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Abstract

Computing the grounded extension of an argumentation framework can be done using the well-known
inductive procedure of Dung’s landmark paper. However, this procedure has only been proven to
be correct for finitary argumentation frameworks, that is, frameworks in which every argument has
only a finite number of defeaters. The problem is that formalisms like ASPIC+ and ASPIC− can
easily generate frameworks in which arguments have an infinite number of defeaters. In the current
paper, we will therefore broaden the applicability of the proof procedures for grounded semantics,
and weaken the condition that the argumentation framework has to be finitary.

1 Introduction
Rule-based instantiated argumentation formalisms, such as ASPIC [1], ASPIC+ [9, 10] and the argument-
interpretation of ABA [6] have enjoyed an increasing popularity within the formal argumentation com-
munity. Their main advantage over abstract argumentation (c.f. [5]) is that they enable nonmonotonic
entailment to be defined as rule-based inference. This can have advantages when it comes to the ability
to explain formal nonmonotonic inference in terms that human actors can relate to, as observed in [2].

One particular difficulty that several rule-based argumentation formalisms are subject to is that even
a finite set of rules can lead to an infinite set of arguments. For instance, in an ASPIC type framework
[1, 3, 9, 10], and adopting ASPIC notation, given a set of strict rules {→ a; → b; ¬c → ¬d; ¬d →
¬c} and a set of defeasible rules {a ⇒ c; b ⇒ ¬c} the argument A : (→ a) ⇒ c has an infinite
number of defeaters: B1 : (→ b)⇒ ¬c, B2 : (((→ b)⇒ ¬c)→ ¬d)→ ¬c, B3 : (((((→ b)⇒ ¬c)→
¬d) → ¬c) → ¬d) → ¬c, etc. Similar observations can be made for the argumentation interpretation
of ABA [6] and the argumentation interpretation of logic programming [12].

The above example illustrates that even a finite knowledge base can lead to an argumentation frame-
work that is not only infinite, but that is even infinitary in the sense of [5].1 This can be problematic, as
some of the fundamental results of abstract argumentation have only been proven for finitary argumenta-
tion frameworks, for example the existence of semi-stable and stage extensions [11] and the correctness
of the inductive procedure for computing the grounded extension [5].

One particular way in which this problem has been dealt with is by adding an extra constraint to
the argument construction process, so that each rule can be used at most once within each “branch” of
an argument.2 Hence, in the above example B3 would no longer form a well-formed argument. The
disadvantage of this approach, however, is that argument construction loses some of its modular aspects.
For instance, if one has an argument A with conclusion a, an argument B with conclusion b, and a rule
a, b → c then one can no longer be sure that A,B → c is a well-formed argument. This can cause
difficulties for work like [3] where part of the technical results relies on modular argument construction.

1Recall that an argumentation framework is finite when it has a finite number of arguments. It is finitary when each argument
has a finite number of defeaters.

2Recall that the recursive definition of an argument in ASPIC, ASPIC+ and ASPIC− essentially defines a tree of rules, similar
to what is done in the argumentation interpretation of ABA.



Ideally, one would like to have a solution that does not in any way restrict the construction of
arguments. However, this requires the broadening of some of the fundamental results of abstract argu-
mentation theory to particular classes of infinitary argumentation frameworks. In the current paper, we
introduce such a broadening. In particular, we show that for argumentation frameworks generated by
the ASPIC− formalism (which, as we have seen, can be infinitary) the iterative procedure for computing
the grounded extension is correct as far as the conclusions are concerned. Hence, when it comes to de-
termining the outcome of ASPIC− under grounded semantics (in terms of the conclusions yielded) one
is free to apply the inductive definition of grounded semantics, even though there may be differences on
the argument level.

The remainder of this paper is structured as follows. First, in Section 2, we introduce the formal
preliminaries of abstract argumentation. Then, in Section 3, we study the effects of omitting what we
call “superseded” arguments. In Section 4 we then use our results to show that under ASPIC− the
inductive definition of grounded semantics yields the same conclusions as the grounded extension itself,
even though the underlying argumentation framework may not be finitary. We then round off with a
discussion of the obtained results in Section 5.

