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Summary 

Crack detection at an early stage can prevent catastrophic structural failures. In 
this thesis, the inverse problem of crack detection in frames is studied. The 
direct problem of calculating the natural frequencies of beams and frames with 
multiple cracks is first tackled. A new method for natural frequency calculation is 
devised. The cracks are modelled as rotational springs. 4 × 4 dynamic stiffness 
matrices for beams are evaluated in a recursive manner, according to the 
number of cracks, by applying partial Gaussian eliminations. The resulting 
transcendental eigenvalue problem is solved using the Wittrick–Williams 
algorithm to extract the natural frequencies. Additional sign counts resulting 
from the partial Gaussian eliminations must be accounted for when applying the 
algorithm. The dynamic stiffness matrix of a frame with multiply cracked 
members is then assembled. The natural frequency calculation method forms a 
basis for detecting a single crack in a frame using only natural frequency 
measurements. Each frame member is discretised into a number of points. 
Selected natural frequencies are calculated accurately in the uncracked case 
and when the crack is placed individually at each discretisation point. The 
variation between the uncracked and cracked frequencies is normalised giving 
a number of curves corresponding to the selected frequencies. The 
normalisation is then applied on the measured frequencies. For noise free 
measurements, point crack locations are obtained. Applying the principles of 
interval arithmetic, noisy measurements give crack location ranges. Empirical 
probability distributions are used to graphically represent these ranges and their 
relative probabilities. Crack severity ranges are then obtained. The detection 
method is validated experimentally on a frame with scaled down dimensions. 
The fast Fourier transform is used to convert the time domain vibration signal 
into the frequency domain. Using higher order natural frequencies, two 
enhancement procedures for the detection method are devised and applied 
theoretically. 
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Notation 

+  cross-sectional area 

A, B labels for beam elements 

�  point on a frame satisfying ���!�" = 0 

��, ��…�� coefficients of the function  !� ℎ⁄ " 
��, -�, .�, ��, /�, 0�, 1�, 2�, 3�, 4�, 4� 

terms of the 6 × 6 dynamic stiffness matrix of an uncracked 

or cracked beam 

-�, .� coefficients of the function ���  !� ℎ⁄ "  dimensionless function of the crack depth to section height 

ratio 

 �, 5�,  �′ , 5�′ ,  cosine, sine, coshine, and shine of 67� 

�∗  randomly assumed crack depth (≤ 0.4) for the calculation of 

the normalised frequency variations �� 9�  denominator in the expansion of the dynamic stiffness 

matrix terms corresponding to shear and bending 

�  crack depth 

:  Young’s modulus 

;!�, <-�, .�="  least squares residual function used in the calculation of � 

;�, ;�, ;�, ;�, ;> external shear forces at nodes 1, 2, 3, �, and ? 
0  highest mode number within a selected natural frequency 

group 

0�!'/$"  function of the dimensionless crack location '/$ 
0��!'�/$", 0��!'�/$",… 

function of the dimensionless crack locations corresponding 

to cracks 1, 2,…, and natural frequency � 
0∗  compliance of the rotational spring equal to 1/#∗ 
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0̅∗  compliance of the axial spring equal to 1/#B∗  
g gravitational acceleration 

��  difference between the normalised natural frequency 

variation �� and the normalised simulated or measured 

natural frequency variation ��� 

��>  values of �� when the crack is present at separate locations '> in a frame, where ? = 1, 2, 3 

���!'/$"  parabolic least squares fitted function corresponding to �� C�>  gradient of the triangular distribution assumed for crack 

location range ? corresponding to natural frequency � 
ℎ  cross-sectional height 

ℎ!D" a continuous function in time  

ℎE discrete value of ℎ!D" at time instant	#, where # = 0, 1,…, FG − 1 

ℎI�  common triangle height corresponding to natural frequency �, used in the calculation of the empirical probability 

distribution 

J!�" Fourier transform of the function ℎ!D" 
J� discrete value of J!�" at time instant	K, where K = 0, 1,…, FG − 1 

L  second moment of area 

�  number of natural frequencies lying below a trial frequency �∗ 
��  number of fixed end natural frequencies lying below �∗ for 

each beam element M = A, B, C,… 

N!�"  6 × 6 dynamic stiffness matrix of an uncracked or cracked 

beam vibrating at frequency � 

NO*P)Q  2 × 2 dynamic stiffness matrix of an uncracked or cracked 
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beam considering only axial vibrations 

NQRS)Q  stiffness matrix of a beam in the local coordinate system 

NTQRU)Q  stiffness matrix of a beam in the global coordinate system 

#�,�…#V,V F × F dynamic stiffness matrix terms for mode shape 

calculation 

#∗  stiffness of rotational spring 

#B∗  stiffness of axial spring 

$	 beam or column length 

7�>, W�> lower and upper limits of the crack location range ? 
corresponding to natural frequency � 

7X>, WX> lower and upper limits of the combined crack location range ? 
Y�%, Y�&, Y�, Y�, Y�, Y> 

external bending moments at nodes 1, 2, 3, �, and ? 
M  beam elements A, B, AB, ABC… 

M�>  half the length of the crack location range ? corresponding to 

natural frequency � 
F  number of assumed degrees of freedom in the beam or 

frame for mode shape calculation  

FG number of time samples used in the fast Fourier transform, 

usually taken as a power of 2 

Z!'"  empirical probability distribution function corresponding to all 

natural frequencies combined 

Z[  critical buckling load 

\�!'"  probability distribution function corresponding to natural 

frequency � 
Z�%, Z�&, Z�, Z� external axial forces at nodes 1, 2, and 3 
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\�, \�, \�, \� functions of the dynamic stiffness matrix terms 

corresponding to two beam elements connected together 

with a rotational spring, along with ]�, ]�, and ]� ]�, ]�, ]� functions of the dynamic stiffness matrix terms 

corresponding to two beam elements connected together 

with a rotational spring, along with ∆�, and ∆� 
�̂  total number of crack location ranges corresponding to 

natural frequency � 
5�, 5�, 5� summations given by ∑ `'>/$ − �a��>b� , ∑ `'>/$ − �a��>b� , 

∑ `'>/$ − �a��>b� , used in the calculation of � 

c<N=  sign count of N, which is the number of negative leading 

diagonal elements of the upper triangular matrix obtained 

from N by standard Gaussian elimination without row 

interchange 

cX  additional sign counts to be taken into account for each 

crack . 
c̃  functions of the crack severity which do not depend on the 

mode number 

c̃X  severity function corresponding to crack . 
cK!e�" = 1 if e� > 0, and = -1 if e� < 0 

cCh∆>i = 1 if ∆>	< 0, and = 0 otherwise, for ? = 1, 2, 3 

j  6 × 6 transformation matrix formed from k 
l total sampling period related to vibration measurements and 

the fast Fourier transform 

l��, l�� summations given by ∑ `'>/$ − �a��>�>b� , ∑ `'>/$ − �a���>�>b� , 

used in the calculation of � 

k  3 × 3 transformation matrix  

m�%, m�&, m�, m� axial deformations at nodes 1, 2, and 3 
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n�, n�, n�, n�, n> shear deformations at nodes 1, 2, 3, �, and ? 
o, p ranges of positive real numbers 

o��, p�� lower limits of o and p 

o��, p�� upper limits of o and p 

'  crack location measured along the longitudinal axis of a 

beam or frame member 

'%, 'q crack location in frame members A, and I 

'X  location of crack . in a frame member 

∆l  temperature change 

∆� frequency resolution related to the fast Fourier transform 

∆��  change in the �rs natural frequency between the uncracked 

and cracked case 

∆�, ∆�, ∆� functions of the dynamic stiffness matrix terms 

corresponding to two beam elements connected together 

with a rotational spring 

∆�, ∆	 functions of the dynamic stiffness matrix terms 

corresponding to two beam elements connected together 

with an axial spring 

t�  set of natural frequency variations δ� corresponding to each 

higher order mode	� ≠ 1, 2, 3 calculated when a crack 

having 9 ℎ⁄ = 0.4 is placed individually at the frame 

discretisation points 

t()*  set of maximum variations of all selected higher order 

modes 

��()*, �w()*, … ,�y()*  
maximum natural frequency variations corresponding to 

modes 4, 7,…, 0 

��  variation between the uncracked and cracked natural 

frequencies, equal to 1 − !��X ��[⁄ " 
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��r  combined natural frequency variations due to a series of 

cracks and also due to temperature change 

��  normalised frequency variation corresponding to mode � 
���  normalised simulated or measured natural frequency 

variation 

���� , ����  lower and upper limits of ��� 

z  frequency function equal to �{| :+⁄  

}  inclination angle of a beam longitudinal axis from an 

arbitrary global axis 

}�%, }�&, }�, }�, }�, }> rotational deformations at nodes 1, 2, 3, �, and ? 
6  frequency function equal to {|�� :L⁄~

 

6∗  dimensionless local compliance 

|  mass per unit length 

�  Poisson’s ratio 

��, ��, ��, �� fractions of the column and beam lengths in the frame of 

Section 2.3.2.1 

e�  denominator of the terms ��, -�, .�, ��, /�, 0�, 1�, 2�, 3� equal to 1 −  � �′  

∅�  constant relating the change in the �rs natural frequency to 

that of the temperature change 

�>  displacement (or rotation) corresponding to degree of 

freedom ? 
�  frequency of vibration 

��  natural frequency corresponding to mode � 
��)  natural frequency of the axially loaded member 
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���  natural frequency of the unloaded member 

��X�  simulated or measured natural frequency in the cracked 

case 

��X�� , ��X��  lower and upper limits of ��X� 

��[  natural frequency in the uncracked case, corresponding to 

mode � 
��[�  simulated or measured natural frequency in the uncracked 

case 

��[�� , ��[��   lower and upper limits of ��[� 

��X  natural frequency in the cracked case, corresponding to 

mode � 
�()* Nyquist frequency 

�� sampling frequency 

�∗  trial frequency in the application of the Wittrick–Williams 

algorithm 
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Chapter 1 – Introduction 

1.1. Crack detection 

Structures and machinery require regular assessment of their 

serviceability. Non-destructive testing can be performed in a scheduled and 

repetitive manner as required, to detect cracks or defects in structural elements. 

Examples of these elements include aircraft components suffering barely visible 

impact damage or fatigue cracks, and bridge and building structures suffering 

earthquake damage, amongst others (Escobar et al. 2005; Fang et al. 2005; Ge 

and Lui 2005; Caddemi and Greco 2006; Wang and Ong 2008; Chatzi et al. 

2011). The onset of small cracks, such as fatigue cracks, in many cases 

invisible to the naked eye, has been the cause of some serious accidents, 

especially in the aviation industry. In 1988, an Aloha Airlines Boeing 737-200 

suffered a decompression due to the separation of a 5 m section of the upper 

cabin fuselage, with one loss of life as a result (Werfelman 2011). A similar 

incident occurred in 2011 to a Southwest Airlines Boeing 737-300 with a 1.5 m 

gap in the fuselage, although with no loss of life (Berger and Wilson 2011). It is, 

therefore, of great importance to detect cracks at an early stage to ensure 

safety and avoid catastrophic failure. 

  The crack detection process involves determining the presence of 

cracks, their locations and severities. Together with estimating the remaining 

service life of the structure, these steps form what is called Structural Health 

Monitoring (Rytter 1993; Wang and Ong 2008). A robust structural health 

monitoring technique should allow the efficient evaluation of the monitored 

structure, in terms of time and accuracy. Repair work can then be carried out in 

an economic manner and without incurring any loss of life (Wang and Ong 

2008). 

Different types of non-destructive testing can be used to determine the 

presence of cracks, their locations and severities. These include visual 

inspection, ultrasound, acoustic emission, magnetic field, eddy current, and 

radiography tests. However, these procedural initiatives require a preliminary 

estimation of the crack locations before performing the test and are, therefore, 

not applicable to inaccessible members in a structure (Rytter 1993; Teughels et 
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al. 2002; Caddemi and Greco 2006; Wang and Ong 2008; Chatzi et al. 2011; 

Danai et al. 2012). If a preliminary estimation is not available or cannot be 

made, then the whole structure must be inspected, rendering these tests more 

time and cost consuming. To overcome this limitation, two other types of non-

destructive techniques can be used to detect structural cracks in situ. The first is 

the measurement of static deflections (Caddemi and Morassi 2007). The other 

is the measurement of vibration characteristics, mainly the natural frequencies 

and mode shapes. The presence of cracks in a structural element changes its 

static deflections and vibration characteristics, together with those of the 

assembled structure. Discontinuities are induced in the static deflections and 

mode shapes, while degradations occur in the natural frequencies (Teughels et 

al. 2002; Escobar et al. 2005; Fang et al. 2005; Ge and Lui 2005; Caddemi and 

Greco 2006; Caddemi and Morassi 2007; Wang and Ong 2008; Chatzi et al. 

2011; Danai et al. 2012). In practice, measuring static deflections and mode 

shapes requires sensors located at more than one point in the structure. In 

contrast, natural frequencies can be measured at any chosen point of the 

structure and are independent of the location of measurements (Hassiotis and 

Jeong 1993). Natural frequencies are thus more easily obtained than static 

deflection measurements and mode shapes, especially when taking into 

consideration the accessibility limitations of some structural members.  

This thesis is concerned with the inverse problem of crack identification in 

plane frames using only one type of vibration characteristic, the natural 

frequencies, which are easily extractable. However, the highly pertinent direct 

problem of calculating the natural frequencies of beams and frames with 

predefined cracks should be first tackled. The word ‘crack’ is used to denote 

any type of cracks (such as fatigue cracks), or a notch. 

1.2. Literature review 

1.2.1. Direct problem 

Before attempting to solve the inverse problem of crack detection in plane 

frames using natural frequency measurements, the direct problem should be 

first studied. That is the calculation of the natural frequencies in the presence of 

cracks. As frames are assemblies of beams (and columns), connected together 
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at the joints, it is highly pertinent to study the natural frequency calculation of 

beams, with which much of the literature in the area of crack detection is 

concerned.  

Solving the boundary value problem, researchers have deduced implicit 

expressions for the natural frequencies of damaged Bernoulli-Euler beams with 

open cracks from the equations of motion. Applying the Rayleigh–Ritz method, 

Christides and Barr (1984) deduced a frequency equation for simply supported 

beams with symmetric double-edge mid-span cracks. The study was extended 

by Shen and Pierre (1990) who proposed a Galerkin solution. Ostachowicz and 

Krawczuk (1991) derived the natural frequencies of a cantilever beam with two 

single-edge and double-edge cracks. Liang et al. (1992) formulated equations 

for the change in natural frequencies when single cracks are introduced in 

simply supported and cantilever beams. Morassi (1993) generalised the 

equations for any boundary condition such that the natural frequency changes 

are functions of the square of the uncracked mode shape curvature, together 

with the crack severity. A review paper by Dimarogonas (1996) is a useful 

collective reference for previous publications concerned with similar solution 

methods. A recent study by Banerjee and Guo (2009) used the well-established 

dynamic stiffness matrix for an undamaged beam (Błaszkowiak and Kączkowski 

1966) as a basis for assembling the global stiffness matrix for a beam with a 

single crack, adding six degrees of freedom to the undamaged beam. 

The studies described so far are based on the solution of differential 

equations for obtaining the natural frequencies in the case of one crack. As the 

number of cracks increases, the solution becomes much more difficult. Shifrin 

and Ruotolo (1999) used the Dirac’s delta distribution functions in their 

simplified solution in the case of multiple cracks. Khiem and Lien (2001), along 

with Lin et al. (2002), proposed more simplified solutions using transfer matrix 

methods. More recent studies used Heaviside and Dirac’s delta functions in a 

different manner compared with that of Shifrin and Ruotolo (1999), to solve 

beam vibration problems with multiple open cracks (Caddemi and Caliò 2009; 

Caddemi and Morassi 2013). Based on these functions, dynamic stiffness 

matrices for cracked frames were deduced (Caddemi and Caliò 2013). 
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In terms of modelling cracks, the majority of the published literature 

assumes either a reduction in stiffness extending over the damaged length, or 

else rotational springs representing single cracks (Cerri and Vestroni 2000; 

Vestroni and Capecchi 2000; Friswell 2007). In the first instance, the stiffness 

reduction is the result of a decrease in cross-sectional area or Young’s modulus 

of the material. Alternatively, the rotational spring model relates the crack depth 

to an equivalent spring stiffness (or compliance). Using fracture mechanics 

methods, different relations have been formulated experimentally according to 

the strain energy density function (Rizos et al. 1990; Ostachowicz and 

Krawczuk 1991; Dimarogonas 1996; Chondros et al. 1998; Caddemi and Caliò 

2009). The crack model used by Gounaris and Dimarogonas (1988) 

incorporates rotational, shear, axial and torsional springs, along with the 

couplings between them. A simpler model used by Banerjee and Guo (2009) 

incorporates only rotational, shear and axial springs. Chondros et al. (1998) 

developed a continuous cracked beam vibration theory which assumes the 

distribution of the added flexibility due to a crack over the damaged length of the 

beam. 

1.2.2. Inverse problem 

Given a solution to the direct problem relating the natural frequencies of 

a cracked beam to the characteristics of the crack, the inverse problem must 

next be examined in order to determine the location and severity of a crack from 

the detected degradations in the natural frequencies. Different approaches were 

used in tackling the inverse problem of crack detection. Rizos et al. (1990) 

devised a crack detection method for beams using one of its natural frequencies 

and two vibration amplitude measurements, all corresponding to one mode. The 

crack is modelled as a rotational spring and the boundary value problem is 

solved iteratively using the Newton–Raphson method to obtain the crack 

location and severity. The method was experimentally applied on a cantilever 

beam with two accelerometers mounted. A harmonic exciter was used. The 

detection method showed good accuracy for crack depth to section height ratios 

greater than 0.10. The method was improved by Liang et al. (1991), eliminating 

the need for vibration amplitude (mode shape) measurements and iterations but 

requiring three natural frequencies as inputs. Cerri and Vestroni (2000) applied 
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first principles and optimality criteria to detect damage in beams where cracks 

are concentrated in a zone. Two methods were formulated; the first was based 

on solving at least three simultaneous non-linear equations, while the other was 

based on minimising the difference between the analytical and experimental 

natural frequencies. The second method was refined to utilise the natural 

frequency variations between the uncracked and cracked cases, instead of the 

frequency values. Based on this refinement, experimental investigations were 

carried out on cracked reinforced concrete beams (Cerri and Vestroni 2003) 

and it was concluded that at least three frequencies are required to identify the 

location and severity of the cracked zone. Vestroni and Capecchi (2000) studied 

crack detection based on the spring model and finite elements separately. 

Chinchalkar (2001) devised a method for detecting a single crack using the 

rotational spring model in conjunction with finite elements. The method was 

applied on tapered and stepped beams. Explicit expressions for crack locations 

and magnitudes corresponding to different beam boundary conditions were 

deduced by Morassi (2008). Gillich and Praisach (2014) detected single cracks 

in cantilever beams using the first ten natural frequencies and the 

corresponding mode shapes calculated in the uncracked case. Their method 

does not require a crack model, but relies on pattern recognition. A method for 

single crack detection in multi-span beams was formulated by Sharma et al. 

(2015) by solving the boundary value problem. Experimental investigations 

were carried out on a two span beam (clamped-pinned-clamped and pinned-

pinned-pinned boundary conditions) where the introduced crack covered half 

the cross-section height. The detection results showed good accuracy 

compared with the actual crack size and location.     

A number of crack detection techniques are based on finite elements 

represented by stiffness and mass matrices, with the cracks modelled as 

reductions in the stiffnesses of specific elements. Kam and Lee (1992) devised 

a method for locating single cracks in beams using natural frequency and mode 

shape measurements, by applying an optimality criterion on the stiffness and 

mass matrices. The crack sizes were estimated based on strain energy 

equilibrium. The crack detection method was applied analytically on the beam 

originally tested and studied by Rizos et al. (1990). The natural frequencies and 



Chapter 1  6 

PhD Thesis, Amr Labib, 2015 

mode shapes corresponding to the first ten vibration modes, obtained from finite 

element analysis, were used. The identified crack depths showed good 

agreement with the actual depths and also compared well with those obtained 

by Rizos et al. (1990). However, a comparison between the two identification 

methods in terms of the crack location accuracy is not possible due to the 

difference in the crack models of the two methods. A number of quadratic 

optimality criteria were applied to detect single and multiple simulated damages 

in beams, with natural frequency simulations as the only modal inputs (Hassiotis 

and Jeong 1993, 1995). Experimental validation was then carried out using the 

first six natural frequencies of a cantilever beam, obtained by Yang et al. (1985), 

where the beam was excited by a hammer and the signals from six 

accelerometers were analysed to obtain the natural frequencies. The detection 

method locates the finite element containing the actual crack, in addition to 

other false elements. The reduction in stiffness of the true element compares 

well with the actual reduction. Lee and Chung (2000) combined finite element 

analysis, first principles, and fracture mechanics to detect single cracks in 

cantilever beams, based on rank ordering of the frequency degradations due to 

the crack. Using the first four natural frequencies, the method was applied 

analytically on the cantilever beam originally tested and studied by Rizos et al. 

(1990). The crack detection results had varying accuracy according to the crack 

positions and severities. 

Other damage detection methods are based on finite element model 

updating (Teughels et al. 2002; Titurus et al. 2003a, b), mode shape curvatures 

which are altered in a local manner due to the damage presence (Pandey et al. 

1991; Yoon et al. 2009; Ciambella and Vestroni 2015), and wavelet analysis 

applied on mode shapes (Solís et al. 2013). The wavelet analysis is explained 

by Solís et al. (2013) in contrast with the fast Fourier transform (outlined in 

Chapter 4 of this thesis). Methods based on mode shape measurements require 

a large number of measurement points. Solís et al. (2013) concluded from their 

free vibration experiments that at least thirteen measurement points are 

required for their tested beam, while only using three vibration modes. Ratcliffe 

(2000) developed a detection method relying on frequency response functions 

covering a wide (broadband) frequency range; a method which requires a large 
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number of measurement points. Two important papers overviewing the inverse 

problem have been published by Doebling et al. (1998) and Friswell (2007). 

Damage detection methods applying optimality criteria may require the 

use of advanced numerical techniques such as genetic algorithms (Friswell et 

al. 1998; Rao et al. 2004; He and Hwang 2006; Perry et al. 2006; Vakil-

Baghmisheh et al. 2008), neural networks (Yun and Bahng 2000; Kao and Hung 

2003; Fang et al. 2005; Jiang et al. 2011), or bees algorithm (Moradi et al. 

