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Abstract 

Twenty experiments investigated how people reason about causal relations where a binary cause 

(present/absent) influences the continuous magnitude of a target outcome. The experimental 

design was based on a conceptual mapping of probabilistic influences in binary causation to 

deterministic influences on continuous effects. Doing so preserved the computational properties 

related to binary causation, and allowed me to test applicability of well-established causal 

reasoning strategies in continuous causation. The investigation employed three methods: the first 

one involved asking participants the standard causal questions on strength rating; the second 

method asked other participants to make judgments in accordance to counterfactual questions; 

and the third method required participants to identify the direction candidate cause influenced 

effect magnitude. Results reveal that when reasoning about binary causes that reduce a 

continuous outcome magnitude, the support is for proportional reasoning approach, which is 

conceptually equivalent to the Power PC theory of binary causation. When reasoning about 

causes that increase a continuous magnitude, however, the results did not converge to any 

prominent strategy because of various moderating factors. Moreover, under certain 

circumstances, reasonsers also appear to adopt a strategy based on a multiplicative reasoning, 

which has not been documented in the literature before. The evidently low consistency of results 

within participant and within condition across experiments suggests that neither approach 

properly explains this type of reasoning. 
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Chapter 0: Overview of Thesis 

This thesis begins with an introduction to causation, and the importance of causal 

knowledge before raising the main question: how do people acquire causal knowledge? Because 

of the scarcity of previous work on continuous causation, I explored the binary causation 

literature to identify the two most influential frameworks as a starting point for this journey: ΔP 

and Power PC theory. Following this, the next question was to investigate whether these 

probabilistic binary reasoning strategies are applicable in explaining causal relations entailing 

continuous outcomes. If they do, which strategy would better capture this type of reasoning? 

The first empirical chapter (Chapter 2) opens the investigation with two experiments: The 

first one compared binary and continuous causation in both generative and preventive scenario, 

while the second experiment aimed to study the influence of limit saliency. In both experiments, 

I begin with the simplest way, by asking participants to report the extent of the candidate cause 

in producing/inhibiting the effect magnitude. I continued the investigation with a hypothetical 

judgment approach in Chapter 3. 

Chapter 3 is the second empirical chapter, containing ten experiments adopting a 

“counterfactual” approach as Buehner, Cheng and Clifford (2003) suggested. Because they 

argued that this approach would better tap into causal power, i.e. following Power PC theory, it 

would be insightful to see whether the proportion strategy, which was adapted from Power PC, 

could dominate reasoning with continuous outcomes. 

I presented another eight experiments in Chapter 4 adapting the implicit judgment 

approach from Liljeholm and Cheng (2007). Unlike the previous two chapters, the approach in 

this chapter did not ask participants to explicitly measure causal strength, but instead only 
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required them to identify the direction in which a candidate cause influences the effect 

magnitude. 

The final chapter summarises the results, and highlights factors that were moderating 

participants’ judgments in all experiments. In line with Perales and Shanks (2008) argument, 

variations of the results could be attributed to participants’ judgments in accordance to demands 

of the task at hand. To test this, I revisited the results in the light of Evidence Integration rule as 

Perales and Shanks proposed. Further, I concluded the thesis and also included my thoughts on 

potential future research on causal learning between continuous variables. 

Following the main content of the thesis are appendices: Appendix A lists all cover stories 

of all experiments, Appendix B describes the determination of bin size for the histogram 

analysis, and the gamut for the tendency analysis of Chapter 3, and Appendix C discusses the 

relation between the proportion and multiplication strategies. 
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Chapter 1: Background and Study Approach 

1.0 Causality and Causal Learning 

Causal knowledge is central to cognition (Sloman, 2005) and a prerequisite for effective 

reasoning and problem solving (Newsome, 2003), and without which we are detached from our 

surroundings; it is central to make predictions, decisions and judgments, to interact and navigate 

within the world in order to fulfil motivations and goals, or to avoid hazards and harmful 

situations. The description of what a non-causal world would be, which Cheng and Buehner 

(2012) describe in the beginning of their article, puts further emphasis on the role of causal 

knowledge in our daily activities, especially when we are making predictions. Cheng and 

Buehner further highlight that “[c]ausation, and only causation, licenses the prediction of the 

consequences of actions”. 

How does a person come to have knowledge that something causes another thing? 

Traditionally, behaviourists viewed learning more as reflex-oriented acquisition of links between 

stimuli and response or behaviour and outcomes. Later, another view postulated that the main 

purpose of learning is to discover the causal texture of the world (Tolman and Brunswik 1935). 

This view traces back to David Hume (1739/1888) who argued that causal knowledge is not 

readily accessible using the sensory modalities; instead, people use the input acquired via them 

(e.g. observation of events occurring) to infer causal relations. 

 

1.0.1 Causal Learning about Binary Relations 

Current research mostly focuses on causal relations involving binary events (for an 

overview see Cheng & Buehner, 2012; Perales & Catena, 2006; Perales & Shanks, 2007). Binary 

causal relations involve a state change of a binary event (cause present/absent) to produce a 
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change in another binary event (effect present/absent). For example, in a binary relation, a state 

change of a cause could be flicking a switch from off to on which changes the status of a bulb 

from off to on.  

Most theories of binary causal learning are rooted in Hume’s empiricism, and stemmed 

from contingency (i.e. the frequency of an effect and a candidate cause co-occurring). The more 

often a candidate cause and an effect co-occur, the more likely for people to induce the cause to 

produce the effect. The simplest representation to capture relation and contingency information 

for binary causation is via a 2 x 2 contingency table (see Table 1.1) 

 

Table 1.1: Standard contingency table that captures binary causal relations 

 Effect present 

(e) 

Effect absent 

(¬e) 

Cause present 

(c) 

 

! 

 

! 

Cause absent 

(¬c) 

 

! 

 

! 

Note: a, b, c and d are frequencies respectively correspond to events where both cause and effect are present, only cause is 

present, only effect is present, and both cause and effect are absent. 

 

In the table, !, !, !, and !, respectively corresponds to frequency of events when both the 

effect and candidate cause are present, when only candidate cause is present in the absence of 

effect, when only effect is present in the absence of candidate cause, and when both effect and 

candidate cause are absent. 

ΔP Rule. A longstanding model formalising contingency as an index of causal belief is 

ΔP (Jenkins & Ward, 1965; Ward & Jenkins, 1969). This model argues that people estimate 

causal belief by considering the difference of the conditional probabilities of the effect in the 
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presence (P(e|c)) versus in the absence (P(e|¬c)) of the cause: ΔP = P(e|c) – P(e|¬c). These 

probabilities can be estimated from the frequencies information of the 2 x 2 contingency table: 

! ! ! =
!

!!!
 and ! ! ¬! =

!

!!!
. The model is a statistical representation of one-way 

contingency of an event on another (Allan, 1980). 

Consider these hypothetical scenarios involving the study of influence of minerals on 

algae growth on a group of 100 pools. In scenario 1, 30 of the pools already had algae growth 

before receiving treatment with mineral A, and 65 of them had algae growth after receiving the 

treatment. In scenario 2, none of the pools had algae growth before receiving treatment with 

mineral B, and 50 of them had algae growth after receiving the treatment. ΔP computes causal 

strength by considering the difference in relative frequencies of pools before and after treatment 

with minerals, giving ΔP values of 
!"

!""
 – 

!"

!""
 = 

!"

!""
 = 0.35 and 

!"

!""
 – 

!

!""
 = 

!"

!""
 = 0.50 respectively, 

hence suggesting that mineral B has higher causal strength than mineral A to cause algae growth. 

Power PC Theory. Consider a third scenario in which 25 of 100 pools already had algae 

growth before receiving treatment with mineral C, and the number of pools covered with algae 

increased to 75 after receiving the treatment. Applying ΔP in scenario 3 results in mineral C 

having a causal strength index of 0.50 (
!"

!""
 – 

!"

!""
 = 

!"

!""
), which is the same as mineral B. Studies 

involving scenarios such as these, however, have shown that despite having the same ΔP values, 

people tend to conclude that mineral C is more effective than mineral B in causing algae growth 

(Cheng, 1997; Buehner et al., 2003). This reasoning discrepancy is captured by another 

influential theory of causal learning: the Power PC Theory (Cheng, 1997). 

The Power PC Theory claims that ΔP on its own is not a useful index of causal strength, 

because it tracks the proximal stimulus (the observable contingency), when the goal of causal 

induction is to track the distal stimulus (the unobservable causal power). The concept of 
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unobservable causal power traces its root to Kant (1781/1965), who proposed that there exists a 

priori knowledge or framework that people refer to in order to interpret information during 

causal induction. 

Cheng explains causal power by purporting laws and theories in science: In science, 

“laws, … which deal with observable properties, are often explained by theories, which posit 

unobservable entities”. For instance, when Boyle’s Law demonstrates that the absolute pressure of 

an ideal gas is inversely proportional to volume it occupies and remains unchanged within a 

closed system, kinetic theory of gases explains this phenomenon by positing gas as tiny particles 

that are constantly moving at random. Because their speed is proportional to temperature, when 

these particles bombard the container walls, the gas law yields. Cheng further argues that “causal 

power is to covariation as the kinetic theory of gases is to Boyle's law.” 

Computationally, Power PC Theory tracks causal power by normalising ΔP with the base 

rate (i.e. probability of effect presence in the absence of the candidate cause). The resultant 

proportional measure of causal power for generative and preventive (strength index) candidate 

cause respectively is 
!!

!!!(!|~!)
 and 

!!!

!(!|~!)
 . 

Applying Power PC to scenarios 2 and 3 results in having causal strength indices of 0.50 

and 0.66 for mineral B and C respectively: In the earlier scenarios, mineral B had the opportunity 

to cause algae growth in all 100 pools, and did so in 50 of them; in contrast, in the scenario 

involving mineral C, the mineral only had the opportunity to cause algae growth in 75 pools 

because the other 25 already had growth even before treated with the mineral. From these 75 

unaffected pools, mineral C managed to affect 50 of them to have growth. Therefore, Power PC 

suggests that for mineral B, the causal power is 0.50 because 50 out of 100 pools had growth 
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whereas for mineral C it is 0.66 because it caused growth in 50 out of 75 (i.e. the initially 

unaffected) pools. 

Moreover, the Power PC theory also addresses ceiling and floor effects. Imagine another 

scenario 4 where all 100 of the pools already had algae growth before receiving treatment with 

mineral D, and all 100 still had algae growth after receiving the treatment, ΔP for this scenario 

would be zero, suggesting that mineral D makes no difference to the algae growth. A rational 

judgment, however, would be that the experiment is inconclusive with respect to generative 

causal power because mineral D had no opportunity to demonstrate its potential effectiveness, 

and thus the causal status of mineral D is unknown. Wu and Cheng (1999) demonstrated that 

reasoners withhold judgment in cases where causal power is unknowable. If Power PC is applied 

to this scenario, the equation is undefined (due to division by 0), which is consistent with both 

rational assessment and empirical results. Note that when considering preventive power for this 

scenario, Power PC agrees with ΔP in suggesting that the treatment is ineffective. 

The key difference between ΔP and Power PC is that the former considers the absolute 

difference the cause makes to the occurrence of the effect, while the latter calculates the 

difference relative to the maximum causal change possible, and thus provides a proportional 

index of causal strength. I highlighted the contrast between the difference and proportional 

perspectives of both theories because they will be relevant when considering potential 

approaches to continuous causation in the following section. 

1.0.2 Continuous Causation 

Over the past 30 or so years, researchers focused on identifying mechanisms of acquiring 

causal knowledge from covariation information. As highlighted in previous sections, frameworks 

for binary causal reasoning were mainly focusing on contingency between the candidate cause 
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and effect, specifically, on information in the 2 x 2 contingency table (see Table 1.1) as the focal 

of research interest. 

Via their sensory modalities, people do not only observe and acquire information about 

the presence and absence of events, they also encounter causal relations involving continuous 

variables: How much faster could I run if I lose 20 pounds of weight? How much weight would I 

gain if I ate a cheeseburger everyday? How much sugar do I need to add to avoid over 

sweetening? How much algae would grow if I pour a gallon of phosphorus into a lake? These 

questions are examples of people’s involvement with causal relations entailing continuous 

variables. 

In contrast to binary causal relations, continuous causal relations involve a magnitude 

change of a continuous variable to produce a magnitude change in another continuous variable. 

An example of a continuous relation can be a change of a dial position to cause a change of 

luminosity from dimmer to brighter. Despite many related daily-life activities, very few studies 

have been investigating causal judgment involving continuous variables. 

Causal learning about continuous relations. A simple continuous causal relation 

involves changes between a continuous cause and a continuous effect. The cause increases the 

magnitude of the effect in generative scenarios, but reduces it in preventive scenarios. To my 

knowledge, no studies have examined causal learning of relations between continuous variables 

except Young and Cole (2012). 

Young and Cole conducted the study using a video game paradigm where participants 

had to determine a true cause among three other alternative causes. These causes, represented as 

enemy creatures, moved around in elliptical motion surrounding of an enemy detector that 

emitted tone at certain pitch (continuous effect) as a function of the creature’s proximity from the 
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detector (continuous cause). In addition to varying the relations between these continuous 

variables, Young and Cole also manipulated the probability of the detection (i.e. probabilistic 

effect), as well as the range of sound pitches. In the first experiment, they found that participants’ 

accuracy performance was independent of probability of effect, and pitch range. The participants 

did score higher than chance but at marginally (47% versus 33% chance). In the second 

experiment, they simplified the task by fixing the probability of effect to one (always happen), 

and by introducing a fixed detection proximity radius (no tone sounded outside this radius). The 

results of this experiment were better: Participants’ accuracy was dependent on the pitch range, 

and higher than in the previous experiment, at 70%.  

Further, Young and Cole claimed that participants’ better performance in the latter 

experiment was because of the presence of fixed detection proximity radius, and not because of 

the fixed probability. This claim was based on their unpublished findings. While this work of 

Young and Cole was the first published evidence of the ability of people to recognize and 

responsed to the causal relation between two continuous variables, it does not consider of any 

theoretical framework on how people learn causal relation entailing continuous variables. 

Given the scarcity of previous works in this area I begun this journey by a smaller step: 

Specifically, unlike Young and Cole’s work, I focus on the deterministic relation between a 

binary cause with a continuous effect. In other words, all causal relations of this study were 

focusing on changing of effect continuous magnitudes corresponding to binary state change of 

causes. However, unlike Young and Cole, my work included theoretical frameworks adapted 

from binary causation with the aim to explore whether they are applicable for continuous 

outcomes. The next section contains a more detailed explanation of this approach. 
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1.1 Study Approach 

The objective of this study was to investigate the reasoning strategies people adopt when 

contemplating continuous causation. Specifically, I wanted to determine whether reasoning 

approaches relevant to learning probabilistic binary causal relations are also applicable to 

continuous causation. I concentrated my efforts on the difference concept of ΔP and the 

proportion concept of Power PC. To do this, and as a first step on my quest, I only considered 

situations where a binary cause produces a (deterministic) magnitude change on a continuous 

variable. This allowed me to set up situations that are one-to-one mappings of binary 

probabilistic causation to scenarios involving continuous outcomes. More specifically, in both 

cases the cause is still either present or absent, but instead of resulting in a change of probability 

of the outcome, it now affects the magnitude of the outcome. 

In probabilistic causation the (binary) cause results in a binary state-change across a 

group of entities; aggregating these state-changes across a sample results in an assessment of the 

change of probability of the effect brought about by the presence of the cause, which is of course 

a continuous variable bound between 0 and 1. In contrast, I considered changes of a continuous 

outcome magnitude in a single entity so that I could preserve exactly the same cognitive 

structure as in probabilistic causal inference tasks. As an example, a probability condition of 

P(e|c) = 0.75, which indicates that algae growth is present in 75 out of 100 pools given that all of 

them were treated with the mineral, was mapped onto a quantity condition of Q(e|c) = 75 m
2
, 

indicating that 75 m
2
 of a pool surface area was covered with algae. In short, I directly mapped a 

change of probability to a change of quantity of a continuous variable. 

I employed this direct mapping approach to study the relevance of the core concepts 

behind the ΔP rule (difference) and Power PC (proportion) in relation to continuous outcomes. 



       

 

11 

Let us review these concepts in the context of continuous outcomes using scenario 3 as an 

example. A direct mapping of this scenario onto a continuous outcome (I refer to this mapped 

scenario 3 as scenario 3C) results in mineral C producing algae growth in terms of surface area 

of a single pool. Before treatment with mineral C algae covered 25 m
2
 of the surface area of the 

pool, and this increased to 75 m
2
 after treatment with the mineral. Adopting the difference 

concept of the ΔP rule, the efficacy of mineral C can be inferred as 50 m
2
 algae growth. In 

contrast, by adopting the proportion concept of Power PC, the efficacy of mineral C can be 

computed by taking a proportion of the difference, 50 m
2
, relative to the maximum effect the 

mineral could have produced. The maximum efficacy, however, can only be computed if a limit 

of outcome magnitude is clearly defined. To address this problem, I imposed artificial limits in 

my experiments. For this scenario, because the continuous variable that I am considering is the 

area of the pool surface, the size of the pool defined the maximum area of the algae growth. If I 

defined the size (and hence the limit) as 100 m
2
, then the efficacy of mineral C using a 

proportion approach is 0.666, which is the ratio of 50 m
2
 to 75 m

2
 (100 m

2
 - 25 m

2
). This 0.666 

efficacy of mineral C is the same as its binary counterpart in scenario 3. 

Defining an upper limit of causal efficacy is only an issue for generative scenarios. As per 

the above example, mineral C can keep producing the magnitude of the effect to, theoretically, an 

infinite amount of square meter of algae if there is an infinite area of water surface. In the 

absence of knowing the theoretically possible maximum efficacy of mineral C (in this case the 

size of the surface area), the proportion strategy is incomputable. On the other hand, there is 

always a limit in preventive scenarios because a magnitude of zero exists naturally in any 

situation (as long as the variable of interest is measurable on a ratio scale). If I consider mineral 
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C as having a preventive capacity, then the maximum efficacy of preventive power can always 

be implied as a reduction to 0 m
2
, i.e. the complete wipe-out of algae growth in the pool.

1
 

1.2 Reasoning Strategies 

To demonstrate the relevance of difference and proportion strategies in reasoning about 

causal relations involving continuous outcomes, let us go through the following scenario 5. 

Imagine a new pool with a surface area of 100 m
2
, and algae have already covered 10 m

2
 of the 

surface. If I ask a reasoner: How big would the area covered by algae be, if the same mineral C 

from scenario 3C were administered into the pool? I could infer his or her reasoning strategy 

based on the answer given as follows: A reasoner who strictly uses a difference strategy should 

predict algae growth to an area of 60 m
2
. This is because, in scenario 3C, he or she has learned 

that mineral C has a difference-based efficacy of 50 m
2
. Therefore, given the initial area of 

growth was already 10 m
2
, the final area after the treatment should then be 60 m

2
. On the other 

hand, a reasoner who adopts a proportion strategy would firstly compute the potential maximum 

efficacy mineral C could have in this scenario as 90 m
2
 (100 m

2
 – 10 m

2
). Because he or she 

learned in scenario 3C that mineral C has an efficacy of 66.6%, in this scenario, it should also 

produce algae according to this proportion. Therefore, given that there are 90 m
2
 surface area 

remaining on which the mineral could cause growth, the reasoner would predict that it would do 

so on 66.6% of this area (i.e. 60 m
2
). Adding this to the already covered 10 m

2
 yields a predicted 

total surface area of 70 m
2
 covered with algae after treatment. 

Besides 60 m
2
 and 70 m

2
, another plausible prediction for scenario 5 is 30 m

2
: Reasoners 

might consider the efficacy of mineral C in terms of its capacity to multiply the covered surface 

                                                
1
 In binary probabilistic causation, as a comparison, the relevant limits are the probability of the effect, P(e) 

= 1 (the effect always happens) in generative scenarios, and P(e) = 0 (the effect never happens) in preventive 

scenarios. These probabilities provide the upper limit of maximal causal effectiveness: The maximum impact a 
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area relative to before treatment. A reasoner who adopts this strategy learnt that in scenario 3C 

mineral C tripled the area of algae growth from 25 m
2
 to 75 m

2
. Therefore in scenario 5, with the 

same efficacy, mineral C should also triple the algae growth from 10 m
2
 to 30 m

2
. I refer to this 

approach as the multiplication strategy. I am unaware of any discussions of a multiplication 

strategy in the literature, but my pilot studies suggested that some reasoners might adopt this 

approach. Even though the multiplication strategy surfaced only in the generative scenarios of 

the pilot studies, it makes sense in preventive scenario as well; hence the inclusion of this novel 

strategy alongside difference and proportion strategies in both generative and preventive 

scenarios of this investigation. 

The proportion strategy, unlike the other two strategies, requires reasoners to hold certain 

assumptions for it to be applicable (for an elaborate discussion on assumptions of Power PC, 

from which the proportion strategy was adapted, see Cheng, 1997). One of the critical 

assumptions is the assumption of independence: Reasoners assume that the candidate cause 

influences the effect magnitude irrespective of the influence of background causes. In other 

words, the influence of background causes is assumed to be constant in the ‘before’ and ‘after’ (or 

‘with’ and ‘without’) treatment cases. For example, for proportion to work, reasoners have to 

assume that the already existing influence of background causes on growth does not affect the 

influence that mineral C has on growth. 

Both the difference and multiplication strategies violate assumption of independence. 

People who adopt a difference strategy compute the influence of a candidate cause onto the 

effect as if the background causes have completed (and stopped) their influence on the effect 

magnitude before allowing the candidate cause to produce the change only onto the remaining 

                                                                                                                                                       
preventor could have would be to reduce the probability of the effect to 0, while the maximum impact of a generator 
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unaffected magnitudes. In other words, difference based reasoners think that the influence of the 

candidate cause and background causes onto the effect are mutually exclusive, which opposes 

the assumption of independence. For example, in scenario 3C, difference based reasoners would 

assume that the final outcome (75 m
2
 coverage with algae) can be perfectly apportioned into 

25m
2
 that were caused by background causes and 50 m

2
 attributable to the candidate cause, but 

would not consider that some portion of the 75m
2
 coverage is due to the influence of both the 

background and the candidate. 

Similarly, in the multiplication strategy, because reasoners assume an interaction between 

background causes and candidate causes, they also violate the assumption of independence that a 

proportion strategy requires. Multiplication reasoners consider the candidate cause more as a 

moderator than an independent cause. Consider this example involving also mineral C and algae 

growth. According to the multiplication strategy, instead of looking at the explicit influence of 

mineral C towards algae growth (how efficient is mineral C in producing algae growth?), they 

are concerned with the implicit influence of mineral C (how efficient is mineral C in interacting 

with the background causes in producing algae growth?). Therefore, they considered the efficacy 

of mineral C as how many times more the background causes produce the growth when 

interacting with mineral C relative to without interaction. 

Finally, besides these three strategies, the fourth possible approach for participants to 

make judgment would be to simply neglect the base rates (i.e. not considering the information of 

effect magnitude when the cause is absent). While this is not a reasoning framework per se, 

participants did have opportunity to opt for this, hence I included in the consideration during data 

analysis. Because this approach was the simplest to do, it was possible for participants to opt for 

this, especially when they were confused, or it was too difficult to adopt other strategies. For 

                                                                                                                                                       
would be to raise it to 1. 
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instance, to answer the question posted in scenario 5, participants who neglected base rate might 

simply responded that the area would be 75 m
2
 because in scenario 3C, Q(e|c) = 75 m

2
 after 

receiving treatment with mineral C, ignoring the specified 10 m
2 
base rate. 

1.3 Reasoning Situations 

A potential factor of reasoning strategy is the situation in which the information for 

reasoning comes from. In the previous scenario 3C, the situation was about one pool, and within 

this pool, the area of algae before treatment changed from 25 m
2
 to 75 m

2
 after the treatment 

with the mineral. In this situation, the magnitude change was presented within the same entity, 

but happened across different time frames, i.e. before-after treatment. 

Another possible situation would involve two different pools. In this situation, the control 

pool that does not receive any treatment serves as a reference to the other pool that receives 

treatment with the mineral. In other words, scenario 3C could be setup to be about two pools, in 

which the area covered by algae in the control pool would be 25 m
2
, while the area in the treated 

pool would be 75 m
2
. It is important to consider this, because reasoners might consider the base 

rate information (i.e. effect magnitude in the absence of candidate cause) might be less credible 

in the within- situation rather than a between-entity situation because the base rate effect 

magnitude was observable only in the between-entity. Consequently, this could trigger 

uncertainty to the constancy of the influence of background causes on the effect, which could 

lead a reasoning strategy that considers the interaction between the candidate and background 

causes (i.e. multiplication) to be more prevalent in a within- rather than a between-entity 

situation. 
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1.4 Strength vs. Structure 

Both ΔP-derived difference and Power PC-derived proportion strategies consider the 

strength of a causal relation as the basis of causal reasoning. Griffiths and Tenenbaum (2005), 

however, argue that causal inference is concerned with determining the structure that generates 

the evidence: Instead of reasoning how strongly a candidate cause produces an effect, people first 

consider whether or not a causal relation exists at all. Griffiths and Tenenbaum proposed a 

Causal Support model, based on causal graphical models, or causal Bayesian networks (Pearl, 

2000), to assess the causal structure between a candidate cause and an effect. The causal 

graphical model denotes any causal relation using nodes and arrows, with the nodes representing 

variables and the arrows representing causal connections between the variables. Nodes that the 

arrows are pointing to are referred to as “children” of the “parent” nodes where the arrow 

originates. Because this theory is based on Bayesian method, one of the critics is that it assumes 

that people are capable to apply holistic induction approach when there is evidence that people 

are holding onto heuristic approach (for details, see Gigerenzer & Todd, 1999). 

Representing the above examples in a causal graph involves three nodes: a mineral node 

(candidate cause), an algae node (effect), and a background causes node. The two competing 

graphs (hypotheses) in these examples would be a ‘mineral is non-causal’ graph, where only the 

background causes node is connected with the algae node and a ‘mineral is causal’ graph, where 

both the background causes and mineral nodes are linked with the algae node to represent the 

causal situation. The main idea of Causal Support is to measure the extent of data favouring the 

causal graph over the non-causal graph. Griffiths and Tenenbaum (2005) represent the index of 

this favouring using the Bayes factor, i.e. the log likelihood ratio of these two causal graphs: 

log
! !"#"|!"#$!!"#$"%

! !"#"|!"#$!!"!!!"#$"%
 . For binary causation, they specify the parameterization as noisy-OR 



       

 

17 

for generative scenarios and noisy-AND-NOT for preventive scenarios. For continuous 

causation, however, it is not clear what would be the most suitable parametrization. While 

Griffiths and Tenenbaum presented Poisson process parameterization in their paper, this was 

conducted to discuss the results of previous studies of using rates, i.e. the number of times a 

binary effect occurs in a continuous time interval (Anderson & Sheu, 1995; Wasserman, 1990). 

Even though in principle the idea of the structure model could be extended to apply the 

continuous outcome scenarios here, determining the appropriate parametrization (and thus also 

generating predictions), is beyond the scope of this study. Thus, I exclude the support model 

from my considerations. 

1.5 Notation 

I use the following notation when referring to any condition in all experiments of Chapter 2 and 

3: condition [Q(e|c):Q(e|¬c)]. The first represent effect magnitude in the presence of the cause, 

while the second term represent effect magnitude in the absence of the cause. Chapter 4 employs 

a different notation scheme. 
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Chapter 2: Empirical Investigation via Explicit Judgment 

In this chapter, I present my initial attempt on studying causal reasoning with continuous 

outcomes. All experiments in this chapter adopted the standard causal question. In other words, 

after providing participants with information on magnitude changes with respect to the presence 

and absence of a cause, participants were asked to provide a judgment about the extent to which 

they thought the cause influences the change of effect magnitude. 

2.0 Experiment Overview 

Two experiments in this chapter adopted the same basic design, and adapted the same 15 

conditions from Buehner et al. (2003). Originally, each of these conditions contained two bits of 

information capturing a simple relation between a binary cause and a binary effect. In this study, 

the first bit of the information, which originally corresponded to the probability of the effect 

when the cause was present P(e|c), was directly mapped to a continuous quantity of the effect 

when the cause was present Q(e|c). Analogously, the second bit of the information [originally 

corresponding to the probability of the effect when the cause was absent P(e|~c)], was directly 

mapped to the quantity of the effect when the cause was absent Q(e|~c). 

The selection of these conditions allowed for a rich investigation between difference and 

proportion strategies. Figure 2.1 displays predictions of the difference and proportion indices of 

these conditions plotted against the base rates. In these conditions, there are groups of conditions 

that share the same difference index. They are connected together with straight lines. To ease the 

discussion, I used a naming convention to reflect common difference indices: any condition with 

common difference indices also shares the same group name. The difference index of each group 

is written in subscript. For example, the non-contingent conditions were labelled C0.00, whereas 
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conditions [1.00:0.75], [0.75:0.50], [0.50:0.25], [0.25:0.00] received label C0.25. See Table 1.2 for 

a complete list of all conditions, organized by grouping. 

 

Table 1.2: Conditions for the experiments 

Condition Group 

Conditions 

Q(e|c) Q(e|¬c) 

C0.00 

1.00 1.00 

0.75 0.75 

0.50 0.50 

0.25 0.25 

0.00 0.00 

   

C0.25 

 

1.00 0.75 

0.75 0.50 

0.50 0.25 

0.25 0.00 

   

C0.50 

 

1.00 0.50 

0.75 0.25 

0.50 0.00 

   

C0.75 
1.00 0.25 

0.75 0.00 

   

C1.00 1.00 0.00 
Note: The conditions are displayed for generative experiments. For preventive experiments, the roles of Q(e|c) and Q(e|¬c) were 
reversed, such Q(e|c) ≤ Q(e|¬c) . 

