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Genome-wide analysis of over 106000 individuals identifies 9

neuroticism-associated loci
DJ Smith1,15, V Escott-Price2,15, G Davies3,15, MES Bailey4, L Colodro-Conde5, J Ward1, A Vedernikov2, R Marioni3,5,6, B Cullen1,

D Lyall1, SP Hagenaars3, DCM Liewald3, M Luciano3, CR Gale3,7, SJ Ritchie3, C Hayward6,8, B Nicholl1, B Bulik-Sullivan9,10,11,

M Adams12, B Couvy-Duchesne5, N Graham1, D Mackay1, J Evans1, BH Smith8,13, DJ Porteous3,8,14, SE Medland5, NG Martin5,

P Holmans2, AM McIntosh3,8,12, JP Pell1,16, IJ Deary3,8,16 and MC O’Donovan2,16

Neuroticism is a personality trait of fundamental importance for psychological well-being and public health. It is strongly associated

with major depressive disorder (MDD) and several other psychiatric conditions. Although neuroticism is heritable, attempts to

identify the alleles involved in previous studies have been limited by relatively small sample sizes. Here we report a combined

meta-analysis of genome-wide association study (GWAS) of neuroticism that includes 91 370 participants from the UK Biobank

cohort, 6659 participants from the Generation Scotland: Scottish Family Health Study (GS:SFHS) and 8687 participants from a QIMR

(Queensland Institute of Medical Research) Berghofer Medical Research Institute (QIMR) cohort. All participants were assessed using

the same neuroticism instrument, the Eysenck Personality Questionnaire-Revised (EPQ-R-S) Short Form’s Neuroticism scale. We

found a single-nucleotide polymorphism-based heritability estimate for neuroticism of ∼ 15% (s.e. = 0.7%). Meta-analysis identified

nine novel loci associated with neuroticism. The strongest evidence for association was at a locus on chromosome 8

(P= 1.5 × 10− 15) spanning 4 Mb and containing at least 36 genes. Other associated loci included interesting candidate genes on

chromosome 1 (GRIK3 (glutamate receptor ionotropic kainate 3)), chromosome 4 (KLHL2 (Kelch-like protein 2)), chromosome 17

(CRHR1 (corticotropin-releasing hormone receptor 1) and MAPT (microtubule-associated protein Tau)) and on chromosome 18

(CELF4 (CUGBP elav-like family member 4)). We found no evidence for genetic differences in the common allelic architecture of

neuroticism by sex. By comparing our findings with those of the Psychiatric Genetics Consortia, we identified a strong genetic

correlation between neuroticism and MDD and a less strong but significant genetic correlation with schizophrenia, although not

with bipolar disorder. Polygenic risk scores derived from the primary UK Biobank sample captured ∼ 1% of the variance in

neuroticism in the GS:SFHS and QIMR samples, although most of the genome-wide significant alleles identified within a UK

Biobank-only GWAS of neuroticism were not independently replicated within these cohorts. The identification of nine novel

neuroticism-associated loci will drive forward future work on the neurobiology of neuroticism and related phenotypes.

Molecular Psychiatry (2016) 21, 749–757; doi:10.1038/mp.2016.49; published online 12 April 2016

INTRODUCTION

Neuroticism is a dimension of personality that has been studied

for ∼ 100 years, is present in most personality trait theories and

questionnaires and is found in the lexicons of most human

cultures.1 Individual differences in neuroticism are highly stable

across the life course.2 Higher neuroticism is associated with

considerable public health and economic costs,3 premature

mortality4 and a range of negative emotional states and

psychiatric disorders, including major depressive disorder (MDD),

anxiety disorders, substance misuse disorders, personality

disorders and schizophrenia.5–9 Thus, the study of neuroticism is
not only important for understanding an important dimension of
personality but may also illuminate the aetiology of a range of
psychiatric disorders.10,11

Eysenck12 suggested a biological basis for neuroticism over 50
years ago. Although the biological underpinnings of personality
traits are not understood, genetic factors are clearly involved. Twin
studies suggest that ∼ 40% of the trait variance for neuroticism is
heritable,2,13–17 of which between 15 and 37% is explained by
variation in common single-nucleotide polymorphisms (SNPs)17,18

and is potentially detectable using the genome-wide association
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study (GWAS) paradigm. The clear links between neuroticism,
psychopathology and other adverse health outcomes—and the
implications for global health that would result from a better
understanding of its mechanisms19—provide a strong rationale
for large-scale GWAS to identify its genetic architecture (and
genetic aetiology).
To date, individual GWASs of neuroticism have been limited by

modest sample sizes and have delivered equivocal findings. Large
meta-analyses of GWASs have also delivered modest findings. The
recent Genetics of Personality Consortium (GPC) meta-analysis of
neuroticism, which included 73 447 individuals from 29 discovery
cohorts plus a replication cohort, identified only one genome-wide
significant associated locus, at MAGI1 on chromosome 3
(P=2.38× 10−8).18 Within two of the cohorts in this GPC study,
common genetic variants explained ∼ 15% of the variance in
neuroticism.18