2011).  

When considering more complex structures such as frames, the majority 

of published studies model each frame member as one finite element, or two 

elements to eliminate symmetry. The damage is modelled as a reduction in the 

stiffnesses of specific finite elements (Hassiotis and Jeong 1993, 1995; Bicanic 

and Chen 1997; Hassiotis 2000; Escobar et al. 2005; Ge and Lui 2005). The 

work of Morassi and Rovere (1997) is among a few in the published literature in 

which frame members are discretised into a large number of elements and an 

optimisation technique is applied to detect a single crack close to a joint in a 

one bay, five storey frame. Experimental data acquired from forced vibration 

tests, was used. Brasiliano et al. (2004) also discretised frame members into a 

large number of elements and devised a new detection method termed the 

Residual Error Method in the Movement Equation. The method requires the use 

of natural frequencies and mode shapes. 

Modelling the crack as a set of rotational, axial and shear springs, 

Nikolakopoulos et al. (1997) utilised contours extracted from 3D plots of the 

relationship between the natural frequency variation due to a concentrated 

crack, and the crack parameters, namely location and magnitude, to detect 

cracks in frames. A cracked beam finite element was used. As a result, the 

identified crack location was in terms of the finite element number. The method 

was validated experimentally on a one bay one storey frame using free 

vibration. Two natural frequencies were used. However, the introduced crack 

covered half the cross-section height, so the differences in natural frequencies 

between the uncracked and cracked cases were relatively large, 6.49% and 

2.35% for the first and second modes, respectively. Greco and Pau (2012) 

incorporated the rotational spring stiffness in the exact dynamic stiffness matrix 
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of a cracked frame. An optimisation criterion was applied, which was the least 

sum of squares of the differences between the theoretical and pseudo-

experimental values of the variation between the uncracked and cracked natural 

frequencies with respect to the uncracked frequencies. The Wittrick–Williams 

algorithm (Wittrick and Williams 1971) was used in calculating the theoretical 

natural frequencies corresponding to different crack locations and magnitudes, 

which were then used to apply the optimisation criterion, once with respect to 

the crack magnitude and then with respect to the crack location. It was 

concluded that a minimum of three natural frequencies are required to detect a 

single crack, in the absence of experimental noise. The effect of noise in the 

natural frequency measurements was studied using Monte Carlo simulations. 

Using contour plots and a slightly modified optimality criterion to that of Greco 

and Pau (2012), while reverting to finite elements, Diaferio and Sepe (2015) 

devised a single crack detection method for multi-bay multi-storey plane frames 

using natural frequencies. However, the natural frequencies were restricted to 

those corresponding to local modes, where only the beams, as opposed to the 

columns, show large vibration amplitudes. The detection method was, in return, 

restricted to single cracks in the beams. The effect of noise was simulated by 

plotting the average mean error and standard deviation in both the detected 

crack location and severity, against the number of samples. Lien et al. (2014) 

applied wavelet analysis on the analytically calculated mode shapes of frames 

with multiple cracks. 

1.3. Thesis structure 

This thesis is divided into six chapters including this, the introduction. 

The remaining chapters describe new work. In the second chapter, the direct 

problem is tackled. A new advanced method is devised for obtaining the natural 

frequencies of beams and frames with multiple single-edge cracks, using exact 

dynamic stiffness matrices, without resorting to finite elements or solving the 

boundary value problem, thus allowing for faster and accurate calculations. A 

rotational spring model and the Wittrick–Williams algorithm (Wittrick and 

Williams 1971) are utilised in the calculations. The orders of the calculated 

natural frequencies are guaranteed to be correct, contrary to other root 

searching algorithms, where some natural frequencies can be missed. The 
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method is applied on a number of example beams and frames. The results are 

compared with those published in the literature. 

The third chapter is concerned with the inverse problem. A new method 

for single crack localisation in frames is devised, based on normalising the 

dimensionless variation between the uncracked and cracked natural 

frequencies. The crack severities are also recovered. The natural frequency 

calculation procedure described in the second chapter forms a fundamental part 

of the detection procedure. The effect of noise is studied by simulating a 

measurement error in the natural frequencies. The principles of interval 

arithmetic (Moore 1979) are then used to calculate crack location and severity 

ranges. The detection method is applied on a two bay two storey frame 

example, considering both types of simulated noise free and contaminated 

measurements. 

The fourth chapter describes the experimental application of the crack 

detection method devised in the third chapter. Tests were carried out on a two 

bay, two storey steel frame with scaled down dimensions (bay lengths and 

storey heights) compared to those of the example in the third chapter. An 

outline of the fast Fourier transform is explained in order to correctly operate the 

equipment supplied software controlling all measurement aspects.   

The fifth chapter presents refinements to the formulated crack detection 

procedure. Two refinement methods are described and applied to the frame 

example used in the third chapter. One method is described as performing a 

second iteration of the same detection procedure, using more natural 

frequencies selected based on the arrangement of analytical natural frequency 

variations corresponding to a group of vibration modes. The other method 

depends on using a combination of low and higher order natural frequencies 

showing zero variations when the crack is present anywhere along specific 

frame members. 

The sixth chapter is the conclusions chapter. Some suggestions for 

future work are presented, along with an outline of research currently being 

carried out and inspired by the two papers (Labib et al. 2014, 2015) published in 

relation to this thesis. 
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• Labib, A., Kennedy, D. and Featherston, C.A. 2015. Crack localisation 
in frames using natural frequency measurements. In: The Institution 
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• Labib, A., Kennedy, D. and Featherston, C.A. 2015. Identifying 
cracked frame members using higher order natural frequencies. In: 
International Conference on Structural Engineering Dynamics ICEDyn 
2015. Lagos, Portugal, 22-24 June, 2015. 
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Chapter 2 – Free vibration analysis of beams and frames 

2.1. Introduction 

The presence of cracks in a structural element changes its vibration 

characteristics and those of the assembled structure (Teughels et al. 2002; 

Escobar et al. 2005; Fang et al. 2005; Ge and Lui 2005; Caddemi and Greco 

2006; Wang and Ong 2008; Chatzi et al. 2011; Danai et al. 2012). In order to 

attempt to solve the inverse problem of damage identification using vibration 

measurements to detect these changes, the direct problem of calculating the 

natural frequencies of Bernoulli-Euler beams and frames with predefined cracks 

is studied in this chapter. The rotational spring model is used and cracks are 

assumed to be always open, thus, the problem can be described as a linear one 

(Shen and Chu 1992; Chati et al. 1997; Chondros et al. 2001). Since cracks 

have a high probability of occurring under large static loads, as in reinforced 

concrete structures, the open cracks assumption is practically valid in many 

cases (Rizos et al. 1990). As widely assumed in the literature, the crack covers 

the whole width of the beam or frame member under consideration, and the loss 

in mass due to the crack is negligible. Similar to the case of slender arches 

(Pau et al. 2011), it is assumed that the axial stiffness of the beam at the crack 

location remains intact. The theoretical derivations, however, are reported. 

Neglecting structural damping, the dynamic stiffness matrix for undamaged 

beams (Błaszkowiak and Kączkowski 1966) is used in assembling a 6 × 6 

global stiffness matrix for beams with multiple cracks. The Wittrick–Williams 

algorithm (Wittrick and Williams 1971) is used for calculating the natural 

frequencies numerically, using a MATLAB (MathWorks 2012) code, given in the 

appendix. The study is then extended to cracked frames. The results obtained 

are compared with those reported by Banerjee and Guo (2009), Caddemi and 

Caliò (2013), along with Caddemi and Morassi (2013). A two bay, two storey 

frame example is formulated to study the effect of changing the location of a 

small crack on the natural frequencies of a more complex structure, thus giving 

an insight into the inverse problem of damage detection. 
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2.2. Natural frequencies of cracked beams 

2.2.1. Cracked beam modelling 

A concentrated open crack in a Bernoulli–Euler beam is represented by a 

rotational spring of stiffness #∗, as shown in Fig. 2.1. 

 

 

 

 

 

 

 

 

Fig. 2.1. Damaged beam. (a) Beam with a crack of depth �; (b) Rotational spring model 
and nodal forces. 

The spring stiffness is assumed to be related to the crack depth � by the 

equation (Caddemi and Caliò 2008, 2009, 2014): 

in which 

where 6∗ is termed the dimensionless local compliance, :L is the beam bending 

stiffness, $ is the total length of the beam, ℎ is the cross-sectional depth, and  !� ℎ⁄ " is a dimensionless function which can be written in a general form as: 

 #∗ = :L$ 16∗, (2.1) 

 6∗ = ℎ$  !� ℎ⁄ ", (2.2) 

  !� ℎ⁄ " = �0� �K!� ℎ⁄ "K10
K=1 . (2.3) 

(a) 

(b) 

(A) (B) 2 3 

�	
�	

ℎ	
?	 �	 ?	
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Combinations of �� and ��, representing different formulas for  !� ℎ⁄ " given in 

the literature, are presented in Table 2.1. An alternative formula implemented by 

Caddemi and Caliò (2013) is: 

A comparison between the formulas is illustrated in Fig. 2.2, similar to that 

presented by Caddemi and Caliò (2008, 2014), but with the addition of the 

formula implemented by Banerjee and Guo (2009), Eq. (2.3d), in the 

comparison. It must be noted that Eq. (2.3d) gives only an approximate 

comparison, as the rotational spring it represents is used with shear and axial 

springs. For this reason, Eq. (2.3d) generally gives the lowest values for  !� ℎ⁄ ", while maintaining similar trends to that of the other formulas for � ℎ⁄ ≤ 0.8. The irregular behaviour of Eq. (2.3d) when � ℎ⁄  increases beyond 

0.8 can be attributed to the curve fitting process involved in the formula 

derivation, being applied within � ℎ⁄ ≤ 0.5 (Zheng and Kessissoglou 2004). 

 

Table 2.1. Coefficients �� and �� in different formulas for  !� ℎ⁄ " based on Eq. (2.3). 

Coefficients 
Formula no. 

(2.3a)* (2.3b)** (2.3c)*** (2.3d)**** 

�� 5.346 6π 6 �!1 − ��" !1 − ��"12 / 11−!� ℎ⁄ " 
�� 0 0 0 -0.219628 x 10-4 �� 1.86 0.6384 0.6272 52.37903 �� -3.95 -1.035 -1.04533 -130.2483 �� 16.375 3.7201 4.5948 308.442769 �	 -37.226 -5.1773 -9.9736 -602.445544 �� 76.81 7.553 20.2948 939.044538 �w -126.9 -7.332 -33.0351 -1310.95029 �� 172 2.4909 47.1063 1406.52368 �� -143.97 0 -40.7556 -1067.4998 ��� 66.56 0 19.6 391.536356 � is Poisson’s ratio, assumed 0.3. 

* Rizos et al. (1990); Dimarogonas (1996); Caddemi and Caliò (2009). 
** Ostachowicz and Krawczuk (1991); Caddemi and Caliò (2009). 
*** Chondros et al. (1998); Caddemi and Caliò (2009). 
**** Banerjee and Guo (2009). 

  !� ℎ⁄ " = !� ℎ⁄ "�2 − !� ℎ⁄ "�0.9�!� ℎ⁄ " − 1�2 . (2.4) 
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Fig. 2.2. Comparison between the compliance formulae of Eqs. (2.3) and (2.4). 

 

Formulas (2.3c) and (2.3d) are assumed to be valid when � ℎ⁄ ≤ 0.6 and 

0.5, respectively. It is clear that for smaller cracks having � ℎ⁄ ≤ 0.4, using any 

of the five formulas does not significantly change the obtained results, despite 

the wide variation of the coefficients �� and ��. This variation in the coefficients 

is due to the different strain energy density functions used in the derivation of 

the formulas (Rizos et al. 1990; Ostachowicz and Krawczuk 1991; Dimarogonas 

1996; Chondros et al. 1998; Banerjee and Guo 2009; Caddemi and Caliò 2009). 

Practically, the rotational spring model is valid for small cracks only (Morassi 

2008). In this thesis, the � ℎ⁄  value of 0.4 is taken as an upper limit for small 

cracks. 

2.2.2. Derivation of the dynamic stiffness matrix 

A beam portion is considered, containing a single crack and consisting of 

two elements, labelled A and B, as shown in Fig. 2.1. The beam, vibrating at 

frequency �, has cross-sectional area + and mass per unit length |. 

Considering the vertical deflections n�,>, and rotations }�,>, the exact dynamic 

stiffness equations for a single element M (= A, B) with length $�, connecting 

nodes � and ?, take the form (Błaszkowiak and Kączkowski 1966): 
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where ;�,> and Y�,> are the nodal shear forces and moments, respectively. For a 

uniform element with no cracks, 

in which 

Connecting elements A and B, as shown in Fig. 2.1, gives the stiffness 

equations: 

where the presence of the rotational spring results in separate moments and 

rotations at either side of Node 1, in addition to the vertical displacement. 

Applying partial Gaussian elimination to the first three rows and columns of the 

7 × 7 matrix in Eq. (2.8), without row interchange, gives the stiffness equations 

for the combined element (AB) in the form of Eq. (2.5), where the matrix 

elements are given by: 

 ��
�;�Y�;>Y>��

� = � �� -� −�� /�-� .� −�� 0�−�� −�� 1� −2�/� 0� −2� 3� � �n�}�n>}>�, (2.5) 

�� = 1� = :L6� `5� �′ �  �5�′ a e�⁄ , -� = 2� = :L6� `5�5�′ a e�⁄ ,.� = 3� = :L6 `5� �′ −  �5�′ a e�⁄ , �� = :L6� `5� � 5�′ a e�⁄ ,/� = �� = :L6� ` �′ −  �a e�⁄ , 0� = :L6 `5�′ − 5�a e�⁄ , 			��
�

 (2.6) 

 � = cos 6$� , 5� = sin 6$� ,  �′ = cosh 6$� , 5�′ = sinh 6$� ,6 = {|�� :L⁄~ , e� = 1 −  � �′ . 			¢ (2.7) 

�££
�
££�
Y�%Y�&;�;�Y�;�Y� �££

�
££� =

¤¥
¥¥
¥¥
¦3% � #∗ −#∗ −2% /% 0% 0 0−#∗ .& � #∗ -& 0 0 −�& 0&−2% -& 1% � �& −�% −�% −�& /&/% 0 −�% �% -% 0 00% 0 −�% -% .% 0 00 −�& −�& 0 0 1& −2&0 0& /& 0 0 −2& 3& §̈

¨̈
¨̈
©

�££
�
££�
}�%}�&n�n�}�n�}� �££

�
££�, (2.8) 

 

�� = �% − /%�]� − \��Δ�, -� = -% − /%0%]� − \�\�Δ�,.� = .% − 0%�]� − \��Δ�, �� = −/%�&Δ�Δ� � \�\�Δ�,/� = −/%0&Δ�Δ� − \�\�Δ�, 0� = −0%0&Δ�Δ� − \�\�Δ�,1� = 1& − �&�Δ� − \��Δ�, 2� = 2& − �&0&Δ� � \�\�Δ�,3� = 3& − 0&�Δ� − \��Δ�, �� = −0%�&Δ�Δ� � \�\�Δ�,
			
�££
�
££�

 (2.9) 
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in which 

and 0∗ = 1/#∗ is the compliance of the spring. If there is no crack, 0∗ = 0 and 

the expressions in Eq. (2.9) reduce to those of Eq. (2.6) for a uniform beam of 

length $� = $% � $&. The expansions of the 4 × 4 stiffness matrix elements in the 

case of one crack, obtained using the MATLAB (MathWorks 2012) symbolic 

math toolbox, are given by: 

\� = −�% � /%]�, \� = −�% � 0%]�,\� = −�& � �&]�, \� = /& − 0&]�,]� = Δ�!0∗ � Δ�Δ�", ]� = 2%]� − -&Δ�Δ�,]� = Δ�!-& − 2%Δ�", Δ� = 1 !1 � 3%0∗"⁄ ,Δ� = 1 !.& � 3%Δ�"⁄ , Δ� = 1 !1% � �& − 2%�]� − -&�Δ� � 22%-&Δ�Δ�",⁄
			
�££
�
££�

 (2.10) 

 

				�� = −4:L6�9� !cos 6$� sinh 6$� � cosh 6$� sin 6$�"
− :L|��0∗9� �2 cosh 6$� cos 6$�
� cosh 6$� cos 6!$% − $&" � cos 6$� cosh 6!$% − $&"� sinh 6$� sin 6!$% − $&" − sin 6$� sinh 6!$% − $&"� 4 cos 6$% cosh 6$%�, 

(2.11) 

 

				-� = −4:L6�9� sin 6$� sinh 6$�
− :�L�0∗6�9� �cos 6$� sinh 6$� � cosh 6$� sin 6$�
� cosh 6$� sin 6!$% − $&" � cos 6$� sinh 6!$% − $&"� 2 cos 6$% sinh 6$% � 2 cosh 6$% sin 6$%�, 

(2.12) 

 

−�� = 4:L6�9� !sinh6$� � sin 6$�"
� :L|��0∗9� �cosh 6$� � cos 6$� � cos 6!$% − $&"
� cosh 6!$% − $&" � 2 cos 6$% cosh 6$&� 2 cosh 6$% cos 6$&�, 

(2.13) 
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				/� = −4:L6�9� !cosh 6$� − cos 6$�"
− :�L�0∗6�9� �sinh 6$� � sin 6$� − sin 6!$% − $&"
− sinh 6!$% − $&" � 2 cos 6$% sinh 6$&� 2 cosh 6$% sin 6$&�, 

(2.14) 

 

				.� = −4:L69� !cosh 6$� sin 6$� − cos 6$� sinh 6$�"
− :�L�0∗6�9� �2 sin 6$� sinh 6$�
− cosh 6$� cos 6!$% − $&" � cos 6$� cosh 6!$% − $&"� sinh 6$� sin 6!$% − $&" � sin 6$� sinh 6!$% − $&"� 4 sin 6$% sinh 6$%�, 

(2.15) 

 

	−�� = 4:L69� !cosh 67� − cos 67�"
� :�L�0∗6�9� �sinh 67� � sin 67� � sin 6!7% − 7&"
� sinh 6!7% − 7&" � 2 cos 67& sinh 67%� 2 cosh 67& sin 67%�, 

(2.16) 

 

					0� = −4:L69� !sinh 6$� − sin 6$�"
− :�L�0∗6�9� �− cos 6$� � cosh 6$� � cos 6!$% − $&"
− cosh 6!$% − $&" � 2 sin 6$% sinh 6$&� 2 sinh 6$% sin 6$&�, 

(2.17) 

 

				1� = −4:L6�9� !cos 6$� sinh 6$� � cosh 6$� sin 6$�"
− :L|��0∗9� �cosh 6$� cos 6!$% − $&"
� cos 6$� cosh 6!$% − $&" − sinh 6$� sin 6!$% − $&"� sin 6$� sinh 6!$% − $&" � 4 cos 6$& cosh 6$&� 2 cosh 6$� cos 6$��, 

(2.18) 
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where 

These expansions match those of the matrix elements formulated by Caddemi 

and Caliò (2013) using Dirac’s delta distribution functions. 

Multiple cracks connecting elements A, B, C,…, whether having the same 

or different severities, are modelled by recursively applying the above 

procedure to derive element AB from elements A and B, element ABC from AB 

and C, and so on, until a 4 × 4 dynamic stiffness matrix N is obtained for the 

whole beam. The decoupled axial stiffness terms are then inserted, giving the 

stiffness matrix of the whole beam in its final 6 × 6 form, similar to that utilised 

by Howson (1979) but with the incorporation of the rotational spring stiffness: 

 

	−2� = 4:L6�9� sin 6$� sinh 6$�
� :�L�0∗6�9� �cos 6$� sinh 6$� � cosh 6$� sin 6$� 			
− cosh 6$� sin 6!$% − $&" − cos 6$� sinh 6!$% − $&"� 2 cos 6$& sinh 6$& � 2 cosh 6$& sin 6$&�, 

(2.19) 

 

					3� = 4:L69� !cos 6$� sinh 6$� − cosh 6$� sin 6$�"
� :�L�0∗6�9� �−2 sin 6$� sinh 6$�
� cosh 6$� cos 6!$% − $&" − cos 6$� cosh 6!$% − $&"� sinh 6$� sin 6!$% − $&" � sin 6$� sinh 6!$% − $&"− 4 sin 6$& sinh 6$&�, 

(2.20) 

 

				9� = 4!cosh 6$� cos 6$� − 1"� :L0∗6�cos 6$� sinh 6$� − cosh 6$� sin 6$� 										� sinh 6$� cos 6!$% − $&" − sin 6$� cosh 6!$% − $&"� 2 cos 6$% sinh 6$% − 2 cosh 6$% sin 6$%� 2 cos 6$& sinh 6$& − 2 cosh 6$& sin 6$&�. 
(2.21) 

 N!�" =
¤¥
¥¥
¥¦4� 0 0 4� 0 00 �� -� 0 −�� /�0 -� .� 0 −�� 0�4� 0 0 4� 0 00 −�� −�� 0 1� −2�0 /� 0� 0 −2� 3� §̈

¨̈
©̈
, (2.22) 
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where  

in which 

Thus, a cracked beam can easily be assembled into a larger frame structure. 

If the loss of axial stiffness through the crack is to be taken into account, 

then an axial spring with stiffness #B∗ can be added at Node 1, resulting in 

separate axial forces and displacements at either side of the crack. Working 

with the decoupled axial stiffness, the stiffness equations can be written as: 

where Z and m are the axial forces and displacements, respectively. A 4 × 4 

axial stiffness matrix is obtained, contrary to the 2 × 2 matrix in the uncracked 

case given by: 

Similar to the case of the rotational spring, partial Gaussian elimination is 

applied, but to the first two rows and columns of the 4 × 4 axial stiffness matrix 

in Eq. (2.25), giving the stiffness equations of the combined element (AB) in the 

form: 

in which 

and 0̅∗ = 1/#B∗ is the compliance of the axial spring. If there is no crack, 0̅∗ = 0 

and the expressions in Eq. (2.27) reduce to those of Eq. (2.26) for a uniform 

beam of length $� = $% � $&. The stiffness matrix terms in Eq. (2.27) can replace 

4� = :+z cot z$� , 4� = −:+z cosec z$�, (2.23) 

z = �® |:+. (2.24) 

 �Z�%Z�&Z�Z� � = ¤¥¥
¥¦4% � #B∗ −#B∗ 4% 0−#B∗ 4& � #B∗ 0 4&4% 0 4% 00 4& 0 4& §̈̈

©̈ �m�%m�&m�m� �, (2.25) 

 NO*P)Q = ¯4� 4�4� 4�°. (2.26) 

 ±Z�Z�² = ³4% − 4%�0̅∗Δ� − 4%�Δ��Δ	 −4%4&Δ�Δ	−4%4&Δ�Δ	 4& − 4&�Δ	´ µm�m�¶, (2.27) 

 Δ� = 1 `1 � 4%0̅∗a⁄ , Δ	 = 1 !4& � 4%Δ�"⁄ , (2.28) 
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the axial stiffness terms, 4� and 4�, in Eq. (2.22) if the loss of axial stiffness 

through the crack is to be taken into account. However, throughout this thesis, 

as stated in the introduction of this chapter, the axial stiffness is assumed to be 

intact. 

