2001), later to be
followed by Lian et al. (2006) and Chiang (2009). We consider new pragmatic
policies as a partial solution the capacity cost problem of RQ 4. The work
on RQ 4 also provides an optimal policy under quadratic costs, while RQ 1
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provides the optimal policy under autocorrelated demand and piecewise-linear
inventory costs. In all cases demand has been assumed to be i.i.d., except
for Lian et al. (2006), where demand was merely assumed to be independent
over time. Our contribution to staggered delivery models with i.i.d. demand
concerns service levels (RQ 2) as well as the study of systems with capacity
costs, covered by RQ 4–7. No work on autocorrelated demand has been done
within the context of staggered deliveries; this gap is filled by answering RQ
1–3. Since Flynn and Garstka (1990), the typical costs considered are audit
costs and inventory costs (treated by RQ 1–3, and 6) — Capacity costs have not
been modelled before, but this research gap is addressed by RQ 4–7. Only Lian
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Figure 2.3: Resolved and remaining research gaps for staggered deliveries.
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et al. (2006) have investigated the effects of forecasts in relation to staggered
deliveries, but they did not consider temporally aggregated forecasts despite
the attractiveness of this solution in relation to long order cycles. We extend
the theory of non-aggregated forecasts as part of the optimal policy sought
by RQ 1. System constraints were first implemented as nonnegative orders in
Flynn and Garstka (1990), while an upper capacity limit (in some periods) was
used first by Chiang (2009). Another constraint was used by Chiang (2001),
where a service level constraint was used in lieu of backorder costs. As for
service levels, only Lian et al. (2006) provided the average availability over the
cycle, but not the availability per period. Fill rates have not been considered
at all. Contributions to the theory of availability and fill rates result from
addressing RQ 2.

From these observations, we deduce that the theory on staggered systems
is incomplete with respect to autocorrelated demand, capacity costs, fill rates,
availability, (temporally) aggregated forecasts, and multiechelon models. It is
not difficult to think of other research gaps, but the ones presented are essential
to our understanding of inventory and production systems. In light of these
research gaps, we shall investigate staggered deliveries under autocorrelated
demand, inventory costs and audit costs, and for this derive the optimal policy,
and the resulting availability and fill rate. This covers two of the gaps in Figure
2.3. We shall also investigate capacity costs (for i.i.d. demand), using a policy
that minimizes quadratic cost, and using a family of pragmatic policies that
are staggered variants of APIOBPCS. Aggregated forecasts and multiechelon
models remain open problems.
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Methodology

This chapter outlines the methodology used to address the research questions.
It begins with some general views on knowledge and research, and then delves
into the actual research design. A section on validation explains how we can
ensure that this research is trustworthy.

3.1 Epistemology and ontology

Research is influenced by ones perception of reality. The set of assumptions one
holds about the nature of reality is termed ontology, and the set of assumptions
about knowledge and research is termed epistemology (Blaikie, 1993, p. 6).
These terms come as a pair, often in relation to a research strategy. Sometimes,
this is called a research paradigm. The importance of choosing the right research
strategy can be understood by comparing two widely contrasting approaches:
the positivist and the phenomenological. The difference between them can
be seen in Table 3.1. The positivist approach encompasses the attitudes and
methods of hard science, while the phenomenological approach is closer to the
social sciences.

The choice of research strategy is not arbitrary, as it depends on the problem
being researched. In this dissertation, the research questions ask how a design
feature (periodic reordering) influences specific variables (service levels and
cost); therefore we would do well to opt for a positivist approach.

The positivist approach described by Easterby-Smith et al. (1991) comes in
various flavours, encompassing traditional positivism, critical rationalism, and
realism. Traditional positivism assumes in its ontology a material world, where
only observable or measurable events are considered to be real (Blaikie, 1993,
p. 94). Traditional positivism leaves no room for studying unobservable events.

30
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Table 3.1: Comparison of the positivist and phenomenological research
paradigms (Easterby-Smith et al., 1991).

Paradigm: Positivist Phenomenological

Basic beliefs: The world is external and
objective;

The world is socially con-
structed and subjective;

Observer is independent; Observer is part of what is
observed;

Science is value–free. Science is driven by human
interest.

Researcher should: Focus on facts. Focus on meanings.

Preferred methods: Look for causality and fun-
damental laws;

Try to understand what is
happening;

Reduce phenomena to sim-
plest elements;

Look at the totality of the
situation;

Formulate hypotheses and
then test them;

Develop ideas through in-
duction from data;

Operationalizing concepts
so that they can be mea-
sured;

Using multiple methods to
establish different views of
phenomena;

Taking large samples. Small samples investigated
in depth over time.
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Its purpose is to predict the observable.
Critical rationalism is akin to positivism, but comes with a different episte-

mology. It assumes that before any observation is conducted, we must have
a reason to make that observation (Blaikie, 1993, p. 95). Therefore, theory
precedes observation. The practical difference between traditional positivism
and critical rationalism is that the former uses observations as a foundation for
theory, while the latter builds theory to be tested against observations (Blaikie,
1993, p. 96).

Realism, sometimes called empirical realism, assumes that reality exists
independently from scientific activity. In contrast to positivism, which is
concerned only with the empirical (observed events), realism also considers
the entire set of events, observed or or, which is termed the actual, and also
the mechanism which brings about these events, termed the real. In this way,
objects can exist and events can take place without being observed, or even
observable. The result is that realism, in contrast to positivism and critical
rationalism, can accept something as true (real), even if it is unobservable.
Because the real is assumed to exist, realist research seeks not only to predict
events, but also to explain why they occur. Realism is not associated with
induction or deduction, but with retroduction (Blaikie, 1993, p. 98-99), which
works as follows:

When a non-random pattern is identified, the first step is to under-
take a series of experiments to determine the range of conditions
under which it appears. Then the processes which generate the
pattern are to be looked for in the natures of the things and mate-
rials involved. It is the fact that these are usually not known that
brings into action the model building process. The creative task
is to create a plausible analogue of the mechanism which is really
producing the phenomenon. (Harré, 1976, p. 21)

An important challenge that realists must face is the risk of developing
models that, contrary to the researcher’s perception, fail to represent reality.
In cases like these, the research may fail to identify the real mechanism behind
the phenomenon being investigated (Bryman, 2012, p. 29). This phenomenon
is the basis of critical realism, which seeks to identify the real mechanisms in
order to effect a change to the (often social) system. To attain this, critical
realists seek to understand the entirety of a situation by providing information
about context, as this is believed to bring the model or description closer to
reality.
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3.1.1 Considerations for operational research

Operational research (OR) and operations management do not rely on a
single theoretical foundation, but encompasses a multitude of perspectives
and methodologies (Boer et al., 2015). With disparate methodologies such
as case studies, surveys, simulation models, and mathematical models, there
will sometimes be differences in the view on research. For example, Checkland
and Scholes (1990, p. 22) argue that it may be useful to think in terms of
systems, but questions their existence. In contrast, system dynamics asserts
that systems are real, and that systems cause observable behaviour (Forrester,
1994). On a similar note, Arrow et al. (1960, p. 18) suggests that models are
approximations that highlight the most important tendencies of real systems.

To connect this with research paradigms, we note that research based on
mathematical modelling or simulation presupposes the existence of a causal
mechanism, i.e. a system, or what realists call the real. In contrast, pure
positivism dismisses evidence from models, as it requires empirical observations
for theory-building.

Minas (1956) argues that there is a beneficial interaction between model-
building and empirical work. As a practical example, consider the mathematical
models of Simon (1952) and Tustin (1953) predicting the bullwhip effect, which
is now supported by rich empirical evidence (Isaksson and Seifert, 2016). Models
have also identified ways to mitigate problems with bullwhip, and these remedies
have been demonstrated to work (Disney et al., 2013; Potter and Disney, 2010).
With realist eyes, we would see this development as evidence of a useful model
that in its general features reflects the real world. With positivist eyes, only the
empirical evidence counts, while the models at best serve as tools for generating
experimental hypotheses.

This thesis seeks to develop an understanding of staggered deliveries from
first principles. The assumption is that such systems are real, and that physical
implementations of staggered delivery systems will share some features with
simple theoretical models of staggered deliveries. Because we assume that a
system mechanism causes events and potential empirical observations, realism
is the appropriate research paradigm.

The realist approach provides a good match with the research questions:
A design feature (periodic reordering) is a real-world entity; we suspect it
influences costs and service levels; can we build a model that captures the
essential consequences of periodic reordering, even if it only approximates
reality? In light of the research questions, it appears that realism is the



CHAPTER 3. METHODOLOGY 34

approach best suited for this dissertation.

3.2 Research method

This section details the methods used, why they were chosen, and how they
were executed. At first, the general research area (staggered deliveries) was
chosen, as it appeared to be largely ignored, even though this practice has been
observed in supply chains. To find out the current state of research for this
problem, a systematic literature review followed.

3.2.1 Literature review

The literature review started with a broad review of production and inventory
control research. Then, a search for keywords that were thought appropriate for
the problem of staggered deliveries was conducted. Initially, MetaLib, Scopus,
Web of Knowledge, and Google Scholar were used to find appropriate papers,
and more relevant keywords. Then, the reference lists of the identified papers
were used to find further papers on this topic. The reference lists were searched
for titles that appeared relevant, and for authors who had written other papers
on the staggered deliveries.

Based on new keywords found from the initial searches, a structured search
was conducted on Web of Knowledge and Scopus. After identifying relevant
papers, they were classified based on their differences, and a research gap was
identified. This formed the basis of the research questions.

3.2.2 Modelling approaches

Having opted for a realist approach, we are required to construct a model to
explain the underlying mechanism of the research problem. By its very nature,
the staggered deliveries problem reflects performance over time: it is dynamic.
Pidd (2003) argues that one can understand management problems by building
mathematical models, simulation models, and soft systems models. All of
these try to explain how a set of inputs affects a set of outputs. Mathematical
modelling and simulation quantify this, while soft systems modelling does not.
A common feature of these approaches is the concept of a system state, and
controls.
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Mathematical modelling

In mathematical models we tend to consider a state vector xt that describes
the state of the system with respect to t. Depending on the model, the state
can change in discrete time increments, t ∈ Z, or in continuous time, t ∈ R.
An example of a system evolution in discrete time is

xt+1 = f (xt,ut,wt, t) , (3.1)

where ut is the control and wt is some exogenous input; and the corresponding
continuous time realization is

ẋt = f (xt,ut,wt, t) , (3.2)

where ẋt is the derivative of x with respect to t. The discrete-time case is
treated with difference equations, and the continuous–time case with differential
equations. A thorough treatment of the topic is provided in Luenberger (1979).
In some cases, the problem of determining a control u, can be attacked heads-on;
this is done in Box and Jenkins (1976). But not all situations are amenable
to this direct approach. Then we can consider classic control theory, optimal
control, or dynamic programming.

Control theory refers to techniques for making the output of a system
conform to an input signal. It is helpful to differentiate between classical
control theory, and optimal control. The classical approach aims to produce
systems that perform acceptably when provided with certain input signals
(Kirk, 1997, p. 3). Commonly tested signals are a single impulse, a step
increase, a ramp, a parabola, or a sine wave (Nise, 2011, p. 19). The criteria
for an acceptable design can include aspects of the transient response, (such
as the peak overshoot and the settling time), the steady-state error, or the
stability of the system. We note that classical control theory does not seek
an optimal solution, but it can be used to find solutions that are robust to
widely different input signals. Before considering modern control theory, we
shall make some brief observations about stability.

The term asymptotic stability refers to the tendency of a system, regardless
of initial conditions, to approach an equilibrium point, µ, as time progresses.
If the system instead diverges to positive or negative infinity, the system is
said to be unstable, and if the system neither converges, nor diverges, but
falls into a limit cycle, it is termed marginally stable (Luenberger, 1979, pp.
154–159). Like Box and Jenkins (1976, p. 9), we shall drop the adjective,
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and refer to asymptotically stable systems as stable. These systems have the
attractive property of producing stationary time series as output. This simply
means that the distribution of the output is time-invariant, i.e. xt ∼ xt+n, a
helpful property when investigating long-run performance. Stability ensues
when the impulse response of a system comprises a finite number of periods,
or if the impulse response covers infinite periods, but converges to zero (Box
and Jenkins, 1976, p. 9). For further details about stability criteria, the reader
may consult Luenberger (1979, pp. 154–159).

As an alternative to classic control theory, we may seek an optimal control
policy that minimizes a penalty (cost) function. To find the optimal policy
for continuous systems, we can use the Pontryagin minimum principle, or the
Hamilton-Jacobi-Bellman equation, whereas for discrete-time systems, dynamic
programming is the method of choice (Bertsekas, 2005).

A particular kind of policy is optimal when the system structures are linear,
and the cost function is quadratic. By quadratic costs, we simply incur a penalty
equal to the square difference between the actual outcome and the intended
outcome. Under these conditions, the optimal policy is a linear function of the
system states (Simon, 1956). The optimal policy is said to be a linear quadratic
regulator (LQR), and its identification depends on the solution of an algebraic
Ricatti equation. This can be done directly, when we have perfect information
about the system states. When there are Gaussian measurement errors, the
optimal policy is an LQR combined with a Kalman filter. This summarizes the
theory on linear systems. Next we will consider optimal policies for nonlinear
systems.

Dynamic programming is a collection of techniques for finding an optimal
sequence of controls, or an optimal policy, for a system whose state changes
over time. The common denominator between these techniques is the reliance
on the principle of optimality:

“An optimal policy has the property that whatever the initial state
and initial decisions are, the remaining decisions must constitute
an optimal policy with regard to the state resulting from the first
decision.” (Bellman, 2003, p. 83).

This principle exploits that sequential decision-making problems can be divided
into subproblems. When a number of decisions are sequentially contingent,
we optimize the last decision, i.e. the decision that does not affect any other,
and substitute this optimum in the original dynamic program. Thus, we have
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eliminated one decision variable, and can continue to optimize one decision
variable at a time until the optimization is complete.

The principle of optimality applies to both deterministic and stochastic
problems, with both finite and infinite time horizons. For finite-time problems,
the cost to be minimized is the sum of periodic costs, plus some terminal cost
that depends on the final system state. The procedure can be numeric, or
algebraic, depending on the problem. The difference between the two is that
the analytical approach tries to identify the structure of an optimal policy,
whereas the computational approach takes an initial condition, and identifies
the optimal control as a set of numbers, or as a matrix. In the former case,
with a known optimal structure, it is still necessary to identify the optimal
parameter settings for the policy. In the latter case, the optimal numerical
setting provides no explanation for its optimality.

Dynamic programs can also span an infinite time-horizon. Then it is common
to use a discount factor, or an average-cost approach, to prevent infinite costs
(Bertsekas, 2005, p. 403). In average-cost infinite-horizon problems, the initial
state (and its transient effects), and the terminal cost tend not to matter, as
they are averaged over an infinite time period.

Simulation modelling

Simulation models use equations or computer code to reproduce the behaviour
of a system. In this way, we may see a simulation model as a digital copy of a
real or imagined system. In contrast to analytical models, we must specify a
set of numeric inputs that in turn provide a set of numeric outputs. Simulation
may not produce as general results as a mathematical model would, making
the connection between input and output numeric rather than analytic, but
it allows complicated models, that might otherwise be intractable, to be built
with relative ease. In addition, simulation models can be used to validate the
results of analytical models, for both deterministic and stochastic systems.

Soft systems modelling

In contrast to mathematical modelling and simulation, soft systems modelling
does not generate a quantitative model. Instead, it exploits systems thinking to
help managers understand human organizations (Pidd, 2003, p. 115). Practice
is emphasized over theory, and the means of modelling are diagrammatic,
rather than quantitative (Mingers, 2011). Soft systems modelling deals with
complicated problems (what Ackoff (1999) terms a mess), often involving
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organizational and political aspects that may not be included in a quantitative
model. As soft-systems modelling deals with specific real-world problems, it is
not well suited to the abstract order cycle problem.

Choice of modelling approach

As modellers, we seek at the same time to present a rich picture of some
phenomenon, general enough to cover a range of scenarios, yet specific enough
to give useful results. There is a trade-off between these, and in many cases
simplification may be warranted. As an example, the dynamics of physical
systems are often linearized to become mathematically tractable (Nise, 2011, pp.
88–97). In the same way, we must select system structures and cost functions
that are both realistic, and tractable. To obtain a balance between model
realism and richness of the analytical results, the following assumptions are
made:

1. System structure. We opt for a linear system structure. This makes
it simple to calculate the statistical moments of output variables, and
the covariance between variables. When the input signal is normally
distributed, the output variables also have this distribution. By using
a linear model, we cannot assume lost sales, nor can we assume that
capacity is finite. Still, a linear model can approximate a physical system
with sufficient safety stock and capacity. We must also assume that
returns to suppliers are allowed, and that anything ordered from suppliers
(or from production) is delivered in full.

2. Costs. When investigating the inventory dynamics only, we assume
convex, piecewise-linear costs. For the case of capacity and inventory
costs, we design an optimal policy for quadratic costs, which have been
used to approximate the piecewise-linear inventory and capacity costs
observed in industry (Holt et al., 1960). We also consider piecewise-linear
inventory and capacity costs for four variations of a staggered policy that
is used industrially.

3. Demand. Assumed to be normally distributed. When we investigate
the inventory dynamics only, demand can have an arbitrary autocorre-
lation function. When we add capacity costs, demand is assumed to be
independent and identically distributed.

These assumptions are reasonable in situations with high-volume products
with low variability, and sufficient capacity. Other production settings may
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require a different model. The particular benefits with this set of assumptions
is that we can obtain fairly rich analytical results, in the form of costs and
service level expressions.

3.3 Validation

It is not enough just to have a model. We must also know that it serves its
purpose. To our aid, we have a range of validation techniques.

When a (physical) reference system exists, black-box validation can be used
to test that the output of the model conforms with the reference system. Often,
we can only compare a present-state model against a real system, but for
models of a tentative future-state there is no real system against which to
compare it. In these cases, we must demonstrate that the model operates as
a physical system would operate, under the same circumstances, and for the
same reasons. This reduces to demonstrating that the model’s components and
their interactions reflect those of the physical system. We call this validation
of model internals open-box validation (Pidd, 2003).