In our study, seeking additional associated loci, we have
conducted a meta-analysis that included GWAS results from the
UK Biobank cohort, the Generation Scotland: Scottish Family
Health Study (GS:SFHS) cohort20 and the QIMR (Queensland
Institute of Medical Research) Berghofer Medical Research Institute
Study in Adults (QIMR) cohort.2,13,14 The UK Biobank is the largest
single GWAS sample of neuroticism to date and probably the most
homogeneous in terms of ascertainment strategy and assessment
methodology. In addition, we evaluated the genetic relationship
between neuroticism and three major psychiatric phenotypes for
which there are large, publically accessible GWAS data sets:
MDD, schizophrenia and bipolar disorder (BD). Finally, we have
compared our findings with those from the GPC meta-analytic
GWAS of neuroticism,18 as well as the CONVERGE consortium for
MDD.21

MATERIALS AND METHODS

Sample

UK Biobank is a large prospective cohort of more than 502 000
residents of the United Kingdom, aged between 40 and 69
years.22 The aim of UK Biobank aim is to study the genetic,
environmental, medication and lifestyle factors that cause or
prevent disease in middle and older age. Recruitment occurred
over a 4-year period from 2006 to 2010. Baseline assessments
included social, cognitive, personality (the trait of neuroticism),
lifestyle and physical health measures. For the present study, we
used the first genetic data release (June 2015) based on
approximately one-third of UK Biobank participants. Aiming to
maximise homogeneity, we restricted the sample to those who
reported being of white UK ancestry and for whom neuroticism
phenotype data were available (n= 91 370).
We also made use of data provided by investigators from the

GS:SFHS20 and QIMR cohorts2,13,14 to conduct a meta-analysis
based on samples for which we could readily access individual
genotypes and which were assessed using the same measure of
neuroticism. The GS:SFHS sample comprised 7196 individuals and
the QIMR sample comprised 8687 individuals. Individuals (n= 537)
who had participated in both UK Biobank and GS:SFHS were
removed from the GS:SFHS sample based on relatedness checking
using the genetic data.
Note that we were unable to incorporate the published data from

the GPC as the neuroticism measure used in that study was derived
from an item response theory analysis (prohibiting inverse variance-
weighted meta-analysis due to the differences in variance and
heterogeneity of the measure). In addition, there was no informa-
tion on the sample size for each SNP (prohibiting sample size-
weighted meta-analysis) and the majority of participants in the
QIMR cohort were included within the GPC meta-analysis.
This study obtained informed consent from all participants and

was conducted under generic approval from the National Health

Service (NHS) National Research Ethics Service (approval letter
dated 17 June 2011, Ref 11/NW/0382) and under UK Biobank
approvals for application 6553 ‘Genome-wide association studies
of mental health’ (principal investigator Daniel Smith) and
4844 ‘Stratifying Resilience and Depression Longitudinally’ (princi-
pal investigator Andrew McIntosh).

Neuroticism phenotype

Neuroticism was assessed in all three cohorts (UK Biobank, GS:
SFHS and QIMR) using the 12 items of the neuroticism scale from
the Eysenck Personality Questionnaire-Revised Short Form (EPQ-R-
S)23 (Supplementary Table S1). Respondents answered ‘yes’ (score
1) or ‘no’ (score 0) to each of the questions, giving a total
neuroticism score for each respondent of between 0 and 12. This
short scale has a reliability of more than 0.8 (ref. 23) and high
concurrent validity; for example, in a sample of 207 older people
EPQ-R-S scores correlated 0.85 with the neuroticism score from
the NEO-Five Factor Inventory, the scale most widely used
internationally.24,25

Genotyping and imputation

In June 2015, UK Biobank released the first set of genotype data for
152 729 UK Biobank participants. Approximately 67% of this sample
was genotyped using the Affymetrix UK Biobank Axiom array (Santa
Clara, CA, USA) and the remaining 33% were genotyped using the
Affymetrix UK BiLEVE Axiom array. These arrays have over 95%
content in common. Only autosomal data were available under the
current data release. Data were pre-imputed by UK Biobank as fully
described in the UK Biobank interim release documentation.26

Briefly, after removing genotyped SNPs that were outliers or were
multiallelic or of low frequency (minor allele frequency (MAF)
o1%), phasing was performed using a modified version of
SHAPEIT2 and imputation was carried out using IMPUTE2
algorithms, as implemented in a C++ platform for computational
efficiency.27,28 Imputation was based upon a merged reference
panel of 87 696 888 biallelic variants on 12 570 haplotypes
constituted from the 1000 Genomes Phase 3 and UK10K haplotype
panels.29 Variants with MAF o0.001% were excluded from the
imputed marker set. Stringent quality control before release was
applied by the Wellcome Trust Centre for Human Genetics, as
described in UK Biobank documentation.30