2.2.3. Calculation of the natural frequencies and extracting the mode shapes 

Referring to Eqs. (2.5) and (2.22), the external force vector vanishes for a 

beam vibrating at any of its natural frequencies ��, where � is the mode number. 

The following condition must then be satisfied: 

Due to the irregular behaviour of the determinant function, the roots of 

Eq. (2.29), i.e. the natural frequencies, can be calculated to any required 

accuracy using the highly efficient Wittrick–Williams algorithm (Wittrick and 

Williams 1971). The number of natural frequencies lying below a trial frequency �∗ is given by: 

The terms c<N= and �� are defined according to Wittrick and Williams (1971) for 

intact elements, where c<N= is the sign count of N, which is the number of 

negative leading diagonal elements of the upper triangular matrix obtained from N by standard Gaussian elimination without row interchange; and for each 

element M = A, B, C,…, �� is the number of fixed end natural frequencies lying 

below �∗. 	�� is calculated using the equation implemented by Williams and 

Wittrick (1970): 

where int is the integer portion of the value in between the brackets and sn!e�" = 1 if e� > 0, and = -1 if e� < 0. The application of the partial Gaussian 

elimination to the first three rows and columns of the 7 × 7 matrix in Eq. (2.8) 

requires additional sign counts cX to be taken into account for each crack .. cX is 

given by: 

 det. <N!��"= = 0, (2.29) 

 � = ¸c<N= ����� ��cXX ¹
�=�∗

. (2.30) 

 �� = int ºz$�� » � int º6$�� » − 0.5 ½1 − !−1"P¾¿ºÀÁÂ� »sn!e�"Ã, (2.31) 
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where ∆�, ∆� and ∆� are derived from the first three leading diagonal elements 

after performing the partial Gaussian elimination, and are defined in Eq. (2.10). 

The function sgh∆>i = 1 if ∆> 	< 0, and = 0 otherwise, for ? = 1, 2, 3. 

The calculation of the required natural frequencies begins with arranging 

them in ascending order of the modes. For the lowest required mode, ^, a near 

zero trial value �∗ is assumed and � is calculated. If � ≥ ^, then the natural 

frequency value is zero, as in the case of the first three natural frequencies of a 

beam with free ends. Otherwise, �∗ is taken as a lower bound and doubled 

successively until � ≥ ^ (Howson 1979). An upper bound is thus established. 

Bisection is then used iteratively to converge on the required frequency. In each 

iteration, � is calculated for new values of �∗ equal to the mean of the bounds. 

New upper or lower bounds are established when � ≥ ^ or � < ^, respectively. 

The iterations are stopped when the difference between the bounds decreases 

to a specified tolerance. The last bisected value of �∗ is taken as the required 

natural frequency. Further natural frequencies are calculated in a similar 

manner, taking the previously calculated frequency as the first lower bound. 

Another more time efficient convergence method has been formulated by 

Williams and Kennedy (1988), namely the multiple determinant parabolic 

interpolation method. However, the bisection method is used throughout this 

thesis due to its simplicity and the power of today’s computers which outweigh 

the extra programming effort. The above procedure has been programmed into 

MATLAB (MathWorks 2012). The tolerance between the natural frequency 

bounds is generally specified at 10-11 rad s-1. In some cases, this value causes 

MATLAB to get stuck in an infinite loop, so the tolerance in these cases is 

increased to 10-9 rad s-1. Calculating the first ten natural frequencies of the two 

bay, two storey frame described in Section 2.3.2.2 takes 0.55 seconds, while 

calculating the first one hundred takes 4.90 seconds. 

The mode shapes are plotted by dividing the beam into a large number of 

small elements in such a way that the crack falls between the two nodes of an 

element. The bending and shear stiffness matrix terms for such an element are 

given by Eq. (2.9), while those for the uncracked elements are given by 

 cX = sg<∆�= � sg<∆�= � sg<∆�=, (2.32) 
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Eq. (2.6). The axial stiffness terms, given by Eq. (2.23), are the same for all 

elements. The calculated natural frequencies corresponding to the required 

mode are used as input data. With F degrees of freedom, a new F × F dynamic 

stiffness matrix is assembled for the divided beam. The stiffness equations at 

any natural frequency take the form: 

where �> is the displacement (or rotation) corresponding to degree of freedom ?. �V is assumed to be -1.0. The rest of the displacements (and rotations) are 

then calculated by rewriting Eq. (2.33) in the form: 

The mode shapes can thus be plotted. A different calculation procedure was 

followed by Howson (1979), based on the assumption of a random force vector. 

Blevins (1979) reported explicit equations describing the mode shapes for 

different cases of beam boundary conditions. For cracked beams, explicit 

equations can be deduced by enforcing the displacements (and rotations) 

calculated at the beam boundaries and at each crack location, including the two 

rotations to the left and right of each crack (Fig. 2.1). A different and higher 

order matrix than that of Eq. (2.22) must then be used. Explicit closed-form 

expressions have been formulated by Caddemi and Caliò (2009) using Dirac’s 

delta distribution functions. For consistency, the numerical procedure described 

by Eqs. (2.33) and (2.34) has been implemented in this thesis and programmed 

into MATLAB. Appropriate scaling may be required to display the mode shapes 

properly. The MATLAB code takes just a few seconds to run. Calculating the 

first ten natural frequencies and plotting the corresponding mode shapes of the 

two bay, two storey frame described in Section 2.3.2.2 takes 2.80 seconds. 

 ¤¥¥
¦ #�,� ⋯ #�,VÇ� #�,V⋮ ⋱ ⋮ ⋮#VÇ�,� ⋯ #VÇ�,VÇ� #VÇ�,V#V,� ⋯ #V,VÇ� #V,V §̈̈

© � ��⋮�VÇ��V
� = Ê, (2.33) 

 Ë ��⋮�VÇ�¢ = Ì #�,� ⋯ #�,VÇ�⋮ ⋱ ⋮#VÇ�,� ⋯ #VÇ�,VÇ�Í
Ç� Î #�,V⋮#VÇ�,VÏ. (2.34) 
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2.2.4. Numerical examples 

2.2.4.1. Beam with free ends 

Fig. 2.3 shows a beam with free ends having two open cracks 

represented by two rotational springs of stiffness #�∗ and #�∗. The mass per unit 

length of the HE100B steel beam | is 20.775 kg m-1, the bending stiffness :L is 

961421 N m2 and the axial stiffness :+ is 5.57 × 108 N. Different cases for the 

rotational spring stiffnesses, considered previously by Caddemi and Morassi 

(2013), are shown in Table 2.2. The infinite stiffness denotes no crack. For each 

case, the first four natural frequencies (disregarding the rigid body modes) 

obtained using the present theory and those reported by Caddemi and Morassi 

(2013) are presented in Table 2.3. The mode shapes corresponding to Case 5 

are shown in Fig. 2.4. 

 

 

 

 

 

Fig. 2.3. Multiple cracks in a beam with free ends. 

 

Table 2.2. Different cases for #�∗ and #�∗. 
Case no. 1 2 3 4 5 #�∗ 

(kN m rad-1) 
∞ 1936.4 439.0 439.0 439.0 #�∗ 

(kN m rad-1) 
∞ ∞ ∞ 1915.6 426.2 

 

Table 2.3. First four natural frequencies of the free-free beam. 

Case no. 
�� (Hz) �� (Hz) �� (Hz) �� (Hz) 

Present Previous* Present Previous* Present Previous* Present Previous* 

1 47.87 47.9 131.97 132.0 258.71 258.7 427.66 427.7 

2 47.12 47.1 123.37 123.4 232.67 232.7 392.87 392.9 

3 44.50 44.5 101.81 101.8 201.08 201.1 368.46 368.5 

4 39.62 39.6 101.52 101.5 182.64 182.6 367.57 367.6 

5 30.00 30.0 101.02 101.0 161.66 161.7 366.54 366.6 
* Caddemi and Morassi (2013) 
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Fig. 2.4. First four mode shapes of cracked beam with free ends. (a) �� = 30.00 Hz; 
(b) �� = 101.02 Hz; (c) �� = 161.66 Hz; (d) �� = 366.54 Hz. 

 

2.2.4.2. Cantilever beam 

The cantilever beam shown in Fig. 2.5 has length 0.20 m, cross-sectional 

depth ℎ = 0.0078 m, mass per unit length | = 1.5308 kg m-1 and bending 

stiffness :L = 231.548 N m2 (Banerjee and Guo 2009). A single open crack is 

introduced, where different cases for its location and severity were considered 

previously by Banerjee and Guo (2009) and are illustrated in Table 2.4. 

Eq. (2.3d) from Table 2.1 is used to obtain the equivalent spring stiffness. For 

each case, the first three natural frequencies of the beam obtained using the 

present theory and those reported by Banerjee and Guo (2009) are presented 

in Table 2.5. The mode shapes corresponding to Case 4 are shown in Fig. 2.6. 

 

 

 

 

 

Fig. 2.5. Cantilever beam with a single crack. 
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Table 2.4. Different cases for #∗, $% and $&.	
Case no. 1 2 3 4 5 6 7 $% (m) - 0.08 0.08 0.08 0.12 0.12 0.12 $& (m) - 0.12 0.12 0.12 0.08 0.08 0.08 �/ℎ Intact 0.20 0.40 0.60 0.20 0.40 0.60 #∗ 

(kN m rad-1) 
∞ 130.00 28.80 8.39 130.00 28.80 8.39 

 

 

Table 2.5. First three natural frequencies of the cantilever beam. 

Case 
no. 

�� (rad s-1) �� (rad s-1) �� (rad s-1) 

Present Previous* Present Previous* Present Previous* 

1 1038.2 1038.2 6506.3 6506.4 18218 18218 

2 1034.6 1031.8 6469.6 6441.3 18152 18098 

3 1022.2 1010.1 6348.9 6237.0 17942 17740 

4 985.98 949.82 6036.0 5768.5 17447 17015 

5 1037.3 1036.6 6456.8 6419.0 18137 18070 

6 1034.2 1030.9 6292.3 6139.9 17879 17633 

7 1024.4 1013.7 5852.0 5468.2 17276 16761 
* Banerjee and Guo (2009) 

 

 

 

 

 

 

 

 

 

Fig. 2.6. First three mode shapes of cracked cantilever beam. (a) �� = 985.98 rad s-1; 
(b) �� = 6036.0 rad s-1; (c) �� = 17447 rad s-1. 
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2.3. Natural frequencies of cracked frames 

2.3.1. Assembling the global dynamic stiffness matrix 

The global dynamic stiffness matrix of a cracked frame is assembled 

using those of the individual constituent cracked beams, obtained in 

Section 2.2.2. The stiffness matrix of each beam in the local coordinate system 

is transformed to that in the global coordinate system using the relation 

(Howson 1979): 

where j is the transformation matrix, given by: 

in which 

with } being the inclination angle of the beam’s longitudinal axis from an 

arbitrary global axis. The degrees of freedom represented by NQRS)Q and j are in 

the same order as in Eq. (2.22). At each node of the frame, having three 

degrees of freedom, i.e. two translations and one rotation, the stiffness terms of 

the members connected at the node are added together, to form the global 

stiffness matrix of the frame. The natural frequencies are then calculated and 

the corresponding mode shapes are extracted in a similar manner to that 

described in Section 2.2.3 for cracked beams. The above process has been 

programmed using MATLAB. 

2.3.2. Numerical examples 

2.3.2.1. Two bay, single storey frame example 

Table 2.6 shows the first eleven natural frequencies of the frame shown 

in Fig. 2.7, for the undamaged case and damage scenarios i and ii. The results 

obtained previously by Caddemi and Caliò (2013) and those obtained using the 

current method are presented. Both methods use the values 2.06 × 1011 N m-2 

and 185.40 kg m-1 for Young’s modulus and the mass per unit length, 

respectively. The beams and columns have the same length $ = 12.00 m and 

 NTQRU)Q = jrNQRS)Qj, (2.35) 

 j = �k ÊÊ k�, (2.36) 

 k = ¸ cos } sin } 0− sin } cos } 00 0 1¹, (2.37) 
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cross-sectional dimensions 198 mm × 122 mm. The crack depth to section 

height ratio �/ℎ for the beams and columns is 0.90 in the case of damage 

scenario i, so that 6∗ is 1.1183. For damage scenario ii, 6∗ = 0.20 for columns 

and 0.40 for beams, so that �/ℎ = 0.7688 and 0.8343, respectively. The cracks 

are assumed to be always open. Eq. (2.4) is used to obtain the equivalent 

spring stiffness. The mode shapes corresponding to the first five natural 

frequencies for damage scenario i are shown in Fig. 2.8. The first six natural 

frequencies, in the case of damage scenario iii, for different crack depth to 

section height ratios are presented in Table 2.7. This scenario represents 

cracking due to earthquake loading. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.7. Two bay, single storey frame damage scenarios. (a) Undamaged frame; 
(b) Damage scenario i; (c) Damage scenario ii; (d) Damage scenario iii. 

 

 

 

 

$	

$ 	 0
.5
$  

0
.5
$  

0.5$	 0.5$	 0.5$	 0.5$	

� � 

0
.9
$  

0
.0

5
$  

0
.0

5
$  (a) (b) 

(c) (d) 

�� �� �� �� �� �� �� �� 

� � 
� � 

�� = 0.1$	�� = 0.8$	�� = 0.2$	�� = 0.3$	

$	



Chapter 2  28 

PhD Thesis, Amr Labib, 2015 

Table 2.6. First eleven natural frequencies of the frame in Fig. 2.7 for damage 
scenarios i and ii. 

� 
��  (Hz) 

Intact case Damage scenario i Damage scenario ii 

Present Previous* %Diff. Present Previous* %Diff. Present Previous* %Diff. 

1 0.5987 0.5987 0.00 0.5919 0.5919 0.00 0.4489 0.4489 0.00 

2 2.4662 2.4667 0.02 1.7167 1.7167 0.00 1.8389 1.8389 0.00 

3 3.1080 3.1095 0.05 2.2836 2.2842 0.03 2.4482 2.4486 0.02 

4 4.1885 4.1894 0.02 3.2057 3.2062 0.02 3.5469 3.5474 0.01 

5 4.5085 - - 3.3609 - - 3.7735 - - 

6 4.5110 - - 4.2796 - - 3.8458 - - 

7 8.9315 - - 8.7921 - - 6.4160 - - 

8 10.0628 - - 9.5945 - - 7.7875 - - 

9 11.3283 - - 10.8836 - - 9.5373 - - 

10 12.4102 - - 12.4101 - - 11.7423 - - 

11 12.7854 - - 12.7785 - - 12.3510 - - 
* Caddemi and Caliò (2013) 

 

Table 2.7. Natural frequencies of the frame in Fig. 2.7, corresponding to damage 
scenario iii. 

� 
��  (Hz) �/ℎ = 0.2 �/ℎ = 0.4 �/ℎ = 0.6 �/ℎ = 0.8 6∗ = 0.0064 6∗ = 0.0200 6∗ = 0.0593 6∗ = 0.2711 

Present Previous* Present Previous* Present Previous* Present Previous* 

1 0.5916 0.5916 0.5771 0.5771 0.5410 0.5410 0.4214 0.4214 

2 2.4554 - 2.4335 - 2.3814 - 2.2307 - 

3 3.0952 - 3.0693 - 3.0061 - 2.8129 - 

4 4.1539 - 4.0847 - 3.9200 - 3.4344 - 

5 4.4617 - 4.3637 - 4.1348 - 3.5143 - 

6 4.4756 - 4.4099 - 4.2547 - 3.8139 - 

* Caddemi and Caliò (2013) 
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Fig. 2.8. First five mode shapes of two bay, single storey frame for damage scenario i. 
(a) �� = 0.5919 Hz; (b) �� = 1.7167 Hz; (c) �� = 2.2836 Hz; (d) �� = 3.2057 Hz; 
(e) �	 = 3.3609 Hz. 

 

2.3.2.2. Two bay, two storey frame example 

The frame in Fig. 2.9 has the same material properties and cross-

sectional dimensions as the previous example, with column lengths $ = 3.00 m 

and beam lengths 2$. The effect of changing the location of a single open crack, 

in any one individual member, on the natural frequencies is studied assuming a 

crack depth to section height ratio of 0.2. Eq. (2.4) is also used to obtain the 

equivalent spring stiffness. The variation of the first five natural frequencies 

between the uncracked and cracked cases ∆��, normalised with respect to 

those of the uncracked case ��, is plotted against the crack location in each 

member, as shown in Fig. 2.10. As the frame is symmetric, only one bay is 

(c) 

(a) 

(d) 

(e) 

(b) 
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$  
considered. A sample of these frequencies is given in Table 2.8, for the cases 

where a single crack is located at the middle of columns A, B, D, E, and at 

2.5 m from the left of beams C and I. The first five mode shapes when the crack 

is located in Member C are shown in Fig. 2.11. 

 

 

 

 

 

 

 

 

 

 

Fig. 2.9. Two bay, two storey frame. 
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Fig. 2.10. Variation of natural frequencies ∆��/�� of the two bay, two storey frame 
with the crack location when � ℎ⁄ = 0.2. 

 

 

Table 2.8. First five natural frequencies of the frame in Fig. 2.9 for different crack 
locations. 

� ��  (Hz) 

Cracked member 

- A B C D E I 

1 3.2675 3.2661 3.2672 3.2673 3.2673 3.2667 3.2670 

2 10.8528 10.8528 10.8441 10.8393 10.8522 10.8519 10.8521 

3 12.0841 12.0829 12.0802 12.0600 12.0656 12.0832 12.0772 

4 14.3204 14.3191 14.3199 14.3116 14.3194 14.3166 14.2787 

5 14.9931 14.9919 14.9802 14.9396 14.9931 14.9931 14.9833 
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Fig. 2.11. First five mode shapes of two bay, two storey frame in the case of a crack in 
Member C. (a) �� = 3.2673 Hz; (b) �� = 10.8393 Hz; (c) �� = 12.0600 Hz; 
(d) �� = 14.3116 Hz; (e) �	 = 14.9396 Hz. 

 

2.4. Discussion 

The natural frequencies obtained for the cracked beam with free ends, 

using the theory developed here, up to two decimal places, are in close 

agreement with those obtained by Caddemi and Morassi (2013) up to one 

decimal place. It can be seen that the one decimal place is an approximation of 

the two decimal places. Caddemi and Morassi (2013) solved implicit formulas 

for the natural frequencies, obtained by applying distribution functions. The 

results of the cracked cantilever beam while following similar trends, however, 

are higher than those reported by Banerjee and Guo (2009) by a maximum of 

7% (�� in Case 7, where � ℎ⁄ = 0.6), as the present theory does not implement 

shear springs to model the crack. As the aim of crack detection methods is to 

identify non-severe cracks, and as the detection method demonstrated in the 

next chapter is generally not affected by the crack severity when locating the 

(b) (a) 

(c) (d) 

(e) 
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crack, then the rotational spring is sufficient for crack modelling. The results of 

the cracked cantilever beam also show that as the crack depth to section height 

ratio is doubled from 0.2 to 0.4, the variation in the first three natural 

frequencies, between the uncracked and cracked cases, is almost quadrupled. 

The dynamic stiffness matrices for the two bay single storey frame, 

obtained using the newly developed theory here and the distribution functions 

method formulated by Caddemi and Caliò (2013), produce matching results. 

Higher natural frequencies are obtained easily without requiring the re-insertion 

of additional nodes in the global stiffness matrix of the frame by taking into 

account the additional sign counts cX. The effect of these is illustrated by 

considering damage scenarios i and ii in the example of Section 2.3.2.1. In each 

scenario there are eleven natural frequencies in the range 0 - 13 Hz. Using the 

MATLAB code, the contributions of c<N=, ∑ ��� , and ∑ cXX  to the � count of the 

Wittrick–Williams algorithm (Wittrick and Williams 1971) in that frequency range 

are logged and shown in Figs. 2.12 and 2.13. Each increment in � represents a 

natural frequency. It is clear that if the additional sign counts are not taken into 

account above the fifth natural frequency in damage scenario i, or the fourth 

natural frequency in damage scenario ii, a number of natural frequencies are 

missed and the orders of those converged on afterwards become erroneous. 
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Fig. 2.12. � count and the contributions of each of its components for damage 
scenario i. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.13. � count and the contributions of each of its components for damage 
scenario ii. 
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The results obtained for the two bay, two storey frame show that different 

natural frequencies have different sensitivities to a crack according to its 

location in each member. A crack located close to the middle of the columns 

causes negligible changes to all the natural frequencies, apart from the third 

frequency in the upper central column, in addition to the second and fifth 

frequencies in the upper outer column. By observing the mode shapes in 

Fig. 2.11, it can be seen that at these frequencies, the crack is not coincident 

with an inflection point. The fifth frequency is insensitive to a crack, located 

anywhere in the central columns, as this frequency corresponds to a symmetric 

mode of vibration in which the central columns remain straight. 

The relative sensitivities of the different natural frequencies to the crack 

location and severity can be used in devising a method for crack detection. The 

curves in Fig. 2.10 suggest that up to three natural frequencies, or more, may 

be required to accurately locate a crack, depending on the complexity of the 

structure. It can also be deduced that the natural frequencies have to be 

measured to a reasonable accuracy in the uncracked and cracked cases, which 

is a realistic proposition in contrast to alternative approaches based on 

comparisons of the vibration modes which, in practice, need a large number of 

measurement points. 