Of the many validation techniques, those designed for System Dynamics
models are of particular interest when we consider discrete-time systems. An
extensive treatment can be found in Forrester and Senge (1978), where the
tests cover three categories: model structure, model behaviour, and policy
improvement. Some of these tests are described further by Sterman (2000,
pp. 859–861). Based on Forrester and Senge (1978) and Sterman (2000), we
shall consider the following tests, which have been selected because they are
meaningful for analytical models:

• The model should be causal, exhibiting the same behaviour as the real
system, for the same reasons.

• The model structure must be consistent with the descriptive knowledge
of the system.

• The model must not break physical laws.

• The decision rules in the model must reflect the behaviour of the decision-
makers.

• The units of the stocks and flows in the model must be consistent.

• The model should respond reasonably when parameters are set to extreme
values.

• The model variables must be unambiguous and quantifiable.
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• The model must be able to generate the same behaviour as related models.

This list of validation practices reveals that validation is just as much a quali-
tative problem, as it is a quantitative one.

Validation in this thesis

Mathematical models are functions, relating input and output variables without
intermediate steps. They are black boxes. Following the derivation of a
mathematical model from the start allows a certain qualitative understanding
of the model to be developed. To achieve open-box validity, we build a
discrete-time simulation model designed to address the same problem as the
mathematical model. Not only is the simulation model easier to understand,
but its results should also be comparable with those of the mathematical model,
allowing one to validate progress each step of the way.

3.4 Ethics in operational research

OR frequently develops models describing how real systems should be configured,
and how decisions should be made. As a result, OR models can have significant
effects on the world. Apart from this are the ethical standards of people working
with OR, including researchers and practitioners. This section explores both
perspectives, starting with the first, and concludes with a statement of the
ethical considerations taken when performing the research for this thesis.

3.4.1 Ethical considerations within models

An early influential textbook states the objective of OR:

O.R. tries to find the best decisions relative to as large a portion of
a total organization as possible (Churchman et al., 1957, p. 6).

Although primarily focused on economic performance on an organization-wide
scale, Churchman et al. (1957, pp. 59–64) describes how worker attitudes,
working conditions, and motivation can be important factors to consider in
OR. On a more abstract level, Ackoff (1949) talks about ideals as the end goals
of human pursuits. Based on this, Ackoff argues that one must define value
criteria (objective functions) that indicate progress towards these ideals.

According to Brans (2002a), ethical decision-making in OR rests on three
foundations: The first is rationality, where the entire decision problem is
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reduced to a single-objective optimization problem. The second is subjectivity,
where multiple fitness criteria are identified, and the decision-maker selects
one of several Pareto-optimal solutions. The third foundation is ethics, where
decision-makers appraise how people and the environment are affected by the
potential solutions, and use this when determining what solution to implement.
The foregoing approach is primarily used when the expected outcome of a
decision is important, but there is always a risk that the actual outcome differs
from the expected. To evaluate these situations Cairns et al. (2016) suggest
the use of scenario planning in combination with an evaluation of stakeholder
objectives.

3.4.2 Ethics in OR work

Apart from including ethical considerations in OR models, there is also the
dimension of ethical OR practice. Brans (2002b) suggests a kind of Hippocratic
oath for operational researchers in different roles. it dictates that:

• As a consultant, one should try to convince decision-makers to be ethical.

• As a decision-maker, one should consider the ecological, economic, and
social consequences of ones actions.

• As a teacher, one should be honest, respect colleagues, and discuss the
consequences of OR work.

• As a researcher, one should seek freedom of association, use suitable tools
and methods, and realize that any work may be put to practical use.

A different perspective is provided by Diekmann (2013), who formulates four
principles: Transparency — to provide full disclosure of models and assumptions;
integrity — to follow professional and scientific standards, and not to distort
work for personal gain; comprehensiveness — to consider all stakeholders and
the moral implications of the work; and finally efficacy — to provide a detailed
account of possible ethical consequences. Some of this is reflected by Gallo
(2004), who states that all stakeholders must be taken into account, and that
research outcomes, such as models and algorithms, should be made accessible
to practitioners and the academic community.

3.4.3 Ethical considerations in this thesis

This thesis develops models, and later describes an industrial production system
where staggered delvieries occur. In accord with the preceding discussion, we
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shall consider how ethics relates to the models themselves, and to the research
effort as a whole.

In the models, we assume the role of a planner being responsible for the MPS.
Chapter 4 considers, a pure inventory model with the aim to minimize the sum
of linear holding- and backorder costs, and the once-per-cycle audit cost. The
model can be applied to a range of scenarios, including ones with products that
are critical to human well-being, such as pharmaceuticals. When products are
important in this sense, users of the model must set sufficiently high backorder
costs, and they must also verify that the service levels are sufficiently high.
Chapter 5 adds the complication of a capacity cost, and identifies an optimal
capacity level. Improving a system following the recommendations made in the
chapter may cause two changes for the workforce: First, a reduced amount of
idling and overtime work, which leads to a more predictable schedule, but fewer
man-hours of overtime worked per product; second, a changed capacity level,
potentially affecting the staffing of the plant. This may lead to recruitment or
redundancies, with consequences for individual workers.

Chapter 6 includes an industrial example outlining a production process
where staggered deliveries occur. The investigation entailed to an interview with
production planners, and followed the ESRC (Economic and Social Research
Council) Framework for Research Ethics (ESRC, 2015, p. 4)

• Participation was voluntary, with no conflicts of interest between the
researcher and the participants.

• The participants were informed of the purpose of the study, and their
role therein.

• The study did not expose the participants to any safety risks.

• Anonymity was preserved for the organization, and for participating
individuals.

• Transparency was achieved by providing a statement of the interview
procedure (in Chapter 6).

• There were no conflicts of interest between the researcher and the partici-
pants, or the organizations involved.

• No personal information was sought or gained.

With this, we have shown how ethics has been treated with respect to the
model and the industrial investigation.
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3.5 Summary

We have concluded that a realist approach befits the research questions. The
research strategy of choice is not induction or deduction, but retroduction. This
entails to devising and testing a conceptual model that is believed to resemble
a real-world phenomenon.

The conceptual model is tested by being implemented both as a mathe-
matical model and as a simulation model. They are designed to be in exact
correspondence to each other, so black-box validity can be tested by comparing
the analytical and simulation results. Open-box validity is provided by the
simulation model. This entails to checking that the difference equations match
the rules provided by the conceptual model.



Chapter 4

Staggered order-up-to policy for
autocorrelated demand

This chapter begins by presenting a model structure that realizes staggered
deliveries. Then the optimal policy under autocorrelated demand is identified as
a variant of the OUT policy. There are three important reasons for considering
autocorrelated demand: First, it can describe stochastic processes with vastly
different characteristics (Box and Jenkins, 1976). Second, demand for many
products is significantly autocorrelated (Lee et al., 2000). Third, it introduces
depth to the analysis, as non-trivial forecasts must be used. Expressions
for costs, availability, and fill rate are provided, as well as a procedure for
determining the optimal order cycle length. The variances of the system, most
importantly the variance of the inventory level, are identified for generally
autocorrelated demand, and for the specific cases of AR(1) and i.i.d. demand.
Notable results include the optimality of time-varying safety stocks that set the
availability to some fixed value, but where the fill rate fluctuates over the cycle.
Constant safety stocks are suboptimal, and cause the availability to fluctuate.

4.1 Model description in a natural setting

To ease understanding, let us initially define the model in a weekly setting
of seven days, where we plan once per week, but produce every day. Later,
we generalize this to arbitrary planning periods of length P , but for now we
consider the planning cycle to be seven days long.

Every morning the inventory level is tallied. If it is Monday, a production
plan is made immediately after the inventory inspection. This production plan
contains seven orders, to cover an entire week of production. This reflects

44
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the planning cycle length P = 7. In more general terms, staggering deliveries
means that we must determine the production rate for P days once every P
periods. Between two such occasions, no new production plans are calculated,
as we are committed to the established plan; Figure 1.1 illustrates this.

Let t number the individual days (periods), and let Mondays occur when
when t/P is an integer. Suppose it is the start of Monday morning, and that
we must plan the orders for the next cycle {ot,1, ot,2, . . . , ot,7}, numbered in
the same sequence as they will be produced. Every order o corresponds to a
future inventory receipt r, according to

ot,k =

rt+τ = rt+k+L when t/P ∈ Z

∅ otherwise;
(4.1)

where k ∈ {1, 2, . . . , P} is the order release offset due to staggering, L is a
non-negative integer lead time, and τ = k+L is the effective lead time. In this
case, L = 4, meaning that these orders will register as received in the periods
{t+ 5, t+ 6, . . . , t+ 11}, as Figure 4.1 illustrates. The information available
when determining ot,k is it, all past demand observations up to and including
dt, as well as all previously planned receipts {. . . , rt+k+L−2, rt+k+L−1}.

Immediately when a cycle’s order quantities have been determined, they
are sent to production scheduling, where the required receipt rates rt+k+L are
disaggregated into a detailed schedule of individual jobs. Each job then leads
to the production of one or more lots. Our model does not place any specific
restriction on jobs, except that they must be released so that the production
completions between t+ τ −1 and t+ τ equal rt+τ . From a production planning
/ inventory modelling perspective, we need not know the exact timing of job
releases, as long as the planned quantity arrives in the right period. The lead
time L reflects the time required to effect a new production plan, including the
time to schedule production, to allocate resources, and to produce the goods.
Note that if L = 0, the first order would be released to production immediately,
and be completed in less than one day. It would therefore contribute to the
inventory level measured at time t+ 1.

The receipts resulting from the staggered deliveries are placed in inventory.
We assume that there is no shrinkage, and that the inventory level increases
with receipts (rt) and decreases with demand (dt),

it = it−1 + rt − dt. (4.2)
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Figure 4.1: Staggering means that even though we plan intermittently, we
receive orders every period.

If there are no goods on-hand, the excess demand is backlogged and subtracted
from the inventory level; then the inventory level falls below zero. Backlogged
demand is satisfied immediately when new goods are received. A sequence of
events consistent with this description can be described as follows:

1. At the very beginning of period t, observe the inventory level it.

2. Immediately thereafter, place all orders ot,1 through ot,P (in sequence) if
t marks the start of an order cycle, otherwise do not order.

3. After any orders are placed, receive rt+1.

4. Thereafter, the final event in period t is to satisfy demand dt+1.

5. After demand has been subtracted from inventory, time advances to
period t+ 1, starting with an inspection of the inventory level it+1.

We assume that the system is linear, therefore negative orders are permitted,
reflecting costless returns (in distribution scenarios), or that goods are sold off
at a price equalling the variable cost of production (in manufacturing scenarios).
Negative demand is also permitted, reflecting returns from customers to our
inventory. Both the storage and the production facilities have unlimited
capacity.
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4.2 The optimal ordering rule

The inventory costs are incurred once per period, and consist of a holding cost
h per unit of inventory, and a backorder cost b per unit of unsatisfied demand,
which we model as negative inventory,

j(it) = h (it)+ + b (−it)+ = h it + (b+ h) (−it)+ . (4.3)

where (x)+ = max (x, 0) . Let the lead-time demand be denoted as ft,τ =∑τ
n=1 dt+n, and the WIP as wt,τ = ∑τ−1

n=1 rt+n; then the inventory level can be
expressed as it+τ = it +wt,τ + ot,k − ft,τ , when P/t ∈ Z. The single-period cost
j(it+τ ) is thus convex in ot,k due to (4.2). Taking the expectation gives

J(it+τ ) = E [j(it+τ )|dt, dt−1, · · · ] , (4.4)

where J(it+τ ) is the expected inventory cost in period t + τ . Note that the
expectation is a linear operator, and as such, it preserves convexity. Therefore,
J(it+τ ) is convex in ot,k. As ot,k can be set freely, the influence of it + wt,τ

can be removed from it+τ , meaning that J(it+τ ) depends only on the decision
variable ot,k, and on the lead-time demand ft,τ . Therefore, the optimal order
policy is myopic, meaning that the optimal solution for an n-period problem
can be found by solving n independent single-period problems (Heyman and
Sobel, 1984, p. 63-71). In practice, we need only to consider the immediate
consequences of each decision, as it has no bearing on the cost incurred in other
(future) periods.

The expected inventory cost (4.4) is convex, and a minimum exists because
both b and h are positive. Therefore, there exists an optimal expected inventory
level that minimizes J(it+τ ). This optimum is referred to as the safety stock,
i∗t+τ . It is identified in the following lemma.

Lemma 4.1 (The optimal safety stock level). The expected inventory cost,
J(it+τ ), is minimized when

i∗t+τ = Φ−1
it+τ

(
b

b+ h

)
, (4.5)

where Φ−1
it+τ is the inverse of the inventory level’s cumulative distribution function

at time t+ τ .

Proof. The expected inventory cost J is structurally identical to the single-
period newsvendor problem, with b and h representing the underage and overage
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costs. See Theorem A.1 in Appendix A for a proof. �

With i∗t+τ known, all that remains is to specify the policy that sets i∗t+τ =
E [it+τ |dt, dt−1 · · · ]. This is done in the following theorem.

Theorem 4.2. When there are P staggered orders per cycle, the expected
inventory cost is minimized by the policy

(a) for the first order in a cycle, when k = 1,

ot,1 = f̂t,L+1 + i∗t+L+1 − it − wt,L+1, (4.6)

where f̂t,τ = E [ft,τ |dt, dt−1, · · · ] is the forecast of lead-time demand;

(b) for all subsequent orders in the cycle, when k > 1,

ot,k = i∗t+τ − i∗t+τ−1 + d̂t,τ , (4.7)

where d̂t,τ = E [dt+τ |{dt, dt−1, ...}] is the single-period forecast, made at
time t, for dt+τ .

Proof. Given in Appendix B.1. �

The policy can be interpreted as an OUT policy with increasing lead times
over the cycle and a simplified ordering rule for all periods but the first. Note
that our simplified rule, (4.7), is different from the simplified rule in Chiang
(2009), who assumes that ot,2 = ot,3 = · · · . Instead, we order the single-period
forecast of demand plus any desired change in safety stock, i∗t+τ − i∗t+τ−1. When
P = 1 the policy simplifies to the regular OUT policy.

4.2.1 Demand specification

To gain further insights about the optimal policy and its dynamic performance,
we shall assume that demand is autocorrelated,

dt = µ+
∞∑
n=0

εt−nθn, (4.8)

where θn is the autocorrelation function, µ = E[dt], and εt is an independent
and identically distributed (i.i.d.) random variable drawn from the normal
distribution. We call εt the error term. It has a mean of zero and a variance of
σ2
ε . The mechanism of such demand processes is well documented in Box and
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Jenkins (1976), where they are described as moving-average processes. One
important property of this type of demand signal is that its variance can be
obtained as var(dt) = σ2

ε

∑∞
m=0 θ

2
m.

The nature of i∗t can be determined from three facts: The system is assumed
to be linear, the policy given in (4.6) and (4.7) is linear, and demand is assumed
to be normally distributed. Taken together, they imply that the inventory
levels are normally distributed, which we will later verify in (B.10). Because
the inventory level follows a normal distribution, the mean and variance are
sufficient to specify the inventory distribution. The mean inventory can be set
to i∗t with rt, but the inventory variance is a function of τ and the demand
process. Before identifying the inventory variance required to calculate i∗t , let
us define the service levels.

4.2.2 Service levels

Not only does the optimal safety stock minimize the total cost of the system,
it also sets the system’s availability (Silver et al., 1998) to the critical ratio
b/(b+ h). The availability (α), or type 1 service level, refers to the probability
of not encountering a stock-out in any given period,

S1 = P(it ≥ 0). (4.9)

The fill rate (S2), or type 2 service level, is sometimes considered a more
appropriate measure in customer-facing settings, as it measures the fraction
of demand fulfilled immediately from stock (Johnson et al., 1995). As the
exact fill rate in (Johnson et al., 1995) is restricted to normal i.i.d. demand, it
was necessary to develop a fill rate expression that copes with autocorrelated
demand. Appendix C makes explicit the limitation of the conventional fill rate
definition. The exact fill rate when demand is autocorrelated and possibly
negative is of the following form:

S−2 =
E
{

[min(dt, it + dt)]+
}

E [(dt)+] . (4.10)

This exact fill rate takes the expectation of immediately satisfied demand, and
divides it by the expected positive demand. This works well when demand is
stationary, the fill rate is undefined for nonstationary demand. Although the fill
rate definition does not permit nonstationary demand, it is possible to obtain
an analogous measure if one measures the fill rate over a finite time period, and
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if the initial conditions of the system are known (Strijbosch et al., 2011). Here,
we do not pursue this path, but limit the scope to the conventional fill rate,
which is obtained as follows. If the variables in (4.10) are normally distributed,
we can obtain the fill rate via the following lemma.

Lemma 4.3. The exact fill rate for normally distributed demand, where periods
with negative demand do not contribute to the fill rate, is

S−2 =
∫∞
x=0 ϕ

−(x)x dx
σ(dt) g [−µ/σ(dt)]

. (4.11)

Here σ(dt) =
√
var(dt) is the standard deviation of dt, ϕ−(x) is the probability

distribution function (pdf) of the minimum of the normally distributed bivariate
random variables dt and (dt + it). g (x) = ϕ (x)− x [1− Φ (x)] is the standard
normal loss function, where ϕ (x) is the standard normal pdf, and Φ (x) is the
standard normal cumulative density function (Axsäter, 2006, p. 91).

Proof. This follows directly from (4.10) and the assumption of a linear system.
�

Remark. The pdf of the minimum of bivariate random normal variables,
ϕ−(x), is given in Cain (1994), as ϕ−(x) = ϕ−1 (x) + ϕ−2 (x), where

ϕ−1 (x) =
ϕ
(
x−E[it+dt]
σ(it+dt)

)
σ(it + dt)

Φ
ρ

(
x−E[it+dt]
σ(it+dt)

)
− x−µ

σ(dt)√
1− ρ2

 , (4.12)

ϕ−2 (x) =
ϕ
(
x−µ
σ(dt)

)
σ(dt)

Φ
ρ

(
x−µ
σ(dt)

)
− x−E[it+dt]

σ(it+dt)√
1− ρ2

 , (4.13)

where the correlation coefficient is

ρ = cov (it + dt, dt)√
var(it + dt)var(dt)

. (4.14)

It is often necessary to evaluate (4.11) numerically. This is usually done with
software like Mathematica or Matlab, but it can also be achieved with Microsoft
Excel using the macro provided in Disney et al. (2015).