Statistical analysis

Quality control and association analyses. Before all analyses,
further quality control measures were applied. Individuals were
removed based on UK Biobank genomic analysis exclusions
(Biobank Data Dictionary item #22010), relatedness (#22012: genetic
relatedness factor; a random member of each pair of individuals
with KING-estimated kinship coefficient 40.0442 was removed),
gender mismatch (#22001: genetic sex), ancestry (#22006: ethnic
grouping; principal component (PC) analysis identified probable
Caucasians within those individuals who were self-identified as
British and other individuals were removed from the analysis) and
quality control failure in the UK BiLEVE study (#22050: UK BiLEVE
Affymetrix quality control for samples and #22051: UK BiLEVE
genotype quality control for samples). A sample of 112 031
individuals remained for further analyses. Of these, 91 370
had neuroticism scores. Genotype data were further filtered by
removal of SNPs with Hardy–Weinberg equilibrium Po10−6, with
MAF o0.01, with imputation quality score o0.4 and with data
on o95% of the sample after excluding genotype calls made
with o90% posterior probability, after which 8 268 322 variants
were retained.
Association analysis was conducted using linear regression

under a model of additive allelic effects with sex, age, array and
the first 8 PCs (Biobank Data Dictionary items #22009.01 to
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#22009.08) as covariates. Genetic PCs were included to control for
hidden population structure within the sample, and the first 8 PCs,
out of 15 available in the Biobank, were selected after visual
inspection of each pair of PCs, taking forward only those that
resulted in multiple clusters of individuals after excluding
individuals self-reporting as being of non-white British ancestry
(Biobank Data Dictionary item #22006). The distribution of the
neuroticism score was assessed for skewness and kurtosis
(coefficients were 0.56 and − 0.61, respectively) and found to be
sufficiently ‘normal’ (both coefficients are between − 1 and 1) to
permit analysis using linear regression. GWASs of neuroticism
were additionally performed separately for females (N= 47 196)
and males (N= 44 174) using linear regression (as above), with age,
array and the first 8 PCs as covariates.

Heritability, polygenicity and cross-sample genetic correlation. Uni-
variate GCTA-GREML analyses were used to estimate the
proportion of variance explained by all common SNPs for the
neuroticism phenotype.31 We additionally applied linkage dis-
equilibrium score regression (LDSR)32 to the summary statistics to
estimate SNP heritability (h2SNP) and to evaluate whether inflation
in the test statistics is the result of polygenicity or of poor control
of biases such as population stratification. Genetic correlations
between neuroticism scores in the three cohorts (UK Biobank,
QIMR and GS:SFHS) were tested, and genetic correlations between
neuroticism, schizophrenia, BD and MDD were evaluated in the UK
Biobank sample using LDSR,33 a process that corrects for potential
sample overlap without relying on the availability of individual
genotypes.32 For the psychiatric phenotypes, we used GWAS
summary statistics provided by the Psychiatric Genomics Con-
sortium (http://www.med.unc.edu/pgc/).34–36

Polygenic risk score analyses in the QIMR and GS:SFHS samples. In
the QIMR sample (N= 8687 individuals), polygenic risk scores for
neuroticism (PRS-N) based on the summary statistics from the UK
Biobank GWAS were computed with PLINK 1.90 (version 3
September 2015, https://www.cog-genomics.org/plink2/), for
P-value thresholds (PT) 0.01, 0.05, 0.1, 0.5 and 1, following the
procedure described by Wray et al.37 All subjects had GWAS data
imputed to 1000G v.3 (http://csg.sph.umich.edu/abecasis/MaCH/
download/). Only SNPs with a MAF ⩾ 0.01 and imputation quality
r2 ⩾ 0.6 were used in the calculation of the PRS-N. Genotypes were
LD pruned using clumping to obtain SNPs in approximate linkage
equilibrium with an r2 o0.1 within a 10 000 bp window. As QIMR
participants were related, predictions were calculated using GCTA
(Genome-wide Complex Trait Analysis, version 1.22),38 using the
following linear mixed model: EPQ-N= intercept+β0 × covariates
+β2 × g+e with g~N(0, GRM), where EPQ is neuroticism measured
by EPQ (standardised sum score); covariates are age, sex,
imputation chip, 10 genetic PCs and the standardised PRS
(PT 0.01, 0.05, 0.1, 0.5 or 1); e is error; and GRM is genetic
relationship matrix. P-values were calculated using the t-statistic

on the basis of the β and s.e. from the GCTA output. Variance
explained by the PRS was calculated using: var(x) × b2/
var(y), where x is the PRS, b is the estimate of the fixed effect
from GCTA and y is the phenotype.
In the GS:SFHS sample, PRS-N based on the UK Biobank

neuroticism GWAS results were created using PRSice from
observed genotypes in 7196 individuals.20,39 SNPs with a MAF
o0.01 were removed before creating PRS-N. Genotypes were LD
pruned using clumping to obtain SNPs in linkage equilibrium with
an r2 o0.25 within a 200-kb window. As above, five PRS-N were
created containing SNPs according to the significance of their
association with the phenotype, with PTs of 0.01, 0.05, 0.1, 0.5
and 1 (all SNPs). Linear regression models were used to examine
the associations between the PRS-N and neuroticism score in GS,
adjusting for age at measurement, sex and the first 10 genetic PCs
to adjust for population stratification. The false discovery rate
method was used to correct for multiple testing across the PRS-N
at all five thresholds.40

Meta-analysis. Inverse variance-weighted meta-analysis of UK
Biobank, GS:SFHS and QIMR results was performed, restricted to
variants present in all three samples, using the METAL package
(http://www.sph.umich.edu/csg/abecasis/Metal). Data were avail-
able across all 3 studies for 7 207 648 of the original 8 268 322
variants from the UK Biobank analysis. The total sample size
included in the meta-analysis was N= 106 716 (UK Biobank
N= 91 370; GS:SFHS N= 6659; and QIMR N= 8687).

