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A Water-Soluble Tetraazaperopyrene Dye as Strong G-Quadruplex
DNA Binder

Lena Hahn,[a] Niklaas J. Buurma,*[b] and Lutz H. Gade*[a]

Abstract: The interactions of the water-soluble tetraazapero-
pyrene dye 1 with ct-DNA, duplex-[(dAdT)12·(dAdT)12] ,
duplex-[(dGdC)12·(dGdC)12] as well as with two G-quadruplex-
forming sequences, namely the human telomeric 22AG and
the promotor sequence c-myc, were investigated by means

of UV/visible and fluorescence spectroscopy, isothermal titra-
tion calorimetry (ITC) and molecular docking studies. Dye

1 exhibits a high affinity for G-quadruplex structures over
duplex DNA structures. Furthermore, the ligand shows
promising G-quadruplex discrimination, with an affinity to-

wards c-myc of 2 Õ 107 m¢1 (i.e. , Kd = 50 nm), which is higher
than for 22AG (4 Õ 106 m¢1). The ITC data reveal that com-

pound 1 interacts with c-myc in a stoichiometric ratio of 1:1
but also indicate the presence of two identical lower affinity

secondary binding sites per quadruplex. In 22AG, there are
two high affinity binding sites per quadruplex, that is, one
on each side, with a further four weaker binding sites. For
both quadruplex structures, the high affinity interactions be-
tween compound 1 and the quadruplex-forming nucleic

acid structures are weakly endothermic. Molecular docking
studies suggest an end-stacking binding mode for com-

pound 1 interacting with quadruplex structures, and
a higher affinity for the parallel conformation of c-myc than
for the mixed-hybrid conformation of 22AG. In addition,

docking studies also suggest that the reduced affinity for
duplex DNA structures is due to the non-viability of an

intercalative binding mode.

Introduction

Single strands of DNA containing repeats of guanine bases can
form Hoogsteen hydrogen bonds between four guanosine

residues, resulting in so-called G-tetrads.[1] Stacking of several
G-tetrads leads to the typical G-quadruplex structure, which is
stabilised by chelation of a metal cation (usually K+ or Na+).[2, 3]

Single-stranded guanine-rich DNA sequences are commonly

found within telomeres, which are the non-coding ends of
chromatids that protect the genes adjacent to them.[4–9] In
addition, guanine-rich sequences were also found in various
promotor regions.[10] There are as many as 71 600 sequences
that have been identified as potentially quadruplex-forming

sequences in the genome[11] and quadruplex formation has
been suggested to be of relevance in genome integrity, trans-

cription, epigenetic regulation and meiosis.[12, 13]

Historically, G-quadruplex structures have attracted signifi-

cant interest as a target in attempts to control cancer pro-
liferation. These attempts are based on the observation that
apoptosis normally occurs due to a critical shortening of the
telomeres as a result of repeated cellular replication cycles. In

their unfolded form, telomeres serve as primers for the
enzyme telomerase, which is responsible for maintaining the
telomeric length throughout cellular replication. Telomerase re-
mains mostly inactive in normal somatic cells but is expressed
by 85–90 % of cancer cells. Overexpression of telomerase thus

effectively prohibits apoptosis, and therefore renders cancer
cells immortal. Controlling telomerase interaction with the te-

lomeric ends of chromosomes by driving quadruplex folding
through added quadruplex binders has therefore become
a popular approach in attempts to control cancer proliferation.

Indeed, G-quadruplex formation has been shown to hinder te-
lomerase activity, but in addition it is implicated in the regula-

tion of gene expression and quadruplex structures have thus
become a potential target in oncology.[14, 15] A range of small
molecules has been shown to strongly bind and stabilise such

G-quadruplex structures, thereby rendering these compounds
potential anticancer drugs.[10, 16–26] Recent findings, such as the

fact that parallel quadruplexes can still act as a substrate for te-
lomerase,[27] suggest, however, that indirect telomerase inhibi-

tion is not necessarily the dominant contribution in anticancer
activity of quadruplex-binding ligands.
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In addition to a potential use in therapy, quadruplex binders
are of interest in the development of biosensors and imaging

techniques. In imaging, turn-on fluorescent probes[28–33] have
become popular although fluorescence quenchers remain

useful in, for example, Fçrster resonance energy transfer (FRET)
pairs.[34] For biosensors, both spectroscopic and electrochemi-

cal properties are of interest. Finally, nucleic acid structures
also form interesting building blocks for directed assembly of
nanostructures.[35]

