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Abstract Pixel disparity—the offset of corresponding

pixels between left and right views—is a crucial

parameter in stereoscopic three-dimensional (S3D)

video, as it determines the depth perceived by the

human visual system. Unsuitable pixel disparity

distribution throughout an S3D video may lead to

visual discomfort. We present a unified and extensible

stereoscopic video disparity adjustment framework

which improves the viewing experience for an S3D

video: keep the perceived 3D appearance as unchanged

as possible while minimizing discomfort. We first

analyse disparity and motion attributes of S3D video

in general, then derive a wide-ranging visual discomfort

metric from existing perceptual comfort models. An

objective function based on this metric is used as the

basis of a hierarchical optimisation method to find

a disparity mapping function for each input video

frame. Warping-based disparity manipulation is then

applied to the input video to generate the output video,

using the desired disparity mappings as constraints.

Our comfort metric takes into account disparity

range, motion and stereoscopic window violation; the

framework could easily be extended to introduce further

visual comfort models. We demonstrate the power of

our approach using both animated cartoon and real

S3D videos.
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1 Introduction

With the recent worldwide increase in stereoscopic

display hardware, there has been great interest in

both academia and industry in stereoscopic three-

dimensional (S3D) movie production, for instance,

glasses-free multi-view display technology [22, 38] and

perceptual disparity models [5, 6]. Viewing the 3D

world through a display screen differs from natural

viewing—it introduces vergence-accommodation

conflicts [10, 11]. As a result, poor scene design in

S3D movies can lead to visual fatigue. In addition

to vergence-accommodation conflict, other factors

such as motion and luminance also affect the human

visual system (HVS), and may make the viewer feel

uncomfortable. Most of these factors have a close

relationship to binocular disparity—the difference in

an object’s location on the left and right retinas [30].

The brain uses binocular disparity to extract depth

information via a process of stereopsis.

The goal of making a movie stereoscopic is to add

realism by providing a feeling of depth, but care

must be taken to avoid visual discomfort. It is a

tedious process to accordingly tune the perceptual

depth of S3D videos during shooting, even for

professionals with years of experience [26]. Existing

S3D video post-processing technology [14, 19] helps

to manipulate original disparity of S3D images and

videos. Given the desired disparity mapping, these

methods manipulate the original disparity to meet the

requirements. Unfortunately, such approaches require

manually input disparity targets or manipulation

operators for guidance. A general, content-driven,

solution for ensuring the comfort of S3D video is still

lacking.

In this paper, we provide an automatic solution

to the disparity tuning problem using a unified and

extensible comfort-driven framework. Unlike previous

works that focus on user-guided S3D video disparity

retargeting [14, 19], we automatically manipulate the
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Fig. 1 Inputs and outputs: given an input stereoscopic 3D video (sample frames (a) and (c)), our framework automatically

determines a comfort-driven disparity mapping (b) and (d) for every frame. Output video frames (e) and (g) are produced by

applying these mappings to the input video frames, improving visual comfort. (f) and (h) show close-ups of frames before and after

manipulation ( c©Blender Foundation).

disparity of an original S3D video, to improve visual

comfort while maintaining satisfactory parts of the

original content whenever possible. The challenge

of this problem is to build a bridge between S3D

visual comfort and the automatic manipulation of

video content. By taking advantage of existing S3D

visual comfort models, we derive a general discomfort

metric which we use to evaluate and predict the

discomfort level. We build on this metric to define

an objective function for use in optimising disparity

mapping functions. Our metric may be further

extended if needed, to introduce further visual comfort

models. We optimise the mappings over the whole

video, using a hierarchical solution based on a genetic

algorithm. The output video is generated by applying

the disparity mappings to the original video using

a warping-based technology. To our knowledge, our

framework is the first system which can automatically

improve visual comfort by means of comfort-driven

disparity adjustment.

The major contributions of our work are thus:

• A unified S3D video post-processing framework

that automatically reduces visual discomfort by

disparity adjustment.

• A discomfort metric that combines several key

visual comfort models; it could easily be extended

to incorporate others too if desired. It provides

a basis for an objective function used to optimise

disparity.

• A hierarchical optimisation method for computing

a disparity mapping for each video frame.

2 Related work

Causes of visual discomfort experienced when

watching S3D movies have been investigated, with

a view to improving such movies. Mendiburu [26]

qualitatively determined various factors such as

excessive depth and discontinuous depth changes that

contribute to visual fatigue. Liu et al. [20] summarized

several principles, and applied them to photo slideshows

and video stabilization.

Various mathematical models have also been

proposed to quantitatively evaluate discomfort

experienced by the HVS. Besides viewing configurations

such as viewing distance [31], time [4] and display

screen type, effects particular to stereoscopic content

have also been widely investigated [5–7, 13, 17, 27, 34],

which we now consider in turn.