2 Formal Preliminaries
In the current section, we briefly restate some of the key concepts of abstract argumentation theory.

Definition 1 ([5]). An argumentation framework is a pair (Ar , def ) where Ar is set of entities, called
arguments, whose internal structure can be left unspecified, and def a binary relation on Ar . We say
that A defeats B iff (A,B) ∈ def . We say that the argumentation framework is finite iff Ar is finite.
We say that the argumentation framework is finitary iff for every A ∈ Ar , {B ∈ Ar | (B,A) ∈ def } is
finite.

Definition 2. Let AF = (Ar , def ) be an argumentation framework, A ∈ Ar and Args ⊆ Ar . We
define A+ as {B ∈ Ar | A defeats B}, A− as {B ∈ Ar | B defeats A},Args+ as

⋃
{A+ | A ∈ Args},

and Args− as
⋃
{A− | A ∈ Args}. Args is said to be conflict-free iff Args ∩ Args+ = ∅. Args is

said to defend A iff A− ⊆ Args+. The characteristic function FAF : 2Ar → 2Ar is defined as
FAF (Args) = {A ∈ Ar | Args defends A}.

Definition 3. Let AF = (Ar , def ) be an argumentation framework. Args ⊆ Ar is said to be:
• an admissible set iff Args is conflict-free and Args ⊆ FAF (Args)
• a complete extension iff Args is conflict-free and Args = FAF (Args)
• a grounded extension iff Args is the smallest (w.r.t. ⊆) complete extension

3 Omitting Superseded Arguments
The idea of superseded arguments is to identify those arguments that can be omitted from the argumen-
tation framework without significantly affecting its outcome, as long as for each argument one omits,
one keeps an argument that supersedes it.

Definition 4 (argument superseding). An argument A is superseded by an argument B iff A+ ⊆ B+

and A− ⊇ B−.

Please notice that the supersedes relationship among arguments is not a partial order because it does not
satisfy anti-symmetry. Hence, it does not satisfy Postulate 3.1 of [7], so we cannot apply their theory.
We now proceed to define the supersedes relationship between argumentation frameworks.

Definition 5 (AF superseding). Let AF = (Ar , def ) be an argumentation framework, and let Ar ′ ⊆ Ar
be such that for each A ∈ Ar there exists an A′ ∈ Ar ′ that supersedes it. Let AF ′ be (Ar ′, def ′) with
def ′ = def ∩ (Ar ′ ×Ar ′). We say that AF ′ supersedes AF .

Notice that the supersedes relationship among argumentation frameworks does constitute a partial order.

Proposition 1. Let AF = (Ar , def ) and AF ′ = (Ar ′, def ′) be argumentation frameworks such that
AF ′ supersedes AF , and let Args ′ ⊆ Ar ′. It holds that FAF ′(Args ′) ⊆ FAF (Args ′).



Proof. Let A ∈ FAF ′(Args ′). So each B′ ∈ Ar ′ that defeats A is defeated by some C ∈ Args ′. Let
B ∈ Ar be an argument that defeats A. Let B′ ∈ Ar ′ be an argument that supersedes B. Then, from
the fact that B+ ⊆ B′+ it follows that B′ also defeats A. Hence, B′ is defeated by some C ∈ Args ′.
Since B− ⊇ B′− it follows that this C also defeats B. Hence, A is defended by Args ′ under AF . That
is, A ∈ FAF (Args ′).

Proposition 2. Let AF = (Ar , def ) and AF ′ = (Ar ′, def ′) be argumentation frameworks such that
AF ′ supersedes AF , and let Args ′ ⊆ Ar ′. It holds that FAF (Args ′) ∩Ar ′ = FAF ′(Args ′).

Proof.