To have potential as therapeutic agents, as biosensors and
in bioimaging or in directed assembly, quadruplex binders
have to meet certain criteria. One criterion is a strong selectivi-
ty for G-quadruplexes over double-stranded DNA, which is

often found to be a problem when developing quadruplex-
binding agents. Currently known G-quadruplex binders are

often polycyclic aromatic compounds.[22, 36, 37] The optoelectron-

ic properties of such compounds render them suitable for bio-
sensing and imaging in addition to their potential therapeutic

use.[33, 35, 38–40] Recently, we reported a new class of poly-
heterocyclic aromatics, that is, 1,3,8,10-tetraazaperopyrenes

(TAPPs).[41–44] Besides giving rise to promising results in the
field of organic electronics,[45–48] it was shown that water-

soluble derivatives can be employed as fluorescence probes

selectively staining cell nuclei.[50] The structure of TAPPs is
reminiscent of perylene diimides, which are known to be

good quadruplex binders,[49, 50] such as, for example, PIPER.[51]

TAPP derivatives therefore appear promising for biosensing

and imaging applications, as well as for a biopolymer-directed
assembly of functional nanostructures.

To develop these applications, the interactions of the TAPP

derivative 1 (Figure 1) with a relatively small group of nucleic
acid structures were studied in detail. Herein, we report our

studies of the interactions of the water-soluble TAPP 1 with
calf thymus DNA, duplex-[(dAdT)12·(dAdT)12] and duplex-

[(dGdC)12·(dGdC)12] , as well as the interactions with two differ-
ent G-quadruplex-forming DNA sequences, namely the human
telomeric sequence 22AG and the promotor sequence c-myc

(Figure 1, bottom), by means of UV/visible and fluorescence
spectroscopy as well as isothermal titration calorimetry (ITC)

and molecular docking studies.

Results and Discussion

The synthesis of compound 1 has previously been reported, its

absorption and emission spectra in water are shown in
Figure 1 top.[47] The heptafluoropropyl substituents were intro-

duced to the tetraazaperopyrene structure to stabilise the fluo-
rophore and in order to enhance its solubility in organic sol-
vents. This construction principle was established in our group
over the past years.[41–48] Water solubility of compound 1 was

achieved by functionalisation of the TAPP core with pyridyl
substituents followed by methylation of the pyridyl nitrogen
atoms and optimised by variation of the counter anions.[47]

Compound 1 displays a characteristic p* !

p absorption band
with a maximum at l= 474 nm and a corresponding emission
band (max. l= 493 nm; fluorescence quantum yield in water is
82 %).[47]

Comments on the structures of c-myc and 22AG under the
experimental conditions of this study

We note that c-myc forms a relatively stable parallel structure,

whereas the human telomeric sequence studied in this work
gives rise to mixed hybrid structures under the experimental

conditions.[52, 53] Moreover, for both c-myc[54] and 22AG[55] the
unfolding kinetics are slow compared to the experimental

timescales of the techniques used here, implying that binding

is unlikely to drive changes from one type of structure to
another on the timescale of the experiments.[56]

The circular dichroism (CD) spectrum for 22AG under the ex-
perimental conditions was recorded (Figure S5 a in the Sup-

porting Information) and is in agreement with the reported
spectrum for the mixed-hybrid quadruplex structure.[53, 57] The

significant spectral features do not change in the presence of
compound 1 (Figure S5 b in the Supporting Information),
indicating that 22AG retains its mixed-hybrid structure in the

presence of compound 1, at least under the conditions and on
the timescale of our experiments.

Interaction of compound 1 with duplex and quadruplex
DNA

UV/visible and fluorescence titrations

Interactions of compound 1 with the nucleic acid structures
were first studied by means of UV/visible and fluorescence

spectroscopy. The nucleic acid solutions were added stepwise
to a 2 mm solution of compound 1 in a buffer (25 mm 3-(N-
morpholino)-propanesulfonic acid (MOPS), 100 mm KCl, 1 mm
ethylenediaminetetraacetic acid (EDTA), pH 7.1) and the ab-
sorption spectra were recorded after each addition (Figure 2).
The titrations with all five nucleic acid structures result in a hy-
pochromic effect on the p* !

p absorption band at l= 474 nm

along with a bathochromic shift of the absorption maximum.
For the titrations with ct-DNA and 22AG the absorption maxi-

Figure 1. Top) Absorption and emission band for compound 1 recorded in
water.[47] Bottom) Synthetic oligonucleotide sequences used in this work.
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mum of TAPP 1 is red shifted by 12 nm, the absorption shift of
9 nm for the titration with duplex-[(dGdC)12·(dGdC)12] is smaller,

whereas the titration with the c-myc quadruplex results in the
greatest red shift of 18 nm. On the other hand, the titration

with duplex-[(dAdT)12·(dAdT)12] barely shifted the absorption
maximum (4 nm). The hypochromism was approximately 50 %

for the interaction of TAPP with ct-DNA, duplex-[(dGdC)12

·(dGdC)12] , 22AG and c-myc, but lower for interaction with
duplex-[(dAdT)12·(dAdT)12] .

