Leaving no stone unturned: the feedback between increased biotic diversity and early diagenesis during the Ordovician

V. Paul Wright¹ and Lesley Cherns²*

¹Natural Sciences, National Museum of Wales, Cathays Park, Cardiff, CF10 3NP, UK
²School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK

*Corresponding author: cherns@cardiff.ac.uk

(Abstract)

Ordovician change in the nature of seafloor carbonates saw rapid decline of previously widespread flat pebble conglomerates and the Palaeozoic peak abundance of hardgrounds. The effective disappearance of flat pebble conglomerates, widely attributed to physical disruption of substrate by bioturbation, is re-interpreted as reflecting increased depth of carbonate precipitation below the Taphonomically Active Zone such that early lithified carbonates were less frequently reworked by scour. With deeper, more stable zones of cementation, exhumed limestones formed hardgrounds, whose mid Ordovician acme supported rapid increase in epizoan diversity. Further deepening of cementation to below normal scour accompanied post-Ordovician decline in submarine hardgrounds.

Supplementary material: database for Figure 1 is available at http://www.geolsoc.org.uk/SUP---

The early Palaeozoic evolutionary and ecological development of benthic metazoans was strongly affected by changes to the nature of the sea floor environment such as increased
burrowing activity (e.g. Cambrian Substrate Revolution, Bottjer et al. 2000) and widespread
development of shallow marine hard substrates (Great Ordovician Biodiversification Event
(GOBE); Harper 2006). How did those changes impact upon, and relate to, carbonate
systems and shallow sediment diagenesis? Here we consider two characteristic carbonate
facies of early Palaeozoic shelf seas: flat pebble conglomerates (FPC) and submarine
hardgrounds (carbonate cemented sea floors). Both peak in abundance before rapid decline,
the former most widespread in the late Cambrian–early Ordovician, while the latter reach
their Palaeozoic acme in the Mid-Late Ordovician (e.g. Taylor 2008, fig. 2).

Flat pebble conglomerates (locally breccias) with carbonate intraclasts (rudstones,
floatstones) are a striking feature of Late Proterozoic to early Ordovician shallow marine
carbonate successions. They were mostly deposited in subtidal, typically offshore settings
reflecting storm or tsunami reworking of shallow cemented limestone beds (Mount & Kidder
1993; Pratt 2002; Myrow et al. 2004; Pratt & Bordonaro 2007). The FPCs are variable in bed
geometry and thickness, matrix or clast supported texture, but typically have tabular, thin
(<20mm) pebble to cobble sized clasts of fine grainstone to calcimudstone (e.g. Myrow et al.
2004). This distinctive lithofacies effectively disappears from the stratigraphic record in
offshore settings after the Early Ordovician (Sepkoski 1982; Sepkoski et al. 1991; Liu &
Zhan 2009). The accepted view (e.g. Sepkoski et al. 1991) has been that with an Ordovician
increase in the extent and depth of burrowing (Droser & Bottjer 1989; Bottjer et al. 2000),
biotic mixing of the sediment would have prevented early cementation and the formation of
thin lithified zones, removing the source for FPCs after scouring by storms or tsunamis.

In the Ordovician, submarine hardgrounds become widely developed in shallow seas,
colonised by an expanding diversity of encrusting and boring epizoans (e.g. Brett &
Brookfield 1984) that form specialized new communities in the GOBE. They have been

The aim of this paper is to provide a single, geochemical explanation for both the decline of subtidal FPC lithofacies and the peak abundance of hardgrounds during the Ordovician.

Sea floor diagenesis and changes in sea floor shallow geochemical profiles during the early Palaeozoic

The diagenetic processes for mobilization of calcium carbonate during shallow burial have been appreciated for some time (e.g. Sanders 2003; Berkeley *et al.* 2008; Cherns *et al.* 2011).

Calcium carbonate, especially the more soluble aragonite, is dissolved in the uppermost sediment layer largely as a result of acidity caused by the oxidation of H_2S, and while most back-fluxes to the water column, some is re-precipitated as calcite in the sediment column in areas of increased alkalinity such as depths where sulfate reduction takes place (e.g. Sanders 2003, 2004; Fig. 1). This oxidized zone, effectively the Taphonomically Active Zone (TAZ), will be controlled by diffusion from the overlying water column, if oxygenated, and by mixing caused by bio-irrigation (mainly burrowing; e.g. Aller 1982; Aller & Aller 1998).