Vergence-accommodation conflict is widely accepted

to be a key factor in visual discomfort. These ideas

may be used to quantitatively determine a comfort zone

within which little discomfort arises [31]. Stereoscopic

fusion disparity range is modeled in [12], based on

viewing distance and display sizes. Didyk et al. [5]

model perceptual disparity based on experiments with

sinusoidal stimuli; the ideas can be used to produce

backward-compatible stereo and personalized stereo.

This work was later extended to incorporate the

influence of luminance contrast [6]. Our metric includes

a disparity range term, based on the comfort zone

model in [31]. It allows us to decide whether the

disparity of a given point lies within the comfort zone.
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Fig. 2 Pipeline. The input of our system is a stereoscopic 3D video. Discomfort level of every frame is evaluated using the proposed

metric. Discomfort intervals and key frames inside each interval are determined. A disparity mapping for every frame is optimised,

based on the key frames, using a hierarchical optimisation method. Finally, the output video is generated by applying the mappings

to the original video by warping.

Motion is another important factor in perceptual

discomfort [7, 13, 37]. In [37], the contribution of

the velocity of moving objects to visual discomfort is

considered. Jung et al. [13] give a visual comfort metric

based on salient object motion. Cho and Kang [4]

conducted experiments with various combinations of

disparity, viewing time and motion-in-depth, measuring

the visual discomfort. Du et al. [7] proposed a

comfort metric for motion which takes into account

the interaction of motion components in multiple

directions, and depths. Such literature shows that

visual comfort is improved when objects move at lower

velocities or lie closer to the screen plane. Movements

perpendicular to the screen (along the z-axis) plays a

more powerful role in comfort than movements parallel

to the screen plane (the x-y plane).

Abrupt depth changes at scene discontinuities may

also induce discomfort: for instance, a sudden jump

from a shot focused in the distance to an extreme

close-up can be disorienting. Disparity-response time

models [27, 34] have been determined by a series of

user-experience experiments. To reduce discomfort

caused by depth changes, depths in shots should change

smoothly.

Stereoscopic window violation describes a situation

in which any object with negative disparity (in front of

the screen) touches the left or right screen boundary.

Part of the object may be seen by one eye but hidden

from the other eye, leading to confusion by the viewer

as to the object’s actual position; this too causes

fatigue [39]. Yet further factors are discussed in a recent

survey [25]. As our approach provides a post-processing

tool, we consider factors related to scene layout rather

than camera parameters. These factors are disparity

range, motion, stereoscopic window violation and depth

continuity; they are meant to cover the major causes

of discomfort, but our approach could be extended to

include others too.

Use of post-processing technology has increased in

recent years, helping amateurs to create S3D content

and directors to improve S3D movie appearance. Lo

et al. [21] show how to perform copy & paste for

S3D, to create new stereoscopic photos from old ones;

constraints must be carefully chosen. Later, Tong

et al. [35] extend this work to allow pasting of 2D

images into stereoscopic images. Kim et al. [16]

provide a method to create S3D line drawings from

3D shapes. Niu et al. [28] give a warping-based

method for stereoscopic image retargeting. Lang et

al. [19] provide a disparity manipulation framework

which applies desired disparity mapping operators to

the original video using image warping. Kellnhofer et

al. [14] optimise the depth trajectories of objects in an

S3D video, providing smoother motion. Kim et al. [15]

propose to compute multi-perspective stereoscopic

images from a light field, meeting users’ artistic control

requirements. Masia et al. [24] propose a light field

retargeting method that preserves perceptual depth

on a variety of display types. Koppal et al. [18]

provide an editor for interactively tuning camera and

viewing parameters. Manually tuned parameters of

cameras are applied to video; the results are then

immediately fed back to the user. However, there is

presently a gap between mathematical comfort models

and post-processing applications—few technologies

automatically work in a comfort-driven manner.

In a similar vein to our work, the OSCAM system[29]

automatically optimises the camera convergence and

interaxial separation to ensure that 3D scene contents

are within the comfortable depth range. However

this work is limited to process virtual scenes

with known camera settings. Tseng et al. [36]
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automatically optimise parameters of S3D cameras,

taking into account the depth range and stereoscopic

window violation. The major differences between

their work and ours are, firstly, they optimise the

camera separation and convergence, while our system

automatically generates an output video with a better

viewing experience. Secondly, their objective functions

are derived from either a simple depth range or few

general principles while ours rely on mathematical

models. We build upon existing S3D post-processing

approaches, especially warping-based ones, to build a

bridge between comfort models and a practical tool.

3 Overview

In this section, we explain our notation, and then

sketch our proposed framework.