Similarly, fluorescence titrations were carried out by stepwise
addition of the nucleic acid structures to a 2 mm solution of

compound 1, under conditions identical to those used for the
UV/visible titrations. Titrations with all five nucleic acid struc-

tures led to quenching of the fluorescence with no shift of the

emission maximum. Figure 2 d shows the emission spectra for
the titration of compound 1 with c-myc. The decrease of the
emission intensity depends on the added nucleic acid struc-
ture. In all cases, the apparent fluorescence quenching, Hem, app,

upon full binding of compound 1 exceeds the hypochromicity
Habs, indicating that the decrease in the emission is not only

the result of the decrease in the absorbance of compound 1 at
the excitation wavelength (l= 460 nm). Furthermore, the de-
crease in the emission intensity upon addition of two equiva-

lents of the nucleic acid structures also strongly depends on
the added nucleic acid structure (Figure S1 b in the Supporting

Information), and only the titration of compound 1 with c-myc
resulted in complete quenching of the fluorescence. Table 1

gives an overview of the spectroscopic data.

The hypochromism and the red shift of the absorption maxi-
mum, as well as the quenching of the fluorescence, indicate in-

teraction between TAPP 1 and the DNA sequences. The
quenching of the fluorescence of compound 1 might be con-

sidered a disadvantage in comparison with turn-on probes for
bioimaging of nucleic acid structures. However, there is scope

for the use of a quadruplex-selective quencher in FRET pairs,
for example in combination with the well-known duplex-DNA

minor-groove binder H33258 (or one of its derivatives) that
has the required fluorescence characteristics, which would

allow the detection of double-stranded DNA adjacent to quad-
ruplex DNA. In addition, the electrochemical properties of

compound 1 make it an interesting sensitizer in electrochemi-

cal biosensors and the use as a building block in nucleic acid
based nanostructures does not necessarily require fluorescent

properties of the binder.
In order to gain further insight into the binding mode and

to compare the affinity of compound 1 for each DNA se-
quence quantitatively, plots of the absorbance at l= 474 nm

and the fluorescence emission as a function of the nucleic acid

concentration were constructed (Figure S1 in the Supporting
Information). The binding site size in terms of base pairs (for

duplex structures) or in terms of tetrads (for quadruplex struc-
tures), n, as well as the apparent binding constant Kb were de-

termined for each sequence at 25 8C by fitting a multiple inde-
pendent binding sites (MIS) model, which corrects for ligand
dilution (see Eq. (S.1) in the Supporting Information), to the

data.[58] Table 2 gives an overview of the affinity constants Kb

and the binding site sizes n (expressed in numbers of base
pairs/tetrads per binding site) for each sequence. The binding
parameters show that compound 1 displays a high affinity for

duplex-[(dGdC)12·(dGdC)12] , whereas the affinity for duplex-
[(dAdT)12·(dAdT)12] is negligible. Analysis of the data for com-

pound 1 interacting with ct-DNA in terms of the MIS model,
despite the heterogeneity of the binding sites, gives an appar-
ent affinity in the range of that obtained for duplex-

[(dGdC)12·(dGdC)12] . Finally and notably, comparison of the Kb

values obtained for duplex-[(dGdC)12·(dGdC)12] with the bind-

ing parameters obtained for the quadruplex sequences dem-
onstrates that the affinity towards quadruplex structures is 4 to

10 times higher than towards duplex DNA.

The binding site size for the interaction of compound 1 with
duplex-[(dGdC)12·(dGdC)12] was determined to be in the range

of three to four base pairs (Table 2 columns 2 and 4) and is in
good agreement with the results from docking and calorimet-

ric studies (see below). For the interaction of compound
1 with ct-DNA an apparent binding site size of approximately

Figure 2. Absorption spectra of compound 1 in MOPS buffer in the presence
of a) ct-DNA, b) duplex-[(dAdT)12·(dAdT)12] and c) c-myc. d) Fluorescence
spectra for compound 1 in the presence of c-myc. For the other spectra see
the Supporting Information (Figures S1 a–c).