Organic matter accumulated more among finer grained sediment sources the microbially mediated decay processes that drive skeletal carbonate dissolution and re-precipitation (e.g. Walter & Burton 1990; Walter *et al.* 1993; Hendry 1993). The importance of such processes linked to the mobilization of labile carbonates in the very shallow sediment column forms the basis for understanding the limestone-marl alternations that form a widely developed facies in Phanerozoic epeiric sea settings (Munnecke & Samtleben 1996; Westphal & Munnecke 2003; Munnecke & Westphal 2005).
Brasier et al. (2011) proposed that changes in the position, relative to the sea floor, of the depth of the redox boundary during the Ediacaran–early Cambrian affected the zones of early lithification in the shallow sediment column. Late Proterozoic precipitation of calcium carbonate took place at or very close (<1 cm) to the sea floor (also Peters & Gaines 2012), and though the early Cambrian advent of metazoan burrowing and biomineralization depressed the zone of cementation it remained very shallow (early-mid Cambrian subtidal burrow depth <3 cm, typically mm scale: Tarhan et al. 2015; Droser & Bottjer 1988). The depth of subtidal bioturbation, and by inference the zone of cementation, remained <6 cm through to the mid Ordovician, before both bioturbation depth (<30 cm) and intensity increased significantly in the Late Ordovician (Droser & Bottjer 1989).

Abundance of flat pebble conglomerates and hardgrounds

Subtidal FPCs are most common in the late Cambrian–Early Ordovician, before rapid decline, and notably while the TAZ remained very shallow (Fig. 2). Their temporal record, using publications by formation as a proxy for abundance, provides a direct comparison with published data for submarine hardgrounds (Fig. 2; Taylor 2008). A peak FPC distributional map illustrates the extensive occurrence (with a latitudinal control), and suggests any bias from availability of rock formations is likely not significant (Fig. 3). In shallow carbonate epeiric seas of the North China Plate, the subsequent decline of FPCs corresponds to the decrease also in subtidal microbialites and increasing intensity of bioturbation as the shallow sea floor character changed in the late Early Ordovician (early Floian) (Liu 2009; Liu & Zhan 2009). Notably, in post-Ordovician times, minor occurrences of subtidal FPCs (Fig. 2) correspond to post-extinction events, when suppression of bioturbation would have led to shallowing of the TAZ (e.g. Wignall & Twitchett 1999; Calner 2005).
For submarine hardgrounds (carbonate cemented sea floors) the Palaeozoic peak of abundance is in the Ordovician (Taylor & Wilson 2003; Palmer & Wilson 2004; Harper 2006; Taylor 2008; Fig. 2). Early, encrusting hardground faunas are described from surfaces of cemented FPC in the late Cambrian (Brett et al. 1983). By the mid Ordovician hard substrate morphologies are variable, some largely comprising reworked, encrusted limestone nodules but others forming beds with complex hummocky and undercut surfaces; hardground biotas are notably more diverse (Brett & Liddell 1978; Brett & Brookfield 1984; Wilson et al. 1992). Taylor and Wilson (2003, p. 44) suggested that the “Ordovician was a golden age for epizoans on hard substrates” due in part to increased hard substrate availability. The appearance of encrusters makes hardgrounds more recognizable after the early Ordovician (Brett & Liddell 1978) and likely reflects the availability of more stable substrates as compared with the fragmented cemented layers characteristic earlier in the Palaeozoic.

Previously the abundance of hardgrounds had been explained by local calcite cementation sourced from carbonate released by sea-floor dissolution of aragonite in undersaturated (with respect to aragonite) Ordovician ‘calcite seas’ (Wilson et al. 1992; Taylor & Wilson 2003; Palmer & Wilson 2004; Harper 2006). Recent experimental data, however, indicate that aragonite precipitation continued alongside calcite during ‘calcite seas’ in warm water environments (Balthasar & Cusack 2015). In a study of Ordovician hardgrounds from eastern North America, Kenyon-Roberts (1995) found no direct evidence for sea floor dissolution, but did note petrographic evidence of hardground formation in shallow sub-oxic conditions below the TAZ. Cherns & Wright (2011), when comparing the taphonomy of skeletal lagerstätten between ‘aragonite’ and ‘calcite seas’, found no differences, suggesting that ‘calcite seas’ did not increase aragonitic shell dissolution.
Diagenetic model for Early Palaeozoic subtidal settings (Fig. 4)