FAF ′(Args ′) ⊆ FAF (Args ′) ∩Ar ′

Proposition 1 states that FAF ′(Args ′) ⊆ FAF (Args ′), so from FAF ′(Args ′) ⊆ Ar ′ it then
follows that FAF ′(Args ′) ⊆ FAF (Args ′) ∩Ar ′.

FAF (Args ′) ∩Ar ′ ⊆ FAF ′(Args ′)
Let A ∈ FAF (Args ′)∩Ar ′. The fact that A ∈ FAF (Args ′) means that each B ∈ Ar that defeats
A is defeated by some C ∈ Args ′. The fact that Ar ′ ⊆ Ar implies that also each B′ ∈ Ar ′ that
defeats A is defeated by some C ∈ Args ′. Hence, Args ′ defends A ∈ Ar ′ under AF ′. That is,
A ∈ FAF ′(Args ′).

The complete extensions of a superseded argumentation framework can be converted to the extensions
of the superseding argumentation framework, and vice versa.

Theorem 1. Let AF = (Ar , def ) and AF ′ = (Ar ′, def ′) be argumentation frameworks such that AF ′

supersedes AF .

1. if CE is a complete extension of AF , then CE ∩Ar ′ is a complete extension of AF ′

2. if CE ′ is a complete extension of AF ′, then FAF (CE
′) is a complete extension of AF

3. if CE is a complete extension of AF , then FAF (CE ∩Ar ′) = CE

4. if CE ′ is a complete extension of AF ′, then FAF (CE
′) ∩Ar ′ = CE ′

Proof.

1. Let CE be a complete extension of AF and let CE ′ be CE ∩Ar ′. We need to prove that CE ′ is a
conflict-free fixed-point of FAF ′ . Conflict-freeness follows from the fact that CE is conflict-free
and CE ′ ⊆ CE . To prove that CE ′ is a fixed-point of FAF ′ we need to show two things:

CE ′ ⊆ FAF ′(CE ′)
Let A ∈ CE ′. Then the facts that A ∈ CE and CE is a complete extension imply that each
B ∈ Ar that defeats A is defeated by some C ∈ CE . From Ar ′ ⊆ Ar it then follows that
each B′ ∈ Ar ′ that defeats A is defeated by some C ∈ CE . The fact that AF ′ supersedes
AF implies that there is a C ′ ∈ Ar ′ with C+ ⊆ C ′+, so C ′ defeats B′. Since this C ′ is
defended by CE (since the facts that CE is a complete extension and C ∈ CE imply that
C is defended by CE , so the fact that C− ⊇ C ′− implies that C ′ is also defended by CE )
it follows that C ′ ∈ CE , so C ′ ∈ CE ∩Ar ′. That is, C ′ ∈ CE ′, so A ∈ FAF ′(CE ′).

FAF ′(CE ′) ⊆ CE ′

Let A ∈ FAF ′(CE ′). From CE ′ ⊆ CE it follows that FAF (CE
′) ⊆ FAF (CE ) (since

FAF is a monotonic function). As FAF ′(CE ′) ⊆ FAF (CE
′) (Proposition 1) it follows

(by transitivity of ⊆) that FAF ′(CE ′) ⊆ FAF (CE ). As CE is a complete extension of
AF , it holds that FAF (CE ) = CE , so we obtain FAF ′(CE ′) ⊆ CE . Since, by definition,
FAF ′(CE ′) ⊆ Ar ′ it then follows that FAF ′(CE ′) ⊆ CE ∩ Ar ′. That is, FAF ′(CE ′) ⊆
CE ′.

2. Let CE ′ be a complete extension of AF ′. We need to prove that FAF (CE
′) is a conflict-free

fixed-point of FAF . We first show that FAF (CE
′) is conflict-free. Suppose, towards a contra-

diction, that FAF (CE
′) is not conflict-free. That is, there exist A,B ∈ FAF (CE

′) such that A
defeats B. Then CE ′ contains an argument C that defeats A (this is because CE ′ defends B).