RESULTS

Neuroticism phenotype within UK Biobank and sociodemographic
characteristics

Sociodemographic details of the 91 370 UK Biobank participants
used in this analysis, as well as the full UK Biobank cohort, are
provided in Table 1 and the distributions of neuroticism scores for
males and females in our sample are provided in Figure 1. The
proportion of the UK Biobank neuroticism GWAS sample holding a
degree was 31.4%, and the mean age of leaving full-time
education for those without a degree was 16.5 years. Those in
the full UK Biobank sample who responded to the neuroticism
questions tended to be better educated than those who did not
(33.4% had an undergraduate degree versus 27.7% in nonrespon-
ders). As expected,41 mean neuroticism scores were lower for men
than for women (men mean EPQ-R-S = 3.58, s.d. = 3.19; women
mean EPQ-R-S = 4.58, s.d. = 3.26; P= 0.001). PC analysis of the 12
EPQ-R-S items showed that all items loaded highly on a single
component, and the internal consistency (Cronbach’s α) coeffi-
cient was 0.84 (Supplementary Table S2). Analysis of the entire UK
Biobank sample (N with data = 401 695) gave very similar results
(Supplementary Table S2), suggesting the subsample analysed
here is representative of the whole UK Biobank cohort.

Table 1. Sociodemographic characteristics in UK Biobank

Full UK Biobank sample
(N= 502 665)

UK Biobank neuroticism GWAS sample
(N= 91 370)

Age in years, mean (s.d.) 56.5 (8.1) 56.7 (7.9)
Age range (years) 37–73 40–73
Female, N (%) 273 472 (54.4) 47 196 (51.7)
Neuroticism score, mean (s.d.) 4.12 (3.3) 4.10 (3.3)
Undergraduate degree, N (%) 162 026 (32.2) 28 727 (31.4)
Age when left full-time education (for those without an
undergraduate degree), mean (s.d.)

16.4 (3.5) 16.5 (2.8)

Abbreviation: GWAS, genome-wide association study.
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Meta-analysis of UK Biobank, GS:SFHS and QIMR samples

In the combined data set, we obtained genome-wide
significance for 9 independent loci: on chromosome 1 (two loci),
chromosome 3, chromosome 4, chromosome 8, chromosome 9
(two loci), chromosome 17 and chromosome 18 (Figure 2 and
Tables 2a and b).
Full details are provided in Tables 2a and b, and the associated

regions are depicted graphically as region plots in Supplementary
Figures S3a–i. Candidate genes of particular note mapping to the
associated loci include: the glutamatergic kainate receptor
GRIK3 (Supplementary Figure S3a);42,43 CELF4, which regulates
excitatory neurotransmission (Supplementary Figure S3i);44

and CRHR1, encoding corticotropin-releasing hormone receptor
1 (Supplementary Figure S3h), a protein that is central to the stress
response.45 Associated loci are considered in greater detail within
the discussion.

Genome-wide association results in UK Biobank

Genome-wide association results from the UK Biobank cohort are
summarised in Supplementary Materials: Supplementary Figure S1
(QQ plot); Supplementary Figure S2 (Manhattan plot); and

Supplementary Table S3 (genome-wide significant loci associated
with neuroticism).
Overall, the GWAS data showed modest deviation in the test

statistics compared with the null (λGC= 1.152); this was negligible
in the context of sample size (λGC1000 = 1.003) (Supplementary
Figure S1). LDSR32 suggested that deviation from the null was due
to a polygenic architecture in which h2SNP accounted for ∼ 14% of
the population variance in neuroticism (liability scale h2SNP= 0.136
(s.e. 0.0153)), rather than inflation due to unconstrained popula-
tion structure (LD regression intercept = 0.982 (s.e. 0.014)).
Estimates of heritability using GCTA were similar to those using
LD score regression (h2= 0.156, s.e. = 0.0074).
We observed a total of 8 independent loci exhibiting genome-

wide significant associations with neuroticism (Supplementary
Figure S2 and Supplementary Table S3) with the strongest
evidence for association coming from a locus on chromosome 8
(P= 1.02 × 10�15) at which there is an extensive LD block spanning
4 Mb (attributable to an inversion polymorphism that has
suppressed recombination) containing at least 36 genes. Similar
findings to those from the UK Biobank data set in a GWAS
primarily assessing the genetics of well-being have also recently
been posted in a non-peer-reviewed format.46

Stratification by sex in UK Biobank

Neuroticism scores are in general higher in women than in men
and it has been postulated that neuroticism may play a stronger
aetiologic role in MDD in women than in men,41,47 potentially
explaining the greater prevalence of depressive and anxiety
disorders in women.48 This suggests the possibility of sex-related
genetic heterogeneity. We therefore conducted secondary ana-
lyses looking for sex-specific neuroticism loci in women
(N= 47 196) and men (N= 44 174) respectively. To minimise
heterogeneity, this analysis was restricted to the UK Biobank
samples. SNP heritability (measured by LDSR) for each sex was
comparable (female h2SNP= 0.149 (s.e. = 0.0169); male h2SNP= 0.135
(s.e. = 0.0237)), and was highly correlated between the sexes
(genetic correlation = 0.911 (s.e. = 0.07); P= 1.07 × 10�38) at a level
that was not significantly different from 1 (P= 0.21). In both sexes
separately, the chromosome 8 locus was associated at genome-
wide significance but no other single locus attained significance.
Overall, we found no evidence for genetic differences in the
common allelic architecture of neuroticism by sex.

