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Abstract: Principal support vector machine was proposed recently by Li, Artemiou and Li
(2011) to combine L1 support vector machine and sufficient dimension reduction. We intro-
duce the principal Lq support vector machine as a unified framework for linear and nonlinear
sufficient dimension reduction. By noticing that the solution of L1 support vector machine
may not be unique, we set q > 1 to ensure the uniqueness of the solution. The asymptotic dis-
tribution of the proposed estimators are derived for q > 1. We demonstrate through numerical
studies that the proposed L2 support vector machine estimators improve existing methods in
accuracy, and are less sensitive to the tuning parameter selection.
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1. Introduction

The emergence of computer power and the increase in storage capabilities have provided scientists the
necessary tools to collect and store high dimensional data. In an effort to reduce the dimensionality
of the data before applying classical techniques for inference, sufficient dimension reduction has seen
great development among recent statistics literature. The main objective of sufficient dimension
reduction is to estimate a p× d matrix β with d < p, such that

Y X|βTX, (1)

where Y is the response and X is a p-dimensional predictor. The column space of β in (1) is
called the dimension reduction space. Under mild assumptions (Cook, 1998a; Yin, Li and Cook,
2008), the intersection of all dimension reduction spaces is a dimension reduction space itself. This
unique minimum dimension reduction space is called the central space, and is denoted by SY |X . The
dimensionality of SY |X is called the structural dimension. We assume the existence of the central
space throughout this article.

Since the introduction of the seminal sliced inverse regression method in Li (1991), many sufficient
dimension reduction procedures have been proposed in the literature, such as Cook and Weisberg
(1991), Cook (1998b), Xia et al. (2002), Li, Zha and Chiaromonte (2005), Li and Wang (2007),
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etc. More recently, Li, Artemiou and Li (2011) proposed the principal support vector machine,
which combines the ideas of sliced inverse regression (Li, 1991), contour regression (Li, Zha and
Chiaromonte, 2005) and support vector machine (Cortes and Vapnik, 1995; Vapnik 1998). By em-
ploying L1 support vector machine and focusing on separating hyperplanes rather than slice means,
the principal support vector machine improves the accuracy of popular inverse regression estimators.

As demonstrated elegantly in Li, Artemiou and Li (2011), when we apply a modified L1 support
vector machine for binary response Y , the normal vector ψ from the optimal hyperplane ψTX−t = 0
naturally belongs to the central space SY |X . For continuous response, the predictors are separated
into several slices according to the values of the responses, and multiple support vector machines are
implemented to find the optimal hyperplanes that separate these slices. The principal eigenvectors
of the normal vectors from these hyperplanes, known as the principal L1 support vector machines
estimators, thus recover the central space. In spite of the popularity of L1 support vector machine
among practitioners and researchers, the corresponding objective function is not strictly convex and
may have multiple optimal solutions (Burges and Crisp, 1999). More specifically, if the optimal
hyperplane is described by an equation ψTX − t = 0 for some ψ ∈ Rp and t ∈ R, then L1 support
vector machine may have multiple optimal solutions where all of them share the same ψ but have
different t. On the other hand, Lq support vector machine with q > 1 enjoys unique solution due
to the strict convexity of its objective function. See, for example, Burges and Crisp (1999) and Abe
(2002). This motivates us to consider Lq support vector machine for sufficient dimension reduction
with q > 1.

We extend Li, Artemiou and Li (2011) and propose the principal Lq support vector machine with
q > 1 in this article. The principal Lq support vector machine inherits the benefits of the principal
L1 support vector machine, and combines both linear and nonlinear sufficient dimension reduction in
a general framework. By focusing on the theoretical development of the principal Lq support vector
machine with q > 1, we clearly demonstrate the connections and differences between our proposal
and the existing principal L1 support vector machine estimator. As we will see later, both estimators
depend on the tuning parameter known as the misclassification penalty. When the misclassification
penalty goes to infinity, these estimators become equivalent. Our proposal improves the accuracy of
the existing estimators at the sample level, and it enjoys the additional benefit of being less sensitive
to the choice of the misclassification penalty. Along with the theoretical development of the principal
Lq support vector machine estimator, we develop a more complete asymptotic theory for the existing
support vector machine literature.

2. Principal Lq support vector machine

Let {(Xi, Yi), i = 1, . . . , n} be an i.i.d. sample of (X, Y ). DenoteΣ = var(X) and X̄ = n−1
∑n

i=1Xi.
Suppose Y is binary random variable with values ±1. The Lq support vector machine (Abe, 2010)
is defined through the following optimization problem,

minimize ψTψ + λq−1n−1
n∑

i=1

ξqi among (ψ, t, ξ) ∈ Rp × R× Rn

subject to ξi ≥ 0, Yi{ψT(Xi − X̄)− t} ≥ 1− ξi, i = 1, . . . , n.

(2)

Here λ > 0 is a tuning parameter often referred to as the cost or misclassification penalty. The vector
ξ = (ξ1, . . . , ξn)

T, where ξi’s are the misclassification distances with ξi = 0 for correctly classified
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points and ξi > 0 for incorrectly classified points. The separating hyperplane ψTX − t = 0 is
described by ψ ∈ Rp and t ∈ R. The solution (ψ∗, t∗) to this minimization problem gives the optimal
hyperplane. For fixed ψ and t, minimizing (2) over ξ leads to solution ξ∗i = [1−Yi{ψT(Xi−X̄)−t}]+,
where a+ = max(a, 0). Plug ξ∗i into (2) leads to the following unconstrained minimization problem,

ψTψ + λq−1n−1
n∑

i=1

(
[1− Yi{ψT(Xi − X̄)− t}]+

)q
. (3)

At the population level, (3) corresponds to

ψTψ + λq−1E
(
[1− Y {ψT(X − EX)− t}]+

)q
. (4)

In a regression setting the response Y is a continuous variable. Let A1 and A2 be two disjoint sets
of the range of Y and define Ỹ = I(Y ∈ A2) − I(Y ∈ A1) to be the discretized response variable.
We modify (4) and define the following objective function,

Λ(ψ, t) = ψTΣψ + λq−1E
(
[1− Ỹ {ψT(X − EX)− t}]+

)q

, (5)

where ψTΣψ and Ỹ replaces ψTψ and Y in (4) respectively. Replacing Y with Ỹ allows us to handle
continuous as well as discrete response Y in (5). As we will see in the next theorem, adding Σ in the
first term of (5) is essential to the unbiasedness of the resulting principal Lq support vector machine
estimator.

Theorem 1 Suppose E(X|βTX) is a linear function of βTX, where β is as defined in (1). If
(ψ0, t0) minimizes Λ(ψ, t) in (5) among all (ψ, t) ∈ Rp × R, then ψ0 ∈ SY |X .

Theorem 1 suggests that we can estimate the central space SY |X via minimization of objective
function (5). Note that for population level objective function such as Λ(ψ, t) in (5), the minimizer
is denoted by (ψ0, t0). For sample level objective function such as (2), we denote the minimizer by
(ψ∗, t∗, ξ∗).

With q = 1 in (5), Λ(ψ, t) reduces to the objective function proposed in Li, Artemiou and Li
(2011). Although there is a unique value ψ0 that minimizes Λ(ψ, t) in this case, the value of t0 that
minimizes Λ(ψ, t) is not unique. This is because the second term of the objective function Λ(ψ, t)
is not a strictly convex function of t when q = 1. On the other hand, the second term becomes a
strictly convex function of t when q > 1, which guarantes the uniqueness of the solution (ψ0, t0).
Without interrupting the flow of the main article, we provide in Appendix B the sufficient conditions
for the existence of non-unique minimizer t0 for Λ(ψ, t) when q = 1.