However, the fact that CE ′ also defends A implies that CE ′ also contains an argument D that
defeats C. But then CE ′ is not conflict-free, so CE ′ is not a complete extension of AF ′. Contra-
diction.
We proceed to show that FAF (CE

′) is a fixed-point of FAF . That is, FAF (CE
′) = FAF (FAF (CE

′)).

FAF (CE
′) ⊆ FAF (FAF (CE

′))
From the fact that CE ′ is a complete extension of AF ′ it follows that CE ′ ⊆ FAF ′(CE ).
Since FAF ′(CE ′) ⊆ FAF (CE

′) (Proposition 1) it then follows (transitivity ⊆) that CE ′ ⊆
FAF (CE

′). From the fact that FAF is a monotonic function it then follows that FAF (CE
′) ⊆

FAF (FAF (CE
′)).

FAF (FAF (CE
′)) ⊆ FAF (CE

′)
Let A ∈ FAF (FAF (CE

′)). Then each B ∈ Ar that defeats A is defeated by some C ∈
FAF (CE

′). Let C ′ ∈ Ar ′ be an argument that supersedes C. From the facts that C is
defended by CE ′ and C− ⊇ C ′− it follows that C ′ is also defended by CE ′. That is,
C ′ ∈ FAF (CE

′). Since C ′ ∈ Ar ′ it then follows that C ′ ∈ FAF (CE
′) ∩ Ar ′. So A is

defended by FAF (CE
′) ∩ Ar ′. That is, A ∈ FAF (FAF (CE

′) ∩ Ar ′). Proposition 2 states
that FAF (CE

′) ∩ Ar ′ = FAF ′(CE ′) so we obtain that A ∈ FAF (FAF ′(CE ′)). But since
CE ′ is a complete extension of AF ′ it holds that FAF ′(CE ′) = CE ′, so A ∈ FAF (CE

′).

3. Let CE be a complete extension of AF . We need to prove that CE = FAF (CE ∩Ar ′)

CE ⊆ FAF (CE ∩Ar ′)
Let A ∈ CE . Then, from the fact that CE is a complete extension of AF , it follows that
for each B ∈ Ar that defeats A, there is a C ∈ CE that defeats B. Let C ′ ∈ Ar ′ be an
argument that supersedes C. From the fact that C+ ⊆ C ′+ it follows that C ′ defeats B. The
fact that C ∈ CE means that C is defended by CE (as CE is a complete extension) so from
the fact that C− ⊇ C ′− it follows that C ′ is also defended by CE . Hence, C ′ ∈ CE , so
C ′ ∈ CE ∩Ar ′. So A is defended by CE ∩Ar ′. That is, A ∈ FAF (CE ∩Ar ′).

FAF (CE ∩Ar ′) ⊆ CE
It trivially holds that CE ∩ Ar ′ ⊆ CE . Since FAF is a monotonic function, it then follows
that FAF (CE ∩ Ar ′) ⊆ FAF (CE ). Since CE is a complete extension of AF , it holds that
FAF (CE ) = CE . Hence, FAF (CE ∩Ar ′) ⊆ CE .

4. Let CE ′ be a complete extension of AF ′. We need to prove that FAF (CE
′) ∩Ar ′ = CE ′.

CE ′ ⊆ FAF (CE
′) ∩Ar ′

Let A ∈ CE ′. Then, by definition, A ∈ Ar ′. The fact that CE ′ is a complete extension of
AF ′ means that A is defended by CE ′ (under AF ′). So each B′ ∈ Ar ′ that defeats A is
defeated by some C ∈ CE ′. We now show that each B ∈ Ar that defeats A is defeated by
some C ∈ CE ′. Let B ∈ Ar be an argument that defeats A. Let B′ ∈ Ar ′ be an argument
that supersedes B. From the fact that B+ ⊆ B′+ it follows that B′ defeats A. So there
exists a C ∈ CE ′ that defeats B′. Since B− ⊇ B′− it follows that C defeats B. So A
is defended (under AF ) by CE ′. That is, A ∈ FAF (CE

′). This, together with the earlier
observed fact that A ∈ Ar ′ implies that A ∈ FAF (CE

′) ∩Ar ′.