Figure 1. Distribution of neuroticism scores in the UK Biobank
sample (n= 91 370).

Figure 2. Manhattan plot of meta-analysis of GWAS from UK Biobank, GS:SFHS and QIMR samples (combined N= 106 716). GS:SFHS,
Generation Scotland: Scottish Family Health Study; GWAS, genome-wide association study; QIMR, Queensland Institute of Medical Research
(QIMR) Berghofer Medical Research Institute.
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Genetic correlation of neuroticism with MDD, schizophrenia
and BD

LDSR showed strong genetic correlation between neuroticism
and MDD (genetic correlation= 0.64, s.e. = 0.071, P=3.31×10�19)
and a smaller, but significant, correlation between neuroticism and
schizophrenia (genetic correlation=0.22, s.e. = 0.05, P=1.96×10�05)
(Table 3). We found no significant overlap between neuroticism and
BD (genetic correlation=0. 07, s.e. = 0.05, P=0.15). Similar results
based solely on the UK Biobank data set have been reported
recently in a non-peer-reviewed format.49

Genetic correlations for neuroticism between UK Biobank, GS:SFHS
and QIMR samples

The LDSR-calculated genetic correlation for neuroticism
between the three samples was strong: between UK Biobank and
GS:SFHS the genetic correlation was 0.91 (s.e. = 0.15,
P= 4.04 × 10�09); between UK Biobank and QIMR the genetic
correlation was 0.74 (s.e. = 0.14, P= 2.49 × 10�07); and between GS:
SFHS and QIMR the genetic correlation was 1.16 (s.e. = 0.35,
P= 0.0009). Note that the true maximum for a genetic correlation
is bounded by 1. That the LD score estimate is greater than this
reflects the imprecision in the estimate as indicated by the large s.
e., in the context of which we interpret this as evidence for high
but imprecisely estimated genetic correlation between the two
samples.

PRS analysis for neuroticism in GS:SFHS and QIMR samples

Table 4 shows the results of PRS analysis (based on the UK
Biobank-only GWAS) within the GS:SFHS and QIMR samples. At all

thresholds tested, PRS-N predicted neuroticism, although the
amount of variance explained was small (at ∼ 1%).

Comparison with findings from GPC meta-analysis

In contrast to the finding of the GPC meta-analysis, we did not
identify a genome-wide significant association close to MAGI1
within 3p14.18 However, within the UK Biobank sample, the same
allele at the associated SNP from that study (rs35855737) did show

a trend for association (β= 0.035, s.e. = 0.02, P= 0.07; two tailed).

Comparison with findings from the CONVERGE consortium study
of MDD

The recently published CONVERGE consortium study of Chinese
women with recurrent and melancholic MDD identified two loci
contributing to risk of MDD on chromosome 10: one near the

SIRT1 gene (rs12415800; P= 2.53 × 10− 10) and the other in an
intron of the LHPP gene (rs35936514, P= 6.45 × 10− 12).21 Neither
of these index SNPs were associated with neuroticism

within the UK Biobank sample (for rs12415800 β=− 0.107,
s.e. = 0.066, P= 0.1036, freq A= 0.013; and for rs35936514
β= 0.021, s.e. = 0.0378, P= 0.5832, freq T = 0.041).

Table 2A. Genome-wide significant index SNPs. Combined meta-analysis of UK Biobank, GS:SFHS and QIMR data sets

Index SNP Chr Position A1/A2 Freq β (s.e.) P Direction
(UKBB-GS-QMIR)

Heter P Associated region Genes

rs490647 1 37 242 743 A/G 0.227 0.092 (0.017) 3.8 × 10− 8 +++ 0.577 37 219 429–37 261 085 GRIK3
rs4653663 1 225 927 218 A/T 0.255 0.091 (0.016) 2.0 × 10− 8 +++ 0.097 225 899 639–225 947 638 ENAH, SRP9
rs12637928 3 110 184 749 A/T 0.490 − 0.077 (0.014) 4.3 × 10− 8 −−− 0.663 110 103 126–110 299 632 PVRL3 (579KB distal)
rs62353264 4 166 085 805 A/T 0.986 − 0.335 (0.061) 3.7 × 10− 8 −−+ 0.261 166 063 134–166 198 156 TMEM192, KLHL2, MSMO1
rs12682352 8 8 646 246 T/C 0.525 0.115 (0.014) 1.5 × 10− 15 +++ 0.366 8 301 794–10 831 868 More than 10 genes
rs12378446 9 11 369 213 T/C 0.791 0.100 (0.017) 9.4 × 10− 9 +++ 0.919 11 131 371–11 880 898 PTRD (650KB distal)
rs4977844 9 23 295 899 C/G 0.358 0.083 (0.015) 3.2 × 10− 8 +++ 0.367 23 291 526–23 340 616 ELAVL2
rs111433752 17 43 857 989 T/G 0.790 − 0.120 (0.018) 9.3 × 10− 12 −−− 0.068 43 463 493–44 865 603 More than 10 genes
rs1187264 18 35 289 647 C/G 0.136 0.118 (0.021) 1.2 × 10− 8 +++ 0.526 35 287 090–35 413 260 CELF4