Table 1. Spectroscopic data for the titration of compound 1 with the
different nucleic acid structures.

lmax, bound Dl [nm] Habs
[a]

(l = 474 nm) [%]
Hem, app

[b]

(l= 493 nm) [%]

ct-DNA 486 12 (47.2�1.3) (85.1�2.6)
(dAdT)12·(dAdT)12 478 4 (40.0�1.7) (70.3�2.2)
(dGdC)12·(dGdC)12 483 9 (49.5�2.1) (95.1�1.6)
22AG 486 12 (48.1�1.9) (83.8�3.1)
c-myc 492 18 (50.6�2.0) (99.0�0.8)

[a] Habs is the change in the extinction coefficient upon binding defined
as (¢Dbindinge474 nm/e474 nm, free) Õ 100 % where ¢Dbindinge474 nm corresponds to
e474 nm, free¢e474 nm, bound, also see Eq. (S.1) in the Supporting Information.
[b] Hem, app = (intensity free493 nm¢intensity bound493 nm)/(intensity
free493 nm).
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six base pairs was observed, which is reasonable for binding
displaying some extent of specificity. The fact that the appar-

ent binding site size of six base pairs is greater than found for

duplex-[(dGdC)12·(dGdC)12] is in line with the observation that
compound 1 only binds weakly to A·T-rich DNA. Finally, for the

interaction of compound 1 with 22AG and c-myc a ratio of
three molecules of compound 1 per quadruplex, that is, one

per tetrad, was observed.

Isothermal titration calorimetry (ITC)

Isothermal titration calorimetry was used to gain further infor-

mation about the binding of compound 1 to the different
duplex- and quadruplex-forming DNA sequences. We first stud-

ied the ligand dilution series and observed a non-constant

heat of dilution (Figure S2 in the Supporting information),
which suggests ligand self-aggregation. Analysis of the data in

terms of an isodesmic self-aggregation model[59] results in
a good fit with an equilibrium constant for stepwise self-aggre-

gation, Kagg, of 6.3 Õ 102 m¢1 and an enthalpy of self-aggrega-
tion of ¢4.0 kcal mol¢1. The fact that self-aggregation of com-

pound 1 is exothermic is in agreement with previous observa-

tions for other (cationic) flat aromatic nucleic acid binders.[60–62]

Self-aggregation, as quantified by Kagg, is very weak for a mole-

cule with the shape and size of compound 1, which is unsur-
prising given the highly charged nature of the tetracation, and
is also consistent with its excellent aqueous solubility, even in
a high ionic strength buffer. This renders compound 1 a

convenient nucleic acid binder with excellent potential for
applications.

In the binding experiments, a solution of compound 1 was
injected stepwise into solutions of the respective nucleic acid
samples. Figure 3 shows the resulting enthalpograms for the

interactions of compound 1 with the different sequences. In all
cases, except for duplex-[(dAdT)12·(dAdT)12] , the enthalpograms

suggest one strong binding mode and weaker secondary
events, followed by the heat effects for dilution of compound

1. We therefore analysed the ITC data by using the IC ITC

tool,[60, 63] in terms of a model involving the nucleic acid
structures having two types of binding sites in competition

with ligand self-aggregation, as illustrated in Scheme 1.
As observed in the UV/visible titrations, binding of

compound 1 to duplex-[(dAdT)12·(dAdT)12] is too weak to be re-
liably analysed from the enthalpograms (Figure 3 c). On the

contrary, binding of compound 1 to duplex-[(dGdC)12·(dGdC)12]

displays two clear binding events (Figure 3 b), which is in
agreement with the absence of isosbestic points in the UV/visi-

ble titration spectra. Binding model exploration through error

and parameter covariance analysis[61] (Figure S.3 a in the Sup-
porting Information), in combination with the docking studies

(and the observed tight binding of 1 to quadruplex structures
through an end-stacking binding mode, see below), led to the

hypothesis that the strongest binding event corresponds to in-
teraction with the ends of duplex-[(dGdC)12·(dGdC)12] , whereas

the second binding event corresponds to weaker interactions

along the DNA strands. We therefore analysed the data restrict-
ing the first binding site to a size of twelve base pairs, that is,
binding to both ends of the twenty-four base-pair-long
duplex. This model reproduces the data well and indicates

a binding site size for the weaker interaction of 3.2 base pairs,
which is in good agreement with the UV/visible titration and

the docking studies. The affinity of compound 1 for duplex-
[(dGdC)12·(dGdC)12] according to ITC is lower than derived from
the spectroscopic methods, an observation, which is not

uncommon for this combination of methods and has been
previously reported.[60] This apparent inconsistency between

the affinities from spectroscopic and calorimetric titrations will
be discussed in more detail below.

The third duplex DNA sequence, ct-DNA (Figure 3 a), also dis-

plays multiple types of binding sites, which is readily related to
its heterogeneity and also manifested in the absence of an

isosbestic point in the UV/visible titration data. The observed
apparent binding site sizes of 29 and seven base pairs are in

agreement with the occasional presence of high affinity
binding sites (possibly GC-rich) along the DNA sequence.

Table 2. Binding constants and stoichiometries for TAPP 1 interacting with different DNA structures in 25 mm MOPS, 100 mm KCl, 1 mm EDTA, pH 7.1 at
20 8C.