2.5. Conclusions 

This chapter presents a new method for calculating the natural 

frequencies of cracked beams and frames. Dynamic stiffness matrices for 

beams with multiple cracks are evaluated in a recursive manner according to 

the number of cracks, following which the global dynamic stiffness matrix of the 

cracked frame is assembled. The Wittrick–Williams algorithm (Wittrick and 

Williams 1971) is used to calculate the natural frequencies of the multiply 

cracked beams and frames. The method compares well with earlier 

approaches, as long as the spring models representing the cracks are the 

same. To evaluate higher order frequencies and to avoid missing any, 

additional sign counts removed by the partial Gaussian elimination must be 

accounted for. The method can be extended to incorporate shear and axial 

springs with the view of accurately solving the inverse problem of identifying 

damage location and magnitude from measured natural frequencies.
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Chapter 3 – Single crack detection in frames 

3.1. Introduction 

Crack detection in a structural element comprises locating the crack and 

determining its severity. In this chapter, a new method is devised for detecting a 

single crack in a frame using natural frequency simulations. The assumptions 

outlined in Section 2.1 for beams are adopted and the rotational spring model is 

used. Crack localisation is based on normalising the variation between the 

uncracked and cracked natural frequencies. The method requires the 

uncracked natural frequencies to be known before any crack is introduced to 

the structure under consideration. Working with the frequency variations justifies 

neglecting structural damping (Adams et al. 1978), although its incorporation, 

whilst outside the scope of this thesis, can be advantageous in determining the 

crack severity. The crack severity is instead determined by applying the 

Wittrick–Williams algorithm (Wittrick and Williams 1971) to converge on the 

crack depth to section height ratio instead of the natural frequency. 

Simulated noise free and noisy natural frequency measurements are 

considered. The effect of measurement noise is studied by applying the 

principles of interval arithmetic (Moore 1979) to the normalised simulated 

natural frequency variations. Empirical probability distributions are used to 

graphically represent the detected crack locations in the presence of 

measurement noise. The extracted crack severities are plotted over the 

detected locations. 

3.2. Eliminating the crack severity variable through normalisation 

As established in Chapter 2, the presence of a crack in a frame member 

causes degradation in the natural frequencies, according to the crack location 

and severity. An approximate relationship between the natural frequencies in 

the uncracked and cracked cases can be written as (Adams et al. 1978; Hearn 

and Testa 1991; Morassi 1993, 2008): 

 ��X = ��[`1 − c̃. 0�!'/$"a, (3.1) 
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where ��[ and ��X are the natural frequencies in the uncracked and cracked 

cases, respectively, � is the mode number, c̃ is a function of the crack severity 

which does not depend on the mode number, ' is the crack location measured 

along the longitudinal axis of the member, $ is the length of the frame member, 

and 0�!'/$" is a function of the dimensionless crack location '/$. Eq. (3.1) is 

originated by the evaluation of the first order variation of the natural frequencies 

and applicable only for the case of small intensity cracks (Morassi 2008). As 

mentioned in the previous chapter, it is assumed in this thesis that small 

intensity cracks have crack depth to section height ratios � ℎ⁄ ≤ 0.4. The 

variation between the uncracked and cracked natural frequencies, ��, thus takes 

the form: 

Normalising the frequency variation set has the important benefit of eliminating 

the dependency on the crack severity, similar to the trend previously 

emphasized by Adams et al. (1978), Hearn and Testa (1991), and Morassi 

(1993, 2008) for the ratio between the natural frequency changes of two 

different vibration modes. Normalisation gives the equation: 

where the summation extends over the total number of selected natural 

frequencies, which can be of any order. The set of �� thus represents a vector of 

magnitude 1.0, such that 0 ≤ �� ≤ 1.0. 

The crack detection procedure, whether using noise free or noisy natural 

frequency simulations, begins with the selection of a number of discrete points 

randomly along the length of each individual frame member. These points 

represent possible crack locations. The associated natural frequencies can then 

be accurately calculated using the method formulated in Chapter 2, assuming 

an arbitrary crack depth �∗ with �∗ ℎ⁄  less than 0.4. These natural frequencies 

correspond to preselected vibration modes. The natural frequencies in the 

uncracked case are also calculated. From Eq. (3.3), the normalised frequency 

 �� = 1 − ��X��[ = c̃. 0�!'/$". (3.2) 

 
��!'/$" = ��®∑ ����

= 0�!'/$"®∑ `0�!'/$"a��
, 

(3.3) 
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variations h��!' $⁄ "i which do not depend on the crack severity, i.e. crack depth 

to section height ratio �∗/ℎ, are then obtained at each point for each mode �. 
3.3. Detecting a single crack in a frame using noise free simulations 

3.3.1. Detection procedure  

For a single crack having a crack depth to section height ratio � ℎ⁄ , the 

set of normalised measured (or simulated) natural frequency variations ���, is 

calculated in a similar manner to Eqs. (3.2) and (3.3), assuming no 

measurement noise. This set is then subtracted from the normalised frequency 

variation set at each discrete point ��!'/$", giving the function: 

where -1.0 ≤ �� ≤ 1.0. �� is then plotted against the varying crack location in the 

frame member. The procedure is repeated for all frame members. The crack 

location is the point through which all curves pass through zero, i.e. ��!'/$" = 0, 

for all �. If the frame is symmetric, two such locations are detected. 

In practice, the actual crack location is not known a priori and can fall 

between any two successive discrete points. As a result, the zeros of the 

curves, near the correct crack location, may not coincide but will be closely 

spaced. The zeros of each curve are obtained using the cubic spline 

interpolation in MATLAB (MathWorks 2012) which converts the discrete �� 
values to a piecewise polynomial, as shown in Fig. 3.1. A small tolerance is 

imposed on the spacing between the zeros of the interpolated �� curves to 

make a preliminary estimation of the crack location between two discrete points '�/$ and '�/$ as shown in Fig. 3.2a. A pin-point estimation, point � shown in 

Fig. 3.2b, is then made by applying the parabolic least squares fitting method 

described in Section 3.3.2. The fitting method has been incorporated when 

programming the detection procedure into MATLAB. 

 

 

 

 

 ��!'/$" = ��!'/$" − ���, (3.4) 
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Fig. 3.1. Piecewise polynomial ��. 
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Fig. 3.2. Estimation of the crack location. (a) �� curves with non-coincident zeros; 

(b) Parabolic least squares fitted curves ��� with a common zero at �. 
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The crack severity is recovered by applying the Wittrick–Williams 

algorithm (Wittrick and Williams 1971) to converge on the ratio �/ℎ. The 

detected crack location and any individual simulated natural frequency in the 

cracked case are treated as input data. The � count of Eq. (2.30) is re-

programmed into MATLAB, so that it varies with �/ℎ, instead of the frequency �. The initial lower and upper bounds of �/ℎ are known to be 0.0 and 1.0, 

respectively. The bisection procedure is carried out in a similar manner to that 

used in the natural frequency calculation, such that new upper or lower bounds 

are established when � ≥ � or � < �, respectively. It must be noted that if the 

severity recovery procedure is repeated using any other simulated frequency, 

near-equal values of �/ℎ are obtained. 

3.3.2. Parabolic least squares fit 

Referring to Fig. 3.2, to find a family of parabolic functions ���!'/$" 
providing a best fit to the values 

for each � and which all cross the '/$ axis at some point � satisfying: 

let  

The functions ���!'/$" are found by minimising the least squares residual 

Assuming � is known, then for each � 

 ��!'�/$" = ���, ��!'�/$" = ���, ��!'�/$" = ���, (3.5) 

 ���!�" = 0,	 (3.6) 

 ���!'/$" = -�!'/$ − �" � .�!'/$ − �"�. (3.7) 

 ;!�, <-�, .�=" =���-�`'>/$ − �a � .�`'>/$ − �a� − ��>���
>b�� . (3.8) 

Ð;Ð-� =�2`'>/$ − �a �-�`'>/$ − �a � .�`'>/$ − �a� − ��>��
>b� = 0, (3.9) 

Ð;Ð.� =�2`'>/$ − �a� �-�`'>/$ − �a � .�`'>/$ − �a� − ��>��
>b� = 0. (3.10) 
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Writing 

Eqs. (3.9) and (3.10) take the form: 

giving 

Eq. (3.8) can be evaluated to give the least squares residual ;!�" as a function 

of �, which can be minimised by repeating the above calculations at successive 

trial values of �. These calculations do not involve evaluation of the underlying 

functions ���!'/$". 
3.3.3. Numerical example 

The crack detection procedure is applied to the two-bay, two-storey frame 

shown in Fig. 3.3. The geometric and material properties are described in 

Section 2.3.2.2. A single crack is introduced in the frame. 

It is generally reported that the minimum number of required natural 

frequencies for crack detection is three (Greco and Pau 2012). The first three 

natural frequencies are selected in the analysis. Table 3.1 shows different 

cases for the crack location and the ratio of the crack depth to section height �/ℎ, along with the corresponding first four natural frequencies, calculated 

accurately up to the eleventh decimal place, but reported to the fourth decimal 

place. The fourth frequency will be used later when simulated noise is 

introduced. The natural frequencies are calculated using the method described 

in Chapter 2. 

 

 

5� =�`'>/$ − �a��
>b� , 5� =�`'>/$ − �a��

>b� , 5� =�`'>/$ − �a��
>b� , (3.11) 

 l�� =�`'>/$ − �a��>�
>b� , l�� =�`'>/$ − �a���>�

>b� , (3.12) 

 º5� 5�5� 5�» º-�.�» = ºl��l��», (3.13) 

 -� = 5�l�� − 5�l��5�5� − 5�� , .� = −5�l�� � 5�l��5�5� − 5�� . (3.14) 
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Fig. 3.3. Two bay, two storey frame. 

 

Table 3.1. First four natural frequencies of the two-bay, two-storey frame. 

Case 

no. 

Crack location �/ℎ �� (Hz) �� (Hz) �� (Hz) �� (Hz) 
Member '/$ ' (m) 

0 Uncracked case 3.2675 10.8528 12.0840 14.3203 

1 A 0.240 0.720 0.300 3.2527 10.8346 12.0762 14.3200 

2 I 0.485 2.910 0.300 3.2674 10.8509 12.0690 14.2236 

3 I 0.485 2.910 0.005 3.2675 10.8527 12.0839 14.3194 

4 I 0.485 2.910 0.900 3.2634 10.0462 10.9830 12.5105 

 

The columns are discretised such that the crack is assumed to be 

located in turn at each of the 21 points distanced at {0.033, 0.050, 0.100, 

0.150…0.850, 0.900, 0.950, 0.967} $X[Á. from the ends, while the beams are 

discretised into 41 points distanced at {0.017, 0.025, 0.050, 0.075…0.925, 

0.950, 0.975, 0.983} $Ñ. Thus, the columns and the beams are discretised at 

{0.10, 0.15, 0.30, 0.45…2.55, 2.70, 2.85, 2.90} m and {0.10, 0.15, 0.30, 

0.45…5.55, 5.70, 5.85, 5.90} m, respectively, from the ends. The first and last 

points are chosen to be conveniently close to the joints. Assuming �∗ ℎ⁄ = 0.3, 

the natural frequencies are calculated accurately as the crack is located in turn 



Chapter 3  44 

PhD Thesis, Amr Labib, 2015 

at each discretisation point, then logged internally during the execution of the 

MATLAB code. 

The first three natural frequencies shown in Table 3.1 are calculated 

accurately up to a tolerance of 10-11 rad s-1. Applying Eq. (3.4), Fig. 3.4 shows 

the behaviour of the �� curves obtained for all frame members when the actual 

crack location is in Member A. It can be seen that the only point satisfying the 

condition ��!'/$" = 0 falls in Member A (H). The MATLAB code correctly 

identifies that point at 0.24 $X[Á.. The results for different crack cases, along with 

the simulated frequency variations, are shown in Table 3.2.  

 
Table 3.2. Detected crack locations and severities. 

Case no. 1 2 3 4 �� 0.00452 0.00004 0.004E-4 0.00125 �� 0.00167 0.00017 0.016E-4 0.07432 �� 0.00064 0.00125 0.117E-4 0.09112 �� 0.92936 0.02902 0.03047 0.01066 �� 0.34455 0.13505 0.13624 0.63201 �� 0.13256 0.99041 0.99021 0.77489 

Detected crack 

Member A (H) I (J) I (J) - '/$ 0.2400 0.4851 0.4844 - �/ℎ 0.300 0.300 0.005 - 
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Fig. 3.4. Variation of �� with the assumed crack location in all frame members when the 
actual crack location is in Member A. 

 

Changing the assumed �∗/ℎ to 0.5, while using the same values of the 

simulated frequencies, the identified crack locations are 0.2382 $X[Á. and 

0.4837 $Ñ in Members A (H) and I (J), respectively, when the actual � ℎ⁄ = 0.3. 

In all cases considered, the recovered values of � ℎ⁄  closely match the actual 

ones.   

It must be noted that due to symmetry, the detected crack locations in 

Members A and I have symmetrical equivalents in Members H and J, 

respectively. 

�� �� �� 
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3.4. Detecting a single crack in a frame using simulated noisy 
measurements 

3.4.1. Basic operations of interval arithmetic 

Assuming two ranges of positive real numbers o and p, which can be 

written in interval form as (Moore 1979):  

where o�� and p�� are the lower limits of o and p, while o�� and p�� are the 

upper limits, then: 

The above operations yield the narrowest intervals possible, as each 

variable, o and p, occurs only once in the required operations. However, when 

the expressions become more complex and the variables are repeated, 

simplifications must first be attempted to eliminate the repetitions. Otherwise, 

special convergence techniques, some of which are described by Moore (1979), 

must be used. 

3.4.2. Effect of noise and frequency variation intervals 

The effect of noise in the simulated uncracked and cracked natural 

frequencies is studied with the aid of interval arithmetic operations. The 

simulated frequencies, ��[� and ��X�, in the uncracked and cracked cases, 

respectively, are assumed to lie within narrow intervals ���[�� , ��[�� � and ���X�� , ��X�� �, where superscript 7 denotes the lower limit and W denotes the 

upper limit. Interval arithmetic operations are then applied to Eq. (3.2), giving 

 o = �o��, 	o���, p = �p�� , 	p���, (3.15) 

 o � p = �o�� � p�� , 	o�� � p���, (3.16) 

 o − p = �o�� − p�� , 	o�� − p���, (3.17) 

 
1p = ¯ 1pW7 , 1p77°, (3.18) 

 
op = ¯o77pW7 , oW7p77°. (3.19) 

 ��M7 = 1 − ��.MW��ÒM7 , ��MW = 1 − ��.M7��ÒMW . (3.20) 
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It can be seen from Eq. (3.20) that if the simulated uncracked and cracked 

natural frequencies are closely spaced, their intervals can yield a negative value 

for ���� . In this case, it can be practically assumed that the lower limit for ��� is 

zero. The interval for each normalised frequency variation component ���, is 

evaluated by rewriting Eq. (3.3) in the simulated case as: 

where each variable occurs only once, giving the narrowest possible interval 

����� , ���� �. 
3.4.3. Detection procedure  

As described in Section 3.2, a number of possible crack locations are 

assumed at discrete points along each member of the frame. The selected 

natural frequencies are calculated for each assumed crack location using the 

method described in Chapter 2. Eq. (3.3) is then applied, giving the exact 

normalised natural frequency variation components ��!'/$" ranging from 0.0 to 

1.0. Each ��!'/$" is plotted against the varying crack location in all frame 

members. The calculated intervals ����� , ���� � obtained by applying interval 

arithmetic operations on Eq. (3.21) are then represented by horizontal lines 

which intersect the plotted curves, as illustrated in Fig. 3.5, giving a number of 

possible crack location ranges corresponding to each chosen natural frequency. 

Use is made of the cubic spline interpolation on ��!'/$" in MATLAB to 

accurately detect the intersections. The ranges corresponding to all the utilised 

natural frequencies are then combined to extract the common ranges. This step 

is integrated in the plotting of the empirical probability distributions described in 

the following section.  

 

 

 

 

 

��� = 1
Ó1 � ∑ �>��>Ô�����

, 
(3.21) 
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Fig. 3.5. Variation of �� with the crack location. 

 

The crack severity, represented by �/ℎ, is detected in a similar manner to 

that described in Section 3.3.1, but in the form of varying lower and upper limits, 

at selected points within the combined crack location ranges. The limits of the 

detected crack location intervals are used as input data, together with the 

simulated natural frequencies ��X��  and ��X�� . It must be noted that if         ��X�� > ��[�� , the lower limit of �/ℎ is set to zero in the MATLAB code. The 

MATLAB codes for detecting the crack locations and severities in the presence 

of noise are given in the appendix. 

3.4.4. Empirical probability distributions for crack location ranges 

Empirical probability distributions can be plotted by combining the 

detected crack location ranges. Referring to Fig. 3.6, and working with ' instead 

of '/$, a triangular probability distribution is assumed for each detected range, 

such that the total area for all ranges detected in the whole frame, 

corresponding to a single frequency is 1.0. The common triangle height 

corresponding to this frequency is given by: 

where ? is the range number, �̂ is the total number of ranges corresponding to 

frequency �, and M�> is half the range length, !W�> − 7�>"/2. 7�> is the lower limit 

and W�> is the upper limit. The gradient of each distribution can be written as: 

 ℎI� = 1∑ M�>ÕÖ>b� , (3.22) 

 C�> = × ℎI�M�> = × 1M�> ∑ M�>ÕÖ>b� , (3.23) 

'/$ 
� � � ���  

� ���  
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where C�> is positive for the left triangle leg and negative for the right leg. The 

empirical probability distribution function Z!'" corresponding to all frequencies 

combined thus takes the form: 

where K is the total number of frequencies used and \�!'" is the probability 

distribution function for frequency �, given by: 

Plotting Z!'" gives the combined ranges �7X�, WX��, �7X�, WX��,…, in which Z!'" > 0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Z!'" =Ø\�!'"�
�b�  (3.24) 

 \�!'" = ½ÙC�>Ù. min Û!'" − 7�> , 	W�> − !'"Ü , 7�> < ' < W�>																																																					0, otherwise . (3.25) 
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Fig. 3.6. Multiple detected crack location ranges and their distributions in a frame 
member when three natural frequencies are used. (a) Three ranges detected 
corresponding to the first frequency; (b) Three ranges detected corresponding to the 
second frequency; (c) Two ranges detected corresponding to the third frequency; 
(d) Combined ranges. 

(a) 

(c) 

(b) 

(d) 
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3.4.5. Numerical example 

Working with the same example as that used in Section 3.3.3 and 

introducing some noise into the simulated natural frequencies for the uncracked 

and cracked cases, the method explained in Section 3.4.3 for the detection of 

crack location ranges is applied using a MATLAB code. The natural frequencies 

in Table 3.1 are considered up to the third decimal place only and the crack 

depth to section height ratio �∗ ℎ⁄  is taken as 0.1. Considering the case when 

the actual crack location is in Member A, Figs. 3.7 and 3.8 show the detected 

ranges in Members A (H) and E, respectively, when the first three natural 

frequencies are used along with a randomly assumed error of ±0.001 Hz. The 

lightly shaded areas represent the detected ranges corresponding to each 

frequency, while the hatched darkly shaded areas represent the combined 

ranges, if any, for all frequencies used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.7. Variation of �� with the crack location in Member A (H) and the detected crack 
location ranges assuming a simulated error of ±0.001 Hz and the actual crack location 
in Member A, with � ℎ⁄ = 0.3. (a) � = 1; (b) � = 2; (c) � = 3. 

'/$ 

'/$ 

'/$ 

� � 
� � 

� � 

Detected range 
Combined range 

(a) 

(b) 

(c) 



Chapter 3  52 

PhD Thesis, Amr Labib, 2015 

0 0.2 0.4 0.6 0.8 1.0
0

0.5

1.0

                  

0 0.2 0.4 0.6 0.8 1.0
0

0.5

1.0

                  

0 0.2 0.4 0.6 0.8 1.0
0

0.5

1.0

                  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.8. Variation of �� with the crack location in Member E and the detected crack 
location ranges assuming a simulated error of ±0.001 Hz and the actual crack location 
in Member A, with � ℎ⁄ = 0.3. (a) � = 1; (b) � = 2; (c) � = 3. 

 

The empirical probability distributions and the relative areas under the 

distributions for each of the combined ranges in the frame are shown in Fig. 3.9. 

It can be seen that using the first three natural frequencies yields only two 

symmetrical combined ranges, [0.174, 0.287], in Members A and H with the 

peak value at 0.231. No combined ranges are detected in the other members. 

The relative area 0.5 implies that the crack has an equal probability of being 

located within the combined range of Member A or H. 

The detected ranges for � ℎ⁄  are illustrated in Fig. 3.10. At the locations 

of the two empirical distribution peaks, the lower and upper limits of � ℎ⁄  are 

0.290 and 0.303, respectively. 

 

'/$ 

'/$ 

'/$ 
� � 

� � 
� � 

Detected range 
(a) 

(b) 

(c) 



Chapter 3  53 

PhD Thesis, Amr Labib, 2015 

A 

B 

E 

D 

H 

G 

A 

B 

E 

D 

H 

G 

 

 

 

 

 

 

 

 

Fig. 3.9. Empirical probability distribution for the crack location in each frame member 
when the first three natural frequencies are used assuming a simulated error of 
±0.001 Hz and the actual crack location shown in Member A. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.10. Detected ranges for �/ℎ in each frame member when the first three natural 
frequencies are used assuming a simulated error of ±0.001 Hz and the actual crack 
location shown in Member A. 
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Figs. 3.11 and 3.12 show the detected ranges in Members A (H) and E, 

respectively, when the simulated error is increased to ±0.005 Hz. The empirical 

distributions and the relative areas under the distributions are shown in 

Fig. 3.13.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.11. Variation of �� with the crack location in Member A (H) and the detected 
crack location ranges assuming a simulated error of ±0.005 Hz and the actual crack 
location in Member A, with � ℎ⁄ = 0.3. (a) � = 1; (b) � = 2; (c) � = 3. 
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Fig. 3.12. Variation of �� with the crack location in Member E and the detected crack 
location ranges assuming a simulated error of ±0.005 Hz and the actual crack location 
in Member A, with � ℎ⁄ = 0.3. (a) � = 1; (b) � = 2; (c) � = 3. 