FAF (CE
′) ∩Ar ′ ⊆ CE ′

Let A ∈ FAF (CE
′) ∩ Ar ′. Then, the fact that A ∈ FAF (CE

′) implies that each B ∈ Ar
that defeats A is defeated by some C ∈ CE ′. From the fact that Ar ′ ⊆ Ar it follows that
also each B′ ∈ Ar ′ that defeats A is defeated by some C ∈ CE ′, so CE ′ defends A under
AF ′. That is, A ∈ FAF ′(CE ′). But since CE ′ is a complete extension of AF ′, it holds that
FAF ′(CE ′) = CE ′. Hence, A ∈ CE ′.

The grounded extension of a superseded argumentation framework can be converted to the grounded
extension of the superseding argumentation framework, and vice versa.

Theorem 2. Let AF = (Ar , def ) and AF ′ = (Ar ′, def ′) be argumentation frameworks such that AF ′

supersedes AF .

1. If GE is the grounded extension of AF , then GE ∩Ar ′ is the grounded extension of AF ′.



2. If GE ′ is the grounded extension of AF ′, then FAF (GE ′) is the grounded extension of AF .

Proof.

1. Let GE be the grounded extension of AF and let GE ′ be GE∩Ar ′. From the fact that GE is also
a complete extension of AF , it follows (Theorem 1, point 1) that GE ′ is a complete extension of
AF ′. In order to prove that GE ′ is also the grounded extension of AF ′, we show that for each
complete extension CE ′ of AF ′, it holds that GE ′ ⊆ CE ′. Let CE ′ be a complete extension of
AF ′. Then from Theorem 1 (point 2) it follows that FAF (CE

′) is a complete extension of AF , so
GE ⊆ FAF (CE

′), which implies that GE ∩Ar ′ ⊆ FAF (CE
′)∩Ar ′. Theorem 1 (point 4) states

that FAF (CE
′) ∩ Ar ′ = CE ′, so we obtain that GE ∩ Ar ′ ⊆ CE ′, so (as GE ′ = GE ∩ Ar ′)

GE ′ ⊆ CE ′.

2. Let GE ′ be the grounded extension of AF ′, and let GE be FAF (GE ′). From the fact that GE ′ is
also a complete extension of AF ′, it follows that GE is a complete extension of AF (Theorem 1,
point 2). In order to prove that GE is also the grounded extension of AF , we show that for each
complete extension CE of AF , it holds that GE ⊆ CE . Let CE be a complete extension of AF .
Then (Theorem 1, point 1) CE ∩ Ar ′ is a complete extension of AF ′. From the fact that GE ′ is
the grounded extension of AF ′, it then follows that GE ′ ⊆ CE ∩Ar ′. Since FAF is a monotonic
function, we obtain FAF (GE ′) ⊆ FAF (CE ∩Ar ′). Since FAF (GE ′) = GE (by definition) and
FAF (CE ∩Ar ′) = CE (Theorem 1, point 3) we obtain that GE ⊆ CE .

4 Omitting C-Superseded Arguments
So far, we have proved equivalence purely on the semantic level (for complete and grounded semantics).
The next step is to examine things at the level of proof procedures. Our aim is to examine to what extent
one can still apply the iterative procedure for determining grounded semantics in the presence of a
possibly infinite argumentation framework that is superseded by a finite argumentation framework. We
start with a lemma.

Lemma 1. Let AF = (Ar , def ) and AF ′ = (Ar ′, def ′) be argumentation frameworks such that AF ′

supersedes AF . For every i ∈ {0, 1, 2, . . .} it holds that F i
AF ′(∅) ⊆ F i

AF (∅).

