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ON THE DISTANCE BETWEEN FROBENIUS NUMBERS

ISKANDER ALIEV AND DILPAK MOHAMMED

Abstract. Let n ≥ 2 and k ≥ 1 be integers and a = (a1, . . . , an)t be an
integer vector with positive coprime entries. The k-Frobenius number
Fk(a) is the largest integer that cannot be represented as

∑n
i=1 aixi

with xi ∈ Z≥0 in at least k different ways. We study the quantity

(Fk(a)− F1(a))(a1 · · · an)−1/(n−1) and use obtained results to improve
existing upper bounds for 2-Frobenius numbers. The proofs are based
on packing and covering results from the geometry of numbers.

1. Introduction

Let a = (a1, . . . , an)t, n ≥ 2, be an integer vector with

0 < a1 < · · · < an , gcd(a1, . . . , an) = 1(1.1)

and let k be a positive integer. The k-Frobenius number Fk(a) is the largest
integer that cannot be represented in at least k different ways as a non-
negative integer combination of the ai’s, that is

Fk(a) = max{b ∈ Z : #{x ∈ Zn
≥0 : 〈a,x〉 = b} < k},

where 〈·, ·〉 denotes the standard inner product in Rn.
The classical Frobenius number F1(a) has been extensively studied in the

literature. For a comprehensive survey we refer the reader to the book of
Ramirez Alfonsin [15]. For k ≥ 2, the number Fk(a) was introduced and
studied by Beck and Robins [6] who obtained for n = 2 the formula

(1.2) Fk(a) = k a1 a2 − (a1 + a2) ,

generalising a classical result on the Frobenius numbers, usually attributed
to Sylvester [18]. In general setting, it was recently shown by Aliev, De
Loera and Louveaux [1] that Fk(a) can be computed in polynomial time for
fixed dimension n and parameter k, extending well-known results of Kannan
[13] and Barvinok and Woods [5] for the Frobenius number F1(a). When
dimension n is a part of input, computing Fk(a) is NP-hard already for
k = 1 due to a result of Ramirez Alfonsin [14].

Lower and upper bounds for the Frobenius number F1(a) were given by
many authors, see [15] and for more recent results Aliev and Gruber [3] and
Fukshansky and Robins [8]. In recent years, some of these results have been
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extended to the case k ≥ 2. A sharp lower bound for Fk(a) was obtained
by Aliev, Henk and Linke [4] as a generalisation of a bound from [3]. Upper
bounds for the k-Frobenius number were established by Fukshansky and
Schürmann [9] and Aliev, Fukshansky and Henk [2]. In particular, it was
shown in [2] that

(1.3) Fk(a) ≤ F1(a) + ((k − 1) (n− 1)!)
1

n−1 Π(a)
1

n−1 ,

where Π(a) = a1 · · · an. The inequality (1.3) allows us to use various upper
bounds for the Frobenius number to estimate Fk(a).

In view of (1.3), to estimate Fk(a) from above it is natural to study the
(normalised) distance

τk(a) =
Fk(a)− F1(a)

Π(a)
1

n−1

between Fk(a) and F1(a) and the constant

c(n, k) = sup
a
τk(a) ,(1.4)

where the supremum in (1.4) is taken over all integer vectors satisfying (1.1).
Clearly, (1.3) implies the bound

c(n, k) ≤ ((k − 1) (n− 1)!)
1

n−1 .(1.5)

In view of (1.2), in this paper we will focus on the case n ≥ 3. The
first result shows that, roughly speaking, cutting off special families of input
vectors cannot make the order of magnitude of Fk(a)− F1(a) smaller than

Π(a)
1

n−1 .

Theorem 1.1. Let n ≥ 3 and k ≥ 2. For any direction vector α =
(α1, . . . , αn−1)

t ∈ Qn−1 with 0 < α1 < · · · < αn−1 < 1 there exists an
infinite sequence of distinct integer vectors a(t) = (a1(t), . . . , an(t))t satisfy-
ing (1.1) such that

(i) limt→∞
ai(t)
an(t)

= αi, 1 ≤ i ≤ n− 1,

(ii) limt→∞ τk(a(t)) = p(n − 1, k), where p(d, k) = min{m ∈ Z≥0 :(
m+d
d

)
≥ k}.