3. Sample estimation algorithm

Given i.i.d. sample {(Xi, Yi), i = 1, . . . , n}, we study the sample algorithm of principal Lq support
vector machine to estimate the central space SY |X . We first develop a general result for q > 1 and

then focus on q = 2 for our implementation. Let Σ̂ be the sample covariance estimator. The sample
version objective function of the principal Lq support vector machine can be modified from (2) as
follows.

minimize ψTΣ̂ψ + λq−1n−1
n∑

i=1

ξqi among (ψ, t, ξ) ∈ Rp × R× Rn

subject to Ỹi{ψT(Xi − X̄)− t} ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , n,

(6)
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where ψTψ and Y in (2) are substituted by ψTΣ̂ψ and Ỹ respectively. Let Zi = Σ̂
−1/2

(Xi − X̄)

and ζ = Σ̂
1/2
ψ. Then (6) becomes

minimize ζTζ + λq−1n−1
n∑

i=1

ξqi , subject to ξi − 1 + Ỹi(Z
T

iζ − t) ≥ 0, ξi ≥ 0, i = 1, . . . , n.

Denote ξ = (ξ1, . . . , ξn)
T, Ỹ = (Ỹ1, . . . , Ỹn)

T, Z = (Z1, . . . ,Zn)
T, 1n = (1, . . . , 1)T, and 0n =

(0, . . . , 0)T. Let ⊙ be the Hadamard product, and suppose the symbol ≥ denotes componentwise
inequality. Then we get the equivalent matrix form optimization problem

minimize ζTζ + λq−1n−11T

nξ
q, subject to ξ − 1n + Ỹ ⊙ (ZTζ − t) ≥ 0n, ξ ≥ 0n (7)

The next proposition will facilitate finding the solution of (7).

Proposition 1 For q > 1, the solution ζ∗ of (7) is given by ζ∗ = 1
2Z

T(α ⊙ Ỹ ), where α is the
solution to the following optimization problem:

maximize αT1n − 1

4
(α⊙ Ỹ )TZZT(α⊙ Ỹ ) +

1− q

q
(λn−1)

1
1−q (αT)

q
q−11n

subject to α ≥ 0n, (α⊙ Ỹ )T1n = 0.

(8)

We relegate the proof of Proposition 1 in Appendix A.
Note that Ỹ has entries ±1 and αTα = (α⊙ Ỹ )T(α⊙ Ỹ ). Thus for the special case of q = 2, (8)

reduces to the following quadratic programming problem,

maximize αT1n − 1

4
(α⊙ Ỹ )T

(
ZZT +

2n

λ
In

)
(α⊙ Ỹ )

subject to α ≥ 0n, (α⊙ Ỹ )T1n = 0.

(9)

For the corresponding problem with q = 1, one can show that solving the sample version of (5)
leads to ζ∗ = 1

2Z
T(α⊙ Ỹ ), with α being the solution to

maximize αT1n − 1

4
(α⊙ Ỹ )TZZT(α⊙ Ỹ )

subject to 0n ≤ α ≤ λ1n, (α⊙ Ỹ )T1n = 0.
(10)

One can follow the proof of Theorem 3 in Li, Artemiou and Li (2011) for the derivation of (10). We
notice an interesting fact by comparing (9) and (10). Namely, the two problems become equivalent as
λ→ ∞. We will discuss this property further in our numerical studies section. It is easy to see that
using q > 2 in Proposition 1 will not give a quadratic programming problem. While the asymptotic
theory will be developed for any q > 1, our numerical studies focus on q = 2.

We present the principal L2 support vector machine algorithm to conclude this section. Suppose
for now the structural dimension d of the central space SY |X is known.

1. Calculate the sample mean X̄, sample variance matrix Σ̂, and the standardized predictor

Zi = Σ̂
−1/2

(Xi − X̄).
2. Let qr, r = 1, . . . , H − 1, be equally spaced sample percentiles of {Y1, . . . , Yn}.
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3. For each qr, construct Ỹ
r
i = I(Yi > qr)− I(Yi ≤ qr). Let ζ̂r be the solution of

minimize ζTζ + 2−1λn−11T

nξ
2, subject to ξ − 1n + Ỹ

r ⊙ (ZTζ − t) ≥ 0n,

where Ỹ
r
= (Ỹ r

1 , . . . , Ỹ
r
n )

T. Calculate ψ̂r = Σ̂
−1/2

ζ̂r.
4. Calculate the d leading eigenvectors û1, . . . , ûd of

V̂ =

H−1∑
r=1

ψ̂rψ̂
T

r. (11)

5. Estimate SY |X by the subspace spanned by û1, . . . , ûd.

4. Asymptotic results for LqSVM

In this section we discuss the asymptotic results for the PLqSVM with q > 1. Assume E(X) = 0
without loss of generality. First we introduce the following notations: θ = (ψT, t)T,W = (XT, Ỹ )T,X† =
(XT,−1)T, λ† = λq−1, and Σ† = diag(Σ, 0), where diag(A,B) denotes a block diagonal matrix with
A and B on the block diagonals. Λ(ψ, t) in (5) can be rewritten as E{m(θ,W )}, where

m(θ,W ) = θTΣ†θ + λ†{(1− θTX†Ỹ )+}q. (12)

Denote the corresponding sample version objective function as En{m(θ,W )}. Let θ0 and θ̂ be the
minimizer of E{m(θ,W )} and En{m(θ,W )} respectively. Before we state the asymptotic distribu-

tion of θ̂ in Theorem 2, the gradient and the Hessian matrix of the Lq objective function E{m(θ,W )}
are provided in the next two propositions.

Proposition 2 Suppose for each ỹ ∈ {−1, 1}, the distribution of X|Ỹ = ỹ is dominated by the
Lebesgue measure. In addition, suppose E(∥X∥2) <∞ and E(∥X∥q−1) <∞. Let Dθ be the (p+1)-
dimensional column vector of differential operators (∂/∂θ1, . . . , ∂/∂θp+1)

T. Then

Dθ[E{m(θ,W )}] = (2ψTΣ, 0)T − qλ†E{X†Ỹ (1− θTX†Ỹ )q−1I(1− θTX†Ỹ > 0)}. (13)

Proposition 3 SupposeX has a convex and open support, and for each ỹ ∈ {−1, 1}, the distribution
of X|Ỹ = ỹ is dominated by the Lebesgue measure. Let f·|· denote the conditional probability density
function. Suppose, moreover:

1. for any linearly independent ψ, δ ∈ Rp, ỹ = −1, 1, and v, ϵ ∈ R, the function

u 7→ ỹ(1− ỹ(u− t)− ϵv)q−1E{X†|ψTX = u, δTX = v, Ỹ = ỹ}fψTX|δTX, Ỹ (u|v, ỹ)

is continuous;
2. for any i = 1, . . . , p, and ỹ = −1, 1, there is a nonnegative function ci(v, ỹ) with E{ci(V, Ỹ )|Ỹ } <

∞ such that

ỹ(1− ỹ(u− t)− ϵv)q−1E{Xi|ψTX = u, δTX = v, Ỹ = ỹ}fψTX|δTX, Ỹ (u|v, ỹ) ≤ ci(v, ỹ);

3. for any ỹ = −1, 1, there is a nonnegative function c0(v, ỹ) with E{c0(V, Ỹ )|Ỹ } <∞ such that
fψTX|δTX, Ỹ (u|v, ỹ) ≤ c0(v, ỹ).
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Then the function θ 7→ Dθ[E{m(θ,W )}] is differentiable in all directions with derivative matrix

H = 2diag(Σ, 0) + q(q − 1)λ†
∑

ỹ=−1,1

P (Ỹ = ỹ)E{(1− θTX†ỹ)q−2X†(X†)TI(1− θTX†ỹ > 0)|Ỹ = ỹ}

(14)

Let θ̂ is the solution to the sample version objective function En{m(θ,W )}, withm(θ,W ) defined
in (12). We provide the influence function for the principal Lq support vector machine in the next
theorem.