 

The most apparent between these two strategies was the trend of the predictions. When 

predictions of the proportion strategy that had the same values of difference indices (i.e. in the 

same group) were connected, they formed upward trends in the contingent conditions, and flat 

lines in the non-contingent conditions (see Figure 2.1 for trends of the predictions). These trends 

showed the influence of base rates on the proportion strategy: for contingent cases in the 

generative scenario, as the base rate increases, proportion indices also increase, whereas in the 

preventive scenario, as the base rate increases, the indices decrease. In contrast, such influence of 



      20 

 

base rates is not evident for the difference strategy; hence, they formed flat lines in all conditions 

for the difference strategy predictions. 

Participants began by reading a cover story providing background and context 

information about the causal relation between the candidate cause and effect. Because the story 

accommodated all 15 conditions, it included clarification of variation between each condition. 

For each condition, participants received visual information of Q(e|c) and Q(e|¬c), and 

proceeded to the task. Participants were asked to give a strength rating for the cause in producing 

the effect by selecting a number on a scale of 0 to 10; with 0 indicating that the cause was 

absolutely ineffective in producing the effect, whereas 10 was otherwise. 

Besides qualitative inspection of trends in the data, I also adopted a statistical hypothesis 

testing method to the trend. Specifically, depending on the normality of distribution, I compared 

the means across the same group using ANOVA or Friedman’s Test procedure. Results from this 

test would reveal whether the trend was linear or otherwise. Linear trends indicated that 

participants response were independent of base rate, which the difference strategy predicts. 
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Figure 2.1: Plots of Predictions. Plots on the top and bottom correspond to the generative and preventive scenario, respectively. 

The dotted lines in the plots indicate predictions for the proportion strategy while the solid lines indicate predictions for the 
difference strategy.
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Experiment 2.1 

This first experiment aimed to compare judgments between directly mapped causal 

relations with their corresponding binary relations. Because of this, the experiments entailed four 

sections: generative-continuous, generative-binary, preventive-continuous, and preventive-

binary. Participants’ assignment to each section was determined randomly. 

2.1.1 Method 

Participants. 137 participants were recruited from a crowdsourcing platform, Maximiles. 

After completion, they received points which they could use for making purchases. Participation 

was limited to those whose English is their first language. 

Design and Procedure. Participants accessed this experiment via Internet. Once they 

provided consent on the first page of the experiment webpage, the server randomly assigned 

them to either one of the sections of this experiment: generative-continuous, generative-binary, 

preventive-continuous, and preventive-binary. They completed only one of these sections. The 

procedure of each section was the same, but with a different cover story (see Appendix A for 

complete cover stories). In every section, participants completed 15 conditions. 

For generative-continuous participants, they began by reading through a cover story 

about corn crops. The cover story told participants to imagine themselves as researchers of a 

study involving 15 different EU countries, each studied one fertilizer. The story continued by 

telling participants that in each country, there were two plots both with area of 100 meter square 

freshly sown with corn: the experimental plot received the fertilizer, whereas the control plot was 

left without any treatment. Participants were also told that at the end of the study, the area of 

usable corn crops were measured and recorded. After reading the story, participants received 

information for each condition in a visual format. The images consisted of two critical pieces of 
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information: the area of usable crop on the control plot, and on the experimental plot. The former 

information was on the right side, while the latter was on the left side of the display. 

Participants in generative-binary also received the same cover story. Instead of two plots, 

however, there were two sets of 20 plots freshly sown with corn. One set was declared as control 

(i.e. receive no treatment), whereas the other set as experimental plots (treated with the 

fertilizer). After reading the story, similar to the generative-continuous, participants in this 

section also received information for each condition in the same visual format: the image on the 

left portrayed number of plots with crop, whereas on the right were plots without usable crop. 

On the other hand, the cover story for participants in the preventive scenario was about 

chemotherapeutic agents in fighting tumours. To motivate the 15 conditions, participants were 

told that the study involved 15 laboratories, and each studied one chemotherapeutic agent. For 

continuous outcomes section, the story continued by telling participants that, also, in each lab 

were two mice with tumour grown in their brains. And the initial sizes of these tumours were 10 

micrometres cubic. One of the mice received treatment with the chemotherapeutic agent, 

whereas the other did not (control). Participants were also made known that at the end of the 

study the sizes of tumours were measured and recorded. When answering the condition, 

participants saw images of mouse brains: on the left side was the image of brain with certain size 

of the tumour after treated with the chemical agent, whereas on the right was image of the 

control brain with its original tumour size. 

For preventive-binary section, participants obtained the similar cover story with 

modifications: in particular the story explained that in each lab were two sets of 20 mice of 

which all of them had tumours. The first set was exposed to treatment whereas the other set 

remained untreated as control. After reading the story, similar to other sections, participants also 
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obtained the condition information in a visual format except the images were about 20 brains, 

some of which remained infected, whereas some were healthy. 

In all sections, underneath those images was the instruction: “Please provide a rating of 

the effectivity of this fertilizer [chemotherapeutic agent].” To make the rating, participants 

needed to choose a number from a range of 0 to 10, with 0 indicated “absolutely ineffective” and 

10 indicated “absolutely effective”. After that, participant went through the next condition. Each 

participant received different computer-generated random sequence of conditions. 

2.1.2 Results 

Histograms of the judgments revealed non-normal distributions for all sections. Because 

of this, I plotted the medians of each condition with respect to base rates. A qualitative 

observation of these plots revealed that for the generative-continuous section, the trend was 

neither close to the difference nor the proportion predictions (see Figure 2.1), particularly at 

condition groups C0.25 and C0.50, whereas trends for other conditions leaned towards the 

proportion strategy. For other sections (generative-binary, preventive-continuous, and preventive-

binary), the trends, qualitatively, followed prediction of the proportion strategy. 

Applying Friedman’s Test on the judgments revealed results that were in agreement with 

the qualitative observation for all sections except generative-continuous section. This is because 

Friedman’s Test on judgments for this section produced non-significant results for all group 

conditions: C0.00 (χ
2
(3) = 2.586, p = .460; C0.25: χ

2
(3) = 1.327, p = .723; C0.50: χ

2
(2) = 2.116, p 

= .347; and C0.75: χ
2
(1) = .167, p = .683. This non-significant trend indicated that the  majority of 

judgments were independent of base rate influence, which is also the prediction of the difference 

strategy. 
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Figure 2.1: Results for Experiment 2.1. The left plots correspond to continuous scenario, while the right plots refer to binary 
scenario. The top and bottom row respectively represents results of generative and preventive. 

 

For the generative-binary section, on the other hand, the test revealed that all group conditions 

had significant trends: C0.00 (χ
2
(3) = 16.121, p = .001; C0.25: χ

2
(3) = 1.416, p ≤ .001; C0.50: χ

2
(2) = 

17.487, p ≤ .001; and C0.75: χ
2
(1) = 18.615, p ≤ .001. The significant trend for condition group 

C0.00 was probably contributed by the non-normative medians of condition [0.50:0.50]. 

For the preventive-continuous section, the results were non-significant for group C0.00 

((χ
2
(3) = .698, p = .874) but significant for other groups: C0.25: χ

2
(3) = 33.915, p ≤ .001; C0.50: 
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χ
2
(2) = 24.844, p ≤ .001; and C0.75: χ

2
(1) = 23.516, p ≤ .001. Relative to the other sections, results 

of this section were the closet towards matching with prediction of the proportion strategy. 

For the preventive-binary section, the results were similar to its continuous counterpart 

except that results for group C0.00 were non-normatively significant ((χ
2
(3) = 14.532, p = .002) 

like the results of other groups: C0.25: χ
2
(3) = 35.693, p ≤ .001; C0.50: χ

2
(2) = 31.565, p ≤ .001; 

and C0.75: χ
2
(1) = 20.571, p ≤ .001. The non-normative trend for group C0.00 was probably due to 

conditions [0.25:0.25] and [0.50:0.50]. 

2.1.3 Discussion 

With respect to the significant results of groups C0.00 in the generative-binary and 

preventive-binary sections, while this seems to deviate from predictions of the proportion 

strategy, further scrutiny on distributions of these conditions revealed that the modal response 

was actually zero. Because of a minority of non-zero responses, and Friedman’s Test’s 

negligence of any overlap, the results for this condition were significant. 

Unlike in the preventive scenario where judgments of binary and continuous causation 

were in agreement (suggesting that the proportion was the dominant strategy,) in the generative 

scenario, only the binary section showed support for the proportion strategy. Most participants in 

the generative-continuous section opted for the difference strategy. 

One possible explanation for this discrepancy would be the issue of limit saliency. 

Because the maximum continuous magnitude of an effect is context dependent, it is non-natural, 

and maybe less intuitive. In this experiment, while the story mentioned that a fertilizer can 

generate growth to cover up to 100 meter square, which was the artificial limit, participants 

could think that its maximum efficacy on growth could be more, if it was given more opportunity 

with a bigger plot area, for instance. Because the proportion strategy was sensitive to the upper 
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limit, perhaps for participants reasoning using this strategy was less instinctive when the limit 

was non-natural. Consequently, they were more comfortable to adopt limit-independent strategy, 

the difference. 

This issue of limit is only applicable in generative-continuous section. Its preventive 

counterpart, however, does not have this issue because of its inhibiting nature. Even though in 

the preventive-continuous section the reasoning involves a deterministic entity as well, the 

maximum efficacy with which a cause can inhibit the magnitude of the effect would always be to 

zero. Regardless of any contexts, no continuous magnitude of effect can be reduced to be less 

than zero. For example, in the tumour situation, a cause can maximally impede the tumour until 

there was no more tumour, i.e. a magnitude of 0 micrometre cubic. Because of this, the results of 

the preventive-continuous mostly followed the proportion strategy. Experiment 2.2 continued the 

investigation by manipulating the saliency of the limit, specifically in generative scenario. 

Experiment 2.2 

This experiment aimed to examine whether saliency of limit influenced the judgment in 

generative scenario. To do this, I prepared two similar cover stories as the main manipulation of 

this experiment: one with a salient limit, whereas the other was not. 

2.2.1 Method 

Participants. 75 undergraduate students from the School of Psychology, Cardiff 

University participated to fulfil part of a course requirement. They had not been involved in any 

other experiments that were using the same cover story. 

Design and Procedure. Participants were randomly assigned into three sections: clear-

limit, no-limit, and binary. For all sections, participants received the same 15 conditions but 

different version of cover story. The first cover story was about a scenario without clear limit, the 
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second story put more emphasis on the limit and the third story was their binary counterpart as 

comparison. The general theme of these stories was about cloud seeding procedures. The stories 

explained that silver iodide was sprayed into clouds to initiate a merging process of tiny water 

drops, resulting in bigger and heavier drops that fall down as rainfall. The stories then described 

a project to study 15 chemical agents as alternative for silver iodide in the procedure. Involving 

15 countries, the cover stories further explained that each country studied only one chemical 

agent using two locations: at one location, researchers sprayed the clouds with the chemical 

agent, whereas the other location was reserved as control without any treatment. 

In the first cover story, the story continued by informing participants that the amount of 

rainfall at both locations was measured and recorded. In the second story, it additionally 

continued to inform participants that the relative humidity inside each of the areas was measured. 

To highlight the saliency of the limit, the story clarified that the maximum possible relative 

humidity is 100%, which means that humidity is so high that water will condensate and fall 

down as rain. In the third story, participants read that the study involved a selection of 20 

cumulus clouds at the experimental location, which received spray of the chemicals. Further, at 

the control location, another 20 clouds were observed as control. The story further explained that 

researchers in the study observed and recorded any cloud that produced rainfall in these two 

locations. For complete cover stories in this experiment, see Appendix A. 

In each section, after reading the cover story, participants received the first randomly 

presented condition. Information in each condition was presented in visual format consisting of 

images to represent effect magnitudes for base rate and post-treatment. Underneath these images, 

participants received the following instruction: “Please provide a rating of the effectivity of this 
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chemical agent.” To make the rating, participants had to chose a number from 0 to 10, with 0 

indicated the least strength. 

2.2.2 Results 

Qualitative observation on median plots for both limit sections revealed a similar trend 

between the two (see Figure 2.2): They both followed the difference strategy. The plot for the 

Binary condition, in contrast, showed more tendencies towards the proportion strategy. Trend 

analysis on these results further supported this argument. 

For the clear-limit section, Friedman’s Test produced non-significant results for all 

groups: C0.00: χ
2
(3) = .528, p = .676; C0.25: χ

2
(3) = .888, p = .828; C0.50: χ

2
(2) = 1.385, p = .500; 

and C0.75: χ
2
(1) = .500, p = .480. Results for the no-limit section were also similar where all 

groups were non-significant, C0.00: χ
2
(3) = 7.382, p = .061; C0.25: χ

2
(3) = .835, p = .841; and C0.75: 

χ
2
(1) = .818, p = .366 except for group C0.50: χ

2
(2) = .800, p = .018. Conducting the same test on 

judgments of the binary section produced non-significant results for groups C0.00: χ
2
(3) = 6.881, 

p = .076; and C0.25: χ
2
(3) = 7.214, p ≤ .065; but significant results for other groups: C0.50: χ

2
(2) = 

10.415, p = .005; and C0.75: χ
2
(1) = 9.000, p = .003. 
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Figure 2.2: Results for Experiment 2.2. The first row contains results for two sections of the experiment: the left plot corresponds 

to continuous-clear limit section, whereas the right corresponds to binary section. Underneath these plots are the results for 
continuous-unclear limit.  
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2.2.3 Discussion 

Contrasting results of clear-limit and no-limit revealed similar trends except for group 

condition C0.50 in the no-limit section. While the trend for this group went up as the base-rates 

increased (despite not significant) in the clear-limit, it significantly went down in the no-limit 

condition. Inspection of histograms for condition [0.50:0.00] in both cases exhibited the same 

modal response of 5 but it was noisier in the no-limit section resulting to higher median of 7. 

As for condition [0.75:0.25] in both limit sections, their histogram revealed a bimodal 

distribution where responses in accordance to the difference and proportion strategy were 

competing, surprisingly even in the no-limit section. Similar inspection for condition [1.00:0.50] 

exposed a more consistent modal response of 5 in both limit sections. In general, the judgments 

in both limit conditions were similar, suggesting that limit saliency might not be the major 

influencing factor. 

As for the binary section, the results did not exactly follow predictions of the proportion 

strategy, as in Experiment 2.1, especially the non-significant trend of C0.25. Further scrutiny on 

the distributions of conditions in this group revealed that the critical conditions were [1.00:0.75], 

[0.75:0.50] and [0.50:0.25]: For conditions [1.00:0.75] and [0.75:0.50], their distribution was 

bimodal indicating a competition between the difference and proportion strategy. Further, 

distribution for condition [0.50:0.25] was more complex because its modal response of 5 

matched with neither predictions of the difference nor proportion. 

Extended scrutiny of condition [0.50:0.25] in the clear-limit and no-limit sections, 

surprisingly, revealed similar phenomena to the binary section:the majority of judgments were 5, 

which matched with neither the difference nor proportion strategies. One potential explanation 

for this would be that participants might have thought that the chemicals and background causes 
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mutually-exclusively influenced the amount of rainfall. Thus, for this condition, they might 

consider the chemicals producing 25 units of rainfall, and background causes producing another 

25 units of rainfall. In other words, the candidate cause produced half of the rainfall, while 

background causes produced another half. Therefore, when asked to give a rating of causal 

strength of the candidate cause, participants might have considered 5, which was the half of 10 as 

the maximum possible effective rating of the scale. 

2.3 General Discussion of Chapter 2 

The first experiment in this chapter showcased a comparison of directly mapped 

continuous relations with their corresponding binary relations. The results revealed that the 

proportion strategy was dominating in both scenarios of binary causation, but dominated only in 

the preventive scenario of continuous causation. In the generative continuous section, in contrast, 

the majority of participants reasoned using the difference strategy. This signals asymmetry 

between the generative and preventive scenario when involving causal relations with continuous 

outcomes. Because the most apparent distinction between generative and preventive continuous 

relation was the issue of limit saliency, the second experiment focused on this issue. 

In the second experiment, I compared between-participants judgments between 

continuous causal relations with clear limit, and a relation with no limit. Also, I included their 

binary correspondence. In general, participants from both limit conditions responded to the task 

similarly. Two possible explanations for this were that there was really no influence of limit 

saliency, or the method of study did not successfully capture the influence. While the first 

argument is still open for discussion, the second argument already has support from the results of 

the binary section in Experiment 2.2. This is because, if the study method (i.e. a question asking 

participants to report causal strength) was sensitive, I expected that the proportion strategy 



      33 

 

should dominate the results, in line with the results of the binary generative section of 

Experiment 2.1. The inconsistency of results of the binary generative sections in Experiment 2.1 

and 2.2 signals an important issue with the current method (See Figure 2.3 for compilation of 

predictions and results for both experiments). Further, Buehner et al. (2003) have already 

identified the validity issue of this method. 

Specifically, the rating scale in these experiments and others (binary causation) might be 

ambiguous. The ambiguity might have led participants to be confused between reliability and 

strength, resulting in  conflation of these in their judgments. Moreover, Buehner et al. argued that 

the question asking for strength of a candidate cause is ambiguous with respect to the context of 

which the question appears to: i.e. whether the question was asking in the current learning 

context, or in a “counterfactual” context where alternative causes were absent. 

Buehner and colleagues argued that if participants interpreted the question in the 

experiments as “What difference does the candidate cause make in the current learning context 

where background causes already produce effect in a certain magnitude of the entity?”, they 

would response in accordance to the difference strategy; whereas, if participants interpreted the 

question as “What difference does the candidate cause make in a new context when background 

causes never produce effect?”, their judgments would correspond to the proportion strategy. 

 Hence, in Chapter 3, I continued the investigation by adopting this new approach. More 

specifically, in the empirical work of that chapter, instead of asking participants to report vague 

rating about strength of candidate cause, I asked them to produce estimate of effect magnitude a 

candidate cause could produce in a novel “what if …” scenario.  
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Figure 2.3: Predictions and Results for experiments in Chapter 2. The first row contains prediction plots. The left column plots corresponds to generative scenario, whereas the 

right column plots correspond to preventive scenario. 
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Chapter 3: Empirical Investigation via Hypothetical Judgment 

Research in binary causation has shown that intervention (versus observation) elicits 

better causal understanding between candidate cause and effect because intervention warrants 

only forward inference, whereas observation warrants both forward and backward inference 

(Sloman & Lagnado, 2005). A classic approach to elaborate on this would be to consider an 

example of a causal relation between smoking and yellow teeth. If a reasoner intervenes by 

smoking, then he or she should predict an increase of probability that his or her teeth would 

become yellow (i.e. forward inference is warranted). In contrast, if the reasoner whitens his or 

her teeth, this intervention has no influence over his or her smoking habit (backward inference is 

not warranted). This is because, when a reasoner intervenes, he or she is “undoing” the link of 

the effect with its normal cause. In contrast, observation has no such effect. Observing somebody 

with white teeth would suggest that he or she is less likely to be a smoker. In this case, backward 

inference does also make sense. 

Meder, Hagmayer, and Waldmann (2009) provided evidence that people are capable to 

derive interventional predictions from the unseen actions of observational knowledge. In the 

beginning of the article, they also discussed the difference between hypothetical intervention and 

counterfactual intervention: “The crucial difference between modeling hypothetical and 

counterfactual actions is that the latter require us to take into account the diagnostic information 

provided by the factual observation.” In other words, counterfactual intervention combines 

inferences from both observation and intervention. While the content presented in this chapter, 

arguably, might be more appropriately referred to as hypothetical, I used the term 

“counterfactual” throughout to be consistent with the literature, i.e. Buehner et al. (2003) who 

initially coined this term for this experimental approach. In addition, the study of Meder, 
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Hagmayer, and Waldmann indicated that people did not adequately distinguish between 

hypothetical vs. counterfactual intervention. 

The counterfactual judgment procedure in this chapter entails two stages: learning of the 

causal strength, and applying this knowledge to a novel counterfactual scenario. In the first stage, 

the reasoner acquires information through the observable evidence and forms an inference of the 

candidate cause’s strength in producing the effect via a specific reasoning strategy. When given a 

counterfactual scenario in which the candidate cause is acting on a new effect, the reasoner 

applies the learned causal knowledge to the counterfactual scenario to make a judgement about 

the (hypothetically) observed effect. One underlying assumption in this procedure is that the 

reasoning strategies in the learning stage and in the application stage are the same. Given that the 

general contexts and their scenarios between these two stages are so similar, it is reasonable to 

assume that people consistently use the same strategy in both stages. This chapter reports ten 

experiments, six of which concerned generative, and four preventive scenarios. 

3.0 Experiment Overview 

Similar to experiments in Chapter 2, all experiments in this chapter followed the same 

design involving the same 15 conditions, adapted from  Buehner et al. (2003). For discussion in 

this chapter, I will also use the same condition naming convention as in Chapter 2 (see Table 1.2 

for details). Thus, the predictions are also the same. See the first row in Figure 3.1 for the plot of 

the predictions for both the proportion and difference strategies. 

Participants began the experiment by reading a cover story that provided context and 

background information about the causal relation between the candidate cause and effect. This 

information reflected the reasoning situation for that particular experiment, either a within- or a 

between-entity situation. In a within-entity situation, the story included a setting where the 
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changes of the effect magnitude in the presence and absence of candidate cause happened in the 

same pool, whereas in a between-entity situation, the changes of effect magnitude were between 

two different pools.
2
 Because the story covered all 15 conditions, it also provided motivations for 

variations of base rates across the conditions. In the mineral-algae story example, different 

microclimates at different laboratories justified the differences between base-rates between the 

conditions. In generative scenarios, participants also received a rationale for the artificial limit. 

For the mineral-algae example, because the magnitude of algae growth was measured in terms of 

the area of water surface of the pool covered by algae, the size of pool surfaces served as the 

artificial limit in the example. The story ended with an overview of the task that participants 

needed to do (see Appendix A for the full list of cover stories for all experiments). 

 

                                                
2
 see Chapter 1 for details between these two reasoning situations (within- vs. between-entity) 
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Figure3.1: Plots of Predictions. Plots on the top and bottom correspond to the generative and preventive scenario, respectively.  

The left and right columns contain the plots for the consistent limit and higher limit, respectively. The dotted lines in the plots 
indicate predictions for the proportion strategy while the solid lines indicate predictions for the difference strategy. 

 

For each condition, participants obtained information about effect magnitudes with and 

without the candidate cause. In the above example, this information corresponds to the initial 

algae coverage of 25 m
2
, and its increment to 75 m

2
 after receiving treatment of mineral C. Then, 

participants received a question asking them to imagine a new entity with the same artificial limit 

as in the story (in the generative scenario only), i.e. a new pool with 100 m
2
 surface area. The 

question continued by mentioning a specific base rate (depending on conditions), and asking 

participants to specify the magnitude of the effect if the candidate cause presented in that 

condition were applied to this new situation. For example, participants could be told that 10 m
2
, 

of the 100 m
2
 area of the new pool was already covered with algae, and then be asked to compute 

the area of algae covering the pool if the same mineral C were administered to this pool. After 

the question, participants received a second question. The second question replicated the first 

question but with a higher artificial limit than mentioned in the cover story, e.g. 500 m
2
. The use 

of two limits in this procedure afforded a deeper investigation of the reasoning strategy, as 

explained below. 



      39 

 

The example beginning of this chapter demonstrated an upper limit for causal influence 

that was consistent with the learning scenario (i.e. the size of the pool in the counterfactual 

judgment scenario was identical to that used in the learning situation). The second question for 

this example would be: How big would the area covered by algae be, if the same mineral C from 

scenario 3C in Chapter 1 were administered into a new pool with 500 m
2
 surface area? In this 

question, the new limit was set higher to 500 m
2
. For a reasoner who strictly adopts the 

difference strategy, this higher limit should make no change to his or her judgment relative to the 

original limit (i.e. with efficacy of 50 m
2
, given the initial area was already 10 m

2
, the judgment 

should also be 60 m
2
). On the other hand, a proportion-based reasoner should respond to this new 

limit with different judgments relative to the original limit. He or she should first compute a new 

potential maximum efficacy mineral C could have in this scenario as 490 m
2
 (500 m

2
 – 10 m

2
). 

The final judgment would then be an addition of 326.63 m
2
 (i.e. 66.6% efficacy of mineral C in 

scenario 3C from the new potential maximum efficacy of 490 m
2
) to the already 10 m

2
 (326.63 + 

10 = 336.63 m
2
).  From this example, it is clear that proportion-based judgments should be 

influenced by variations in limit, whereas difference-based judgments should not. Thus, having 

two limits provided more room to further probe the strategies participants adopted. 

I pursued three analyses on the judgments to identify which strategy (proportion or 

difference) was dominant. The first and third employed a statistical hypothesis testing approach, 

while the second analysis involved qualitative inspection of the results. 

3.0.1 Trend Analysis 

This was the ubiquitous approach in the binary causation literature. The key to this 

conventional approach was the checking for trends in the data, particularly in conditions from the 

same groups, to see which trends (if any) from the predictions (see Figure 3.1) manifested in the 
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data. Because this approach relied on a central tendency measure, it is predicated on the 

assumption that there is (only) one dominating strategy. If there are competing strategies, and 

participants do not consistently apply them between conditions, or some participants adopt one, 

and others the other strategy, then the distribution of data may be bi-modal or even multi-modal; 

hence any approach based on a measure of central tendency will be compromised. Relying only 

on trends across all conditions for a verdict a dominant reasoning strategy could be problematic 

in this case. 

3.0.2 Histogram Analysis 

While I still used trend analysis on the data, mainly for the purpose of comparison with 

the literature, I also adopted another approach to supplement it. The main idea of this analysis 

was still to compare the judgments to the predictions, but rather than focussing only on central 

tendency, this considered the distribution of all judgments values. Figure 3.2 plots the predictions 

of each condition as expressed under this approach. In this figure, grey bars marked predictions 

for the difference strategy, black bars marked predictions for the proportion strategy, and white 

bars marked predictions for base rate neglect. In some conditions, all of the predictions 

converged (fully-overlapping, marked by gradient bars), whereas in other conditions, they were 

perfectly distinguishable (non-overlapping); there were also conditions where two predictions 

converged (partial-overlapping). Because this approach is based on histograms, determination of 

the bin sizes that define the histograms has to be sensible and systematic. For the 15 conditions 

of the experiments reported in this chapter, I have chosen the bin size to be 0.42, 2.08, 4.17, and 

20.83 for experiments of which the range of judgments vary from from 0 to 10, to 50, to 100, and 

to 500, respectively. See Appendix B for discussion on selecting these bin sizes. 
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3.0.3 Tendency Analysis 

Besides these, I adopted another approach to analyse each participant’s tendency for 

adopting a particular strategy. More specifically, I used each participant’s judgments to derive 

three scores, indicating tendencies to adopt the difference, the proportion strategy, or base rate 

neglect: Any judgment that ‘matched’ the prediction of a particular strategy contributed one mark 

towards the score of that strategy.
3
 The average of each score computed over the 15 conditions 

represented the tendency of a participant to use that strategy (Note that for the proportion 

strategy, the tendency score was computed by averaging only over 14 conditions, because for the 

15
th

 condition, the prediction is undefined: i.e. for generative it was when Q(e|¬c) = 1.00, while 

for preventive, it was when Q(e|¬c) = 0.00). For the purpose of simplicity, I conducted this 

analysis only towards data of the consistent limit condition. 

 

 

                                                
3
 For the purpose of this analysis, I defined ‘matching’ as being within ± 4.17% from the prediction. See 

Appendix B for discussion on this gamut definition. 
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Experiment 3.1 

Experiment 3.1 examined reasoning about continuous outcomes in a generative scenario 

using the counterfactual judgment approach, as outlined above. In this experiment, the context 

was about skin rash as side effect of cosmetic creams. 

3.1.1 Method 

Participants. 30 undergraduate students from the School of Psychology, Cardiff 

University participated to fulfil part of a course requirement. Those who have participated in 

other experiments that used similar cover story as in this experiment were not allowed to 

participate. 

Design and Procedure. Each participant worked on the 15 conditions listed in Table 1.2. 

Prior to the actual judgment task, participants were presented with a cover story about a study of 

skin rash as a side effect from the use of cosmetic creams. The story described 15 laboratories 

(corresponding to 15 conditions) that took part in the study; each studied only one cream on a 

patient. Participants were told that there were patients who already had rash even before the 

study and that at the beginning of each study, the area of skin rash on each patient’s back prior to 

any application of the cream was measured, followed by the application of the cream to cover 10 

centimetres squares of the skin area; an hour after this, the area of skin rash was re-measured.  

After reading the story, participants went through each condition in the judgment task. 

The information pertaining to each condition, i.e. the magnitude of skin rash before and after 

treatment, presented visually using a silhouette of a man with a certain area marked as skin rash. 

This presentation involved three columns (see Figure 3.3 for a screen capture): the silhouette in 

the left column indicated the skin area before treatment, and was accompanied by the text “The 

cream was applied on an area of 10 cm
2
 on the patient’s back. X cm

2
 of this area was already 
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covered by rash before the cream was applied.”, whereas the right column portrayed the skin 

area after treatment, and was accompanied by the text “After one hour, Y cm
2
 of the 10 cm

2
 area, 

where cream was applied, was covered by rash.” In addition, a central column showed the legend 

of skin area when it was completely covered, or not covered at all with rash.  

Underneath this visual presentation, participants received the following instruction: “Now 

imagine a new patient who does not have any skin rash. If we applied this cream on the back of 

this patient to cover an area of 10 cm
2
, how big would the area of skin rash be on this patient 

after one hour?” Participants had to make the judgment by entering numbers from 0 to 10 in an 

empty box provided on the screen. After submitting their judgment, participants received another 

question with the same wordings except the area of 10 cm
2
 was replaced with 50 cm

2
. This time, 

participants had to type in their judgments from 0 to 50 in the empty box. Participants went 

through the same process in the same visual format across all conditions. 
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Figure 3.3: Screen capture of condition [0.75:0.25] in consistent limit condition for Experiment 3.1 

3.1.2 Results 

Figure 3.2 shows the distribution of judgments for each condition for both limits. 

Because some distributions were quite skewed, the trend plot analysis used the medians instead 

of the means. Comparing the trend plots of the medians (Figure 3.4) with the prediction plots 

(Figure 3.1), qualitatively, both the consistent and higher limit plots followed the flat lines trend. 