Proof. By induction over i:

basis i = 0. In that case F i
AF ′(∅) ⊆ F i

AF (∅), as F 0
AF ′(∅) = ∅ = F 0

AF (∅).

step Suppose that F i
AF ′(∅) ⊆ F i

AF (∅) for some i ∈ {0, 1, 2, . . .}. As FAF is a monotonic function, it
follows that FAF (F

i
AF ′(∅)) ⊆ FAF (F

i
AF (∅)). As FAF ′(F i

AF ′(∅)) ⊆ FAF (F
i
AF ′(∅)) (Proposi-

tion 1) we obtain that FAF ′(F i
AF ′(∅)) ⊆ FAF (F

i
AF (∅)). That is, F i+1

AF ′(∅) ⊆ F i+1
AF (∅).

In the context of this work, we are interested in equivalence at the level of conclusions rather than
equivalence purely at the level of arguments. For this, we need the following two definitions. Note that
if A is an argument we write Conc(A) for its conclusion, and if Args is a set of arguments we write
Concs(Args) for {Conc(A) | A ∈ Args} as is done in ASPIC− [3].

Definition 6. An argument A is c-superseded by an argument B iff A is superseded by B and Conc(A) =
Conc(B).

Definition 7. Let AF = (Ar , def ) be an argumentation framework, and let Ar ′ ⊆ Ar be such that
for each A ∈ Ar there exists an A′ ∈ Ar ′ that c-supersedes it. Let AF ′ be (Ar ′, def ′) with def ′ =
def ∩ (Ar ′ ×Ar ′). We say that AF ′ c-supersedes AF .

Trivially, it holds that if A is c-superseded by B then A is superseded by B (but not vice versa) and that
if AF is c-superseded by AF ′ then AF is superseded by AF ′ (but not vice versa). We now come to one
of the main results of this paper.

Theorem 3. Let AF = (Ar , def ) be an argumentation framework for which there exists a finitary
argumentation framework AF ′ = (Ar ′, def ′) that c-supersedes it. Let GE be the grounded extension
of AF . It holds that Concs(GE ) = Concs(∪∞i=0F

i
AF (∅)).



Proof. Let GE ′ be the grounded extension of AF ′. We need to show two things:

Concs(GE ) ⊆ Concs(∪∞i=0F
i
AF (∅))

Let a ∈ Concs(GE ). Then there is an A ∈ GE with Conc(A) = a. Let A′ ∈ Ar ′ be an argument
that c-supersedes A. From the fact that A is defended by GE (as GE is a complete extension)
and A− ⊇ A′− it follows that A′ is defended by GE , so A′ ∈ GE . That is, A′ ∈ GE ∩ Ar ′, so
(Theorem 2, point 1) A′ ∈ GE ′. Since AF ′ is finitary, it holds that GE ′ = ∪∞i=0FAF ′(∅), so A′ ∈
∪∞i=0F

i
AF ′(∅). From Lemma 1 it follows that ∪∞i=0F

i
AF ′(∅) ⊆ ∪∞i=0F

i
AF (∅) so A′ ∈ ∪∞i=0F

i
AF (∅)

so Conc(A′) ∈ Concs(∪∞i=0F
i
AF (∅)). Since Conc(A′) = Conc(A) (as A′ c-supersedes A) it then

follows that a ∈ Concs(∪∞i=0F
i
AF (∅)).

Concs(∪∞i=0F
i
AF (∅)) ⊆ Concs(GE )

As proven by Dung [5], it holds for any argumentation framework AF (finitary or infinitary) that
∪∞i=0F

i
AF (∅) ⊆ GE . From the fact that Concs is a monotonic function, it then directly follows

that Concs(∪∞i=oF
i
AF (∅)) ⊆ Concs(GE ).

To illustrate the applicability of our theory, we show that any argumentation framework obtained by the
ASPIC− formalism (assuming a finite defeasible theory [3]) is c-superseded by a finitary argumentation
framework. We refer to the finitary argumentation framework as a finited version of the original frame-
work. Unfortunately, space restrictions prevent us from including all relevant definitions of ASPIC−.
For these, we refer the reader to [3] instead.

Proposition 3. Let Args be an infinite set of arguments of a particular ASPIC− theory. There exists a
rule r that has no upper bound in the number of times it can occur in the same branch of an argument
in Args .