4.2.3 Identifying the variances of the system

To calculate the exact fill rate we must know the variances var(it) and var(it+dt),
and also the correlation coefficient ρ. For autocorrelated demand, we identify
these according to Theorem 4.4.
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Theorem 4.4. If planning took place at time t− τ , the characteristics of the
inventory level are as follows:

(a) The inventory variance is

var(it) = σ2
ε

τ−1∑
n=0

(
n∑

m=0
θm

)2

. (4.15)

(b) The variance of it + dt is

var(it + dt) = σ2
ε


 τ−1∑
m=1

(
m−1∑
n=0

θn

)2+
∞∑
x=τ

θ2
x

 . (4.16)

(c) The covariance between demand, dt, and it + dt, is

cov(dt, it + dt) = σ2
ε

{[
τ−1∑
n=1

(
−

n−1∑
m=0

θm

)
θn

]
+
∞∑
x=τ

θ2
x

}
. (4.17)

Proof. Presented in Appendix B.2. �

The inventory variance (4.15) increases in τ , regardless of θt, and is finite
for all demands, stationary or nonstationary. The variance of the state variable
it + dt is also increasing in τ , but is only finite for stationary demand. The
covariance (4.17) between demand and initial inventory exists only for stationary
demand. The main insight from (4.15) is that the inventory variance increases
over the cycle. As inventory costs are minimized when P (it ≥ 0) = b/(b+ h),
we find a time-varying safety stock to be optimal. This safety stock is increasing
in τ . It is also clear from (4.15) that autocorrelation can amplify or attenuate
inventory heteroskedasticity. A heteroskedastic time series is one where the
variance changes over time. It is worth noting that this property appears when
sampling the inventory level over a range of consecutive periods {it, it+1, ..., it+n},
but not when sampling only for a specific τ , i.e. {it, it+P , ..., it+nP}. Then the
heteroskedasticity disappears.
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4.2.4 Total cost and the optimal order cycle length

Under normally distributed demand and linear transformations, the inventory
level is also normally distributed. The expected inventory cost is

J(it+τ ) = hE[it+τ ]−
b+ h

σi,k

∫ 0

−∞
ϕ

(
x− E[it+τ ]

σi,k

)
x dx

= hE[it+τ ] + (b+ h)σi,k g
(
E[it+τ ]
σi,k

)
,

(4.18)

where E[it+τ ] denotes the safety stock, and σi,k =
√
var(it+k+L). As the error

terms are i.i.d., J(it) = J(it+P ). Therefore, the average cost is obtained by
averaging over P successive periods. When the optimal safety stocks i∗t+τ are
used, the average cost from (4.18) simplifies to

J∗P = 1
P

P∑
k=1

J(t+ k) = σ̄i,P (b+ h)ϕ
[
Φ−1

(
b

b+ h

)]
, (4.19)

where σ̄i,P = P−1∑P
k=1 σi,k is the average standard deviation of the inventory

level. This variable is essential for characterizing P ∗.
Consider a fixed audit cost per cycle, v, leading to an average audit plus

inventory cost per period of CP = J∗P + v/P . Let λ = v/ψ where

ψ = v + (b+ h)ϕ
[
Φ−1

(
b

b+ h

)]
. (4.20)

The total cost can then be expressed as a linear function of λ ∈ [0, 1],

CP (λ) = ψ
[
σ̄i,P + λ

(
P−1 − σ̄i,P

)]
. (4.21)

With this formulation, it is possible to find a cost combination λP for which P
minimizes the total cost.

Theorem 4.5. When σi,P is increasing in P , the order cycle length P minimizes
CP (λ) for λ ∈ [λP−1, λP ] where λ0 = 0 and

λP = 1− 1
1 + P (σi,P+1 − σ̄i,P ) . (4.22)

Proof. Let λP denote the intersection CP (λP ) = CP+1(λP ). Solving for λP
provides (4.22). Suppose λP is increasing in P . Then, as P = 1 minimizes the
cost for λ ∈ [0, λ1], the reorder period P minimizes CP (λ) for λ ∈ [λP−1, λP ].
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To see that λP is increasing in P , recall that σi,P ≤ σi,P+1. This provides

Pσi,P+1 −
P∑
k=1

σi,k ≤ (P + 1)σi,P+2 −
P+1∑
n=1

σi,n, (4.23)

which leads to P (σi,P+1 − σ̄i,P ) ≤ (P + 1) (σi,P+2 − σ̄i,P+1). This is equivalent
to λP ≤ λP+1, completing the proof. �

This procedure lets us specify a P and provides the range of cost configura-
tions [λP−1, λP ] for which this P is optimal. Through this indirect approach,
several properties of P ∗ are revealed: it is increasing in the audit cost v, and it
is decreasing in the factors that drive inventory cost, namely b, h, L, and σε.
This follows from the influence of (4.15) and (4.19) on λ. Furthermore, given a
cost balance λ and an arbitrary P , it is immediately clear if P < P ∗, P = P ∗,
or P > P ∗, as λP is increasing in P . These observations hold for generally
autocorrelated demand as (4.15) is increasing in τ .

To find P ∗, it is sufficient to identify two values P1 and P2, such that
λP1 ≤ λ ≤ λP2 ; a binary search between these values then provides the
optimum. As an alternative, we may plot the first few λP , and then seek P ∗

graphically. This simpler approach does not guarantee that P ∗ will be in the
range plotted, but it is nonetheless reasonable when the audit cost is moderate
in relation to the inventory cost.

4.3 The optimal policy for first-order autore-
gressive demand

To better understand the model, it is helpful to consider a simple case. Here we
choose the AR(1) demand process. Its autocorrelation function is determined
by a single parameter, φ; AR(1) time series are stationary and invertible for
|φ| < 1 (Box and Jenkins, 1976). The corollary below provides necessary
expressions for calculating inventory costs, availability, the fill rate, and λP .

Corollary 4.6 (AR(1) demand). Using θm = φm as the autocorrelation function
of demand in Theorem 4.4, we obtain the following variance expressions:

(a) The inventory variance,

var (it) = σ2
ε

[
τ

(φ− 1)2 + φ(φτ − 1)(φτ+1 − φ− 2)
(φ+ 1) (φ− 1)3

]
. (4.24)
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(b) The variance of it + dt,

var (it + dt) = σ2
ε

[
τ

(φ− 1)2 −
2φτ

(φ− 1)3 + 1 + φ (2− (φ− 2)φ2τ )
(φ− 1)3 (φ+ 1)

]
.

(4.25)

(c) The covariance between it + dt and dt,

cov(dt, it + dt) = σ2
ε

[
(φ+ 1)φτ − φ− φ1+2τ

(φ− 1)2 (φ+ 1)

]
. (4.26)

Knowing the inventory variance for AR(1) demand (4.24), we have sufficient
information to compute the optimal order quantities for each period in the
planning cycle.

4.3.1 Determining the production quantities

To understand how this policy works in practice, consider the following numer-
ical example using the AR(1) demand process.

Example 4.7. Consider the staggered system in Figure 4.1, where L = 4 and
P = 7. The current period is t = 0, and we are ordering for the receipts in
periods 5 through 11. Demand is known to be first-order autocorrelated (i.e.
θn = φn) with φ = 0.70, with a mean µ = 10, and error terms that are normally
distributed ε ∼ N (0, 1). We have also observed that the inventory level is
i0 = 5.20, and that the work-in-progress inventory is w0,5 = 41.30. Adding
these we obtain the current inventory position i0 + w0,5 = 46.50. The optimal
order quantities are calculated as follows:

1. Make the lead-time demand forecast for the first period. As demand
is autocorrelated, our last demand observation, d0 = 8.71, is sufficient
to make a forecast of lead time demand µ(L+ 1) + (d0 − µ)∑L+1

n=1 φ
n =

10 + (8.71− 10)× 1.94117 = 47.5.

2. Make the single period forecasts for the remaining periods, k = 2 to k = 7,
or equivalently τ = 6 to τ = 11. We obtain this as ft,τ = µ+ (dt − µ)φτ ,
which for the second order of the cycle gives ft,6 = 10 + (8.71 − 10) ×
(0.7)6 = 9.85. The remaining periods are obtained in the same way, after
incrementing τ .

3. Calculate the time-varying safety stocks. These are of the form i∗t+τ =
σi,kΦ−1 [b/ (b+ h)], where σi,k is the square root of the inventory variance
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found in (4.24). Thus, the first safety stock for k = 1 is i∗5 =
√

22.7923×
Φ−1 (0.9) = 6.12. For the following periods, increment k and perform the
calculation again. For example i∗6 =

√
31.4428× Φ−1 (0.9) = 7.19.

4. Determine the safety stock increase between periods. Starting with k = 2,
this is done by the subtraction i∗t+τ − i∗t+τ−1. The first change in safety
stock, occurring at τ = 6 is i∗6 − i∗5 = 7.19− 6.12 = 1.07. The remaining
safety stock increases are obtained by incrementing τ .

5. Calculate the first receipt according to the standard OUT policy. We
order the lead-time forecast of demand, plus the safety stock, minus the
inventory position, according to d̂0,5 +i∗5−(i0 +w0,5) = 47.5+6.12−46.5 =
7.12.

6. Calculate the remaining receipts using a simpler formula. The second
receipt of the cycle, with τ = 6, takes the single-period forecast, plus the
increase in safety stock, r6 = d̂0,6 + i∗6 − i∗5 = 9.85 + 1.07 = 10.92. The
remaining receipts of the cycle are calculated in the same way, with τ
incremented.

Table 4.1 presents the optimal order quantities for the entire cycle, as well as
the intermediate results. Contrary to the worked example, the table has been
calculated with machine precision, so the last decimal of the calculations may
vary.

4.3.2 Cost and service implications

Now consider the case where a plan made at time t will generate its first receipt
in time for it to affect it+1 (that is, L = 0). The previous setting L = 4 has been
substituted for L = 0 to highlight the effects of inventory heteroskedasticity.

Figure 4.2 illustrates the inventory standard deviation for a range of AR(1)
demands. The configurations where |φ| < 1 reflect stationary demand, while
other configurations reflect nonstationary demand. In either case, the inventory
level is stationary. As we can see from (4.15) the inventory standard deviation
is increasing in τ . The consequences of this are clear: staggering increases
the total inventory cost, particularly when there is significant autocorrelation.
Staggering is least harmful when demand is negatively autocorrelated and
stationary (−1 < φ < 0) .

Corollary 4.8. Some special cases of the first-order autoregressive inventory
variance can be identified.
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Figure 4.2: The inventory standard deviation for AR(1) demand is increasing
in τ .

(a) When φ→ 0 the inventory variance is a linear function of τ ,

var(it) = σ2
ετ. (4.27)

(b) When φ→ 1 demand is a random walk in discrete time (Box and Jenkins,
1976, p. 123), and the inventory variance is a cubic function, increasing in
τ ,

var(it) = σ2
ε

τ

6(1 + τ)(1 + 2τ). (4.28)

This expression is the variance of the error term, multiplied with a square
pyramidal number.

(c) When φ→ (−1) the inventory variance is an increasing affine function for
odd or even values of τ ,

var(it) = σ2
ε

[
1− (−1)τ

4 + τ

2

]
. (4.29)

From (4.29), we see that the inventory variance only increases strictly for
odd values of τ when φ = (−1). Consequently, when the lead time, L, is even,
var(it+L+1) = var(it+L+2), var(it+L+3) = var(it+L+4) and so forth. For odd L
the pattern starts with var(it+L+2) = var(it+L+3).

Equation (4.27) reveals that when demand lacks autocorrelation, the vari-
ance increases linearly, meaning that the inventory standard deviation is pro-
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portional to the square root of τ . This is a fundamental result, demonstrating
that the staggered policy behaves like an OUT policy that is iterated, with in-
creasing lead times for each order in the cycle. The inventory variance increases
step-wise in (4.29). This is noticeable in the inventory standard deviation of
Figure 4.2, where for φ = (−1) every curve coincides with another curve (except
for τ = 7, which would coincide with τ = 8 if P ≥ 8).

Consider the costs b = 1 and h = 9. They imply that the inventory costs
are minimized when the availability is 90%, for every τ . As we know, the
inventory variance changes with τ , and hence time-varying safety stocks are
optimal. If we insist on using constant safety stocks, the availability will
change over the cycle. For example, a constant safety stock can be based on
the worst-case inventory variance, obtained at the end of the cycle, providing
i∗t+k+L = σi,PΦ−1 (0.9). This is not cost-optimal, but it simplifies the order
quantity calculations. The results of this alternative strategy can be seen in
Figure 4.3, where the availability, α, is given by

α = Φ
(
i∗t
σi,k

)
. (4.30)

For any constant safety stock setting, availability degrades as τ increases. This
is due to σi,k being increasing in k. For the safety stock setting under discussion,
σi,P ≥ σi,k, making the availability lower-bounded at 90%.

A more sophisticated constant safety stock setting could be based on the
average inventory variance,

i∗t = Φ−1
(

b

b+ h

)√
P−1

∑P

n=1 σ
2
i,n. (4.31)

This safety stock setting is obtained if one ignores the cyclical heteroskedasticity
and takes the variance of the inventory process as a whole. The resulting avail-
ability is shown in Figure 4.4, illustrating that the target availability of 90% is no
longer a lower bound. On average, however, the availability is above the target
of 90%. This always results when h < b and when i∗t ≥ Φ−1 {σ̄i,PΦ [b/(b+ h)]}
(which for this strategy is true, due to Jensen’s inequality) as a consequence of
Corollary 4.9.

Corollary 4.9. For fixed safety stocks i∗t ≥ 0,

Φ
(
i∗t
σ̄i,P

)
≤ 1
P

P∑
k=1

Φ
(
i∗t
σi,k

)
; (4.32)
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for i∗t ≤ 0 the inequality is reversed.

Proof. Observe that Φ(x) is concave for x ≥ 0. Then (4.32) is an immediate
result of Jensen’s inequality. On the domain x ≤ 0, Φ(x) is convex, and the
inequality in (4.32) is reversed. This completes the proof. �

The takeaway from this corollary is that the availability estimate α̂ = Φ (i∗t/σ̄i,P )
is less than the realized availability, i.e. α̂ ≤ α, when α̂ ≥ 0.5, or equivalently
when h ≤ b. Conversely, when α̂ < 0.5, α̂ overestimates α.

The cost differential between these three strategies is worth considering.
Figure 4.5 verifies that the optimal time-varying safety stock outperforms all
constant settings. The worst economic performance results from the constant
safety stock setting based on the end-of-cycle inventory variance. This is clear
for nonstationary demand, but when there is little autocorrelation, the two
fixed safety stock strategies are nearly cost-equal.

To see if these observations hold under different cost settings, we may
consult Figure 4.6, where b and h assume different values, but in all cases
b + h = 10. These settings imply an optimal availability of 60%, 90%, 95%,
or 99%. Regardless of the cost configuration, we notice that the demand
autocorrelation drives the cost differential between the constant and the time-
varying safety safety stock settings. This effect appears for all of the cost settings,
particularly when demand is nonstationary. In the b = 9.9, h = 0.1 setting,
corresponding to an optimal availability of 99%, the superior performance of
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Figure 4.3: Availability for a fixed safety stock based on the inventory variance
at the end of the order cycle.
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the time-varying safety stock becomes clear, leading to a fundamental insight:
time-varying safety stocks are most important when demand exhibits strong
autocorrelation, and when high service levels are required.
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Figure 4.6: Average inventory cost over a seven-day cycle for various settings
of h and b.

As the variable safety stock is the strategy of choice – providing the required
availability at the lowest cost – we may wish to understand how the fill rate
develops over a cycle, when time-varying safety stocks are in place. Though
the availability remains constant, we see in Figure 4.7 (restricted to |φ| < 1
as the fill rate can only be defined for stationary demand) that the fill rate
fluctuates over τ , and that it depends on φ. Furthermore, Figure 4.7 indicates
that the fill rate degrades as τ increases, particularly when demand is positively
autocorrelated. Although the fill rate is undefined for nonstationary demand,
we observe that the fill rate approaches 100% as |φ| → 1. This can be verified
by taking the limit of the correlation coefficient ρ (based on the covariances in
Corollary 4.6): lim|φ|→1 ρ = 1, and considering Corollary 4.10.

Corollary 4.10. The fill rate is 100% when ρ = 1 and E [(dt)+] exists.
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Proof. When ρ = 1, the bivariate distribution degenerates to a univariate
distribution. Therefore, min(dt, it + dt) = dt. Inserting this in (4.10) gives
S−2 = E [(dt)+] /E [(dt)+] = 1, when E [(dt)+] exists. �

From the definition of the fill rate (4.10) and the knowledge that the inventory
variance is increasing in τ , we can make some observations about the fill rate
under constant safety stock settings. For the end-of-cycle constant safety stock
setting, the fill rate at the end of the cycle, with τ = 7, is identical to the
fill rate of the optimal time-varying safety stock. For τ < 7, the fill rate is
higher. The other constant safety stock setting, based on the average inventory
variance, does not have the fill rate of the optimal time-varying safety stock at
τ = 7 as a lower bound.

4.3.3 Determining the optimal planning cycle length

Figure 4.8 shows P ∗ for AR(1) demand under six different lead times, using
(4.22) and (4.24). Each area between the contour lines indicates that a particular
P ∗ is optimal; P ∗ is increasing in λ (every time we cross a contour in Figure
4.8 from below, P ∗ increases by one). For the setting φ = (−1), L + P ∗ is
always even, as a consequence of (4.22) in conjuction with the odd-even effect
in (4.29). Therefore, with an even lead time, P ∗ is also even, and vice versa.