Friedman’s test on the consistent limit judgments produced a significant result only for group 

C0.00 (χ
2
(3) = 14.679, p = .002),

4
 and non-significant results for other groups (C0.25: χ

2
(3) = 7.043, 

p = .071; C0.50: χ
2
(2) = .228, p = .892; and C0.75: χ

2
(1) = 1.190, p = .275). For the higher limit 

condition, the same test also produced a significant result only on judgments for group C0.25 

(χ
2
(3) = 12.991, p = .005), and non-significant results on other groups (C0.00: χ

2
(3) = 6.300, p 
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= .098; C0.50: χ
2
(2) = 1.357, p = .507; and C0.75: χ

2
(1) = 1.087, p = .297).  The absence of slopes 

in conditions sharing the same base-rate suggests that participant’s judgments were based on 

assessing the difference between Q(e|c) and Q(e|~c), rather than a proportion. 

 

Figure 3.4: Results for Experiment 3.1. The left plot refers to consistent limit, while the right plot refers to higher limit condition. 

 

Results from the histogram analysis also agreed with the trend analysis. In all conditions, 

the highest number of judgments reflected a difference strategy, despite overlapping with the 

proportion strategy in eight of the conditions.  

Results from the tendency analysis further supported this claim: Base rate neglect had the 

lowest mean score (M = .24, SD = .02), followed by the proportion strategy (M = .40, SD = .03). 

The highest mean score was for the difference strategy (M = .69, SD = .05). A Greenhouse-

Geisser corrected ANOVA showed a significant effect of strategy F(1.22,35.39) = 72.12 , p 

≤ .001. Bonferroni post hoc test further revealed that the score for base rate neglect was 

significantly lower than difference (p ≤ .001) and proportion (p ≤ .001) strategies. The difference 

between the difference and proportion strategy scores was also significant (p ≤ .001). 

                                                                                                                                                       
4
 Despite being a flat line, this results is significant. I explain in the discussion below. 
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3.1.3 Discussion 

In the trend analysis, any significant result of Friedman’s test indicates that the conditions 

were all not the same; while the proportion strategy predicts that they should be different in the 

contingent conditions (because of the upward trend), the difference strategy would predict that 

they are all the same. In other words, the significant trend for group conditions C0.00, would 

suggest that the results for conditions in this group were different despite being observed as a flat 

line. 

Further inspection of the judgment distributions of this group (see histograms in Figure 

3.2) revealed that (i) the modal responses were referring to zero; (ii) and there were minority 

judgments other than zero. Because Friedman’s Test neglects judgments that were ties (i.e. the 

majority of zeros judgments), the significant results were driven by those minority judgments 

that exhibit an outcome density effect (Buehner et al., 2003). In binary causation, outcome 

density effect refers to judgments that follow the measurement of probability of effect being 

present regardless of the presence of candidate cause, i.e. P(e). 

In the higher limit scenario, although the lines were flat, suggesting use of the difference 

strategy, the judgments themselves deviated from the difference strategy prediction. If 

participants strictly made judgments in line with the difference strategy, the magnitudes of 

judgments in the higher limit scenario would range from 0 to 10, adhering to the absolute 

differences principle in the prediction. In contrast, the judgments were scaled-up to 

accommodate the new, higher limit. In short, participants did adopt a difference strategy in this 

experiment, as corroborated by all of the analyses, but they were also attentive towards the role 

of limit: They considered the influence of the limit by scaling their judgments using the same 
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scaling factor between the learned limit and the counterfactual limit (in this experiment, it was a 

factor of 5 to scale 10 cm
2
 to 50 cm

2
). 

One concern in  this experiment, however, was the plausibility of the cover story. From 

the story, participants were aware that the researcher in the story would initially measure the rash 

area, apply the cream, and re-measure the area where rash has broken out. This situation was 

reasonable in conditions with base rates of zero, but not in conditions with non-zero base rates. 

This is because, in these conditions, the story would then suggest that after the initial 

measurement of the rash area, the researcher would apply the cream even on top of skin that had 

already broken out with rash. While this make sense if the cream was to heal the rash, it does not 

when the idea of applying the cream was to study its side effect of skin rash, as in this story (for 

the complete text of the story, see Appendix A). Experiment 3.2 aimed to address this concern. 

Experiment 3.2 

Experiment 3.2 was a replication of Experiment 3.1 but using a different cover story to 

address the concern of the cover story in Experiment 3.1. Specifically, the cover story explained 

that after the initial measurement of skin rash area, the cream was applied even when the skin 

was already broken out with rash. This is implausible as the study mentioned in the story aimed 

to measure skin rash as a side effect of the cream. Thus, in this experiment, participants 

experienced a new cover story of fertilizers influencing crop growth in the same counterfactual 

judgment format as in the previous experiment. 

3.2.1 Method 

Participants. 30 undergraduate students from the School of Psychology, Cardiff 

University participated to fulfil part of a course requirement. The same exclusion criteria with 

Experiment 3.1 were adopted in this experiment. 
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Design and Procedure. This experiment used the same 15 conditions (see Table 1.2). 

The cover story was adapted from Experiment 2.1 in Chapter 2 (i.e. influence of fertilizers on 

crops growth), with some modifications at the end of the story to reflect the counterfactual task 

that participants needed to do. Specifically, the last paragraph was changed to this: “For each 

fertilizer, we are asking you to consider how effective you think it is in promoting corn yield. To 

do so, we are asking you to imagine a new field of freshly sown corn that would show no yield in 

the absence of fertilizer. We are then asking you to imagine how much of that field would yield 

corn, once the fertilizer would be applied.” 

 

Figure 3.5: Screen capture of condition [0.75:0.25] in consistent limit condition for Experiment 3.2 

Similar to Experiment 3.1 of this chapter, after reading the story, participants received 

information for each condition in a visual format, consisting of three columns as in the previous 

experiment. The left column portrayed the area of usable crops on the experimental plot, while 

the right column portrayed the area of usable crops on the control plot. The middle column 
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showed the legend of the area of a plot completely filled with harvestable corn crops, and of a 

completely barren plot, i.e. no crop growth (see Figure 3.5 for a screen shot). Underneath these 

images was the judgment question: “Now imagine a new corn field of 100 meters square. In the 

absence of any fertiliser, the yield on this new field would be 0 meters square. If we apply this 

fertiliser on this new field, what would the yield be?” Participants had to give judgment by filling 

in an empty box with numbers from 0 to 100. The higher limit question followed after that 

changing the limit of the corn plot to “…a new corn field of 500 meters square… .” After that, 

participant went through the next condition. 

3.2.2 Results 

Distribution of the results required consideration of the median for the trend analysis plot 

(see Figure 3.6). Qualitative comparison of these plots with the prediction plots in Figure 3.1 

suggests that participants did not adhere to a single strategy: For the consistent limit, judgments 

for conditions C0.50 and C0.75 clearly reflected the difference strategy. Judgments for conditions 

C0.25, indicate a noisier difference strategy because of its non-linear tendency at higher base rates. 

Conditions C0.00, on the other hand, most closely reflected neglect of base rates. Friedman’s test 

on these judgments supported this observation where all trends were non-significant (i.e. χ
2
(3) = 

7.043, p = .071 for group C0.25; χ
2
(2) = .228, p = .892 for group C0.50; and χ

2
(1) = 1.190, p = .275 

for group C0.75) except for group C0.00 (χ
2
(3) = 14.679, p = .002). For the higher limit, only 

judgments for conditions C0.50 indicated a difference strategy. Conditions C0.75, in contrast, did 

not fit in any predictions. The other conditions suggested judgments corresponding to base rate 

neglects. Friedman’s test on these judgments produced all non-significant results (i.e. χ
2
(3) = 

6.300, p = .098 for group C0.00; χ
2
(2) = 1.357, p = .507 for group C0.50; and χ

2
(1) = 1.087, p 

= .297 for group C0.75) except for group C0.25 (χ
2
(3) = 12.991, p = .005). 
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Histogram analysis on the data revealed that participants made judgments that seem to 

suggest base rate neglect. This was evident in histograms for all conditions, including in 

conditions C0.50 (despite trend analysis suggestion of difference strategy). 

Tendency analysis unveiled a significant main effect (Greenhouse-Geisser corrected) of 

the three scores, F(1.12, 32.41) = 7.28, p = .01. The mean score for base rate neglect was M 

= .60, SD = .05, for the proportion strategy was M = .44, SD = .03, and for the difference strategy 

was M = .40, SD = .04. Bonferroni post hoc test further revealed a significant difference between 

the base rate neglect score and both the difference (p = .002), and proportion score (p = .039). 

The difference of scores between the difference and proportion scores, however, was not 

significant (p = .86). 

 

Figure 3.6: Results for Experiment 3.2. The left plot refers to consistent limit, while the right plot refers to higher limit condition.  

 

3.2.3 Discussion 

The less consistent results between trend analysis and histogram analysis appear to be 

rooted in trend analysis’s reliance of medians.
5
 Nonetheless, in general, the majority of 

participants in this experiment simply neglected the base rate when making judgments. This was 
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clearly captured in the tendency analysis. A possible explanation for participants’ neglected base 

rate would be because of the ambiguous link between the base rate information (i.e. control plot), 

and post-treatment information (i.e. experimental plot), weakening the role of the control plot: 

The context of the cover story was outdoors, hence allowing for other variables, such as 

microclimate and temperature, to influence the study and thus weakening in the link between the 

two plots. Participants might simply have ignored information about the control plot and focused 

only on the experimental plot. Further, my reassessment of the cover story suggested that if 

participants were focusing only on the experimental plot, they were likely to use zero as the base 

rate in their reasoning. This is because of one of the sentences in the cover story that says “… an 

experimental plot of 100 meters square, freshly sown with corn …”. From the word ‘freshly’ in 

the sentence, it would make sense to imply zero as the base rate on the experimental plot. 

Consequently, their judgments reflected base rate neglect. 

In scientific experimental design, the design of this cover story was referred to as a 

between-entity design, i.e. having a control and experimental entity. An alternative to this would 

be a within-entity design where the same subject experienced both before and after treatment 

situations. A parallel setting for this cover story would be to have only one seeding plot and 

subject it to a before-after setting. The growth on the plot could be initially measured (i.e. the 

base rate), and re-measured after the application of treatment. Because the same entity 

experienced both situations (i.e. base rate and treated), the issue of a weak link between these 

two magnitudes could be addressed. Thus, having a within entity design would make participants 

less likely to ignore the base rate information. A problem, however, was that it would be 

unrealistic to apply this design in this story: to let the crop grow and be measured, applying the 

                                                                                                                                                       
5
 See beginning of this chapter for an explanation of issues with trend analysis including its use of central 

tendency measure. 
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fertilizer, and making the second measurement on the already grown crops. To test this within 

entity design, Experiment 3.3 adopted a new cover story accommodating this design principle. 

Experiment 3.3 

This was the first experiment using a within-entity setting. The aim was to test whether 

the between-within-entity manipulation influenced which judgment strategy people would adopt, 

particularly with respect to the neglect of base rates during the judgment. Because it was less 

realistic to use the same story from Experiment 3.2 in a within-entity setting, this experiment 

used a new story about the influence of chemicals on algae growth. 

3.3.1 Method 

Participants. 88 participants recruited via Amazon Mechanical Turk, and each received a 

payment of $0.60 at the end of the task. Participations were limited to only those whose first 

language were English, and were only from the United States.
6
 

Design and Procedure. This within-subject experiment utilised the same 15 conditions 

as the previous experiments. The cover story in this experiment began with a motivation for 

studying the effect of chemicals on algae growth in a natural environment. Participants were told 

that the study involved 15 different labs, each of which was built nearby a different natural water 

reservoir to study only one chemical. The lab was described to consist of an indoor pool with 

surface area of 100 meter square into which water from the nearby reservoir was pumped. The 

story continued by explaining the process of the study that began with the initial observation of 

algae growth inside the pool, after which the entire surface was sprayed with the chemical; two 

                                                
6
 All experiments in Chapter 3 and 4 that employed Amazon Mechanical Turk went online under different 

Batch (hence different time) but using the same Project (which could also be referred to job/task). Because these 

experiments were in the same Task, only unique participants were able to participate across experiments despite 

different batch (i.e. time). This was the control mechanism to avoid duplication of participation across experiments. 
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weeks after this, a second observation of algae growth was then taken (see Appendix A for the 

cover story). 

Participants proceeded with the first condition after going through the story. The 

information for each condition, i.e. the area covered by algae before and after treatment, was 

presented in the same visual format as in the previous experiment: Three columns where the right 

column portrayed the area before treatment with the chemical, while the left column portrayed 

the area after the treatment. The middle column was reserved for the legend showing the surface 

area if it was completely filled with algae, and if it was completely empty. The question 

underneath was “Now imagine another pool filled with water from a different lake and a surface 

area of 100 meters square. None (i.e. 0 square meters) of the 100 square meter surface of the 

pool is covered with algae. If we apply this chemical substance on this new pool, how much of its 

area would be covered by algae after two weeks?” Participants answered this by typing in an 

empty box that only allows numbers from 0 to 100. Following this question was the second-limit 

question worded exactly the same but replaced with “500 meters square” whenever there was 

“100 meter square”. After these questions, participants proceed with the next condition, in the 

same format. 

3.3.2 Results 

Figure 3.2 shows a skewed distribution of the data. Thus, the trend analysis used medians 

in the plots (Figure 3.7). Comparing this plot with prediction plots (Figure 3.1), no single 

strategy was evident to be the dominant. In the consistent limit plot, only conditions C0.75 and 

C0.50 could be considered flat, suggesting use of the difference strategy. While judgments of 

conditions C0.00 followed strictly a base rate neglect pattern, judgments of conditions C0.25 had 

indication of both difference and base rate neglect. For the higher limit, the pattern was cleaner, 
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where both conditions C0.25 and C0.50 were obviously reflecting difference strategy. Conditions 

C0.75 and C0.00 in contrast, did not fit with any prediction. Further analysis using Friedman’s Test 

on the judgments revealed significant results for all groups in the consistent limit case (C0.00: 

χ
2
(3) = 109.844, p ≤ .001; C0.25: χ

2
(3) = 77.411, p ≤ .001; C0.50: χ

2
(2) = 47.294, p ≤ .001; C0.75: 

χ
2
(1) = 8.018, p = .005), as well as in the higher limit (C0.00: χ

2
(3) = 83.489, p ≤ .001; C0.25: χ

2
(3) 

= 76.365, p ≤ .001; C0.50: χ
2
(2) = 22.691, p ≤ .001; C0.75: χ

2
(1) = 6.582, p = .010).  

 

Figure 3.7: Results for Experiment 3.3. The left plot refers to consistent limit, while the right plot refers to higher limit condition. 

 

The histogram analysis revealed a complex pattern of results: Excluding five fully 

overlapping conditions, six of the conditions were dominated by base rate neglect strategy, and 

four of the conditions were dominated by difference strategy. The proportion strategy dominated 

in two conditions that were partially overlapped with base rate neglect. Tendency analysis in the 

data revealed a significant main effect of the three scores, F(1.12, 97.00) = 5.49, p = .018 after 

Greenhouse-Geisser correction. Base rate neglect had the highest mean score (M = .53, SD 

= .03), whereas proportion strategy had the lowest (M = .42, SD = .02). Difference strategy 

meanwhile had mean score of M = .46, SD = .03. Further Bonferroni post hoc tests, however, 

unveiled that only the difference of scores between base rate neglect and proportion was 
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significant (p ≤ .001), whereas the others were not (p = .340 for difference of base rate neglect 

score and difference score, and p = .465 for difference of proportion score and difference score). 

3.3.3 Discussion 

Similar to Experiment 3.1, the significant results of Friedman’s Test to the flat lines of 

conditions C0.75 and C0.50 in the consistent limit and conditions C0.25 and C0.50 in the higher limit 

were perplexing. Further inspection of the distributions (c.f. Figure 3.2) revealed that they were 

bi-modal. Because the test relies on central tendency (i.e. mean of the ranks of the judgments), it 

thus poorly captured the results. 

Base rate neglect, while still the dominant strategy in this experiment, was less intense 

than in Experiment 3.2. This suggested that a within-entity setting provided better link between 

base rate and treated magnitudes because both magnitudes information came from the same 

entity. Another competing explanation for the results would be the influence of context, which 

was algae growth in this experiment instead of crops growth in Experiment 3.2. In this 

experiment (algae context), the situation was described as taking place inside laboratories instead 

of outdoors as in Experiment 3.2’s crops growth context, hence other variables were better 

controlled. To address this competing argument, Experiment 3.4 adopted this same algae context 

but using a between-entity setting as in Experiment 3.2. To deal with variability that could be 

associated with other uncontrollable factors, such as microclimate and temperature in 

Experiment 3.2, the cover story described that both control and experimental pools were using 

water from the same source. 
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Experiment 3.4 

This experiment was a replication of Experiment 3.3, but using a between-entity setting. 

The objective of this experiment was to study whether situation (within-entity vs. between-

entity) or context was more influential to the judgments, in particular the base rate neglect. 

3.4.1 Method 

Participants. 18 undergraduate students from the School of Psychology, Cardiff 

University participated to fulfil part of a course requirement. The same exclusion criteria from 

Experiment 3.1 were adopted. 

Design and Procedure. This experiment replicated Experiment 3.3 except with some 

changes on the cover story to reflect the between-entity situation. Specifically, the story informed 

participants that within each lab, there were two indoor pools (instead of only one pool in 

Experiment 3.3): one pool was reserved as control and received no treatment, whereas the other 

pool was sprayed with the chemical. After going through the story, participants proceeded with 

the conditions that were presented in the same format as in Experiment 3.3. In each condition, 

participants also had to answer two questions of which the first question corresponded to the 

consistent limit with the story (100 meter square), while the second question used a higher limit 

(500 meter square). 

3.4.2 Results 

Trend analysis used medians in the plots because the distribution was skewed (see Figure 

3.8). For the consistent limit, the plot clearly indicated base rate neglect in all conditions. For the 

higher limit, the trend was more complex: besides a trend for conditions C0.75, which hinted at 

base rate neglect, and conditions C1.00, which hinted at a strict difference strategy, the remaining 

trends were not clear. Friedman’s Test on the judgments for both limits suggested agreement with 
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the observation as all results were significant: for the consistent limit, C0.00: χ
2
(3) = 16.339, p 

= .001; C0.25: χ
2
(3) = 18.496, p ≤ .001; C0.50: χ

2
(2) = 11.261, p = .004; and C0.75: χ

2
(1) = 12.000, p 

= .001; and for the higher limit, C0.00: χ
2
(3) = 20.042, p ≤ .001; C0.25: χ

2
(3) = 11.396, p = .010; 

C0.50: χ
2
(2) = 7.091, p = .029; and C0.75:χ

2
(1) = 11.000, p = .001. 

 

Figure 3.8: Results for Experiment 3.4. The left plot refers to consistent limit, while the right plot refers to higher limit condition. 

 

Histogram analysis produced results that also supported base rate neglect as the dominant 

strategy in all conditions. As for the higher limit, the base rate neglect judgments were observed 

in two ways: either in a strict neglect (e.g. neglected 25 m
2
, and opted 75 m

2
 in [0.25:0.75] 

condition), or scaled neglect (e.g. neglected 125 m
2
, and opted 375 m

2
 in [0.25:0.75] condition). 

Tendency analysis on the data indicated a non-significant main effect of the scores after 

Greenhouse-Geisser correction, F(1.08, 16.15) = 2.19, p = .157. 

3.4.3 Discussion 

Even though trend and histogram analyses suggested that base rate neglect was the 

dominant strategy, tendency analysis showed that this main effect was non-significant. Thus, in 

this experiment, all strategies were equally competing to be the most prominent. Even though the 

same algae context was used in both this experiment and Experiment 3.3, the inconsistency of 
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the results across these experiments indicated the influence of having the information in 

between-entity, instead of within-entity as in Experiment 3.3, over the context. On the other 

hand, despite adopting the same between-entity situation like in Experiment 3.2 the inconsistent 

result of this experiment with that experiment suggested the influence of context, over situation 

(i.e. algae vs. crop). Nonetheless, the results of this experiment still showed relatively high score 

of base rate neglect. 

Another way of looking at base rate neglect was that participants were simply copying 

the magnitude of the effect after receiving treatments. This act of copying was the simplest 

strategy because of the base rate used in the question was the same as in the cover story. 

Including this experiment, all experiments used this setting. Thus, to go forward with the 

investigation, I continued the following experiment by making the base rates in the cover story 

and in the questions dissimilar. 

Experiment 3.5 

This experiment adopted the same design as in Experiment 3.3, i.e. within-entity. The use 

of within- instead of between-entity was because in within-entity situation, the story was simpler 

and less cognitive demanding. By making the base rate in the cover story and in the question to 

be dissimilar, participants were required to put more effort when making judgment. This 

probably would address the issue of base rate neglect that was noteworthy in previous 

experiments. 

3.5.1 Method 

Participants. 63 participants, recruited via Amazon Mechanical Turk, participated for a 

small reimbursement ($0.60). The same exclusion criteria from Experiment 3.3 were adopted in 

this experiment. 
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Design and Procedure. This experiment duplicated the same Experiment 3.3 with a new 

manipulation in the judgment question. The new question was “Imagine a pool filled with water 

from a different lake and a surface area of 100 meters square. Further, imagine that when you 

arrive at the site, 25 square meters of the 100 square meter surface of the pool is already covered 

with algae. If we apply this chemical substance on this new pool, how much of its area would be 

covered by algae after two weeks?” In this new question, participants were informed that the 

base-rate of the counterfactual pool was 25 meter square, instead of 0 meter square in all 

previous experiments. The rest of the procedure was exactly the same with Experiment 3.3. 

3.5.2 Results 

Skewed distribution of the data required the use of medians in the trend analysis (Figure 

3.9). For the consistent limit, qualitative observation of the plot suggested that participants used 

both difference and proportion strategies. In particular, the difference strategy dominated 

conditions C0.00 and C0.25, whereas the proportion strategy dominated conditions C0.75. The trend 

for conditions C0.50, however, did not match any of the predictions. In the higher limit conditions, 

the strategy suggested by the trends was less obvious. While trends for conditions C0.00 and C0.75 

followed their consistent limit counterparts, trends for the remaining conditions were less 

obvious. 

Applying Friedman’s Test on the consistent limit judgments revealed that results for 

conditions C0.25 (χ
2
(3) = 18.337, p ≤ .001)

7
 and C0.75 (χ

2
(1) = 3.846, p = .050) were significant, 

whereas results for conditions C0.00 (χ
2
(3) = 7.146, p = .067) and C0.50 (χ

2
(2) = .970, p = .616) 

were not. This pattern was also applicable in the higher limit where significant results were for 

                                                
7
 Inspecting the distribution of these conditions revealed that modal judgments correspond to 50 meter 

square, but the minority judgments exhibit outcome density bias, which is picked up by Friedman’s Test to produce 

a significant result even though the trend was clearly a flat line in Figure 3.5. For further details on this bias refer to 

Discussion of Experiment 3.1 
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conditions C0.25 (χ
2
(3) = 8.380, p = .039) and C0.75 (χ

2
(1) = 3.908, p = .048), and non-significant 

results were for conditions C0.00 (χ
2
(3) = 3.843, p = .279) and C0.50 (χ

2
(2) = 1.943, p = .379). 

Histogram analysis was mainly on condition [0.50:1.00] because the mode in this 

histogram did not fit with any strategies under current study. Further inspection of the results 

suggested that participants adopted a new reasoning strategy – multiplication. This strategy is 

discussed in more detail below. Re-conducting histogram analysis to consider multiplication 

strategy revealed that difference seemed to be the dominant strategy, but closely followed with 

multiplication strategy. Except in condition [0.50:1.00], judgments in other conditions matched 

with difference strategy predictions. 

 

Figure 3.9: Results for Experiment 3.5. The left plot refers to consistent limit, while the right plot refers to higher limit condition. 

 

Tendency analysis on this data included multiplication strategy as well. Thus, instead of 

considering scores from only three strategies (i.e. base rate neglect, proportion, and difference), 

this analysis considered four strategies. Greenhouse-Geisser corrected test found a significant 

main effect of these scores, F(1.73, 107.07) = 17.04, p ≤ .001. The mean score for base rate 

neglect was M = .37, SD = .03, for proportion strategy was M = .39, SD = .03, for difference 

strategy was M = .54, SD = .04, and for multiplication strategy was M = .50, SD = .04. Further 
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Bonferroni post hoc test revealed that difference of mean scores between base rate neglect and 

proportion strategies was not significant (p ≥ .05), unlike the rest: base rate neglect vs. difference 

(p ≤ .001), base rate neglect vs. multiplication (p = .003), proportion vs. difference (p ≤ .001), 

proportion vs. multiplication (p ≤ .001), and difference vs. multiplication (p = .024). 

3.5.3 Discussion 

The new strategy was found during scrutiny of condition [0.50:1.00]. In this condition, 

neither proportion’s nor difference’s predictions could best describe the mode of the distribution. 

When given an increase of the growth area from 50 to 100 m
2
 in the presence of the candidate 

cause, participants might have reasoned that the candidate cause would double the area. 

Therefore, when given 25 m
2
 initially in the counterfactual pool, the majority of participants 

reasoned that the same candidate cause should also double the area from 25 to 50 m
2
. I referred 

to this new reasoning approach as multiplication strategy, which as far I am aware, has no 

precedence in the causal learning literature. 

One noteworthy observation in this experiment was the massive reduction of base rate 

neglect relative to previous experiments. A possible explanation for this was that those base rate 

neglect judgments were substituted with judgments using multiplication strategy. In previous 

experiments, when participants were asked to judge in counterfactual situations with zero base 

rate, they could not. This is because, any multiplication-based judgments with zero base rates 

would result in zero growth, indicating incapacity of the candidate cause to produce the effect, 

which contradicts with the observed evidence that the candidate cause, to some degree, does 

generate the effect magnitudes. Thus, for multiplication strategy to be relevant, the base rate 

provided in the counterfactual scenario could not be zero. In other words, the absence of the 

opportunity to reason using a multiplication strategy in previous experiments had triggered 
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participants to adopt other strategies instead, and perhaps base rate neglect was the easiest to do. 

In contrast, when they had opportunity to channel multiplication-based judgments in the non-

zero base rate as in this experiment, base rate neglect judgments massively went down. More 

detail on multiplication strategy is in the following section. Even though the multiplication 

strategy was plausible in this experiment, in general, the difference strategy was the most 

dominant across the conditions. 

3.5a Multiplication Strategy 

Following the same example from Chapter 1 and the beginning of this chapter – i.e. the 

example of algae covering the surface area of a new pool after receiving treatment with mineral 

C – another plausible prediction besides 60 m
2
 (difference strategy) and 70 m

2
 (proportion 

strategy) is 30 m
2
: Reasoners might consider the efficacy of mineral C in terms of its capacity to 

multiply the covered surface area relative to before treatment. A reasoner who adopts this 

strategy learned that in scenario 3C mineral C tripled the area of algae growth from 25 m
2
 to 75 

m
2
. Therefore in scenario 5, with the same efficacy, mineral C should also triple the algae growth 

from 10 m
2
 to 30 m

2
. 

Multiplication strategy stems from an interaction between background causes and 

candidate cause in producing the effect instead of considering the candidate cause as directly 

changing the effect. In other words, multiplication based reasoners might have conceived of 

algae growing on their own (due to the background causes), with the candidate cause merely 

amplifying this tendency, rather than acting as a cause on its own. In this case, the candidate 

cause influences the propensity of the background causes to produce the effect. This violates the 

normative assumptions of a proportional framework, namely that the influence of background 
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causes on the effect should remain constant before and after treatment, and that the cause and 

background each influence the effect independently. 

One important issue with this strategy was involving zero base rates. As an example, in 

the absence of the candidate cause, algae coverage of the pool was 0 m
2
 (i.e. no algae were 

present), and increased to 20 m
2
 when the candidate cause was administered. Multiplicative 

reasoners cannot compute the efficacy index of the candidate because its interaction with 

background causes is less clear when the base rate is zero. Besides this issue of zero base rates, 

an immediate question pertaining to this strategy was that whether it is applicable only in the 

algae-mineral context. Experiment 3.6 aimed to answer this question. 

Experiment 3.6 

Given the newly found multiplication strategy in Experiment 3.5, the investigation 

progressed by examining whether this strategy was applicable in other context as well. In 

Experiment 3.5, the context was about algae growth. Because algae growth was a natural 

process, the background causes would continue to keep on producing algae growth. In the 

presence of the candidate cause, it was also natural to think that the candidate cause acts on the 

occurring background cause (i.e. a causal interaction) to produce algae growth. Because the 

multiplication strategy exemplifies an interaction between background and candidate causes, 

hence it was prevalent in the algae story. To test whether the multiplication strategy is valid only 

in these interaction-based contexts, Experiment 3.6 replicated Experiment 3.5 but using a 

different story in which the influence of background causes on effect was more consistent 

throughout. 
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3.6.1 Method 

Participants. 63 participants, recruited via Amazon Mechanical Turk, participated for a 

small amount of reimbursement ($0.60). The exclusion criteria from Experiment 3.3 were also 

implemented for this experiment. 

Design and Procedure. This experiment also employed the same conditions as the 

previous experiments. The cover story introduced the influence of 15 chemical additives 

(corresponded to the 15 conditions) on the runniness of engine oils, each studied separately in 

different labs. The story described the study to follow a drip-test procedure in which 5 grams of 

oil were deposited on one end of a 10 cm long test slate, slanted at an angle of 45 degrees. After 

an interval of 5 minutes the total length (out of 10 cm) travelled by the drop of oil was measured 

as an indicator of runniness: The greater the distance the oil travelled, the greater the runniness of 

oil. The story proceeded by mentioning that for each additive, the scientists always tested the 

runniness of oil before adding the additives, and then mixed an additive into the oil and repeated 

the test (see Appendix A for the cover story). 