Theorem 2 Suppose the conditions in Propositions 2 and 3 are satisfied. Then

θ̂ = θ0 −H−1
[
(2ψT

0Σ, 0)
T − qλ†En{X†Ỹ (1− θT

0X
†Ỹ )q−1I(1− θT

0X
†Ỹ > 0)}

]
+ oP (n

−1/2),

where H is given in Proposition 3.

To apply Theorem 2 for the proposed estimator of SY |X , recall from the algorithm in Section

3 that for a fixed dividing point qr, we have a corresponding Ỹ r, r = 1, . . . ,H − 1. Let W r =
(XT, Ỹ r) and m(θ,W r) = θTΣ†θ− λ†{(1− θTX†Ỹ r)+}q. Let the minimizer of E{m(θ,W r)} over

θ be θ0r = (ψT

0r, t0r)
T. The population correspondence of V̂ in (11) is thus V =

∑H−1
r=1 ψ0rψ

T

0r.
Furthermore, let Kp,p be the unique matrix satisfying Kp,pvec(A) = vec(AT) for any A ∈ Rp×p,
let Fr be the first r rows of H−1

r with Hr the Hessian of E{m(θ,W r)} and denote sr(θ,W
r) =

Fr[(2ψ
TΣ, 0)T−qλ†E{X†Ỹ r(1−θTX†Ỹ r)q−1I(1−θTX†Ỹ r > 0)}]. Now we present the asymptotic

distribution of V̂ .

Theorem 3 Suppose the conditions in Propositions 2 and 3 are satisfied. Then
√
nvec(V̂ − V )

converges to multivariate normal with mean 0 and variance Λ1Λ2Λ1, were Λ1 = Ip2 +Kp,p and

Λ2 =
∑H−1

r=1

∑H−1
i=1 [ψ0rψ

T

0i ⊗ E{sr(θ0r,W r)sT
i (θ0i,W

i)}].

Let D be a diagonal matrix with diagonal elements being the d leading eigenvalues of V . Let
U = (u1, . . . ,ud), where u’s are the d leading eigenvectors of V . Denote Û = (û1, . . . , ûd) corre-
spondingly. We get the asymptotic distribution of as a result of Corollary 1 in Bura and Pfeiffer
(2008).

Corollary 1 Suppose the conditions in Propositions 2 and 3 are satisfied, and V has rank d. Then√
n vec(Û −U)

D−→ N (0, (D−1U T ⊗ Ip)Λ1Λ2Λ1(D
−1U T ⊗ Ip)).

In the last step of the principal L2 support vector machine algorithm in Section 3, we extract d
leading eigenvectors of V̂ . Since d is unknown in practice, one needs to estimate the dimensionality
of SY |X before successful implementation of the proposed algorithm. We propose a modified BIC
criterion for this purpose. Define

Gn(k) =
k∑

i=1

ρi(V̂ )− ρ1(V̂ )n−
3
8 log(λ+ 2)

( p
H

) 1
4

k, (15)

where ρi(V̂ ) denotes the ith largest eigenvalue of V̂ . Then we estimate d by d̂, the maximizer of
Gn(k) over k = 0, 1, . . . , p. Similar criteria have been used in Zhu, Miao and Peng (2006), Wang and
Yin (2008). Our criterion is different from the one used in Li, Artemiou and Li (2011) as we include
number of slices H, the predictor dimensionality p, and the misclassification penalty λ in (15). The

consistency of d̂ is provided next.
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Theorem 4 Suppose the conditions in Propositions 2 and 3 are satisfied, and V has rank d. Then
limn→∞ P (d̂ = d) = 1.

5. Nonlinear sufficient dimension reduction

The dimension reduction in (1) aims at finding d features that are linear combinations of the original
predictors, and will be referred to as the linear sufficient dimension reduction. Let ϕ : Rp 7→ Rd be
nonlinear functions satisfying

Y X|ϕ(X). (16)

Identifying ϕ(X) is known as nonlinear sufficient dimension reduction. Model (16) was first for-
mulated in Cook (2007), and has been studied in Wu (2008), Yeh, Huang and Lee (2009) and
Fukumizu, Bach and Jordan (2009). Following Li, Artemiou and Li (2011), we discuss nonlinear
sufficient dimension via the principal L2 support vector machine in this section.

Let H be a reproducing kernel Hilbert space of the functions of X with inner product ⟨·, ·⟩H. We
assume H to have finite dimensionality for technical convenience, although this is not required in
general. Let Σ : H 7→ H be the covariance operator such that ⟨f1,Σf2⟩H = cov{f1(X), f2(X)} for
any f1, f2 ∈ H. Consider the population level objective function

Λ(ψ, t) = ⟨ψ,Σψ⟩H +
λ

2
E
(
{1− Ỹ [ψ(X)− Eψ(X)− t]}+

)2

. (17)

Note that (17) is parallel to (5) with q = 2. Let (ψ0, t0) be the minimizer of Λ(ψ, t) over all (ψ, t) ∈
H×R. Suppose σ{ϕ(X)} is the σ-field generated by ϕ(X). Under proper conditions, one can show
that ψ0(X) is measurable σ{ϕ(X)}, which means ψ0 is a function of the sufficient predictor ϕ(X).
The derivation follows Theorem 2 in Li, Artemiou and Li (2011) and is thus omitted.

Based on i.i.d. sample {(Xi, Yi), i = 1, . . . , n}, we now describe the principle for the sample
level estimation. Suppose H can be spanned by {h1, . . . , hG}, where we choose hj ∈ H to satisfy
En(hj(X)) = 0, j = 1, . . . , G. Define Ψ ∈ Rn×G with the element in the ith row and jth column
being hj(Xi). The sample version of (17) becomes

1

n
cTΨTΨc+

λ

2n

n∑
i=1

[{1− Ỹi(Ψ
T

ic− t)}+]2, (18)

whereΨi = {h1(Xi), . . . , hG(Xi)}T. Let (c∗, t∗) be the minimizer of (18) over (c, t) ∈ RG×R. Denote
Ỹ = (Ỹ1, . . . , Ỹn)

T and PΨ = Ψ(ΨTΨ)−1ΨT. Parallel to Proposition 1, we have the following result

Proposition 4 The solution c∗ of (18) is given by c∗ = 1
2 (Ψ

TΨ)−1ΨT(Ỹ ⊙ α∗), where α∗ is the
solution to the quadratic programming problem:

maximize αT1n − 1

4
(α⊙ Ỹ )T

(
PΨ +

2n

λ
In

)
(α⊙ Ỹ )

subject to α ≥ 0n, αTỸ = 0.