 

 

 

 

 

 

 

 

 

Fig. 3.13. Empirical probability distribution for the crack location in each frame member 
when the first three natural frequencies are used assuming a simulated error of 
±0.005 Hz and the actual crack location shown in Member A. 
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The detected ranges for � ℎ⁄  are illustrated in Fig. 3.14. The effect of using the 

additional fourth natural frequency on the empirical distributions is shown in 

Fig. 3.15. The detected ranges for � ℎ⁄  in this case are illustrated in Fig. 3.16. 

The combined crack location ranges using three and four natural frequencies, 

and the locations of the distribution peaks are summarised in Table 3.3. The 

detected ranges for � ℎ⁄  at the distribution peaks are summarised in Table 3.4. 

 
 

 

 

 

 

 

 

 

 

 
Fig. 3.14. Detected ranges for �/ℎ in each frame member when the first three natural 
frequencies are used assuming a simulated error of ±0.005 Hz and the actual crack 
location shown in Member A. 

 

 

 

 

 

 

 

 

Fig. 3.15. Empirical probability distribution for the crack location in each frame member 
when the first four natural frequencies are used assuming a simulated error of 
±0.005 Hz and the actual crack location shown in Member A. 
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Fig. 3.16. Detected ranges for �/ℎ in each frame member when the first four natural 
frequencies are used assuming a simulated error of ±0.005 Hz and the actual crack 
location shown in Member A. 

 

Table 3.3. Lower and upper limits for the detected common ranges and the peak 
locations in each frame member when the actual crack location is in Member A at ' = 0.72 m. 

Member 

' (m) 

Three frequencies Four frequencies ? 7X> WX> Peak ? 7X> WX> Peak 

A (H) 1 0.0 1.254 0.648 1 0.0 1.254 0.669 

B (G) - - - - - - - - 

C (F) 
1 0.696 1.068 0.831 1 0.684 1.068 0.843 

2 5.040 5.514 5.289 2 5.040 5.556 5.286 

D - - - - - - - - 

E 
1 1.398 1.542 1.470 1 1.833 3.0 2.385 

2 1.836 3.0 2.319 - - - - 

I (J) 1 4.158 4.542 4.350 - - - - 
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Table 3.4. Lower and upper limits for the detected �/ℎ ranges at the distribution peaks 
in each frame member when the actual crack location is in Member A at ' = 0.72 m. 

Member 

�/ℎ 

Three frequencies Four frequencies ? Lower limit Upper limit ? Lower limit Upper limit 

A (H) 1 0.222 0.318 1 0.228 0.328 

B (G) - - - - - - 

C (F) 
1 - - 1 - - 

2 - - 2 - - 

D - - - - - - 

E 
1  0.718*  0.720* 1 0.194 0.243 

2 0.210 0.277 - - - 

I (J) 1 - - - - - 
* Values detected at the closest possible location to that of the distribution peak. 

Figs. 3.17 and 3.19 show the distribution plots when three and four 

natural frequencies, respectively, are used assuming a simulated error of 

±0.005 Hz and the actual crack location is in Member I, with � ℎ⁄ = 0.3. 

Figs. 3.18 and 3.20 illustrate the detected � ℎ⁄  ranges for these two cases. The 

combined crack location ranges and peak locations are summarised in 

Table 3.5. The detected ranges for � ℎ⁄  at the peak locations are summarised in 

Table 3.6. 

 

 

 

 

 

 

 

 

Fig. 3.17. Empirical probability distribution for the crack location in each frame member 
when the first three natural frequencies are used assuming a simulated error of 
±0.005 Hz and the actual crack location shown in Member I, with � ℎ⁄ = 0.3. 
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Fig. 3.18. Detected ranges for �/ℎ in each frame member when the first three natural 
frequencies are used assuming a simulated error of ±0.005 Hz and the actual crack 
location shown in Member I. 

 

 

 

 

 

 

 

 

Fig. 3.19. Empirical probability distribution for the crack location in each frame member 
when the first four natural frequencies are used assuming a simulated error of 
±0.005 Hz and the actual crack location shown in Member I, with � ℎ⁄ = 0.3. 
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Fig. 3.20. Detected ranges for �/ℎ in each frame member when the first four natural 
frequencies are used assuming a simulated error of ±0.005 Hz and the actual crack 
location shown in Member I. 

 

Table 3.5. Lower and upper limits for the detected common ranges and the peak 
locations in each frame member when the actual crack location is in Member I at ' = 2.91 m. 

Member 

' (m) 

Three frequencies Four frequencies ? 7X> WX> Peak ? 7X> WX> Peak 

A (H) 
1 0.0 0.747 0.498 

- - - - 
2 1.473 3.0 2.229 

B (G) 1 1.485 3.0 2.166 - - - - 

C (F) 
1 0.0 1.038 0.672 

- - - - 
2 1.740 5.316 3.438 

D 1 0.0 2.874 1.500 - - - - 

E 
1 1.353 1.536 1.446 

- - - - 
2 1.647 1.674 1.662 

I (J) 1 1.530 4.662 3.090 1 1.878 4.356 3.117 
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Table 3.6. Lower and upper limits for the detected �/ℎ ranges at the distribution peaks 
in each frame member when the actual crack location is in Member I at ' = 2.91 m. 

Member 

�/ℎ 

Three frequencies Four frequencies ? Lower limit Upper limit ? Lower limit Upper limit 

A (H) 
1 - - 

- - - 
2 0.154 0.209 

B (G) 1 0.116 0.200 - - - 

C (F) 
1 0.188 0.222 

- - - 
2 0.069 0.125 

D 1 0.124 0.212 - - - 

E 
1 - - 

- - - 
2 - - 

I (J) 1 0.232 0.349 1 0.289 0.307 

 

When � ℎ⁄  is lowered to 0.005, the changes in each of the natural 

frequencies are less than the noise. As a result, the distribution plots cover the 

whole frame, with the peaks at the mid-span of each member, as shown in 

Fig. 3.21. 

 

 

 

 

 

 

 

 

Fig. 3.21. Empirical probability distribution for the crack location in each frame member 
when the first four natural frequencies are used assuming a simulated error of 
±0.005 Hz and the actual crack location shown in Member I, with � ℎ⁄ = 0.005. 
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close to the actual ones. The predictions may vary slightly according to the 

crack depth to section height ratio �∗ ℎ⁄  used in calculating the natural 

frequencies when the crack location is varied along the discretisation points. In 

some cases, no crack is detected due to a certain �� curve barely touching zero 

at the correct location, as shown in Fig. 3.22. The cubic spline interpolation 

used by MATLAB also has an effect, however slight, on the ability to find a 

solution. These issues can be overcome by utilising an additional natural 

frequency, using more discretisation points, or trying a different value for �∗ ℎ⁄ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.22. Variation of �� with the assumed crack location in Member I (J) when the 
actual crack location is in Member I, � ℎ⁄ =	0.3 and �∗ ℎ⁄ =	0.1. (a) Whole member 
length; (b) Zoom on location interval [0.4, 0.6]. 
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The method is applicable for very small values of � ℎ⁄  in case of noise 

free data as the simulated natural frequencies, and consequently ���, are 

calculated accurately in MATLAB up to a large number of decimal places using 

the Wittrick–Williams algorithm (Wittrick and Williams 1971), similar to �� at the 

discretisation points. The method is, however, not applicable in the case of 

severe cracks in some locations, at which ��� becomes severely dependent on � ℎ⁄ , as discussed later. The method is also unable to distinguish between 

symmetric locations, so when the whole frame is considered, two symmetric 

locations are predicted. However, this still significantly reduces the level of 

follow on inspection, which would have to be done to confirm the findings, thus 

reducing cost and potential downtime. 

Introducing some noise to the simulated natural frequencies in the 

uncracked and cracked cases, the crack location is estimated within ranges in 

two or more symmetric members of the frame. When the actual crack location is 

in Member A, small errors of the order ±0.001 Hz yield two symmetric ranges, 

one of them around the correct crack location. Increasing the error to 

±0.005 Hz, multiple combined ranges are detected in more than two frame 

members. Using an additional natural frequency can narrow down and eliminate 

some of the false combined ranges. Comparing Figs. 3.13 and 3.15, it can be 

seen that using the fourth natural frequency eliminates one false range in 

Member E and two symmetric false ranges in Members I and J. All the false 

combined ranges, except for the symmetric counterpart of the correct range, are 

eliminated in the case when the actual crack location is in Member I, with � ℎ⁄ = 0.3, and the fourth natural frequency is used. When � ℎ⁄ = 0.005, the 

detected ranges cover the whole frame, as shown in Fig. 3.21, rendering the 

procedure impractical in that case.  

The effects of increasing the error and using the fourth natural frequency 

on the detected ranges, while varying � ℎ⁄ , can be explained with the aid of 

Figs. 3.23 and 3.24, respectively. For a small error of ±0.001 Hz, when the 

actual crack is located in Member A, Fig. 3.23 shows that when � ℎ⁄  increases 

beyond approximately 0.1, the intervals ����� , ���� � narrow down from [0, 1.0] 

towards the corresponding noise free ���. When the error is increased to 
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±0.005 Hz, the intervals narrow down from [0, 1.0] when � ℎ⁄  increases beyond 

approximately 0.2. For any specific value of � ℎ⁄ , the narrowing intervals are 

wider in the case of increased error, causing the detected crack location ranges 

to cover greater lengths of the frame. The two values for � ℎ⁄ , 0.1 and 0.2, 

represent the lower limits for the practical applicability of the detection 

procedure assuming the error values ±0.001 Hz and ±0.005 Hz, respectively. 

Any values of � ℎ⁄  lower than these limits results in the detected crack location 

ranges covering the whole frame. Working with an increased level of error, Fig. 

3.24 illustrates the advantage of using the first four natural frequencies rather 

than just the first three, when the actual crack location is in Member I. The lower 

limit for � ℎ⁄  decreases and for any specific value of � ℎ⁄  greater than this lower 

limit, the intervals ����� , ���� � are narrowed down. This is attributed to the 

relatively large difference in the fourth natural frequency between the uncracked 

and cracked cases, compared with the assumed error of ±0.005 Hz, contrary to 

the first three natural frequencies. It can also be seen from Fig. 3.24 that when � ℎ⁄  is very large, greater than 0.6, the noise free ��� behaves in an obviously 

irregular manner, becoming a function of � ℎ⁄ , thus rendering the detection 

method inapplicable in the case of severe cracks. It must be noted that the 

curves in Figs. 3.23 and 3.24 are not smooth as the corresponding natural 

frequencies are considered only up to three decimal places, except for the case 

of noise free data. If a large number of decimal places is considered while 

adding the same amount of errors indicated, smooth curves are obtained.      

The above discussion illustrates the advantage of the normalisation step 

in combining the effect of all the utilised natural frequencies for each ���. 

Another advantage is the elimination of the need for randomly grouping the 

variations, <��=, of the selected natural frequencies in pairs and taking the ratio 

corresponding to each pair to eliminate the dependency on crack severity, 

contrary to the procedure recommended by Adams et al. (1978). However, the 

method falls short when � ℎ⁄  is very small or, depending on the crack location, 

when � ℎ⁄  is very large. 
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Fig. 3.23. Variation of noise free ��� and its bounds ����� , ���� �, with �/ℎ for Case 1 of 

Table 3.1 when the actual crack location is in Member A and the first three natural 
frequencies are used. (a) � = 1; (b) � = 2; (c) � = 3. 
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Fig. 3.24. Variation of noise free ��� and its bounds ����� , ���� � for a simulated error of 

±0.005 Hz, with �/ℎ for Cases 2, 3 and 4 of Table 3.1 when the actual crack location is 
in Member I. (a) � = 1; (b) � = 2; (c) � = 3; (d) � = 4. 
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The empirical probability distribution can be used as a practical means of 

applying the range detection method for the crack location. The correct 

combined range containing the actual crack location may not have the highest 

area under its distribution when the detected ranges cover substantial lengths of 

the frame, as shown in Fig. 3.17. However, the correct range will be among the 

high priority sites to be inspected. The peaks slightly deviate from the actual 

crack location, as the detected ranges corresponding to each frequency and 

containing the actual crack location are unlikely to be centred on that location, 

as can be seen in Figs. 3.7 and 3.11.   

The recovered ranges for � ℎ⁄  are useful in narrowing down or eliminating 

some of the false crack location intervals. A range covering the correct value for � ℎ⁄  is always recovered. 

The above analysis is based on neglecting the effect of the loss of axial 

stiffness through the crack. This assumption has negligible effect on the 

analysis carried out on the frame shown in Fig. 3.3, where there are no inclined 

members. However, frames with inclined members show a different behaviour. 

A one bay frame with a 45° inclined member is considered, as shown in 

Fig. 3.25. The frame has the same material properties and cross-sectional 

dimensions mentioned in Section 2.3.2.1. Working with the first three natural 

frequencies and utilising the rotational and translational spring models 

incorporated by Banerjee and Guo (2009) with �∗ ℎ⁄ = 0.3, the �� plots for the 

left hand column corresponding to the two cases when the loss of axial stiffness 

is taken into account and when it is neglected are shown in Fig. 3.26. It can be 

seen that the plots are very similar, except that for � = 1 and 3, �� varies greatly 

between the two cases in small regions around ' $⁄ = 0.25. 
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Fig. 3.25. One bay frame with 45º inclined member. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.26. Effect of the loss of axial stiffness on the variation of �� with the crack 
location in the left hand column of the frame in Fig. 3.25 taking into account the loss of 
axial stiffness through the crack. (a) � = 1; (b) � = 2; (c) � = 3. 
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3.6. Conclusions 

This study presents a new method for predicting single crack locations in 

frames, using natural frequency measurements. The Wittrick–Williams algorithm 

(Wittrick and Williams 1971) is utilised to calculate selected natural frequencies 

when the crack is placed at discretisation points in the frame members. Noise 

free measurements yield point crack predictions close to their actual locations. 

Introducing measurement errors produces crack location predictions in the form 

of ranges. Using additional natural frequencies eliminates some of the false 

ranges when the measurement error is greater than the frequency variation 

between the uncracked and cracked cases. Empirical probability distributions 

can then be plotted for each range and practically used to set up an inspection 

procedure by prioritising inspection locations. The method is efficient when the 

measurement noise is lower than the variations in at least one of the selected 

natural frequencies. For frames with inclined members, the loss of axial 

stiffness through the crack should be taken into account. bg bg fb gfb fb gfb  dfg  
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Chapter 4 – Experimental validation 

4.1. Introduction 

In order to validate the crack detection method devised in the previous 

chapter, it was applied experimentally to a two bay, two storey welded frame 

excited using a hammer and monitored using an accelerometer. Four natural 

frequencies in each of the uncracked and cracked cases were extracted using 

software supplied with the data logger attached to the accelerometer, with the 

aid of a simple MATLAB (MathWorks 2012) code for pinpointing the natural 

frequencies. 

The data logger software uses Fast Fourier Transform (FFT) to plot the 

amplitude of vibration versus the frequency. This chapter begins, therefore, by 

giving a brief explanation for this type of transform, summarising the works of 

Ewins (1984), Brigham (1988) and Wolberg (1988). 

As in the previous chapter, the crack detection calculations are carried 

out using three natural frequencies, followed by an additional fourth. For both 

sets of calculations, the empirical probability distributions for the detected crack 

location ranges are plotted, in addition to the crack severity ranges. For 

practical considerations, the natural frequencies corresponding to the first two 

vibration modes are excluded from the analysis. However, it will be seen that 

the applicability of the crack detection method is demonstrated. 

4.2. Fourier transforms 

The Fourier transform of a continuous function in time ℎ!D" is defined by 

the complex integral (Ewins 1984; Brigham 1988): 

where ? = √−1. In practice, ℎ!D" is a measured function, sampled at discrete 

time intervals. Denoting the number of samples as FG, the discrete form of J!�" 
is given by the equation (Ewins 1984; Brigham 1988; Wolberg 1988): 

 J!�" = à ℎ!D"/Ç>�áârã

Çã
�D, (4.1) 
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where K = 0, 1,…, FG − 1. For mathematical considerations, FG is usually taken 

as a power of 2, i.e. FG = 2
Õ
, where ^ is an integer. Thus, J� represents 

amplitude as a function of frequency. As J� is in the frequency domain, the 

maximum frequency �()* (termed the Nyquist frequency) and the frequency 

resolution ∆� are given in Hz by the equations (Ewins 1984): 

where �� is the sampling frequency, i.e. the number of samples per second, 

and l is the total sampling period. It is essential to have the lowest possible 

frequency resolution ∆�. In practice, the total sampling period l determines ∆� 

(Brigham 1988). However, zooming techniques have been formulated, one of 

the latest by Gillich et al. (2015), in order to decrease ∆� without requiring an 

increase in the total sampling period l. These techniques require the analysis of 

the raw measured data outside the acquisition software mentioned later. For 

simplicity, and as the aim of the experimental work described in this thesis is to 

validate the crack detection method devised in the previous chapter, the 

zooming techniques are not applied. Instead, the total sampling period l is 

increased appropriately.  

The application of Eq. (4.2) implies a computational effort of the order 

ä!FG�". Using the fast Fourier transform (FFT), the computational effort can be 

greatly reduced to ä!FG log�FG". A number of FFT algorithms have been 

formulated; among the most widely used is the Cooley–Tukey algorithm, which 

is a modification of the Danielson–Lanczos lemma (Wolberg 1988). 

Some important features of the discrete Fourier transform, and 

consequently FFT, must be considered. These are the aliasing, leakage and 

windowing. Aliasing can be described as the appearance of high frequency 

components, greater than �()*, below this value. This feature is the result of 

discretising the original vibration signal. Choosing a low sampling rate �� further 

 J� = � ℎE/Ç>�á�E/Fc
FcÇ�
Eb�

, (4.2) 

 �max = �s2 = Fs2l, (4.3) 

 ∆� = ��F� = 1l (4.4) 
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contributes to this undesirable feature. Although anti-aliasing filters are built into 

the measuring devices, it is advisable to reject any frequency components 

appearing in the range of �()*/2 to �()*. Another consequence of discretising 

the original vibration signal, along with the incorrect assumption of a perfectly 

periodic signal within the sampling period l, is leakage. Ideally, the amplitude at 

a frequency component, i.e. a natural frequency ��, should be distinguishably 

high, with the amplitudes at �� × ∆� having near zero values. In practice, the 

FFT gives high amplitudes around ��. In order to correct this, windowing is 

used, where the measured signal in the time domain is multiplied by a chosen 

function to impose a certain profile on that signal, depending on the type of 

vibration measurement (free, forced…etc.) to minimise the leakage. The FFT is 

then applied on the modified signal (Ewins 1984). A commonly used window is 

the Hanning window, recommended for use with any type of vibration 

measurement. For free vibrations, the rectangular and exponential windows can 

also be used (Wickramarachi 2003). A comparison between the Hanning and 

rectangular windows, among others, can be found in the works of Ewins (1984), 

Brigham (1988), and Wickramarachi (2003). 

4.3. Experimental setup 

The free vibration experiment was carried out on a two bay, two storey 

welded steel frame with clamped bases. The frame model is shown in Fig. 4.1. 

The experimental setup is illustrated in Fig. 4.2. The natural frequencies are 

determined in the uncracked and cracked cases. The cracked cases 

correspond to a single crack having � ℎ⁄ = 0.2, which is then increased to 0.3. A 

saw cut is introduced in Member J, as shown in Figs. 4.1 and 4.2b, to simulate 

an open crack. It must be noted that as only in-plane vibrations are of interest, 

the frame has been fabricated such that the in-plane bending moments in the 

beams and columns are about the out-of-plane axis 4, as illustrated in Fig. 4.1. 

The cross-section has the lowest moment of inertia about this axis. 

Consequently, the out-of-plane movement is restricted to a great extent when 

the frame is excited in-plane. 

An accelerometer, a Honeywell Sensotec 060-F482-03, was taped on 

one of the members. According to the manufacturer specifications, the 
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accelerometer has a measurement range of ±10 g, a usable frequency range of 

0-400 Hz, and weighs 0.03 Kg. It is assumed that the accelerometer does not 

affect the dynamic behaviour of the frame. The location of the accelerometer is 

shown in Fig. 4.1. The accelerometer is connected to a data logger, Vishay 

Micro-Measurements model 7000-128-SM. The data logger is, in turn, 

connected to a PC running the Vishay StrainSmart V4.7 software, which 

controls the measurement parameters and performs FFT. 

 

 

 

 

 

 

 

 

 

  

 

Fig. 4.1. Two bay, two storey frame. 
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Fig. 4.2. Experimental setup. (a) Two bay, two storey frame with clamped bases; 
(b) Crack in Member J; (c) Accelerometer; (d) Data logger. 

 

An impulse hammer, Dytran Instruments model 5805A, was used to 

excite the frame into free vibration. The hammer is provided with four 

changeable tips; soft; medium; tough; hard. Each tip excites the frame or 

structure under consideration at a different frequency range, the upper limit of 

which equals {contact stiffness impactor mass⁄  (Ewins 1984). As only the first 

few natural frequencies are of interest, the use of the hard tip is avoided. The 

natural frequencies reported in the following section correspond to the use of 

the tough tip. However, the use of the soft or medium tip does not alter the 

frequencies in a significant manner. An approximate location for the point(s) of 

impact on the frame is shown in Fig. 4.1. 

In this experiment, the measurement parameters are: total sampling 

period l = 17 seconds, sampling frequency �� = 1000 Hz (samples per 



Chapter 4  75 

PhD Thesis, Amr Labib, 2015 

second), and filters used: automatic anti-aliasing. The anti-aliasing filter is 

termed a Finite Impulse Response (FIR) filter by the manufacturer. When the 

FFT is performed by the StrainSmart software, the maximum possible number 

of samples FG, strictly calculated by the software to the nearest power of 2, is 

selected in order to have the lowest possible frequency resolution ∆�, 

according to Eq. (4.4). The maximum possible value of FG in this experiment is 

16384 `= 2
14a. The resulting ∆� is just above 0.06 Hz. �()* in this experiment 

is 500 Hz. According to the analytical natural frequency calculations, the first six 

natural frequencies are contained in the range of 0-200 Hz, i.e. less than 

0.5 �()*. The aliasing effects are thus avoided if any natural frequency within 

that range is required to be extracted. 