After going through the story, participants received the information from a condition 

about the length of oil travelled down the test slate. The left side portrayed the travel distance of 

oil without any additives, whereas the right side displayed the distance of oil with additive under 

investigation. Underneath these information was question “Imagine that we performed a test with 

the same engine oil at a different location. As before, we drip 5 gram of the oil on the raised end 

of a 10 cm long test slate, angled at 45 degrees. After 5 minutes, the oil has traveled 2 cm down 

this slate. If we would mix this additive into the oil and repeated the test under the same 

conditions, how far down the slate would the oil travel now (after 5 minutes)?” In this 



      67 

 

experiment, however, only one question was used. After this question, participants proceeded 

with the next condition. 

3.6.2 Results 

Trend analysis used medians in the plot because results’ distributions were skewed 

(Figure 3.10). Qualitative observation of the plot suggested a mixture of difference and 

multiplication as the most influential strategies. Difference strategy was particularly evident in 

conditions along the vertical axis, as well as in condition [0.75:0.50] and [1.00:0.75]. Friedman’s 

Test showed that all conditions (i.e. conditions C0.00: χ
2
(3) = 25.769, p ≤ .001;

8
 conditions C0.25: 

χ
2
(3) = 8.994, p = .029; and conditions C0.50: χ

2
(2) = 19.037, p ≤ .001) were significant except for 

conditions C0.75 (χ
2
(1) = .333, p = .564). 

 

Figure 3.10: Results for Experiment 3.6. 

 

Results from histogram analysis also supported these results. In conditions where 

multiplication strategy was possible, (i.e. non-zero base rate conditions including [0.75:0.50] and 

[1.00:0.75]), multiplication strategy dominated all conditions except in condition [0.75:1.00], 

where difference strategy took over. Tendency analysis on the data, corrected using Greenhouse-

                                                
8
 Even though the trend in Figure 3.6 for these conditions was clearly a flat line, inspection of the histogram 

revealed that these significant results were due to minority judgments exhibiting outcome density bias. For further 

details, refer to Discussion of Experiment 3.1 
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Geisser, revealed a significant main effect of the four scores F(1.38, 87.09) = 71.58, p ≤ .001. 

The mean score for base rate neglect was M = .13, SD = .01, for proportion strategy was M = .38, 

SD = .02, for difference strategy was M = .38, SD = .02, and for multiplication strategy was M 

= .59, SD = .04. Bonferroni post hoc test further unveiled that all pairwise comparison were 

significant except between proportion and difference scores (p ≥ .05): base rate neglect vs. 

proportion (p ≤ .001), base rate neglect vs. difference (p ≤ .001), base rate neglect vs. 

multiplication (p ≤ .001), proportion vs. multiplication (p ≤ .001), and difference vs. 

multiplication (p ≤ .001). 

3.6.3 Discussion 

In general, multiplication strategy dominated this experiment except in conditions on the 

vertical axis. In these conditions, the predicted values for multiplication strategy were infinity, 

which was not captured in this experiment. Thus, in these conditions, participants opted for 

judgments that fit both the difference and proportion predictions. 

This experiment considered the possibility of context dependency of algae-mineral. This 

is because, the setting of algae-mineral context involving the nature might be more 

accommodating to thinking of an interaction between candidate cause and background causes, of 

which the core of multiplication based reasoning. By adopting the lab based setting as engine oil-

additive context in this experiment, the influence of background causes on the effect was more 

controlled. Thus participants might perceive the influence of background causes on the effect to 

be more stable throughout the process of presenting the effect in the presence and absence of 

candidate cause. Therefore, in this context, I predicted that multiplication strategy would be less 

appealing to the participants. 
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The results of this experiment, however, indicated that this prediction did not hold: 

evidence for multiplication-based reasoning was also prominent in this experiment. Interestingly, 

with the increase of support towards multiplication strategy, judgments neglecting the base rates 

were plummeting. While there was no direct evidence to associate this decrease with 

multiplication strategy, the inverse relationship between multiplication-strategy and base rate 

neglect was also observable in Experiment 3.5. Nonetheless, this signals the relevance of the 

multiplication strategy in reasoning about causal relation involving continuous outcomes. 

3.6a Generative vs. Preventive  

The previous six experiments were dealing with causal relations in generative scenarios. 

The preventive version of these experiments (except Experiment 3.2 and 5) aimed to search for 

the most prominent reasoning strategy in a preventive scenario. In this scenario, the observable 

effect magnitude in the presence of candidate cause was always smaller, or less, than its 

magnitude in the absence of the cause (i.e. the base rate). Thus, the cause should be perceived to 

lower the effect magnitude. 

3.6a.1 Strategies Recap in Preventive Scenario 

In preventive scenarios, all strategies are also rooted in the same idea as in generative 

scenario, but with some minor differences. For the difference strategy, computing the strength 

index was the same as in generative. However, because the magnitude of the effect when the 

candidate cause was present was always smaller than when the cause was absent, the strength 

index of the difference strategy carries a negative sign in front of the value. As for the proportion 

strategy, the idea was to consider the proportion of cause efficacy relative to its potential 

maximum efficacy. In the preventive scenario, the maximum efficacy of a candidate cause was to 

completely prevent the effect. Therefore, the upper limit of effect magnitude is not a concern in 
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preventive scenarios when considering proportion strategy. In other words, a candidate cause that 

has a maximum preventive power would be able to completely wipe out any effect regardless of 

the original value (i.e. base rates). Multiplication-based reasoners would consider an interaction 

between candidate cause and background causes when preventing the effect. Similar to the 

generative scenario, for the preventive scenario, the multiplication index was computed by 

considering the ratio between effect magnitudes when the cause is present vs. when it is absent. 

For complete preventive predictions of the 15 conditions, see Table 1.2. It is clear in the table 

that the predictions for multiplication and proportion strategy always overlap. The reasons for 

this as well as implications are discussed in Appendix C. 

3.6a.2 Preventive Experiments Overview 

Four experiments in preventive scenarios mirrored the generative counterpart: 

Experiment 3.7 with 3.1, Experiment 3.8 with 3.3, Experiment 3.9 with 3.4, and Experiment 3.10 

with 3.6. 

Experiment 3.7 

This experiment is a parallel to Experiment 3.1. The aim was to study the prominent 

reasoning strategy of causal relations with continuous outcomes in preventive scenario. 

3.7.1 Method 

Participants. 30 undergraduate students from the School of Psychology, Cardiff 

University participated to fulfil part of a course requirement. I adopted the same exclusion 

criteria from Experiment 3.1 in this experiment. 

Design and Procedure. The experiment adopted the same 15 conditions but with the role 

of the quantity as reversed (see Table 1.2) – effect quantity when the cause was absent in 

generative became quantity when the cause was present in this experiment. Participants in this 
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experiment went through the same skin rash context with Experiment 3.1 cover story except with 

some changes to reflect the preventive scenario. In particular, the story focuses on the influence 

of ointment in preventing skin rash, instead of on the side effect of cosmetic cream in generating 

skin rash in Experiment 3.1. The other settings of the story were consistent – 15 different labs, 

each investigating one ointment on a 10 centimetres square skin rash. Participants then received 

the condition information in the same visual format as in Experiment 3.1, followed by the 

question “Now imagine a new allergy patient suffering from a rash of 10 centimeters square. If 

we apply the ointment, how large would the area of rash be ?”. The second question used the 

same wording except with change on the skin area to be 50 centimeters square. After making 

judgments in both question for that condition, participants moved on to the next condition. 

3.7.2 Results 

The data were skewed, requiring trend analysis to use medians (Figure 3.11). For the 

consistent limit, observing the plot suggested proportion/multiplication as the dominant strategy. 

This trend continued in the higher limit as well. Further, judgments for conditions with 

maximum effect magnitude (i.e. conditions [1.00:1.00], [1.00:0.75], [1.00:0.50], and [1.00:0.25]) 

did not reach the maximum upper boundary as predicted by proportion/multiplication. 

Friedman’s Test further supported the observation that proportion/multiplication was dominant 

with the significant results for all conditions (i.e. conditions C0.25: (χ
2
(3) = 57.854, p ≤ .001), 

conditions C0.50: (χ
2
(2) = 15.892, p ≤ .001), and conditions C0.75: (χ

2
(1) = 9.738, p = .002) except 

conditions C0.00 (χ
2
(3) = 4.500, p = .212). This is also evident in the higher limit (conditions 

C0.00: (χ
2
(3) = 1.222, p = .748), conditions C0.25: (χ

2
(3) = 27.931, p ≤ .001), conditions C0.50: 

(χ
2
(2) = 12.302, p = .002), and conditions C0.75: (χ

2
(1) = 3.846, p = .050)). 
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Figure 3.11: Results for Experiment 3.7. The left plot refers to consistent limit, while the right plot refers to higher limit condition. 

 

Results from histogram analysis also supported that proportion/multiplication was the 

dominant strategy. In all conditions, the modes reflected proportion/multiplication strategy. 

Tendency analysis on the data revealed a significant main effect of the scores, F(2,58) = 34.85, p 

≤ .001. The mean scores for base rate neglect was M = .31, SD = .02, for 

proportion/multiplication strategy M = .52, SD = .04, and for difference strategy M = .41, SD 

= .03. Bonferroni post hoc test further revealed that all pairwise differences of these scores were 

significant: base rate neglect vs. proportion/multiplication (p ≤ .001), base rate neglect vs. 

difference (p = .003), and proportion vs. difference (p ≤ .001). 

3.7.3 Discussion 

All analyses pointed to proportion/multiplication as the most prominent strategy in this 

experiment. Even though this experiment used the same cover story as in Experiment 3.1, the 

results were different. This inconsistency was perhaps attributable to the different structure 

between generative and preventive (for further discussion on this structural difference refer to the 

General Discussion). 



      73 

 

Unlike in generative scenario, the concern regarding the plausibility of the cover story 

was not the issue in preventive scenario. This is because the candidate cause in the story was 

about ointments that had effectiveness to reduce the magnitude of skin rash. Therefore, when the 

story mentioned that there was already skin rash at the beginning of the study, applying the 

ointments on top of it was completely sensible.  

Experiment 3.8 

This experiment continued the investigation in the preventive scenario using the algae 

growth context. Parallel to Experiment 3.3, the cover story also involved a within-entity 

situation. 

3.8.1 Method 

Participants. 89 participants, recruited via Amazon Mechanical Turk, participated for a 

small reimbursement ($0.60). This experiment employed the same exclusion criteria from 

Experiment 3.3. 

Design and Procedure. Participants experienced the same 15 conditions as in previous 

experiments. They also went through the same cover story as in Experiment 3.3 but with a very 

minor modification – explicitly a substitution of any word ‘cause’ with word ‘prevent’. The 

presentation of the conditions was also using the same visual template. Underneath the 

information, participants received the question: “Now imagine another pool filled with water 

from a different lake and a surface area of 10 m
2
. The entire 10 m

2
 surface of the pool is already 

covered with algae. If we apply this chemical substance on this new pool, how much of its area 

would be covered by algae after two weeks?” The second question was exactly the same except 

with 50 m
2
 surface area. The next condition appeared on the screen after participants made 

judgments for that condition. 



      74 

 

3.8.2 Results 

The trend analysis was using medians because of the skewed distribution of the data 

(Figure 3.12). For the consistent limit, the trend clearly matched proportion/multiplication 

predictions. Similarly in the higher limit, the trend also reflected proportion/multiplication 

strategy except with some outcome density effect in the conditions C0.00.
9
 Because of this, 

Friedman’s Test on all conditions revealed significant results in the consistent limit (conditions 

C0.00: (χ
2
(3) = 60.019, p ≤ .001), conditions C0.25: (χ

2
(3) = 162.018, p ≤ .001), conditions C0.50: 

(χ
2
(2) = 107.553, p ≤ .001), and conditions C0.75: (χ

2
(1) = 58.778, p ≤ .001)); and similarly in the 

higher limit (conditions C0.00: (χ
2
(3) = 52.083, p ≤ .001), conditions C0.25: (χ

2
(3) = 165.295, p 

≤ .001), conditions C0.50: (χ
2
(2) = 93.483, p ≤ .001), and conditions C0.75: (χ

2
(1) = 45.762, p 

≤ .001)).  

 

Figure 3.12: Results for Experiment 3.8. The left plot refers to consistent limit, while the right plot refers to higher limit condition. 

 

Histogram analysis revealed results that also suggested that proportion/multiplication as 

the dominant strategy. Modes in all conditions represented this strategy. Tendency analysis on the 

data, corrected with Greenhouse-Geisser, showed a significant main effect of the scores, F(1.46, 
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128.28) = , p ≤ .001. On average, base rate neglect scored M = .57, SD = .03, while 

proportion/multiplication strategy scored M = .58, SD = .03; the difference strategy had the 

lowest mean score at M = .42, SD = .02. Further Bonferroni post hoc test unveiled that these 

mean scores of base rate neglect and proportion/multiplication strategy were not significantly 

different (p ≥ .05). Meanwhile, the differences of mean scores of other pairs were significant: 

base rate neglect and difference strategy (p ≤ .001), and proportion and difference strategy (p 

≤ .001). 

 

3.8.3 Discussion 

The results of the tendency analysis were slightly inconsistent with the other two analyses 

where the tendency score of proportion/multiplication was not significantly different with the 

score of base rate neglect. Nonetheless, considering the results of all of the analyses, 

proportion/multiplication dominated over the other strategies. Another noteworthy observation 

was about the base rate neglect judgments. Despite having both cover stories about a within-

entity design, the mean scores of base rate neglect were higher in this experiment than in 

Experiment 3.7. This difference may be attributed to the different cover story between these two 

experiments: cream-rash in Experiment 3.7, and chemical-algae in this. 

Experiment 3.9 

The investigation continued with the preventive counterpart of Experiment 3.4. The 

objective was to study whether a between-entity situation has any influence on the reasoning 

strategy. 

                                                                                                                                                       
9
 Refer to Discussion of Experiment 3.1 for details. 
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3.9.1 Method 

Participants. 17 undergraduate students from the School of Psychology, Cardiff 

University participated to fulfil part of a course requirement. Participations for this experiment 

was subjected to the same exclusion criteria as in Experiment 3.1. 

Design and Procedure. This experiment replicated Experiment 3.8 but with 

modifications to show a between-entity situation. Specifically, the story informed participants 

that within each lab, there were two indoor pools (instead of only one pool in Experiment 3.8): 

one pool was reserved as control and received no treatment, whereas the other pool was sprayed 

with the chemical. Participants also received the condition information in the same visual format 

and content as in Experiment 3.8. 

3.9.2 Results 

Skewed distribution in the data required that trend analysis used medians in the plots 

(Figure 3.13). In both limits, qualitative observation suggested that the trends reflected base rate 

neglect. This is supported by Friedman’s Test that produced significant results for all conditions 

in the consistent limit (conditions C0.00: χ
2
(3) = 29.956, p ≤ .001; conditions C0.25: χ

2
(3) = 41.759, 

p ≤ .001; conditions C0.50: χ
2
(2) = 21.344, p ≤ .001; and conditions C0.75: χ

2
(1) = 9.941, p = .002), 

as well as in the higher limit (conditions C0.00: χ
2
(3) = 17.890, p ≤ .001; conditions C0.25: χ

2
(3) = 

43.148, p ≤ .001; conditions C0.50: χ
2
(2) = 15.180, p ≤ .001; and conditions C0.75: χ

2
(1) = 6.250, p 

= .012). 
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Figure 3.13: Results for Experiment 3.9. The left plot refers to consistent limit, while the right plot refers to higher limit condition. 

 

Histogram analysis also produced the same results that participants mostly neglected the 

base rate. Tendency analysis on the data also showed a significant main effect of strategy after 

Greenhouse-Geisser correction, F(1.18, 18.82) = , p ≤ .001. The highest mean score was for base 

rate neglect at . M = .67, SD = .08, followed by proportion/multiplication strategy at . M = .50, 

SD = .06. Meanwhile, the difference strategy had the lowest mean score of M = .33, SD = .04. 

Bonferroni post hoc test further revealed that all pairwise differences between these scores were 

significant: base rate neglect vs. proportion (p = .014), base rate neglect vs. difference (p = .001), 

and proportion vs. difference (p ≤ .001). 

3.9.3 Discussion 

All analyses showed that most judgments followed a base rate neglect trend. Even though 

the context of this experiment was the same as in Experiment 3.8, having the information 

presented in a between-entity situation increases participants’ tendency for neglecting the base 

rates. This result was similar to the generative counterpart (Experiment 3.4). As discussed in 

Experiment 3.2 and 3.3, having a within-entity situation strengthens the link between base rate 

and treated magnitudes because the information corresponds to the same entity. In contrast, the 



      78 

 

link between the information was weaker in between-entity situations because the setting allows 

more room for assumptions about other uncontrollable factors to influence the magnitudes. If 

these base rate judgments were discarded, the next strategy that participants adopted was 

proportion/multiplication. The tendency analysis suggested that this strategy was significantly 

more dominant than the difference strategy of which was the least adopted strategy in preventive 

scenario.  

Experiment 3.10 

This experiment was the preventive parallel of Experiment 3.6, aimed to study whether, 

in a different context, proportion/multiplication was still the most prominent strategy, and 

whether difference was the least relevant strategy. In this study was a new story about additives 

that influence liquidity of engine oils. 

3.10.1 Method 

Participants. 61 participants recruited from Amazon Mechanical Turk participated for a 

small payment of $0.60. Participants in this experiment went through the same exclusion criteria 

as in Experiment 3.3. 

Design and Procedure. This experiment was a replication of Experiment 3.6 with 

changes to transform it into a preventive scenario. There was no change to the cover story in this 

experiment, as it was generic enough for both generative and preventive scenario. The 

presentation of condition information also used the same format, except the question was 

modified to be “Imagine that we performed a test with the same engine oil at a different location. 

As before, we drip 5 gram of the oil on the raised end of a 10 cm long test slate, angled at 45 

degrees. After 5 minutes, the oil has travelled 10 cm down this slate. If we would mix this 

additive into the oil and repeated the test under the same conditions, how far down the slate 
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would the oil travel now (after 5 minutes)?” Similar to Experiment 3.6, this experiment asked 

participant only one question. 

3.10.2 Results 

The distribution of the data was skewed. Thus, medians were used in the trend analysis 

(Figure 3.14). Qualitative observation of the plot indicated that proportion/multiplication was the 

dominant strategy. In all condition groups, the trend followed proportion/multiplication 

predictions. Friedman’s Test revealed all significant results for all conditions (C0.00: χ
2
(3) = 

13.622, p = .003; C0.25: χ
2
(3) = 130.795, p ≤ .001; C0.50: χ

2
(2) = 82.271, p ≤ .001; and C0.75: χ

2
(1) 

= 42.123, p ≤ .001) including the observed flat line of the non-contingent condition C0.00. Similar 

to experiment 3.8, the significant results of conditions C0.00 were attributed to the minority non-

zero judgments that exhibit outcome density bias, of which captured by Friedman’s Test. See 

Discussion of Experiment 3.1 for details. 

 

Figure 3.14: Results for Experiment 3.10. The left plot refers to consistent limit, while the right plot refers to higher limit 
condition. 

 

Histogram analysis also showed that modes of all conditions reflected 

proportion/multiplication strategy. Tendency analysis on the data yielded a significant main 

effect of the scores after correction with Greenhouse-Geisser, F(1.77, 106.23) = 69.62 , p ≤ .001. 
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The mean scores for base rate neglect, proportion/multiplication, and difference were, 

respectively, M = .31, SD = .02; M = .52, SD = .04; and M = .41, SD = .02. Bonferroni post hoc 

test revealed significant pairwise differences between all of these scores: base rate neglect vs. 

proportion (p ≤ .001), base rate neglect vs. difference (p ≤ .001), and proportion vs. difference (p 

≤ .001). 

3.10.3 Discussion 

The results of this experiment indicated that participants adopted 

proportion/multiplication strategy the most, and difference strategy the least. This was consistent 

with the results of all previous preventive experiments (except in Experiment 3.9, where 

proportion/multiplication was the second mostly adopted, but difference strategy remained the 

least adopted). This cross-experiment consistency provides strong evidence of the relevance of 

the proportion/multiplication strategy in preventive scenarios. Between proportion and 

multiplication, until there is a way to properly disentangle them, I cannot test which strategy 

would be more dominant. Consequently, whether results of preventive reasoning are symmetrical 

with their generative counterpart remains a question. I will return to this point in General 

Discussion of Chapter 3 section. 
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3.11 General Discussion of Chapter 3 

This chapter pursued the investigation to study causal reasoning with continuous 

outcomes, using a counterfactual judgment procedure. This procedure involved thinking of 

imagined intervention, which offers a purer way of tapping into causal reasoning procedure 

relative to the explicit judgment method as presented in Chapter 2.  

In this chapter, six experiments involved generative causal relations, while four involved 

preventive relations. I adopted three techniques to analyse the results from these experiments: 

two techniques employed statistical hypothesis testing (i.e. trend, and tendency analysis), 

whereas the other involved qualitative observation (i.e. histogram analysis). The conventional 

trend analysis technique was less appropriate because of its use of central tendency measure. In 

many instances of the experiments, trend analysis produced significant results when qualitative 

inspection of the data clearly showed an absence of systematic trends. Thus, I did not fully rely 

on the results of this analysis, but focused on the other two instead. Refer to Figure 3.15 for a 

compilation of trend analysis results, Table 3.1 for tendency analysis results, and Figure 3.2 for 

histogram analysis results of all experiments in this chapter. 

Accompanying the two proposed strategies for study (i.e. proportion, difference) was an 

unpredicted multiplication strategy. Although only two experiments in the generative scenario 

found evidence for this strategy, the results were consistent such that when participants had 

opportunity to reason using this multiplication strategy, judgments neglecting the base rates were 

reduced. In the next chapter, this strategy will be investigated from the very beginning, providing 

a richer insight onto its relevance for causal reasoning with continuous effects. 
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Figure 3.15: Compilation of results for all experiments in chapter 3. The left and right column consisted of generative and preventive 

experiments, respectively. For individual experiment the left plot refers to consistent limit, while the right plot refers to higher limit 
condition. The plots are arranged so that each row involves experiments in generative and preventive that have the same scenario.
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As for the preventive scenario, the cross-experiment consistency provided strong 

evidence for the dominance of the proportion/multiplication strategy. Because their predictions 

were overlapping, I was unable  to determine which of these two strategies were more 

prominent: whether the most adopted strategy in preventive and generative scenarios were 

consistent remains a question. Therefore, it is noteworthy to highlight potential contributors for 

the symmetry/asymmetry of both scenarios: it could be due to the different structure between 

generative and preventive scenarios such as limit saliency, different direction of influence 

between background causes and candidate cause. I discuss further on these factors in Chapter 5. 

Table 3.1: Results of tendency analysis for all experiments 

Generative 

Experiments 

(N) 

Cover story Means (SD) for Strategies 

Theme Design Base rate 

Neglect 

Proportion 

Strategy 

Difference 

Strategy 

Multiplication 

Strategy 

1 (30) Cream-Rash W .24(.02) .40(03) .69(.05)* - 

2 (30) Fertilizer-Crop B .60(.05)* .45(.03) .40(.04) - 

3 (88) Chemical-Algae W .53(.03)* .42(.02) .46(.03) - 

4 (18) Chemical-Algae B .62(.09)* .47(.05) .44(.08) - 

5 (63) Chemical-Algae W .37(.03) .39(.03) .54(.04)* .50(.04) 

6 (63) Additive-Oil W .13(.01) .38(.02) .37(.02) .59(.04)* 

Preventive 

Experiments 

  Base rate 

Neglect 

Proportion/ 

Multiplication 

Strategy 

Difference 

Strategy 

 

7 (30) Cream-Rash W .31(.02) .52(.04)* .41(.02)  

8 (89) Chemical-Algae W .57(.03) .58(.03)* .42(.02)  

9 (17) Chemical-Algae B .67(.08)* .50(.06) .33(.04)  

10 (61) Additive-Oil W .31(.02) .52(.02)* .41(.02)  

Note: ‘W’ and ‘B’ in the third column refer ‘within-entity’ and ‘between-entity’ design as explained in the text. The tendency 

analysis aimed to capture each participant’s tendency of using either one of the strategies using scores: the higher the score, the 

more incline the participant towards that strategy. The means in this table refer to across participants’ average scores in each 
experiment. 
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Further, there was also a similar pattern across generative and preventive scenarios 

involving judgments of base rate neglect: These judgments were smaller in experiments using 

within-entity situation relative to between-entity. As per the elaboration in discussion of 

Experiment 3.2 and 3.3 above, having presenting the base rate information in a within-entity 

situation strengthen the link between this and the post-treatment information during the 

“undoing” as Sloman and Lagnado (2005) described in a counterfactual reasoning, relative to 

when in a between-entity situation. This pattern indicated that causal situation (i.e. between-

entity versus within-entity) moderates the causal reasoning process involving continuous 

outcomes. 

On another note, the counterfactual judgment approach involves two stages: the learning 

stage, and the applying stage. In the series of these experiments, I have assumed that participants 

were consistently using the same strategy in both stages. In other words, when participants read 

the cover story and received the contingency information, they utilised a certain strategy to bring 

about a causal index. Using this index, then the participants adopted the same strategy to answer 

the counterfactual question of which its answer reflects the adopted strategy. It was reasonable to 

assume that the strategies were consistent because the settings and context between the two 

stages were also consistent. Nonetheless, the results of these experiments indicated that context 

plays a bigger role than I initially thought; therefore, this assumption that people were consistent 

in both stages might not be fully warranted. An exploration of whether the strategies involved in 

these two stages are the same is noteworthy for future research. 

Moreover, the findings from experiments with zero counterfactual base rate, where a 

majority of participants neglected the base rate, are consistent with what Perales and Shanks 

(2008) found. They reported that when adopting a counterfactual judgment approach, their 
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results indicated a relation with the probability of the ffect in the presence of the cause, P(e|c); in 

other words, participants were focusing on this value and ignored the base rate, resulting to what 

I reported as base rate neglect judgments. Perales and Shanks argued that it could be participants 

were confused about the wording of counterfactual questions. In their experiment of mutation 

and radiation, the question would be “How many out of 100 butterflies, none of which would 

show a mutation in the test if unradiated, do you estimate would show a mutation if radiated?” 

Instead of proper understanding, it seems easier for participants to understand that they need to 

imagine P(e|¬c) as zero, and then decide for P(e|c). Similarly, in this experiment, they could 

understand the question as asking them to set Q(e|¬c) to be zero before making judgment. 

I pursued the exploration of causal reasoning with continuous outcomes in the next 

chapter using a method that was simpler and dependent of any assumption. Instead of explicitly 

asked for causal strength approximation in Chapter 2, or manifestation of the strength via 

counterfactual reasoning as in this chapter, the approach in Chapter 4 focuses on causal direction 

as the medium in tapping into strategy during causal reasoning. 
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Chapter 4: Empirical Investigation via Implicit Judgment 

In Chapter 3 the investigation involved a counterfactual judgment approach. While this is 

a powerful method to study causal reasoning, it entails a naïve assumption that reasoners were 

consistently using the same strategy in both learning and applying stages.
10

 To accompany this 

approach in exploring causal inference with continuous effects, I proceeded with another 

approach, namely implicit judgment. 

This approach is modelled after Experiment 1 from Liljeholm and Cheng (2007). In their 

Experiment 1, they wanted to identify what aspect of causality people carries from one context to 

another (i.e. an invariant mental construct across contexts). The experiment did not require 

participants to make any explicit estimation of causal strength, but instead asked them to simply 

make a judgment about the existence of a simple causal relation. The experiment, however, 

involved probabilistic binary causation. 

The cover story in the experiment was about two studies on the influence of two 

medicines (A and B) on headache. For each study, two groups of patients were involved: a 

treatment group, and a no-treatment (i.e. control) group. Participants were told that in a first 

study, a treatment group received only medicine A, whereas in a second study the treatment 

group received both medicine A and B. After having studied the datasets of both studies, 

participants simply had to give a ‘Yes’ / ‘No’ judgment of whether they thought medicine B 

causes headaches. 

The experiment used a between subject design in which participants were divided into 

two groups. Both groups received the same cover story but different contingency conditions. One 

of the groups received a condition in which the causal power in study one, and the compound 

                                                
10

 See beginning and General Discussion of Chapter 3 for more details of this assumption. 
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causal power (i.e. the net change from the control and the treatment group) in study two were at 

the same value. In the other group, the values of these causal powers varied. The former was 

referred to as power-constant group, while the later was referred to as ΔP-constant group. In both 

groups, even though the critical measure was their judgments on whether or not medicine B was 

a cause of headache, the psychological representation of interest was medicine A. This is because 

the judgment about medicine B reflects participants’ assumption on the invariant aspect of 

medicine A across two different contexts (study one and two), as explained below. 

I will use the mineral–algae context to illustrate the idea of the experiment.
11

 From 

Chapter 1, take scenario 1 as study one, and scenario 2 as study two, but in study two, both 

mineral A and B were administered instead (see Figure 4.1 for an example). Using this example, 

therefore, in study one, 30 of the 100 pools already had algae growth even before receiving 

treatment with mineral A, and the number of pools covered with algae increased to 65 after 

receiving the treatment. Meanwhile in study two, none of the 100 pools had algae growth before 

receiving treatment with mineral A and B, and 50 of them had algae growth after receiving the 

treatment. Thus, in study one, the value of causal power was 0.50 and ΔP was 0.35, whereas in 

study two the compound value of causal power was also 0.50, but ΔP increased to 0.50. This is 

an example of a power constant problem. In this condition, therefore, when asked whether 

mineral B was a (another) cause of algae growth, participants who judged that it was not a cause 

showed sensitivity towards causal power as the invariance. This is because claiming that B is not 

a cause implies that all the causal change in study two must have occurred solely due to mineral 

A. In other words, a claim that B is non-causal reflects a belief that the net causal change (due to 

A) is identical across both scenarios, and thus a sensitivity to causal power (which was constant 

across both studies). In contrast, those who judged mineral B as a cause would demonstrate 
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sensitivity towards ΔP as the causal invariance: According to these participants, the net causal 

change in study two would have been higher than in study one, which means that A alone could 

not explain it, and B exerted a causal influence over and above that of A. Meanwhile, 

participants in the ΔP-constant group received the reverse condition: Across study one and two, 

ΔP remained constant, but the value of their causal powers varied (see Figure 4.1 for an 

example). Liljeholm and Cheng found that people’s judgment patterns reflected sensitivity to 

causal power rather than ΔP as the invariant across contexts. 