The area a is Figure 4.8 denotes the case when P ∗ ≥ 20 but we have not
drawn the contours as they become indistinguishable from each other. The
following numerical example describes the optimization procedure.
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Figure 4.7: Fill rates are affected by staggering and by autocorrelation.
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Example 4.11. To determine the optimal planning cycle length, start by
identifying the auditing, inventory holding, and backlog costs. Then use (4.20)
to determine ψ for this set of costs, and more importantly λ = v/ψ. Finally,
exploit Theorem 4.5 to find P ∗, either by inspecting Figure 4.8, or by finding
two reorder cycle lengths P1 and P2, such that λP1 ≤ λ ≤ λP2 , and then
performing a binary search for λ between P1 and P2, until a P is found such
that λP−1 ≤ λ ≤ λP . Then P ∗ = P denotes the optimum.

Suppose b = 9, h = 1, v = 10. This leads to λ = 0.695. With zero lead time
and i.i.d demand (φ = 0), the open circle in Figure 4.8 shows that P ∗ = 4. Were
demand instead positively correlated with φ = 0.9, then P ∗ = 2, illustrated
by the closed circle in Figure 4.8. Were L = 4, then P ∗ = 5 with φ = 0, and
P ∗ = 2 with φ = 0.9. This illustrates that positive autocorrelation favours short
planning cycles, and also that the physical production lead time influences P ∗.

4.4 Conclusion

4.4.1 Theoretical contribution

We have identified the inventory-optimal policy under staggered deliveries and
autocorrelated demand. The strategy is to correct all inventory errors for the
first order of the cycle, and then to order only the forecasted demand for the
period in question and the required change in the safety stock, according to
(4.6) and (4.7). This makes real the optimal policy identified by the Flynn and
Chiang papers by applying the OUT policy to autocorrelated demand.

The policy in this chapter is not identical to Flynn and Garstka (1990), as
ot,k may be negative. Conservative settings of µ, and σε can make the effect
of negative orders negligible, meaning that our policy (under i.i.d. demand)
becomes computationally consistent with Flynn and Garstka (1990).

There is a limited but important overlap between our policy and Chiang’s
(2009) simplified policy (CSP), which orders a variable amount in the first
period of a cycle, and a constant quantity in the remaining periods. For
i.i.d. demand, our model differs from CSP only in the management of safety
stocks. Chiang’s constant order quantity allows only for a linearly increasing
safety stock over the cycle, but the optimal policy requires a nonlinear increase.
However, when P ≤ 2, CSP is identical to the optimal policy.

Our model allows for constant safety stocks if desired, but we find that not
only are time-varying safety stocks more economical, they also ensure that the
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target availability is achieved consistently. The overall safety stock is affected
by the autocorrelation of demand and increases with the order cycle length. In
the special case of an AR(1) demand process with φ = (−1), the safety stock
only needs to be changed for periods when τ is odd. Our model and analysis
also captures the nonstaggered case when P = 1, which results in a regular
OUT policy.

The inventory variance is increasing over the order cycle for any demand
autocorrelation function, and the heteroskedasticity affects fill rates, even when
the availability is kept constant. This causes the fill rate to fluctuate cyclically.
We have also provided an exact approach for determining P ∗, the optimal length
of the planning cycle, when auditing, holding, and backlog costs are present.
The optimization procedure reveals that P ∗ is an increasing function of the
audit cost v, and a decreasing function of b, h, L, and σε. When τ is specified,
the inventory level is an MA(τ) process, as can be seen from (B.10). As a
result, the inventory level is always stationary, for any demand autocorrelation
(Box and Jenkins, 1976, p. 79).

4.4.2 Managerial insights

If a production system requires consistent availability, it is necessary to take into
account the time-varying inventory variance. Ignoring the heteroskedasticity of
inventory will result in either excessive service levels and unnecessary costs, or
poor service on predictable days of the planning cycle. However, if time-varying
safety stocks are deemed impractical or too complicated, we recommend a
safety stock setting based on the average inventory variance over the cycle.
Then the availability will fluctuate over the cycle, but on average it will exceed
the critical fractile b/(b+ h) when b ≥ h.

Even with optimal time-varying safety stocks, fill rates may degrade over
the cycle, particularly when demand is positively autocorrelated. Reducing
the length of the planning cycle provides an opportunity to reduce inventory
costs, and is especially attractive when the initial planning cycle is long, and
demand exhibits strong autocorrelation. However, short planning cycles require
frequent audits, incurring a cost. The balance between inventory and audit
costs must be regulated carefully via the order cycle length.
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4.4.3 Summary

This chapter has identified the optimal staggered policy under autocorrelated
demand (Theorem 4.2, answering RQ 1), when piecewise-linear inventory costs,
and an audit cost are present. Conditions for the optimal order cycle length
were also given, as well as a search procedure for its identification (RQ 3). Apart
from cost expressions, we derived fill rate and availability expressions, resolving
RQ 2. A result of particular interest is that the optimal policy maintains a
constant availability by changing the safety stock levels dynamically within
each cycle. While the availability is constant, the fill rate deteriorates over the
cycle.

This chapter has revealed that the OUT policy is still optimal when demand
is autocorrelated, which extends the findings of Flynn and Garstka (1990),
who considered i.i.d. demand. We also provided a method for identifying
P ∗, which can be compared to the procedure for i.i.d. demand in Flynn and
Garstka (1997). In addition, we have extended the findings of Lian et al.
(2006) by considering forecasts for autocorrelated demand, and by providing
availability and fill rate service levels per period. One unresolved question is
that of alternative forecasting methods, and how they affect inventory systems
with staggered deliveries. The policy presented in this chapter will be referred
to as ARSTOUT in the following chapters.



Chapter 5

Bullwhip and capacity costs

The preceding chapter presented an inventory-optimal policy for autocorrelated
demand. Here we shall assume that the audit cost is zero, and investigate how
staggering affects bullwhip and capacity costs under i.i.d. demand. The reason
for restricting the analysis is to keep the analysis tractable, and to highlight
the trade-off between order variance and inventory variance in a simple setting.
The assumption of i.i.d. demand is not unrealistic, as it has been observed
industrially (Disney et al., 2016). The audit cost was also ignored, to illustrate
clearly how the order cycle length relates to a trade-off between inventory and
capacity costs. First, we identify the policy that minimizes the weighted sum
of production variance (bullwhip) and inventory variance. Then we investigate
how this policy performs for a different cost function, and compare this with
the performance of two similar policies with different constraints on overtime
work, including having all overtime work collected to a short period, such as a
shift, or having the overtime work distributed evenly over the cycle.

5.1 Linear quadratic control

We seek policy that minimizes the weighted total variance of inventory and
receipts. Again, we consider the staggered system described by (4.2) and (4.1),
but we now assume that demand is i.i.d. Recalling that we have perfect state
information, and that the inventory balance equation is linear, we expect a
Linear Quadratic Regulator (LQR) to be optimal (Kirk, 1997).

In principle, we could model the system with a state vector xt of dimension
(P + L)× 1, to keep track of all WIP and all inventory levels in a cycle, and
with a control vector ut of dimension P × 1 to keep track of the orders made
per cycle. For simple cases with a priori given lead times and cycle lengths,

67
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this naïve implementation works well. But when lead times and cycle lengths
are arbitrary, the Ricatti equation for this formulation becomes complicated.

To find a workable solution, we must recast the problem. Let us call the
inventory position xt. The inventory position and the inventory level are related
by

it+τ = xt −
τ∑

n=1
dt+τ , (5.1)

where τ is the effective lead time, including information delays. When demand
is i.i.d., the inventory position is not correlated with future demand noise, that
is cov(xt, dt+n − E [dt+n]) = cov(xt, εt+n) = 0 for non-negative n, therefore

var(it+τ ) = var(xt) + var
[

τ∑
n=1

dt+n

]
. (5.2)

The equation above reveals that the variance of the inventory level has
two components: the variance of the inventory position, and the variance of
lead-time demand. Equation (5.2) also shows that for variance control, there is
no benefit to keeping track of WIP and inventory separately. Instead, it suffices
to monitor only the inventory position. With this established, let us model
the case when P = 1, which is the same as the time-invariant case without
staggered deliveries.

The standard form for a linear-time invariant system is xt+1 = Axt + But +
wt. We have the state vector xt = xt, the control ut = rt+L, and we find that
A = 1, B = 1, and wt = −dt satisfy the evolution of the inventory position1.
The standard form for the cost associated with this problem is (Bertsekas, 2005,
p. 148):

lim
N→∞

E

{
x′NQxN +

N−1∑
k=0

(x′kQxk + u′kRuk)
}
, (5.3)

and as we have only one state variable and one control, we choose the cost
vectors Q = λ and R = 1− λ. This means that the real variable λ ∈ [0, 1] can
express all possible preferences between inventory variance and production rate
variance. Note that we interpret λ differently for this quadratic cost model,
here inventory costs dominate for λ = 1, and capacity costs for λ = 0. This
switch leads to more compact expressions. As we have a linear time-invariant
system with quadratic costs, the optimal control law is of the form Lxt, where
L = − (B′K B + R)−1 B′K A (Bertsekas, 2005, p. 151). The variable K is a

1To keep the notation simple, we present one-dimensional vectors as scalars.
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solution to the algebraic Ricatti equation

K = A′(K−K B(B′K B + R)−1 B′K)A + Q. (5.4)

For the problem at hand, this becomes

K = K− K2

K + 1− λ + λ, (5.5)

thus
K = λ

2 ±
√
λ(4− 3λ); (5.6)

only one of these solutions gives the optimal control law. By inserting both in
L, we obtain

L =
λ±

√
λ(4− 3λ)

2− 2λ (5.7)

One of these solutions has positive feedback, rendering it unstable. The other
solution is stable,

L =
λ−

√
λ(4− 3λ)

2− 2λ . (5.8)

The optimal policy is then obtained as Lxt. For every period in a non-staggered
system, we observe the inventory position, multiply it by L, and produce the
resulting amount. For future periods, we repeat the calculation.

Under staggering, we must make several production decisions in each period.
Let us call the initial observed inventory position xt, and the inventory positions
resulting from our ordering decisions in the same cycle as xt,k. This notation
helps us to cope with the cycle / period duality by the relation

xt = xt−P +
P∑
k=1

(ot−P,k − dt−P+k−1) = xt−P,P + ot−P,P − dt−1. (5.9)

With this notation, the first ordering decision is ot,1 = µ + Lxt. For the
next period, the inventory position has been raised by the amount ordered,
xt,1 = xt + ot,1. As no demand has been observed, it has not been subtracted
from the inventory position. For the next ordering decision ot,2, we notice that
there is an updated inventory position xt,1, and that the effective lead time τ
has increased by one, as this order will arrive one period later. However, for
k = 2 the optimal policy is independent of the lead time, and has the same
structure and parameters as for k = 1. We simply need to iterate the control
for the updated inventory position.
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xt,k =

(1 + L)xt + µ when k = 1,

xt,k−1 + Lxt,k−1 + µ otherwise.
(5.10)

Since we are still in period t, no demand has been subtracted from the inventory
position. Note that this staggered inventory position can be expressed in the
same standard form as the non-staggered inventory position. Hence, it has the
same optimal control policy. As the initial inventory position is known, the
above recursion can be expressed as

o∗t,k = xt,1 (ξ − 1) ξk−1, (5.11)

where ξ = L + 1.

Example 5.1. Suppose that we are doubtful of the control policy in (5.11)
and want to solve this problem numerically. Assume a lead time L = 0, and
reorder period P = 3. We have a preference toward reducing inventory variance,
λ = 0.6.

We begin by expressing this system on the standard form, with x represent-
ing the three inventory levels over the cycle, and u representing the three orders
over the cycle. Each inventory level in the cycle consists of the initial inventory
at the start of the cycle, plus the cumulative orders up to that point, minus
demand. Demand is a vector of cumulative demand over the cycle, with an
element for each period. While the elements within a single cycle are correlated,
they are uncorrelated between cycles. Therefore, we do not deviate from the
standard assumptions for linear quadratic regulators. As we have known and
constant system matrices, certainty equivalence holds, and the demand noise
can be ignored (Bertsekas, 2005, p. 160). It is easy to see that

A =


0 0 1
0 0 1
0 0 1

 , B =


1 0 0
1 1 0
1 1 1

 ,
and the cost matrices take the form Q = 0.6 I(3) and R = 0.4 I(3). As
an alternative to solving the Ricatti equation by hand, we can employ the
Mathematica command LQRegulatorGains to obtain the gain matrix

−L =


0. 0. 0.686141
0. 0. 0.215352
0. 0. 0.0675901

 . (5.12)
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Inserting the same cost preference, λ = 0.6, into the optimal order rate
equation (5.11) gives {o∗t,1, o∗t,2, o∗t,3} = xt{−0.686141,−0.215352,−0.0675901}.
Although we used a different formulation, the result matches (5.11). As
predicted, it does not matter if we minimize inventory level variance directly,
or by using the inventory position as a proxy.

5.1.1 Variances of the bullwhip-optimal policy

Theorem 5.2.

(a) If orders are placed in period t, the inventory variance is

var (it+k+L) = var (ε)
[
Pξ2k

1− ξ2P + k + L

]
; (5.13)

(b) the order rate variance is

var
(
o∗t,k

)
= var (ε) P (ξ − 1)2 ξ2k−2

1− ξ2P . (5.14)

Proof.

(a) To find the inventory variance, we shall express the inventory position as
a weighted sum of error terms ε, calculate the variance of the inventory
position, and then use the relation between the inventory position and the
inventory variance (5.2). Recalling (5.11) as o∗t,k = xt(ξ − 1)ξk−1, we have

xt,k = ξk
[
xt−P +

P∑
m=1

o∗t−P,m − εt−P+m

]

= ξk
[
ξPxt−P −

P∑
m=1

εt−P+m

]

= ξ2P+kxt−2P −
P∑

m=1

(
ξkεt−P+m + ξP+kεt−2P+m

)
.

(5.15)

Iterating this N cycles back yields

xt,k = ξNP+kxt−NP −
N∑
j=0

P∑
k=1

ξjP+kεt−jP+m. (5.16)

As limN→∞ ξ
N = 0, we have

xt,k = −
∞∑
j=0

P∑
k=1

ξjP+kεt−jP+m. (5.17)
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Taking the variance gives

var (xt,k) = var (εt,k)P
∞∑
j=0

(
ξjP+k

)2

= var (εt,k)
Pξ2k

1− ξ2P .

(5.18)

The inventory variance is obtained as

var (it+k) = var (xt,k) + var
[∑k+L

n=1 εt+n

]
= var (ε)

[
k + L+ Pξ2k

1− ξ2P

]
,

(5.19)

and the first part of the proof is complete.

(b) The relation o∗t,k = xt(ξ − 1)ξk−1 holds. Hence,

var
(
o∗t+k

)
= var

(
xt(ξ − 1)ξk−1

)
= var (εt)

(ξ − 1)2Pξ2k−2

1− ξ2P , (5.20)

and the proof is complete.

�

5.1.2 Properties of the bullwhip-optimal policy

The bullwhip-optimal policy differs from the inventory-optimal policy as an
OUT policy is no longer optimal. Instead, it is optimal to recover a fraction of
the expected deviation from the target stock level. As expected, if inventory
costs are high in relation to the order rate variance, we recover inventory more
aggressively. This is illustrated in Figure 5.1, which presents the optimal order
quantity as a fraction of the inventory position’s deviation from equilibrium.
Even with λ = 1, no bullwhip is generated by this policy under i.i.d. demand,
but we may speculate that bullwhip can appear if demand is autocorrelated, and
if the forecasted demand is added to the order quantity without smoothing. The
quadratic cost increases with both P and with L. Accordingly, it is preferable
not to stagger deliveries (P ∗ = 1), if we limit our cost model to capacity and
inventory. As a final step, we shall verify that the system is stationary. Note
that the inventory position can be expressed as a first-order system of the
form xt,k = ξxt,k−1, which is asymptotically stable (and therefore generates
stationary time series) if |ξ| < 1 (Luenberger, 1979, p. 154–157). From the
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Figure 5.1: Optimal order quantities as a fraction of the inventory position’s
deviation from its target.

definition of ξ, we find that the inventory position is stationary for 0 < λ ≤ 1.
However, due to (5.11) the orders are stationary when 0 ≤ λ ≤ 1.

5.2 Capacity costs and overtime

Consider a system, with the same inventory mechanism as we have considered
thus far, using (4.1) and (4.2). The inventory costs are not quadratic, but
piecewise-linear (4.3), as in the preceding chapter. Demand is assumed to be
i.i.d. and normally distributed. We shall explore four policies that differ over
two dimensions: the allocation of overtime within the cycle, and production
smoothing between cycles. The myopic policy of the preceding chapter, we call
the staggered order-up-to policy (STOUT); when this is adapted by working
an equal amount of overtime in every period it is referred to as STOUT-E. The
smoothing policy that allocates all of the overtime to the first period of each
cycle is called the staggered proportional order-up-to policy (SPOUT), and
when the overtime is distributed equally over the cycle, it is called SPOUT-E.
Figure 5.2 illustrates the overtime allocation of the four policies.

As a first step, we shall formulate the inventory-optimal SPOUT policy
from the last chapter in terms of optimal OUT levels x∗k. Recalling our previous
definition of the inventory position, we can use (4.2) and (4.1) to obtain a
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Figure 5.2: Illustration of the four pragmatic policies.

future inventory level as

it+k+L = it +
k+L∑
n=1

(rt+n − dt+n) = xt,k −
k+L∑
n=1

dt+n when t/P ∈ Z, (5.21)

We can influence the inventory position xt,k as it contains rt+k+L = ot,k. The
optimal safety stock (4.5) can therefore be expressed as

E[it+k+L] = x∗k − µ (k + L) = Φ−1
i,k

(
b

b+ h

)
, (5.22)

where Φ−1
i,k is the inverse of the inventory level’s cumulative distribution function.

The policy that attains this optimal safety stock is

ot,k = x∗k − xt,k−1, (5.23)

where xt,0 = xt,1− ot,1 is the observed inventory position before any orders have
been placed. This is simply another representation of (4.6) and (4.7). Note
that only the first order ot,1 is a random variable, and that the other orders,



CHAPTER 5. BULLWHIP AND CAPACITY COSTS 75

with k ≥ 2, are deterministic. Therefore, this policy will cause overtime to be
worked in the first period of each cycle, corresponding to case 2 in Figure 1.3.