The natural frequencies in the range of 0-200 Hz were then extracted to 

enable the application of the crack detection method devised in the previous 

chapter. For each of the uncracked and cracked cases, the frame was excited 

ten consecutive times, with the accelerometer readings logged. A FFT was then 

performed, in turn, ten consecutive times using the Hanning window. Each time, 

the resulting amplitude versus frequency data was exported to a MATLAB code 

to extract the natural frequencies, which correspond to amplitude spikes. A FFT 

was repeated on the previously logged accelerometer readings, but instead, 

using the rectangular window to determine whether the resulting natural 

frequencies would differ significantly. It must be noted that the exponential 

window is not included in the StrainSmart software. However, according to 

Wickramarachi (2003), the rectangular window is an appropriate choice, as long 

as the total sampling period l is large enough for the vibration signal to have 

sufficiently decayed, as illustrated in Fig. 4.3. 
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Fig. 4.3. Recorded vibration signal corresponding to Reading 1 in Tables 4.1 and 4.2. 

 

4.4. Results and analysis 

4.4.1. Natural frequency extraction 

According to the analytical natural frequency calculations, the first six 

natural frequencies are 38.54, 128.01, 142.54, 168.92, 176.86, and 193.83 Hz. 

A typical amplitude versus frequency curve is shown in Fig. 4.4.  Tables 4.1, 

4.3, and 4.5 show the experimentally extracted natural frequencies in the 

uncracked and two cracked cases, respectively, when the Hanning window is 

used. The natural frequencies extracted using the rectangular window are given 

in Tables 4.2, 4.4 and 4.6. 

Frequency degradations can be observed when the crack is introduced 

and also when the severity is increased, regardless of which window is used. 

For each extracted natural frequency, no variation between the readings exist 

when the Hanning window is used. On the contrary, some variations exist when 

the rectangular window is used, but they are quite small, either �∆� or −∆�. 

However, the frequency values are very close to those of the Hanning window. 

For this reason, and in addition to being an appropriate choice for this type of 
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vibration testing, the frequencies obtained using the rectangular window are 

used. 

The first two natural frequencies were not extractable, as these are sway 

modes, as shown in Fig. 2.11. These modes were not induced as the frame has 

been impacted vertically. To demonstrate the flexibility of the devised crack 

detection method regarding the choice of natural frequencies, the method is 

applied using the extractable third, fourth and fifth natural frequencies. The sixth 

natural frequency is used in a second iteration. 

4.4.2. Application of the crack detection method 

The natural frequencies are taken as an average of the ten readings in 

each of Tables 4.2, 4.4, and 4.6. An error (noise) value of ±0.06 Hz (i.e. ± ∆�) is 

applied to each average natural frequency when the crack detection method is 

applied. In case there is no variation between the readings corresponding to 

any frequency, an error of the same value is also assumed. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.4. Amplitude versus frequency curve corresponding to Reading 1 in Table 4.2. 
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Table 4.1. Natural frequencies of the two-bay, two-storey frame (� ℎ⁄ = 0.0, ∆� = 0.06 Hz, Hanning window). 

Reading No. �� (Hz) �� (Hz) �	 (Hz) �� (Hz) 

1 140.93 168.46 177.12 194.21 

2 140.93 168.46 177.12 194.21 

3 140.93 168.46 177.12 194.21 

4 140.93 168.46 177.12 194.21 

5 140.93 168.46 177.12 194.21 

6 140.93 168.46 177.12 194.21 

7 140.93 168.46 177.12 194.21 

8 140.93 168.46 177.12 194.21 

9 140.93 168.46 177.12 194.21 

10 140.93 168.46 177.12 194.21 

 

 

 

Table 4.2. Natural frequencies of the two-bay, two-storey frame (� ℎ⁄ = 0.0, ∆� = 0.06 Hz, Rectangular window). 

Reading No. �� (Hz) �� (Hz) �	 (Hz) �� (Hz) 

1 140.93 168.46 177.12 194.21 

2 140.93 168.46 177.12 194.15 

3 140.93 168.46 177.12 194.21 

4 140.93 168.46 177.12 194.15 

5 140.93 168.46 177.12 194.21 

6 140.93 168.46 177.12 194.21 

7 140.93 168.46 177.12 194.21 

8 140.93 168.46 177.12 194.21 

9 140.93 168.46 177.12 194.21 

10 140.93 168.46 177.12 194.21 
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Table 4.3. Natural frequencies of the two-bay, two-storey frame (� ℎ⁄ = 0.2, ∆� = 0.06 Hz, Hanning window). 

Reading No. �� (Hz) �� (Hz) �	 (Hz) �� (Hz) 

1 140.87 168.03 177.06 193.73 

2 140.87 168.03 177.06 193.73 

3 140.87 168.03 177.06 193.73 

4 140.87 168.03 177.06 193.73 

5 140.87 168.03 177.06 193.73 

6 140.87 168.03 177.06 193.73 

7 140.87 168.03 177.06 193.73 

8 140.87 168.03 177.06 193.73 

9 140.87 168.03 177.06 193.73 

10 140.87 168.03 177.06 193.73 

 

 

 

Table 4.4. Natural frequencies of the two-bay, two-storey frame (� ℎ⁄ = 0.2, ∆� = 0.06 Hz, Rectangular window). 

Reading No. �� (Hz) �� (Hz) �	 (Hz) �� (Hz) 

1 140.87 168.03 177.06 193.73 

2 140.81 168.03 177.06 193.66 

3 140.81 168.03 177.06 193.73 

4 140.81 168.03 177.06 193.73 

5 140.81 168.03 177.00 193.66 

6 140.81 168.03 177.06 193.66 

7 140.81 168.03 177.00 193.66 

8 140.81 168.03 177.00 193.66 

9 140.81 168.03 177.00 193.66 

10 140.81 168.03 177.00 193.66 
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Table 4.5. Natural frequencies of the two-bay, two-storey frame (� ℎ⁄ = 0.3, ∆� = 0.06 Hz, Hanning window). 

Reading No. �� (Hz) �� (Hz) �	 (Hz) �� (Hz) 

1 140.69 167.24 176.94 192.81 

2 140.69 167.24 176.94 192.81 

3 140.69 167.24 176.94 192.81 

4 140.69 167.24 176.94 192.81 

5 140.69 167.24 176.94 192.81 

6 140.69 167.24 176.94 192.81 

7 140.69 167.24 176.94 192.81 

8 140.69 167.24 176.94 192.81 

9 140.69 167.24 176.94 192.81 

10 140.69 167.24 176.94 192.81 

 

 

 

Table 4.6. Natural frequencies of the two-bay, two-storey frame (� ℎ⁄ = 0.3, ∆� = 0.06 Hz, Rectangular window). 

Reading No. �� (Hz) �� (Hz) �	 (Hz) �� (Hz) 

1 140.69 167.24 176.94 192.81 

2 140.69 167.24 176.88 192.75 

3 140.69 167.24 176.88 192.81 

4 140.69 167.24 176.88 192.75 

5 140.69 167.24 176.88 192.75 

6 140.63 167.24 176.88 192.75 

7 140.69 167.24 176.88 192.81 

8 140.69 167.24 176.88 192.75 

9 140.69 167.24 176.88 192.75 

10 140.63 167.24 176.88 192.75 
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The crack location ranges are obtained assuming Young’s modulus : = 

2.06 × 1011 N m-2 and �∗/ℎ = 0.1. Fig. 4.5 shows the empirical probability 

distributions for the detected crack location ranges corresponding to a crack 

severity � ℎ⁄ = 0.2, when the third, fourth and fifth natural frequencies are used. 

A number of false ranges are detected in members A (H), B (G), D, and E, 

along with a number of false ranges in Member I (J). When the additional sixth 

natural frequency is used, the probability distributions take the form shown in 

Fig. 4.6, where the false ranges in members D, and E are eliminated.  

Increasing the crack severity � ℎ⁄  to 0.3, Figs. 4.7 and 4.8 show the 

probability distributions using the same three and four natural frequencies, 

respectively. No false ranges are detected in Members A (H), D, and E. Two 

narrow false ranges are detected, one in Member B (G), and another in 

Member I (J) which is eliminated when four natural frequencies are used. It is 

observed that using four natural frequencies narrows down the true range 

around the actual crack location, while maintaining the highest empirical 

probability. Table 4.7 lists the crack location ranges corresponding to each 

crack case, along with the locations of the distribution peaks. 

 

 

 

 

 

 

 

 

Fig. 4.5. Empirical probability distribution for the crack location in each frame member 
when the third, fourth, and fifth natural frequencies are used assuming an error of 
±0.06 Hz and the actual crack location shown in Member J with � ℎ⁄ = 0.2. 
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Fig. 4.6. Empirical probability distribution for the crack location in each frame member 
when the third, fourth, fifth, and sixth natural frequencies are used assuming an error of 
±0.06 Hz and the actual crack location shown in Member J with � ℎ⁄ = 0.2. 

 

 

 

 

 

 

 

 

 

Fig. 4.7. Empirical probability distribution for the crack location in each frame member 
when the third, fourth, and fifth natural frequencies are used assuming an error of 
±0.06 Hz and the actual crack location shown in Member J with � ℎ⁄ = 0.3. 
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Fig. 4.8. Empirical probability distribution for the crack location in each frame member 
when the third, fourth, fifth, and sixth natural frequencies are used assuming an error of 
±0.06 Hz and the actual crack location shown in Member J with � ℎ⁄ = 0.3. 

 

Table 4.7. Lower and upper limits for the detected common ranges and the peak 
locations in each frame member when the actual crack location is in Member J at ' = 0.26 m. 

� ℎ⁄  Member 

' (m) 

Three frequencies Four frequencies ? 7X> WX> Peak ? 7X> WX> Peak 

0.2 

A (H) 1 0.09725 0.09800 0.09775 1 0.09600 0.09750 0.09700 

B (G) 1 0.0 0.07950 0.04375 1 0.0 0.07825 0.04600 

D 
1 0.0 0.02900 0.01800 

- - - - 
2 0.18575 0.25000 0.21475 

E 
1 0.0 0.14275 0.07250 

- - - - 
2 0.19250 0.25000 0.22000 

I (J) 
1 0.0 0.09150 0.04600 1 0.0 0.07300 0.03750 

2 0.13300 0.40250 0.26350 2 0.13150 0.32700 0.22925 

3 0.47050 0.50000 0.48025 3 0.39450 0.40100 0.39775 

0.3 

B (G) 1 0.05200 0.06150 0.05625 1 0.05175 0.06225 0.05600 

I (J) 
1 0.17600 0.33000 0.25300 

1 0.18600 0.28900 0.24000 
2 0.39050 0.39150 0.39100 

 

Detecting the crack severity ranges using experimental data is not a 

straightforward task. The mathematical model has to be calibrated such that the 

natural frequencies calculated from the model in the uncracked case closely 

match those extracted from the experiment. A simple method of achieving this 

is the zero-setting procedure, based on iteratively changing the value of 
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Young’s modulus in the model separately for each uncracked natural frequency 

utilised in the detection procedure (Xiang et al. 2014). The procedure results in 

a set of values for Young’s modulus, each corresponding to a specific natural 

frequency. For this experiment, the values are {201.365, 204.870, 206.600, 

206.780} × 109 N m-2, corresponding to the third, fourth, fifth, and sixth natural 

frequencies, respectively. For each cracked case, reliable crack severity ranges 

are obtained at the actual crack location, as shown in Figs. 4.9–4.12. The 

detected crack severity ranges at the locations of the empirical distribution 

peaks are summarised in Table 4.8. It is observed that plotting the crack 

severity ranges further eliminates some of the falsely detected crack location 

ranges. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.9. Detected ranges for �/ℎ in each frame member when the third, fourth, and 
fifth natural frequencies are used assuming an error of ±0.06 Hz and the actual crack 
location shown in Member J with � ℎ⁄ = 0.2. 
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Fig. 4.10. Detected ranges for �/ℎ in each frame member when the third, fourth, fifth, 
and sixth natural frequencies are used assuming an error of ±0.06 Hz and the actual 
crack location shown in Member J with � ℎ⁄ = 0.2. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.11. Detected ranges for �/ℎ in each frame member when the third, fourth and 
fifth natural frequencies are used assuming an error of ±0.06 Hz and the actual crack 
location shown in Member J with � ℎ⁄ = 0.3. 
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Fig. 4.12. Detected ranges for �/ℎ in each frame member when the third, fourth, fifth, 
and sixth natural frequencies are used assuming an error of ±0.06 Hz and the actual 
crack location shown in Member J with � ℎ⁄ = 0.3. 

 

Table 4.8. Lower and upper limits for the detected �/ℎ ranges at the distribution peaks 
in each frame member when the actual crack location is in Member J at ' = 0.26 m. 

Actual

� ℎ⁄  
Member 

Detected �/ℎ 

Three frequencies Four frequencies ? Lower limit Upper limit ? Lower limit Upper limit 

0.2 

A (H) 1 - - 1 - - 

B (G) 1 0.336 0.395 1 0.388 0.403 

D 
1  0.201*  0.201* 

- - - 
2 0.188 0.232 

E 
1 0.305 0.361 

- - - 
2 0.554 0.634 

I (J) 

1 0.245 0.295 1 0.232 0.242 

2 0.137 0.171 2 0.146 0.176 

3 - - 3 0.754 0.758 

0.3 

B (G) 1 - - 1 - - 

I (J) 
1 0.316 0.321 

1 0.325 0.325 
2 - - 

* Values detected at the closest possible location to that of the distribution peak. 

4.5. Conclusions 

The crack detection method devised in the previous chapter has been 

experimentally applied to a frame and validated. Minimal equipment is required; 

Upper limit for �/ℎ 

Lower limit for �/ℎ 
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an impact hammer and an accelerometer connected to a data logger. The 

natural frequencies have been extracted using the well-established fast Fourier 

transform without requiring any further analysis outside the equipment software. 

Crack location ranges containing the actual crack location have been 

successfully detected, using three and four natural frequencies, even when the 

actual crack severity was not considerably high. The crack severity was 

recoverable in a reliable manner. In line with the findings in the previous 

chapter, using additional natural frequencies eliminates some of the falsely 

detected crack location ranges. 
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Chapter 5 – Crack detection enhancement 

5.1. Introduction 

In Chapter 3, the location of a single crack in a frame member was 

detected using the first three natural frequencies in case of noise free 

simulations. When noise is introduced, the fourth natural frequency enhances 

the detection procedure as some falsely detected crack location ranges are 

eliminated and some members can thus be marked as uncracked. However, the 

selection of the fourth natural frequency was arbitrary. In this chapter, a method 

is formulated to mathematically select the most effective natural frequencies 

required to enhance the detection procedure in the presence of simulated noise. 

The method is based on selecting the two natural frequencies showing the two 

highest variations from a group of frequencies, to be used in addition to the first 

three, thus making use of higher order natural frequencies. 

The crack detection procedure can be enhanced in another manner, but 

before application, by recognising that some of the higher and lower order 

natural frequencies have zero (or near zero) degradations when specific frame 

members are cracked. If a degradation is observed in these frequencies, then 

these members are guaranteed to be uncracked and so can be eliminated from 

any subsequent analysis. 

5.2. Arrangement of natural frequency variations 

In the technique proposed here, the first three natural frequencies are 

used in a first iteration of the detection procedure described in Chapter 3. A 

number of possible crack location ranges are thus obtained. With the aim of 

eliminating some of the false ranges determined, a group of natural frequencies 

of orders higher than those of the first three are selected. The detected crack 

location ranges are then discretised into a number of points. The dimensionless 

natural frequency variations δ� corresponding to each higher order mode	� ≠ 1, 

2, 3 are then calculated when a crack having � ℎ⁄ = 0.4 (i.e. the upper limit for 

small cracks) is placed individually at the discretisation points, giving the set: 

 t� = <��!'� $⁄ "	��!'� $⁄ "…��!'� $⁄ "=, (5.1) 
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where K is the number of discretisation points in all ranges combined. The 

maximum value ��()* in this set is logged and the process is repeated for the 

other higher order modes. The maximum variations of all selected higher order 

modes are combined in the set: 

where 0 is the highest mode number within the natural frequency group. The 

two natural frequencies corresponding to the two highest variations in t()* are 

used in a second iteration of the detection procedure described in Chapter 3. 

The above procedure has been programmed into MATLAB. 

Selecting the two natural frequencies having the highest variations from a 

group of frequencies serves a number of purposes. Referring to the frequency 

variation equations in the presence of noise: 

and the normalisation equation: 

two distinct cases are encountered. The first case occurs when the simulated 

variations in at least two of the first three natural frequencies are relatively small 

compared to the noise such that ���� , ����  and ���� , calculated using the first 

three natural frequencies, equal 0.0 or are close to 0.0, and ���� , ����  and ����  

equal 1.0 or are close to 1.0. At the same time, at least one of the two additional 

natural frequencies will exhibit large simulated variations. Using the five 

frequencies in the normalisation process leads to ���� , ����  and ����  remaining 

0.0 or shifting towards 0.0 and ���� , ����  and ����  being significantly lowered, 

along with ����  and ���� , corresponding to at least one of the two additional 

frequencies, being close. The overall outcome is narrower crack location 

ranges. The second case occurs when the simulated variations in at least two of 

the first three natural frequencies are relatively large compared to the noise. At 

 t()* = h��()*	�w()*…�y()*i, (5.2) 

 ���� = 1 − ��X����[�� , ���� = 1 − ��X����[�� . (5.3) 

 

���� = 1
Ó1 � ∑ �>�� �>Ô����� �

, ���� = 1
Ó1 � ∑ �>�� �>Ô����� �

, 
(5.4) 
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the same time, the two additional natural frequencies exhibit zero or near zero 

simulated variations. Using the five frequencies in the normalisation process 

leads to ���� , ����  and ����  slightly lowering; ���� , ����  and ����  remaining almost 

unchanged; along with ����  and ���� , corresponding to at least one of the two 

additional frequencies, being close and very low. The effect of the high 

variations of the two additional frequencies, occurring in one of the false crack 

location ranges, is manifested in the corresponding discrete values of ��!' $⁄ " 
being high within one or more of the falsely detected crack location ranges, 

while ��!' $⁄ ", ��!' $⁄ " and ��!' $⁄ " within the same ranges are lowered. Similar 

to the first case, the overall outcome is narrower crack location ranges. 

5.3. Numerical example 

The selection procedure for the natural frequencies is applied to the two-

bay, two-storey frame, illustrated in Chapter 3 and shown in Fig. 5.1. The 

material properties are described in Section 2.3.2.2. A single crack is introduced 

in the frame. Cases 1 and 2 of Table 3.1, reproduced in Table 5.1, are applied. 

The natural frequencies selected for the detection procedure are considered up 

to three decimal places, in a similar manner to that described in Chapter 3. A 

randomly assumed error of ±0.005 Hz is introduced to each frequency. 

Table 5.1. First three natural frequencies of the two-bay, two-storey frame. 

Case 

no. 

Crack location �/ℎ �� (Hz) �� (Hz) �� (Hz) 
Member '/$ ' (m) 

0 Uncracked case 3.2675 10.8528 12.0840 

1 A 0.240 0.720 0.300 3.2527 10.8346 12.0762 

2 I 0.485 2.910 0.300 3.2674 10.8509 12.0690 

 

Considering Case 1, Fig. 5.2 shows the empirical probability distributions 

for the detected crack location ranges, as illustrated in Chapter 3, using the first 

three natural frequencies when the actual crack location is in Member A. With 

the aim of selecting two extra frequencies out of the fourth to tenth natural 

frequencies, to be used in a second iteration of the detection procedure, each 

previously detected range is discretised into 0.1 m spaced points where a crack, 

having � ℎ⁄ = 0.4, is placed individually. Using the MATLAB code, ��()* for 
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� = 4 …10, and the corresponding crack locations are calculated and reported 

in Table 5.2. It can be seen that the highest two values for ��()* are identified 

as corresponding to the fifth and ninth natural frequencies. In the absence of 

noise, the values of these two frequencies in the uncracked case are 14.993 Hz 

and 40.235 Hz, respectively. For crack case 1, the values are 14.992 Hz and 

40.235 Hz, respectively. These are then used in a second iteration of the crack 

detection procedure, along with the first three natural frequencies, after 

introducing the noise. The resulting empirical probability distributions are shown 

in Fig. 5.3. 

In a similar manner, Case 2 is considered. Fig. 5.4 shows the empirical 

probability distributions for the detected crack location ranges using the first 

three natural frequencies when the actual crack location is in Member I. ��()* 
and the corresponding crack locations are shown in Table 5.3. The highest two 

values for ��()* correspond to the fourth and fifth natural frequencies. In the 

absence of noise, the values of these two frequencies in the uncracked case 

are 14.320 Hz and 14.993 Hz, respectively. For crack case 2, the values are 

14.223 Hz and 14.976 Hz, respectively. The resulting empirical probability 

distributions from the second iteration of the detection procedure are shown in 

Fig. 5.5. 

 

 

 

 

 

 

 

  

 

Fig. 5.1. Two bay, two storey frame. 
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Fig. 5.2. Empirical probability distribution for the crack location in each frame member 
when the first three natural frequencies are used assuming a simulated error of 
±0.005 Hz and the actual crack location shown in Member A, with � ℎ⁄ = 0.3. 

 

Table 5.2. Values of ��()* for � = 4 …10, within the detected ranges shown in Fig. 5.2. 

� 4 5 6 7 8 9 10 ��()* 0.0048 0.0104 0.0019 0.0063 0.0078 0.0089 0.0075 

Crack 
location 

Member I (J) C (F) I (J) C (F) C (F) I (J) I (J) 

'/$ 0.693 0.907 0.693 0.840 0.166 0.726 0.693 

' (m) 4.158 5.440 4.158 5.040 0.996 4.358 4.158 

 

 

 

 

 

 

 

 

Fig. 5.3. Empirical probability distribution for the crack location in each frame member 
when the first, second, third, fifth and ninth natural frequencies are used assuming a 
simulated error of ±0.005 Hz and the actual crack location shown in Member A, with � ℎ⁄ = 0.3. 
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Fig. 5.4. Empirical probability distribution for the crack location in each frame member 
when the first three natural frequencies are used assuming a simulated error of 
±0.005 Hz and the actual crack location shown in Member I, with � ℎ⁄ = 0.3. 

 

Table 5.3. Values of ��()* for � = 4 …10, within the detected ranges shown in Fig. 5.4. 