As the depth and intensity of burrowing increased through the early Palaeozoic, the TAZ thickened and the depth at which secondary carbonate re-precipitated also deepened. This reduced the probability that lithified carbonate would be exhumed by erosional reworking caused by wave scour. The FPCs in shallow subtidal settings formed only while the TAZ was very thin, and hence the zone of cementation was close to the sediment-water interface allowing even relatively small and frequent scour events (storms or tsunamis) to exhume the cemented horizons (Late Precambrian–late Early Ordovician; Figs 2, 4). As the TAZ thickened and the depth of carbonate precipitation increased, these horizons were less likely to be reworked by scouring. The FPC facies was replaced in shallow subtidal settings by less frequently exhumed, and hence more developed and thicker, cemented horizons, which when eventually exposed by scour formed reworked concretions and hardgrounds on which hard substrate biotas expanded (Mid–Late Ordovician; Figs. 2, 4). Development of these carbonate horizons may have been facilitated by increased skeletal input through diversification and faunal expansion during this interval (Porter 2010). In more offshore settings rarely affected by wave-related erosion, the secondary carbonate could accumulate uninterrupted to produce the nodular, diagenetic bedding of limestone-marl alternations. As the TAZ deepened through the later Ordovician the cementation zone was displaced to deeper levels where reduced likelihood of exhumation led to decline in hardground abundance and more widespread development of diagenetic bedding (Late Ordovician; Fig. 3; Westphal 2006, fig. 2). An implication is that diagenetic bedding would have been preserved in shallower areas than previously, assuming that shallower sea floors were more susceptible to periodic reworking than deeper ones (Peters & Loss 2012). This hypothesis is testable if it can be demonstrated that diagenetic bedding is found in shallower settings by the Late Ordovician.
Discussion

This model proposes that a single trend, namely the deepening of the zone of cementation below the TAZ, can explain the rapid decline of FPCs, and the peak abundance of hardgrounds during the Ordovician, before their subsequent decline. That progressive change was ultimately a consequence of the previously documented increased depth and intensity of bio-irrigation. Rather than destroying the potential for rapid shallow cementation (Sepkoski 1982; Sepkoski et al. 1991), lowering of the TAZ decreased the likelihood of erosional exhumation of thin cemented carbonate layers by wave scour.

Many variables affected early diagenesis during the early Palaeozoic, including increased nutrient-rich organic matter and oxygen levels in sea floor sediments as a result of metazoan evolution (McIlroy & Logan 1999; Bottjer et al. 2000, Dornbos et al. 2005). The amount of labile aragonite from skeletal carbonate dissolution also likely increased with biomineralization, although the skeletal contribution to carbonate deposition remained limited up to mid Ordovician times (e.g. Pruss et al. 2010, fig. 8). Could the thinness of limestone beds ripped up to form FPCs from latest Proterozoic to Early Ordovician be explained by lower flux of carbonate from skeletal dissolution before the GOBE rather than reflecting frequency of exhumation at shallow burial depths? Although the intensity of bio-irrigation increased markedly in the Early Cambrian, bioturbation depth (<6 cm) remained shallow through to the Late Ordovician, when both depth (<30 cm) and average ichnofabric index increased substantially (Droser & Bottjer 1989; Tarhan et al. 2015). If changes in the biogeochemical environment of the upper sediment layers were a consequence of that deeper and more intense bio-irrigation, accompanied by increased oxygenation of the seas and oversaturation (Pruss et al. 2010) that affected diagenetic carbonate precipitation, what other effects took place in terms of carbonate behaviour? The biogenically reworked mixed layer increased only slowly, from 0.2 cm in the early-mid Cambrian to 1.5 cm in the Ordovian-
Silurian (Tarhan et al. 2015). Could the presence of a thin TAZ potentially result in higher levels of acidity through sulfide oxidation and a greater degree of undersaturation with respect to aragonite, compared with today’s thicker TAZ?

Organisms with more labile, aragonitic shells (primarily molluscs) are diverse in the early Cambrian radiation although their fossils are relatively sparse in the trilobite dominated Cambrian–Lower Ordovician skeletal record (Porter 2007; Porter et al. 2010). From the mid Ordovician, skeletal material was a major contributor to carbonate sediment; limestone shell beds, most commonly brachiopod-rich, increase in proportion, thickness and abundance in shallow marine settings (Kidwell and Brenchley 1994; Li & Droser 1997, 1999; Pruss et al. 2010). Molluscs are dominant in some storm beds, most commonly representing local reworking of concentrations of dead gastropod shells accumulated in the upper sediment layers (Li & Droser 1999; Harper 2006, fig. 9). Did a thicker TAZ later in the Ordovician result in less intense sulfide oxidation, less dissolution and a longer survival time of aragonite shells in the TAZ?