Abbreviations: Chr, chromosome; Freq, frequency; GS:SFHS, Generation Scotland: Scottish Family Health Study; Heter, heterogeneity; QIMR, Queensland

Institute of Medical Research (QIMR) Berghofer Medical Research Institute; SNP, single-nucleotide polymorphism. Shown are linkage disequilibrium (LD)-

independent genome-wide significant SNP associations for neuroticism (sorted by genomic position according to UCSC hg19/NCBI Build 37). Column A1/A2

has the SNP alleles, with the first allele (A1) the reference allele for the frequency and β columns. Frequency of allele 1 is calculated in the UK BioBank data set.

Chr and Position denote the location of the index SNP. β Is linear regression coefficient for allele1, and s.e. is the standard error for β. Associated region

indicates range positions of SNPs with r2 40.6 with the index and any other genome-wide association study (GWAS) significant SNP at the locus. The final

column indicates protein-coding reference sequence genes at the associated loci (see region plots in Supplementary Information) or where there are no genes

at the associated locus, the nearest gene if o1 Mb from the locus.

Table 2B. Association results for genome-wide significant index SNPs in UK Biobank, GS:SFHS and QIMR data sets separately

Index SNP Chr Position UK Biobank GS:SFHS QIMR

β s.e. P FRQ β s.e. P FRQ β s.e. P FRQ

rs490647 1 37 242 743 0.088 0.018 7.79 × 10− 7 0.227 0.073 0.065 0.257 0.234 0.157 0.066 0.017 0.243
rs4653663 1 225 927 218 0.079 0.017 5.12 × 10− 6 0.255 0.117 0.062 0.060 0.260 0.219 0.064 0.001 0.259
rs12637928 3 110 184 749 − 0.074 0.015 8.76 × 10− 7 0.490 �0.073 0.055 0.186 0.506 �0.128 0.058 0.027 0.491
rs62353264 4 166 085 805 − 0.335 0.065 2.36 × 10− 7 0.986 �0.547 0.219 0.012 0.984 0.059 0.298 0.842 0.988
rs12682352 8 8 646 246 0.120 0.015 1.02 × 10− 15 0.525 0.0005 0.111 0.997 0.539 0.063 0.057 0.265 0.528
rs12378446 9 11 369 213 0.100 0.019 9.69 × 10− 8 0.791 0.123 0.068 0.071 0.793 0.084 0.070 0.233 0.784
rs4977844 9 23 295 899 0.083 0.016 2.02 × 10− 7 0.358 0.136 0.058 0.019 0.351 0.018 0.060 0.767 0.352
rs111433752 17 43 857 989 − 0.109 0.019 5.19 × 10− 9 0.790 �0.143 0.073 0.050 0.806 �0.297 0.080 0.0002 0.788
rs1187264 18 35 289 647 0.123 0.022 2.36 × 10− 8 0.136 0.029 0.081 0.720 0.136 0.131 0.083 0.113 0.132

Abbreviations: Chr, chromosome; FRQ, frequency; GS:SFHS, Generation Scotland: Scottish Family Health Study; QIMR, Queensland Institute of Medical

Research (QIMR) Berghofer Medical Research Institute; SNP, single-nucleotide polymorphism.

GWAS and meta-analysis of neuroticism

DJ Smith et al

753

© 2016 Macmillan Publishers Limited Molecular Psychiatry (2016), 749 – 757



DISCUSSION

The identification of nine independent loci showing genome-wide
significant associations with neuroticism within our combined meta-
analysis represents a significant advance. In contrast, a recent meta-
analysis of neuroticism conducted by the GPC (n=73 447) identified
only a single genome-wide significant locus.18

There are several possible explanations for this difference. All
three of the cohorts in our study used the same 12-item neuroticism
assessment instrument (the EPQ-R-S), whereas the GPC study
assessed neuroticism scores using different instruments across
cohorts, with an item response theory approach to harmonise
scores.18 Furthermore, the UK Biobank cohort is by far the largest
sample ever studied for neuroticism genetics and all of the
participants were of white British ethnicity, minimising population
stratification and also addressing potential problems with cultural
variation in the interpretation of neuroticism questionnaire items. In
addition, quality control steps in the UK Biobank sample were
performed in a single centre in a consistent way.
The most significant associated locus on chromosome 8, which

was independently associated at genome-wide significance for
both men and women, spans a 4-Mb region of extended LD (the
result of an inversion polymorphism) containing at least 36 genes
(Tables 2a and b, and Supplementary Figure S3e). The extended
LD at this locus means that identifying the specific genes
responsible for the association is likely to prove challenging. As
an initial attempt to resolve the signal, we queried the index SNP
(rs12682352) at the BRAINEAC (http://www.braineac.org/) brain

expression quantitative trait locus resource. This identified ERI1 as
the only protein coding gene within the locus whose expression
was associated with the index SNP in brain, but only nominally so
(P= 0.019) and not at a level that would reliably point to this gene
as likely explaining the association.
The locus on chromosome 17 (rs111433752 at 43.8 Mb;