Kb(UV/Vis) [106 Õ m¢1] n(UV/Vis)[a] [BP]/[TAPP] [T]/TAPP Kb(Fl.) [106 Õ m¢1] n(FL.)[a] [BP]/[TAPP] [T]/TAPP

ct-DNA (2.1�0.5) (6.3�0.5) (1.6�0.2) (5.9�0.2)
(dAdT)12·(dAdT)12 negligible – negligible –
(dGdC)12·(dGdC)12 (2.6�0.9) (3.5�0.3) (2.6�0.7) (2.7�0.5)
22AG (8.4�2.2) (1.1�0.1) (1.2�0.2) (0.9�0.1)
c-myc (23.8�7.3) (0.9�0.1) (23.1�5.9) (0.95�0.01)

[a] Binding site sizes are in base pairs per molecule of TAPP ([BP]/[TAPP]) for duplex DNA and in tetrads per molecule of TAPP ([tetrad]/[TAPP]) for
quadruplex structures.

Scheme 1. Ligand aggregation, Kagg, as well as two different DNA–ligand
binding events, corresponding to KA, KB, were taken into account in the
analysis of the ITC data.
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The calorimetric data for compound 1 interacting with 22AG
(Figure 3 d) indicate that there are two separate binding sites

available on 22AG for compound 1 to interact with. Binding
model exploration (Figure S3 b in the Supporting Information)
shows covariance of the stoichiometries nA and nB. Neverthe-

less, the best fit is observed for a stoichiometry nA of two and
nB of four, suggesting a molecule of compound 1 binding on

each side of the quadruplex in the tightest binding mode, with
a weaker binding mode involving multiple molecules of com-

pound 1. Although the identity of the secondary binding sites

is of interest, we consider attempting to identify these binding
sites too speculative on the basis of our current data.

Similarly, the enthalpogram for compound 1 interacting with
c-myc displays two binding events, which again is in agree-

ment with the absence of an isosbestic point in the UV/visible
titration data. Based on binding model exploration (Figure S3 c

in the Supporting Information), the calorimetrically ill-defined
nB was restricted to two, which together with the well-defined

stoichiometry nA of one gives a total stoichiometry of TAPP/c-
myc of 3:1, which is in agreement with the results from the
spectroscopic titrations. This binding model reproduces the

data well and suggests end-stacking interactions on one side
of the quadruplex stack, with the first interaction weakening

the subsequent interactions at the opposite end of the quad-
ruplex structure and with the remaining tetrad. The combined

binding events thus correspond to one molecule of compound

1 per tetrad.
Table 3 summarises the binding parameters obtained from

the calorimetric titrations. Overall, the binding data obtained
from ITC show an affinity of compound 1 in the order

c-myc @ 22AG�ct-DNA>duplex-[(dGdC)12·(dGdC)12] @ duplex-
[(dAdT)12·(dAdT)12] .

Figure 3. Enthalpograms for the interaction of compound 1 with a) ct-DNA, b) duplex-[(dGdC)12·(dGdC)12] , c) duplex-[(dAdT)12·(dAdT)12] , d) 22AG and e) c-myc.
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Molecular docking studies

To gain further insight into the interaction of compound 1 and

the targeted DNA sequences, molecular docking studies were

carried out by using the AutoDock Vina modeling tool.[64] For
the quadruplex-forming sequences, all available relevant struc-

tures deposited in the nucleic acids database[65, 66] were used as
targets. In particular for 22AG, this allowed us to compare the

potential interactions of compound 1 with the parallel, antipar-
allel and mixed hybrid structures formed in solution. To explore

the binding mode of compound 1 with duplex DNA, we used

our previously developed model involving duplex DNA with
a pre-formed intercalation site as a target.[67]

As displayed in Figure 4, the docking studies suggest that
the end-stacking binding mode, in which the planar p system

of compound 1 stacks onto the external G-quartets, is the
most favourable binding mode for compound 1 interacting

with c-myc. This is in agreement with observations for

other aromatic G-quadruplex ligands.[19, 68] The interaction of
compound 1 with the parallel c-myc structure from 2L7V is
predicted to be favourable by ¢10.9 kcal mol¢1.

The availability of the three different structures for 22AG

allows us to compare the predicted binding modes and rank
the predicted affinities of compound 1 for the different struc-

tures that can be formed by 22AG. From visual inspection of
the top docked arrangement (Figure 4 c), the interaction of
compound 1 with the mixed-hybrid conformation of 22AG,

which is relevant for our studies, appears less efficient than the
interaction with c-myc.