5.2.1 Capacity costs

The inventory-optimal policy has another attractive feature: the production
volume is stochastic only for the first order of every cycle. Despite not being
designed for capacity costs, we may still be interested to see how this policy
performs when capacity costs are present. The costs follow a model with
guaranteed hours and overtime (Hosoda and Disney, 2012). Workers are
guaranteed compensation for a daily output of zk products at the normal rate
u dollars per product; in cases when the production quantity is greater than
zk, the excess is paid for with the overtime rate v per product,

at,k = uzk + v(ot,k − zk)+. (5.24)

As ot,k does not vary with zk, and as it is a linear function of the system state,
the orders will be normally distributed. Disney and Grubbström (2004) show
that this problem has a newsvendor-type solution. The optimal capacity level
is z∗ = σo,kΦ−1 [(v − u)/v] + x∗k − x∗k−1, where σo,k is the order rate variance of
order k. The same reference provides the expected capacity cost when z∗ is
used,

E [at,k] = vσo,kϕ
[
Φ−1

(
v − u
v

)]
+ u

(
x∗k − x∗k−1

)
. (5.25)

The average order cost per period is

AP = 1
P

P∑
k=1

E [at,k] = vσ̄o,Pϕ
[
Φ−1

(
v − u
v

)]
+ uµ, (5.26)

where σ̄o,P = P−1∑P
k=1 σo,k is the average standard deviation of the orders.

The total average cost per period is then

CP = JP + AP , (5.27)

including both inventory costs and capacity costs. Before the average costs in
(4.19) and (5.26) can be calculated, we must know the standard deviations of
both inventory and orders. For the STOUT policy, they are trivial:

Lemma 5.3. For the STOUT policy,



CHAPTER 5. BULLWHIP AND CAPACITY COSTS 76

(a) the inventory variance is

σ2
i,k = σ2

d (k + L) ; (5.28)

(b) the order rate variance is

σ2
o,k =

σ
2
dP when k = 1,

0 otherwise.
(5.29)

Proof.

(a) Taking the variance of (5.21) provides

σ2
i,k = var(xt,k) + var

(
k+L∑
n=1

dt+n

)
= σ2

d (k + L) , (5.30)

as future demand is uncorrelated with the inventory position. For this policy
xt,k = x∗k is constant across time (for each k), and therefore var(xt,k) = 0.

(b) From (4.1), (5.21), and (5.23) we obtain

ot+P,1 = x∗1 − it+P = x∗1 −
(
x∗P −

P∑
n=1

dt+n

)
, (5.31)

from which it is easy to see that σ2
o,1 = σ2

dP . For the remaining periods with
k > 1, ot,k = E (ot,k) = x∗k − x∗k−1, and therefore σ2

o,k = 0. This completes
the proof. �

Having specified STOUT and its variances, we find that the average standard
deviation of the inventory increases with P , σ̄i,P = σdP

−1∑P
k=1
√
k + L and that

the average standard deviation of the orders is decreasing in P , σ̄o,P = σd
√
P−1.

This shows that the order cycle contains a crude mechanism for production
smoothing, and implies that the optimal reorder period may be distinct from
one. The optimization problem is non-convex, and can be solved with an
inverse-function approach. First, we write the total cost as

CP (λ) = ψ [σ̄i,P + λ (σ̄o,P − σ̄i,P )] + µu, (5.32)

where ψ is a scaling factor,

ψ = vϕ
[
Φ−1

(
v − u
v

)]
+ (b+ h)ϕ

[
Φ−1

(
b

b+ h

)]
, (5.33)
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and
λ = vϕ {Φ−1 [(v − u)/v]}

ψ
, (5.34)

is a continuous variable from zero to one, providing the balance between
inventory costs and overtime costs. The setting λ = 1 represents capacity costs
only (b = 0, or h = 0, or b+ h = 0) and λ = 0 indicates inventory costs only
(v = 0). The important result from (5.32) is that the total cost is a linear
function of λ for any fixed P .

Theorem 5.4. The order cycle length P minimizes the total cost CP (λ∗) for
λ∗ ∈ [λP−1, λP ], where λ0 = 0, and

λP = σ̄i,P+1 − σ̄i,P
σ̄i,P+1 − σ̄i,P + σ̄o,P − σ̄o,P+1

. (5.35)

Proof. Let λP be the point at which we are indifferent between the choice of
P or P + 1, occurring when CP (λP ) = CP+1 (λP ). Solving for λP gives (5.35),
which is equivalent to

λP = 1−
1 +

P
(√

P +
√
P + 1

)
√
P (P + 1)

· σi,P+1 − σ̄i,P
σε

−1

. (5.36)

From this expression, it is clear that λP is increasing in P . Therefore, every P
is optimal when λ ∈ [λP−1, λP ]. This completes the proof. �

5.2.2 Staggered order-up-to policy with equal overtime

To this point, overtime work has been allocated to the first period of each order
cycle. We may be interested to see the effects of distributing the overtime
work evenly over every period in the cycle. Starting with the STOUT policy,
we divide the overtime work into P equal parts. This provides the STOUT-E
policy:

ot,k = x∗k − x∗k−1 + P−1 (x∗0 − xt,0) , (5.37)

where x∗0 = E [xt,0] = x∗P − µP . New values must be computed for x∗k. The
variances of inventory and orders also change.

Lemma 5.5. For the STOUT-E policy,

(a) the inventory variance is

var (it+L+k) = σ2
d

[
k + L+ (P − k)2

P

]
. (5.38)
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Figure 5.3: Optimal order cycle lengths, P ∗, under the STOUT policy.

(b) the order rate variance is

σ2
o,k = σ2

d/P for all k. (5.39)

Proof.

(a) From (5.21) and (5.37) we see that xt,P = x∗P . Consequently, xt,0 =
x∗P −

∑P
n=1 dt−P+n. The inventory position can then be expressed as

xt,k = x∗k −
P − k
P

P∑
n=1

(dt−n − µ) (5.40)

which provides the variance of the inventory position as,

var (xt,k) = σ2
d

(P − k)2

P
(5.41)

Recalling that future demand is uncorrelated with the inventory position

σ2
i,k = var(xt,k) + var

(
k+L∑
n=1

dt+n

)
= σ2

d

[
k + L+ (P − k)2

P

]
, (5.42)

and the first part of the proof is complete.

(b) Note that xt,0 = x∗0 −
∑P
n=1 (dt−P+n − µ), which when inserted in (5.37)



CHAPTER 5. BULLWHIP AND CAPACITY COSTS 79

provides

ot,k = x∗k − x∗k−1 +
P∑
n=1

dt−P+n − µ
P

. (5.43)

Taking the variance of the above gives σ2
o,k = σ2

d/P , completing the proof.
�

The inventory variance of the STOUT-E policy (5.38) is greater than that
of STOUT. Note that σ̄o,P is identical for STOUT and STOUT-E. As a result,
the realized capacity cost will be the same, despite the difference in overtime
strategy. Thus for any relative weighting of inventory and capacity costs, the
STOUT policy dominates the STOUT-E policy. For this reason, we shall
not optimize it, as one should switch to the STOUT policy first. Notably,
the STOUT-E inventory variance is not always increasing in k. Instead, the
STOUT-E inventory variance is minimized when k = P/2 for even P , or when
k = (P ± 1)/2 for odd P . See Figure 5.4 for an example with P = 5. If one
uses a constant safety stock, the changing inventory variance will cause the
availability to fluctuate, as was shown in Chapter 4. Figure 5.5 illustrates
the availability fluctuations when the safety stock is a constant based on the
end-of-cycle inventory variance, E [it+k+L] = x∗0. This is clearly not optimal but
it is probably a common way to manage safety stocks. When safety stocks are
set to minimize the expected inventory costs in each period, the availability is
constant over the cycle.
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Figure 5.5: Availability fluctuations depend on the overtime strategy used.

5.3 Staggered proportional order-up-to policy

It is clear that the OUT policy can exploit the order cycle P to strike a favourable
balance between the different cost drivers, but the balance between inventory
and capacity costs can also be managed by the addition of a proportional
feedback controller, which corrects a multiple α of the inventory position’s error
each time reordering takes place (Simon and Holt, 1954). For convenience,
define x∗0 = x∗P − µP , then

ot,k =

x
∗
1 − x∗0 + α (x∗0 − xt,0) when k = 1,

x∗k − x∗k−1 otherwise.
(5.44)

Theorem 5.6.

(a) The inventory variance under the SPOUT policy is

σ2
i,k = σ2

d

[
k + L+ P (1− α)2

α (2− α)

]
, when 0 < α < 2. (5.45)

(b) The variance of the orders is

σ2
o,k =

σ
2
dαP (2− α)−1 , when {k = 1, 0 ≤ α < 2}

0, otherwise.
(5.46)

Proof. The proof is presented in Appendix B.3. �

To see when the SPOUT policy is stationary, observe that for all k,
xt,k−E [xt,k] = (1− α) (xt,0−E [xt,0]). As this is a first-order system, we have a
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stationary inventory position when |1−α| < 1, or equivalently when 0 < α < 2.
The orders are stationary when 0 ≤ α < 2, following |α(1− α)| < 1.

5.3.1 Finding the optimal smoothing setting α∗

To obtain the optimal α, it is sufficient to set P = 1, and then to differentiate
CP with regard to α, and then to solve for zero. Except for the trivial case
L = 0→ α∗ = 1− λ, the resulting expression is very large. Due to its size, it
is effectively unreadable, and has therefore been omitted. Figure 5.6 shows α∗

for some values of L, where it is clear that α∗ ≤ 1− λ, and that the required
damping increases with the lead time. For the special case {P = 1, L = 0}
the optimal total cost is C∗P =

√
1− λ2. Whenever λ > 0, this cost is lower

than the minimum cost obtainable via STOUT. This results from the following
lemma.
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CapacityInventory (l) Dominant cost driver

L=0

0.2 0.4 0.8 1.0

L=10
L=100L=1000

0.0

0.0

0.2

0.4

0.6

0.8

1.0

*a

Figure 5.6: Optimal values for the feedback controller α when P = 1.

Lemma 5.7. When L = 0, the total cost of STOUT (with arbitrary P ) is no
less than the optimal non-staggered SPOUT cost (P = 1 and α = α∗). We
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express this as
(C∗1 |SPOUT) ≤ (CP |STOUT) (5.47)

Proof. The proof is presented in Appendix B.4. �

As a result, it is more economical to embed production smoothing in the
order policy, than to produce it via manipulating the order cycle length of the
STOUT policy.

5.3.2 Staggered proportional policy with equal overtime

Just as the STOUT policy has an equal-overtime variant, so can one be identified
for SPOUT. We define the SPOUT-E policy as

ot,k = x∗k − x∗k−1 + αP−1 (x∗0 − xt,0) . (5.48)

The variances required to calculate costs and availability are given below.

Theorem 5.8. For the SPOUT-E policy,

(a) the inventory variance is

σ2
i,k = σ2

d

[
k + L+ (P − αk)2

αP (2− α)

]
, when 0 < α < 2. (5.49)

(b) The order rate variance is

σ2
o,k = σ2

dα

P (2− α) , when 0 ≤ α < 2. (5.50)

Proof.

(a) In theorem 5.6(a), replacing the SPOUT orders (5.44) with the SPOUT-E
orders (5.48), produces the same expression for xt,0, which is (B.16). As
xt,k = xt,0 −

∑k
n=1 ot,n we obtain

xt,k = x∗k − x∗0 + αk

P
(x∗0 − xt,0)

= x∗k −
P∑
n=1

q∑
m=1

P − αk
P

(1− α)m−1 εt−mP+n.
(5.51)

Taking the variance of xt,k and adding the variance of lead-time demand,
σ2
d (k + L) gives (5.49) completing this part of the proof.
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(b) Inserting (B.16) in (5.48) provides

ot,k = x∗k − x∗k−1 +
P∑
n=1

q∑
m=1

α

P
(1− α)m−1 εt−mP+n. (5.52)

Taking the variance gives (5.50), completing the proof. �

The order variances, and hence the capacity costs, of SPOUT-E and SPOUT
are identical, but the inventory cost of SPOUT-E is higher, rendering the
equal-overtime policy inferior to the once-per-cycle setting. Similarly, under
piecewise-linear costs, the bullwhip-optimal policy performs worse than SPOUT
but better than SPOUT-E, as a result of the overtime allocation. The SPOUT-
E policy is stationary under the same conditions as SPOUT, as the total order
quantity over an entire cycle is identical between the two policies. To confirm
this, observe that under both SPOUT and SPOUT-E,

xt,0 − E [xt,0] = (1− α) (xt−P,0 − E [xt−P,0])−
P−1∑
n=0

εt−P+n, (5.53)

where it is evident that xt,0 is a first-order system, stable when |(1−α)| < 1. It
follows that the inventory positions under SPOUT-E are stationary, as they are
linearly dependent on xt,0 following xt,k−E [xt,k] = (1−αkP−1) (xt,0 − E [xt,0]).

5.4 Numerical study

To further explore the consequences of the four strategies, consider the set-
up {µ = 10, σd = 1, h = 1, b = 9, u = 40, v = 60}. With these settings, the
optimal STOUT configuration is P ∗ = 17, and the optimal SPOUT setting is
{P ∗ = 1, α∗ = 0.074} for the SPOUT policy. The total cost of each strategy
is illustrated in Figure 5.7, where safety stocks are optimal, and α∗ has been
optimized numerically for STOUT[-E] configurations where P > 1.

The SPOUT policy gives the lowest total cost, regardless of P . The cost
advantage that can be gained from improving the ordering policy in these two
areas depends on P , as the adoption of production smoothing has a significant
economic impact if P is small. When P is large the greatest savings come from
changing the overtime strategy so that overtime production is collected at the
start of the order cycle.

When the order cycle is short, the production strategies without smoothing
(STOUT[-E]) suffer from high costs, while both of the smoothing policies
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Figure 5.7: Avoid the capacity cost trap by improving the order policy before
reducing the order cycle length.

perform better. In this case, the economic potential of smoothing production is
greater than that of changing overtime strategy. The opposite holds true when
the order cycle is long, as smoothing then has a small impact on the total cost.
In these cases, smart overtime management is more important.

Irrespective of demand variability and cost factors, the production control
policy should collect the inventory corrections to a short period, such as a
weekend, always at the beginning of the production cycle. It is then desirable
to react in a moderate but timely fashion to keep the overtime costs in check,
hence the need for production smoothing.

The STOUT policy does not smooth production, and suffers from impaired
efficiency. When the policy is used, the order cycle plays an important role in
the balancing of capacity and inventory costs. If the order cycle is too long,
inventory costs dominate; if it is too short, capacity costs inflate. We shall now
detail how the four policies are applied in practice.

Example 5.9. Suppose we are to place orders for a system with the same
parameter settings as the preceding numerical example, and that the initial
observed inventory position is x0,0 = 47. Machine precision should be used;
accordingly the numerical calculations below are truncated instead of rounded.
To calculate the orders in a cycle:

1. Determine the target inventory positions, x∗k, in the cycle. From (5.22) we
obtain x∗k = µ(k +L) + σi,kΦ−1 [b/(b+ h)] = 10(k + 5) +

√
k + 5Φ−1(0.9).

For the first period, inserting k = 1 gives x∗1 = 63.13. Increment k in the
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same calculation to obtain the remaining values of x∗k. For policies other
than STOUT, σi,k is calculated differently: for STOUT-E, use (5.38) for
SPOUT, use (5.45); and for SPOUT-E, use (5.49).

2. Obtain the deterministic production requirement by calculating the differ-
ence between the target inventory positions of consecutive periods. Take
x∗k−x∗k−1 for every value of k. For k = 1 this is x∗1−x∗0 = 63.13− 54.05 =
9.08, continuing with k = 2, x∗2−x∗1 = 10.25, and so forth. For each period
k (and for every policy), order the deterministic production requirement.

3. Calculate the deficit between the target and the actual inventory position,
x∗t,0 − xt,0 = 63.13− 47 = 16.13.

STOUT: Add the entire deficit to the first order (ot,1).

STOUT-E: Divide the deficit by P ; add to every order (ot,1 to ot,P ).

SPOUT: Multiply the deficit by α; add to the first order.

SPOUT-E: Multiply the deficit by α; divide by P , add the resulting
amount to every order.

Complete calculations are performed in Table 5.1.

5.5 Managerial insights

In a practical situation we are likely to start with an existing system where
the order cycle is already defined. There will be a selection among possible
improvements, where the ones with a high return-on-investment will be chosen.
To find suitable candidates we note that:

• Production smoothing is likely to be the most important improvement to
a planning system when the order cycle is short (e.g. daily or weekly).
For infrequent planning (e.g. monthly), the benefit is less pronounced.

• Assigning overtime only to the first order in each cycle reflects a good
opportunity to reduce the average replenishment time, and hence the
inventory costs.

• Safety stock optimization is a well-known practice for reducing inventory
costs, but we have shown that time-invariant safety stocks lead to un-
necessary and avoidable costs. The optimal solution is a dynamic safety
stock setting.
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Table 5.1: Calculating the orders to be received in periods 6–10.

Period t 5 6 7 8 9 10 11
Index k 5 1 2 3 4 5 1

ST
O
U
T

x∗k - 63.13 73.39 83.62 93.84 104.05 -
x∗k − x∗k−1 - 9.08 10.25 10.23 10.21 10.20 -
x∗0 − x0,0 - 7.05 ↓ ↓ ↓ ↓ -
o0,k - 16.13 10.25 10.23 10.21 10.20 -

ST
O
U
T
-E x

∗
k - 63.88 73.80 83.80 93.88 104.05 -
x∗k − x∗k−1 - 9.83 9.91 10 10.08 10.16 -
(x∗0 − x0,0)/P - 1.41 1.41 1.41 1.41 1.41 -
o0,k - 11.24 11.32 11.41 11.49 11.57 -

SP
O
U
T

a x∗k - 64.77 74.94 85.10 95.26 105.41 -
x∗k − x∗k−1 - 9.35 10.16 10.16 10.15 10.15 -
α(x∗0 − x0,0) - 8.41 ↓ ↓ ↓ ↓ -
o0,k - 17.77 10.16 10.16 10.15 10.15 -

SP
O
U
T
-E

b x∗k - 65.45 75.44 85.44 95.45 105.47 -
x∗k − x∗k−1 - 9.98 9.99 10 10.00 10.01 -
α(x∗0 − x0,0)/P - 1.69 1.69 1.69 1.69 1.69 -
o0,k - 11.67 11.68 11.69 11.70 11.70 -
Dashes (-) refer to values unrelated to the present ordering decision.

a α∗ = 0.217944.
b α∗ = 0.211445; numerically optimized.