(19)

Following similar procedures as in Li, Artemiou and Li (2011), we describe the details of carrying
out nonlinear sufficient dimension reduction through reproducing kernel Hilbert space as follows. For
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the function classH, we use the reproducing kernel Hilbert space based on mapping κ : Rp× Rp 7→ R.
Common choices of κ include the Gaussian radial kernel and the polynomial kernel. Define kernel
matrixKn ∈ Rn×n, with κ(Xi,Xj) being the element in the ith row and jth column ofKn. Define
Qn = In − Jn/n, where In is the n× n identity matrix and Jn is the n× n matrix whose entries
are 1. Let wg be the eigenvector corresponding to λg, the gth largest eigenvalue of QnKnQn for
g = 1, . . . , n. From Proposition 2 in Li, Artemiou and Li (2011), we know Ψ becomes (w1, . . . ,wG).
After plugging Ψ = (w1, . . . ,wG) into (19) and applying Proposition 4, we get c∗ ∈ RG. Recall from

the sample level algorithm in Section 3 that Ỹ
r
= (Ỹ r

1 , . . . , Ỹ
r
n )

T, where Ỹ r
i = I(Yi > qr)−I(Yi ≤ qr)

and qr denotes the equally spaced sample percentiles of {Y1, . . . , Yn} for r = 1, . . . ,H − 1. When

we replace Ỹ in (19) with Ỹ
r
, the corresponding solution c∗ becomes cr∗. Let û1, . . . , ûd be the d

leading eigenvectors of
∑H−1

r=1 c
r∗(cr∗)T. For t = 1, . . . , d and g = 1, . . . , G, denote the gth component

of ût as ûtg. For i = 1, . . . , n and g = 1, . . . , G, denote the ith component of wg as wgi. From (16),
we have ϕ(x) ∈ Rd as a nonlinear reduction of x ∈ Rp. At the sample level, the tth component of

ϕ(x) is then estimated by
∑G

g=1 ûtghg(x), where hg(x) = λ−1
g

∑n
i=1 wgi[κ(x,Xi)− Enκ(x,X)].

6. Numerical studies

We use synthetic examples as well as real data analysis to demonstrate the finite-sample performance
of the proposed methods in this section.
Example 1 : This example is designed to compare the principal Lq support vector machine estimators
for linear sufficient dimension reduction. As it has been demonstrated in Li, Artemiou and Li (2011)
that the principal L1 support vector machine can consistently outperform popular methods such as
sliced inverse regression (Li, 1991), sliced average variance estimation (Cook and Weisberg, 1991),
and directional regression (Li and Wang, 2007), we focus on comparing the principal L1 support
vector machine with the newly proposed principal L2 support vector machine estimator. Consider

Model I : Y = X1 +X2 + σε,

Model II : Y = X1/{0.5 + (X2 + 1)2}+ σε,

Model III : Y = X1(X1 +X2 + 1) + σε,

where X ∼ N(0, Ip), σ = .2, and ε ∼ N(0, 1) independent of X. We set qr as equally spaced

sample percentiles of {Y1, . . . , Yn} for r = 1, . . . ,H − 1, and define Ỹ r
i = I(Yi > qr) − I(Yi ≤ qr).

Let sample size n = 100, number of slices H = 10, 20, 50, and p = 10, 20, 30. Suppose β ∈ Rp×d is
the basis of the central space. Denote its sample estimator as β̂. We measure the accuracy of β̂ by

∆ = ∥P β − P β̂∥, where P β = β(βTβ)−1βT, P β̂ = β̂(β̂
T

β̂)−1β̂
T

, and ∥ · ∥ is the Frobenius norm.

The results are summarized in Table 1. The entries are of the form a(b), which are the means and
the standard errors of ∆ based on 200 repetitions. Smaller values in Table 1 mean better estimation.
In all models across different combinations of p and H, we see that the principal L2 support vector
machine can consistently improve over its L1 counterpart for λ = 1. When λ increases to 10 and 100,
the estimation improves for both L1 and L2 support vector machine, and the difference between the
two methods become smaller. This verifies the theoretical finding from Section 3, where we showed
that the two algorithms become equivalent as λ→ ∞.
Example 2 : This example is to examine the validity of estimating the structural dimension d via
the modified BIC criterion (15). We include Model I and Model III from the previous example, and
compare principal Lq support vector machine with q = 1 or q = 2. The misclassification penalty is
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Table 1
Estimating SY |X via the principal Lq support vector machine. The means and standard errors of ∆ are reported

based on 200 repetitions in Example 1.

λ
Model p

H = 10 H = 20 H = 50
q = 1 q = 2 q = 1 q = 2 q = 1 q = 2

10 .22 (.058) .15 (.045) .22 (.054) .15 (.042) .22 (.053) .15 (.044)
I 20 .33 (.070) .25 (.062) .33 (.060) .24 (.054) .33 (.067) .24 (.056)

30 .43 (.074) .32 (.069) .44 (.074) .33 (.065) .43 (.084) .32 (.070)
10 .94 (.217) .74 (.193) .93 (.218) .71 (.170) .94 (.212) .73 (.155)

λ = 1 II 20 1.23 (.159) 1.06 (.156) 1.17 (.160) 1.01 (.153) 1.21 (.132) 1.03 (.145)
30 1.35 (.123) 1.23 (.138) 1.34 (.120) 1.21 (.122) 1.35 (.114) 1.23 (.125)
10 1.19 (.252) 1.10 (.256) 1.20 (.216) 1.13 (.197) 1.16 (.252) 1.08 (.245)

III 20 1.48 (.164) 1.43 (.177) 1.45 (.186) 1.43 (.190) 1.47 (.172) 1.43 (.182)
30 1.62 (.144) 1.57 (.146) 1.64 (.146) 1.61 (.149) 1.60 (.162) 1.57 (.173)

10 .14 (.038) .11 (.031) .13 (.036) .10 (.025) .13 (.038) .09 (.027)
I 20 .21 (.034) .17 (.031) .20 (.043) .17 (.034) .19 (.042) .16 (.035)

30 .28 (.052) .25 (.045) .27 (.062) .24 (.054) .25 (.052) .22 (.042)
10 .79 (.196) .67 (.158) .80 (.193) .69 (.166) .76 (.182) .65 (.148)

λ = 10 II 20 1.09 (.149) .98 (.146) 1.03 (.158) .93 (.149) 1.06 (.154) .96 (.151)
30 1.24 (.133) 1.18 (.132) 1.25 (.117) 1.19 (.120) 1.21 (.128) 1.15 (.138)
10 1.06 (.270) 1.05 (.240) 1.02 (.244) 1.01 (.208) 1.01 (.243) 1.00 (.215)

III 20 1.35 (.188) 1.41 (.166) 1.38 (.175) 1.41 (.160) 1.35 (.188) 1.39 (.195)
30 1.54 (.161) 1.58 (.150) 1.52 (.160) 1.55 (.164) 1.52 (.171) 1.57 (.162)

10 .10 (.026) .09 (.024) .09 (.022) .08 (.023) .09 (.023) .08 (.019)
I 20 .19 (.035) .17 (.034) .17 (.034) .15 (.033) .15 (.034) .15 (.029)

30 .27 (.051) .25 (.044) .26 (.048) .24 (.045) .24 (.042) .22 (.036)
10 .67 (.180) .64 (.158) .63 (.167) .62 (.166) .62 (.156) .60 (.151)

λ = 100 II 20 .98 (.177) .96 (.176) .94 (.157) .93 (.168) .95 (.169) .94 (.167)
30 1.24 (.148) 1.22 (.145) 1.17 (.140) 1.17 (.142) 1.16 (.134) 1.14 (.133)
10 0.96 (.243) 1.09 (.226) 0.91 (.240) 1.04 (.276) 0.90 (.262) 1.03 (.280)

III 20 1.29 (.212) 1.42 (.207) 1.22 (.220) 1.35 (.220) 1.27 (.202) 1.41 (.192)
30 1.58 (.180) 1.62 (.163) 1.56 (.171) 1.61 (.150) 1.53 (.196) 1.59 (.162)

Table 2
Estimating structural dimension d via the principal Lq support vector machine. The proportions that d̂ = d are

reported based on 200 repetitions in Example 2.