We adapt the measure of binocular disparity from [7],

expressed as angular disparity. Assuming the viewer

focuses on the display screen with a vergence angle θ′,

the angular disparity at a 3D point P with a vergence

angle θ is measured as the difference of vergence angles

θ′ − θ (see Figure 3(a)). We also use the concept of

pixel disparity in the metric and disparity mapping

optimisation. The pixel disparity of a feature point fL
in the left view L is defined as an integer offset fR−fL
where fR is the corresponding feature location in the

right view R (see Figure 3(b)). Given these definitions,

both the angular disparity and pixel disparity are

negative when the 3D point P is in front of the screen

and positive when it is behind the screen. A disparity

mapping is a function φ(d) that given an input disparity

value d, returns a new output disparity value d′. In

this paper, φ is presented in discrete form: given a set

of τ different disparity values Din = {dmin, . . . , dτ},
and a corresponding set of output disparity values

Dout = {d′min, . . . , d
′
τ}, we regard φ : Din → Dout as

a disparity mapping, where d′i = φ(di).

Fig. 3 Definitions: (a) angular disparity and (b) pixel disparity.

As explained in the Introduction, our comfort-driven

disparity mapping framework automatically adjusts the

disparity in an S3D video to improve visual comfort.

Given an input S3D video to be optimised, we first

Fig. 4 Comfort zone. Left: anaglyph 3D images. Right:

disparities beyond the comfort zone shown in blue.

evaluate the discomfort level of every frame, using

the proposed metric, then determine intervals which

cause discomfort and key frames inside each interval

throughout the video (see Section 4). Next, based on

the key frames, we optimise a disparity mapping φ for

every frame using a hierarchical optimisation method

(see Section 5), using an objective function derived

from the discomfort metric. Finally, the mappings are

applied to the original video by video warping. The

pipeline is illustrated in Figure 2.

4 Discomfort Metric

An objective function measuring discomfort level is

essential for automatic S3D video comfort optimisation.

In this section, we present a general discomfort metric

which is used to determine the objective function for

disparity mapping optimisation. The metric takes into

account disparity range, motion, stereoscopic window

violation and temporal smoothness, all of which have

been shown to have a major impact on the HVS. Each

factor is formulated as a cost function. The temporal

smoothness term relates pairs of successive frames (so

is a binary term) while others are only dependent

on one frame (so are unary terms). The wide-

ranging nature of this metric enables us to evaluate

the discomfort level in the round. The disparity range

term measures the severity of vergence-accommodation

conflict. The motion term evaluates discomfort brought

about by eye movements. Retinal rivalry arises from

inconsistent screen boundary occlusions, and is assessed

by the stereoscopic window violation term. Flickering

resulting from temporal inconsistency is evaluated by

the temporal smoothness term. We now discuss

each term individually and then explain how they are

combined.

4.1 Individual Terms

Disparity Range. Excessive disparity leads to

strong adverse reactions in the HVS due to vergence-

accommodation conflict [10, 11]. To reduce the
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resulting discomfort, one intuitive approach is to

compress the disparity range, but severe compression

makes an S3D video appear flat, and ultimately

imperceptibly different from 2D. Instead, we evaluate

how far each 3D point is from the screen plane and

penalize points that fall outside the comfort zone.

In [31], the far and near comfort zone boundaries Bfar

and Bnear are introduced. In terms of angular disparity,

these may be written:

Bfar = 2 tan−1[
da

2mfardf
(1− Tfardf )]− 2 tan−1[

da
2df

](1)

Bnear = 2 tan−1[
da

2mneardf
(1− Tneardf )]− 2 tan−1[

da
2df

],

where the constants in their model are mfar = 1.129,

mnear = 1.035, Tfar = 0.442 and Tnear = −0.626. da is

the angular disparity (in degrees) of a pixel and df is

the viewing distance (in metres), which, in our viewing

configuration, is set to 0.55 m.

In this formulation, the angular disparity da(p) of a

pixel p is within the comfort zone range is determined

by:

δ(p) =

{
1 if Bnear < da(p) < Bfar

0 otherwise.
(2)

The fraction of pixels in frame f whose disparity is

outside the comfort zone is computed, and used to

define the disparity range penalty term Ed(f) for frame

f :

Ed(f) = 1− 1

N

∑
p∈f

δ(p), (3)

where N is the number of pixels in frame f . Figure 4

shows examples where disparities of certain pixels lie

beyond the comfort zone.

Motion is an important source of visual

discomfort [13, 37]. In [7], a novel visual comfort

metric for S3D motion is proposed. This metric is

a function of both the combination of velocity and

depth, and luminance frequency. It returns a comfort

value from 1 to 5 (the higher, the more comfortable).

We adopt this model in our metric and assign to every

video frame a motion discomfort value. We first assign

a motion discomfort value Vc(p) = ωn(5 −Mp(p)) for

every pixel p, where ωn is a coefficient normalising

Vc(p) to [0, 1), set to 0.25. Mp(p) is the pixel-wise

motion comfort value calculated as in [7]:

Mp(p) =
n∑
k=0

C(vxy, vz, d,
fl0
2k

)× Lk(p)∑
k Lk(p)

,

where C(vxy, vz, d,
fl0
2k ) is a model of motion comfort

based on planar velocity vxy, spatial velocity vz,

angular disparity d and luminance frequency
fl0
2k . Lk(p)

Fig. 5 Motion discomfort estimation: (a) anaglyph 3D frames

( c©Blender Foundation); (b) estimated discomfort caused by

motion.

is the contrast value of the (2k+1 + 1)-neighborhood at

p at the k-th Laplacian level of the Laplacian pyramid

of the luminance; see [7] for further details.