� 4 5 6 7 8 9 10 ��()* 0.0119 0.0105 0.0101 0.0104 0.0096 0.0093 0.0078 

Crack 
location 

Member I (J) C (F) I (J) C (F) B (G) D I (J) 

'/$ 0.505 0.440 0.472 0.740 0.528 0.000 0.272 

' (m) 3.030 2.640 2.830 4.440 1.585 0.001 1.630 

 

 

 

 

 

 

 

 

Fig. 5.5. Empirical probability distribution for the crack location in each frame member 
when the first, second, third, fourth and fifth natural frequencies are used assuming a 
simulated error of ±0.005 Hz and the actual crack location shown in Member I, with � ℎ⁄ = 0.3. 
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5.4. Zero change feature 

The zero change feature is exhibited in natural frequencies 

corresponding to some of the higher order modes and also, lower order modes, 

depending on the complexity of the frame. When a single crack is present 

anywhere along specific frame members, the degradation in these natural 

frequencies is zero or close to zero. A specific frame member may have only 

one frequency exhibiting this behaviour, or several frequencies. Some 

frequencies may also be common among several members. It is, therefore, 

advantageous to search for the frequencies which are unique to one member. 

Two cases are encountered when one of these frequencies corresponding to a 

specific member is measured in the uncracked and cracked cases. If the 

degradation is found to be significant compared to the noise, such that the lower 

limit exceeds the maximum near zero value of the degradations when the crack 

is present in the considered member, then that member can be marked as 

uncracked, if only a single crack is present in the frame. However, if the 

degradation is not significant, then measuring that frequency is not beneficial, 

as the crack can be present in any member. The reasoning behind this is that 

every higher order natural frequency has a zero degradation when the crack is 

present at specific points in each member. Lower order frequencies, with very 

few exceptions, exhibit the same behaviour. 

The search for the natural frequencies exhibiting the zero change feature 

starts with discretising the frame into a number of points. The crack is placed at 

each point individually while calculating the degradations of the first 100 natural 

frequencies, given by: 

where ��[ and ��X are the natural frequencies in the uncracked and cracked 

cases, respectively. When ‘as measured’ natural frequencies are contaminated 

with noise, then any natural frequency can be considered as possessing the 

zero change feature when the calculated degradations in all points are less than 

twice the measurement error, i.e. have zero lower limits when measured. This 

calculation procedure has been programmed into MATLAB. 

 ∆�� = ��[ − ��X (5.5) 
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5.5. Numerical example 

The example used in Section 5.3 is considered, along with the two cases 

for the crack location. The beams and columns of the frame are discretised into 

points distanced at {0.01, 0.10, 0.20, 0.30…2.70, 2.80, 2.90, 2.99} m and {0.01, 

0.10, 0.20, 0.30…5.70, 5.80, 5.90, 5.99} m, respectively from the ends. A single 

crack having � ℎ⁄ = 0.4 is placed at each point individually while calculating the 

degradations of the first 100 natural frequencies using the MATLAB code. 

Table 5.4 shows some of the natural frequencies exhibiting the zero change 

feature and unique to each member, on the basis that the maximum calculated 

noise free degradation, ∆��()*, of each frequency is less than twice the 

measurement error, assumed to be ±0.005 Hz. The maximum degradations are 

also reported. For each frequency, the degradation plots along the whole frame 

are shown in Figs. 5.6 and 5.7, noting that Member C (F) requires additional 

discretisation points when plotting the degradations of the 77th natural 

frequency. Simulated degradations ∆��� and their lower limits ∆����, 

corresponding to the two crack cases, are reported in Table 5.5. Considering 

Case 1, when the crack is present in Member A (H), it can be seen that the 

lower limits for the degradations of frequencies 2 and 29 (∆���� and ∆�����) 

are greater than the reported values in Table 5.4 for their maximum noise free 

degradations, ∆��()* and ∆���()*, respectively. Thus, Members D and I (J) 

can be marked as uncracked and excluded from any subsequent analysis. In a 

similar manner, considering Case 2, when the crack is present in Member I (J), 

it can be seen that the lower limits for the degradations of frequencies 3 and 29 

are greater than ∆��()* and ∆���()*, respectively. Members D and E can thus 

be marked as uncracked and excluded from any subsequent analysis. 

 

Table 5.4. Zero change natural frequencies unique to each frame member and their 
maximum noise free degradations. 

Member A (H) B (G) C (F) D E I (J) � 77 - - 29 3 2 ∆��()* (Hz) 0.0025 - - 0.0000 0.0036 0.0040 
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Fig. 5.6. Variation of the second and third natural frequencies of the two bay, two 
storey frame with the crack location when � ℎ⁄ = 0.4. 
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Fig. 5.7. Variation of the twenty ninth and seventy seventh natural frequencies of the 
two bay, two storey frame with the crack location when � ℎ⁄ = 0.4 (the vertical scale on 
Member C (F) is different from that on the other members). 

 

Table 5.5. Frequency variations and their lower limits for � = 2, 3, 29 and 77. 

� 2 3 29 77 

Crack 
case 1 

∆��� (Hz) 0.0180 0.0080 0.0860 0.0000 

∆7��M (Hz) 0.0080 0.0000 0.0760 0.0000 

Crack 
case 2 

∆��� (Hz) 0.0020 0.0150 0.0970 0.0020 

∆7��M (Hz) 0.0000 0.0050 0.0870 0.0000 

 

5.6. Discussion 

The two devised methods for enhancing the crack detection procedure 

reduce the number of falsely detected crack location ranges. The method based 

on the arrangement of the natural frequency variations results in the narrowing 

down and elimination of some of the false ranges. The reasoning behind the 

00.250.5 0 0.25 0.5
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selection of the two natural frequencies having the highest variations from a 

group of frequencies is illustrated with the help of Figs. 5.8–5.15. The lightly 

shaded areas represent the detected ranges corresponding to each frequency, 

while the hatched darkly shaded areas represent the combined ranges, if any, 

for all frequencies used. 

For crack case 1, the simulated variations of the fifth and ninth natural 

frequencies are almost zero, contrary to the first three natural frequencies. 

Referring to Eqs. (5.3) and (5.4), this results in the zero lower limits of the 

normalised variations �	��  and ���� , along with the upper limits �	��  and ����  

being low (< 0.5). ���� , ����  and ����  remain unchanged, while ���� , ����  and ����  

lower slightly. The large variations of the fifth and ninth natural frequencies, 

based on which, these two additional frequencies were chosen, are pronounced 

in the �	 and �� curves, within at least two of the falsely detected crack location 

ranges. One of these false ranges is in Member C (F), around ' $⁄ = 0.9, and 

the other is in Member I (J), around ' $⁄ = 0.7. According to Table 5.2, the fifth 

and ninth natural frequencies have the two highest variations around these two 

locations, respectively. Referring to Figs. 5.8 and 5.9, it can be seen that the 

high values of �	 around ' $⁄ = 0.9 in Member C (F), cause the values of �� and 

�� to lower. Coupled with the low value of �	�� , the overall outcome is the 

elimination of the false range around ' $⁄ = 0.9. A similar pattern is observed for 

Member I (J) (Figs. 5.10 and 5.11), where as a result of using the ninth natural 

frequency, the false range around ' $⁄ = 0.7 is eliminated. Using the fifth and 

ninth natural frequencies can eliminate or narrow down other false ranges. The 

false range in Member C (F) around ' $⁄ = 0.15 is significantly narrowed down, 

while the false range around the middle of Member E is eliminated, as shown in 

Figs. 5.2 and 5.3. 

For crack case 2, the simulated variations of the fourth and fifth natural 

frequencies are high, contrary to the first two natural frequencies. As the fourth 

natural frequency has the highest variation, both the lower and the upper limits, 

����  and ���� , respectively, are high. ���� , ����  and ����  lower significantly, while 

���� , ����  and ����  remain unchanged (= 0.0). This results in ����  and ����  for all 
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frequencies being close. The overall outcome in this crack case is the 

elimination of all false ranges in every member despite the highest variation in 

the fourth natural frequency being in Member I (J) and in the fifth frequency 

being in Member C (F), as shown in Table 5.3. The effect of using the additional 

fourth and fifth natural frequencies is illustrated by comparing Figs. 5.12 with 

5.13, concerned with Member C (F), and Figs. 5.14 with 5.15, concerned with 

Member D. In this particular crack case, all false ranges are eliminated mainly 

due to the high values of the lower and upper limits ����  and ����  being above 

the �� curve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.8. Variation of �� with the crack location in Member C (F) and the detected crack 
location ranges assuming a simulated error of ±0.005 Hz and the actual crack location 
in Member A (crack case 1), with � ℎ⁄ = 0.3. (a) � = 1; (b) � = 2; (c) � = 3. 
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Fig. 5.9. Variation of �� with the crack location in Member C (F) and the detected crack 
location ranges assuming a simulated error of ±0.005 Hz and the actual crack location 
in Member A (crack case 1), with � ℎ⁄ = 0.3. (a) � = 1; (b) � = 2; (c) � = 3; (d) � = 5; 
(e) � = 9. 
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Fig. 5.10. Variation of �� with the crack location in Member I (J) and the detected crack 
location ranges assuming a simulated error of ±0.005 Hz and the actual crack location 
in Member A (crack case 1), with � ℎ⁄ = 0.3. (a) � = 1; (b) � = 2; (c) � = 3. 
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Fig. 5.11. Variation of �� with the crack location in Member I (J) and the detected crack 
location ranges assuming a simulated error of ±0.005 Hz and the actual crack location 
in Member A (crack case 1), with � ℎ⁄ = 0.3. (a) � = 1; (b) � = 2; (c) � = 3; (d) � = 5; 
(e) � = 9. 

'/$ 

'/$ 

'/$ 

'/$ 

'/$ 

(d) 

(e) 

� � 
� � 

� � 
� 	 

� � 

(a) 

(b) 

(c) 

Detected range 



Chapter 5  103 

PhD Thesis, Amr Labib, 2015 

0 0.2 0.4 0.6 0.8 1.0
0

0.5

1.0

Lower Limit

Upper Limit

                  

0 0.2 0.4 0.6 0.8 1.0
0

0.5

1.0

Lower Limit

Upper Limit

                  

0 0.2 0.4 0.6 0.8 1.0
0

0.5

1.0

Lower Limit

Upper Limit

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.12. Variation of �� with the crack location in Member C (F) and the detected crack 
location ranges assuming a simulated error of ±0.005 Hz and the actual crack location 
in Member I (crack case 2), with � ℎ⁄ = 0.3. (a) � = 1; (b) � = 2; (c) � = 3. 
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Fig. 5.13. Variation of �� with the crack location in Member C (F) and the detected crack 
location ranges assuming a simulated error of ±0.005 Hz and the actual crack location 
in Member I (crack case 2), with � ℎ⁄ = 0.3. (a) � = 1; (b) � = 2; (c) � = 3; (d) � = 4; 
(e) � = 5. 
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Fig. 5.14. Variation of �� with the crack location in Member D and the detected crack 
location ranges assuming a simulated error of ±0.005 Hz and the actual crack location 
in Member I (crack case 2), with � ℎ⁄ = 0.3. (a) � = 1; (b) � = 2; (c) � = 3. 
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Fig. 5.15. Variation of �� with the crack location in Member D and the detected crack 
location ranges assuming a simulated error of ±0.005 Hz and the actual crack location 
in Member I (crack case 2), with � ℎ⁄ = 0.3. (a) � = 1; (b) � = 2; (c) � = 3; (d) � = 4; 
(e) � = 5. 
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The natural frequencies exhibiting the zero change feature can help in 

eliminating falsely detected crack location ranges in whole members, before 

applying any thorough crack detection procedure. However, using the zero 

change feature has limitations. The frame under consideration must only have a 

single crack. The example in Section 5.5 shows that the method requires the 

use of higher order natural frequencies, up the 77th. This is attributed to the 

relative complexity of the frame. Some frame Members, B (G) and C (F), cannot 

be associated with a zero change natural frequency within the first one hundred 

frequencies. All members of the simple frame shown in Fig. 5.16, cannot be 

associated with a zero change frequency. This frame has the same material 

properties as that in Section 5.5, but with one column having double the value 

of Young’s modulus of the other members. 

Using the higher order natural frequencies may have a fundamental 

limitation concerned with the rotational spring model employed in the 

calculations. According to Morassi (2008), in the case of axial vibrations, the 

linear spring model does not allow accurate calculations of the axial natural 

frequencies of high order. Studies have yet to be carried out on the accuracy of 

the rotational spring model in calculating the higher order natural frequencies of 

frames. Practical application may currently be limited as the ability of 

measurement devices to pick up natural frequencies, as high as the 77th 

frequency, is questionable.   

 

 

 

 

 

 

 

Fig. 5.16. One bay, one storey frame. 
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5.7. Conclusions 

This study presents two methods for enhancing the prediction of single 

crack locations in frames using natural frequency measurements in the 

presence of noise. The first method is based on selecting the two natural 

frequencies having the highest variations within the detected crack location 

ranges after a first iteration. The method does not require the two natural 

frequencies to have high simulated variations due to the crack presence. The 

second method eliminates false ranges in frame members as a whole, making 

use of the zero change feature unique to some lower and higher order modes.
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Chapter 6 – Conclusions and suggestions for future work 

6.1. Conclusions 

Chapter 2 develops a new method for calculating the natural frequencies 

of beams and frames with multiple cracks, forming the basis of the crack 

detection procedures presented in Chapters 3 and 5. The exact dynamic 

stiffness matrix of the cracked Bernoulli–Euler beam element and the Wittrick–

Williams algorithm (Wittrick and Williams 1971) allow the calculation of the 

natural frequencies in a timely and accurate manner. The calculations must take 

into account the additional sign counts removed by the partial Gaussian 

elimination, applied to the original 7 × 7 matrix of the cracked beam element, 

disregarding the decoupled axial stiffness taken into account later. Otherwise, 

the orders of the calculated natural frequencies become erroneous and some 

frequencies can be missed. Lower and higher order natural frequencies of 

beams and frames with any number of cracks can be easily calculated without 

re-insertion of additional nodes in the global stiffness matrices. The calculation 

method does not require finite element meshing. Discretisation of beams into a 

large number of points is only performed if the calculation of the displacements 

and rotations for mode shape display is required. 

The natural frequency calculation results are in close agreement with 

those obtained by previous authors utilising the same rotational spring model. 

The results of some other authors are lower, in the case of beams, due to their 

implementation of additional shear springs to model the crack. The developed 

calculation method in this thesis can be easily modified to include axial and 

shear springs at the crack locations. 

The results obtained for the two bay, two storey frame example used 

throughout the thesis, show that different natural frequencies have different 

sensitivities to a single crack according to its location in each frame member. 

Some frequencies may even be insensitive to the crack present anywhere along 

specific frame members. These sensitivities have been used in devising the 

crack detection procedures in Chapters 3 and 5. 

Chapter 3, the core chapter, presents a new method for single crack 

detection in frames, using natural frequency measurements. The method, with 
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great potential for practical application, is based on normalising the variations in 

natural frequencies between the uncracked and cracked cases. The normalised 

variations are largely independent of the crack depth to section height ratio, i.e. 

the crack severity, which can be randomly assumed, as long as the value is 

≤ 0.4. At least three natural frequencies must be used. The orders of the 

natural frequencies are arbitrarily selected, but it is common practice to use the 

first three. The natural frequency calculation method developed in Chapter 2 is 

utilised in the detection procedure to calculate the selected natural frequencies 

in the uncracked case and when the crack is placed at the discretisation points 

in the frame members to plot the normalised variation curves essential in the 

detection procedure. The calculation method is also used to simulate the natural 

frequency measurements corresponding to two crack cases, and hence, the 

variations. 

Noise free and noisy measurements are considered. Noise free 

measurements yield point crack predictions close to their actual locations. 

However, obtaining a location prediction is not guaranteed due to the cubic 

spline interpolation involved and the possibility of any spline shifting very slightly 

according to the randomly assumed crack severity. Therefore, a spline 

corresponding to a certain frequency and required to touch or cross zero at the 

correct location may slightly miss. If the true location is detected, then the crack 

depth to section height ratio can be recovered as a single value, almost 

matching the true value. Depending on which simulated natural frequency is 

used in recovering the severity, the obtained single value differs slightly. 

Noisy measurements yield crack location and severity ranges. It has 

been demonstrated that an error in the order of ±0.005 Hz can lead to false 

location ranges being detected, in addition to the true range. The numbers and 

width of each false range depend on the actual location of the crack and, 

consequently, the measured or simulated natural frequency variations. Using 

additional natural frequencies eliminates some of these false ranges. The 

severity ranges can also be useful in eliminating some of the false ranges. 

Illustrations have been plotted, showing that as the actual crack severity 

increases, the upper and lower limits of the normalised simulated frequency 

variations converge towards the exact (noise free) variations. However, as the 
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crack depth to section height ratio exceeds 0.4, the exact normalised variations 

become dependent on the crack severity, rendering the detection procedure 

unreliable for high severities, although, in some crack cases, this value can be 

exceeded while causing negligible difference in the exact normalised variations. 

In any case, the applicability of the rotational spring model is restricted to small 

crack depth to section height ratios ≤ 0.4. Referring to the previous paragraph, 

regarding the unguaranteed possibility of obtaining a point location prediction, it 

can be argued that having a small amount of measurement noise, leading to an 

upper and lower limit around the actual crack location, is better than pure noise 

free measurements.  

Empirical probability distributions can be plotted for each location range. 

These can be used in practice to set up an in situ visual inspection procedure in 

which the inspection areas are prioritised according to the relative probabilities 

of each detected range. The detection procedure is efficient when the 

measurement noise is relatively lower than the variations in at least one of the 

utilised natural frequencies. For frames with inclined members, the loss of axial 

stiffness through the crack should be taken into account. 

The experimental work described in Chapter 4 validates the devised 

method for single crack detection in frames. The third to sixth natural 

frequencies of a two bay, two storey frame with scaled down dimensions, were 

measured using the fast Fourier transform (FFT). A single crack, with depth to 

section height ratio as low as 0.2, was successfully detected, in terms of both 

location and severity.  

Two enhancement techniques for single crack detection in frames are 

described in Chapter 5, with the purpose of eliminating some of the falsely 

detected crack location ranges. One technique considers the use of the first 

three natural frequencies as a first iteration of the detection procedure 

established in Chapter 3. It then requires the selection of two additional natural 

frequencies out of a group of higher order ones. A search is made within the 

detected crack location ranges from the first iteration, for the two natural 

frequencies having the highest variations among that group of frequencies. The 

two additional frequencies, together with the first three, are used in a second 

iteration of the crack detection procedure. The high variations do not have to be 
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exhibited in the simulated (or measured) variations. Some false ranges will be 

eliminated, nevertheless, due to the manner in which the high variations of the 

two additional frequencies affect the normalised variation curves within the false 

crack location ranges. 

The second technique serves to exclude some frame members from any 

crack identification procedure, by making use of the zero change feature 

exhibited in some of the low and higher order natural frequencies. These 

frequencies are insensitive to single cracks present anywhere along specific 

frame members. If the lower limit of the simulated (or measured) variations in 

any frequency exhibiting the zero change feature is significantly high, then the 

corresponding frame member can be marked as uncracked, as long as the 

frame contains only a single crack. Thus, any falsely detected crack location 

range within that member becomes irrelevant and the member can even be 

excluded from any identification procedure. 

Some limitations regarding the second enhancement technique should be 

highlighted. Identifying the natural frequencies exhibiting the zero change 

feature involves carrying out low and high order frequency calculations, and 

hence the variations, while varying the crack location along whole member 

lengths. The rotational spring model used in these calculations may not be 

applicable in case of higher order natural frequencies due to the loss of 

accuracy (Morassi 1993, 2008). It can be argued that as only frequency 

variations are of interest, and, more specifically, zero variations, then any 

inaccuracy is irrelevant. Another limitation is that the measuring device may not 

be able to pick up natural frequencies of very high order. 

6.2. Suggestions for future work 

Single crack detection in frames has been tackled in this thesis. 

Normalising the variations in the utilised natural frequencies, due to the crack 

presence, facilitates locating the crack as the normalised variations do not 

depend on the crack severity, except when the crack is severe. With the help of 

the curve fitting toolbox in MATLAB, the crack locations can be pinpointed in 

case of noise free simulations, or evaluated as ranges when the noise is 

introduced. The crack severity is then evaluated by a simple modification in the 
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Wittrick–Williams algorithm (Wittrick and Williams 1971). However, in the 

presence of multiple cracks, the normalisation does not eliminate the 

dependency on any of the unknown crack severities. This can be explained by 

referring to the following equation describing the frequency variations in the 

case of two cracks: 

which, when normalised, take the form: 

Eqs. (6.1) and (6.2) are expanded versions of Eqs. (3.2) and (3.3), 

respectively. It can be seen that Eq. (6.2) offers no benefit, except when the 

cracks have equal severities. It can be seen from Eq. (6.1) that there are four 

unknowns, two crack severities and two locations, requiring four natural 

frequencies to be solved. The crack location functions 0� and 0� can be 

interpolated, but to a high degree polynomial. Efficient solution techniques are 

yet to be established for this system of equations, to produce rational results. 

This will save the need for resorting to mode shape measurements, which may 

be highly inaccurate or even impossible to obtain, especially in large structures. 

An important area to be explored is the manner in which the natural frequencies 

degrade when multiple cracks are present in the frame, whether it is linearly 

accumulative, or otherwise. Some of the published studies in the literature, 

concerned with multiple crack detection, can be used as background 

information (Hu and Liang 1993; Patil and Maiti 2003; Lee 2009; Ghadami et al. 

2013; Maghsoodi et al. 2013; Caddemi and Caliò 2014; Khiem and Tran 2014; 

Nandakumar and Shankar 2014; Rubio et al. 2014). The detection of diffused 

damage while using the concentrated damage model is yet to be studied.  

Another aspect, needing further studies, is obtaining the probability 

distributions for the detected crack location ranges, from those of the 

normalised frequency variations. Rather than the empirical method described in 

this thesis and applied directly on the locations ranges, attempts have been 

made by the author to accurately calculate the required probability distributions, 

 �� = c̃�. 0��!'�/$" � c̃�. 0��!'�/$", (6.1) 

 
�� = ��

®∑ ����
= c̃�. 0��!'� $⁄ " � c̃�. 0��!'� $⁄ "
®∑ `c̃�. 0��!'� $⁄ " � c̃�. 0��!'� $⁄ "a��

. 
(6.2) 
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starting with those of the natural frequency variations (unnormalised). The 

methods described by Meyer (1965) for obtaining the probability distributions 

corresponding to functions of random variables were used. However, these 

methods to obtain the probability distributions for the normalised variations, 

given by Eq. (3.3), were inapplicable for hand calculations or MATLAB 

programming. Other attempts have been made at using the software package 

MAPLE (Maplesoft 2013). However, the package was left running for more than 

twelve hours. It was apparent that it gets stuck when the denominator 

containing a summation inside a square root was inputted. 