H p Method
Model I Model III

n = 200 n = 300 n = 400 n = 200 n = 300 n = 400

10

10
q = 1 .89 .94 .92 .56 .56 .46
q = 2 1 1 1 .78 .85 .93

20
q = 1 .95 .93 .91 .47 .62 .68
q = 2 1 1 1 .53 .74 .85

30
q = 1 1 .97 .98 .25 .52 .68
q = 2 1 1 1 .50 .73 .87

20

10
q = 1 .97 .99 1 .61 .70 .64
q = 2 .97 1 1 .85 .92 1

20
q = 1 .98 .99 .98 .61 .67 .64
q = 2 1 1 1 .77 .94 .98

30
q = 1 .98 1 .99 .29 .61 .74
q = 2 1 1 1 .74 .91 .97
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Table 3
Proportion of correct estimation of structural dimension d via the principal Lq support vector machine for

λ = 10, 100 and p = 10 for q = 1 and q = 2.

H λ Method
Model I Model III

n = 200 n = 300 n = 400 n = 200 n = 300 n = 400

10

1
q = 1 .89 .94 .92 .56 .56 .46
q = 2 1 1 1 .78 .85 .93

10
q = 1 .79 .85 .80 .32 .35 .42
q = 2 1 1 1 .51 .56 .47

100
q = 1 0.62 0.69 0.72 .02 .13 .10
q = 2 1 1 1 .10 .12 .13

20

1
q = 1 .97 .99 1 .61 .70 .64
q = 2 .97 1 1 .85 .92 1

10
q = 1 .95 .93 .99 .20 .20 .31
q = 2 1 1 1 .44 .41 .53

100
q = 1 .89 .92 .99 .10 .11 .17
q = 2 .1 1 1 .30 .31 .33

fixed to be λ = 1. Across p = 10, 20, 30, H = 10, 20 and n = 200, 300, 400, we report in Table 2
the proportions that d is correctly estimated based on 200 repetitions. We see that both principal
support vector machine estimators work reasonably well for Model I where true d = 1. In the more
challenging case of Model III where d = 2, the superiority of principal L2 support vector machine
becomes more obvious. The estimator d̂ based on the principal L1 support vector machine could
lead to very bad performances, especially when n = 200 or p = 30. As n increases and p decreases,
both methods improve and get a higher proportion of correctly identified d.

We repeated the experiments for p = 10 and λ = 10, 100 to further investigate the role of λ. We
show the results in the Table 3 along with the results for λ = 1 (which are the same from Table 2).
For model 1, the criterion was still perfect when q = 2 while it’s performance was decreasing when
q = 1. For model 3, for both q = 1 and q = 2 the performance was decreasing for larger λ’s. When
λ = 10, q = 2 was still outperforming and for λ = 100 the two were mostly equivalent.
Example 3 : This real data analysis is to demonstrate the effect of misclassification penalty λ on
principal support vector machine estimators. Consider the concrete slump test data studied in Yeh
(2007). The response variable is the concrete flow. There are 7 predictors: cement, slag, fly ash,
water, superplasticizer (SP), coarse aggregate, and fine aggregate. The sample size is n = 103. Fix
H = 20 and d = 1, we compare the L1 and the L2 estimators across λ = 1, 10, 1000. We report the
components of β̂ in Table 4. Although the two estimator are seemingly different when λ = 1, they
become very close to each other when λ = 1000. This confirms our findings in Section 3. In the first

row of Figure 1, we provide scatterplots of Y versus β̂
T

X based on the principal L1 support vector
machine estimators. We see the patterns change significantly while λ increases. From the scatterplots
in the second row of Figure 1, we see that the principal L2 support vector machine estimator are
less sensitive to the choice of λ.
Example 4 : We study nonlinear sufficient dimension reduction via the principal Lq support vector
machine in this example. In addition to Model III: Y = X1(X1 + X2 + 1) + σε from Example 1,
consider

Model IV : Y = X2
1 +X2 + σϵ,

Model V : Y = (X2
1 +X2

2 )
1/2 log(X2

1 +X2
2 )

1/2 + σϵ,
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Table 4
Comparing the principal Lq support vector machine estimators across different λ. Components of β̂ are reported

based on real data in Example 3.

Method Cement Slag Fly Ash Water SP Coarse Fine

λ = 1
q = 1 .157 .215 .170 .464 .794 .164 .164
q = 2 .136 .174 .156 .634 .697 .133 .144

λ = 10
q = 1 .143 .194 .159 .512 .779 .152 .160
q = 2 .127 .148 .146 .710 .629 .135 .149

λ = 1000
q = 1 .113 .122 .132 .610 .727 .162 .165
q = 2 .114 .121 .131 .619 .722 .160 .161

where X ∼ N(0, Ip), σ = .2, and ε ∼ N(0, 1) independent of X. Set λ = 1, n = 100, p = 10, 20, 30,
and H = 10, 20, 50. Based on the description in Section 5, we aim to find a monotone transformation
of the sufficient predictor ϕ(X), which is X1(X1 +X2 + 1), X2

1 +X2 and X2
1 +X2

2 for Models III,
IV and V respectively. To measure the accuracy of the nonlinear sufficient dimension reduction
estimators, we report the absolute value of Spearman correlation between ϕ(X) and ϕ̂(X). Note
that this measure is invariant under monotone transformation. Table 5 is based on 200 repetitions,
where values closer to 1 means better estimation. The Gaussian radial basis kernel κ(Xi,Xj) =

e−γ∥Xi−Xj∥2

is used. We set the tuning parameter as γ = 1/(E∥X −X ′∥)2, where X and X ′ are
independent copies of N(0, Ip). Since the principal L2 support vector machine is mainly designed
to improve existing linear sufficient dimension reduction estimators, it is comforting to observe in
Table 5 that the principal L2 support vector machine is slightly better than its L1 counterpart for
nonlinear sufficient dimension reduction.
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Table 5
Estimating ϕ(X) for nonlinear sufficient dimension reduction. The means and standard errors of Spearman

correlation are reported based on 200 repetitions in Example 4.

Models p
H = 10 H = 20 H = 50

q = 1 q = 2 q = 1 q = 2 q = 1 q = 2
10 .92 (.018) .93 (.017) .92 (.020) .93 (.018) .92 (.018) .93 (.017)

III 20 .85 (.030) .87 (.029) .86 (.029) .88 (.028) .86 (.032) .88 (.030)
30 .83 (.037) .86 (.036) .83 (.035) .85 (.034) .83 (.036) .85 (.035)
10 .95 (.010) .97 (.008) .95 (.009) .97 (.008) .95 (.008) .97 (.007)

IV 20 .91 (.018) .93 (.017) .91 (.018) .93 (.017) .91 (.020) .93 (.018)
30 .89 (.023) .91 (.022) .89 (.023) .91 (.021) .89 (.024) .91 (.023)
10 .89 (.022) .91 (.022) .90 (.026) .91 (.024) .90 (.023) .91 (.023)

V 20 .81 (.042) .82 (.040) .81 (.040) .83 (.039) .81 (.034) .83 (.033)
30 .77 (.040) .79 (.040) .78 (.046) .79 (.043) .77 (.045) .79 (.044)

Fig 1. Scatterplots of Y versus β̂
T
X across λ = 1 (first column), λ = 10 (second column), and λ = 1000 (third

column), q = 1 (first row), and q = 2 (second row).