 

 
Figure 4.1. An example of condition problem modelled after Experiment 1 in Liljholm and Cheng (2007). The top box portrays a 
power-constant condition while the bottom box portrays a ΔP-constant condition. 

 

Although it does not provide explicit information on causal strength, this implicit 

judgment approach has the advantage that it reduces biases that compromise other approaches 

like the counterfactual judgment approach as in Chapter 3, or explicit causal ratings on a scale as 

in Chapter 2, (see discussion in Buehner, Cheng, Clifford, 2003). 

                                                                                                                                                       
11

 Liljeholm and Cheng (2007) used a medicine-headache context in their study. 
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4.0 Experiment Overview 

I adapted this design into the experiments to address the question on which strategy 

among the three (i.e. proportion, difference, and multiplication), reasoners would adopt when 

judging a causal relation involving a continuous outcome. In this chapter I report eight 

experiments; four of them used the same cover story about the influence of two minerals (causes) 

on the surface area of algae growth in a pool (continuous effect) at two different locations 

(contexts), while another four used a different cover story about the influence of two additives 

(causes) on runniness of engine oil (continuous effect was measured in terms of area of oil 

covering a test slate after being dripped from a certain height) at two different departments 

(contexts). 

In these experiments, however, instead of asking participants whether or not mineral two, 

i.e. the mineral that exists only at one location, is a cause of algae growth, I asked how mineral 

two influences algae growth. The idea was to compare participants’ ‘judged direction of 

influence’ (JDI) to the ‘predicted direction of influence’ (PDI) of each reasoning strategy to 

determine which strategy participants adopted. In the experiments, participants were given three 

JDI options: they could judge the direction of influence of mineral two on algae growth as either 

‘causing’, ‘inhibiting’, or ‘does not influence’ algae growth.
12

 

For example, consider this scenario 6 in which the area covered with algae at location one 

was Q(e|¬A) = 20 m
2
 before treatment, and increased to Q(e|A) = 80 m

2
 after treatment with 

mineral A (see Figure 4.2 for an example of scenario 6). At location two, the area covered with 

algae before any treatment was Q(e|¬A,¬B) = 30 m
2
, and increased to Q(e|A,B) = 90 m

2
 after 
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treatment with minerals A and B. The surface area of pools at both locations was the same at 100 

m
2
. If three reasoners X, Y, and Z respectively judge mineral B in this example to inhibit, to 

cause, and to have no influence on algae growth, I would code this as JDIX = ‘inhibiting’, JDIY = 

‘causing’, and JDIZ = ‘does not influence’. 

 

Figure 4.2. A screenshot of condition [0.2, 0.8 : 0.3, 0.9]. This condition was also one of the conditions used in generative 

scenario of Experiment 4.1. In Experiment 4.2, a similar visual presentation was used but we modified it to reflect a between-
entity experiment. 

 

To determine the PDI for any strategy, I computed the causal property of that strategy for 

both location one and location two, and then observed their direction of change between location 

one and location two. The direction (i.e. the PDI) could either be ‘increasing’, ‘decreasing’, or 

‘constant’. In the above scenario 6, the proportion index increases from 0.75 to 0.86 between 

locations (
!" !

!
!!" !

!

!"" !!!!" !!
= 0.75; 

!" !
!
!!" !

!

!"" !!!!" !!
= 0.86), the multiplication index decreases from 4 

                                                                                                                                                       
12

 Some experiments have an additional fourth JDI option ‘Cannot tell’. I introduced this option to avoid 

misunderstanding with the ‘does not influence’ option. This is described in more detail in the sections discussing 
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to 3 (
!" !

!

!" !!
= 4; 

!" !
!

!" !!
= 3), and the difference index remains the same at 0.60 (80 m

2 
– 20 m

2
 = 

60 m
2
; 90 m

2 
– 30 m

2
 = 60 m

2
). Hence, in this example, PDIproportion is ‘increasing’, PDImultiplication 

is ‘decreasing’, and PDIdifference is ‘constant’. 

For generative scenarios, the PDIs map to JDIs as follows: A PDI of ‘increasing’ reflects 

that mineral 2 causes algae growth over and above the growth attributed to mineral 1; a PDI of 

‘decreasing’ reflects that mineral 2 inhibits or prevents the algae growth that would occur due to 

mineral 1 alone; and a PDI of ‘constant’ reflects that mineral 2 does not influence algae growth 

over and above that attributed to mineral 1. In contrast, the mapping between PDI and JDI for the 

preventive scenario was reversed: A PDI of ‘increasing’ reflects that mineral 2 further inhibits or 

prevents the algae growth over and above inhibition attributed to mineral 1; a PDI of ‘decreasing’ 

reflects that mineral 2 causes algae growth that would otherwise be prevented by mineral 1; and 

a PDI of ‘constant’ reflects that mineral 2 does not influence algae growth over and above that 

attributed to mineral 1. Table 4.1 summarises these mappings. Because scenario 6 is an example 

of a generative scenario, from the mapping of each hypothetical reasoner’s JDI with any of the 

PDIs, I can infer that reasoner X adopted a multiplication strategy, reasoner Y adopted a 

proportion strategy, and reasoner Z adopted a difference strategy. 

Table 4.1: Mapping of JDIs with PDIs 

PDIs 
JDIs 

causing inhibiting does not influence 

increasing g p  

decreasing p g  

constant   g p 
Note: The letters ‘g’ and ‘p’ represent mapping for generative and preventive scenario respectively. 

                                                                                                                                                       
each of the experiments. 
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4.0.1 Development of Conditions 

The goal was to create conditions of two magnitude pairs that would produce distinct 

PDIs for each strategy. For these experiments, I achieved this by searching for pairs of 

magnitudes that would give distinct PDIs for each strategy. Table 4.2 lists the condition pairs I 

used for the generative scenarios, and Table 4.3 those for the preventive scenario. The following 

paragraphs describe the determination of these magnitude pairs. 

Consider a [10 x 10] matrix of 100 magnitude pairs, each drawn from a range between 

0.00 to 1.00 with an interval of 0.10, and representing Q(e|A) and Q(e|¬A).
13

 For each of these 

100 pairs, I could compute the causal properties of the three strategies and graph their 

relationships in a 3-dimensional scatter plot (see Figure 4.3). In Figure 4.3, the X-axis represents 

the index of the difference strategy, the Y-axis the proportion strategy, and the Z-axis (i.e. the 

colour) the multiplication strategy. The right half of the plot denotes the relationship among the 

three properties for generative causation, while the left half denotes preventive causation.  

From these 100 pairs, I could search for two magnitude pairs that produced distinct PDIs 

for each strategy. Because any point in the space of the plot corresponded to one magnitude pair, 

searching for a suitable combination of two magnitude pairs meant identifying two points within 

either the left or right half of the graph (for preventive or generative). I could choose two initial 

points, which defined a line perpendicular to one of the axes. The intersection of the line with the 

axis denoted the property of the strategy for both points. Because both points (i.e. the two 

magnitude pairs) had the same property, they produced a ‘constant’ PDI of the strategy 

corresponding to the axis. For example, consider point 1 and 2 in Figure 4.3 that constructed line 

A that is perpendicular to the X-axis, which denotes the index of the difference strategy. 

                                                
13

 The same principle applied for searching for the location two magnitude pair: Q(e|A,B) and Q(e|¬A,¬B). 
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Therefore, the PDIdifference for a magnitude pair using points 1 and 2 is ‘constant’ because both 

points shared a difference index of of 0.60. I could then examine the other two strategies’ PDIs 

for these two points to ensure they were pointing in opposite directions. If this was not satisfied, 

I could move the line along that axis and look for other possible locations ensuring that the other 

two PDIs are not identical. In the above example, PDIproportion increases from 0.75 to 0.86 when 

comparing points 1 and 2, while PDImultiplication decreases from 4 to 3. Consequently, the pair 

formed by points 1 and 2 satisfied the aim to have all PDIs pointing in different directions for the 

three strategies. Note that moving line A along the X-axis, always maintains PDIproportion and 

PDImultiplication pointing in opposite directions, while PDIdifference remains constant. 

I could use this procedure to determine other conditions. For the generative scenario, in 

addition to the above example, I could repeat the exercise but this time choosing two points to 

create a line perpendicular to the Y-axis (proportion index). In Figure 4.3, consider points 3 and 

4 that created line B as an example. Using these two magnitudes, I obtain PDIproportion = ‘constant’ 

at 0.5, whereas PDIdifference and PDImultiplication are both ‘decreasing’ (when moving from point 3 to 

point 4). It is evident in this mathematical representation that the nature of any pairs of points on 

any line perpendicular to the proportion-index-axis defines contrasts for PDIdifference that are 

aligned with (i.e. pointing in the same direction as) PDImultiplication. Points 5 and 6 in Figure 4.3 

define line C that is perpendicular to the Z-axis (multiplication index). Using these two points, I 

obtain PDImultiplication = ‘constant’ at 2, but PDIproportion and PDIdifference are both ‘increasing’ when 

considering point 5 as the starting point. As before, moving the line along the Z-axis would not 

disentangle the directional overlap between PDIproportion and PDIdifference. 

In short, for generative causation, it is only possible to obtain distinct PDIs for the three 

strategies when the difference index is kept constant. In contrast, when the proportion index and 
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multiplication index are kept constant, it is not possible to obtain contrasting PDIs for the two 

remaining strategies. All points in the right side of Figure 4.3 represent conditions in Table 4.2 

(i.e. the points 1 and 2 represent the condition of the first row from top, points 3 and 4 

correspond to the condition in the third row, and points 5 and 6 correspond to the fourth row). 

Considering just these three conditions reveals that the PDI ‘causes’ is only represented for the 

proportion and difference, but not the multiplication strategy. Similarly, the option ‘inhibits’ is 

only represented for PDIs of the difference and multiplication strategies, and not for the 

proportion strategy. To address this I included the condition in the second row of Table 4.2. In 

sum, I created conditions so that each of the three reasoning strategies is represented at least once 

for each PDI, and doing this meant that for some of the conditions two strategies overlapped in 

their PDI, which in turn meant that in these conditions one PDI did not map to any of the three 

strategies considered here. 

To identify conditions for the preventive scenario, I used the same procedure. Consider 

points 11 and 9 on line B in Figure 4.3 for an example of the first search on preventive 

magnitude pairs. Both share PDIproportion = 0.50; however, unlike their generative counterpart 

(defined by points 3 and 4), they also share an identical PDImultiplication = 2, while PDIdifference is 

‘decreasing’ from -.3 to -.5. If I fixed PDIdifference as ‘constant’ at -0.6 by choosing points 7 and 8 

on line D, I would analogously find that both PDIproportion, and PDImultiplication were pointing in the 

same direction, which was ‘decreasing’ from 0.75 to 0.67, and from 4 to 3, respectively. In other 

words, in this mathematical setup, the nature of the relationship among the strategies in 

preventive causation always gives an overlapping PDI for multiplication and proportion 

strategies. Therefore, preventive scenarios can only distinguish difference strategies versus 

proportion/multiplication. Similarly to the generative scenario, to complete the conditions so that 
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all strategies’ predictions are present in all judgment options, I included another condition (in 

Figure 4.3, this additional condition is represented by points 9 and 10). 

4.0a Notation 

I use the following notation when referring to any condition in all experiments of Chapter 

4: condition [Q(e|¬c)1, Q(e|c)1 : Q(e|¬c)2, Q(e|c)2]. The first two items with subscript 1 before the 

colon represent the surface area covered with algae at location 1, whereas the next two items 

with subscript 2 represent algae growth area at location 2. As an example, I can simply refer to 

the condition in scenario 6 as [0.2, 0.8 : 0.3, 0.9]. 
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Figure 4.3. Scatter plot of the predictions from the three strategies (proportion, difference, multiplication) using 100 sets of magnitude pairs from 10 different values of Q(e|c) and Q(e|¬c). The left 

half of the plot corresponds to relationship the three predictions have in preventive scenarios, while the right half corresponds to the relationship in generative scenarios. The X-axis denotes the 

difference strategy index, the Y-axis denotes the proportion strategy index c, and the Z-axis (i.e. the color) denotes the multiplication strategy index. All of the numbered points and the lines 
connecting them, refer to points in an example to describe the procedure to find conditions for the experiments.  
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Table 4.2: Experiment Conditions and Results of Experiment 4.1, 4.2, 4.3, and 4.4. 

Magnitude Pair at 

Location 1 (%) 

Magnitude Pair at 

Location 2 (%) 
Absolute Property 

How does cause 2 influence effect magnitude? 

Results: N(%)Exp.4.1 

  N(%)Exp.4.2 

  N(%)Exp.4.3 

  N(%)Exp.4.4 

Total N 

Exp. 4.1 

Exp. 4.2 

Exp. 4.3 

Exp. 4.4 
Q(e|~c) Q(e|c) Q(e|~c) Q(e|c) Causes Inhibits 

Does not 

influence 

‘Cannot 

tell’ 

0.20 0.80 0.30 0.90 P: 0.75 à 0.86 

D: 0.60 à 0.60 

M: 4 à 3 

 

 

 

P 

8(20.0) 

32(53.3) 

8(23.5) 

32(53.3) 

M 

13(32.5) 

4(6.7) 

1(2.9) 

15(25.0) 

D 

19(47.5) 

20(33.3) 

23(67.6) 

12(20.0) 

 

-- 

4(6.7) 

2(5.9) 

1(1.7) 

 

40 

60 

34 

60 

0.50 1.00 0.20 0.60 P: 1.00 à 0.50 

D: 0.50 à 0.40 

M: 2 à 3 

 

 

 

M 

17(42.5) 

16(26.7) 

5(14.7) 

18(30.0) 

D/P 

14(35.0) 

41(68.3) 

22(64.7) 

32(53.3) 

? 

9(22.5) 

2(3.3) 

6(17.6) 

8(13.4) 

 

-- 

1(1.7) 

1(2.9) 

2(3.3) 

 

40 

60 

34 

60 

0.40 0.70 0.60 0.80 P: 0.50 à 0.50 

D: 0.30 à 0.20 

M: 1.75 à 1.33 

 

 

 

? 

9(22.5) 

18(30.0) 

3(8.8) 

25(41.7) 

D/M 

17(42.5) 

15(25.0) 

12(35.3) 

14(23.3) 

P 

14(35.0) 

25(41.7) 

17(50.0) 

19(31.7) 

 

-- 

2(3.3) 

2(5.9) 

2(3.3) 

 

40 

60 

34 

60 

0.30 0.60 0.50 1.00 P: 0.43 à 1.00 

D: 0.30 à 0.50 

M: 2 à 2 

D/P 

16(40.0) 

51(85.0) 

25(73.5) 

39(65.0) 

? 

1(2.5) 

0(0.0) 

5(14.7) 

5(8.3) 

M 

23(57.5) 

7(11.7) 

3(8.8) 

12(20.0) 

 

-- 

2(3.3) 

1(2.9) 

4(6.7) 

 

40 

60 

34 

60 

Note: The italicised numbers in the first, second, third, and fourth line in each row are the results of Experiment 4.1, 4.2, 4.3, and 4.4 respectively. The numbers are frequencies of 
judgments with their percentages inside the parenthesis. Legend: P, M, D denotes the three strategies, ‘proportion’, ‘multiplication’, and ‘difference’ respectively. 
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Table 4.3: Experiment Conditions and Results of Experiment 4.5, 4.6, 4.7, and 4.8. 

Magnitude Pair at 

Location 1 

Magnitude Pair at 

Location 2 
Absolute Property 

How does mineral 2 influence algae growth? 

Reasoning Strategy 

Results: n(%)Exp.4.5 

  n(%)Exp.4.6 

  n(%)Exp.4.7 

  n(%)Exp.4.8 

Total N 

Exp. 4.5 

Exp. 4.6 

Exp. 4.7 

Exp. 4.8 

Q(e|~c) Q(e|c) Q(e|~c) Q(e|c) causes inhibits 
does not 

influence 

‘Cannot 

tell’ 

0.80 0.20 0.90 0.30 P: 0.75 à 0.67 

D: 0.60 à 0.60 

M: 1/4 à 1/3 

 

 

 

P/M 

12(34.3) 

23(38.8) 

21(35.0) 

31(51.7) 

? 

10(28.6) 

11(18.3) 

12(20.0) 

13(21.7) 

D 

13(37.1) 

22(36.7) 

19(31.7) 

13(21.7) 

 

0(0.0) 

4(6.7) 

8(13.3) 

2(3.3) 

 

35 

60 

60 

60 

1.00 0.50 0.60 0.20 P: 0.50 à 0.67 

D: 0.50 à 0.40 

M: 1/2 à 1/3 

 

 

 

D 

5(14.3) 

4(6.7) 

3(5.0) 

7(11.7) 

P/M 

27(77.1) 

48(80.0) 

45(75.0) 

46(76.7) 

? 

3(8.6) 

0(0.0) 

5(8.3) 

6(10.0) 

 

0(0.0) 

8(13.3) 

7(11.7) 

1(1.7) 

 

35 

60 

60 

60 

0.60 0.30 1.00 0.50 P: 0.50 à 0.50 

D: 0.30 à 0.50 

M: 1/2 à 1/2 

? 

9(25.7) 

19(31.7) 

19(31.7) 

22(36.7) 

D 

8(22.9) 

15(25.0) 

17(28.3) 

19(31.7) 

P/M 

18(51.4) 

21(35.0) 

19(31.7) 

18(30.0) 

 

0(0.0) 

5(8.3) 

5(8.3) 

1(1.7) 

 

35 

60 

60 

60 

Note: The italicised numbers in the first, second, third, and fourth line in each row are the results of Experiment 4.5, 4.6, 4.7, and 4.8. The numbers are frequencies of judgments 
with their percentages inside the parenthesis. Legend: P, M, D denotes the three strategies, ‘proportion’, ‘multiplication’, and ‘difference’ respectively. 
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Experiment 4.1 

Experiment 4.1 examined reasoning about continuous outcomes in a generative scenario, 

using a cover story on algae growth similar to the examples used above. Participants were 

informed that research was conducted in four different climatic zones (to motivate the four 

different conditions listed in Table 4.2), and that each condition involved evaluating the results of 

research conducted at two locations situated within the same climatic zone. Among the four 

conditions (see Table 4.2), three of them had overlapping PDIs. An overlap of PDIs logically 

implies that one of the options of JDIs available to participants (i.e. ‘causes’, ‘inhibits’, ‘does not 

influence’) does not match with any of the strategies I was investigating. These cases are 

indicated with a question mark in Table 4.2. 

4.1.1 Method 

Participants. Fourty undergraduate students from the School of Psychology, Cardiff 

University participated to fulfil part of a course requirement. Participants for this experiment 

were those who had not participated in any of previous experiments. 

Design and Procedure. Each participant worked on the four conditions listed in Table 

4.2, presented in a random order. The experiment was conducted over the Internet. Participants 

began by reading a cover story about research on the influence of minerals on algae growth in 

four different climate zones: tropical, arid, mediterranean, and alpine, and were told that for each 

zone, two naturally existing minerals were selected and studied at two locations. In location 1, 

only mineral one was examined, whereas in location 2 both minerals were examined. Eight 

different fictitious names of minerals were used and randomly assigned to conditions and roles 

(mineral 1 and 2). Instructions also stated that due to both locations being many miles apart, their 

microclimates might be different. This was done to motivate differences in base rate (i.e. 
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coverage with algae in the absence of treatment) between the two locations. Participants then 

read that examination of minerals took place in pools with a surface area of 100 square meters, 

and that the area of water surface covered by algae was used as the marker of algae growth. After 

reading the cover story, participants proceeded with the conditions. 

Each participant worked on the four conditions listed in Table 4.2, with every condition 

randomly assigned to one climatic zone, and order of conditions randomised. For each condition, 

I presented all related information simultaneously on a single screen (see Figure 4.2). This 

included a visual representation of algae growth before and after treatment with the minerals at 

both locations: information for location 1 on the left side, and for location 2 on the right side. 

The growth area reflected the effect magnitudes represented in Table 4.2 with respect to 100 m
2
 

of the pool surface area. 

Underneath this information was a question: “Based on the information from BOTH 

locations, how would you judge the influence of [mineral two] on algae growth?” Participants 

had three options to choose whether mineral two ‘causes’, or ‘does not influence’, or ‘inhibits’ 

the growth of algae. After submitting the judgment, they received the next condition in the same 

visual format. For complete instructions see Appendix 1. 

4.1.2 Results 

The right side of Table 4.2 displays the results of Experiment 4.1. Qualitative observation 

suggests that multiplication is the most prominent strategy, followed by difference. Proportion, 

on the other hand, appears to be the least adopted strategy. While I cannot make a clear 

distinction between multiplication and difference in condition [0.4, 0.7 : 0.6, 0.8], I can observe 

that the multiplication strategy is the most chosen in conditions [0.5, 1.0 : 0.2, 0.6] and [0.3, 0.6 : 

0.5, 1.0]. In condition [0.2, 0.8 : 0.3, 0.9], the difference strategy is the most prominent. 
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Perfect strategy consistency within participants across conditions was low: No participant 

consistently adopted the proportion strategy across all four conditions. Meanwhile, only five and 

two participants consistently adopted the multiplication and difference strategy, respectively. 

Therefore, I analysed the extent of consistency (instead of perfect consistency) of judgments 

across conditions for every participant using scores. To this end, I converted the four judgments 

each participant made into three scores corresponding to each strategy. Any judgment (i.e JDI) 

that corresponded to a particular PDI of a given strategy (including in an overlapping PDI 

situation) contributed one point towards the total score of that strategy. For example, a 

participant who answered ‘does not influence’, ‘inhibits’, ‘inhibits’, ‘causes’ respectively to the 

four conditions in the order of Table 4.2 accrued a total of two points for proportion through 

judgments of condition [0.5, 1.0 : 0.2, 0.6] and [0.3, 0.6 : 0.5, 1.0], a total of four points for 

difference through all conditions, and one point for multiplication through condition [0.4, 0.7 : 

0.6, 0.8]. 

The vertical-stripe columns in the top panel of Figure 4.4 show the results of this scoring 

analysis. The multiplication strategy attracted the highest score followed by the difference 

strategy. Meanwhile, the proportion strategy earned the lowest score. I conducted a Wilcoxon 

Signed-Ranks Test to compare the scores against the value expected by chance. Given that 

participants had three response options, a particular JDI therefore had a 0.33 chance of being 

selected on a given condition (including those with overlapping JDIs). Consequently, the overall 

chance score for a particular strategy would have been 1.33 for each participant (0.33 times four 

conditions). I compared the three strategies separately with individual Wilcoxon-Signed-Ranks 

tests against the chance value. Throughout the remainder of this chapter, I report the original p 

values (i.e. for single tests) but my evaluation is based on Bonferroni corrected thresholds. 
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Consequently, for an individual comparison to be significant at the .05 level, the p value would 

need to be below .0167. The difference strategy (z = -2.005, p = .045) and the multiplication 

strategy scores (z = -1.974, p = .048) were marginally above chance when considered as 

individual comparisons, but failed to pass the Bonferroni corrected threshold. The proportional 

strategy score was not significantly different from chance (z = -.176, p = .860). 

4.1.3 Discussion 

The scoring analysis further supports my initial observation that participants mostly 

adopted a multiplication strategy, and avoided a proportion strategy. This suggest that 

participants thought of the cause as interacting with the background causes, instead of 

considering the candidate cause as directly changing the effect. In other words, they might have 

conceived of algae growing on their own (due to the background causes), with the candidate 

cause merely amplifying this tendency, rather than acting as a cause on its own. In this case, the 

candidate cause influences the propensity of the background causes to produce the effect. This 

violates the normative assumptions of a proportional framework, namely that the influence of 

background causes on the effect should remain constant before and after treatment, and that the 

cause and background each influence the effect independently. Perhaps in the algae-mineral 

cover story this assumption was not salient enough. 

In addition to the cover story, the within-entity reasoning situation of this experiment, 

whereby algae coverage changed from before and after treatment within the same pool, also 

permitted participants to consider that the causal efficacy of background causes changed as a 

function of the mineral. This is because the before-after change entails a change that happens 

over time. Experiment 4.1 contained no observable reference showing the magnitude of the effect 

in the absence of treatment, but at the same later time. Consequently, this may have triggered 
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uncertainties about whether the influence of background causes on the effect remained constant 

throughout the study or changed as a function of mineral administration (for more discussion on 

this, see Experiment 4.3). 

To continue with the investigation, I considered two possible factors that might challenge 

the generalizability of results of this experiment: For Experiment 4.2, I developed a different 

cover story with the aim to convey that the causal influence of background causes remained 

constant throughout; in Experiment 4.3, I presented the information in a between-entity situation. 
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Figure 4.4: Results of the scoring analysis for all experiments in Chapter 4. The top chart is for the generative, the bottom for the preventive scenarios. The dashed and dotted lines 
respectively represent chance values in the corresponding experiments. 
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Experiment 4.2 

In Experiment 4.1, the cover story of minerals influencing algae growth could plausibly 

have biased participants into thinking that the background causes and candidate cause interact to 

influence algae growth. More specifically, participants could have thought that algae growth was 

occurring due to background causes, and that the candidate cause was merely amplifying or 

modulating this process instead of acting directly on the effect. In this experiment, I used a new 

cover story about the influence of chemical additives (cause) on runniness of engine oil (effect), 

measured in terms of splash area covered by the oil before and after treatment. The rationale of 

doing this was that naïve assumptions about the causal mechanisms influencing viscosity of oil 

would be qualitatively different to those concerning algae growth. Specifically, I hoped that this 

new scenario would increase the likelihood that participants view the candidate causes (i.e. 

additives) as directly influencing the runniness of oil, rather than via interacting with the 

background conditions, or modulating a naturally occurring process. 

4.2.1 Method 

Participants. Sixty participants were recruited via Amazon Mechanical Turk and were 

paid USD 0.80. I restricted participation to the United States, and native English speakers only. 

Design and Procedure. This experiment adopted the same within-subject design as 

Experiment 4.1 except with a different cover story. Participants began by reading a cover story 

about a study of two additives having influence on runniness of four engine oils (i.e. to 

correspond to four conditions). Participants were told that runniness was measured by a Drip-

Test procedure: 5 grams oil would be dropped from 5 centimetres height onto a test slate of 10 

square centimetres, and the spread (surface area covered in oil) would be determined. 

Participants were told that each oil went through an initial test, followed by the mixing with 
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additives, before being tested again. The context of the cover story involved two departments, 

with Department A testing only one additive while Department B tested both additives. The story 

also made it clear that “The greater the surface area on the test slate (out of the 10 cm
2
 total) 

covered by oil, the greater the runniness of the oil”. 

After reading the cover story, participants continued to the first problem (randomly 

selected among the four). For each condition, participants were exposed to a visual presentation 

of the splash area before and after treatment for both departments (this was analogous to Figure 

4.2, except that the visuals were slightly modify to depict a round slate and a blob of varying 

size). Underneath, “Based on the information from BOTH departments, how would you judge the 

influence of [additive two] on the runniness of oil?” Participants had four options to choose 

whether additive two ‘causes’, or ‘does not influence’, or ‘inhibits’ the runniness of oil, or 

‘Cannot tell’. I added this additional answer option of ‘Cannot tell’ to reduce any potential 

confounding participants might have had between a ‘does not influence’ judgment and their 

inability to make an actual judgment. If they chose this fourth option, they had to type in a reason 

as for why they could not make any judgment. I included this requirement as a deterrent from 

using this option as a lazy alternative to proper engagement with the task. Consequently, I did not 

systematically analyse answers to this question. 

4.2.2 Results 

The right side of Table 4.2 outlines the results of this experiment and suggests that the 

proportion strategy was the most adopted strategy in this experiment. Proportion-based 

judgments dominated condition [0.2, 0.8 : 0.3,0.9] and [0.4, 0.7 : 0.6, 0.8], while the overlapping 

of proportion and difference-based judgments dominated the other two conditions. Perfect 

strategy consistency within participant across conditions was relatively low (19 out of 60 
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participants) but better than Experiment 4.1. Out of the consistent 19 participants, 3 adopted the 

multiplication strategy, 4 the difference strategy, and 12 the proportion strategy. The horizontal-

stripe columns in the top panel of Figure 4.4 represent results from the same scoring analysis as 

in Experiment 4.1.
14

 Wilcoxon Signed-Ranks Tests on the judgments indicate that the proportion 

(z = -5.994, p < .001) and difference scores (z = -5.978, p < . 001) were both significantly above 

what would be expected by chance, whereas the multiplication score was significantly below 

chance (z = -2.673, p = .008). 

4.2.3 Discussion 

The initial observation that the proportion strategy was the most prominent was supported 

in the scoring analysis. These results are at variance with Experiment 4.1, where proportion was 

the least adopted strategy. Because the mathematical structure of the problems was identical 

between these experiments, and both presented participants with causal changes within the same 

entities (i.e. before and after treatment), the inconsistency between these two experiments must 

be resulting from the difference in cover stories. Specifically, I propose that the different cover 

stories engendered different assumptions about the causal processes involved in the scenarios: 

The algae-mineral story involved background causes that were naturally occurring in the 

environment (e.g. algae growth due to exposure to sunlight, nutrients, microorganisms, etc), 

which would continue to keep producing algae growth over time. Specifically, the causal power 

of these background causes would be expected to change over time (e.g. as the amount of 

microorganisms in a body of water grows, the potential to facilitate algal bloom also rises in a 

commensurate manner). Consequently, a natural assumption in this scenario indeed is that any 

treatment added to the pools would act on these background causes (i.e. a causal interaction), 

                                                
14

 The chance level was 1.00 for every participant (i.e. 0.250 per condition, times four conditions). It was 

different from 1.333 in Experiment 4.1 because in this experiment, participants had four answer options per 
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rather than acting independently. In contrast, the oil-additive story entailed background causes 

that would be expected to remain constant across time (e.g. the extent to which ambient 

temperature, humidity etc. influence the spread of oil). Consequently, participants might have 

approached these problems with the assumptions that any influence these background causes 

have on the runniness of oil would remain constant between the before- and after treatment tests, 

and furthermore, that the additives act independently, rather than by influencing the background 

factors. 