The Palaeozoic decrease in abundance of hardgrounds after the Ordovician (Fig. 2) is here interpreted as reflecting the lowering of the TAZ and cementation zone to depths in the sediment column affected less frequently by wave (storm or tsunami) reworking. It might also imply that such reworking later rarely affected sediments much below the TAZ at 30cm. Mesozoic peaks of hardground occurrence (Fig. 2) may in part reflect large outcrop areas of marine sediments (Smith and McGowan 2007), such as the Cretaceous Chalk. The extensive hardgrounds of the middle Jurassic are hosted predominantly in very shallow, oolitic facies and are of much more diverse origins than those of the Ordovician (Kenyon-Roberts 1995).

Conclusions
The decline of flat pebble conglomerates and the peak abundance of submarine hardgrounds in the Ordovician are interpreted as reflecting the progressive deepening of the zone of carbonate precipitation below the TAZ, resulting in less frequent reworking of the upper part of the sediment column by scour. The deepening was a consequence of increased depth and intensity of bioturbation and bio-irrigation. This shift also created a range of more lithified substrates in subtidal settings, promoting a rapid expansion in epizoan diversity. Thus, changes in bioturbation affected carbonate diagenesis and the composition of the sea floor carbonates, and provided new niches for invertebrates.

Acknowledgments

We thank Carl Brett for discussion, and are grateful to Paul Smith and an unknown reviewer for constructive criticism of the manuscript.

References

and Evolution of Natural Diversity", 1-5 October 2007, Sapporo, Japan. Hokkaido University. 21-29.

Figure Captions

Figure 1. Shallow burial diagenetic environment and calcium carbonate precipitation. A, labile aragonite shells (molluscs), more susceptible to early dissolution in the oxic upper sediment layers of the Taphonomically Active Zone (TAZ), release carbonate and leave moulds that are readily destroyed through bioturbation. B, calcitic shells more likely to survive early dissolution, and more rarely steinkerns of aragonitic shells; diffused carbonate precipitates in a zone of cementation in the sulfate reduction zone.

Figure 2. Abundance (using publications by formation as proxy) of subtidal flat pebble conglomerates (pale, points; supplemental information available online at www.geolsoc.org.uk/SUP0xxxx) and submarine hardgrounds (dark, histogram; based on Taylor 2008 and http://markwilson.voices.wooster.edu/bioerosion-bibliography/). Note: revision of Cambrian stratigraphy into four series is ongoing; divisions into Lower, Middle and Upper series follow standard usage in literature.

Figure 3. Palaeogeographic reconstruction for 485 Ma (Bugplates IGCP503; T.H. Torsvik 2009) showing late Cambrian–early Ordovician extent of flat pebble conglomerate facies (black stars).

Figure 4. Diagenetic model for carbonate precipitation in subtidal Palaeozoic settings, showing early Cambrian through Ordovician changes in the depth of the Taphonomically Active Zone (TAZ) and zone of cementation, susceptibility of lithified limestone layers to scouring, and distribution of flat pebble conglomerates, submarine hardgrounds and the diagenetic nodular bedding of limestone-marl alternations. SWI sediment-water interface.
Figure 3.

Figure 4.
Flat pebble conglomerates from subtidal settings (Fig. 2)