After computing a discomfort value for every pixel,

we determine the motion discomfort for the whole

frame. In [7], average motion comfort values are

calculated for individual saliency-based segments [3],

assigning an importance value to every segment. The

segments are obtained by graph-based segmentation [8].

They assume that the most uncomfortable region in

a frame dictates the discomfort of the whole frame.

However, we find that calculating the most salient

and uncomfortable region in separate images without

considering temporal coherence can lead to motion

comfort instability. Instead, we modify their approach

to perform SLIC superpixel segmentation [1], consider

multiple discomfort-causing segments, and regard every

segment as having the same importance. We extract an

average motion comfort value for the top-K (K=20 by

default) segment discomfort values as a motion penalty.

The motion discomfort Em(f) for the whole frame f is:

Em(f) =
1

K

K∑
k=1

T (Vs(sk)), (4)

where Vs(s) =
∑
p∈s Vc(p)/m is the average motion

discomfort value for a segment s having m pixels.

T (·) is the set of segment motion discomfort values, in

descending order, as computed in [7]. Figure 5 shows

example S3D frames with segment-wise discomfort

maps according to motion.

Stereoscopic Window Violation occurs when

an object is virtually located in front of the screen

(i.e. have negative disparity) but is occluded by the

screen boundary. This is confusing as a nearer object

appears to be occluded by a further one, causing retinal

5
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Fig. 6 Stereoscopic window violation (SWV). Left: a toy

example illustrating SWV. Part of the object in green falling in

the light blue region can only be seen by the left eye. Right: a

real S3D photo showing SWV ( c©KUK Filmproduktion GmbH).

There is inconsistent content in the leftmost part of the photo,

leading to viewer discomfort.

rivalry [26]. If this happens, only one eye can see

part of the object, leading to visual inconsistency and

hence discomfort (see Figure 6). One practical way to

alleviate this is to trim off the offending part.

To measure stereoscopic window violation (SWV), we

use a term Ev(f) for frame f . We first detect violations

by checking pixels near left and right boundaries: if

pixels touching the frame boundaries have negative

disparity, they violate the stereoscopic window. The

SWV penalty for frame f is then defined by counting

the number of pixels included in violating objects:

Ev(f) =
1

N

∑
s∈Rb

n(s) (5)

where s stands for image segments extracted as before,

and Rb is an approximation of violating objects in the

form of segments; every segment in Rb has a negative

average disparity. Rb is initially set as boundary

segments with a negative average disparity, and is

then iteratively augmented by adding new neighbouring

segments with negative average disparity until no new

segments with negative average disparity are found.

n(s) is the number of pixels in segment s and N is

the number of pixels in frame f .

Temporal Smoothness. To avoid sudden depth

changes, the disparity should vary smoothly and

slightly, as needed. In [20], the importance of temporal

smoothness is emphasised in 3D cinematography; they

suggest that the disparity range of successive frames

should vary smoothly. Following the definition of

disparity map similarity in [20], we define the similarity

of disparity between neighbouring frames f and f ′ using

Jensen-Shannon divergence [23]:

Es(f, f
′) = H(

Ψ(f) + Ψ(f ′)

2
)− H(Ψ(f)) +H(Ψ(f ′))

2
,

(6)

where Ψ(f) is a pixel disparity histogram for frame f

with dmax − dmin + 1 bins; dmax is the largest integer

pixel disparity value in f and dmin is the smallest

integer pixel disparity value in f . H(X) is the Shannon

Fig. 7 Typical frames ( c©Blender Foundation) and discomfort

scores. (a) discomfort scores for frames in an S3D video clip.

The discomfort interval is marked in blue. Key frames selected

by our algorithm are highlighted in red. (b) shows three frames

and corresponding discomfort scores from (a).

entropy for distribution X. Intuitively, the more unlike

the disparity histograms are, the higher the value of Es.

4.2 Discomfort Metric

Our general discomfort metric for a set of successive

frames F̂ in an S3D video is formulated as a linear

combination of the above terms in Equations 3–6,

summed over the frames:

Ec(F̂ ) =
∑
f∈F̂

Ec(f), (7)

Ec(f) = λdEd(f) + λmEm(f)

+λvEv(f) + λsEs(f, f
′),

where f ′ is the successor frame to f in F̂ . λd, λm,

λv and λs are weights balancing the penalty terms,

set to 1, 0.4, 10, and 0.1 respectively. The weights

are determined via experiments. We did a small scale

perceptual study on 10 subjects with 10 input videos:

we enumerated every weight from 0 to 20 with step 0.1,

generating 1.6 × 109 possible combinations of weights.