Supplementary Figure S3h) similarly maps to an inversion
polymorphism spanning multiple genes and therefore we cannot
attribute the association to any particular gene. As with the locus on
chromosome 8, inspection of expression quantitative trait loci in the
region in BRAINEAC did not help to resolve the signal. Nevertheless,
this locus contains a notable candidate gene, CRHR1, encoding
corticotropin-releasing hormone receptor 1. In the presence of
corticotropin-releasing hormone, CRHR1 triggers the downstream
release of the stress response-regulating hormone cortisol. CRHR1 is
therefore a key link in the hypothalamic–pituitary–adrenal pathway
that mediates the body’s response to stress and that is abnormal in
severe depression.45 CRHR1 per se has also been shown to be
involved in anxiety-related behaviours in mice and has also been
genetically associated with panic disorder in humans.50

Another potential candidate gene within the extended region of
genome-wide significant association at the chromosome 17 locus is
MAPT that encodes the microtubule-associated protein Tau. There is
evidence that Tau is present in the postsynaptic compartment of
many neurons51 and MAPT knockout in mice leads to defects in
hippocampal long-term depression,52 as well as mild network-level
alterations in brain function.53 The clearest candidate gene at one of
the other loci, CELF4 on chromosome 18 at ∼35 Mb, encodes an
mRNA-binding protein known to participate in a major switch in
Tau protein isoform distribution after birth in the mammalian
brain.54 CELF4 is expressed predominantly in glutamatergic
neurones, and recent studies suggest it has a central role in
regulating excitatory neurotransmission by modulating the stability
and/or translation of a range of target mRNAs.44

The finding of an association with a locus on chromosome 1
(rs490647), which includes the glutamatergic kainate receptor
GRIK3, is of considerable interest given that abnormalities of the
glutamate system are implicated in the pathophysiology of
MDD.55–60 Furthermore, a recent glutamate receptor gene
expression study in a large cohort of post-mortem subjects,
including some individuals with MDD who had completed suicide,
found GRIK3 to be the strongest predictor of suicide.43

On chromosome 4, rs62353264 lies a short distance upstream of
KLHL2 that encodes a BTB-Kelch-like protein. KLHL2 is an actin-
binding protein and has also been reported to be part of a
complex that ubiquitinates NPTXR, the neuronal pentraxin
receptor,61 among other targets. Expression of KLHL2 has been
reported to be enriched in brain, and it is localised to cytoplasm
and processes of neurons and astrocytes, being found at sites of
ruffles and other actin network-containing membrane
outgrowths.62,63 The associated region at this locus is short
(∼150 kb), and although several other genes lie within 500 kb of
the peak association at this locus, none is as promising a
candidate as KLHL2.

Table 3. Genetic correlations between neuroticism and MDD, schizophrenia and bipolar disorder

N cases N controls Genetic correlation s.e. genetic correlation Significance (P-value)

MDD 9240 9519 0.64 0.07 3.31 × 10− 19

Bipolar disorder 7481 9250 0.07 0.05 0.1505
Schizophrenia 34 241 45 604 0.22 0.05 1.96 × 10− 5

Abbreviation: MDD, major depressive disorder. Columns ‘N cases’ and ‘N controls’ show the numbers of cases and controls in the corresponding PGC2

genome-wide association studies (https://www.med.unc.edu/pgc/downloads). Columns 4–6 present genetic correlation estimates, their s.e. and significance,

respectively, calculated with linkage disequilibrium (LD) score regression tool (https://github.com/bulik/ldsc).

Table 4. Associations between the PRS for neuroticism based on the

UK Biobank Neuroticism GWAS summary results, and neuroticism in

GS:SFHS and QIMR samples, controlling for age, sex and 10 genetic

principal components for population structure

Threshold β s.e. Percentage
variance
explained

P-value Number
of SNPs

GS:SFHS sample, N=7196
PRSo0.01 0.107 0.016 0.59 4.58× 10− 11 4531
PRSo0.05 0.123 0.014 1.00 5.27× 10− 19 15 533
PRSo0.1 0.131 0.013 1.30 3.23× 10− 23 27 216
PRSo0.5 0.132 0.012 1.48 3.45× 10− 26 95 552
PRSo1 0.131 0.012 1.46 6.93× 10− 26 146 088

QIMR sample, N= 8687
PRSo0.01 0.070 0.012 0.49 8.5 × 10− 09 12 146
PRSo0.05 0.081 0.012 0.66 5.3 × 10− 12 41 006
PRSo0.1 0.086 0.012 0.74 1.5 × 10− 13 68,979
PRSo0.5 0.086 0.012 0.75 7.7 × 10− 14 204 632
PRSo1 0.088 0.011 0.77 3.2 × 10− 14 280 716

Abbreviations: GS:SFHS, Generation Scotland: Scottish Family Health Study;

GWAS, genome-wide association study; PRS, polygenic risk scores;