• Lead time reduction helps to decrease the inventory variance, and is viable
for both long and short order cycles. Unlike the previous improvements,
this requires changes outside of the planning system, which may be costly
to effect.

• Shortening the order cycle allows supply chains that already use smooth
production to reduce their costs further. However, if smoothing is not in
place, capacity costs may soar as the order cycle is shortened.

To identify which of these improvement strategies are best for a particular
supply chain, we may build a System Dynamics simulation model based on the
system equations (4.2) and (4.1) in combination with one of the replenishment
policies (5.23), (5.37), (5.44), or (5.48). Company-specific factors can also be
included, as well as nonlinearities and specific cost assumptions, to give deeper
insight into the supply chain at hand.
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5.6 Conclusion

The previous chapter showed that the inventory variance becomes heteroskedas-
tic when inventory inspections take place more frequently than production
planning. This effect is aggravated by distributing overtime evenly over the
order cycle, and can be counteracted by shortening the order cycle, or by col-
lecting overtime to the beginning of the cycle. However, short order cycles may
themselves be harmful. Unless an appropriate production smoothing policy is in
place, capacity costs may increase as the production system alternates between
states of high and low utilization. Before the order cycle is shortened, supply
chains must have the capability for production smoothing. These insights allow
us to formulate a recipe for the design of highly efficient planning systems.
Its constituents are: fast reordering, smooth production, and smart overtime
planning.

In terms of the research questions, this chapter has introduced three linear
policies capable of production smoothing: the bullwhip-optimal policy, SPOUT,
and SPOUT-E, resolving RQ 4. Showing that SPOUT and STOUT were
preferable to SPOUT-E and STOUT-E revealed that overtime should be
placed at the start of each cycle, answering RQ 5. If one uses the STOUT
policy, we have provided a procedure for finding the optimal order cycle length,
and shown that it may be greater than unity; this answers RQ 6. Finally,
we have shown that it is preferable to embed production smoothing in the
order policy (SPOUT), instead of extending the order cycle length of a policy
without smoothing (STOUT), which addresses RQ 7. We note that no previous
investigation in the literature has considered capacity costs. The closest would
be the pragmatic policy proposed by Chiang (2009), which operates like STOUT
with a linear time-varying safety stock. The optimization of the order cycle
length based on the capacity cost also takes the idea from Flynn and Garstka
(1997) in another direction, as we have shown that the optimal order cycle
length can be driven by other trade-offs than the one between inventory and
audit costs. The bullwhip-optimal policy is also new for staggered systems, but
reflects on the non-staggered literature, in particular Disney et al. (2004), which
identifies the same optimal configurations for non-staggered systems as this
chapter identifies for the first period of each cycle (k = 1 in Figure 5.1).



Chapter 6

Verification and validation

The analytical results have exposed many properties of PIC systems with
staggered deliveries. The proofs provide that these results are consistent with
the underlying assumptions, but we have yet to test the validity of the models.
This chapter takes a three-pronged approach to validation: First, an industrial
example reveals that staggered deliveries occur as specified in this thesis, with
an identifiable order cycle length P and lead time L. Second, the models are
shown to be consistent with familiar results from the literature. Third, the
numerical output of the mathematical models is compared with the equivalent
output from simulation models. Fourth, tests against validation criteria reveal
that the analytical model responds as expected under a range of conditions,
that it is consistent with established theory, and that staggered deliveries are
used industrially.

6.1 Industrial example

To see if staggered deliveries appear in an industrial context, the order fulfilment
process of a factory was mapped. Process maps must be made at a level of
aggregation appropriate for the problem at hand Rummler and Brache (1995,
p. 33). As this thesis models staggered deliveries on the MPS level, we opted
to map the process as a master planner would see it. To obtain this view,
two planners were interviewed at the same occasion, allowing them to discuss
and clarify their views on the process before describing it. The planners were
then asked to describe how an order passes through the planning system and
production, from the time it is entered, to the time it is fulfilled with a physical
delivery (Rummler and Brache, 1995, pp. 50–52). In addition, the planners were
asked about how performance was measured, materials supply, and personnel

88
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and material resources necessary for the process to operate. After collecting
the data, the process, as it had been interpreted, was described to the planners,
so that they could correct any misinterpretations.

6.1.1 The order fulfilment process

A company in Western Europe (referred to as Alpha for anonymity) produces
coinage and commemorative medals. We shall focus on coins for circulation, for
which there are seven parallel production lines, operating largely in the same
way. For simplicity, we shall focus on the production lines that use steel as a
raw material. In essence, the production ofha aims for full capacity utilization,
which they achieve by managing an order book.

Customers issue a request for tenders. Alpha submits a tender, if there is
sufficient capacity to deliver the full quantity on time — timely deliveries are
critical, as late fulfilment leads to heavy penalties. Awarded contracts enter
an order book, usually several months before they are due. From the order
book, a tentative production plan is generated, where contracts are prioritized
by their due dates. The sequence of order releases is fixed every Tuesday, for
seven days of production (i.e. P = 7), but the orders are released to the shop
floor on Friday, three days later. Production planning does not place a limit
on the maximum production quantity, as the intention is to produce as much
as possible. If one week’s planned production is completed ahead of time,
the orders for the next week enter production ahead of schedule. The time
spent in physical production varies between six and twelve days, providing an
order-to-receipt lead time L ∈ [8, 14], where the nominal sequence-of-events
delay has been subtracted.

In detail, the production process consists of two major subprocesses, with a
strategic buffer in between. The first subprocess is blanking, and the second is
a straight flow (first in first out) though the operations of plating, annealing,
finishing, striking, and telling, all joined by intermediate buffers that absorb
variations in throughput (see Figure 6.1). This design allows the process to
be managed via the theory of constraints (Goldratt, 2004) — the bottleneck
operation (plating) operates around the clock, including weekends, and appears
at the start of the second subprocess. To ensure that the bottleneck is not
starved of materials, the preceding buffer contains materials for 32–72 hours of
production. This buffer level is maintained by controlling, in continuous time,
the throughput of the first subprocess (blanking). After the second subprocess
ends, the coins change ownership to the customer, and are either stored or



CHAPTER 6. VERIFICATION AND VALIDATION 90

shipped, based on customer preference. Large orders are split into multiple
shipments, sent with a frequency that usually ranges from a week to a month;
this is reminiscent of the lot splitting model in Chiang (2001).

The raw materials needed for the first subprocess is steel, which is ordered
once per week, but delivered once or twice per day. Here there are up to
fourteen staggered deliveries per order cycle, but should we assume that the
inventory is tallied only at the end of each day, then P = 7. When a new order
is placed, the first shipment arrives sometime the following day, i.e. L = 0 for
plans made at the end of the day. The steel orders are planned weekly so that
the raw materials inventory should contain sufficient materials for 36 hours of
production. The order quantities were based on judgment, but it is likely that
the order decisions resembled the STOUT policy, as it immediately brings the
inventory position to its target value.

6.1.2 Comparison with the model in this thesis

This industrial example includes one true example of staggered deliveries, which
is the weekly ordering of steel, with deliveries occurring every day. This supply
loop includes a random demand component, which is the material consumption
by blanking. As the steel supply is not concerned with capacity costs, it matches
closely the model in Chapter 4, with P = 7 or P = 14 and L = 0. Hence, we
have established the existence of a system that follows the concept of staggered
deliveries. Although the case verified that staggering occurs, this occurred
in a raw materials buffer, and the demand (i.e. consumption) reflects the
consumption of the plating subprocess, plus eventual yield losses in blanking.
It would be desirable to numerically test for the heteroskedasticity induced by
staggered deliveries, but this industrial case was unsuitable primarily because
there was no record of demand (plating consumption), which is required to
predict the variances of inventory and orders. In addition, we do not know how
well the ordering of raw materials corresponds with STOUT, as planners may
decide to round the order quantity to full truckloads, or make other adjustments.
Taking these uncertainties into account, it may be difficult to provide definite
evidence of the effects of staggering.

The production mechanism itself is not staggered by our definition. An
order release sequence is fixed once per week, but the production pipeline is
not committed to any order quantity per period. Instead, orders are released
to the shop floor continuously, based on material consumption in the strategic
buffer after blanking. However, the shipping to customers is staggered, with
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the particular property that each contract involves a single order cycle, making
it akin to a newsvendor model with staggered deliveries.

6.2 Testing the analytical models

To see if the analytical models are reasonable, we may compare them with
established models. For the optimal staggered policy under autocorrelated
demand, the optimal policy is of the OUT type. This implies that the OUT
policy is optimal for i.i.d. demand, which was proven by Flynn and Garstka
(1990). Compared to non-staggered settings, we find that the inventory variance
(4.15) is identical to the variance of the forecast error over τ periods, which is
given as the equation (5.1.16) in Box and Jenkins (1976). This is even clearer
for i.i.d. demand, where the standard deviation of the inventory level is σε

√
τ

— an expression commonly used when calculating optimal safety stocks. Setting
P = 1 provides the regular OUT policy under a minimum-mean-square-error
forecast. The inventory variance for such a system is provided in equation (3.4)
of Lee et al. (2000) as

σ2
ε

L+1∑
n=1

(
n−1∑
m=0

φm
)2

, (6.1)

expressed in the notation of this thesis. This expression is identical to (4.15) in
this thesis, with θt = φt. Simplifying (6.1) also produces our variance for AR(1)
demand (4.24), when k = 1. We have thus verified that the ARSTOUT policy
is a generalization of the inventory-optimal non-staggered policy for AR(1)
demand. It is easy to see that this is the also the case for any autocorrelated
demand process.

To test the bullwhip-optimal policy and the SPOUT[-E] policies, we set
P = 1 to produce a non-staggered system. The three policies then coincide, as
they differ only in the distribution of overtime work over the order cycle. As
the policies are proportional, they should be identical to the DE-APIOBPCS
model in Disney and Towill (2003) with Ta→∞. Taking the impulse response
of orders in (Disney and Towill, 2003, equation [5]) and substituting α = Ti−1

for notational consistency, we obtain the impulse response of orders:

α(1− α)t. (6.2)

This can be compared with (B.18), where the same form appears. This verifies
that the staggered proportional policies are generalizations of DE-APIOBPCS
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when Ta→∞.

6.3 Simulation model and results

To test the analytical model, a simulation model was built in Microsoft Excel,
chosen due to the prevalence of spreadsheet models in industry and research
(Ciancimino et al., 2012). This provided new insights on how the staggered
delivery concept may be implemented and analysed in an industrial setting.
Compared to two early prototypes built in C++ and Matlab, the Excel model
provided some distinct advantages and shortcomings. First, Excel provides
immediate numerical feedback for every formula entered; if one knows what
results to expect, this serves as a mechanism for testing the validity of each
component (not just the output) in the simulation model. There were two
main disadvantages to model development in Excel: First, the program flow
(sequence of execution) is not obvious from a spreadsheet, and one must be
cautious to ensure that the flow and dependencies are as intended. Second,
large Excel formulas may be difficult to write and to read.

6.3.1 Model design

The basic structure of the simulation model was implemented using (4.1) and
(4.2), along with w as as intermediary variable. AR(1) demand was modelled
as

dt = φ(dt−1 − µ) + µ+ εt, (6.3)

where εt = σεΦ−1(yt), in which yt is a uniformly distributed random variable
on [0, 1], generated in Excel. Negative demand (returns) is permitted, causing
an increase of the inventory level, in agreement with (4.2). For the STOUT
policy under autocorrelated demand, (4.6) and (4.7) were used, while for the
STOUT[-E] / SPOUT[-E] policies, (5.23) (5.37), (5.44), and (5.48) were used.
Both orders ot,k and receipts rt+k+L were modelled to make it clear when orders
were determined and when they were received as inventory.

6.3.2 Output variables

The analytical work presented several output variables to be tested in the model.
The inventory costs were calculated as the average inventory cost per period
using (4.3), while the availability (S1) was obtained by calculating the number
of periods with it > 0 and dividing it the total number of periods in the time
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range. The exact fill rate was calculated by taking the sum (over all periods
in the time range) of the ability to fulfil demand ∑t [min(dt, it + dt)]+, and by
dividing this by the sum of all demand that it was possible to fulfil ∑t(dt)+.
Also measured is the inventory variance for each k, the overall inventory variance
σ̂2(it) (measured for all k at once), and the variance of the orders (for each k).

Table 6.1: Description of simulation output variables.

Symbol Description
Ĵ Average inventory cost
Â Average capacity cost
Ŝ1 Availability
Ŝ−2 Exact fill rate
σ̂2(it) Variance of the inventory level

6.3.3 Experiment design

The analytical results depend strongly on the autocorrelation of demand, φ,
and it is therefore desirable to test the system performance under different
settings. For this reason, seven configurations of AR(1) demand are tested. For
the other parameters, the setting {b = 9, h = 1, µ = 10, σε = 1, L = 4, P = 5}
was chosen. With this setting of b and h, costs are minimized when S1 = 90%.

For the SPOUT/STOUT[-E] policies it was assumed that {b = 19, h =
1, µ = 10, σε = 1, P = 5}, implying that costs are minimized when S1 = 95%. A
short and a long lead time, L = 0 and L = 8, were considered. The smoothing
parameter was optimized numerically in Mathematica, as the minimizing value
of A, defined in (5.27). Table 6.2 presents the optimized values of α.

Table 6.2: Optimized settings for the smoothing parameter α.

L α∗

0 SPOUT 0.354821
SPOUT-E 0.328498

8 SPOUT 0.274583
SPOUT-E 0.267431

When simulating the variance-optimal policy, L = 2 and σd = 1. As
we are interested in variances only, µ = 0, without loss of generality. For
each parameter set, the simulation result represents the average output of 200
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simulations, each containing 50k simulated periods. As we have assumed P = 5,
each simulation contains 20k data points for each period of the cycle.

6.3.4 The impulse response

The analytical expressions for order and inventory variances rely on algebraic
manipulation of the systems equations (4.8), (4.1), and (4.2), along with one of
the policy equations (5.23) (5.37), (5.44), and (5.48). To obtain the variance
of a variable in a linear system analytically, we must first express the variable
of interest as a weighted sum of (time-shifted) i.i.d. random variables. This
leads to a straightforward calculation of the variance (Box and Jenkins, 1976;
Tsypkin, 1964). As the deterministic components of the process are known, the
variance calculation is simplified by setting µ = 0 and all safety stocks i∗k = 0
and OUT levels x∗k = 0.

The coefficients in this weighted sum of random variables can also be
obtained from a simulation model where the i.i.d. random noise is replaced
with an impulse, i.e. dt = δ (t− n) , n ∈ {0, 1, . . . , P − 1}, where δ (·) is the
Kronecker delta function,

δ (t) =

1 if t = 0,

0 otherwise.
(6.4)

Note the occurrence of n in the impulse response. This is a consequence of the
system having multiple inputs, which also requires one impulse to be generated
for each n. The variance of the inventory level is then obtained as

σ2 (it+k+L) =
P−1∑
n=0

∞∑
m=0

i2t+k+L+mP . (6.5)

where n affects it via dt. The variance of the orders is calculated in the same
way. This has no bearing on the variances produced. The impulse response
lets us obtain the variance from a deterministic simulation, complementing the
analytical results, and the stochastic simulation.

6.3.5 Results

The results for the optimal policy under autocorrelated demand are presented
next to the analytical results in Table 6.3 and Table 6.4. For all output variables,
the simulation results are close to the analytical results. The results are less
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precise for high values of φ, as this increases the inventory variance. If more
precision is required, the simulation horizon may be extend. Notably, in tables
6.4, 6.6 and 6.7, the simulated impulse response variances are numerically
identical to the analytically obtained variances. This is expected.

The results for the STOUT/SPOUT[-E] policies are presented in Table 6.5,
and the variances appear in Table 6.6. While φ = 0 here, the setting L = 8
increases the inventory variance, making these measurements less precise than
when L = 0. This is also an expected result.

6.4 Tests against validation criteria

In Chapter 3, we identified some criteria for model validation. This section
tests the staggered models of this thesis against the validation criteria.

1. The model structure must be consistent with the descriptive knowledge
of the system. There should be no doubt that the relation between
cyclical orders (4.1) and the inventory mechanism (4.2) represent the
staggered deliveries concept as defined in Chapter 1. The industrial
example provided in this chapter illustrates that the variables P and L
used in the model can be identified in an industrial setting.

2. The model should be causal, exhibiting the same behaviour as the real
system, for the same reasons. There was no empirically observed or
expected output behaviour for costs or service levels, against which to
compare the model. However, looking at the order variances in Table
6.6, it is clear that SPOUT allocates the overtime to one period, whereas
SPOUT-E distributes it over the cycle. This result is consistent with our
expectations of the model’s behaviour.

3. The model must not break physical laws. The model follows the conservation-
of-materials principle, which means that the inventory level equals the
difference between the inflow (receipts, returns from customers) and out-
flow (demand, returns to supplier) of materials. No explicit capacity
limits are implemented, which means that the order quantity can be large.
This does not break any physical laws, but it limits the applicability of
the model to systems with sufficient capacity. In addition, the model
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Table 6.3: Simulation and analytical results comparison.

φ J Ĵ Ŝ1 S−2 Ŝ−2 σ2(it) σ̂2(it)
−0.95 3.2095 3.2095 89.98% 99.13% 99.13% 3.41 3.41
−0.7 3.0514 3.0514 90.00% 99.18% 99.18% 3.08 3.07
−0.5 3.2968 3.2977 90.00% 99.11% 99.11% 3.60 3.60
0 4.6190 4.6154 90.00% 98.75% 98.75% 7.11 7.12
0.5 8.0529 8.0411 90.05% 97.84% 97.83% 22.00 22.05
0.7 11.1233 11.1175 90.00% 97.02% 97.02% 43.11 43.20
0.95 18.6677 18.4635 90.23% 95.41% 95.16% 132.19 132.66

Table 6.4: Inventory variances for each period in the cycle.