After calculated the corresponding general metrics for

input videos based on each group of weights, we let

5 subjects view each video and evaluate its comfort

level by assigning integer scores from 1 to 5. We

finally selected the group of weights, under which the

metric score best reflects subjects comfort feelings. The

weights was further validated by the other 5 subjects’

evaluation. This metric can be used to predict the

overall discomfort level of part or all of an S3D video.

An S3D video frame is predicted as visually comfortable

if the discomfort value Ec < 0.3. Figure 7(b) shows

exemplar frames with their corresponding discomfort

values.

The metric has a general form, with a default set

of weights balancing the penalty terms. If considered

unimportant, certain terms can be ignored, by setting

their corresponding weights to 0. Alternatively,

6
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additional terms of a similar kind could also be included

with proper weight configuration (as an example, we

present a variation of the metric, driving perceptual

depth enhancement, by adding another unary term

to each frame in the video (see Section 6)). We

intentionally do not include all factors that cause visual

fatigue—there are many such factors. Instead, we

claim that the above metric includes many of the most

significant factors, and the way we have formulated it

allows ready extension to include other comfort models

using additional penalty terms. The ideas in the rest

of the paper do not depend on the precise form of this

metric, only that such a metric can be formulated. We

next show how to use this metric to define the objective

function used to optimise pixel disparity mapping.

5 Optimisation of Pixel Disparity

Mapping

Based on the above visual discomfort metric, we

next derive the objective function used for disparity

mapping optimisation. A genetic algorithm is used in a

hierarchical approach to optimise disparity mapping:

given a set of input disparity values, we compute a

corresponding target output disparity for each value.

5.1 Objective Function

The visual discomfort metric Ec measures the

discomfort level of S3D video frames. However, directly

using it as an objective function in an optimisation

process leads to unsatisfactory results: clearly, mapping

all disparity values to zero would minimise Ec, making

it equal to zero at all times. Also, making large changes

to the disparity without scaling the sizes of objects leads

to a change in the perceived size of the original content.

We thus add an additional unary term En(φ, f) to

every frame f with the intent that optimisation should

change the original disparities as little as possible.

En(φ, f) measures differences between new and original

disparities:

En(φ, f) =
1

N

∑
d∈[dmin,dmax]

Ψd(f)|φ(d, f)− d|, (8)

where N is the number of pixels in frame f , d is the

integer pixel disparity value and Ψd(f) is the disparity

histogram count for disparity d in frame f , as in

Equation 6. φ(d, f) is disparity mapping for disparity

d in frame f . This formulation gives a cost for the

mapping φ, punishing large changes from the original

disparity distribution. This additional term allows us to

find a suitable disparity mapping for each video frame

that improves visual comfort while also preserving the

original appearance.

We denote the objective function for optimising a

sequence of mappings Φ̂ of a sequence of frames F̂ in a

S3D video as E(Φ̂); it is defined as:

E(Φ̂) =
∑
f∈F̂

(λdEd(Γφf (f)) + λmEm(Γφf (f))

+λvEv(Γφf (f)) + λnEn(φf , f)

+λsEs(Γφf (f),Γφf ′(f ′))), (9)

where f ′ is the successor frame to f , and Γφf
(f) is

a function which applies the mapping operator φf to

frame f to produce a new frame with the desired new

pixel disparities. λn is a further weight, set to 0.01 by

default.

5.2 Hierarchical Optimisation

The objective function in Equation 9 is complex;

we use an efficient hierarchical approach to optimise

it in a coarse-to-fine manner along the time-line.

We observed that in S3D movies, frames causing

discomfort usually appear together, forming discomfort

intervals. Thus, we firstly extract discomfort intervals

for the whole video: we manipulate the disparity

only for frames which cause discomfort, and leave

the others unchanged. The discomfort intervals are

determined using Equation 7: a discomfort interval is

a set of continuous frames from starting frame fs to

ending frame fe, within which the discomfort metric

Ec({f, f ′}) is above a threshold α = 0.3, where f and

f ′ are consecutive frames inside the interval. During

optimisation, at coarser levels, inside every discomfort

interval we determine key frames where the disparity

changes drastically or there is a local maximum of

discomfort. Frames at discomfort interval boundaries

are also taken as key frames having a fixed identity

pixel disparity map (φ(d) = d). Next, we use a genetic

algorithm to optimise pixel disparity mappings of the

key frames, treating the key frames as neighbours.

After optimising the key frames at this hierarchy level,

we fix the disparity mappings of the current key frames,

and continue to seek new key frames for finer intervals

between any two successive key frames at the current

level. The mappings of the current key frames are used

as boundary conditions for the next level. This process

is recursively performed until fewer than ten frames

exist between each neighbouring pair of key frames.

Finally, the disparity mapping for remaining frames

between these key frames is interpolated. We now give

further details of key steps.