Proof. Suppose, towards a contradiction, that there exists an upper bound, say n. This means that each
argument in the infinite set Args has each rule in the defeasible theory occurring at most n times in the
same branch. This implies that the depth of each argument in Args is at most n · |R|. Let m be the size
of the largest antecedent of the rules in R (that is, m is the biggest “fan-out” factor one can get when
constructing an argument). Then the maximal number of rule-occurrences in each argument is mn·|R|.
Even if one takes into account all possible permutations of the rules in an argument, the result is still
finite. But this means it is impossible to obtain an infinite number of arguments in Args .

Theorem 4. Let AF = (Ar , def ) be generated by a finite ASPIC− theory. There exists a finitary
argumentation framework AF ′ = (Ar ′, def ′) that c-supersedes it.

Proof. We distinguish two cases: weakest link and last link.

weakest link Assume that AF has been generated using Ewl or Dwl. We first observe that for each
argument A with a same-branch repeating rule, there exists an argument A∗ without any same-
branch rule, such that A∗ c-supersedes A. The idea is to construct this A∗ by iteratively applying
subargument substitution. Let A be an argument that has a same-branch repeating rule. That is,
∃A1, A2 : A1 ∈ Sub(A) ∧ A2 ∈ Sub(A1) ∧ TopRule(A1) = TopRule(A2). Substitute A2

for A1 in A. Keep on doing substitutions like this until there are no same-branch repeating rules
anymore. Call the resulting argument A∗. At each substitution step, the argument after the step
(say A′′) c-supersedes the argument before the step (say A′) for the following reasons.

1. Conc(A′′) = Conc(A′)

2. A′+ ⊆ A′′+. Suppose A′ defeats B. We distinguish two cases.

• A′ undercuts B. Then A′′ also undercuts B (since Conc(A′′) = Conc(A′))
• A′ rebuts B and DefRules(A′) 6≺{Ewl,Dwl} DefRules(B′) (where B′ is the subar-

gument of B whose top-conclusion is defeated). Since Conc(A′′) = Conc(A′) it
follows that A′′ rebuts B. Since DefRules(A′′) ⊆ DefRules(A′) it follows that
DefRules(A′′) 6≺{Ewl,Dwl} DefRules(B′).

3. A′− ⊇ A′′−. Suppose A′′ is defeated by B. We distinguish two cases.

• B undercuts A′′. Since DefRules(A′′) ⊆ DefRules(A′) it follows that B also under-
cuts A′.



• B rebuts A′′ and DefRules(B) 6≺{Ewl,Dwl} DefRules(A′′′) (where A′′′ is the subargu-
ment of A′′ whose top-conclusion is defeated). Since DefRules(A2) ⊆ DefRules(A1)
it follows that DefRules(A′′′) ⊆ DefRules(A′′′′) (where A′′′′ is the subargument of
A′ whose top-conclusion is defeated). Hence, DefRules(B) 6≺{Ewl,Dwl} DefRules(A′′′′).

Let AF ′ = (Ar ′, def ′) be the argumentation framework where Ar ′ consist of each A∗ resulting
from an A ∈ Ar and def ′ be def ∩(Ar ′×Ar ′). From the above, it follows that AF ′ c-supersedes
AF . We now prove that AF ′ is finite. Suppose, towards a contradiction, that AF ′ is infinite.
Proposition 3 tells us that there is a rule that has no upper bound in the number of times it can
occur in the same branch. However, each argument A∗ ∈ Ar ′ has each rule occurring at most
once in each branch. So there actually is an upper bound (it’s 1). Contradition.