φ

k −0.95 −0.7 −0.5 0 0.5 0.7 0.95

Si
m
ul
at
ed

1 2.75 2.39 2.67 5.00 13.55 22.79 47.02
2 2.77 2.66 3.11 6.00 17.43 31.39 74.81
3 3.52 3.06 3.56 6.99 21.36 40.71 110.91
4 3.56 3.37 4.00 7.99 25.32 50.54 155.72
5 4.25 3.74 4.45 8.98 29.29 60.75 210.67

Im
pu

lse

1 2.75 2.39 2.68 5.00 13.58 22.79 47.17
2 2.76 2.66 3.11 6.00 17.46 31.44 75.24
3 3.52 3.06 3.56 7.00 21.40 40.80 111.64
4 3.55 3.37 4.00 8.00 25.36 50.67 156.96
5 4.25 3.74 4.45 9.00 29.35 60.90 211.64

A
na

ly
tic

al

1 2.75 2.39 2.68 5 13.58 22.79 47.17
2 2.76 2.66 3.11 6 17.46 31.44 75.24
3 3.52 3.06 3.56 7 21.40 40.80 111.64
4 3.55 3.37 4.00 8 25.36 50.67 156.96
5 4.25 3.74 4.45 9 29.35 60.90 211.64
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Table 6.5: Performance metrics of the STOUT/SPOUT[-E] policies.

L J Ĵ A Â Ŝ1 σ2(it) σ̂2(it)
0 STOUT 3.46 3.46 409.8 410.1 94.99% 3.51 3.51

SPOUT 5.25 5.25 404.5 404.7 94.99% 6.78 6.76
STOUT-E 4.22 4.22 409.8 409.8 95.00% 4.23 4.23
SPOUT-E 6.17 6.17 404.3 404.4 94.99% 8.95 8.95

8 STOUT 6.83 6.83 409.8 410.1 95.02% 11.12 11.11
SPOUT 8.38 8.39 403.9 404.0 94.97% 16.64 16.68
STOUT-E 7.20 7.19 409.8 409.8 94.99% 12.21 12.21
SPOUT-E 8.91 8.89 403.8 403.9 95.04% 18.67 18.60

is causal in the sense that it does not assume prescience, but uses only
information available at the time of planning. This is evident from the re-
plenishment policies, i.e. Theorem 4.2 for ARSTOUT, and (5.11), (5.23),
(5.37), (5.44), or (5.48) for the policies considering overtime work.

4. The decision rules in the model must reflect the behaviour of the decision-
makers. As the industrial case has shown, staggered deliveries occur
similarly as in the model. The OUT policy is a standard policy. The
SPOUT[-E] policies are based on the proportional OUT policy, which
has seen industrial use for many years, as evidenced by Simon and Holt
(1954) and Disney et al. (2013).

5. The units of the stocks and flows in the model must be consistent. With
a discrete-time model operating on a per-period basis, both inventory
levels and receipts are measured in units; hence all terms in the inventory
equation (4.2) are expressed in units. The periodic holding and backorder
costs in (4.3) are expressed in pounds sterling (£) per unit, as are the
capacity and overtime costs in (5.24). The audit cost is expressed as
pounds sterling per order cycle, which in (4.20) is divided by the number
of periods per order cycle, producing the average audit cost in one period.
For the total cost, regardless of model, we obtain a cost in pounds,
implicitly per period. Service levels are dimensionless.

6. The model should respond reasonably when parameters are set to extreme
values. An increase of any cost factor, {b, h, u, v}, causes the correspond-
ing cost, (4.3), (5.24), or (4.20), to increase. The total cost also increases
with the base variability of the system {σ2

ε , σ
2
d}, and the lead time L. The

increased cost is a reasonable response, as we are either increasing the
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cost of variability, or increasing the variability of the system. The order
cycle length is a special case. We have established that the inventory
cost is minimized when P = 1. Note that as P → ∞, the inventory
variance and the inventory cost also tend toward infinity, while the audit
or overtime costs per period tend toward zero.

7. The model variables must be unambiguous and quantifiable. Both inven-
tory levels and orders are quantified as units, and all costs are applied on
a per-period basis, except the audit cost, which is applied once per order
cycle. All of the variables are measurable in principle, over an infinite
time horizon.

8. The model must be able to generate the same behaviour as related mod-
els. We have established that the ARSTOUT model is a generalization
of the OUT policy under AR(1) demand via Lee et al. (2000). The
bullwhip-optimal policy and SPOUT[-E] are all generalizations of the
DE-APIOBPCS policy with Ta→∞, as evidenced by a comparison with
Disney and Towill (2003).

6.5 Summary

This chapter has shown that when the staggering is removed by setting P = 1,
the policies in this thesis correspond to established models in the literature.
For the inventory-optimal, the correspondence is to the forecast error over
the lead time, while for the smoothing policies, the correspondence is to
DE-APIOBPCS. For empirical justification, an industrial example from Alpha
revealed that staggering occurs in the orders to the steel supplier, and that L and
P are readily identifiable. The simulation model provided that the analytical
variances of inventory and orders match those obtained when simulating the
impulse response. Furthermore, inventory costs, capacity costs, service levels,
and variances are consistent between the analytical models and stochastic
simulation models. This correspondence is not exact, as the simulation is
sampled over a limited time, but it is reasonably close for all output variables.
This discrepancy is the greatest when the order or inventory variances are
large, either due to L or to φ, as expected. In conclusion, the analytical models
operate as intended.



Chapter 7

Conclusion

We set out to understand staggered deliveries and their implications. Answers
have been found, at least for the set of assumptions we posited. This final
chapter ties together the work, by returning to the research questions, and
stating the resolution to each of them. Moving on, we discuss the theoretical
results as a whole, and illuminate noteworthy features of the investigation.
This is followed by some comments on the limitations of this study, as well as
further work.

7.1 Review of research questions

1. What is the inventory-optimal policy under staggered deliveries and auto-
correlated demand? The inventory optimal policy is a staggered variant of
the OUT policy, combined with a minimum-mean-squared-error forecast.
This is provided in Theorem 4.2. In addition to this, Chapter 4 reveals
that each receipt in the cycle needs its own forecast and safety stock level.
The optimal safety stock levels tend to change over the cycle.

2. How do costs and service levels develop under staggered deliveries and
autocorrelated demand? Chapter 4 shows that costs and fill rate vary
over the periods in a planning cycle, but availability remains constant
(Lemma 4.1). Observing individual periods, we see that the inventory
variance is increasing, as we progress from the first to the last receipt
of a cycle (Theorem 4.4). The reason for the constant availability is
that the cost-optimal policy is myopic, sharing the same structure as the
newsvendor problem. Therefore, we set the safety stock (or base stock
level) so that the probability of encountering a stockout is constant.

102
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3. Under inventory costs and audit costs, can an optimal reorder cycle length
be identified when demand is autocorrelated? Yes, Theorem 4.5 proves this,
and a procedure for identifying the optimal order cycle length appears in
Chapter 4. Longer order cycle lengths lead to increased inventory costs,
but a lower audit cost per period. The optimal order cycle length varies
with the autocorrelation of demand.

4. How can a linear production smoothing policy be applied under staggered
deliveries and i.i.d. demand? Chapter 5 presents various ways to do this:
It can be applied differently to every period in the cycle (to minimize the
sum of the order rate variance and the inventory variance), to the first
period of the cycle (minimizing the inventory variance). Distributing the
overtime evenly over the cycle is uneconomic. The policies considered for
this research question are the bullwhip-optimal policy (5.11), STOUT
(5.23), STOUT-E (5.37), SPOUT (5.44) and SPOUT-E (5.48). These
policies are investigated in detail in Chapter 5.

5. How do overtime work rules affect the performance of systems with stag-
gered deliveries? We have considered two cost models. For the quadratic
one, costs are minimized when different amounts of overtime are worked
within each period, as provided by (5.11) and the analysis that precedes
it. For the piecewise linear costs, we should opt to do all overtime work in
the first period of the cycle (Considering the contribution of the inventory
and order variances in Lemma 5.3 and 5.5 to the total cost (5.27), reveals
that STOUT and STOUT-E have identical average capacity costs, but
that STOUT-E has a higher inventory cost). We may choose between
fixed or variable safety stocks. The fixed setting increases inventory costs,
and causes availability to fluctuate. The variable setting minimizes costs,
and keeps availability constant over the cycle.

6. Can an optimum order cycle length be identified when capacity and inven-
tory costs are present? Yes, for the STOUT policy we may find an optimal
cycle length distinct from unity, as long order cycles level production
(Theorem 5.4). The bullwhip-optimal policy minimizes the quadratic
costs under a unit order cycle length, as can be seen from Theorem 5.2.
The optimal order cycle length is not known for SPOUT.

7. How does the order cycle length interact with production smoothing? It
depends on the control policy. Given a policy capable of production



CHAPTER 7. CONCLUSION 104

smoothing, there are no benefits of extending the order cycle (Lemma
5.7). Then we should opt for a non-staggered policy. But if we have a
simple policy, such as the order-up-to policy, then we can see smoothing
benefits from staggered deliveries. On the flip side, shortening the reorder
cycle can lead to increased capacity costs, if a primitive ordering policy
is used (illustrated by Figure 5.7).

7.2 Review of results

Staggering fixes orders for a limited time in the future, giving us a sense of
constancy in the face of fluctuating demand. But this act of decoupling comes
at a cost. In effect, we turn a blind eye to the state of the system for a while.
When we finally decide to check, the state may have drifted from its last
position. This happens for autocorrelated demand. As we have seen in (4.15),
the inventory variance is a non-decreasing function of k, denoting the k’th day
since the start of the order cycle.

Deriving the optimal policy for autocorrelated demand and linear holding
and backlog costs, we found that it is a sequence of myopic order-up-to decisions.
The inventory variance is the same as the forecast error from the planning
occasion to the corresponding inventory receipt. As the receipts in a single cycle
are separated in time, we effectively have different lead times, and the inventory
variance increases through the individual days of a cycle. The inventory costs
are proportional with the standard deviation of the inventory level, so we know
they are non-decreasing with the cycle length P .

Service levels are affected by the non-decreasing inventory variance. For
the cost-optimal policy, the safety stock varies to accommodate these changes
in variance, leading to a fixed availability corresponding to the critical fractile
b/(b+ h) obtained from the holding and shortage costs. This is not the case for
the fill rate, which still varies over the cycle. In a numerical example, we found
that this difference is most significant for positively autocorrelated demand.

First, we considered inventory costs only. The introduction of capacity costs
adds further depth to our analysis. To keep the model tractable, yet insightful,
we assumed that demand is i.i.d. and not generally autocorrelated. This
reduces the number of variables, and helps to avoid the curse of dimensionality
(Bellman, 1956). First considering quadratic (variance-based) costs, we find
that the optimal way to plan overtime includes a different amount of overtime or
idling in every period of the cycle, as (5.11) shows. The optimal policy is linear,
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and takes the inventory position as its sole state variable. The policy is also a
special case of APIOBPCS, and particularly, the Deziel-Eilon configuration,
where the same feedback parameter is applied to WIP deficits and to inventory
deficits.

The optimal order quantity can be thought of as an ordinary proportional
policy where we, for every order, correct a fraction of the remaining deficit
in the inventory position, based on the inventory position at the start of the
cycle. The principle of certainty equivalence permits us to do this, and as
it states, produce the quantity that would be optimal, if no further random
deviations would occur. Only expected values need to be accounted for. Under
the quadratic-optimal policy, the optimal reorder cycle length is unity.

Circumstances may dictate that overtime should be done once per cycle,
or that the overtime work should be equally distributed over all of the days
in the cycle. For a low quadratic cost, the former is preferable to the latter.
These two policies have the same order rate variance for the same amount of
smoothing, despite having different implementations. The overtime-once policy
obtains its minimum inventory variance in the first period of the cycle, whereas
the equal-overtime policy achieves is minimum inventory variance in the middle
of the cycle.

While designs for quadratic costs are excellent for keeping system states
close to a target value, they do not distinguish between deviations that are
are above or below the average. One way to achieve asymmetric costs has
been via piecewise-linear convex functions, where the costs of normal and
overtime production differ. Under such a cost model, the optimal policy is a
non-staggered threshold policy (Sobel, 1970). Of the linear policies we presented,
the overtime-once policy is preferable to the optimal policy under quadratic
cost, which in turn is preferable to the equal-overtime policy.

In practice, we may find that simple policies are used, such as the OUT
policy. The overtime work rules considered are as before: overtime-once and
equal-overtime. In this case, the optimum reorder period need not be unity
for piecewise-linear costs. This results from an order rate smoothing effect.
With optimal capacity levels, the expected capacity cost is proportional to the
standard deviation of the orders in each period. Therefore, we have a pooling
effect when the order-up-to policy is staggered. By no means does this imply
that companies should increase the reorder cycle length while maintaining
a primitive policy. Rather, they should seek to implement a more suitable
control policy. A greater danger may lie in well-intentioned attempts to reduce
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lead times by shortening the order cycle. Unless an appropriate policy is in
place, capacity costs may increase to such an extent that inventory savings are
nullified.

7.3 Managerial implications

Taking a manager’s point of view, we are likely to have an existing production
and inventory system, designed for functionality, but not necessarily optimized
for performance. Therefore, we would do well to map out the path from a
simple functioning system, to a highly efficient one. Figure 7.1 illustrates such
a path.

Suppose we start with a primitive policy, OUT for example, with a long
reorder cycle. This situation is far from ideal, but possible. Given the choice
of speeding up the reorder cycle, or to improve the production control policy,
we should opt for the latter. Doing otherwise — shortening the reorder cycle
while keeping a primitive policy — may cause both excessive overtime and
idling. We could call this an overtime inefficiency trap, where a well-intended
improvement gives rise to unexpected costs. Maintaining the order cycle length
while improving the policy is the more conservative change.

Changing the order policy means that the order quantities are determined
in a different way, usually to smooth the production rate. This might lead to
increased safety stock levels, and greater inventory fluctuations, but otherwise
there should be no negative effects on the production system.

When a proportional policy is in place and the order cycle is long, the
overtime work should be done as close to the first period of the order cycle as
possible; this can lead to a dramatic reduction of inventory fluctuations. At
the same time, time-varying safety stocks can be introduced. For this overtime
strategy, the safety stock will be depleted in the first period of every cycle, and
then gradually accumulated over the remaining periods. Therefore, we require
less capacity in the first period than in the rest of the order cycle.

7.4 Limitations and research opportunities

The industrial prevalence of cyclical planning suggests that staggered deliveries
may be common. Despite this, the literature on staggered deliveries is minimal.
This thesis expands our understanding of staggered systems, but has its own
limitations, and there are still many research gaps to fill.
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Figure 7.1: Avoid the capacity cost trap by improving the order policy before
reducing the order cycle length.

The choice of developing a mathematical model has allowed us to reason,
from first principles, about the expected consequences of staggered deliveries.
This revealed the cyclical effects on the inventory variance. The analytical
results are consistent with simulation, but the cyclical effect remains to be
observed empirically. For general autocorrelated demand, this investigation
is limited to inventory performance and the optimal order cycle length. Our
numerical investigation of the fill rate reveals a rich behaviour that calls for
further study.

Furthermore, we have assumed perfect knowledge of the autocorrelation
function (ACF) of demand, that the ACF does not change over time, and that
we can observe past demand from the beginning of time. In a real setting
we must estimate the ACF from a limited set of past observations. This may
introduce specification errors, and robustness tests could be considered, perhaps
along the lines set out in Hosoda and Disney (2009). Further consideration
could also be given to the mis-specification of the demand distribution, as in
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Akcay et al. (2011) and Lee (2014). Identifying the effect in the real world is
difficult; not only are accurate historical inventory records necessary (and these
are often not kept in enterprise resource planning systems), but the company
must use a policy that generates significant heteroskedasticity. For example,
the [AR]STOUT policy generates a stronger change in the inventory variance
than the SPOUT-E policy. In some cases the effect may exist, but be masked
by random fluctuations, data inaccuracies, and limited sample sizes.

To generate models that provide meaningful results, we have assumed a linear
production-inventory system, which may result in negative orders. Therefore,
the outcome of this research is most accurate for high-volume production with
low variability. There is an opportunity for developing staggered inventory
models with non-negativity, or capacity constraints. Similarly, an opportunity
remains for identifying the optimal staggered policy when piecewise-linear
capacity costs are present. Topics that are relevant to non-staggered production
and inventory control systems can be just as interesting, if not more, for
staggered systems. This includes stochastic lead times, perhaps with crossovers,
estimation and misspecification of demand processes, stochastic yield, and
perhaps the effect of shared capacity.

Recalling that “all models are wrong” (Box, 1976) we should understand
that the models in this thesis are simpler than the models we would build for
an actual supply chain, but this need not be a bad thing:

“The solution to the model will not be applicable in all its quan-
titative features; but it will call attention to the chief qualitative
features of the appropriate policy, the form it will take, and the
directions in which it can be expected to vary with changes in the
underlying parameters.” (Arrow et al., 1958, p. 18)

7.5 Summary

This chapter has reviewed the research questions and presented answers based
on the analysis in this thesis. Academic and managerial implications of this
work have been presented, and the limitations of this research and the resulting
models have been discussed.

We have confirmed Flynn’s assertion that staggered deliveries can be optimal,
and expanded the case to autocorrelated demand. The autocorrelation leads
to different optimal safety stock levels, while also affecting inventory costs,
fill rates, and the length of the optimal order cycle. If we were to apply the
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inventory-cost optimal policy (STOUT) to a system with capacity costs, we
may get a P ∗ value distinct from one. In this setting, going after a reduction of
the order cycle length, perhaps as part of a well-intended lead time reduction
programme, can have dire economic consequences. We can get around this
problem by first implementing a policy capable of production smoothing. In
addition, we now know it is better to collect the overtime to the beginning of
each order cycle, than to spread the overtime work evenly over the cycles.

Even after developing these insights, much work remains to be done. Many
problems in the non-staggered literature can be extended to staggered deliveries.
In particular, we may want to consider the impact of multi-product scenarios,
and the effect of forecasts, and misspecified demand distributions.
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Appendix A

Piecewise linear cost models

This appendix presents proofs for the optimal inventory and capacity levels
under piecewise linear costs. Special cases of these costs appear in Disney and
Grubbström (2004) and Hosoda and Disney (2012) along with optimal solutions.
To make the thesis self-contained, this appendix presents a proof based on the
solution to the newsvendor problem in Churchman et al. (1957, p. 207-214).
The solution has been reinterpreted for inventory costs and capacity costs. A
measure-theoretic approach is used, as this simplifies the proofs; assume f and
o to be random variables on the probability space (Ω,A,P), where A is a Borel
σ-algebra, and ω ∈ Ω.