5.2.1 Key Frame Determination

Key frame determination is a crucial step in the

hierarchical disparity mapping optimisation. Since the

7
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Fig. 8 Best disparity mapping solutions for improving comfort level of the frame shown in Figure 1(c), at various generations of

the genetic algorithm. The frame set F contains four key frames. During optimisation, the discomfort cost Ec of F is reduced.

optimisation is performed in a coarse-to-fine manner,

at coarser levels, key frames should provide a story line

overview of frames at finer levels, especially in terms of

disparity. Motivated by this requirement, inside each

discomfort interval we mark a frame as a key frame

when there is a sudden depth change or the discomfort

metric reaches a local maximum within a window of

Υl frames for each level l. By default, Υl at level l is

set to a quarter of the interval length between the two

boundary key frames. Specifically, we use the inequality

Es(f, f
′) > β to determine whether frame f is a key

frame at a drastic depth change; by default β = 0.5.

After optimising key frames at level l, new key frames

at level l + 1 are recursively determined, by seeking

new key frames at level l + 1 between every adjacent

pair of key frames at level l. We stop when fewer than

ten frames exist between each neighbouring pair of key

frames.

5.2.2 Heuristic Optimisation Using Genetic

Algorithm

After finding key frame sets F at level l, we use

a heuristic algorithm to optimise disparity mappings

of these key frames. Without loss of generality,

assume we are optimising a discomfort interval with

t detected key frames F = {f1, . . . , ft}. Including

the additional key frames at the discomfort interval

boundaries, the augmented key frame set becomes

F = {fs, f1, . . . , ft, fe}, with fixed identity disparity

mappings for fs and fe as boundary conditions. We

regard every successive pair of frames in F along

the time-line as neighbours in a coarse view. We

optimise the key frame mappings Φ = {φ1, . . . , φt} at

coarser levels using the objective function adapted from

Equation 9:

E(Φ) = (10)∑
f∈F

(λdEd(Γφf (f)) + λmEm(Γφf (f)) + λvEv(Γφf (f))

+λnEn(φf , f) + λsEs(Γφf (f),Γφf ′(f ′))),

where f ′ is the successor frame to f in F . This

objective function is used as fitness assessment in

genetic algorithm.

A genetic algorithm is used to optimise the disparity

mapping φ for each frame f using this objective

function as a fitness function. We use the GALib

implementation of a steady-state genetic algorithm [33];

50% of the population is replaced on each generation.

The genome for each individual is a vector of real

numbers, which is used to store target disparity

mapping values (with a conversion between integer and

real numbers). Uniform crossover [32] is used with

Gaussian mutation [9], which adds a random value

from a Gaussian distribution to each element of an

individual’s state vector, to create offspring.

Genome of Individuals. The genome

representation needs to be carefully designed;

poor choice can lead to GA divergence. The

target output disparity mapping values Dφf
=

{φ(dmin), . . . , φ(dmax)} of the mapping function φ for

8



Comfort-driven Disparity Adjustment for Stereoscopic Video 9

a frame f is an elementary unit in each individual’s

genome. The disparity mapping φ(x) should be

a non-decreasing function, i.e. if x1 < x2, then

φ(x1) ≤ φ(x2), to avoid depth reversal artifacts in the

output video. We enforce this requirement by using

an increment-based representation. We represent

the mapping values Dφf
= {φ(dmin), . . . , φ(dmax)} as

D̃φf
= {φ(dmin),∆1, . . . ,∆p−1} where d ranges over all

integer pixel disparity values between dmin and dmax,

and ∆i = φ(di+1) − φ(di) is a non-negative mapping

value increment). Obviously, we can recover Dφf
from

the relationship Dφf
[i] = D̃φf

[i − 1] + D̃φf
[i]. The

non-negativity of ∆i is guaranteed by additional bound

bi and lower bound bi on each integer element of D̃φf
:

bi =

{
dmin + (dmax − dmin)/2 if i = 1

5 otherwise,

and

bi =

{
dmin − (dmax − dmin)/2 if i = 1

0 otherwise.

These upper upper and lower bounds also prevent

the mappings from making over-large increments ∆i.

This constraint is supported by the steady-state genetic

algorithm. The full genome of each individual is a

vector of integers which concatenates the mapping

values D̃Φ = {D̃φ1 , . . . , D̃φt} for the t key frames in

F .

Evolution. The state of every individual in the first

generation is initialised using random mappings. The

objective function in Equation 10 is used for individual

fitness assessment. The uniform crossover probability

is pc = 0.7 and the Gaussian mutation probability is

pm = 0.05. The population size np is set to 100 and

the GA terminates after ng = 50 generations. As a

steady-state GA is used, the last generation includes

the best solution found for the desired mappings Φ′.

Figure 8 illustrates the mappings corresponding to the

best solution in different generations.

5.3 Warping-based Manipulation

After optimising pixel disparity mappings for each

frame of the video, we have to adjust the input video

using these mappings. In [19], a warping-based method

is given to adjust disparity to match desired disparity

mappings. Their approach first extracts sparse stereo

correspondences, followed by warping of left and right

frames respectively with constraints applied to the

vertices of a mesh grid placed over each frame. The

output is thus a deformed mesh as well as the warped

frame. We use this technology to generate the output

Fig. 10 Disparity Mapping. (a) an input S3D frame and

corresponding output frame. The ‘ball’ outside the comfort

zone is pushed back towards the screen. (b) disparity mapping

generated by our algorithm. (c) deformed meshes for left and

right view, indicating the warping effect.

video.