<table>
<thead>
<tr>
<th>AGE</th>
<th>LOCATION</th>
<th>FORMATION</th>
<th>SHELF SETTING</th>
<th>PROPOSED PROCESS</th>
<th>AUTHOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesoproterozoic</td>
<td>China, Hebei Province</td>
<td>Gaoyuzhuang Formation</td>
<td>Subtidal within storm wave base</td>
<td>storms</td>
<td>Luo et al. 2014</td>
</tr>
<tr>
<td>Proterozoic, Pre-Marinoan glaciation</td>
<td>NW Canada, Mackenzie Mountains</td>
<td>Keele Fm</td>
<td>mid to outer ramp</td>
<td>storms</td>
<td>Day et al. 2004</td>
</tr>
<tr>
<td>Vendian</td>
<td>Gourma, West Africa</td>
<td>Keele Fm</td>
<td>slope</td>
<td>bottom currents</td>
<td>Bertrand-Sarfati & Moussine-Pouchkine 1983</td>
</tr>
<tr>
<td>Ediacaran</td>
<td>South Africa</td>
<td>Swartpunt Fm</td>
<td>Low energy deeper ramp</td>
<td>storm</td>
<td>Narbonne et al. 1997</td>
</tr>
<tr>
<td>Ediacaran</td>
<td>Canadian Arctic</td>
<td>Gametrail Fm</td>
<td>subtidal ramp</td>
<td>storms</td>
<td>MacNaughton et al. 2008</td>
</tr>
<tr>
<td>Ediacaran</td>
<td>Kazakhstan</td>
<td>Kyrshabakty Formation</td>
<td>shallow carbonate platform</td>
<td>high energy events</td>
<td>Heubeck et al. 2013</td>
</tr>
<tr>
<td>Ediacaran - Lower Cambrian</td>
<td>Oman</td>
<td>Ara Group</td>
<td>carbonate platform</td>
<td></td>
<td>Grotzinger & Al-Rawahi 2014</td>
</tr>
<tr>
<td>Lower Cambrian</td>
<td>South Australia</td>
<td>Sellick Hill Formation</td>
<td>subtidal</td>
<td>storms</td>
<td>Mount & Kidder 1993</td>
</tr>
<tr>
<td>Lower Cambrian</td>
<td>W Mongolia</td>
<td>Bayan Gol Fm, Zavkhan Basin</td>
<td>shallow subtidal</td>
<td>storms</td>
<td>Kruse et al. 1996</td>
</tr>
<tr>
<td>Lower Cambrian</td>
<td>South China</td>
<td>Shuijingtuo Fm</td>
<td>subtidal</td>
<td></td>
<td>Ishikawa et al. 2008</td>
</tr>
<tr>
<td>Middle Cambrian</td>
<td>Canadian Arctic</td>
<td></td>
<td>ramp</td>
<td></td>
<td>Dewing & Nowlan 2012</td>
</tr>
<tr>
<td>Middle Cambrian</td>
<td>British Columbia, Canada</td>
<td>Jubilee Fm</td>
<td></td>
<td></td>
<td>Pope 1990</td>
</tr>
<tr>
<td>Time Period</td>
<td>Location</td>
<td>Formation/Marine Environment</td>
<td>Marine Event</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------------</td>
<td>------------------------------</td>
<td>--------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>Middle Cambrian</td>
<td>Argentina</td>
<td>La Laja Fm</td>
<td>subtidal shelf</td>
<td>Pratt & Bordonaro 2007</td>
<td></td>
</tr>
<tr>
<td>Middle Cambrian</td>
<td>Australia</td>
<td>Ranken Lst</td>
<td>low energy shallow subtidal shelf</td>
<td>Kruse 1996</td>
<td></td>
</tr>
<tr>
<td>Middle Cambrian</td>
<td>Wyoming, USA</td>
<td>Upper Gros Ventre Shale</td>
<td></td>
<td>Csonka 2009</td>
<td></td>
</tr>
<tr>
<td>upper Middle Cambrian</td>
<td>W Utah, USA</td>
<td>upper Wheeler, Marjum fms</td>
<td>middle carbonate belt - subtidal shelf</td>
<td>Robison 1964</td>
<td></td>
</tr>
<tr>
<td>Middle-Upper Cambrian</td>
<td>NW China</td>
<td>Supratidal to subtidal fpc</td>
<td>storms</td>
<td>Liang et al. 1993</td>
<td></td>
</tr>
<tr>
<td>Middle Cambrian - Lower Ordovician</td>
<td>Siberia</td>
<td>Ust’- Brus, Labaz, Orakta, Kulyumbe, Ujgur and Iltyk fms</td>
<td>carbonate platform, turbidites</td>
<td>Kouchinsky et al. 2008</td>
<td></td>
</tr>
<tr>
<td>Upper Cambrian</td>
<td>NW Siberia</td>
<td>Chopko Fm, Chopka River</td>
<td>submarine landslides</td>
<td>Varlamov et al. 2006</td>
<td></td>
</tr>
<tr>
<td>Upper Cambrian</td>
<td>N China</td>
<td>Gushan, Chanshang formations</td>
<td>subtidal shelf</td>
<td>Ding et al. 2008; Meng et al. 1997</td>
<td></td>
</tr>
<tr>
<td>Upper Cambrian</td>
<td>China, Shandong Province</td>
<td>Chaomidian Formation (Furongian)</td>
<td>shallow subtidal</td>
<td>Lee et al. 2010; Chen 2014; Chen et al. 2009, Chen et al. 2010; Van Loon et al. 2013</td>
<td></td>
</tr>
<tr>
<td>Upper Cambrian</td>
<td>S Korea</td>
<td>Hwajeol Formation</td>
<td>subtidal, relatively deep</td>
<td>Kim & Lee 2000</td>
<td></td>
</tr>
<tr>
<td>U Cambrian</td>
<td>Western USA</td>
<td>Snowy Range Fm (Sunwaptan-L Skullrockian)</td>
<td>Outer detrital belt (subtidal lagoon)</td>
<td>Sepkoski 1982</td>
<td></td>
</tr>
<tr>
<td>Upper Cambrian</td>