last link Assume that AF has been generated using Ell or Dll. We first observe that with last link, we
cannot always carry out the same kind of substitutions as with weakest link and still expect the
resulting argument to c-supersede the original argument. The reason is that we cannot be sure that
LastDefRules(A2) ⊆ LastDefRules(A1). It appears that an alternative strategy is needed.
Instead of performing a substitution whenever there are two occurrences of the same rule in the
same branch, we only perform substitution if, in addition, these two rule-occurrences also have
the same LastDefRules. That is, let A ∈ Ar be such that ∃A1, A2 : A1 ∈ Sub(A) ∧ A2 ∈
Sub(A1) ∧ TopRule(A1) = TopRule(A2) ∧ LastDefRules(A1) = LastDefRules(A2) then
substitute A2 for A1 in A. Keep doing substitution steps like these until there are no same-
branch repeated rules with the same LastDefRules. Call the resulting argument A∗ and let
AF ′ = (Ar ′, def ′) be the associated argumentation framework. Following similar reasoning as
for the weakest link case above, it follows that AF ′ c-supersedes AF .
We still have to prove that AF ′ is finite. This requires some additional effort, because now a rule
can occur more than once in the same branch (as long as they have different LastDefRules).
Suppose towards a contradiction that AF ′ is infinite. Then Proposition 3 tells that there is a rule
that has no upper bound in the number of times it can occur in the same branch. But as the number
of rules in the defeasible theory is finite, it follows that at some point LastDefRules will start to
become the same (this is because there is only a finite number of subsets of Rd that can serve as
LastDefRules). But this is impossible, because then this multiple rule-occurrence should have
been substituted away during the substitution process. Contradiction.

Theorem 5. Let AF = (Ar , def ) be generated by a finited ASPIC− theory and let GE be the grounded
extension of AF . It holds that Concs(GE ) = Concs(∪∞i=0F

i
AF (∅)).

Proof. This follows directly from Theorem 3 and Theorem 4.

What the above theorem shows is that if we want to compute the conclusions yielded by ASPIC− under
grounded semantics, then we are free to do so using the iterative procedure, even though the argumen-
tation framework generated by the ASPIC− theory might not be finitary.

5 Discussion and Conclusions
In this paper we formalise the concept of one argument superseding another. Since a finite set of rules
can generate an infinite set of arguments, the results presented in this paper are of critical importance
— they allow us to reduce such infinite frameworks into finite ones, and enable us to compute the
grounded semantics over such frameworks in a standard way. While our results focused on the ASPIC−

framework of [3], they are also directly applicable to other ASPIC style frameworks [1, 10, 9], as well
as the argumentation interpretation of ABA [6] and argument-based Logic Programming [12, 4].

With regards to related work, [7] introduces a redundancy relation between arguments. The aim of
[7] was to identify postulates necessary for generic argument systems to be useful. Redundancy was
therefore used to trim large argument systems, obtained from formalisms such as ABA, into smaller
systems which comply with their postulates. [7] showed that such trimmed frameworks (i.e. those
without redundant arguments) yield the same extensions as untrimmed frameworks. Unlike the present
work, [7] did not consider the validity of the inductive definition for the grounded semantics in the
presence of infinitary argumentation systems. Furthermore, our results are applicable to instantiated



frameworks which make use of unrestricted rebut (such as ASPIC−), and which are therefore arguably
more natural to use for the reasoning about argument in real domains (see the discussion in [3]).

Another line of research where our results are relevant is in embedding classical logic into rule
based formalisms. Approaches such as ASPIC-lite [13] and [8] seek to embed propositional logic into
an ASPIC style system. Classical entailment can lead to an infinite number of attackers, for reasons
other than reoccurring rules or propositions. For example, consider the defeasible rules⇒ a,⇒ b and
⇒ ¬(a∧b). When using strict rules as classical inference, the arguments A0 :⇒ ¬(a∧b) has an infinite
number of attackers, such as B1 : (⇒ a), (⇒ b)→ a ∧ b; B2 : ((⇒ a), (⇒ b)→ a ∧ a ∧ b)→ a ∧ b;
B3 : ((⇒ a), (⇒ b) → a ∧ a ∧ a ∧ b) → a ∧ b, etc. Our work can potentially be applied to show that
the inductive definition of grounded semantics is still applicable in such situations.
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