6 Results

The experiments were carried out on a computer

with an Intel Core i7-4790K CPU with 32GB RAM.

All videos were uniformly scaled to fit the screen

size (1920×1080 pixels) to the extent possible before

calculation. We calculate dense pixel correspondence

between the left view and right view to estimate the

pixel disparity in S3D videos using optical flow [2].

Motion in the x-y plane is also estimated using this

method, between consecutive frames in left view.

Calculating the discomfort metric for one S3D video

frame of size 1920×1080 takes less than 0.2 second. The

most time-consuming part is hierarchical optimisation,

but the time taken is variable. It is dominated by

the key frame determination step; it takes up to 15

minutes to optimise ten key frames together in our

implementation, using a single core.

We have tested our approach on S3D video clips

whose lengths are less than one minute. As explained

in [7], the proposed motion comfort metric was derived

from experiments on short videos. All of the results

were obtained using default parameters. With a lot of

experiments, we found that our system is insensitive to

parameters.

Our method provides smooth scene transitions

between successive shots. Representative frames of a

9
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Fig. 9 Representative anaglyph frames of our results, with a fluent depth storyboard. (a) sample input and output frames (frame 1

and frame 40 are fixed to their original disparities). (b) pixel disparity mappings along the time-line (colour encodes output disparity

value). (c) depth storyboard before and after the manipulation, with colour encoding frequency of the occurrence of disparity values.

video clip with shot cuts are shown in Figure 9(a).

Boundary frames 1 and 40 do not cause discomfort,

so are fixed to retain their original disparities. Our

algorithm detects drastic disparity changes between

these boundary frames and automatically adjusts

disparities to provide smoother depth transitions by

finding suitable disparity mappings (see Figure 9(b)).

In this example, frames where shot cuts occur are

detected as key frames. This is because the values

of motion term and temporal smoothness term reach

a local maximum with in a window. As can be

seen in Figure 9(c), after manipulating the video, the

depth storyboard suffers less from sudden jumps in

disparity. While the last part of the video initially

has a constant disparity range, which after processing

becomes a slowly increasing disparity range, this does

not lead to any perceptual artifacts: (i) slow transitions

in disparity are often used to control disparity at shot

cuts, (ii) the rate of disparity change is small, and (iii)

the warping provides a smooth solution.

Figure 10 gives an example of automatic correction of

excessive disparity range. The ball popping out towards

the viewer in the center of the frame makes it difficult

for the viewer to comfortably perceive the depth. Our

correction pushes the ball a little closer to the screen.

Pushing the ball back into the screen too far would

change the content too much, in disagreement with the

film maker’s intent. The deformed meshes of the left

and right views used for the warping-based disparity

manipulation are also shown. Discomfort scores in our

metric before and after manipulation are 0.58 and 0.22

respectively.

Fig. 11 Eliminating stereoscopic window violation. Left: input

frames with SWV ( c©KUK Filmproduktion GmbH). Right: in

the manipulation result, the popped out parts are pushed back

towards the screen.

Figure 11 gives an example of eliminating

stereoscopic window violation. In the original

input frame, the front of the car appears in front of the

screen plane, but is occluded by the picture boundary.

This causes the leftmost part of the image to be seen

only by the left eye. Such inconsistent content gives an

unpleasant viewing experience. Our approach detects

such violation automatically detected and eliminates it

by pushing the car behind the screen.

We further tested our framework using videos from

a consumer stereoscopic camera (Fuji FinePix REAL

3D W3). Typical frames from one video are shown in

Figure 12. The perceptual depth range is excessive,

making it hard to fuse the scene. In the result, the

depth of the building in the far distance is reduced,

while the disparity values of the flowers are subtly

changed.

Perceptual Depth Enhancement. In Sections 4

and 5, we presented an extensible framework that

optimises disparity mappings driven by comfort. A

variation of this framework can be used to drive

disparity manipulation to provide depth enhancement

10
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Fig. 12 Processing a video taken by a consumer S3D camera.

The depth of the scene is reduced to facilitate stereoscopic fusion.

Fig. 13 Enhancing perceptual depth. Left: input and output

frames ( c©Blender Foundation). After enhancement, the head

of the man looks more angular. Right: the generated disparity

mapping.

(while not introducing visual discomfort), for a greater

feeling of depth. This goal can be accomplished

by introducing an additional unary term Ea(φ, f) for

each frame with weight λa = 1 to the objective

function, with the aim of punishing small disparities

after applying the mapping φ to the video:

Ea(φ, f) = exp(− 1

2N

∑
d∈[dmin,dmax]

Ψd(f)|φ(d, f)|),

(11)

where N is the number of pixels in frame f , d is the

integer pixel disparity value and Ψd(f) is the disparity

histogram count for disparity d in frame f , as in

Equation 8. This change allows the perceived depths

to be amplified, shown in Figure 13.