It follows that c(n, k) ≥ p(n − 1, k). Since for a fixed dimension n ≥ 3

we have p(n− 1, k)((k − 1) (n− 1)!)−
1

n−1 → 1 as k →∞, Theorem 1.1 also
implies that for large k the upper bound (1.5) (and hence (1.3)) cannot be
significantly improved.

The exact values of the constants c(n, k) remain unknown apart of the
case c(2, k) = k − 1, which follows from (1.2). In this paper we give a new
upper bound for the case k = 2:

Theorem 1.2. Let n ≥ 3. Then

(1.6) c(n, 2) ≤ 2

(
(n− 1)!(
2(n−1)
n−1

)) 1
n−1

.
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Theorem 1.2 improves (1.5) with the factor f(n) = 2
(
2(n−1)
n−1

)− 1
n−1 . The

asymptotic behavior and bounds for f(n) can be easily derived from results

on extensively studied Catalan numbers Cd = (d + 1)−1
(
2d
d

)
. In particular,

f(n) < 1
2(4π(n − 1)2/(4(n − 1) − 1))1/(2(n−1)) < 0.82 and f(n) ∼ 1

2(π(n −
1))1/(2(n−1)) (see [7]). The proof of Theorem 1.2 is based on the geometric
approach used in [2], combined with results on the difference bodies dated
back to works of Minkowski (see e.g. Gruber [10], Section 30.1) and Rogers
and Shephard [16].

2. Covering radii and Frobenius numbers

In what follows, Kd will denote the space of all d-dimensional convex
bodies, i.e., closed bounded convex sets with non-empty interior in the d-
dimensional Euclidean space Rd. Recall that the Minkowski sum X + Y of
the sets X,Y ⊂ Rd consists of all points x+ y with x ∈ X and y ∈ Y . For
K ∈ Kd, the difference body DK of K is the origin-symmetric convex body
defined as DK = K −K = K + (−K).

By Ld we denote the set of all d-dimensional lattices in Rd. Given a
matrix B ∈ Rd×d with detB 6= 0 and a set Q ⊂ Rd let BQ := {Bx : x ∈ Q}
be the image of Q under linear map defined by B. Then we can write
Ld = {B Zd : B ∈ Rd×d, detB 6= 0}. For Λ = B Zd ∈ Ld, det(Λ) = |detB|
is called the determinant of the lattice Λ.

For K ∈ Kd and Λ ∈ Ld the k-covering radius of K with respect to Λ is
the smallest positive number µ such that any point x ∈ Rd is covered with
multiplicity at least k by µK + Λ, that is

µk(K,Λ) = min{µ > 0 : for all x ∈ Rd there exist b1, . . . , bk ∈ Λ

such that x ∈ bi + µK , 1 ≤ i ≤ k} .

For k = 1 we get the well-known covering radius, see e.g. Gruber [10] and
Gruber and Lekkerkerker [12]. These books also serve as excellent sources
for futher information on lattices and convex bodies in the context of the
geometry of numbers.

The k-covering radii appear to be closely related to the k-Frobenius num-
bers. Given integer vector a satisfying (1.1), define the (n− 1)-dimensional
simplex

Sa =
{
x ∈ Rn−1

≥0 : a1 x1 + · · ·+ an−1 xn−1 ≤ 1
}

and the (n− 1)-dimensional lattice

Λa =
{
x ∈ Zn−1 : a1 x1 + · · ·+ an−1 xn−1 ≡ 0 mod an

}
.

Kannan [13] established the identity

µ1(Sa,Λa) = F1(a) + a1 + · · ·+ an.

The result of Kannan was further generalised in [2] as follows.
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Lemma 2.1 (Theorem 3.2 in [2]). Let n ≥ 2, k ≥ 1. Then

µk(Sa,Λa) = Fk(a) + a1 + · · ·+ an.

The following three lemmas will be used in the proof of Theorem 1.1. Let
Sd =

{
x ∈ Rd

≥0 : x1 + · · ·+ xd ≤ 1
}

be the standard simplex in Rd.