A.1 Inventory costs

Under linear holding and backlog costs, the optimal OUT level is identical to
the order quantity in the newsvendor problem. To see this, suppose there is an
OUT level S, a lead-time demand f , and an inventory level i = S − f . with
costs given by

j(S) = h(i)+ + b(i)−, (A.1)

where (x)+ = x[x < 0] returns x if x is positive, and (x)− = (−x)[0 < x]
returns (−x) if x is negative.

Theorem A.1 (Safety stock optimization). The expected inventory cost, J(S) =
E[j(S)], is minimized when

P{i < 0} = h

b+ h
. (A.2)

Proof. Equation (A.1) is convex in S. Since convexity is preserved under linear
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transformations, and when taking the expectation, it is sufficient to demonstrate
that (A.2) is the solution obtained when differentiating J(S) and solving for
zero. Thus, take (A.1) and rewrite it as

j(S) = h(S − f) + (b+ h)(S − f)−. (A.3)

Recalling that the (·)− operator switches the sign, we obtain

J(S) = h
∫

Ω
(S − f) dP + (−1)(b+ h)

∫
i<0

(S − f) dP

= h(S + E[f ])− (b+ h)
∫
i<0

(S − f) dP.
(A.4)

When differentiating J(S), we exploit Leibniz’s rule to obtain,

J ′(S) = d

dS
h(S − E[f ])− (b+ h) d

dS

∫
i<0

(S − f) dP

= h− (b+ h)
∫
i<0

d

dS
(S − f) dP

= h− (b+ h)
∫
i<0

dP

= h− (b+ h)P{i < 0}.

(A.5)

Setting J ′(S) = 0 gives
P{i < 0} = h

b+ h
, (A.6)

and the proof is complete. �

Remark. This result is the well-known solution to the structurally identical
single-period problem, or newsboy problem as it is also called. The above
derivation has the benefit of not assuming either a discrete or continuous
distribution of the random variable.

A.2 Capacity costs

Definition A.2 (Reactive capacity costs). A similar solution is obtained under
reactive capacity. Hosoda and Disney (2012) present a proof that assumes
normally distributed orders, but here we make no assumptions about the
distribution of orders. Let there be a guaranteed labour capacity level z, which
is always paid for with the unit cost u, regardless of production volume. When
the production quantity o exceeds z, an overtime charge v, where u < v, is
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incurred for all orders exceeding z, i.e. o− z. The cost is then

a(z) = uz + v(o− z)+, (A.7)

and the expected capacity cost is

A(z) = E [a (z)] = uz +
∫
z≤o

v (o− z) dP. (A.8)

Theorem A.3. The expected capacity cost for reactive capacity (A.8), is mini-
mized when

P{o < z} = v − u
v

. (A.9)

Proof. We take the expected capacity cost (A.8), differentiate, and solve for
zero:

A′ (z) = d

dz

[
uz +

∫
z≤o

v (o− z) dP
]

= d

dz

[
uz + v

∫
z≤o

(o− z) dP
]

= d

dz
uz + v

∫
z≤o

d

dz
(o− z) dP

= u− v
∫
z≤o

dP

= u− v P {z ≤ o}

= u− v (1− P {o < z}) .

(A.10)

Setting A′ (z) = 0 gives
P {o < z} = v − u

v
, (A.11)

and the proof is complete. �

Remark. The variables o and z need not represent production units; instead,
they may be counted in man-hours, if the costs u and v also reflect this.
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Proofs

B.1 Proof of Theorem 4.2

Proof.

(a) Assume that we are to place an order at time t, to be received in period
t+ τ . By setting the conditional expectation E [it+τ |{dt, dt−1, · · · }] = i∗t+τ ,
and solving for rt+τ , we obtain the policy that minimizes the inventory
cost for any τ . Finally we set τ = L+ 1, to obtain the solution for the first
order in a cycle.

To begin, we use induction on the inventory balance equation (4.2) to
obtain it+1 = it−1 + rt + rt+1 − dt − dt+1. Extending this to it+τ yields

it+τ = it +
τ∑

n=1
(rt+n − dt+n) = it + wt,τ + rt+τ − ft,τ . (B.1)

The inventory costs are convex, and we seek to minimize them for an
arbitrary period by setting the expected inventory level to i∗t+τ . Therefore,
let i∗t+τ equal the expectation of (B.1), conditional on our observations of
demand up to time t, when the order is determined. We obtain

E [it+τ |{dt, dt−1, · · · }] = i∗t+τ = it + rt+τ + wt,τ − f̂t,τ . (B.2)

The receipt rate rt+τ can be found by rearranging (B.2),

rt+τ = f̂t,τ + i∗t+τ − it − wt,τ . (B.3)
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Finally, we let k = 1, so that τ = L+ 1 and obtain

ot,1 = rt+L+1 = f̂t,L+1 + i∗t+L+1 − it − wt,L+1, (B.4)

This concludes the first part of the proof.

(b) Assume that L + 1 < τ ≤ L + P , so that τ + 1 corresponds to k > 1.
Inserting the receipts (B.3) back into the inventory equation (B.1) gives

it+τ = i∗t+τ + f̂t,τ − ft,τ . (B.5)

Rearranging the inventory balance equation (4.2) yields rt+τ = it+τ −
it+τ−1 + dt+τ . Replacing both inventory levels with their equivalent form
in (B.5), we obtain

rt+τ = ot,k = i∗t+τ − i∗t+τ−1 + d̂t,τ , (B.6)

where d̂t,τ+1 = f̂t,τ+1 − f̂t,τ is the single-period forecast for dt+τ+1 made at
time t. This completes the proof. �

B.2 Proof of Theorem 4.4

Proof. We shall express it and it + dt as a weighted sum of independent error
terms, and then take the variance or covariance.

(a) Recall the inventory equation (B.5)

it = i∗t + f̂t−τ,τ −
τ−1∑
n=0

dt−n. (B.7)

Let us express the lead-time demand as a weighted sum of error terms,

τ−1∑
a=0

dt−a =
(
τ−1∑
m=0

εt−m
m∑
n=0

θn

)
+
 ∞∑
x=τ

εt−x
τ−1∑
y=0

θx−y

 , (B.8)

and express the corresponding forecast as a weighted sum of error terms,

f̂t−τ,τ =
∞∑
x=τ

εt−x
τ−1∑
y=0

θx−y. (B.9)

Substituting the lead-time demand (B.8) and the forecast (B.9) into the
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inventory equation, we obtain

it = i∗t −
τ−1∑
m=0

εt−m
m∑
n=0

θn. (B.10)

Clearly, E[it] = i∗t . Taking the variance, we obtain

var(it) = σ2
ε

τ−1∑
m=0

(
m∑
n=0

θn

)2

, (B.11)

completing the first part of the proof.

(b) Without loss of generality, assume i∗t = 0. We can then characterize it + dt

as

it + dt =
( ∞∑
x=0

εt−x θx

)
−
(
τ−1∑
m=0

εt−m
m∑
n=0

θn

)

=
( ∞∑
x=0

εt−x θx

)
−
[
εt θ0 +

τ−1∑
m=1

εt−m

(
θm +

m−1∑
n=0

θn

)]

=
( ∞∑
x=τ
εt−x θx

)
−
{
τ−1∑
m=1

εt−m

[(
m∑
n=0

θn

)
− θm

]}
.

(B.12)

With it + dt of this form, we take the variance

var(it + dt) = σ2
ε


 τ−1∑
m=1

(
m−1∑
n=0

θn

)2+
∞∑
x=τ

θ2
x

 , (B.13)

completing this part of the proof.

(c) To obtain cov(dt, it + dt), we exploit that (B.10) and (B.12) are already
of the required form. Taking the covariance gives (4.17), completing the
proof. �

B.3 Proof of Theorem 5.6

Proof.
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(a) First, we express xt,0 in terms of xt−P,0

xt,0 = xt−P,0 +
k∑

n=1
ot−P,n − dt−P+n

= xt−P,0 + x∗P − x∗0 + α (x∗0 − xt−P,0)−
P∑
n=1

dt−P+n

= (1− α)xt−P,0 + αx∗0 −
P∑
n=1

εt−P+n

(B.14)

Continuing the recursion gives

xt,0 = αx∗0 +
q∑

m=1
(1− α)m−1

[
αx∗0 + xt−qP,0 −

P∑
n=1

εt−mP+n

]
. (B.15)

When q →∞ we obtain

xt,0 = x∗0 −
P∑
n=1

q∑
m=1

(1− α)m−1 εt−mP+n, (B.16)

which reveals the expectation E [xt,0] = x∗0. As xt,k = xt,0 +∑k
n=1 ot,n

xt,k = x∗k −
P∑
n=1

q∑
m=1

(1− α)m εt−mP+n. (B.17)

Taking the variance of xt,k and adding the variance of lead-time demand
gives

σ2
i,k = σ2

d

[
k + L+ P (1− α)2

α (2− α)

]
,

completing this part of the proof.

(b) Inserting (B.16) in (5.44) provides

ot,1 = x∗1 − x∗0 + α
P∑
n=1

q∑
m=1

(1− α)m−1 εt−mP+n. (B.18)

Taking the variance gives
σ2
o,1 = σ2

dαP

2− α.

For k 6= 1, the orders are constant, therefore σ2
o,k = 0, and the proof is

complete. �
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B.4 Proof of Lemma 5.7

Proof. The cost functions are

(C∗P |STOUT) = ψ

[
λ√
P

+ (1− λ) σ̄i,P
]

+ µu, (B.19)

where σ̄i,P = σεP
−1∑P

k=1
√
k is the average inventory standard deviation under

STOUT; and
(C∗1 |SPOUT) = ψ

√
1− λ2 + µu. (B.20)

When P = 1, it is trivial to see that (C∗1 |SPOUT) ≤ (C1|STOUT). The cases
when STOUT has P > 1 can be solved as follows. Since (C∗P |STOUT) and
(C∗1 |SPOUT) are continuous on λ ∈ [0, 1] it is sufficient to see that these cost
functions do not intersect. If these cost functions were to intersect, then
(C∗1 |SPOUT) = (CP |STOUT), or equivalently

√
1− λ2 = λ√

P
+ (1− λ)σ̄i,P . (B.21)

Solving for λ gives

λ =
Pσ̄2

i,P − σ̄i,P
√
P ±

√
P
(
P + 1− 2σ̄i,P

√
P
)

Pσ̄2
i,P − 2σ̄i,P

√
P + P + 1

. (B.22)

If a real solution exists, Im (λ) = 0, which is equivalent to
√
P (P + 1) −

2∑P
k=1
√
k ≥ 0. For P = 1 we obtain λ = 0, which is consistent with the trivial

case. Using induction we can show that
√
P (P + 1)− 2∑P

k=1
√
k is decreasing

in P . This follows from

0 >
[
(P + 2)

√
P + 1− 2

P+1∑
m=1

√
m

]
−
[
(P + 1)

√
P − 2

P∑
n=1

√
n

]
, (B.23)

0 >
√
P
[√

P (P + 1)− (1 + P )
]
, (B.24)

which holds true. Therefore
√
P (P + 1)− 2∑P

k=1
√
k ≥ 0 is false, and we have

a contradiction in (B.21). In other words, when P > 1 the cost functions do
not intersect on λ ∈ [0, 1] . This completes the proof. �



Appendix C

On the exact fill rate

The conventional expression for the exact fill rate implicitly assumes that
demand is positive (Sobel, 2004; Teunter, 2009). When demand can be negative
(returns from customers), the conventional fill rate sometimes produces results
indicating a fill rate above 100% or below 0% (Disney et al., 2015). When normal
demand is assumed, these problems appear, as demand can be negative. Here
we investigate the conventional exact fill rate, identify where the discrepancy
appears for negative demand, and propose a refined fill rate definition that
works when demand is negative. This new definition is a consistent elaboration
of the exact fill rate for non-negative demand.

Consider following assumptions; later we shall relax Assumption C.1(c).
Demand is defined as d = η − κ.

Assumption C.1.

(a) η ∈ R denotes the inventory level (on-hand inventory less backorders) just
after a delivery, and κ ∈ R denotes the inventory level just before the next
delivery.

(b) The random variables {η(ω), κ(ω)} are defined on the probability space
(Ω,A,P), where A is a Borel σ-algebra, and ω ∈ Ω.

(c) Between two subsequent deliveries, there is a non-negative demand, such
that 0 ≤ η − κ.

Definition C.2. The fill rate, S2, is the long-run fraction of demand satisfied
immediately from inventory,

S2 = E[DFI]
E[η − κ] , (C.1)
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where DFI denotes the demand filled immediately from stock. It is calculated
as follows: If η < 0, no demand can be fulfilled in an inventory cycle. If η is
positive and κ is negative, {0 < η} ∩ {κ 6 0} , then η units of demand have
been satisfied. Finally, if 0 < κ, all demand (η − κ) has been satisfied. DFI is
thus defined (cf. Silver and Bischak, 2011),

DFI =


0 if η < 0,

η if {0 < η} ∩ {κ 6 0},

η − κ if 0 < κ.

(C.2)

Theorem C.3. The fill rate for any inventory system that corresponds to
Assumption C.1 can be expressed as

S2 =
∫

0<η η dP−
∫

0<κ κ dP∫
Ω η − κ dP

. (C.3)

Proof. It is sufficient to demonstrate that (C.1) equals (C.3). We begin with
the numerator by taking the expectation of DFI.

E[DFI] =
∫

{0<η}∩{κ60}

η dP +
∫

0<κ

(η − κ) dP =
∫

{0<η}∩{κ60}

η dP +
∫

0<κ

η dP−
∫

0<κ

κ dP. (C.4)

Then, from Assumption C.1(c) we have that 0 < κ implies 0 < η. Therefore
{0 < κ} = {0 < η} ∩ {0 < κ}.

E[DFI] =
∫

{0<η}∩{κ60}

η dP +
∫

{0<η}∩{0<κ}

η dP−
∫

0<κ

κ dP. (C.5)

Note that {{0 < η} ∩ {κ ≤ 0}} and {{0 < η} ∩ {0 < κ}} are disjoint. Since
{{0 < η} ∩ {κ ≤ 0}} ∪ {{0 < η} ∩ {0 < κ}} = {0 < η}, we can write (C.5) as

E[DFI] =
∫

0<η

η dP−
∫

0<κ

κ dP, (C.6)

which is equal to the numerator in (C.3). Note that the denominator of (C.3),
is obtained directly when taking the expectation, E[η− κ] =

∫
Ω η− κ dP. Thus,

S2 =
∫

0<η η dP−
∫

0<κ κ dP∫
η − κ dP

, (C.7)
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and the proof is complete. �

This analysis holds for non-negative demand, but suppose we relax this as-
sumption. Then the proof halts at (C.4), as 0 < κ no longer implies 0 < η.
Therefore, (C.3) is not the correct expression for the fill rate, when demand
can be negative. Another theoretical issue can occur when the expectation of
demand is negative (more returns than sales), also leading to a negative fill rate.
To find a reasonable fill rate when demand can be negative, we must revisit
the definition. Let the fill rate be the long-run fraction of satisfied demand, to
the demand that can be satisfied.

Definition C.4 (Exact fill rate for normally distributed demand). The exact
fill rate for normally distributed demand and inventory levels relies on the
following definiton of DFI−,

(a) Let DFI− = (min(η, η − κ))+ be the demand filled immediately, when
negative demand is present, i.e. the smallest value of the start-of-cycle
inventory, or demand, if either term is greater than zero.

(b) The fill rate that excludes negative demand is then

S−2 = E[DFI−]
E[(d)+] , (C.8)

where E[(d)+], is the expected positive demand.

A realization of S−2 for normally distributed demand is presented in Lemma
4.3.



Nomenclature

λ The relative cost of audits or capacity to inventory

α The smoothing parameter in the SPOUT-[E] policy

σ̄i,P The average inventory standard deviation over a cycle of length P

δ The Kronecker delta function.

f̂ The expected lead-time demand (minimum-mean-squared-error forecast)

λP The value λ which is minimized by an order cycle length of P

E The expectation operator

P The probability of some event

Z∗ The set of nonnegative integers

Z+ The set of strictly positive integers

Z The set of integers

µ The expectation of demand in a single period

Φ The cumulative density function of the standard normal distribution

φ The autocorrelation parameter of a first-order autoregressive process.

Φ−1 The inverse of Φ

ψ A cost scaling factor

ρ The Pearson correlation coefficient

σ(·) The standard deviation of some variable

σ2
d The variance of the demand process
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σd The standard deviation of demand

τ The actual lead time for a specific receipt, including staggering delays

θ The autocorrelation coefficient of demand

ε The uncorrelated random component of (periodic) demand

ϕ The probability density function of the standard normal distribution

ξ The optimal smoothing parameter to minimize quadratic costs

A The expected capacity cost

a The singe-period capacity cost

b The backlog cost per unit per period

C The expected total cost of inventory and audits or capacity

c The total cost of inventory and audits or capacity

d Demand in a single period

f The demand over the actual lead-time

g The standard normal loss function

h The holding cost per unit per period

i The inventory level; on-hand inventory minus backorders

i∗t The optimal safety stock in period t

J The expected inventory cost

j The singe-period inventory cost

k Index for the k’th period in a cycle

L The lead time, i.e. the number of periods until the first receipt arrives.

ot,k The k’th order placed in period t

P The order cycle length (number of inspections between orders)

P ∗ The optimal reorder period length
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rt The quantity received in period t

S1 The availability service metric

S2 The (unit) fill rate service metric

S−2 The (unit) fill rate service metric when demand can be negative

t Time period

u The unit cost at the regular rate (no overtime compensation)

v The audit cost (Chapter 4), or the overtime cost per unit (Chapter 5)

w Work-in-progress; orders placed, but not yet received

x The inventory position

zk The regular (non-overtime) capacity in the k’th period of each cycle

DFI Demand filled immediately