7. Discussion

We propose the principal Lq support vector machine for sufficient dimension reduction. Compared
with its L1 counterpart, the principal Lq support vector machine estimator is more robust to the
choice of the misclassification parameter, and enjoys more accurate estimation of the central space.
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In an effort to combine weighted support vector machine and sufficient dimension reduction, Shin
et al. (2014) proposed probability-enhanced sufficient dimension reduction. The misclassification
reweighted scheme for the principal L1 support vector machine was studied in Artemiou and Shu
(2014). Development of weighted Lq support vector machines is worth exploration. Another open
question is about the choice of the tuning parameter λ. The bootstrap method in Ye and Weiss
(2003) could potentially be used to facilitate the selection of λ, and the theoretical justification
of such procedures needs future investigation. Further to this, a limitation of our study comes
with the lack of investigation of the role of λ in the theoretical framework. Another interesting
question currently investigated by the authors is the use of equality instead of inequality in the
constraint in (2). This leads to the Least Squares SVM (LSSVM) introduced by Suykens et al
(2002). In the classification context, LSSVM give an analytic solution compared to the LqSVM
which require quadratic programming but suffer in the sense that every point is considered a support
vector. Whether similar advantages will hold in the dimension reduction framework is still under
investigation.
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Appendix A

Proof of Theorem 1. The proof follows Theorem 1 of Li, Artemiou and Li (2011), with the key
observation that a 7→ (a+)q is convex. We omit the details here. 2

Proof of Proposition 1. The Lagrangian form of (7) is

L(ζ, t,α) = ζTζ + λ(nq)−11T

nξ
q −αT{ξ − 1n + Ỹ ⊙ (ZTζ − t)} − βTξ. (20)

Apply Kuhn-Tucker Theorem to (20) and we have
∂L/∂ζ = 2ζ −ZT(α⊙ Ỹ ) = 0p,

∂L/∂ξ = λn−1ξ(q−1) −α− β = 0n,

∂L/∂t = (α⊙ Ỹ )T1n = 0.

(21)

From the second equation of (21), we have ξ = (nλ−1(α + β))1/(q−1). Next we use the Karush
Kuhn Tucker (KKT) conditions to argue that β = 0. The KKT conditions state that for the optimal
hyperplane, we have βiξi = 0 and βi ≥ 0 for i = 1, . . . , n. This implies that ξi = 0 whenever βi > 0.
Suppose we have βi > 0, then the fact ξ = (nλ−1(α+ β))1/(q−1) and the KKT conditions together
guarantee that αi +βi = 0. It follows that αi = −βi < 0. On the other hand, apply KKT conditions
to the Lagrangian multiplier α and we have αi ≥ 0. This contradiction guarantees that βi = 0,
i = 1, . . . , n.

As a result, we have ξ = (nλ−1α)1/(q−1). From the first equation of (21), we get ζ = 1
2Z

T(α⊙Ỹ ).
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Plug them into (20) and we have

L(ζ, t,α) =
1

4
(α⊙ Ỹ )TZZT(α⊙ Ỹ ) + λ(nq)−1

(
αT

λn−1

) q
q−1

1n

−
(
αT

λn−1

) 1
q−1

α+αT1n − 1

2
(α⊙ Ỹ )TZZT(α⊙ Ỹ ) + (α⊙ Ỹ )T1nt.

Using the fact that (α⊙ Ỹ )T1n = 0 and

λ(nq)−1

(
αT

λn−1

) q
q−1

1n −
(
αT

λn−1

) 1
q−1

α =
1− q

q

1

(λn−1)
1

q−1

(αT)
q

q−11n,

we get the desired result. 2

Some preparation is needed before we prove Proposition 2. Recall that W = (XT, Ỹ )T. Denote
w = (xT, ỹ)T and define Nθ(m) = {w : m(·,w) is not differentiable at θ}. We state the following
Lemma which is similar to a result in Li, Artemiou and Li (2011) without proof. Here we use local
Lipschitz condition.

Lemma 1 Let Θ ⊂ Rp+1 an open convex set. Suppose that m : Θ×ΩW → R satisfies the following
conditions

1. (almost surely differentiable) For each θ ∈ Θ, P{W ∈ Nθ(m)} = 0;
2. (local Lipschitz condition) For any θ0 ∈ Θ there is an integrable function c(w), independent

of θ, and a spherical neighborhood of θ0, denoted as A ⊂ Θ, such that for any θ1,θ2 ∈ A,
|m(θ2,w)−m(θ1,w)| ≤ c(w)∥θ2 − θ1∥.

Then Dθ{m(θ,W )} is integrable, E{m(θ,W )} is differentiable, and Dθ[E{m(θ,W )}] = E[Dθ{m(θ,W )}].
Proof of Proposition 2. First we denote with H(ψ, a) the hyperplane {x : ψTx = a} and we verify
the conditions of Lemma 1 hold. Note that

P{(X, Ỹ ) ∈ Nθ(m)} =
∑

ỹ∈{−1,1}

P (Ỹ = ỹ)P{X ∈ H(ψ, t+ ỹ)|Ỹ = ỹ}.

Since the Lebesgue measure of H(ψ, t+ ỹ) is 0 for ỹ ∈ {−1, 1}, the above probability is 0. Therefore
condition 1 of Lemma 1 holds true.

Let m(θ,w) = m1(θ,w) + λm2(θ,w) where m1(θ,w) = ψTΣψ and m2(θ,w) = [{1− Ỹ (ψTX −
t)}+]q. We need to show that m1 and m2 are locally Lipschitz. For m1 this is obvious. To verify that
m2 is locally Lipschitz, let’s take θ0 any point in an open convex set Θ ∈ Rp+1 and let A ⊂ Θ be a
spherical neighborhood around θ0. Then, let (ψ1, t1), (ψ2, t2) ∈ A. Then

m2(θ2,x, ỹ)−m2(θ1,x, ỹ) = [{1− ỹ(ψT

2x− t2)}+]q − [{1− ỹ(ψT

1x− t1)}+]q. (22)

Note that for numbers a and b, |(b+)q−(a+)q| ≤ q(max{b+, a+})q−1|(b+−a+)| and |b+−a+| ≤ |b−a|.
Since q ({1− ỹ(ψTx− t)}+)q−1

is convex it is also locally bounded in A, let’s say by M(x) <
m∥x∥q−1 where m a constant. Therefore (22) together with the other assumptions of Proposition 2
implies

|m2(θ2,x, ỹ)−m2(θ1,x, ỹ)| ≤M(x)
∣∣{1− ỹ(ψT

2x− t2)}+ − {1− ỹ(ψT

1x− t1)}+
∣∣

≤M(x)|ψT

1x−ψT

2x+ t2 − t1|
≤m∥x∥q−1|ψT

1x−ψT

2x+ t2 − t1|. (23)
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From the definition that θ = (ψT, t)T, we have |ψT

1x−ψT

2x+ t2 − t1| ≤ (1 + ∥x∥2) 1
2 ∥θ2 − θ1∥. Plug

it into (23) and we get

|m2(θ2,x, ỹ)−m2(θ1,x, ỹ)| ≤ m∥x∥q−1(1 + ∥x∥2) 1
2 ∥θ2 − θ1∥. (24)

Because E(∥X∥2) <∞, E(1+ ∥X∥2) 1
2 ≤ [1 +E(∥X∥2)] 12 <∞ and from E(∥X∥q−1) <∞ we have

that condition 2 of Lemma 1 is implied by (24).
Now that the two conditions of Lemma 1 are verified, for w /∈ Nθ(m), take derivatives of m(θ,w)

and we get Dψ{m(θ,w)} = 2Σψ−qλ†xỹ{1− ỹ(ψTx−t)}q−1[I{1− ỹ(ψTx−t) > 0}], Dt{m(θ,w)} =
qλ†ỹ{1− ỹ(ψTx− t)}q−1[I{1− ỹ(ψTx− t) > 0}]. Thus we have

Dθ{m(θ,w)} = (2ψTΣ, 0)T − qλ†x†ỹ{1− ỹ(ψTx− t)}q−1I{1− ỹ(ψTx− t) > 0)}. (25)

Take expectation of (25). Apply Lemma 1 to get the desired result. 2

To compute the derivative of expectation of a non-Lipschitz function, two additional Lemmas are
needed before we prove Proposition 3. The first one is true if U and V are linearly independent and
the second covers the case when they are linearly dependent. Let Dϵ=0 denote the operation of first
taking derivative with respect to ϵ and then evaluating the derivative at ϵ = 0.