Lemma 2.2. Let d ≥ 2, k ≥ 1. Then

µk(Sd,Zd) = p(d, k) + d .(2.1)

Proof. Let F = [0, 1)d be the fundamental cell of the lattice Zd with respect
to the standard basis. It is easy to see that

µk(Sd,Zd) = min{µ > 0 : there exist b1, . . . , bk ∈ Zd

such that F ⊂ (bi + µSd) , 1 ≤ i ≤ k} .
(2.2)

This implies, in particular, that µk(Sd,Zd) is an integer number ≥ d.
Suppose that F is covered by u+ t̄Sd with u ∈ Zd. Then, clearly, u ∈ Zd

≤0
and t̄ ≥ d. Observe that

F ⊂ (u+ t̄Sd) ⇐⇒ 0 ∈ (u+ (t̄− d)Sd) ⇐⇒ −u ∈ (t̄− d)Sd .

Hence, F is covered with multiplicity at least k by (m + d)Sd + Zd if and
only if mSd contains at least k integer points. Therefore, by (2.2),

µk(Sd,Zd) = min{m ∈ Z≥0 : #(mSd ∩ Zd) ≥ k}+ d .

Noting that #(mSd ∩ Zd) =
(
m+d
d

)
, we obtain (2.1).

�

Following Gruber [11], we say that a sequence St of convex bodies in Rd

converges to a convex body S if the sequence of distance functions of St
converges uniformly on the unit ball in Rd to the distance function of S.
For the notion of convergence of a sequence of lattices to a given lattice we
refer the reader to p. 178 of [12].

Lemma 2.3 (see Satz 1 in [11]). Let St be a sequence of convex bodies in
Rd which converges to a convex body S and let Λt be a sequence of lattices
in Rd convergent to a lattice Λ. Then

lim
t→∞

µk(St,Λt) = µk(S,Λ) .

The last ingredients of the proof of Theorem 1.1 is the following result
from [3] which is also implicit in Schinzel [17].

Lemma 2.4 (Theorem 1.2 in [3]). For any lattice Λ with basis b1, . . . , bd,
bi ∈ Qd, i = 1, . . . , d, and for all rationals α1, . . . , αd with 0 < α1 < · · · <
αd < 1, there exists a sequence

a(t) = (a1(t), . . . , ad(t), ad+1(t))
t ∈ Zd+1 , t = 1, 2, . . . ,
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such that gcd(a1(t), . . . , ad(t), ad+1(t)) = 1 and the lattice Λa(t) has a basis
b1(t), . . . , bd(t) with

bij(t)

s t
= bij +O

(
1

t

)
, i, j = 1, . . . , d ,(2.3)

where s ∈ N is such that s bij , s αj bij ∈ Z for all i, j = 1, . . . , d. Moreover,

ad+1(t) = det(Λ)sdtd +O(td−1)(2.4)

and

αi(t) :=
ai(t)

ad+1(t)
= αi +O

(
1

t

)
.(2.5)

Recall that successive minima λi(K,Λ) of an origin-symmetric convex
body K ∈ Kd with respect to a lattice Λ ∈ Ld are defined as

λi(K,Λ) = min {λ > 0 : dim (λK ∩ Λ) ≥ i} , 1 ≤ i ≤ d.

The proof of Theorem 1.2 is based on a link between lattice coverings
with multiplicity at least two with usual lattice coverings and packings of
convex bodies. Following the classical approach of Minkowski, we will use
difference bodies and successive minima in our work with lattice packings.

Lemma 2.5. Let Λ ∈ Ld and K ∈ Kd. Then

µ2(K,Λ) ≤ µ1(K,Λ) + λ1(DK ,Λ).

Proof. There exists a nonzero point u ∈ Λ in the set λ1DK , where λ1 =
λ1(DK ,Λ). Then, by the definition of difference body, there exists a point v
in the intersection λ1K∩(u+λ1K). Indeed, u = u1−u2 with u1,u2 ∈ λ1K
and hence we can take v := u1 = u+ u2 ∈ λ1K ∩ (u+ λ1K).

Next, given an arbitrary point x ∈ Rd we know by the definition of the
covering radius µ1 = µ1(K,Λ) that there exists a point z ∈ Λ such that
x− v ∈ z + µ1K. Hence

x ∈ z + (µ1 + λ1)K and

x ∈ z + u+ (µ1 + λ1)K,

so that x is covered with multiplicity at least two by (µ1 + λ1)K + Λ.
Therefore

µ2(K,Λ) ≤ µ1 + λ1

and the lemma is proved.
�
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3. Proof of Theorem 1.1

Let α = (α1, . . . , αn−1)
t be any rational vector in Qn−1 satisfying

0 < α1 < . . . < αn−1 < 1(3.1)

and let D(α) = diag(α−11 , . . . , α−1n−1). Then Λ(α) = D(α)Zn−1 is the lattice

of determinant det(L(α)) = (Π(α))−1 and S(α) = D(α)Sn−1 is the simplex
of volume vol (S(α)) = (Π(α)(n− 1)!)−1.