We note that one of the loop regions of 22AG hinders effi-
cient stacking on top of the first quartet (Figure 4 c), though

the interaction of compound 1 with 22AG is likely to involve

some movement of the loop regions to allow more efficient
stacking of compound 1 onto a tetrad structure. This flexibility

was not represented in the docking studies. An influence of
the loop regions on quadruplex recognition has recently been

reported in literature.[69, 70] The interaction of compound 1 with
the mixed hybrid structure of 22AG is predicted to be favour-

Table 3. Binding parameters for compound 1 interacting with different nucleic acid structures according to calorimetry.

ct-DNA d(GdC)12·(dGdC)12 22AG c-myc

KA [m¢1] 6.18 Õ 106 (1.9 Õ 106–2.0 Õ 107)[a] 1.2 Õ 105 (<8 Õ 106) 3.8 Õ 106 (<36 Õ 106) 1.3 Õ 107 (>0.4 Õ 107)
nA (ligands/structure) – – 2.2 (1.2–4.4) 1.1 (1.0–1.3)
binding site size/base pairs (nA

¢1) 29.3 (27.8–32.2) 12[c] – –
DHA [kcal mol¢1] ¢5.8 (¢7.2–¢5.1) covariance with DHB 1.3 (<16) 1.6 (¢1.4–2.0)
DGA [kcal mol¢1] ¢9.3 (¢10.0–¢8.4) ¢6.9 (>¢9.4) ¢9.0 (>¢10.3) ¢9.7 (<¢9.0)
¢TDSA ¢3.5 n.d.[b] ¢10.3 ¢11.3
KB [m¢1] 3.8 Õ 105 (1.1 Õ 105–9.5 Õ 105) 0.98 Õ 105 (5.0 Õ 104–7.0 Õ 105) 2.3 Õ 105 (0.5 Õ 105–8 Õ 105) 5.5 Õ 104 (1.0 Õ 104–6.4 Õ 105)
nB – – 3.95 (<4.6) 2[d]

binding site size/base pairs (nB
¢1) 7.10 (6.5–8.1) 3.6 (2.1–6.6) – –

DHB [kcal mol¢1] 0.7 (0.5–1.3) covariance with DHA ¢2.5 (>¢450) ¢1.9 (>¢25)
DGb [kcal mol¢1] ¢7.5 (¢8.2–¢6.8) ¢6.8 (>¢7.9) ¢7.3 (¢8.0–¢6.5) ¢6.5 (>¢7.9)
¢TDSB ¢8.2 n.d.[b] ¢4.8 ¢4.6

[a] Ranges of reasonable parameter values are based on the analysis of normalised Sdev2/dof as a function of parameter value, see Figures S4 A and B in
the Supporting Information; [b] n.d. = not determined because of covariance between DHA and DHB ; [c] restricted to a value of twelve base pairs per
binding site; [d] nB was restricted to a value of two because of being ill-defined.

Figure 4. Schematic representation of the interactions of compound 1 with
a) c-myc (PDB ID: 2L7V), b) 22AG (PDB ID: 2MCO), c) the mixed-hybrid 22AG
structure (PDB ID: 2e4i) and d) duplex DNA according to molecular docking
studies. Images were rendered by using UCSF Chimera.[71]
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able by ¢8.6 kcal mol¢1, that is, significantly less than the
interaction with c-myc. This is in agreement with experiments.

Although the folding kinetics for the various 22AG structures
at 25 8C suggest that the parallel and antiparallel structures of

22AG are not accessible under the reaction conditions and on
the timescales relevant to this study (see above), it was of gen-

eral interest to explore the effect of the different structures on
the affinity of compound 1 for 22AG. The interactions of com-

pound 1 with the antiparallel 22AG structure from 2MCO and

the parallel 22AG structure from 1KF1 (not shown) are predict-
ed to be favourable by ¢12.5 and ¢11.7 kcal mol¢1, respective-
ly. The predicted interaction with the parallel c-myc structure
and the parallel structure for 22AG (which is inaccessible under

our experimental conditions) are similar. Docking studies thus
suggest that the difference in affinity of compound 1 for c-

myc and 22AG may be related to the fact that only the mixed

hybrid structure of 22AG is available under our experimental
conditions whereas compound 1 has a higher affinity for paral-

lel quadruplexes. However, this higher affinity cannot drive
a change in the structure to the parallel structure on the time-

scale of our experiments because of the slow folding kinetics
of 22AG. This is in agreement with the observation that the

circular dichroism spectrum of 22AG does not change in the

presence of compound 1. Docking studies are thus in ag-
reement with the hypothesis that compound 1 distinguishes

between the parallel and mixed-hybrid conformations.
Finally, the docking studies for compound 1 interacting with

duplex DNA (Figure 4 d) suggest that compound 1 does not
enter the pre-formed intercalation gap but binds in the minor

groove instead. This interaction mode is rather inefficient com-

pared to the p-stacking mode observed for the quadruplex
structures, providing a rationale for the higher affinity of com-

pound 1 for G-quadruplex over duplex DNA. A likely reason
for the non-intercalative binding is the size of the molecule,

which does not allow compound 1 to thread through the DNA
double helix.