Lemma 2 Let U and V be random variables, h(u, v) be a measurable Rk-valued function, and b be
a constant. Suppose:

1. the joint distribution of (U, V ) is dominated by the Lebesgue measure;
2. for each v, the function u 7→ (b − u + ϵ(η − v))q−1h(u, v)fU|V (u|v) is continuous, where fU |V

denotes the conditional probability density function of U given V ;
3. for each component hi(u, v) of h(u, v), there is a function ci(v) ≥ 0 such that

|(b− u+ ϵ(η − v))q−1hi(u, v)|fU|V (u|v) ≤ ci(v), E{ci(V )} <∞.

Then, for any constant a, the function ϵ 7→ E{(b−U + ϵ(η − V ))q−1h(U, V )I(U + ϵV < a+ ϵη)} is
differentiable at ϵ = 0 with derivative

Dϵ=0[E{(b− U + ϵ(η − V ))q−1h(U, V )I(U + ϵV < a+ ϵη)}]
= fU(a)E{(η − V )(b− a)q−1h(U, V )|U = a} − E{(η − V )(b− U)q−2hi(U, V )I(U < a)}.

(26)

Proof. We need to show that, for each i = 1, . . . , k, the limit

lim
ϵ→0

∫ {
ϵ−1

∫ a+ϵ(η−v)

a

(b− u+ ϵ(η − v))q−1hi(u, v)fU|V (u|v)du

}
fV (v)dv (27)

exists. By the mean value theorem for integration, there exists ξ ∈ (0, ϵ) such that∣∣∣∣∣ϵ−1

∫ a+ϵ(η−v)

a

(b− u+ ϵ(η − v))q−1hi(u, v)fU|V (u|v)du

∣∣∣∣∣
=|(b− ξ(η − v)− a+ ϵ(η − v))q−1(hi(a+ ξ(η − v), v)fU|V (a+ ξ(η − v)|v)| ≤ c(v),
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where the inequality follows from assumptions 2 and 3. By the dominated convergence theorem, the
limit in (27) becomes∫

lim
ϵ→0

{
ϵ−1

∫ a+ϵ(η−v)

a

(b− u+ ϵ(η − v))q−1hi(u, v)fU|V (u|v)du

}
fV (v)dv. (28)

Apply the generalized Leibniz integral rule and (28) becomes∫
(η − v)(b− a)q−1hi(a, v)fU|V (a|v)dufV (v)dv − (q − 1)

∫ ∫ a+ϵ(η−v)

a

(η − v)(b− u)q−2hi(u, v)fU|V (u|v)dufV (v)dv

= fU(a)

∫
(η − v)(b− a)q−1hi(a, v)fV |U(v|a)dv − (q − 1)E{(η − V )(b− U)q−2hi(U, V )I(U < a)}

= fU(a)E{(η − V )(b− a)q−1hi(a, V )|U = a} − (q − 1)E{(η − V )(b− U)q−2hi(U, V )I(U < a)},

and we get the desired result. 2

Lemma 3 Let U and V be linearly dependent random variables and h(u) be a measurable Rk-valued
function. Suppose

1. the distribution of U is dominated by the Lebesgue measure;
2. (b− u+ ϵ(η − v))q−1h(u)fU(u) is continuous.

Then, for any constant a, the function ϵ 7→ E{(b−U + ϵ(η − V ))q−1h(U, V )I(U + ϵV < a+ ϵη)} is
differentiable at ϵ = 0 with derivative equal to (26).

Proof. Suppose, without loss of generality, V = κU for some κ > 0. We have

E{(b− U + ϵ(η − V ))q−1hi(U)I(U + ϵV < a+ ϵ η)}

=

∫ (a+ϵη)/(1+ϵκ)

−∞
E{(b− (1 + ϵκ)U)q−1hi(U)|U = u}fU(u)du.

The generalized Leibniz integral rule leads to:

Dϵ=0E{(b− U + ϵ(η − V ))q−1hi(U)I(U + ϵV < a+ ϵη)}
= (η − κa)E{(b− U)q−1hi(U)|U = a}fU(a)− (q − 1)E{(η − kU)(b− U)q−2hi(U)I(U < a)}.

Under the condition that U = a and V = kU , we have the desired result. 2

Proof of Proposition 3. The first term of Dθ[E{m(θ,W )}], or (2ψTΣ, 0)T, is jointly differentiable
with derivative 2diag(Σ, 0). We focus on the second term of Dθ[E{m(θ,W )}].

Rewrite E{X†Ỹ (1− θTX†Ỹ )q−1I(1− θTX†Ỹ > 0)} as∑
ỹ=−1,1

P (Ỹ = ỹ)E{X†ỹ(1− θTX†ỹ)q−1I(1− θTX†Ỹ > 0)|Ỹ = ỹ}.

We first consider the case ỹ = 1 and verify directional differentiability of the function (ψ, t) 7→
E{X†(1 + t − ψTX)q−1I(ψTX < t + 1)|Ỹ = 1}. To do this we define ψ and δ to be linearly
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independent vectors in Rp. Let η be a number. The directional derivative along (δT, η)T is the
derivative of the following function with respect to ϵ at ϵ = 0:

E{X†(1 + t−ψTX + ϵ(η − δTX))q−1I(ψTX + ϵδTX < t+ 1 + ϵη)|Ỹ = 1}
=E{(1 + t−ψTX + ϵ(η − δTX))q−1E(X†|ψTX, δTX, Ỹ = 1)I(ψTX + ϵδTX < t+ 1 + ϵ η)|Ỹ = 1}.

Let U = ψTX, V = δTX, h(U, V ) = E(X†|U, V, Ỹ = 1). Apply Lemma 2 to P ( · |Ỹ = 1) with
b = a = t+ 1. The derivative of the equation above becomes

fψTX|Ỹ (t+ 1|1)E{(η − V )((t+ 1)− (t+ 1))q−1E(X†|U, V, Ỹ = 1)|U = t+ 1, Ỹ = 1}
− (q − 1)E{(η − V )(t+ 1−ψTX)q−2hi(U, V )I(U < a)|Ỹ = 1}.

(29)

The first term is equal to 0. Since this holds for all (δT, η)T, the function (ψ, t) 7→ E{X†(1 + t −
ψTX)q−1I(ψTX < t + 1)|Ỹ = 1} is directionally differentiable with derivative equal to −(q −
1)E{(1− θTX†)q−2X†(X†)TI(1− θTX† > 0)|Ỹ = 1}.