Experiment 4.3 

In this experiment, I wanted to test whether the reasoning situation (within-entity vs 

between-entity) moderates the reasoning strategy people adopted. To this end, I reverted to the 

cover story used in Experiment 4.1, but modified it to a between-entity test of causal efficacy. 

Specifically, rather than measuring the surface area covered in algae before and after treatment, 

in this experiment, participants were introduced to two separate pools in each laboratory, one 

which served as a control pool and was left untreated, and another which received treatment with 

the mineral(s). 

4.3.1 Method 

Participants. Thirty-five undergraduates students from the School of Psychology, Cardiff 

University participated in the experiment to fulfil part of a course requirement.  

Design and Procedure. Design and procedure were identical to Experiment 4.1, apart 

from small modifications to the cover story to reflect the between-entity situation. Specifically, I 

mentioned that each laboratory housed two pools: one pool served as a control, and received no 

treatment, whereas the other pool received treatment with either one (laboratory at location 1) or 

both (location 2) minerals. To further clarify the cover story, I included a diagram to show the 

                                                                                                                                                       
condition, relative to three in Experiment 4.1. 
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between-entity situation (Figure 4.5). As in Experiment 4.2, the fourth additional answer option 

of ‘Cannot tell’ was also available.  

 

Figure 4.5. A diagram included inline of the cover story to explain the set up of the situation in Experiment 4.3 and 4.7. 

 

4.3.2 Results 

The right side of Table 4.2 summarises the results of the experiment. While the results are 

less clear than in the previous experiments, it is evident that the multiplication strategy was the 

least selected option in all conditions. In condition [0.5, 1.0 : 0.2, 0.6] and [0.3, 0.6 : 0.5, 1.0] 

most participants made judgments corresponding to the overlapping proportion/difference 

strategy. Meanwhile, in condition [0.2, 0.8 : 0.3, 0.9], the predominant choice was for the 

difference strategy, but in condition [0.4, 0.7 : 0.6, 0.8], the most common strategy was 

proportion. Similar to Experiment 4.1, perfect strategy consistency within participant across 

conditions was very low. Across all conditions, the number of participants who consistently used 

the multiplication, proportion, and difference strategies was respectively zero, two, and three. 

Therefore, I also conducted the same scoring analysis on these judgments to provide an 

indication of the most popular strategy. The cross-hatched columns in the top panel of Figure 4.4 
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represent the outcome of this analysis. Wilcoxon Signed-Ranks Tests on the judgments indicate 

that the proportion (z = -4.111, p < . 001) and difference scores (z = -4.682, p < . 001) were both 

significantly above chance, whereas the multiplication score (z = -2.502, p = .012) was 

significantly below chance. 

4.3.3 Discussion 

My initial observation was that the multiplication strategy was the least adopted strategy, 

and the scoring analysis further supported this. The majority of judgments in condition [0.5, 1.0 : 

0.2, 0.6] and [0.3, 0.6 : 0.5, 1.0] corresponded to the overlapping of difference and proportion 

strategies. Thus, to determine which strategy of these two was dominant, only results in 

conditions [0.2, 0.8 : 0.3, 0.9] and [0.4, 0.7 : 0.6, 0.8] are relevant. The results in these conditions 

however, are not in agreement, as participants mostly adopted the difference strategy in the 

former and the proportion strategy in the latter. Thus, in this experiment it is inconclusive 

whether people adopted the proportion or the difference strategy. 

Comparing these results to the dominance of the multiplication strategy in Experiment 

4.1 suggests that reasoning situation (within-entity vs. between-entity) moderates the choice of 

reasoning strategy. In the within-entity situation of Experiment 4.1, because the treatment 

happened on the same entity, the credibility of information about effect magnitude in the absence 

of the candidate cause (i.e. only in the presence of background causes) was reduced. In other 

words, reasoners could not be certain that the influence of background causes would remain 

constant following the treatment. Because of this, reasoning about an interaction between 

background causes and candidate cause might have been more prominent, which could have led 

participants to adopt a multiplication strategy. In contrast, in the between-entity situation of 

Experiment 4.3, the effect magnitude in the absence of the candidate cause was observable and 
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verifiable for the control condition, even after the administration of treatment. This gives 

certainty to the constancy of the influence of background causes throughout the study. Because 

of this, thinking about an interaction may have been less likely, which could have contributed to 

multiplication being the least adopted strategy. Indeed, the fact that many judgments reflected 

use of the proportion strategy suggests that between-entity situations further strengthen the 

assumption of independence between background causes and candidate cause. 

Experiment 4.4 

The contrasting results of Experiment 4.1 and 4.3 suggest that reasoning situation 

(within-entity vs. between-entity) moderates the choice of reasoning strategy: multiplication 

strategy in the former, and proportion/difference strategy in the latter. These experiments, 

however, used the algae-mineral cover story. A natural question following these results would be 

whether reasoning-situation also moderates strategy choice in the oil-additive story. Because 

Experiment 4.2 tested a within-entity situation, I replicated the experiment here with a between-

entity situation. This allowed us to investigate whether the moderation of strategy choice by 

reasoning-situation is generic or specific to the algae-mineral story.  

4.4.1 Method 

Participants. Sixty participants were recruited via Amazon Mechanical Turk and were 

paid USD 0.80. Participation criteria was the same as in Experiment 4.2. 

Design and Procedure. Design and procedure were identical to Experiment 4.2, with the 

cover story modified to a between-entity situation. As in Experiment 4.3, the cover story referred 

to two separate observations in each location: One of a sample of engine oil without any 

additives added, and another where one or both additives were present. 
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4.4.2 Results 

The results of this experiment occupy the right side of Table 4.2. A visual inspection 

suggests that proportion was the leading strategy. The proportion strategy was dominant in 

condition [0.2, 0.8 : 0.3, 0.9], and conditions [0.5, 1.0 : 0.2, 0.6] and [0.3, 0.6 : 0.5, 1.0] elicited 

the overlapping proportion/difference option as most frequent judgments. In condition [0.4, 0.7 : 

0.6, 0.8], the most chosen option corresponded to the unknown PDI marked with the question 

mark followed by the proportion strategy. 

Results of this experiment also have a low perfect strategy consistency within participants 

across conditions. Only one, five, and seven participants consistently adopted the difference, 

proportion, and multiplication strategies in all conditions, respectively. Results of the same 

scoring analysis as in the previous experiments are depicted in the chequered columns in the top 

panel of Figure 4.4. The highest score was associated with the proportion strategy followed by 

the difference strategy and the multiplication strategy warranted the lowest score. A Wilcoxon 

Signed-Ranks Test showed that scores for the proportion (z = -5.110, p < . 001) and difference 

strategy (z = -4.750, p < . 001) were significantly above chance, whereas the score for the 

multiplication strategy was not significantly different from chance (z = -.676, p = .499). 

4.4.3 Discussion 

Proportion was the prominent strategy in this experiment. Even though the reasoning 

situation in this experiment (between-entity) was different to Experiment 4.2 (within-entity), the 

results converge across both experiments. This is at variance with the pattern of results from 

Experiment 4.1 vs. 4.3, where the reasoning situation likewise varied, but the scenario (cover 

story) remained constant. I attribute the difference between Experiment 4.1 vs. 4.3, versus 

Experiment 4.2 vs. 4.4 to differences in the cover story between these two sets of experiments, 
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and the causal mechanisms they suggest (i.e. algae-mineral in Experiment 4.1 and 4.3, and oil-

additive in Experiment 4.2 and 4.4). In short, the impact of reasoning-situation, which was 

present in the algae-mineral scenario, was not present in for oil-additive scenario. 

A possible explanation for the convergence of the proportion strategy in Experiment 4.2 

(within-entity) and this experiment (between-entity) was due to the clarity of the reasoning 

situation across these experiments. The sequence of events in the within-entity story began with 

dripping of oil for a base-rate measurement, followed by administering treatments on the 

remaining oil, and then dripping it for a subsequent measurement. The between-entity story 

began with preparation of two distinct samples right from the start, whereby the treatment(s) 

were administered only to one sample, and then both samples were dripped for measurement of 

the splash area. The subtle difference between these two stories was only the time when the 

measurement of base-rate oil and treated oil was carried out, but the end product was still two 

physically distinct splashes in both situations. In the algae-mineral story, only the between-entity 

version involved two physical pools, while in the within-entity version, the base-rate area was 

not physically observable once the treatment was administered. This was highlighted in 

Experiment 4.3: the difference between the within-entity and between-entity versions of the 

algae-mineral story focuses on whether the constancy of the influence of background causes 

throughout the study is apparent or not. In the oil-additive story, regardless of whether the 

scenario was within- or between entities, the influence of background causes on oil runniness 

was always credibly constant. 

Experiment 4.5 

Experiment 4.5 began the investigation of causal reasoning on continuous outcomes in a 

preventive scenario. In this experiment, I replicated Experiment 4.1, except with a scenario 
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where algae growth before treatment was always higher than after treatment. Note that in any 

preventive scenario, PDIproportion and PDImultiplication always overlap. Consequently, all experiments 

involving preventive scenarios technically only investigated two strategies in the judgment task: 

difference vs. proportion/multiplication (see Table 4.3). Consequently, the scoring analyses only 

contain two Wilcoxon tests, and the Bonferroni corrected level will be .025. 

4.5.1 Method 

Participants. 35 undergraduates from School of Psychology, Cardiff University 

participated to fulfil part of a course requirement. Participants who have participated in 

Experiment 4.1 were refused from participating in this experiment. 

Design and Procedure. This experiment adopted a similar procedure to Experiment 4.1 

(within-entity), but with three preventive conditions (see Table 4.3). Also, to reduce any potential 

confounding between a ‘does not influence’ judgment and an inability to make an actual 

judgment, I included the fourth ‘Cannot tell’ option. If participants opted for this option, they had 

to elaborate in their own words the reason for their inability to make judgment as described 

above. 

4.5.2 Results 

The right side of Table 4.3 shows the results of this experiment. Qualitative inspection 

indicates that most judgments reflect adoption of a proportion/multiplication strategy; especially 

in conditions [1.0, 0.5 : 0.6, 0.2] and [0.6, 0.3 : 1.0, 0.5]. In condition [0.8, 0.2 : 0.9, 0.3], the 

difference based approach appeared to be as popular as the proportion/multiplication strategy. 

Only two participants consistently used a difference strategy in all three conditions and four 

participants consistently adopted a proportion/multiplication strategy. Because of this low 

performance of perfect strategy consistency within participant between all three conditions, I 
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conducted the scoring analysis on these judgments as explained in Experiment 4.1. Wilcoxon 

Signed-Ranks Tests of these scores against the chance value of 0.750 show that the 

proportion/multiplication score (z = -4.490, p < . 001) is significantly above chance, whereas the 

difference score (z = -.752, p = .452) is not. Vertical-stripe columns on the bottom panel of 

Figure 4.4 visualize these findings. 

4.5.3 Discussion 

The scoring analysis supports the qualitative observation that proportion/multiplication 

was the most prominent strategy in this experiment. In contrast, participants seemed to largely 

avoid the difference strategy. Because the proportion and multiplication strategy are 

computationally identical in preventive relations, it was not possible to tease these apart. I 

continued the investigation by following the rationale of the generative experiments, i.e. by 

investigating the generalizability of this result in a different context. As discussed in Experiment 

4.1 and 4.2, relative to the oil-additive cover story, the algae-mineral cover story was more 

accommodating towards reasoning about an interaction between background causes and 

candidate cause. Because of this, generalizability of this result might be an issue between these 

two stories in preventive scenario. The first step to test this would be the aim of the next 

experiment, which adapts the oil-additive cover story. 

Experiment 4.6 

I wanted to test whether perhaps a new cover story could influence the strategy selection, 

relative to the algae-mineral cover story in Experiment 4.5. More specifically, in this experiment, 

because the story involved influences of additives on runniness of engine oils, I was interested to 

assess whether a majority of participants would still use the proportion/multiplication strategy.  
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4.6.1 Method 

Participants. 60 participants were recruited via Amazon Mechanical Turk for USD 0.80. 

The same participation restriction as in Experiment 4.2 was adopted in this experiment. 

Design and Procedure. This experiment used a within-entity situation as in Experiment 

4.5 but with a different cover story. This experiment adopted the same cover story as in 

Experiment 4.2, which was about a study of two additives having influence on runniness of 

engine oils. A minor modification to the story was that three (as opposed to four in Experiment 

4.2) engine oils were involved, corresponding to three conditions. The story highlighted that the 

study was conducted in a within-entity situation where each oil went through an initial test, 

followed by mixing with the additives, before undergoing the second test. The rest of the 

experiment followed the same procedure with Experiment 4.5. 

4.6.2 Results 

The right side of Table 4.3 summarizes the results. Qualitative observation shows that the 

proportion/multiplication strategy attracted the most judgments in all conditions. Because perfect 

strategy consistency across conditions within participants was again low, (with only eight 

participants consistently adopting the same strategy in all conditions – two participants used 

difference and six participants used proportion/multiplication), I conducted the scoring analysis 

as another measure of consistency across the conditions. The scoring analysis corroborated the 

same trend (see horizontal-stripe column in the bottom panel of Figure 4.4). Wilcoxon Signed-

Ranks Tests reveal that the score for proportion/multiplication is significantly greater than 

chance, z = -5.435, p < . 001, whereas the difference score is not, z = -1.353, p = .176. 
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4.6.3 Discussion 

The difference strategy was the least adopted among participants in this experiment. 

Thus, the focus of this discussion is between the proportion and multiplication strategies. From 

Experiment 4.2, i.e. the generative counterpart of this experiment, I observed that the oil-additive 

story was less likely to prompt thinking about an interaction between background causes and 

candidate cause. As evident in that experiment, the proportion strategy was the most adopted, 

whereas multiplication was the least adopted. Assuming that this story likewise reduced the 

appeal of causal interactions in a preventive scenario, then leads us to expect that in this 

experiment, participants would likely reason also with the proportion strategy. Even though I 

could not conclude whether the algae-mineral or oil-additive context influence reasoning strategy 

as they did in the generative scenario, the results of both this experiment and Experiment 4.5 

converge in showing that the difference strategy was the least relevant in the preventive scenario. 

In the following two experiments, I extended the investigation to see whether reasoning situation 

has an influence on strategy adoption as it did in generative scenario. 

Experiment 4.7 

The objective of this experiment was to study whether the reasoning situation had an 

influence on strategy selection in preventive scenario of algae-mineral story. In particular, 

relative to Experiment 4.5, this experiment had a between-entity situation. 

4.7.1 Method 

Participants. 60 subjects were recruited via Amazon Mechanical Turk for USD 0.80. 

The exclusion criteria for this experiment were the same as in Experiment 4.2. 

Design and Procedure. This experiment was similar to Experiment 4.5 but with 

modification on the cover story to show a between-entity situation. More specifically, I 



      118 

 

mentioned that each laboratory housed two pools: one pool served as a control, and received no 

treatment, whereas the other pool received treatment with either one (laboratory at location 1) or 

both (location 2) minerals. A diagram showing this situation (Figure 4.5) further clarified the 

cover story. 

4.7.2 Results 

Qualitative observation of the right side of Table 4.3 suggests that most participants again 

judged according to a proportion/multiplication strategy. This is evident in all conditions except 

in condition [0.6, 0.3 : 1.0, 0.5], where judgments based on proportion/multiplication were tied 

with the option based on an unidentified strategy. Similar to Experiment 4.5, perfect strategy 

consistency across conditions within participant was very low. While only five participants 

consistently adopted the proportion/multiplication strategy in all conditions, only a single 

participant used the difference strategy throughout all conditions. The cross-hatched columns in 

the bottom panel of Figure 4.4 represent the results of the scoring analysis. Wilcoxon Signed-

Ranks Tests on the scores show that the proportion/multiplication score ,z = -4.928, p < . 001, is 

significantly above chance, whereas the difference score is not, z = -1.651, p =.099. 

4.7.3 Discussion 

Similar to Experiment 4.6, difference was again the least adopted strategy. Hence, the 

dominant strategy was the proportion or multiplication strategy. Contrasting results of 

Experiment 4.1 and 4.3 suggested that, in the context of the algae-mineral scenario, a between-

entity situation reduced thinking about an interaction between background causes and candidate 

cause, and that consequently the multiplication strategy was less likely to emerge (see Discussion 

in Experiment 4.3). Supposing that in the preventive scenario, the between-entity situation also 
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discouraged interaction-based causal reasoning, I therefore infer that proportion was the most 

prominent strategy. 

Experiment 4.8 

This experiment was the parallel to Experiment 4.7 in investigating any possible 

influence of reasoning situation on strategy selection, but in the oil-additive context. The cover 

story was the same as in Experiment 4.6 but using a between-entity situation. 

4.8.1 Method 

Participants. 60 subjects were recruited via Amazon Mechanical Turk for USD 0.80. 

The exclusion criteria for this experiment were the same as in Experiment 4.2. 

Design and Procedure. This experiment adopted the same between-entity as in 

Experiment 4.7 but using materials of preventive scenario from Experiment 4.6 including the oil-

additive cover story and three preventive conditions.  

4.8.2 Results 

The results of this experiment are on the right side of Table 4.3. Observation of the table 

reveals proportion/multiplication as the dominant strategy. This is evident in all conditions 

except in condition [0.6, 0.3 : 1.0, 0.5] where most of the judgments corresponded to a tie 

between the unknown PDI and proportion/multiplication strategy. Similar to previous 

experiments, perfect strategy consistency was low with only ten participants regularly using the 

same strategy. Eight of them consistently adopted a proportion/multiplication strategy, while the 

remaining two participants applied the difference strategy. The chequered columns at the bottom 

panel of Figure 4.4 portray the results of the scoring analysis. Wilcoxon Signed-Ranks Tests 

verify that the proportion/multiplication score is above chance, z = -5.631, p < . 001, whereas the 

difference score is not, z = -1.580, p = .114. 
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4.8.3 Discussion 

Experiment 4.6 (the same oil-additive scenario as in this experiment, but using a within-

entity situation), Experiment 4.7 (algae-mineral scenario, but using the same between-entity 

situation as in this experiment) and this experiment converge in revealing difference as the least 

preferred, and proportion/multiplication as the dominant strategy. Applying the same logic as in 

the generative counterpart, I interpret these results to indicate that the proportion strategy was the 

prominent strategy in this experiment as well. This is because, both the oil-additive scenario and 

the between-entity situation discouraged reasoning about an interaction between background 

causes and candidate cause, which could lead to adoption of the multiplication strategy. 

Consequently, even though I cannot in principle disentangle the proportion from the 

multiplication strategy when considering preventive relations, I interpret this pattern of results to 

support proportional reasoning as the dominant approach. 

4.9 General Discussion of Chapter 4 

In this chapter, I presented eight experiments using a paradigm that did not involve 

asking participants to explicitly compute strength of candidate cause in influencing effect like in 

previous chapters. The results of these experiments provide further insights on the influence of 

contexts and reasoning situations on reasoning strategies as evident in Chapter 3. 

The four experiments using a generative scenario revealed more complex results relative 

than their preventive counterparts: Context-specificity (cf. the algae-mineral versus oil-additive 

scenarios), as well as situation dependency (within- versus between-entity design) were evident. 

In the algae-mineral context, the reasoning situation moderated strategy use. When in a within-

entity situation, the most prominent strategy was multiplication, while in a between-entity 

situation, the dominant strategy was less apparent and split between difference or proportion. 
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This moderation, however, was not present in the oil-additive scenario: irrespective of reasoning 

situation, either within- or between-entity, the majority of participants relied on a proportion 

strategy.  

One possible explanation for variations in these results was the perceived constancy of 

the influence of background causes on the effect. In other words, it was whether the influence of 

background causes on the effect remains constant throughout the observation of evidence. A 

motivation for proposing this factor was due to the inconsistent results between experiments 

using the oil-additive and the algae-mineral cover stories, especially within the generative 

scenario. In the oil-additive experiments, it was natural for participants to assume that the 

influence of background causes on the effect was constant. This is because the story involved a 

synthetic process that usually took place in a controlled environment. In contrast, participants in 

the algae-mineral experiments (both generative and preventive scenarios) might think about this 

differently. Because of the natural, organic setting of the context, it is also natural to think that 

algae growth happens anyway. This thinking implies that background causes were sufficient in 

producing the growth, and variably influenced the effect over time: in the beginning, they 

produced a certain magnitude of the effect, but later their effectivity (power) increased and 

produced higher magnitude of effect. For example, algae grow naturally in a water body with 

sufficient exposure to sunlight and plenty of nutrients. As amount of the nutrient increases, the 

potential for algal bloom also escalate. In short, reasoners in the algae-mineral scenario might 

have thought that background causes did not influence the effect consistently throughout the 

observation. When participants thought the influence of background causes remained unchanged 

throughout the observation, they were more inclined to adopt a proportion strategy. Otherwise, 
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the results were less straightforward and subject to the influence of reasoning situation (within- 

or between-entity).  

Experiments in preventive scenarios unveiled simpler results. Regardless of context or 

reasoning situation, these experiments consistently revealed the same result: participants mostly 

adopted a proportion/multiplication strategy in all experiments. To address this overlapping of 

proportion and multiplication strategies, I could extend the logic underpinning the influence of 

scenario and reasoning situation in generative causal inference into preventive scenario, and in 

general, this extension revealed that the prominent strategy in preventive scenarios would also be 

proportion-based. This interpretation demands some important precautions, however. This is 

because of asymmetries between generative and preventive causal inference. Two asymmetries 

between generative and preventive causal inference that might influence reasoning concern the 

saliency of an upper limit of causal effectiveness, and differences in the direction of influences 

between background causes and candidate causes. 
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Chapter 5: General Discussion 

This thesis explores how people reason about causal relations in scenarios where a 

candidate cause generates or prevents continuous effects. The experimental approach was to 

conceptually map probabilistic influences in binary causation to (deterministic) influences on 

continuous effects. This mapping preserved the computational properties of binary causation, 

which in turn has enabled me to study the applicability of reasoning concepts from binary 

causation onto causal inference with continuous outcome magnitudes. 

In general, results for preventive scenarios were more consistent throughout experiments 

in all chapters: when reasoning about a candidate cause inhibiting effect magnitudes, reasoners 

made judgments according to a proportion strategy.
15

 In contrast, results for generative scenarios 

were more complex with evidence of moderating factors. 

In Chapter 2, results for the generative scenario indicated that participants reasoned using 

the difference strategy. Following the suggestion in Buehner et al. (2003), I continued with a 

series of counterfactual judgment experiments in Chapter 3. While this method was arguably 

better to elicit reasoning strategies in binary causation, the results of the generative experiments 

presented here did not support this argument. This is because, despite having manipulations with 

various contexts and situations, Experiments 3.2 through 3.4 that followed Buehner et al.’s 

suggestion revealed that most participants simply neglected the base rates and engaged none of 

the strategies under investigation. The tendency for judgments to reflect a neglecting of base 

rates, however, was reduced in Experiments 3.5 and 3.6 where, respectively, difference and 

multiplication were the most prominent strategies. This change in result relative to the former 

                                                
15

 In Chapter 2 and 3, predictions for multiplication strategy overlapped with proportion. 
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three experiments could be attributed to the adoption of non-zero counterfactual base rates in 

these experiments. 

Furthermore, contrasting the results between Experiment 3.3 and 3.5, both of which had 

the same cover story presented in a within-entity setting, indicated that counterfactual base rate 

(zero vs. non-zero) was a moderating factor of reasoning strategy: i.e. in Experiment 3.3 with 

zero counterfactual base rate most judgments reflected base rate neglect, whereas in Experiment 

3.5 with non-zero counterfactual base rate the results switched to the difference strategy. 

In addition, when contrasting the results of Experiments 3.5 and 3.6, both of which 

adopted non-zero counterfactual base rates, the results were also not consistent. This situation 

can be attributed to the different context or cover stories, as the next moderator. When a cover 

story of chemical-algae was used (Experiment 3.5), most participants settled on the difference 

strategy, whereas in the additive-oil cover story, the leading strategy switched to the 

multiplication strategy. 

Further, in Chapter 4, the experiments highlighted other factors moderating the use of 

strategy in generative scenarios. As evident from the results of Experiments 4.1 and 4.3, 

presentation of information in situations of within- versus between-entity moderated reasoning 

strategy within the same cover story. Moreover, when contrasting the results of Experiment 4.2 

relative to 4.1, I observed moderation of context to the adoption of reasoning strategy. 

The above results constitute evidence of moderation within the same chapter. When 

contrasting the results of Experiment 3.6 and 4.2, their results failed to converge (i.e. the 

multiplication strategy was dominant in the former, while proportion was dominant in the latter) 

despite both experiments adopting the same additive-oil story in a within-entity format. The most 

likely explanation for this discrepancy was the method of study: participants made counterfactual 
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judgments in Experiment 3.6, but implicit judgments in Experiment 4.2. In making 

counterfactual judgments, participants initially computed a strength index of a cause before 

applying the index onto a counterfactual situation. In contrast, in the implicit judgments task, 

participants did not explicitly judge causal strength, but relied on the direction of influence the 

candidate cause had on effect. This discrepancy evinces that participants responded according to 

the demands of the tasks. 

Perales and Shanks (2008) also showed that demands of the task influence participants’ 

responses accordingly in binary causation: when asked via a counterfactual versus a causal 

strength question, participants’ responses were different. Further, they argued that, when making 

judgments, people would simply integrate confirming and disconfirming evidence in a linear 

manner, and proposed a normalized weighted linear combination of the trial-type frequencies, a, 

b, c, and d (the Evidence Integration, EI rule) as the strategy in standard causal learning tasks 

(for details, see Perales and Shanks, 2007): !" =  
!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!
, where a, b, c, d, and 

!! ,!! ,!! ,!! correspond to the four cells of a standard 2 x 2 contingency table (see Table 1.1), 

and their corresponding weightings. Perales and Shanks also argued that when making 

judgments, depending on how reasoners perceive demands and saliency of information, inter 

alia, they adjust the weights. 

Having additional parameters in a model, such as the weightings in the EI rule, is 

convenient as it offers more degrees of freedom to explain variations in the data, such as the 

complex results from the generative experiments in this study. Nonetheless, one pertinent issue 

concerning these additional parameters would be the determination of their values. Further, 

having additional things to consider would certainly increase cognitive loads. Ultimately, the 
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question would be whether people actually adopt this approach. In the light of this EI framework, 

I revisited the results of this study in section 5.2. 

In short, participants took into consideration moderating factors when reasoning in 

generative scenarios, whereas they were consistent throughout all experiments with preventive 

scenarios. Two possible aspects that might explain the asymmetry of reasoning between 

generative and preventive scenarios were limit saliency, and direction influence of candidate and 

background causes.  

5.0 Asymmetry of Generative and Preventive 

As highlighted in Chapter 1, the limit of the preventive scenario was more salient than in 

the generative scenario. In preventive situations, because the candidate cause inhibits the effect 

magnitude, the maximum inhibition is always a complete removal of the effect, i.e. a natural 

limit of zero (i.e. in the oil-mineral story, this would mean that the mineral thickens the oil, to the 

extent that it does not drip at all). Such a salient limit is not always present in a generative 

scenario, as the candidate cause can keep generating the effect magnitude as long as it has the 

opportunity to do so. While this low saliency of limit might have been an issue for the reasoning 

process especially in the generative scenario, nonetheless, the fact that a large number of 

judgments corresponded to the proportion strategy indicated that participants were aware of the 

artificial limit I deployed, and used it accordingly. For comparison, in binary probabilistic 

causation, the saliency of the limit is not an issue: the relevant information has clear limits of 

zero and one, marking the maximum effectiveness for preventive and generative scenarios 

respectively. 

Another asymmetry between generative and preventive scenario structures concerns how 

background causes and candidate cause influence the effect. In generative scenarios, these two 
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causes influenced the effect in the same direction (they both generate algae growth/runniness of 

oil), whereas in the preventive scenarios, their influences on the effect opposed each other 

(background causes generate growth/runniness, but candidate causes inhibit it). When the 

background causes influence the effect in the same direction as the candidate cause (as is the 

case in generative scenarios), it might be less appealing to consider background and candidate 

cause as acting independently of each other. In other words, candidate and background might be 

more likely to be seen as relating to and influencing each other in a generative scenario. In 

contrast, in the scenario where they oppose each other (i.e. preventive), background causes and 

candidate cause may a priori appear to be independent of each other. 

In short, these two asymmetries between generative and preventive scenarios 

differentially impact the three reasoning strategies under study: The proportion strategy relies on 

a consideration of an upper limit – which does not naturally exist for continuous outcome 

magnitudes in generative scenarios – and the difference and multiplication strategies do not; in 

preventive scenarios, the upper limit of causal effectiveness is automatically implied to be a 

reduction to zero magnitude, and thus the proportion strategy is on equal footing with the two 

other strategies in this respect. 

Secondly, while the proportion strategy demands an assumption of independence between 

candidate and background causes, the other two strategies do not. In fact, multiplication-based 

reasoning by definition is based on thinking of an interaction between candidate and background 

causes. As I discussed above, preventive scenarios may lend themselves more naturally to the 

assumption of candidate and background acting independently from each other than generative 

scenarios, so again the proportional strategy might be more readily accessible in preventive than 

in generative scenarios. 



      128 

 

5.1 Multiplication Strategy in Binary Causation 

Having a less salient limit, and a weaker sense of independence between influences of 

background causes and candidate cause on the effect, generative causal relations with continuous 

magnitude may be more susceptible to reasoning via causal interaction, which is the basis of the 

multiplication strategy. The multiplication strategy, which I found in the generative scenario 

during my pilot study, is not discussed in any literature that I am aware of. One possible 

explanation for the absence of multiplication strategy in binary causation lies in its reasoning 

structure. Being probabilistic, reasoning with binary causal relations emphasizes judgments from 

a group of instances. Thus, what matters in probabilistic judgment is the number of instances 

where the effect is present, while the extent of the effect is not the focus and is normally not 

being considered (but see Lovibond, Been, Mitchell, Bouton & Frohardt, 2003). 