Applying Lemma 2.4 to the lattice Λ = Λ(α) and the numbers α1, . . . , αn−1,
we get a sequence a(t), satisfying (2.3), (2.4) and (2.5). Furthermore, by
(3.1) and (2.5),

0 < a1(t) < a2(t) < . . . < an(t)

for sufficiently large t.
Define the simplex St and the lattice Λt as

St = an(t)Sa(t) = {(x1, . . . , xn−1)t ∈ Rn−1
≥0 :

n−1∑
i=1

αi(t)xi ≤ 1} ,

Λt = (Π(α)an(t))−1/(n−1)Λa(t) .

Then, in particular,

µk(Sa(t),Λa(t)) = Π(α)1/(n−1)an(t)n/(n−1)µk(St,Λt) .(3.2)

By (2.3) and (2.4), the sequence Λt converges to the lattice Λ(α). Next,
the point p = (1/(2n), . . . , 1/(2n)) is an inner point of the simplex S(α) and
all the simplicies St for sufficiently large t. By (2.5) and Lemma 2.3, the
sequence µk(St−p,Λt) converges to µk(S(α)−p,Λα). Here we consider the
sequence µk(St − p,Λt) instead of µk(St,Λt) because the distance functions
of the family of convex bodies in Lemma 2.3 need to converge on the unit
ball. Now, since k-covering radii are independent of translation, the sequence
µk(St,Λt) converges to µk(S(α),Λ(α)). Clearly,

µk(S(α),Λ(α)) = µk(D(α)−1S(α), D(α)−1Λ(α)) = µk(Sn−1,Zn−1) .

Therefore, using Lemma 2.2, we have

µk(St,Λt)− µ1(St,Λt)→ µk(Sn−1,Zn−1)− µ1(Sn−1,Zn−1)

= p(n− 1, k) ,

as t→∞. Therefore, by Lemma 2.1, (3.2) and (2.5), we obtain

τk(a(t)) =
Fk(a(t))− F1(a(t))

Π(a(t))
1

n−1

=
µk(Sa(t),Λa(t))− µ1(Sa(t),Λa(t))

Π(a(t))
1

n−1

=
Π(α)1/(n−1)an(t)n/(n−1)(µk(St,Λt)− µ1(St,Λt))

Π(a(t))
1

n−1

=
Π(α)1/(n−1)(µk(St,Λt)− µ1(St,Λt))

(
∏n−1

i=1 αi(t))
1

n−1

→ p(n− 1, k)
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as t→∞. Together with (2.5) this concludes the proof of Theorem 1.1.

4. Proof of Theorem 1.2

Let α = (1/a1, . . . , 1/an−1) and let Γa = D(α)Λa, where in notation of
Section 3 we set D(α) = diag(α−11 , . . . , α−1n−1). Then Γa is the lattice of

determinant det(Γa) = Π(α)−1 det(Λa) = Π(a) and since Sn−1 = D(α)Sa,
we have

µk(Sa,Λa) = µk(Sn−1,Γa) .(4.1)

By Lemmas 2.1 and 2.5, together with (4.1), we obtain

F2(a)− F1(a)

Π(a)
1

n−1

=
µ2(S

n−1,Γa)− µ1(Sn−1,Γa)

Π(a)
1

n−1

≤ λ1(DSn−1 ,Γa)

Π(a)
1

n−1

.

(4.2)

As was shown by Rogers and Shephard [16], vol (DSd) =
(
2d
d

)
vol (Sd) =(

2d
d

)
/d!. Hence, by Minkowski’s second fundamental theorem, we get the

inequality

(4.3) λ1(DSn−1 ,Γa) ≤ 2

(
det(Γa)

vol (DSn−1)

) 1
n−1

= 2

(
(n− 1)!(
2(n−1)
n−1

)) 1
n−1

Π(a)
1

n−1 .

Combining (4.2) and (4.3), we obtain the bound (1.6).
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