QIMR, Queensland Institute of Medical Research (QIMR) Berghofer Medical

Research Institute; SNP, single-nucleotide polymorphism.
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The associated region in chromosome 9p23 at ∼ 11.2–11.7 Mb
contains no protein-coding genes; the nearest gene on the
telomeric side, with its 5′-end located ∼ 650 kb from the
associated region, is PTPRD. This gene encodes a receptor-type
protein tyrosine phosphatase known to be expressed in brain and
with an organising role at a variety of synapses,64 including those
that play a role in synaptic plasticity. PTPRD is also known to
harbour variation associated with restless legs syndrome.65 This is
a credible candidate but particular caution is required given the
distance between the associated locus and this gene.
In addition to identifying genome-wide significant loci, our

study contributes further to understanding the genetic architec-
ture of neuroticism and its relationship to other disorders. Our
SNP-based heritability estimate for neuroticism was ∼ 0.15, as
estimated using GCTA, and only slightly lower using LDSR. This is
consistent with the estimates reported by the GPC18 in the two
homogeneous subsets of the data they tested, and considerably
greater than some earlier reports of ∼ 6%.66,67 Despite differences
in the distribution of neuroticism by sex, SNP-based heritability
was similar for both men and women and the genetic correlation
between sexes was not significantly different from 1, suggesting a
similar common variant architecture for both, and that differences
in trait scores between the sexes are likely to result from structural
variants, rare alleles and/or environmental exposures.
PRS analysis of neuroticism within the GS:SFHS and QIMR

samples supported the expected highly polygenic architecture of
neuroticism; despite the large discovery UK Biobank sample—but
consistent with the modest number of GWS findings identified in
this large sample—extremely weakly associated alleles at relaxed
association thresholds (for example, PT up to at least 0.5)
contributed to the variance captured by the signal.
Consistent with current practice, we regard the meta-analysis

results as the primary outputs of this study. However, it is notable
that although the results of the polygenic risk score analyses show
that en masse, alleles that associate with neuroticism in UK
Biobank tend to do the same in those with higher neuroticism
within GS:SFHS and QIMR, this is not evident for the loci attaining
genome-wide significance. It should be noted that most of the
associated alleles identified from the UK Biobank GWAS were not
independently replicated within the GS:SFHS and QIMR cohorts,
nor within the large Genetics of Personality Consortium meta-
analysis. Of the eight loci that were genome-wide significant in
the UK Biobank data set, only five were significant within the
meta-analysis. With the exception of the locus on chromosome 17,
none of these were replicated across the GS:SFHS and QIMR
samples, and the most significantly associated locus, that on
chromosome 8, is not significant in either sample (Supplementary
Table S4). The large standard errors for the estimates of effect sizes
in GS:SFHS and QIMR are consistent with low power of these
population samples to detect loci (with the effect sizes seen in
complex traits), and with the fact that fully independent
replication (or refutation) will require much larger samples.
By comparing the overall association analysis results in our

study with those from the Psychiatric Genomics Consortia, we
identified a strong genetic correlation between neuroticism and
MDD (0.64), and a weaker but still significant genetic correlation
with schizophrenia (0.22), although not with BD. These findings
are line with evidence suggesting that neuroticism and MDD—as
well as, to a lesser extent, neuroticism and schizophrenia—share
genetic risk factors in common.68 However, the present findings
do not distinguish between a direct causal link between
neuroticism and those other disorders5,7,8,69 versus pleiotropy,
whereby a proportion of risk alleles that influence neuroticism also
exert an effect on the clinical diagnoses. Nevertheless, our findings
suggest neuroticism as a potentially fruitful measure for efforts
such as the Research Domain Criteria (RDoC) initiative that seek to
use fundamental and quantitative characteristics to investigate
the aetiology of psychiatric disorders across traditional nosological

boundaries in order to develop a more biologically informed
system of psychiatric classification.70

Our findings are of interest in the context of the limited success
to date of GWAS studies of MDD. A recent mega-analysis of
genome-wide association studies for MDD (9240 MDD cases and
9519 controls in the discovery phase, and 6783 MDD cases and
50 695 controls in the replication phase) failed to identify any
genome-wide significant SNPs, suggesting that much larger
samples are required to detect genetic effects for complex traits
such as MDD.36 Given the high genetic correlation between
neuroticism and MDD, combining the two data sets in a meta-
analysis may be a plausible strategy to optimise the power of
population samples in the search for a proportion of MDD loci,
although noting that the two phenotypes are not perfectly
genetically correlated. The MDD loci identified in a recent study of
Chinese women with recurrent (N= 5303) and melancholic
(N= 4509) MDD by the CONVERGE consortium21 did not overlap
with any of the loci reported here; given the apparent modest
power to detect genome-wide significant loci in our sample,
population differences between the studies and substantial
differences between the phenotypes, the absence of overlap
does not provide any evidence against the validity of the
CONVERGE study finding. Given that neuroticism is a personality
trait established as phenotypically and genetically strongly
associated with MDD, the identification of several new genome-
wide significant loci for neuroticism represents an important
potential entry point into the biology of MDD.

CONCLUSION

Overall, our findings confirm a polygenic basis for neuroticism and
substantial shared genetic architecture between neuroticism and
MDD, and to a lesser extent with schizophrenia, though not with
BD disorder. The identification of nine new loci associated with
neuroticism represents a significant advance in this field and will
drive future work on the neurobiology of a personality trait that
has fundamental importance to human health and well-being.
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