Discussion of the affinities and binding modes according to
the spectroscopic, calorimetric and docking studies

For some of the DNA sequences investigated in this work

there appears to be an inconsistency between the affinities
and binding modes derived from the spectroscopic, calorimet-

ric and docking studies. This is largely due to the fact that the

spectroscopic data were analysed in terms of a multiple inde-
pendent binding site model, involving one type of binding

site. On the other hand, the calorimetric data was subjected to
an analysis in terms of a model involving two types of binding

sites. The binding parameters derived from these two types of
data analyses have previously been shown not to be directly

comparable,[60] but may be related through analysis of

simulated data as detailed in the Supporting Information.
First of all, both the spectroscopic and calorimetric titrations

confirm that the interactions between compound 1 and with
duplex-[(dAdT)12·(dAdT)12] are weak and we have not studied

these in further detail. On the other hand, the optimised pa-
rameters from the spectroscopic studies of the interactions of

compound 1 with duplex-[(dGdC)12·(dGdC)12] , (Table 2) appear
to be inconsistent with those from the calorimetric studies

(Table 3).
As detailed in Section S2 of the Supporting Information,

there is a considerable range of acceptable values for several
of the parameters obtained from the analysis (in terms of two

inequivalent types of binding sites) of the calorimetric data.
Comparison of the concentration profiles predicted by reason-

able calorimetric models shows that several of these are in

very good agreement with those obtained from the spectro-
scopic titrations (Table S2 in the Supporting Information).

Based on this combined analysis of the spectroscopic and calo-
rimetric data, a value for KA of around 5 Õ 106 m¢1, a value for KB

of around 5 Õ 105 m¢1 and a binding site size nB
¢1 of 2.5 base

pairs rather than the optimised values based on the calorimet-

ric titrations alone may better represent the ligand–DNA

interaction in the case at hand. The resulting binding site size
is also in reasonable agreement with the docking studies.

The binding parameters for 22AG, which also seemed to
differ slightly based on the chosen method (see above) were

subjected to a comparison analogous to that used for duplex-
[(dGdC)12·(dGdC)12] (Section S2 in the Supporting Information).

Here, comparison of the concentration profiles suggests that

the calorimetric model involving two high affinity binding sites
and four lower affinity binding sites per quadruplex structure

is in fact in good agreement with the results from the spectro-
scopic titrations (Table S2 in the Supporting Information). The

two high affinity binding sites agree with the docking studies.
However, the nature of the additional low affinity binding sites

remains unclear.

We have not attempted to similarly consolidate the inter-
action parameters for compound 1 interacting with ct-DNA

because the heterogeneity of ct-DNA, resulting in a range of
binding site types, makes detailed comparison of models

involving only one and two types of sites meaningless.
Finally, the high affinity of compound 1 for the parallel c-

myc structure is confirmed by both spectroscopic and calori-

metric experiments. The affinity according to the spectroscopic
titrations is in good agreement with the KA value from the cal-

orimetric titrations, possibly because the secondary binding
sites are considerably weaker than the highest affinity binding
sites in this system. The total stoichiometry of three molecules
of compound 1 per quadruplex is confirmed by both types of

titrations. The docking studies involved a rigid c-myc target
and the total stoichiometry of three could therefore not be
confirmed through our docking studies.

Conclusion

The water-soluble tetraazaperopyrene dye 1 displays a remarka-

bly high affinity of 2 Õ 107 m¢1 (i.e. , Kd = 50 nm) for the c-myc

quadruplex structure, which places this structure amongst the
strongest quadruplex binders currently known.[33, 39] Moreover,

compound 1 displays a preference for binding to c-myc not
only in relation to duplex-forming nucleic acid structures, but

also relative to the alternative quadruplex-forming structure
22AG in its mixed-hybrid structure. In light of the low relative
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abundance of quadruplex structures relative to duplex struc-
tures in vivo the observed selectivity is not high enough yet

for bioimaging purposes. Applications in directed assembly of
functional nanostructures, however, do not suffer from signifi-

cant differences in concentrations of duplex and quadruplex
DNA and are viable already. In addition, compound 1 provides

a new structural class of quadruplex binders and no efforts
were made thus far to increase the selectivity. In fact, the cur-

rent study highlights the potential of the molecular scaffold of

compound 1 in quadruplex recognition and allows the identifi-
cation of structural variation to improve the structural selectivi-

ty of this class of compounds. Similarly, direct competition
studies, involving the competition dialysis assay of a wider

range of nucleic acid structures are ongoing. Together with our
previous observations that compound 1 is a nucleus-selective
stain,[47] its excellent water solubility and spectroscopic proper-

ties, the preference for quadruplex structures and c-myc in par-
ticular makes TAPP derivative 1 a highly promising agent for

selectively addressing the c-myc promotor sequence, be it for
therapeutic or biosensing applications, or in directed assembly.