6.1 User Study

We conducted two user studies with 20 subjects aged

from 18 to 32, to further assess the performance of our

proposed comfort-driven disparity adjustment method.

The primary aims for the two user studies were to

test whether the framework can produce artifact-free

results, and its ability to improve visual comfort.

Subjects participated by watching S3D videos and

filling in questionnaires.

We used a 23-inch interleaved 3D display (1920×1080

pixels, 400 cd/m2 brightness), with passive polarized

glasses. The viewing distance was set to 55 cm, as

assumed in the proposed metric. All subjects had

normal or corrected-to-normal vision, and were assessed

to ensure they had no difficulty in stereoscopic fusion.

Videos were displayed at full screen size.

We prepared ten pairs of S3D videos including

animated cartoons and real S3D videos. Both videos

in a pair had the same content, one being the original

and the other being modified by our system. A random

order was used for each pair, and displayed three times

in succession. Subjects were allowed to pause and

carefully examine the content at any time.

In the first user study, we evaluated whether our

output video provides greater visual comfort than the

original. After watching each video, each subject

was asked to rate the comfort level of their viewing

experience, in terms of ease of fusing the scene, causing

fewer or less severe headaches, and other feelings of

discomfort. Five ratings were used, from 1 to 5:

very uncomfortable, uncomfortable, mildly comfortable,

comfortable, very comfortable. In all ten pairs of test

videos, our results achieved on average a higher comfort

score than the original video. The differences in average

score in each pair varied from 0.3 to 1.35. A right-

tailed paired-sample hypothesis test was conducted,

with the null hypothesis H0: there was no significant

difference between the comfort scores of our outputs

and the original videos and alternate hypothesis HA:

the comfort scores of our results were significantly

higher than those for the original videos at significance

level α = 0.05 with n = 200 samples. The one-

tailed critical value was t = 1.653, while the test

statistic was t∗ = 9.905. Since t∗ > t, the null

hypothesis was rejected, indicating that the differences

were statistically significant: our approach provides an

improved stereoscopic video viewing experience.

The second user study aimed to assess artifacts in

our results. Before undertaking the user study, the

subject was told to note any disturbing perceptual

depth artifacts (e.g. depth reversals or unsuitable depth

changes) that caused confusion. After watching each

video, the subject was asked to rate both videos for

unsuitable perceived depths, which were scored as

11
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follows: 4 = many strong artifacts, 2 = few strong

/ many weak artifacts, 1 = few weak artifacts, and

0 = no artifacts. The results showed that 8 out of

20 subjects did not notice artifacts in any video, 2

subjects only saw artifacts in our results and 2 subjects

only saw artifacts in the original videos. The other 8

subjects noticed artifacts in both our results and the

original videos. The worst score for both our results

and the original videos was 2 (few strong / many

weak artifacts). To further test whether statistically

the two sets of scores have no difference, a two-tailed

paired-sample hypothesis test was conducted, with the

null hypothesis H0: there was no significant difference

between the artifact scores of our outputs and the

original videos and alternate hypothesis HA: artifact

scores of our results and the original videos differ at

significance level α = 0.05 with n = 200 samples. The

two-tailed critical value was t = 1.972, while the test

statistic was t∗ = 1.236. This time, the null hypothesis

was not rejected, as |t∗| ≤ |t|. We conclude that

there is no significant difference in the perceived level of

artifacts in the original videos and our results. Indeed,

viewers are fairly insensitive to artifacts in these videos.

Full statistics of the user studies are provided in the

supplementary material.

Limitations. Our approach has limitations. As

optimisation is based on a genetic algorithm, it may

only find a local optimum. However, tests in which the

genetic algorithm was initialized with differing initial

populations led to quite similar output mappings.

Secondly, existing individual comfort models work well

only for viewers with normal stereoscopic fusion ability,

and give an average comfort evaluation. Thus using

the discomfort metric with default parameters may

not give an accurate comfort evaluation for every

individual, especially for those with poor stereoscopic

fusion ability. Across individuals, there may well

be differences in which aspects of an S3D video

cause most discomfort. Moreover, our system cannot

predict directors’ intention; intentional discomfort

shots for artistic visual impact would unfortunately be

eliminated by our system.

7 Conclusion

We have suggested a general framework for automatic

comfort-driven disparity adjustment, together with

a S3D discomfort metric. The metric combines

several key factors, and could be of general benefit

to S3D movie makers by giving an objective visual

comfort evaluation in the round. It underpins our

automatic disparity adjustment approach, which is

based on disparity mapping optimisation. Our results

demonstrate the effectiveness and uses of our approach.

Our work is among the first attempts to tackle

this challenging problem, and leaves room for

improvement. In our framework, the disparity mapping

is automatically determined using a heuristic method,

and a closed-form solution for this problem is desirable.
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