If δ and ψ are linearly dependent vectors in Rp, then ψTX and ψTX are linearly dependent ran-
dom variables. We apply Lemma 3 in the similar fashion to arrive at the same directional derivative.
The case for ỹ = −1 can be proved similarly. Hence the directional derivative of Dθ[E{m(θ,W )}]
is given by equation (14). 2

Proof of Theorem 2. The proof is similar to Jiang, Zhang and Cai (2008), and is thus omitted. A
different approach to this can be seen also in Koo et al (2008). 2

Proof of Theorem 3. The proof is parallel to Theorem 7 in Li, Artemiou and Li (2011), and is thus
omitted. 2

Proof of Theorem 4. The proof is similar to Theorem 8 in Li, Artemiou and Li (2011), and is thus
omitted. 2

Proof of Proposition 4. This is parallel to proof of Proposition 1, and is thus omitted. 2

Appendix B

With q = 1, Λ(ψ, t) in (5) becomes

Λ(ψ, t) = ψTΣψ + λE[1− Ỹ {ψT(X − EX)− t}]+. (30)

We now prove that under specific circumstances, Λ(ψ, t) in (30) does not have a unique minimizer.
First let’s define the following disjoint sets: I1 = {(X, Ỹ ) : Ỹ = 1,ψTX − t > 1}, I2 = {(X, Ỹ ) :
Ỹ = 1,ψTX−t = 1}, I3 = {(X, Ỹ ) : Ỹ = 1,ψTX−t < 1}, I4 = {(X, Ỹ ) : Ỹ = −1,ψTX−t < −1},
I5 = {(X, Ỹ ) : Ỹ = −1,ψTX − t = −1}, and I6 = {(X, Ỹ ) : Ỹ = −1,ψTX − t > −1}, which
essentially cover all possible cases where a data point might fall. It can have either a positive or a
negative Ỹ . If it is positive(negative) it divides the sets in I1(I4) which implies correct classification,
or in I2 (I5) which implies correct classification of a data point on a support vector, or in I3 (I6)
which implies incorrect classification.

Denote indicator function Ij = I{(X, Ỹ ) ∈ Ij} and define Pj = P (Ij). Assume there exists a
unique minimizer ψ. Since the first term in (30) is not affected by the value of t we ignore it in this
development. Assume E(X) = 0 without loss of generality. We focus on the the second term of (30),

which is equal to
∑6

i=1 λPiE[{1−(ψTX−t)}+|(X, Ỹ ) ∈ Ii]. Use the fact that {1−Ỹ (ψTX−t)}+ = 0
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Figure 2. All circles correspond to Ỹ = 1 and all crosses correspond to Ỹ = −1. The black circles,
the blue circles and the purple circles belong to I1, I2 and I3 respectively. The red crosses, the green
crosses and the orange crosses belong to I4, I5 and I6 respectively. The dashed blue line, the solid
black line and the dashed green line correspond to ψTX − t = 1, ψTX − t = 0 and ψTX − t = −1
respectively.

for (X, Ỹ ) ∈ {I1, I2, I4, I5}, and {1− Ỹ (ψTX − t)}+ = 1− Ỹ (ψTX − t) for (X, Ỹ ) ∈ {I3, I6}. The
second term becomes

λP3E{1− (ψTX − t)|(X, Ỹ ) ∈ I3}+ λP6E{1 + (ψTX − t)|(X, Ỹ ) ∈ I6}. (31)

Now define s = min{s1, s2}, where s1 = min{1−(ψTX− t) for (X, Ỹ ) ∈ I3}, and s2 = min{−1−
(ψTX − t) for (X, Ỹ ) ∈ I4}. According to Figure 1, the value of s will be either the minimum
distance between the purple circles to the blue dash line, or the minimum distance of the red crosses
to the green dash line. Instead of the original separating hyperplane ψTX − t = 0, we now consider
the new hyperplane ψTX−t′ = 0, where t′ = t−s. Note that s > 0, 1−(ψTX−t′) = 1−(ψTX−t)−s,
and 1 + (ψTX − t′) = 1 + (ψTX − t) + s. With the new separating hyperplane, we observe

1. All the points that were in I1 satisfies 1− (ψTX− t) < 0 and Ỹ = 1. Thus 1− (ψTX− t′) < 0,
and these points will still be correctly classified.

2. All the points that were in I2 satisfies 1− (ψTX− t) = 0 and Ỹ = 1. Thus 1− (ψTX− t′) < 0,
and these points will still be correctly classified.

3. All the points that were in I3 satisfies 1 − (ψTX − t) > 0 and Ỹ = 1. Because s ≤ s1 =
min{1− (ψTX − t) for (X, Ỹ ) ∈ I3}, 1− (ψTX − t′) ≥ 1− (ψTX − t)− s1 ≥ 0. These points
will now either continue to be incorrectly classified or become correctly classified as a point on
the support vector. The latter happens if 1− (ψTX − t) = s.

4. All the points that were in I4 satisfies 1 + (ψTX − t) < 0 and Ỹ = −1. Because s ≤ s2 =
min{−1−(ψTX− t) for (X, Ỹ ) ∈ I4}, we have 1+(ψTX− t′) ≤ 1+(ψTX− t)+s2 ≤ 0. These
points will either continue to be correctly classified as non-support points or become correctly
classified as a point on the support vector. The latter happens if −1− (ψTX − t) = s.
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5. All the points that were in I5 satisfies 1+(ψTX−t) = 0 and Ỹ = −1. Thus 1+(ψTX−t′) > 0,
and these points will become incorrectly classified.

6. All the points that were in I6 satisfies 1+(ψTX−t) > 0 and Ỹ = −1. Thus 1+(ψTX−t′) > 0,
and these points will continue to be incorrectly classified.

Note that for (X, Ỹ ) ∈ {I1, I2, I4}, we have {1 − Ỹ (ψTX − t′)}+ = 0. With t replaced by t′,
the second term of (30) becomes λP3E[{1 − Ỹ (ψTX − t′)}+|(X, Ỹ ) ∈ I3] + λP5E[{1 − Ỹ (ψTX −
t′)}+|(X, Ỹ ) ∈ I5] + λP6E[{1− Ỹ (ψTX − t′)}+|(X, Ỹ ) ∈ I6]. After some algebra, it becomes

λP3E{1− (ψTX − t)|(X, Ỹ ) ∈ I3}+ λP6E{1 + (ψTX − t)|(X, Ỹ ) ∈ I6}
− λs(P3 − P5 − P6).

(32)

Subtract (32) from (31) and we get λs(P3 − P5 − P6), which is 0 if P3 = P5 + P6.
For Λ(ψ, t) defined in (30), we have shown that it is possible to have Λ(ψ, t) = Λ(ψ, t′) for some

t ̸= t′. If we define t′ = t− s with s = min{s3, s4}, where s3 = min{1 + (ψTX − t) for (X, Ỹ ) ∈ I6}
and s4 = min{−1 + (ψTX − t) for (X, Ỹ ) ∈ I1}. Following similar arguments, we can show that
Λ(ψ, t)−Λ(ψ, t′) = 0 if P6 = P2 +P3. Also note that Λ(ψ, t) has unique minimizer ψ0 according to
Theorem 1 in Li, Artemiou and Li (2011).

Finally, for the development described in this section to hold we need to note that there is an
underlying assumption on the two conditional distributions of X|Ỹ . For example, if X|Ỹ has a
continuous distribution on the whole real p dimensional space then it is obvious that P2 = P5 = 0
and also s = 0 which eliminates the issue of multiple solutions to the objective function in the
population level. This is a rather technical assumption that is not very strong in the sense that when
we apply SVM on a dataset we are using the empirical distribution, which is discrete and usually
not dense enough so that we can always find a value δ > 0 such that s > δ. For the theorem to
be true at the population level we have to add the necessary condition to ensure that s > 0. We
summarize these findings in the next result.

Theorem 5 Denote ψ0 as the unique vector that minimizes Λ(ψ, t) in (30). Let t0 be the value of t
that minimize Λ(ψ, t). Then either of the following two is a sufficient condition for the non-unique
value of t0.

1. P3 = P5 + P6 and there exists δ > 0 such that P (1 − δ < ψT

0X − t0 < 1|Ỹ = 1) = 0 and
P (−1− δ < ψT

0X − t0 < −1|Ỹ = −1) = 0.
2. P6 = P2 + P3 and there exists δ > 0 such that P (1 < ψT

0X − t0 < 1 + δ|Ỹ = 1) = 0 and
P (−1 < ψT

0X − t0 < −1 + δ|Ỹ = −1) = 0.
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