<td>Rocky Mts USA</td>
<td>Snowy Range Fm (Sunwaptan-L Skullrockian)</td>
<td>Inner detrital belt, subtidal</td>
<td>Storms (leading to slope failure)</td>
<td>Brett et al. 1983; Myrow et al. 2004; Myrow et al. 2012</td>
</tr>
<tr>
<td>Upper Cambrian</td>
<td>Montana, USA</td>
<td>Deadwood Fm</td>
<td>subtidal shelf</td>
<td>tsunamis</td>
<td>Pratt 2002</td>
</tr>
<tr>
<td>Geochronological Period</td>
<td>Location</td>
<td>Location Details</td>
<td>Sedimentary Environment</td>
<td>Storms</td>
<td>References</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------</td>
<td>------------------</td>
<td>-------------------------</td>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>Upper Cambrian</td>
<td>Wyoming, USA</td>
<td>Snowy Range Fm - Upper Deadwood Formation</td>
<td>subtidal intrashelf basin</td>
<td>storms</td>
<td>Saltzman 1999; Myrow et al. 2004</td>
</tr>
<tr>
<td>Upper Cambrian</td>
<td>Wyoming, USA</td>
<td></td>
<td></td>
<td>fpc produced by dewatering</td>
<td>Wiison 1985; Kozub 1997</td>
</tr>
<tr>
<td>Upper Cambrian</td>
<td>Virginia, USA</td>
<td>Nolichucky Formation</td>
<td>shallow subtidal basin facies</td>
<td>storms</td>
<td>Markellos & Read 1981, 1982</td>
</tr>
<tr>
<td>Upper Cambrian</td>
<td>Nevada and Utah, USA</td>
<td>SPICE interval</td>
<td>Intrashelf basin</td>
<td>storms</td>
<td>Saltzman et al. 1998</td>
</tr>
<tr>
<td>Upper Cambrian</td>
<td>Montana USA</td>
<td>Grove Creek, Snowy Range, Maurice formations</td>
<td></td>
<td></td>
<td>Dorf & Lochman 1940</td>
</tr>
<tr>
<td>Upper Cambrian</td>
<td>Maryland, USA</td>
<td>Conococheague Limestone</td>
<td>sand shoal environments</td>
<td></td>
<td>Demicco 1985; Demicco et al. 1991</td>
</tr>
<tr>
<td>Upper Cambrian</td>
<td>Virginia, USA</td>
<td>Conococheague Limestone, Copper Ridge Dolomite</td>
<td>Group I outer shelf</td>
<td>storms</td>
<td>Whisonant 1987</td>
</tr>
<tr>
<td>Upper Cambrian</td>
<td>Tennessee, USA</td>
<td>Maynardsville Fm, Conosauga Group</td>
<td>subtidal</td>
<td></td>
<td>Glumac and Walker 1997</td>
</tr>
<tr>
<td>Upper Cambrian</td>
<td>Wisconsin and Minnesota, USA</td>
<td>Tunnel City Group</td>
<td>shallow subtidal</td>
<td>storms</td>
<td>Eoff 2014</td>
</tr>
<tr>
<td>Upper Cambrian</td>
<td>California, USA</td>
<td>Nopah Fm (Sunwaptan); also Desert Valley Formation, Whipple Cave Formation, Notch Peak Formation, Ajax Dolomite</td>
<td>shallow subtidal</td>
<td>storms</td>
<td>Shapiro & Awramik 2006</td>
</tr>
<tr>
<td>Upper Cambrian</td>
<td>S Alberta, Canada</td>
<td>Bison Creek and Mistaya formations</td>
<td>shallow subtidal shelf</td>
<td>storms</td>
<td>Westrop 1989</td>
</tr>
<tr>
<td>Period</td>
<td>Location</td>
<td>Formation, Substitution</td>
<td>Environment</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------------------------</td>
<td>---</td>
<td>------------------------------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>Upper Cambrian - Lower Ordovician</td>
<td>Alberta, Canada</td>
<td>Survey Peak Fm; Ibexian-Tremadoc</td>
<td>subtidal dysoxic shelf</td>
<td>Ji & Barnes 1996</td>
<td></td>
</tr>
<tr>
<td>Upper Cambrian - Lower Ordovician</td>
<td>Mexico</td>
<td>Tínu Fm</td>
<td>debris flows</td>
<td>Landing et al. 2007</td>
<td></td>
</tr>
<tr>
<td>Upper Cambrian - Lower Ordovician</td>
<td>N China</td>
<td>Fengshans Formation - Yeli Formation</td>
<td>subtidal shelf</td>
<td>Yang et al. 2002</td>
<td></td>
</tr>
<tr>
<td>Upper Cambrian - Lower Ordovician</td>
<td>China, Jilin Province</td>
<td>candidate GSSP Xiaoyangqiao</td>
<td>subtidal storms</td>
<td>Chen et al. 1988</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Notch Peak and House Limestone fms; Whipple Cove and House Limestone fms</td>
<td>shoals on shallow carbonate shelf</td>
<td>Popov et al. 2002; Cook & Taylor 1975, 1977</td>
<td></td>
</tr>
<tr>
<td>Upper Cambrian - Lower Ordovician</td>
<td>Utah, USA; Nevada USA</td>
<td>Dotsero Fm, Manitou Fm</td>
<td></td>
<td>Berg 1960</td>
<td></td>
</tr>
<tr>
<td>Lower and Upper Cambrian, Lower Ordovician</td>
<td>Appalachians, USA</td>
<td>Dunham Fm; Pine Plains Fm; Ogdenburg and Tribes Hill fms</td>
<td>storms</td>
<td>Friedman 1994</td>
<td></td>
</tr>