In contrast, the work presented in this study considered judgments about an individual 

instance, and put focus on the extent of the influence occurring on that instance. Because an 

interaction between background causes and candidate cause to influence the effect involved 

changes on the effect magnitude (i.e. the extent of the effect), the interaction is more noticeable 

at the individual instance level instead of at the group level. Since the multiplication strategy 

stems from this causal interaction, therefore, this strategy surfaces only at the individual level. 

Consequently, binary causation, which focuses only at the group level, does not pick up the 

multiplication strategy. 

5.2 Revisiting Results: In the Light of Evidence Integration Rule 

To revisit the results, firstly, I need to consider how to apply the probabilistic binary 

framework of EI rule into this continuous framework. The main idea of EI rule in binary 

causation focuses on contrast of confirmatory against disconfirmatory information in 2 x 2 
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contingency table: i.e. information in cells a and d are confirmatory, while b and c are not (for 

details see Perales and Shanks, 2007). Because the current study does not consider information 

from individual cells, but only a direct mapping of 
!

!!!
 (i.e. P(e|c)) into Q(e|c) and 

!

!!!
 (i.e. 

P(e|c)) into Q(e|¬c), I could not exactly revisit the results with respect to EI. 

Mathematically, the main idea of EI rule is to consider the difference between 

confirmatory and disconfirmatory evidence, relative to the total evidence observed. Thus, with 

respect to my work, I could consider the effect magnitude when the cause is present, i.e. Q(e|c), 

as confirmatory, and the magnitude when cause is absent, i.e. Q(e|¬c), as disconfirmatory; and 

apply the concept. In other words, the adjusted EI rule to suit the current study can be 

summarised in this equation, EI = 
! ! ! !!(!|¬!)

! ! ! !!(!|¬!)
. While this does not exactly map the binary EI 

rule to the continuous magnitudes of this study, this proposal partially holds some merit because 

this is the only information that was available to the participants during the experiments. While 

the original version of the model has factored in weightings of each individual cells of 

contingency table, I only considered the un-weighted version, as discussed above, when 

revisiting the results of tendency analysis for all experiments in Chapter 3. 

Revisiting Chapter 3. The revisited results from experiments in this chapter are in the 

right-most column of Table 5.1. From all experiments in Chapter 3, the EI adapted strategy 

would make a difference to only Experiment 3.8 (highlighted cell of Table 5.1): In this 

experiment, the proportion/multiplication and EI adapted strategies scored the same in the 

tendency analysis. This suggests that participants in Experiment 3.8 were equally likely to adopt 

either of these two strategies. In other experiments, the EI adapted strategy mostly scored the 

lowest. 
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Table 5.1: Revisited Table 3.1 with results of adapted EI rule on the data 

Generative 

Exp. 

Cover story Means (SD) for Strategies 

Theme Design Base 

rate 

Neglect 

Proportion 

Strategy 

Difference 

Strategy 

Multiplication 

Strategy 

EI rule 

adaptation 

3.1 Cream-Rash W .24(.02) .40(03) .69(.05)* - .35(.03) 

3.2 Fertilizer-Crop B .60(.05)* .45(.03) .40(.04) - .15(.03) 

3.3 Chemical-Algae W .53(.03)* .42(.02) .46(.03) - .17(.02) 

3.4 Chemical-Algae B .62(.09)* .47(.05) .44(.08) - .18(.04) 

3.5 Chemical-Algae W .37(.03) .39(.03) .54(.04)* .50(.04) .13(.01) 

3.6 Additive-Oil W .13(.01) .38(.02) .37(.02) .59(.04)* .14(.01) 

Preventive 

Exp. 

  Base 

rate 

Neglect 

Proportion/ 

Multiplication 

Strategy 

Difference 

Strategy 

 EI rule 

adaptation 

3.7 Cream-Rash W .31(.02) .52(.04)* .41(.02)  .16(.02) 

3.8 Chemical-Algae W .57(.03) .58(.03)* .42(.02)  .58(.03)* 

3.9 Chemical-Algae B .67(.08)* .50(.06) .33(.04)  .50(.06) 

3.10 Additive-Oil W .31(.02) .52(.02)* .41(.02)  .17(.01) 

Note: ‘W’ and ‘B’ in the third column refer ‘within-entity’ and ‘between-entity’ design as explained in the text. The higher the 

score, the more inclined participants were towards that strategy. The means in this table refer to across participants’ average 
scores in each experiment. 

 

Revisiting Chapter 4. Revisited results for all experiments in this chapter were more 

interesting. This is because the predictions of the EI adapted strategy for all conditions used in 

the experiments completely overlap with predictions of the multiplication strategy. Table 4.2 and 

4.3 shows the predictions and results of all strategies for all conditions in this chapter. Thus, 

considering only results of this chapter, I could infer that participants were likely to adopt 

multiplication and EI adapted strategy. While this provides a merit for the EI adapted strategy, a 

more conclusive argument would need a proper experiment because of the conditions: The 

conditions used in these experiments were tailored such that their directions of predictions do not 

completely overlap with each other, whenever possible. 



      131 

 

Considering both revisited results from Chapter 3 and 4, there are some traces of support 

for the EI adapted strategy. I could not, however, make any conclusion on its applicability to 

explain causal reasoning with continuous outcomes in this study. This is because the adaptation 

from the original probabilistic version was simplified, as discussed at the beginning of 5.2 sub- 

chapter. Further, the un-weighted version of the model that I used assumed both confirmatory 

and disconfirmatory evidences are equally salient, which White (2003) argues to be unlikely. 

Perhaps a weighted model would produce a better fit, but doing so would also required me to 

adjust weightings for the proportion and difference strategies as well. In short, the un-weighted 

version of EI rule provides a comparison with other strategies at the same level. 

5.3 Summary and Conclusion 

The work I presented in this thesis built upon a rich research tradition into human 

reasoning with binary causal relations, and extended it by directly mapping extant paradigms for 

the study of reasoning with binary probabilities on to continuous deterministic relations. Despite 

being restricted to deterministic settings, the contribution of this work is to address whether 

reasoning about relations with continuous outcomes is rooted in the same processes as reasoning 

about binary relations. The absence of a consistent strategy within participants and within 

conditions across many experiments would suggest that neither a Power PC-rooted proportion 

strategy, nor a ΔP-rooted difference strategy successfully explains reasoning about causal 

relation with continuous outcomes. 

5.4 Future Direction 

The current work did not fully explore continuous causation (i.e. relationships between 

two continuous variables). A simple continuous relation is three-dimensional: a continuous 

cause, a continuous effect, and the probability of the effect (see Young and Cole, 2012). While 
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the work of Young and Cole gives an indication that people are able to deal with this degree of 

complexity, their work did not attempt to identify any framework, however. 

Thus, the need to consider a new theory or framework is apparent. Consider this scenario: 

Imagine there are two pools (pool A with algae growth of 10 m
2
, and pool B with algae growth of 

20 m
2
) and two different chemicals of interest. After administering a same amount of chemical A 

and chemical B (e.g. 5 litres) into the respective pool, algae growth in pool A increases its 

coverage to 60 m
2
, while in pool B it increases to 80m

2
. If I consider which of these two 

chemicals has higher effectivity in producing algae growth, a natural response would be to 

compute causal strength indices of chemical A and B, and compare them. Because the amount of 

chemicals is the same in both cases, solving these causal relations would be relatively easy. In 

this case, a reasoner would intuitively consider the difference of growth before, and after the 

administration to conclude that chemical B (80 – 20 = 60) is stronger over A (60 – 10 = 50). 

If the scenario were a bit different, where the amount of chemicals administered were not 

the same, e.g. 5 litres of chemical A, and 10 litres of chemical B, the judgment would be harder. 

This is because reasoners need not to only consider the degree of change of effect magnitude 

before and after the chemical administration, but also the degree of change of the chemicals 

administered into the pools. My proposal for this is to consider the degree of change for the 

effect with respect to degree of change for the cause. In this case, 50m
2
 change of algae in pool A 

is attributed to a 5 litre change of chemical, whereas in pool B 60m
2
 change of algae is attributed 

to a 10 litre change of chemical. A possible approach to represent the strength of chemical would 

be to consider to what extent each chemical could produce algae if only 1 litre had been 

administered: computationally, it is a proportion of growth relative to amount. For chemical A 

this would be 10m
2
/l (i.e. 

!"

!
), and 6m

2
/l (i.e. 

!"

!"
) for chemical B. 
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Mathematically, the above proposal is a computation of slope for a linear relation. Figure 

5.1 visualises this. In the figure, the x-axis (horizontal) represents amount of the chemical (litre), 

while the y-axis (vertical) represents algae growth (meter
2
). Further, lines A and B represent the 

relations between chemicals A and B in their respective pools. Visually, the slope for line A is 

steeper than line B, which is consistent with the earlier computation that strength indices for 

chemical A and B are respectively 10m
2
/l and 6m

2
/l. 

 

Figure 5.1. Visualisation of scenario 7 example 

 

While this proposal seems intuitive, it is premature because of two issues: it addresses 

only non-probabilistic computation, and linear relations. To consider the probability of effect, the 

graph in Figure 5.1 would need to have the third z-axis (depth). This new dimension contains 

probability information of every point on both line A and B. The second issue with this proposal 

is that it captures only linear relations. While people often assume any relation as linear and 
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positive (Brehmer, 1992, 1994; Carroll, 1963; Diehl & Sterman, 1995), there could be other 

relations such as quadratic, logarithmic or power. The literature on function learning has 

highlighted that it is easier for people to learn linear functions than quadratic (Carroll, 1963), 

power than linear or logarithmic (Koh & Meyer, 1991), and noncyclic than cyclic ones (Byun, 

1995), inter alia. These works suggest that despite the complexity of how two continuous 

variables are related, people have capability to identifying the function. 

With all of these complexities, a natural question would be: what is the way forward? In 

the next paragraphs, I would like to answer this question. For simplicity, lets consider only linear 

relations between a continuous cause and a continuous effect. Given the support Power PC 

theory has received in the literature on binary causation, I think its core concept of causal 

reasoning is promising. Thus, my proposal of the new theory in continuous causation is in line 

with this theory. 

When proposing the Power PC theory, Cheng (1997) highlighted that its formation 

involved an interpretation of a reasoner who infers the magnitude of the unobservable causal 

power from observable events based on his or her theoretical explanation as well as belief about 

alternative causes. Specifically, she considered the probability of unobservable power of i to 

coincide with the observable probability of effect e in the presence of candidate cause i, when no 

other cause is present or exists
16
. Analogously, if I were to follow the same idea, perhaps a 

framework for continuous causation between a linear relation of i and e is to consider the 

probability of unobservable power of i exerted on effect e to coincide with the probability that 

the relation has a particular slope of m, when other causes are absent. The probability of m is a 

                                                
16

 Some researchers use causal power to refer to causal mechanism, or propensity from a source to produce 

the effect. Cheng (1997) defines causal power as “the intuitive notion that one thing causes another by virtue of the 

power or energy that it exerts over the other”. 
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measure of stability of candidate cause i to consistently produce effect e according to a pattern 

(in this case linear function). 

This line of thought, however, assumes that reasoners had to learn how the candidate 

cause relates with the effect beforehand. The argument that Griffiths and Tenanbaum (2005) 

brought forth in binary causation could support this: prior to addressing the strength with which a 

candidate cause influences an effect, people first need to identify whether there exists a causal 

relation between the cause and effect, i.e. the structure. Hence, in continuous causation, to 

identify whether a relation between two continuous variables exists would mean to identify their 

functional form, i.e. how the two variables are related. In other words, the parallel idea for 

Griffiths and Tenanbaum’s causal structure in binary causation would be the function learning in 

continuous causation. 

In this framework proposal, two crucial properties that may influence reasoning strategy 

of continuous causation are the relational index (in the case of linear relation, I suggest the slope 

as the index), and the consistency of the index across many instances (i.e. its probability). Of 

course, the more important question is how these two properties interact: The higher the index, 

the stronger i and e are related; the higher the probability of the index the more stable that 

relation is. 

The main focus of this thesis was on causal relations involving continuous outcomes, 

instead of fully exploring continuous causation (i.e. relation between two continuous variables). 

Therefore, even though the results indicated that neither the proportional nor difference strategy 

were capable to capture reasoning strategy in this kind of causal relation, these two strategies 

may still be relevant when considering the full scope of continuous causation. 
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Appendix A: Cover Stories for All Experiments 

A.1 Cover Stories For Experiment 2.1 

A.1.1 For Generative-Continuous Experiment in Chapter 2 and Experiment 3.2 

Imagine that you are an agricultural consultant conducting a study on the effectiveness of 

different fertilizers on the growth of corn. In the European Union, the corn crops planting season 

begins in mid-April, and harvesting runs from mid-August through late October.  

Corn requires a particular composition of nitrogen, phosphate and potash to produce good 

yield. An imbalance of these nutrients results in soils that have an unsuitable chemical make up 

that may hinder the growth of the corn plants. Therefore, fertilizers are administered to balance 

the nutrient composition in the soil, both to optimize the growth of the plant, and also to prevent 

dying off of young corn seedlings. Because different fertilizers have different nutrient 

compositions, fertilizers may differ in the extent to which they boost corn yield. Yields can be 

estimated by measuring the total area in which usable corn crops can be harvested with respect to 

the total planted area.  

In this study you are assessing the effectiveness of 15 different fertilizers to improve corn 

yield. The study was an EU-wide effort, where 15 different EU member states each tested the 

effectiveness of ONE particular fertilizer. In each EU country a particular fertilizer was 

administered to an experimental plot of 100 meters square, freshly sown with corn. Each country 

also employed a control plot, also of 100 meters square, where corn was sown and grown in the 

absence of any fertilizers. The total area of usable corn crops in each field has been monitored 

and recorded throughout the study period. 

You will see the records from the 15 participating countries, each testing one of the 15 

different fertilizers. For each dataset, you have to judge the strength of the effectiveness of each 
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fertilizer in maximizing corn yield by selecting a number on the strength scale. The scale begins 

with 0 referring to “absolutely ineffective” and ends at 10 referring to “absolutely effective”.§ 

A.1.2 For Generative-Binary Experiment 

Imagine that you are an agricultural consultant conducting a study on the effectiveness of 

different fertilizers on the growth of corn. In the European Union, the corn crops planting season 

begins in mid-April, and harvesting runs from mid-August through late October.  

Corn requires a particular composition of nitrogen, phosphate and potash to produce good 

yield. An imbalance of these nutrients results in soils that have an unsuitable chemical make up 

that may hinder the growth of the corn plants. Therefore, fertilizers are administered to balance 

the nutrient composition in the soil, both to optimize the growth of the plant, and also to prevent 

dying off of young corn seedlings. Because different fertilizers have different nutrient 

compositions, fertilizers may differ in the extent to which they boost corn yield. Yields can be 

estimated by counting the number of corn plots in which usable corn crops can be harvested with 

respect to the total planted plots.  

In this study you are assessing the effectiveness of 15 different fertilizers to improve corn 

yield. The study was an EU-wide effort, where 15 different EU member states each tested the 

effectiveness of ONE particular fertilizer. In each EU country, a particular fertilizer was 

administered to 10 experimental plots of freshly sown corn.  Each county also employed 10 

control plots where corn was sown and grown in the absence of any fertilizers.  You will receive 

information about experimental and control plots in each country, telling you whether or not a 

particular plot showed improved yield. 

You will see the records from the 15 participating countries, each testing one of the 15 

different fertilizers. For each dataset, you have to judge the strength of the effectiveness of each 
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fertilizer in maximizing corn yield by selecting a number on the strength scale. The scale begins 

with 0 referring to “absolutely ineffective” and ends at 10 referring to “absolutely effective”. 

A.1.3 For Preventive-Continuous Experiment 

Imagine that you are an oncologist conducting research on the effectiveness of new 

chemical agents in fighting tumours. A tumour is an abnormal mass of tissue as a result of 

abnormal proliferation of cells that form a lump on a particular location of the body. This 

abnormal cell proliferation is the result of genetic mutations that occur when the genome cells 

are exposed to radiation, viruses, transposons and mutagenic chemicals. While certain types of 

tumours have a relatively low medical risk, other types do impose high fatality risk. 

Chemotherapy is one of the methods to fight tumours by administering chemotherapeutic 

agents. Chemotherapeutic agents work by impairing the cell division process and effectively 

preventing the growth of the tumour. Once a tumour has been diagnosed, it can grow up to a 

certain volume. Administering the chemotherapeutic agent can reduce the tumour size by 

preventing its growth. Some chemotherapeutic agents are more effective in preventing tumour 

growth than others. Thus, the purpose of this study is to investigate the effectiveness of various 

chemotherapeutic agents in preventing the tumour growth. 

In this study, there were 15 different labs participating, and each studied ONE particular 

chemotherapeutic agent. Every lab was given two groups of mice that were exposed to radiation. 

Previous studies on radiation-induced tumour growth suggest that  - in the absence of any 

preventive treatment - mice should develop a brain tumour of 10 micrometres cubic within one 

week.  

In each study, a control group of mice was exposed to the radiation treatment and the 

tumour size was measured after one week.  An experimental group of mice received exactly the 
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same radiation treatment, but was administered the chemotherapeutic agent during the week, and 

tumour size was measured at the end of this week as above.  

Your task is to go through records of average tumour sizes from the 15 labs, each 

investigating one of the 15 types of chemotherapeutic agents. For each record, you have to judge 

the strength of its effectiveness in preventing the growth of the tumours by selecting a number on 

the strength scale between 0, referring to “absolutely ineffective” and 10, referring to “absolutely 

effective”. 

A.1.4 For Preventive-Binary Experiment 

Imagine that you are an oncologist conducting research on the effectiveness of new 

chemical agents in fighting tumours. A tumour is an abnormal mass of tissue as a result of 

abnormal proliferation of cells that form a lump on a particular location of the body. This 

abnormal cell proliferation is the result of genetic mutations that occur when the genome cells 

are exposed to radiation, viruses, transposons and mutagenic chemicals. While certain types of 

tumours have a relatively low medical risk, other types do impose high fatality risk. 

Chemotherapy is one of the methods to fight tumours by administering chemotherapeutic 

agents. Chemotherapeutic agents work by impairing the cell division process and effectively 

preventing the growth of the tumour. Some chemotherapeutic agents are more effective in 

preventing tumour growth than others. Thus, the purpose of this study is to investigate the 

effectiveness of various chemotherapeutic agents in preventing the tumour growth. 

In this study, there were 15 different labs participating, and each studied ONE particular 

chemotherapeutic agent. Every lab was given two groups of twenty mice that were exposed to 

radiation. Previous studies on radiation-induced tumour growth suggest that  - in the absence of 

any preventive treatment - mice should develop a brain tumour within one week.  
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In each study, a control group of mice was exposed to the radiation treatment and the 

number of mice with tumour was recorded after one week.  An experimental group of mice 

received exactly the same radiation treatment, but was administered the chemotherapeutic agent 

during the week, and number of mice with tumour was recorded at the end of this week as above.  

Your task is to go through records from the 15 labs, each investigating one of the 15 types 

of chemotherapeutic agents. For each record, you have to judge the strength of its effectiveness 

in preventing the growth of the tumours by selecting a number on the strength scale between 0, 

referring to “absolutely ineffective” and 10, referring to “absolutely effective”. 

A.2 Cover Stories For Experiment 2.2 

A.2.1 For Clear-Limit Experiment 

The opening ceremony of the 2008 Summer Olympic was not just a great event, but a 

historical day for the Beijing Weather Modification Office.  The Beijing Weather Modification 

Office reported that “shooting” down all possible clouds heading to the city resulted in the 

ceremony passing by without a single drop of rain and with temperatures never exceeding 29 

degrees Celsius. In the United States a similar technology has been studied over a 12 000 square 

kilometres, with the goal to influence the amount of rainfall, length of storms,  and the area in 

which rain falls. 

In cloud seeding technology, normally silver iodide is sprayed into the cloud to initiate a 

continuous merging process of tiny water drops, resulting in bigger and heavier drops that fall 

down as rainfall. However, silver iodide is suspected to lead to health related side effects, which 

has become a major concern.  Consequently, safer alternatives are being researched 

Imagine that you are a meteorologist investigating new chemical agents that might 

substitute silver iodide in the cloud seeding procedure. You conducted a study to determine the 
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effectiveness of various chemical agents to produce rainfall. Your investigation took place in 15 

different countries, each studying ONE chemical agent. In each country, a cumulus cloud at an 

experimental location were sprayed with the chemical agent, whereas another cloud at a 

geographically similar and nearby control location were left untouched.  

In each study, the relative humidity inside each of the cloud areas was measured.  The 

maximum possible relative humidity is 100%, which means that humidity is so high that water 

will condensate and fall down as rain. 

Your task is to review the 15 records of the humidity levels in both locations, from every 

country. For each record, you have to judge the strength of the chemical in maximizing relative 

humidity by selecting a number on the strength scale between 0, referring to “absolutely 

ineffective” and 10, referring to “absolutely effective”. 

A.2.2 For No-Limit Experiment 

The opening ceremony of the 2008 Summer Olympic was not just a great event, but a 

historical day for the Beijing Weather Modification Office.  The Beijing Weather Modification 

Office reported that “shooting” down all possible clouds heading to the city resulted in the 

ceremony passing by without a single drop of rain and with temperatures never exceeding 29 

degrees Celsius. In the United States a similar technology has been studied over a 12 000 square 

kilometres, with the goal to influence the amount of rainfall, length of storms,  and the area in 

which rain falls. 

In cloud seeding technology, normally silver iodide is sprayed into the cloud to initiate a 

continuous merging process of tiny water drops, resulting in bigger and heavier drops that fall 

down as rainfall. However, silver iodide is suspected to lead to health related side effects, which 

has become a major concern.  Consequently, safer alternatives are being researched 
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Imagine that you are a meteorologist investigating new chemical agents that might 

substitute silver iodide in the cloud seeding procedure. You conducted a study to determine the 

effectiveness of various chemical agents to produce rainfall. Your investigation took place in 15 

different countries, each studying ONE chemical agent. In each country, a cumulus cloud at an 

experimental location were sprayed with the chemical agent, whereas another cloud at a 

geographically similar and nearby control location were left untouched. The amount of rainfall 

from clouds at both locations were measured (in millimetres) and recorded. 

Your task is to review the 15 records of the clouds in both locations, from every country. 

For each record, you have to judge the strength of the chemical agent in maximizing the amount 

of rainfall by selecting a number on the strength scale between 0, referring to “absolutely 

ineffective” and 10, referring to “absolutely effective”. 

A.2.3 For Binary Experiment 

The opening ceremony of the 2008 Summer Olympic was not just a great event, but a 

historical day for the Beijing Weather Modification Office.  The Beijing Weather Modification 

Office reported that “shooting” down all possible clouds heading to the city resulted in the 

ceremony passing by without a single drop of rain and with temperatures never exceeding 29 

degrees Celsius. In the United States a similar technology has been studied over a 12 000 square 

kilometres, with the goal to influence the amount of rainfall, length of storms,  and the area in 

which rain falls. 

In cloud seeding technology, normally silver iodide is sprayed into the cloud to initiate a 

continuous merging process of tiny water drops, resulting in bigger and heavier drops that fall 

down as rainfall. However, silver iodide is suspected to lead to health related side effects, which 

has become a major concern.  Consequently, safer alternatives are being researched 
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Imagine that you are a meteorologist investigating new chemical agents that might 

substitute silver iodide in the cloud seeding procedure. You conducted a study to determine the 

effectiveness of various chemical agents to produce rainfall. Your investigation took place in 15 

different countries, each studying ONE chemical agent. In each country, 20 cumulus clouds at an 

experimental location were sprayed with the chemical agent, whereas another 20 clouds at a 

geographically similar and nearby control location were left untouched. Observations of whether 

rain fell in these two locations were recorded. 

Your task is to review the 15 records of 20 clouds in both locations, from every country. 

For each record, you have to judge the strength of the chemical agent in producing the rainfall by 

selecting a number on the strength scale between 0, referring to “absolutely ineffective” and 10, 

referring to “absolutely effective”. 

A.3 Cover Stories For Experiment 3.1 

Imagine that you are a pharmaceutical consultant researching the side effects of synthetic 

substances in cosmetic creams. One common side effect in cosmetic products is irritant contact 

dermatitis. The symptom usually appears as skin rash but can develop to blisters if left untreated. 

Skin rash is a change to the skin causing it to become reddish, bumpy, itchy and sometimes 

painful. During the irritant reaction, the immune system fights back, as if the cosmetic cream is 

harmful, by producing histamine that is responsible for the skin rash. 

Skin rash normally occurs at the area of contact with the cream. Areas where the 

outermost layer of skin is thin, or dry and cracked are more susceptible to skin rash. Your task is 

to investigate how strongly various cosmetic creams cause a skin rash as a side effect. 

In this study, there were 15 different labs participating, and each studied ONE particular 

cosmetic cream.  Naturally, some people may develop skin rash even in the absence of any 
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cosmetic products. Thus, your study follows a before-after design where in each lab a 

participant’s skin is examined for rash before the cream is applied, and then checked again 

afterwards. 

In each lab, the patient’s back was examined for rash, and the size of any rash present 

was recorded.  Then the cosmetic cream was applied on the back of the patient to cover 10 

centimetres squares of the skin area. After one hour, the area of skin rash, where the cream was 

applied, was measured and recorded. 

You will see the records from the participating 15 labs, each investigating one of the 15 

types of cosmetic creams. For each cream, we are asking you to consider how strongly you think 

it causes skin rash as a side effect. To do so, we are asking you to imagine a new patient who 

does not suffer from a rash. We are then asking you to imagine how much the skin rash area 

would be, once the cream would be applied to a certain area on the patient’s back. 

A.4 Cover Stories For Experiment 3.3 and 3.8 

Carbon dioxide is an important component in the Earth’s atmosphere because it plays a 

significant role in the greenhouse effect. One way to reduce carbon dioxide is by sequestering it 

underground where it can mineralize and turn into solid carbonate minerals. Unfortunately, this is 

a very slow process. Nonetheless, scientists have recently discovered the use of bacteria to 

expedite this sequestering process. 

Imagine that you are a biochemist investigating the influence of chemicals on 

microbiological ecosystems. You have found a group of chemicals that can effectively increase 

the amount of carbon-sequestering bacteria in an aquatic system. Although these chemicals have 

already been shown to increase carbon-sequestering bacteria populations, they may have a side 

effect that can influence algae populations. 
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Algae are a very common group of micro-plants that can be found in most aquatic 

systems. Algae growth rate depends on the environmental factors, such as temperature, inorganic 

chemical nutrients, and salinity. Rapid algae growth can result in a phenomenon known as algal 

bloom, in which algae concentrations may reach millions of cells per milliliter. In this state, the 

production of phytoplankton, as the base form of the marine food chain, is disrupted, hence 

endangering the whole ecosystem. 

You were hired by a company to study the side effects of the chemicals with relation to 

algal bloom. Specifically, you were looking at the relationship of the chemicals in increasing 

[preventing in Experiment 3.8] algae growth, as a side effect, in a fixed amount of time. 

The company wanted to study algae growth in natural water reservoirs, so they identified 

15 different lakes suitable for the study. One lab was built nearby each lake beforehand. The 

company had requested that each lab study only ONE particular chemical substance and its effect 

on algae growth. An indoor pool was set-up in each lab to control for other potential variables, 

and water from the lake was drawn to fill the pools. The sizes of the pools and volumes of water 

from the lakes were identical across all pools and labs. Each pool in the study was built to have a 

surface area of 100 square meters. 

You have visited each lab and checked whether and how much of the pool surface area 

was covered with algae. The chemical was then administered via aerial spray over the pool. 

Naturally, algae grow at different rates, depending on various conditions. This means that most 

likely the amount of algae growth will vary across different labs. Critically, however, the 

conditions WITHIN each lab were kept constant, so that such variation would affect the pool to 

the same extent before and after the treatment period. After two weeks, the surface area of the 

pool that was covered with algae was re-measured. 
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Your task is to go through records from the 15 labs. Each record contains information on 

the surface area covered by algae in the pool before and after treatment with the chemical in 

question. For each record, we are asking you to consider how strongly the chemical causes 

[prevents in Experiment 3.8] algae growth as a side effect. 

To do so, we are asking you to imagine another lab that also has a pool inside. We are 

then asking you to imagine how much of the area of the pool would be covered with algae, once 

the chemical substance would be administered. 

A.5 Cover Stories For Experiment 3.4 

Algae are a very common group of microplants that can be found in most aquatic 

systems. Algae, like other plants are autotrophs: they are capable of converting sunlight into food 

to stay alive. Algae can reproduce in either sexual or asexual, or both ways, depending on the 

environmental conditions they are in. Environmental factors, such as temperature, inorganic 

chemical nutrients, and salinity, regulate not only the method, but also the rate of reproduction. 

Algae's characteristics of ubiquitousness and high content of lipid (i.e. oil) have received 

significant attention from biofuel enthusiasts. Lipid can be harvested from algae's cell walls and 

can be used as biofuel to power a wide range of machines. Consequently, there is now a research 

drive on how to grow algae en masse. The best way to cultivate algae for this purpose is in 

indoor settings, which prevent damage from harsh weather conditions and cross-fertilization with 

other, less productive strands. 

Imagine that you are a biochemist investigating the influence of chemical substances on 

algae reproduction. Your investigation strives to prepare the most suitable chemical environment 

for algae to grow and mature in a fixed amount of time. 
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In this project, 15 different labs have participated, and each lab studied ONE particular 

chemical substance. Two indoor pools were set-up in each lab to control for other potential 

variables. The sizes of the pools and volumes of water filled in were identical in all pools and 

labs. Each pool in the study was built to have a surface area of 100 square meters. 

In each lab, both pools were seeded with algae cysts. The first pool was retained as a 

control, whereas the chemical substance was then administered via aerial spray over the second 

pool. The two pools were in separate sections of each lab to ensure that the treatment could not 

affect the control pool. Other than the treatment though, the conditions in both pools were 

identical (i.e. chemical, biological, and physical characteristics of water and surrounding air, 

temperature, etc.). Naturally, algae mature and reproduce at different rates, depending on various 

conditions. This means that most likely the amount of algae growth will vary across different 

labs. Critically, however, the conditions WITHIN each lab were kept constant, so that such 

variation would affect both the control and treatment pools to the same extent. After two weeks, 

the area of water surface covered with matured algae in each pool was measured. 