Experimental Section

General remarks : UV/visible spectra were recorded by using
a Jasco 630 or 650 UV/visible spectrophotometer equipped with
a Peltier temperature controller. The pH values of aqueous solu-
tions were determined by using a Hanna Instruments pH210 mi-
croprocessor pH meter with a VWR simple junction gel universal
combined pH/reference electrode.

DNA binding experiments : Water was purified by using a Purelab
Option R7 water purifier. MOPS (3-(N-morpholino)propanesulfonic
acid, CAS [1132-61-2]), NaCl and EDTA (ethylenediaminetetraacetic
acid disodium salt dihydrate, CAS [6381-92-6]) were obtained from
Fisher and used as supplied. Oligonucleotides were obtained from
custom synthesis (Yorkshire Bioscience), dissolved in buffer and di-
alysed (3.5 kDa MWCO, Visking, Medicell International Ltd) exten-
sively against two litres of buffer. All experiments were carried out
in aqueous MOPS buffers (25 mm MOPS titrated to pH 7.1, 1 mm
EDTA and 100 mm KCl). Dialysed solutions of oligonucleotides
were quantified by spectrophotometry by using:

e260 nm, 22AG = 228 500 m¢1 (quadruplex) cm¢1 (22AG = dAdGd-
GdGdTdTdAdGdGdGdTdTdAdGdGdGdTdTdAdGdGdG)[72]

e260 nm, c-myc = 228 700 m¢1 (quadruplex) cm¢1 (c-myc = dTd-
GdAdGdGdGdTdGdGdGdTdAdGdGdGdTdGdGdGdTdAdA)[66]

e262 nm, ðdAdTÞ12 ¡ðdAdTÞ12
= 13 200 m¢1 (base pairs) cm¢1[73]

e254 nm, ðdGdCÞ12 ¡ðdGdCÞ12
= 16 800 m¢1 (base pairs) cm¢1[73]

e2260 nm, ct-DNA = 12 800 m¢1 (base pairs) cm¢1[67]

The extinction coefficients for the quadruplex-forming sequences
were not corrected for folding-induced hypochromism, which has
been reported to be small.[74] All solutions were annealed by heat-
ing to 95 8C for at least 5 min followed by cooling slowly to room
temperature.

Fluorescence spectra were measured with a Varian Cary Eclipse
spectrophotometer, the cuvettes were held at constant tempera-
ture of 20 8C and standard corrections were applied to all spectra.
The excitation wavelength for all experiments was l= 460 nm.

Isothermal titration calorimetry (ITC): Calorimetric titrations were
carried out at 25 8C on a high-precision VP-ITC microcalorimeter
(MicroCal, LLC Northampton, MA).[75] The instrument was operated

in high gain mode, applying a reference power of 10 mcal s¢1 while
stirring the sample cell contents at 307 rpm. Concentrated solu-
tions of the nucleic acids were dialysed (MWCO 3.5 kDa) extensive-
ly against buffer, and diluted by using the final dialyzate to con-
centrations as required. Ligand solutions were freshly prepared by
using the final nucleic acid dialyzates, with a typical ligand concen-
tration of 0.75 mm. All solutions were degassed immediately
before use. Typically, ligand dilution experiments were set up so
that 15 mL of ligand solution were added to a known volume (ap-
proximately 1.9 mL including overflow) of buffer in the sample cell
every 5 min up to a total of 20 injections. Titrations involving nu-
cleic acids typically involved a 15 mL injection once every 5 min. Ti-
trations were concatenated if required. The raw data were treated
as usual by using Origin to generate both integrated heat effects
per injection (dh) and molar heat effects per injection (ndh). The
integrated heat data were subsequently analysed by using IC
ITC.[60, 63]

Docking studies : Docking studies were carried out by using the
Autodock Vina 1.1.2 modelling tool.[64] The required PDBQT files for
TAPP 1 and for the quadruplex structures were generated by using
AutoDockTools 1.5.6 Sep 17 14.[76, 77] A crystal structure[47] was
used for TAPP 1. Quadruplex structures were selected from the nu-
cleic acid database[65, 66] (see the Supporting Information for selec-
tion criteria). The grid box dimensions for the docking studies in-
volving quadruplex structures were 40 æ Õ 40 æ Õ 40 æ (determined
by visual inspection so that the grid box encompassed the quadru-
plex structures, but also provided additional space to allow for
maximum flexibility in ligand orientations). The construction of the
PDBQT file and the grid box dimensions for the rigid target duplex
DNA structure displaying a pre-formed intercalation gap were de-
scribed previously.[67] The nucleic acid structures were kept rigid in
the docking studies and polar hydrogen atoms were added.
Docked poses were visualised by using UCSF Chimera.[71]
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