<tr>
<td>Upper Cambrian - Lower Ordovician</td>
<td>Siberia</td>
<td>Nya sequence</td>
<td>shallow carbonate platform</td>
<td>Dronov et al. 2009</td>
<td></td>
</tr>
<tr>
<td>Upper Cambrian - Lower Ordovician</td>
<td>Mid-East Korea</td>
<td>Choson Supergroup</td>
<td>subtidal storm, diagenetic lists</td>
<td>Kwon et al. 2002</td>
<td></td>
</tr>
<tr>
<td>Lower Ordovician</td>
<td>Newfound-land</td>
<td>Watt's Bight and Boat harbour fms</td>
<td>deep subtidal to peritidal storms</td>
<td>Pruss et al. 2010</td>
<td></td>
</tr>
<tr>
<td>Lower Ordovician</td>
<td>Region</td>
<td>Formation</td>
<td>Sedimentary Setting</td>
<td>Events</td>
<td>References</td>
</tr>
<tr>
<td>------------------</td>
<td>--------</td>
<td>-----------</td>
<td>---------------------</td>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>Utah, USA</td>
<td></td>
<td>Pogonip Group - Notch Peak Formation, House Limestone, Fillmore Formation, and Wah Wah Limestone</td>
<td>shallow subtidal to peritidal</td>
<td></td>
<td>Pruss et al. 2010</td>
</tr>
<tr>
<td>S Korea</td>
<td></td>
<td>Dumugol Fm</td>
<td>shallow to deep ramp</td>
<td>storms</td>
<td>Lee & Kim 1992</td>
</tr>
<tr>
<td>Korea</td>
<td></td>
<td>Mungok Fm</td>
<td>subtidal shelf</td>
<td>storms</td>
<td>Kim and Lee 1995; Choi, Kim & Lee 1993</td>
</tr>
<tr>
<td>NY, USA</td>
<td></td>
<td>Tribes Hill Fm</td>
<td>intertidal to supratidal</td>
<td></td>
<td>Braun & Friedman 1969</td>
</tr>
<tr>
<td>Pingquan, Hebei Province, N China</td>
<td></td>
<td></td>
<td>shallow subtidal to shaly basinal</td>
<td></td>
<td>Liu & Zhan 2009</td>
</tr>
<tr>
<td>Pingquan, Hebei Province, N China and Xingshan, Hubei Province, S China</td>
<td></td>
<td></td>
<td>Lower Tremadoc shallow subtidal, Upper Tremadoc shallow to deep subtidal</td>
<td></td>
<td>Liu 2009</td>
</tr>
<tr>
<td>NW Hubei</td>
<td></td>
<td>Nantsinkian-lower Dawan fms; Tremadoc - early Floian</td>
<td>shallow marine carbonate platform; shallow to deeper subtidal</td>
<td></td>
<td>Liu et al. 2011</td>
</tr>
<tr>
<td>Nevada, USA</td>
<td></td>
<td>Ninemile Shale</td>
<td>within storm wave base</td>
<td>storms</td>
<td>Sprinkle & Guensburg 1995</td>
</tr>
<tr>
<td>Lower Ordovician</td>
<td>Utah and Nevada, USA</td>
<td>Kanosh Shale</td>
<td>Intrashelf basin</td>
<td>storms</td>
<td>Wilson et al. 1992</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------</td>
<td>--------------</td>
<td>------------------</td>
<td>--------</td>
<td>------------------</td>
</tr>
<tr>
<td>Lower Ordovician</td>
<td>Utah</td>
<td>Fillmore Formation</td>
<td>storm dominated shelf</td>
<td>storms</td>
<td>Sprinkle & Guensburg 1995; Dattilo 1993; Benner et al. 2004</td>
</tr>
<tr>
<td>Upper Silurian</td>
<td>Gotland, Sweden</td>
<td>upper Hemse-Eke fms</td>
<td>subtidal to very shallow, microbial shoals</td>
<td>anachronistic facies - suppressed burrowing</td>
<td>Cherns 1982, 1983; Calner 2005</td>
</tr>
<tr>
<td>Upper Silurian</td>
<td>Somerset Is., Arctic Canada</td>
<td>Reach Bay Fm</td>
<td>Subtidal within storm wave base</td>
<td>storms</td>
<td>Jones & Dixon 1976</td>
</tr>
<tr>
<td>Upper Devonian (Frasnian)</td>
<td>Holy Cross Mts, Poland</td>
<td>Shallow subtidal</td>
<td>Storms or tsunamis</td>
<td>anachronistic facies - suppressed burrowing</td>
<td>Kazmierczak & Goldring 1978</td>
</tr>
<tr>
<td>Lower Triassic</td>
<td>S Turkey</td>
<td>Dienerian Fm</td>
<td>Storms affecting shallow shelf</td>
<td>anachronistic facies - suppressed burrowing</td>
<td>Pruss et al. 2006</td>
</tr>
<tr>
<td>Lower Triassic</td>
<td>South China; North Italy</td>
<td>Moenkopi - Union Wash formations</td>
<td>Storm-dominated shelf to deep basin; mid ramp carbonates</td>
<td>anachronistic facies - suppressed burrowing</td>
<td>Wignall & Twitchett 1999</td>
</tr>
<tr>
<td>Lower Triassic</td>
<td>SW USA</td>
<td>Moenkopi - Union Wash formations</td>
<td>Subtidal</td>
<td>anachronistic facies - suppressed burrowing</td>
<td>Pruss et al. 2005; Woods 2009</td>
</tr>
<tr>
<td>Lower Jurassic</td>
<td>Portugal</td>
<td>Achada Dolomites and Limestones</td>
<td>Subtidal</td>
<td>Dip-slip movements causing tsunamis</td>
<td>Kullberg et al. 2001</td>
</tr>
</tbody>
</table>