Your task is to go through records from the 15 participating labs. Each record contains 

information on the surface area covered by matured algae in the pools treated with the chemical 

in question, and the control pool without treatment. For each record, we are asking you to 

consider how strongly the chemical causes algae reproduction. 

To do so, we are asking you to imagine a new pool seeded with algae cysts. We are then 

asking you to imagine how much of the area of the pool would be covered with matured algae, 

once the chemical substance would be administered. 
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A.6 Cover Stories For Experiment 3.5 

Imagine that you are a biochemist investigating the influence of chemicals on 

microbiological ecosystems. You have found a group of phosphoric salts that can effectively 

increase the amount of carbon-sequestering bacteria in an aquatic system. Although phosphoric 

salts have already been shown to increase carbon-sequestering bacteria populations, they may 

have a side effect that can influence algae populations. 

Algae are a very common group of microplants that can be found in most aquatic 

systems. Algae growth rate depends on various environmental factors. Rapid algae growth can 

result in a phenomenon known as algal bloom, in which algae concentrations may reach millions 

of cells per milliliter. In this state, the production of phytoplankton, as the base form of the 

marine food chain, is disrupted, hence endangering the whole ecosystem. 

You were hired by a company to study the side effects of 15 different varieties of 

phosphoric salts with relation to algal bloom. Specifically, you were looking at the relationship 

of the chemicals in causing algae growth, as a side effect, in a fixed amount of time. 

The company wanted to study algae growth in natural water reservoirs, so they identified 

15 different lakes suitable for the study. One lab was built nearby each lake beforehand. The 

company had requested that each lab study only ONE particular phosphoric salt and its effect on 

algae growth. An indoor pool was set-up in each lab to control for other potential variables, and 

water from the lake was drawn to fill the pools. The sizes of the pools and volumes of water from 

the lakes were identical across all pools and labs. Each pool in the study was built to have a 

surface area of 100 square meters. 

You have visited each lab and checked whether and how much of the pool surface area 

was covered with algae before the study began. A particular type of phosporic salt was then 
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administered via aerial spray over the pool. Naturally, algae grow at different rates, depending on 

various conditions. This means that most likely the amount of algae growth will vary across 

different labs. Critically, however, the conditions WITHIN each lab were kept constant, so that 

such variation would affect the pool to the same extent before and after the treatment period, and 

that any change to the amount of algal bloom in the pool would have to be due to the type of 

phosporic salt administered. After two weeks, the surface area of the pool that was covered with 

algae was re-measured. 

Your task is to go through records from the 15 labs. Each record contains information on 

the surface area covered by algae in the pool before and after treatment with the phosphoric salt 

in question. For each record, we are asking you to consider how strongly the chemical causes 

algae growth as a side effect. 

To do so, we are asking you to imagine another lab in a different location that also has a 

pool inside. We are then asking you to imagine how much of the area of the pool would be 

covered with algae, once the chemical substance would be administered. We will ask you this 

question twice, once for a pool that has the same size as the one in the study, and once for a 

different sized pool. 

A.7 Cover Stories For Experiment 3.6 

Imagine you are a scientist conducting research on the runniness of engine oil. Engine oil 

is used to lubricate the moving parts of various internal combustion engines and increases engine 

performance and efficiency by creating a thin film between the surfaces of moving parts, hence 

reducing friction and energy loss via heat. Because of this function, the runniness of engine oil is 

crucial: Oil that is too thin may not properly stick on the surface of engine parts, whereas oil that 

is too thick may hinder the movement of the parts. 
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A company was interested to study the effects of 15 additives on the runniness of a 

particular type of engine oil. The company investigated the runniness of oil through a Free Flow 

Test procedure. In this procedure, 5 grams of oil are deposited on one end of a 10 cm long test 

slate, slanted at an angle of 45 degrees. After an interval of 5 minutes the total length (out of 10 

cm) travelled by the drop of oil is measured as an indicator of runniness: The greater the distance 

the oil travelled, the greater the runniness of oil. For each additive, the scientists always tested 

the runniness of oil before adding the additives, and then mixed an additive into the oil and 

repeated the test. 

The company has asked you to evaluate how strongly different additives in influencing 

the runniness of oil. To do this, you will see the results of the Free Flow Tests as described 

above. The results contain information on the length (out of 10 cm) of oil flow before and after 

adding each additive, for one additive at a time. Because different additives were tested in 

different laboratories and on different days, variations in climate (air temperature and humidity) 

might have affected the length of oil flow in the absence of any additive treatment between 

different tests. 

To evaluate the effect of a particular additive on the runniness of engine oil, we will then 

ask you to imagine a new Free Flow Test with the same engine oil and the additive under 

investigation. We will ask you to predict the length of oil flow if the additive were administered 

to the oil. [For the higher limit condition, additionally, I included this sentence: We will ask this 

twice, once using a slate with the same length as used in the above investigation, and once with a 

longer slate.] 
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A.8 Cover Stories For Experiment 3.7 

Imagine that you are a pharmaceutical consultant conducting research on the 

effectiveness of ointments in treating skin rash. Skin rash is a change to the skin causing it to 

become reddish, bumpy, itchy and sometimes painful. There are various identified causes of skin 

rash with food allergy being one of the most common. During an allergic reaction, the immune 

system reacts to certain proteins in food as if they were harmful substances. The body fights back 

by producing histamine, a chemical that is responsible for the skin rash. 

Once triggered, skin rash can spread over large areas of skin. Administering ointment can 

reduce the affected area by alleviating the allergic reaction. Some ointments are more effective in 

reducing the spread than others. The purpose of this study is to investigate the effectiveness of 

various ointments in preventing rash spread on the skin. 

In this study, there were 15 different labs participating, and each studied ONE particular 

ointment. To make the study consistent across the labs, only patients with similar skin rash 

reaction were selected for the study. Previous records of every patient have shown that after 

exposing themselves to certain seafood and in absence of any preventive measure, rash on their 

back would take up 10 centimeters square within an hour. 

In each lab, one patient was exposed to the allergic food and the area of rash was 

measured one hour later. The particular ointment was then applied to the rash area and a second 

area measurement was made after an hour of exposure. 

Your will see the records from the participating 15 labs, each investigating one of the 15 

types of ointments. For each ointment, we are asking you to consider how effective you think it 

is in reducing skin rash. To do so, we are asking you to imagine a new patient with a food allergy 
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who is suffering from a rash. We are then asking you to imagine how much the skin rash area 

would be reduced, once the ointment would be administered. 

A.9 Cover Stories For Experiment 3.9 

Algae are a very common group of microplants that can be found in most aquatic 

systems. Algae, like other plants are autotrophs: they are capable of converting sunlight into food 

to stay alive. Algae can reproduce in either sexual or asexual, or both ways, depending on the 

environmental conditions they are in. Environmental factors, such as temperature, inorganic 

chemical nutrients, and salinity, regulate not only the method, but also the rate of reproduction. 

High algae reproduction rates can result in a phenomenon known as algal bloom, in 

which algae concentrations may reach millions of cells per milliliter. In this state, the production 

of phytoplankton, as the base form of the marine food chain, is disrupted, hence endangering the 

whole ecosystem. Algal bloom is of concerns to many environmentalists. Consequently, there is 

now a research drive on how to manipulate the chemical composition of water bodies to prevent 

algal bloom. The best way to study algal bloom initially is an indoor setting. This allows 

researchers to keep atmospheric and physical conditions constant while investigating different 

water treatments. 

Imagine that you are a biochemist investigating the influence of chemical substances on 

algae reproduction. Your investigation strives to prepare a chemical environment to prevent algae 

from growing and maturing in a fixed amount of time. 

In this project, 15 different labs have participated, and each lab studied ONE particular 

chemical substance. Two indoor pools were set-up in each lab to control for other potential 

variables. The sizes of the pools and volumes of water filled in were identical in all pools and 

labs. Each pool in the study was built to have a surface area of 100 square meters. 
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In each lab, both pools were seeded with algae cysts. The first pool was retained as a 

control, whereas the chemical substance was then administered via aerial spray over the second 

pool. The two pools were in separate sections of each lab to ensure that the treatment could not 

affect the control pool. Other than the treatment though, the conditions in both pools were 

identical (i.e. chemical, biological, and physical characteristics of water and surrounding air, 

temperature, etc.). Naturally, algae mature and reproduce at different rates, depending on various 

conditions. This means that most likely the amount of algae growth will vary across different 

labs. Critically, however, the conditions WITHIN each lab were kept constant, so that such 

variation would affect both the control and treatment pools to the same extent. After two weeks, 

the area of water surface covered with matured algae in each pool was measured. 

Your task is to go through records from the 15 participating labs. Each record contains 

information on the surface area covered by matured algae in the pools treated with the chemical 

in question, and the control pool without treatment. For each record, we are asking you to 

consider how strongly the chemical prevents algae reproduction. 

To do so, we are asking you to imagine a new pool seeded with algae cysts. We are then 

asking you to imagine how much of the area of the pool would be covered with matured algae, 

once the chemical substance would be administered. 

A.10 Cover Stories For Experiment 3.10 

Imagine you are a scientist conducting research on the runniness of engine oil. Engine oil 

is used to lubricate the moving parts of various internal combustion engines and increases engine 

performance and efficiency by creating a thin film between the surfaces of moving parts, hence 

reducing friction and energy loss via heat. Because of this function, the runniness of engine oil is 
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crucial: Oil that is too thin may not properly stick on the surface of engine parts, whereas oil that 

is too thick may hinder the movement of the parts. 

A company was interested to study the effects of 15 additives on the runniness of a 

particular type of engine oil. The company investigated the runniness of oil through a Free Flow 

Test procedure. In this procedure, 5 grams of oil are deposited on one end of a 10 cm long test 

slate, slanted at an angle of 45 degrees. After an interval of 5 minutes the total length (out of 10 

cm) travelled by the drop of oil is measured as an indicator of runniness: The greater the distance 

the oil travelled, the greater the runniness of oil. For each additive, the scientists always tested 

the runniness of oil before adding the additives, and then mixed an additive into the oil and 

repeated the test. 

The company has asked you to evaluate how strongly different additives in influencing 

the runniness of oil. To do this, you will see the results of the Free Flow Tests as described 

above. The results contain information on the length (out of 10 cm) of oil flow before and after 

adding each additive, for one additive at a time. Because different additives were tested in 

different laboratories and on different days, variations in climate (air temperature and humidity) 

might have affected the length of oil flow in the absence of any additive treatment between 

different tests. 

To evaluate the effect of a particular additive on the runniness of engine oil, we will then 

ask you to imagine a new Free Flow Test with the same engine oil and the additive under 

investigation. We will ask you to predict the length of oil flow if the additive were administered 

to the oil. [For the higher limit condition, I included the following additional sentence: We will 

ask this twice, once using a slate with the same length as used in the above investigation, and 

once with a longer slate.] 
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A.11 Cover Stories For Experiment 4.1 and 4.5 

Imagine you are a biochemist who has been hired by a multinational company to conduct 

research into algae reproduction. Algae have been getting more attention as an alternative source 

for biofuel production, but at the same time rapid algae growth could also throw local 

ecosystems out of balance. 

The company was interested in investigating natural minerals to manage algae growth in 

4 different climatic zones of the world - tropical, arid, mediterranean, and alpine. Within each 

zone, 2 locally occurring natural minerals were identified, and 2 different lakes were selected as 

study locations. 

At each location, the company built a pool inside a lab filled with water drawn from the 

lake. All pools were built to have a surface area of 100 square meters. Research teams in each 

climate zone conducted experiments to test the influence of the 2 minerals local to that zone. 

You will see results of the experiments, for all locations in each zone, containing 

information on the surface area (out of 100 square meters) covered by algae before and after 

treatment with the minerals. Within each climate zone, the two study locations were several 

hundred miles apart, and may have had different microclimates. This means that the surface area 

covered by algae at the beginning of the experiment (i.e. before the mineral treatment was 

administered) may vary between locations. 

Your task is to go through the experimental records and make judgment on how ONE of 

the minerals influences algae growth. That mineral could cause growth, inhibit growth, or have 

no influence on algae growth. 
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A.12 Cover Stories For Experiment 4.2 and 4.6 

Imagine that you are a materials scientist conducting research into the runniness of 

engine oil. Engine oil is used to lubricate the moving parts of various internal combustion 

engines and increases engine performance and efficiency by creating a thin film between the 

surfaces of moving parts, hence reducing friction and energy loss via heat. Because of this 

function, the runniness of engine oil is crucial: Oil that is too thin may not properly stick on the 

surface of engine parts, whereas oil that is too thick may hinder the movement of the parts. 

Various additives can be used to manipulate the runniness of engine oil. Your company 

wanted to study the effects of various additives on four different varieties of engine oil - Bobil, 

Vatrol, Keszoil, and Ghotul. 

For each oil, your company identified two chemical additives that they wanted to study. 

One department of the company investigated the influence of one chemical on each oil, while 

another department investigated the influence of both additives on each oil. Your task as the 

consulting scientist is to evaluate the combined results from both departments and indicate how 

ONE of the additives influences the runniness of each oil. 

Each department tested the runniness of oil through a Drip-Test procedure, by measuring 

the splash area of 5 grams of oil dripped from 5 centimetres onto a test slate of 10 square 

centimetres. The greater the surface area on the test slate (out of the 10 square centimetres total) 

covered by oil, the greater the runniness of the oil. Department A tested each oil before adding 

any additives, and then mixed ONE additive into the oil and repeated the test. Department B also 

tested each oil before adding any additives, and then mixed TWO additives into the oil before 

repeating the test. 
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You will see results of the experiments from both departments, containing information on 

the splash area (out of 10 square centimetres) covered by oil before and after adding the 

chemicals, for one type of oil at a time. Because Departments A and B were in different 

geographical locations, differences in air temperature and humidity may have led to differences 

in the splash area covered by oil at the beginning of the experiment (i.e. before any chemicals 

were added). 

Your task is to go through the experimental records and judge how ONE of the chemical 

additives influences the runniness of oil. That chemical additive could cause, prevent, or have no 

influence on the runniness of oil. 

You can also select 'Cannot Tell' if you feel that the information provided does not allow 

an assessment of the influence of the chemical in question. Please use this option ONLY if you 

have a reason for WHY you cannot make a judgment. Do not use it just because you find the 

problem difficult. If you opt for 'Cannot Tell', you will have to explain in your own words why 

the information provided precludes an assessment of causal influence. 

A.13 Cover Stories For Experiment 4.3 and 4.7 

Imagine you are a biochemist who has been hired by a multinational company to conduct 

research into algae reproduction. Algae have been getting more attention as an alternative source 

for biofuel production, but at the same time rapid algae growth could also throw local 

ecosystems out of balance. 

The company was interested in investigating natural minerals to manage algae growth in 

four different climatic zones of the world - tropical, arid, mediterranean, and alpine. Within each 

zone, two locally occurring natural minerals were identified and tested. 
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In each climate zone, the company identified two lakes where they studied algae growth. 

On the shore of each lake, the company built a research laboratory. Each laboratory housed two 

pools: one pool served as a control, and received no treatment, whereas the other pool received 

treatment. 

Also, in each climate zone, the company decided that one laboratory was assigned to 

study the effect of ONE mineral, while the other was assigned to study the effects of BOTH 

minerals. Therefore, depending on which laboratory it was in, the treatment pool was treated 

with either one (Laboratory 1) or both (Laboratory 2) minerals. 

All pools involved in this study were built to have a surface area of 100 square meters 

and filled with water drawn from their respective lakes. 

You will see results of the experiments, for all locations in each zone, containing 

information on the surface area (out of 100 square meters) covered by algae for the pool treated 

with one or both minerals and also for the corresponding control pools without any treatment. 

Within each climate zone, the two lakes (and thus laboratories) were several hundred miles apart, 

and may have had different microclimates. This means that the surface area covered by algae in 

the absence of treatment may vary between locations. 

Your task is to go study the experimental records and judge how ONE of the minerals 

influences algae growth. That mineral could cause growth, inhibit growth, or have no influence 

on algae growth. 

A.14 Cover Stories For Experiment 4.4 and 4.8 

Imagine that you are a materials scientist conducting research into the runniness of 

engine oil. Engine oil is used to lubricate the moving parts of various internal combustion 

engines and increases engine performance and efficiency by creating a thin film between the 



      163 

 

surfaces of moving parts, hence reducing friction and energy loss via heat. Because of this 

function, the runniness of engine oil is crucial: Oil that is too thin may not properly stick on the 

surface of engine parts, whereas oil that is too thick may hinder the movement of the parts. 

Various additives can be used to manipulate the runniness of engine oil. Your company 

wanted to study the effects of various additives on four different varieties of engine oil - Bobil, 

Vatrol, Keszoil, and Ghotul. 

For each oil, your company identified two chemical additives that they wanted to study. 

One department of the company investigated the influence of one chemical on each oil, while 

another department investigated the influence of both additives on each oil. Your task as the 

consulting scientist is to evaluate the combined results from both departments and indicate how 

ONE of the additives influences the runniness of each oil. 

Each department tested the runniness of oil through a Drip-Test procedure, by measuring 

the splash area of 5 grams of oil dripped from 5 centimetres onto a test slate of 10 square 

centimetres. The greater the surface area on the test slate (out of the 10 square centimetres total) 

covered by oil, the greater the runniness of the oil. Both departments tested two samples of each 

oil. One sample consisted of the original oil without any additives, and the other sample was 

mixed with one additive in Department A, and both additives in Department B. 

You will see the results of the experiments from both departments, containing 

information on the splash area (out of 10 square centimetres) covered by oil from the control 

sample, and from the sample that was mixed with chemical additives, for one type of oil at a 

time. Because Departments A and B were in different geographical locations, differences in air 

temperature and humidity may have led to differences in the splash area covered by oil in the 

control group (i.e. oil that was not added any chemical). 
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Your task is to go through the experimental records and judge how ONE of the chemical 

additives influences the runniness of oil. That chemical additive could cause, prevent, or have no 

influence on the runniness of oil. 

You can also select 'Cannot Tell' if you feel that the information provided does not allow 

an assessment of the influence of the chemical in question. Please use this option ONLY if you 

have a reason for WHY you cannot make a judgment. Do not use it just because you find the 

problem difficult. If you opt for 'Cannot Tell', you will have to explain in your own words why 

the information provided precludes an assessment of causal influence. 

A.15 Cover Stories For Experiment 4.9 

Imagine you are a biochemist who has been hired by a multinational company to conduct 

research into algae reproduction. Algae have been getting more attention as an alternative source 

for biofuel production, but at the same time rapid algae growth could also throw local 

ecosystems out of balance. 

The company was interested in investigating natural minerals to manage algae growth in 

seven different climatic zones of the world - tropical, arid, mediterranean, alpine, tundra, 

savanna, and steppe. Within each zone, 2 locally occurring natural minerals were identified, and 

2 different lakes (or natural water reservoirs) were selected as study locations. 

At each location, the company built a pool inside a lab filled with water drawn from the 

lake. All pools were built to have a surface area of 100 square meters. Research teams in each 

climate zone conducted experiments to test the influence of the 2 minerals local to that zone. 

You will see results of the experiments, for all locations in each zone, containing 

information on the surface area (out of 100 square meters) covered by algae before and after 

treatment with the minerals. Within each climate zone, the two study locations were several 
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hundred miles apart, and may have had different microclimates. This means that the surface area 

covered by algae at the beginning of the experiment (i.e. before the mineral treatment was 

administered) may vary between locations. 

Your task is to go through the experimental records and make a judgment on how ONE of 

the minerals influences algae growth. That mineral could cause growth, inhibit growth, or have 

no influence on algae growth. 

You can also select 'Cannot Tell' if you feel that the information provided does not allow 

an assessment of the influence of the mineral in question. Please use this option ONLY if you 

have a reason for WHY you cannot make a judgment. Do not use it just because you find the 

problem difficult. If you opt for 'Cannot Tell', you will have to explain in your own words why 

the information provided precludes an assessment of causal influence. 

A.16 Cover Stories For Experiment 4.10 

Imagine you are a biochemist who has been hired by a multinational company to conduct 

research into algae reproduction. Algae have been getting more attention as an alternative source 

for biofuel production, but at the same time rapid algae growth could also throw local 

ecosystems out of balance. 

The company was interested in investigating natural minerals to manage algae growth in 

seven different climatic zones of the world - tropical, arid, mediterranean, alpine, tundra, 

savanna, and steppe. Within each zone, two locally occurring natural minerals were identified 

and tested. 

In each climate zone, the company identified two lakes where they studied algae growth. 

On the shore of each lake, the company built a research laboratory. Each laboratory housed two 
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pools: one pool served as a control, and received no treatment, whereas the other pool received 

treatment. 

Also, in each climate zone, the company decided that one laboratory was assigned to 

study the effect of ONE mineral, while the other was assigned to study the effects of BOTH 

minerals. Therefore, depending on which laboratory it was in, the treatment pool was treated 

with either one (Laboratory 1) or both (Laboratory 2) minerals. 

All pools involved in this study were built to have a surface area of 100 square meters 

and filled with water drawn from their respective lakes. 

You will see results of the experiments, for all laboratories in each zone, containing 

information on the surface area (out of 100 square meters) covered by algae for the pool treated 

with one or both minerals and also for the corresponding control pools without any treatment. 

Within each climate zone, the two lakes (and thus laboratories) were several hundred miles apart, 

and may have had different microclimates. This means that the surface area covered by algae in 

the absence of treatment may vary between laboratories. 

Your task is to go through the experimental records and make a judgment on how ONE of 

the minerals influences algae growth. That mineral could cause growth, inhibit growth, or have 

no influence on algae growth. 

You can also select 'Cannot Tell' if you feel that the information provided does not allow 

an assessment of the influence of the mineral in question. Please use this option ONLY if you 

have a reason for WHY you cannot make a judgment. Do not use it just because you find the 

problem difficult. If you opt for 'Cannot Tell', you will have to explain in your own words why 

the information provided precludes an assessment of causal influence. 
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Appendix B: Determination of Bin Size for Histogram Analysis in 

Chapter 3 

B.1 Determination of Bin Size for Histogram Analysis in Chapter 3 

When developing histogram, the size of bin is vital as it influences the histogram itself, as 

well as any derived conclusion. A bin size that is too big would de-sensitive certain judgment 

pattern and possibly amalgamated two or more judgment patterns into one; likewise, a bin size 

that is too small would split supposedly a judgment pattern into two or more pattern. 

Consequently, if the bin size was either too big or too small, it would render different conclusion, 

as to what it supposed. 

Thus, for this analysis, I defined the bin size by determining the minimal gap between the 

predictions of proportion and difference strategies. To do this, I considered all predictions of the 

15 conditions used in the experiments, for both strategies (see Table B.1). I computed these 

predictions using the base rate of 25, and upper limit of 100, for generative scenario. This were 

the settings of the cover story in the experiments.  

From these predictions, I calculated prediction gaps for these settings by subtracting 

every prediction of the proportion strategy (14 items) with every prediction of the difference 

strategy (5 items). The result was a 14 x 5 matrix consisted of prediction gaps between the 

proportion and difference strategy (see Table B.2). To determine bin size for the histogram 

analysis, I needed to identify the gap between these strategies’ predictions so that the histogram 

could properly differentiate the judgments to either reflect the proportion of difference strategy: 

In other words, I needed to identify the smallest gap. From the matrix, the smallest gap was 0.00. 

This value, however, is not suitable to be used as the bin size because it would render the 

histogram into vertical lines on all values. In addition, the gap 0.00 indicates that the predictions 
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between the two strategies are the same/overlapping. Therefore, the smallest non-zero value of 

6.25 would be more appropriate as the bin size. To further simplify, and to be more cautious, I 

declared the bin size to be 5 (i.e. 1.25 smaller than the smallest non-zero gap). 

The bin size of 5, as in the above explanation, was for analysing data of experiment with 

upper limit of 100. In Chapter 3, the histogram analysis was used in experiments involving upper 

limit of 500 (i.e. higher limit condition), as well as 10 and 50 in other experiments. Thus, for 

these upper limits, I repeated the same procedure to determine bin size for each limit (see Table 

B.3 for summary of bin sizes for all of these limits). 

 

Table B.1: Predictions of 15 experiments conditions for both the proportion and difference strategies 

Conditions 
Predictions 

(base rate = 25, limit = 100) 

Q(e|c) Q(e|¬c) Difference Proportion 

1.00 1.00 0.00 - 

0.75 0.75 0.00 0.00 

0.50 0.50 0.00 0.00 

0.25 0.25 0.00 0.00 

0.00 0.00 0.00 0.00 

1.00 0.75 25.00 75.00 

0.75 0.50 25.00 37.50 

0.50 0.25 25.00 25.00 

0.25 0.00 25.00 18.75 

1.00 0.50 50.00 75.00 

0.75 0.25 50.00 50.00 

0.50 0.00 50.00 37.50 

1.00 0.25 75.00 75.00 

0.75 0.00 75.00 56.25 

1.00 0.00 100.00 75.00 
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Table B.2: Prediction Gaps Matrix 

Predictions 
Difference 

0 25 50 75 100 

P
ro
p
o
rt
io
n

 

0.00 0.00 25.00 50.00 75.00 100.00 

0.00 0.00 25.00 50.00 75.00 100.00 

0.00 0.00 25.00 50.00 75.00 100.00 

0.00 0.00 25.00 50.00 75.00 100.00 

75.00 75.00 50.00 25.00 0.00 25.00 

37.50 37.50 12.50 12.50 37.50 62.50 

25.00 25.00 0.00 25.00 50.00 75.00 

 18.75 18.75 6.25 31.25 56.25 81.25 

 75.00 75.00 50.00 25.00 0.00 25.00 

 50.00 50.00 25.00 0.00 25.00 50.00 

 37.50 37.50 12.50 12.50 37.50 62.50 

 75.00 75.00 50.00 25.00 0.00 25.00 

 56.25 56.25 31.25 6.25 18.75 43.75 

 75.00 75.00 50.00 25.00 0.00 25.00 

 

Table B.3: Bin sizes for all limits 

Limit Bin size 

10 0.5 

50 2.5 

100 5 

500 25 

 

B.2 Determination of Gamut for Tendency Analysis in Chapter 3 

Tendency analysis determined which strategy prediction participants’ scores fell into. 

Because participants’ scores did not exactly match the prediction values, I need to define a gamut 

for every prediction value, of which if the scores were within this range, they would be 

considered to match with the prediction. 

To do this, I identified a condition that has predictions that do not overlap but very close 

to one another: Figure 3.2 shows that the generative predictions for condition [0.75:0.25] fit 

these criteria. In this condition, in particular, predictions for the difference, proportion strategy, 

and base rate neglect are very close. Then, I determined the gap between these predictions as 
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follow: difference (0.50) vs. proportion (0.667) = 0.167, and proportion (0.667) vs. base rate 

neglect (0.75) = 0.083. The smallest gap is between the proportion strategy and base rate neglect. 

Using this information, I defined the gamut for tendency analysis as ± 4.17% (i.e. half of 

0.083 gap) from a prediction value. This is to avoid range overlapping of a prediction to another. 

For instance, if a prediction value is 0.50, then its gamut begins at 0.46 until 0.54. This rule, 

however, is different for ceiling and floor prediction values. For prediction values of ceiling (1) 

and floor (0), the gamut does not stretch out of this. In other words, a prediction of 1 would have 

a range beginning at 0.96 until 1, and a prediction 0 would have a range from 0 until 0.04. 
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Appendix C: Multiplication versus Proportion Strategy 

The main idea of the proportion strategy entails reasoning about the independent 

influence of candidate cause and background causes on the effect magnitude. Computationally, 

reasoners adopting the proportion strategy would need to initially determine the opportunity for 

effect to change up to its maximum magnitude possible; this involves considering the upper limit 

and the base rate of the effect magnitude. Only then, he or she could calculate how much from 

the opportunity the effect magnitude had actually changed. 

Unlike the proportion strategy, which is sensitive to the upper limit, the multiplication 

strategy stems from an interaction between the candidate and background causes. 

Computationally, multiplication-based reasoners determine effectivity of candidate cause onto 

the effect by initially consider the effect magnitude the background causes produce, i.e. the base 

rate. Then, he or she calculated how many times more the candidate cause produced the effect 

with respect to the base rate. 

Computationally, both the proportion and multiplication strategies involve finding out 

causal index by computing ratios. See Figure C.1 for visualisation of both strategies. In this 

figure, proportion index, !"#! =
!

!
 in both generative and preventive scenario. In contrast, 

multiplication index, !"#$ =
!

!
 in generative scenario, but !"#$ =

!

!
 in preventive scenario. 

The difference between the proportion and multiplication strategy lies in the denominator. 

The inconsistency between these denominators is the key in explaining the asymmetry of both 

strategies’ predictions in preventive and generative scenarios. Recall that predictions of these two 

strategies in experiments of Chapter 2 and 3 were overlapping only in preventive, but distinct in 

generative scenario. This is because, those denominators entails information about reasoning 

references of both strategies. 
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Figure C.1. Visualisation of computing the proportion and multiplication strategies. The limit on the top part of the figure 
corresponds to artificial limits used in the experiments. 

 

In preventive scenario, both strategies anchor their denominator on the same reference, i.e. y in 

Figure C.1. On the contrary, in generative scenario, while the proportion strategy retains the 

same anchors on y, the multiplication strategy switched to z. In other words, in preventive 

scenario, both strategies adopt the same reference, which is the limit of 0; whereas in generative 

scenario, while the proportion strategy uses the upper limit as the reference, the multiplication 

strategy considers the origin i.e. 0 as its reference.  

 

Table C.1: Comparison of proportion and multiplication indices in both scenarios 

 Proportion Multiplication 

Generative !

!
 

!

!
 

Preventive !

!
 

!

!
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Table C.1 summarises this. In short, because of this, the predictions of the proportion and 

multiplication only overlap in preventive scenario, and not in generative. 

 