Reference list:

Upper Cambrian (Steptoean Stage) sequences of the eastern Great Basin: Record of

Sepkoski, J.J.J. 1982. Flat-pebble conglomerates, storm deposits, and the Cambrian bottom
Springer-Verlag, 371-386.

Shapiro, R.S. & Awramik, S.M. 2006. *Favosamaceria cooperi* new group and form: a
widely dispersed, time-restricted thrombolite. *Journal of Paleontology, 80*, 411-422.

Van Loon, A., Han, Z. & Han, Y. 2012. Slide origin of breccia lenses in the Cambrian of the

Varlamov, A., Pak, K. & Rosova, A. 2006. The Upper Cambrian of the Chopko River
section, Norilsk region, northwestern Siberian platform: Stratigraphy and trilobites.

Westrop, S.R. 1989. Facies anatomy of an Upper Cambrian grand cycle: Bison Creek and
Mistaya formations, southern Alberta. *Canadian Journal of Earth Sciences, 26*,
2292-2304.

Whisonant, R. 1987. Paleocurrent and petrographic analysis of imbricate intraclasts in
shallow-marine carbonates, Upper Cambrian, southwestern Virginia. *Journal of
Sedimentary Petrology, 57*, 983-994.

Wignall, P.B. & Twitchett, R.J. 1999. Unusual intraclastic limestones in Lower Triassic
carbonates and their bearing on the aftermath of the end-Permian mass extinction.
Sedimentology, 46, 303-316.