The most important aspect needing further studies, is the accuracy of the 

rotational spring model in describing the behaviour of the crack, especially in 

higher order vibration modes. The applicability of nonlinear crack models for the 

devised crack detection method in this thesis, is yet to be studied. These 

models, for example, the bilinear crack model (Shen and Chu 1992; Chati et al. 

1997), take into account the opening and closing of the crack during vibration. 

Other aspects are the technological limitations of the current measuring devices 

to pick up higher order natural frequencies. 

6.3. Inspired research 

Research into crack detection in frames is currently being carried out by 

the PhD student Julian DeLosRios in the University of Waikato, Hamilton, New 

Zealand. An alternate detection method, inspired by the published part of this 

thesis (Labib et al. 2014, 2015), is currently being explored. The method is 

based on the determinant of the dynamic stiffness matrix. The following 

equation applies at any frequency of vibration �: 

where c̃ is a function of the crack severity, ' is the crack location, N!c̃, ', �" is 

the dynamic stiffness matrix of the cracked frame, N!�" is the dynamic stiffness 

matrix of the uncracked frame, i.e. c̃ = 0.0, and N!', �" is the dynamic stiffness 

matrix when the crack depth covers the whole cross-section thickness, i.e. 

c̃ = ∞. At any natural frequency ��, det. <N!c̃, ', ��"= = 0.0. Using two natural 

frequencies, c̃ can be easily eliminated. The crack location ' is then calculated. 

The method is currently being extended to multiple crack detection. 

 c̃. det. <N!c̃, ',�"= = det. <N!�"= � c̃. det. <N!',�"=, (6.3) 
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Z	

The effect of temperature changes on crack detection is also being 

explored. Referring to Fig. 6.1, an increase in temperature causes axial 

compression in the constrained member. The relation between the natural 

frequencies and the axial load is given by the equation (Galef 1968): 

where Z[ is the critical buckling load, ��) is the natural frequency of the axially 

loaded member, and ��� is the natural frequency of the unloaded member. 

 

 

 

 

 

 

Fig. 6.1. Frame with axially constrained member undergoing an increase in 
temperature. 

The frequency variations due to the axial load can thus be written in the form: 

The relation between the frequency variations �� and the temperature change 

∆l takes the form: 

where ∅ is a constant. The combined problem in which the natural frequency 

variations are due to a series of cracks and also due to temperature change, 

can be described by the equation: 

 
ZZÒ � ��)����� = 1, (6.4) 

 �� = 1 − ��)��� = 1 − Ó1 − ZZÒ. (6.5) 

 �� = ∅�	∆l, (6.6) 

 ��r = ∅�	∆l �� céX��!'X"X , (6.7) 
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where . is the crack number. The solution requires a multi-dimensional search 

for cé., '. and ∆l.
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Appendix – MATLAB codes 

• MATLAB function file for performing Gaussian elimination without row 
interchange: 

function [ge] = genre(x) %Code to be stored in a file named 

‘genre.m’ 
for i=1:(length(x)-1); 
    for j=(i+1):length(x); 
        x(j,:)=x(j,:)-((x(j,i)/x(i,i))*x(i,:)); 
    end; 
end; 
ge=x; 

 

• MATLAB function file for applying the Wittrick–Williams algorithm considering 
no loss of axial stiffness: 

function [WTWLfDKAG] = WWfDKAG(w, nodes, sup, conn, angle, L,... 
                               E, A, I, m, ks, mem, fe) 

%Code to be stored in a file named ‘WWfDKAG.m’. 
%‘w’ is the trial frequency in rad s-1. 

%‘nodes’ is the total number of nodes in the frame. 

%‘sup’ is a vector of the suppressed degrees of freedom at the 

nodes. The input numbers 1, 4, 7,... correspond to suppressed 

displacements in the global horizontal direction for nodes 1, 2, 

3,.... The vertically supressed displacements take the numbers 2, 

5, 8,..., while the suppressed rotations take the numbers 3, 6, 

9,...  

%‘conn’ is a matrix of the two nodes connecting each member, 

ignoring the cracks. 

%‘angle’ is a vector of the angle of each member, measured from a 

horizontal axis, counter clock-wise positive. The longitudinal 

axis of any individual member starts from the first defined node 

to the second one, regardless of the global node numbering.  

%‘L’ is a matrix of the length of each uncracked portion of every 

member. 

%‘E’, ‘A’, ‘I’, ‘m’ are vectors of Young’s modulus, cross-

sectional area, second moment of area, and mass per unit length 

of each member. 

%‘ks’ is the stiffness of the rotational springs in each cracked 

member. 

%‘mem’ is a vector of the number of uncracked portions of each 

member. 

%‘fe’ is the total number of frame members, ignoring the cracks. 

Jm=0; ng=0; Jc=0; %Initial values for the terms of the Wittrick–

Williams algorithm, where ‘Jm’ is the number of fixed end natural 

frequencies below the trial frequency ‘w’, ‘ng’ is the number of 

negative leading diagonal elements of the upper triangular matrix 

formed from the global stiffness matrix after performing Gaussian 

elimination without row interchange, ‘Jc’ is the additional sign 

count due to the partial Gaussian elimination performed as result 

of the crack presence to reduce the order of the stiffness 

matrix. 

DFGstiff=zeros(3*nodes,3*nodes); %Global dynamic stiffness matrix 

of the frame 
DFstiff=zeros(6,6); %Dynamic stiffness matrix of individual 

members 
for f=1:fe 
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estiff=zeros(4*mem(f),4*mem(f)); %Dynamic stiffness matrix of 

individual members in local coordinates, ignoring the decoupled 

axial stiffness 
mu=w*(sum(L(f,:)))*((m(f,1)/(E(f,1)*A(f,1)))^0.5); %Frequency 

function related to the axial stiffness of the whole member 
Jm=Jm+int16(fix(mu/pi));  
ax=E(f,1)*A(f,1)*mu*cot(mu)/sum(L(f,:)); 
ax2=-E(f,1)*A(f,1)*mu*csc(mu)/sum(L(f,:)); % ‘ax’ and ‘ax2’ are 

the dynamic stiffness matrix terms related to the axial stiffness 
DFstiff(1:2,1:2)=[ax ax2;ax2 ax]; 
for i=1:mem(f) 
    lambda=L(f,i)*((m(f,1)*(w^2)/(E(f,1)*I(f,1)))^0.25); 

%Frequency function related to the bending stiffness of 

individual uncracked member portions 
    Jm=Jm+int16(fix(lambda/pi))-(0.5*(1-... 
        (((-1)^int16(fix(lambda/pi)))*... 
        sign(1-cos(lambda)*cosh(lambda))))); 
    a=lambda*((cosh(lambda)*sin(lambda))-... 
        (sinh(lambda)*cos(lambda)))/... 
        (1-(cosh(lambda)*cos(lambda))); 
    b=lambda*(sinh(lambda)-sin(lambda))/... 
        (1-(cosh(lambda)*cos(lambda))); 
    n=(lambda^2)*sinh(lambda)*sin(lambda)/... 
        (1-(cosh(lambda)*cos(lambda))); 
    d=(lambda^2)*(cosh(lambda)-cos(lambda))/... 
        (1-(cosh(lambda)*cos(lambda))); 
    g=(lambda^3)*((cosh(lambda)*sin(lambda))+... 
        (sinh(lambda)*cos(lambda)))/... 
        (1-(cosh(lambda)*cos(lambda))); 
    ep=(lambda^3)*(sinh(lambda)+sin(lambda))/... 
        (1-(cosh(lambda)*cos(lambda))); 
    %Dynamic stiffness matrix for uncracked member portions 

    estiff(((4*i)-3):(4*i),((4*i)-3):(4*i))= E(f,1)*I(f,1)*... 
        [g/(L(f,i)^3) n/(L(f,i)^2) -ep/(L(f,i)^3) d/(L(f,i)^2); 
           n/(L(f,i)^2) a/L(f,i) -d/(L(f,i)^2) b/L(f,i); 
         -ep/(L(f,i)^3) -d/(L(f,i)^2) g/(L(f,i)^3) -n/(L(f,i)^2); 
           d/(L(f,i)^2) b/L(f,i) -n/(L(f,i)^2) a/L(f,i)]; 
end; 
if mem(f)>1 
for i=1:(mem(f)-1) % If the member is cracked 
    fs=1/ks(f,i); %Flexibility of the rotational spring 

corresponding to the crack 

    %Delta variables 
    Delta1=1/(1+(estiff((4*i),(4*i))*fs)); 
    Delta2=1/(estiff((4*(i+1))-2,(4*(i+1))-2)+... 
        (estiff((4*i),(4*i))*Delta1)); 
    q1=Delta1*(fs+(Delta1*Delta2)); 
    Delta3=1/(estiff((4*i)-1,(4*i)-1)+... 
        estiff((4*(i+1))-3,(4*(i+1))-3)-... 
        (((-estiff((4*i)-1,4*i))^2)*q1)-... 
        (((estiff((4*(i+1))-3,(4*(i+1))-2))^2)*Delta2)+... 
        (2*(-estiff((4*i)-1,4*i))*... 
        (estiff((4*(i+1))-3,(4*(i+1))-2))*Delta1*Delta2)); 
    %Additional sign counts due to the partial Gaussian 

elimination 

    if Delta1<0 
        Jc=Jc+1; 
    end; 
    if Delta2<0 
        Jc=Jc+1; 
    end; 
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    if Delta3<0 
        Jc=Jc+1; 
    end; 
    %Calculation of the dynamic stiffness matrix for the cracked 

member in the local coordinates 

    q2=(-estiff((4*i)-1,4*i)*q1)-(estiff((4*(i+1))-3,... 
        (4*(i+1))-2)*Delta1*Delta2); 
    q3=Delta2*(estiff((4*(i+1))-3,(4*(i+1))-2)-... 
        (-estiff((4*i)-1,4*i)*Delta1)); 
    p1=estiff((4*i)-3,(4*i)-1)+(estiff((4*i)-3,4*i)*q2); 
    p2=estiff((4*i)-2,(4*i)-1)+(estiff((4*i)-2,4*i)*q2); 
    p3=estiff((4*(i+1))-3,(4*(i+1))-1)+... 
        (-estiff((4*(i+1))-2,(4*(i+1))-1)*q3); 
    p4=estiff((4*(i+1))-3,(4*(i+1)))-... 
        (estiff((4*(i+1))-2,(4*(i+1)))*q3); 
    am=(estiff((4*i)-3,(4*i)-3)-... 
        ((estiff((4*i)-3,(4*i))^2)*q1)-((p1^2)*Delta3)); 
    bm=(estiff((4*i)-3,(4*i)-2)-(estiff((4*i)-3,(4*i))*... 
        estiff((4*i)-2,(4*i))*q1)-(p1*p2*Delta3)); 
    dm=(-estiff((4*i)-3,(4*i))*... 
        (-estiff((4*(i+1))-2,(4*(i+1))-1))*... 
        Delta1*Delta2)+(p1*p3*Delta3); 
    em=(-estiff((4*i)-3,(4*i))*... 
        estiff((4*(i+1))-2,(4*(i+1)))*... 
        Delta1*Delta2)-(p1*p4*Delta3); 
    cm=(estiff((4*i)-2,(4*i)-2)-... 
        ((estiff((4*i)-2,4*i)^2)*q1)-((p2^2)*Delta3)); 
    epsm=(-estiff((4*i)-2,(4*i))*... 
        (-estiff((4*(i+1))-2,(4*(i+1))-1))*... 
        Delta1*Delta2)+(p2*p3*Delta3); 
    fm=(-estiff((4*i)-2,(4*i))*... 
        estiff((4*(i+1))-2,(4*(i+1)))*... 
        Delta1*Delta2)-(p2*p4*Delta3); 
    alpham=(estiff((4*(i+1))-1,(4*(i+1))-1))-... 
        (((-estiff((4*(i+1))-2,(4*(i+1))-1))^2)*... 
        Delta2)-((p3^2)*Delta3); 
    betam=(-estiff((4*(i+1))-1,(4*(i+1)))-... 
        (-estiff((4*(i+1))-2,(4*(i+1))-1)*... 
        estiff((4*(i+1))-2,(4*(i+1)))*Delta2)+(p3*p4*Delta3)); 
    gammam=(estiff(4*(i+1),4*(i+1))-... 
        ((estiff((4*(i+1))-2,4*(i+1))^2)*Delta2)-... 
        ((p4^2)*Delta3)); 
    Dstiff=[am bm -dm em; bm cm -epsm fm; 
        -dm -epsm alpham -betam; 
        em fm -betam gammam]; 
    estiff(((4*(i+1))-3):(4*(i+1)),... 
        ((4*(i+1))-3):(4*(i+1)))=Dstiff;  
end; 
DFstiff(3:6,3:6)=Dstiff; 
else 
DFstiff(3:6,3:6)=estiff; %If the member is uncracked 
end; 
%Regular form of the dynamic stiffness matrix in local 

coordinates 

DFstiff=[DFstiff(1,1) 0 0 DFstiff(1,2) 0 0; 
         0 DFstiff(3,3) DFstiff(3,4) 0 DFstiff(3,5) DFstiff(3,6); 
         0 DFstiff(4,3) DFstiff(4,4) 0 DFstiff(4,5) DFstiff(4,6); 
         DFstiff(2,1) 0 0 DFstiff(2,2) 0 0; 
         0 DFstiff(5,3) DFstiff(5,4) 0 DFstiff(5,5) DFstiff(5,6); 
         0 DFstiff(6,3) DFstiff(6,4) 0 DFstiff(6,5) 

DFstiff(6,6)]; 
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%Transformation into global coordinates 

t=[cos(angle(f)) sin(angle(f)) 0; -sin(angle(f)) cos(angle(f)) 0; 
    0 0 1]; T=[t zeros(3,3);zeros(3,3) t]; 
DFstiff=T'*DFstiff*T; 
%Assembling the global dynamic stiffness matrix of the frame 

n1=conn(f,1); n2=conn(f,2); 
DFGstiff(((3*n1)-2):(3*n1),((3*n1)-2):(3*n1))=... 
    DFGstiff(((3*n1)-2):(3*n1),((3*n1)-2):(3*n1))+... 
    DFstiff(1:3,1:3); 
DFGstiff(((3*n1)-2):(3*n1),((3*n2)-2):(3*n2))=... 
    DFGstiff(((3*n1)-2):(3*n1),((3*n2)-2):(3*n2))+... 
    DFstiff(1:3,4:6); 
DFGstiff(((3*n2)-2):(3*n2),((3*n1)-2):(3*n1))=... 
    DFGstiff(((3*n2)-2):(3*n2),((3*n1)-2):(3*n1))+... 
    DFstiff(4:6,1:3); 
DFGstiff(((3*n2)-2):(3*n2),((3*n2)-2):(3*n2))=... 
    DFGstiff(((3*n2)-2):(3*n2),((3*n2)-2):(3*n2))+... 
    DFstiff(4:6,4:6);   
end; 
if isempty(sup) %In the case of no supports or restraints for the 

whole frame 
DFGstiff=genre(DFGstiff); %Perform Gaussian elimination using the 

function file ‘genre.m’ 

diagonal=diag(DFGstiff); 
for i=1:length(diagonal); 
    if diagonal(i)<0 
        ng=ng+1; %Sign counts of the diagonal terms 
    end; 
end; 
WTWLfDKAG=ng+Jm+Jc; %Summation of terms of the Wittrick-Williams 

algorithm  
else 
DFGstiff([sup],:)=[]; DFGstiff(:,[sup])=[];  %Delete the rows and 

columns in the stiffness matrix, corresponding to the suppressed 

degrees of freedom 
DFGstiff=genre(DFGstiff); diagonal=diag(DFGstiff); 
for i=1:length(diagonal); 
    if diagonal(i)<0 
        ng=ng+1; 
    end; 
end; 
WTWLfDKAG=ng+Jm+Jc; 
end; 
end 

 

• MATLAB function file for calculating the mode shapes: 

function [WTWLfDKAGModeshapes] = WWfDKAGModeshapes(w, nodes,... 
    sup, conn, angle, L, E, A, I, m, ks, mem, fe) 

%Code to be stored in a file named ‘WWfDKAGModeshapes.m’ 

%This code is similar to the previous, except there are no sign 

counts and the input frequency ‘w’ should correspond to a 

calculated natural frequency of the considered frame. All the 

other input data should correspond to the same frame, but divided 

into a large number of points for a smooth output plot of the 

mode shape.  
DFGstiff=zeros(3*nodes,3*nodes); 
DFstiff=zeros(6,6); 
for f=1:fe 
estiff=zeros(4*mem(f),4*mem(f)); 
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mu=w*(sum(L(f,:)))*((m(f,1)/(E(f,1)*A(f,1)))^0.5); 
ax=E(f,1)*A(f,1)*mu*cot(mu)/sum(L(f,:)); 
ax2=-E(f,1)*A(f,1)*mu*csc(mu)/sum(L(f,:)); 
DFstiff(1:2,1:2)=[ax ax2;ax2 ax]; 
for i=1:mem(f) 
    lambda=L(f,i)*((m(f,1)*(w^2)/(E(f,1)*I(f,1)))^0.25); 
    a=lambda*((cosh(lambda)*sin(lambda))-... 
        (sinh(lambda)*cos(lambda)))/... 
        (1-(cosh(lambda)*cos(lambda))); 
    b=lambda*(sinh(lambda)-sin(lambda))/... 
        (1-(cosh(lambda)*cos(lambda))); 
    n=(lambda^2)*sinh(lambda)*sin(lambda)/... 
        (1-(cosh(lambda)*cos(lambda))); 
    d=(lambda^2)*(cosh(lambda)-cos(lambda))/... 
        (1-(cosh(lambda)*cos(lambda))); 
    g=(lambda^3)*((cosh(lambda)*sin(lambda))+... 
        (sinh(lambda)*cos(lambda)))/... 
        (1-(cosh(lambda)*cos(lambda))); 
    ep=(lambda^3)*(sinh(lambda)+sin(lambda))/... 
        (1-(cosh(lambda)*cos(lambda))); 
    estiff(((4*i)-3):(4*i),((4*i)-3):(4*i))= E(f,1)*I(f,1)*... 
        [g/(L(f,i)^3) n/(L(f,i)^2) -ep/(L(f,i)^3) d/(L(f,i)^2); 
         n/(L(f,i)^2) a/L(f,i) -d/(L(f,i)^2) b/L(f,i); 
       -ep/(L(f,i)^3) -d/(L(f,i)^2) g/(L(f,i)^3) -n/(L(f,i)^2); 
         d/(L(f,i)^2) b/L(f,i) -n/(L(f,i)^2) a/L(f,i)]; 
end; 
if mem(f)>1 
for i=1:(mem(f)-1) 
    fs=1/ks(f,i); 
    Delta1=1/(1+(estiff((4*i),(4*i))*fs)); 
    Delta2=1/(estiff((4*(i+1))-2,(4*(i+1))-2)+... 
        (estiff((4*i),(4*i))*Delta1)); 
    q1=Delta1*(fs+(Delta1*Delta2)); 
    Delta3=1/(estiff((4*i)-1,(4*i)-1)+... 
        estiff((4*(i+1))-3,(4*(i+1))-3)-... 
        (((-estiff((4*i)-1,4*i))^2)*q1)-... 
        (((estiff((4*(i+1))-3,(4*(i+1))-2))^2)*Delta2)+... 
        (2*(-estiff((4*i)-1,4*i))*... 
        (estiff((4*(i+1))-3,(4*(i+1))-2))*Delta1*Delta2)); 
    q2=(-estiff((4*i)-1,4*i)*q1)-... 
        (estiff((4*(i+1))-3,(4*(i+1))-2)*Delta1*Delta2); 
    q3=Delta2*(estiff((4*(i+1))-3,(4*(i+1))-2)-... 
        (-estiff((4*i)-1,4*i)*Delta1)); 
    p1=estiff((4*i)-3,(4*i)-1)+(estiff((4*i)-3,4*i)*q2); 
    p2=estiff((4*i)-2,(4*i)-1)+(estiff((4*i)-2,4*i)*q2); 
    p3=estiff((4*(i+1))-3,(4*(i+1))-1)+... 
        (-estiff((4*(i+1))-2,(4*(i+1))-1)*q3); 
    p4=estiff((4*(i+1))-3,(4*(i+1)))-... 
        (estiff((4*(i+1))-2,(4*(i+1)))*q3); 
    am=(estiff((4*i)-3,(4*i)-3)-... 
        ((estiff((4*i)-3,(4*i))^2)*q1)-((p1^2)*Delta3)); 
    bm=(estiff((4*i)-3,(4*i)-2)-(estiff((4*i)-3,(4*i))*... 
        estiff((4*i)-2,(4*i))*q1)-(p1*p2*Delta3)); 
    dm=(-estiff((4*i)-3,(4*i))*... 
        (-estiff((4*(i+1))-2,(4*(i+1))-1))*... 
        Delta1*Delta2)+(p1*p3*Delta3); 
    em=(-estiff((4*i)-3,(4*i))*... 
        estiff((4*(i+1))-2,(4*(i+1)))*... 
        Delta1*Delta2)-(p1*p4*Delta3); 
    cm=(estiff((4*i)-2,(4*i)-2)-... 
        ((estiff((4*i)-2,4*i)^2)*q1)-((p2^2)*Delta3)); 



Appendix  122 

PhD Thesis, Amr Labib, 2015 

    epsm=(-estiff((4*i)-2,(4*i))*... 
        (-estiff((4*(i+1))-2,(4*(i+1))-1))*... 
        Delta1*Delta2)+(p2*p3*Delta3); 
    fm=(-estiff((4*i)-2,(4*i))*... 
        estiff((4*(i+1))-2,(4*(i+1)))*... 
        Delta1*Delta2)-(p2*p4*Delta3); 
    alpham=(estiff((4*(i+1))-1,(4*(i+1))-1))-... 
        (((-estiff((4*(i+1))-2,(4*(i+1))-1))^2)*... 
        Delta2)-((p3^2)*Delta3); 
    betam=(-estiff((4*(i+1))-1,(4*(i+1)))-... 
        (-estiff((4*(i+1))-2,(4*(i+1))-1)*... 
        estiff((4*(i+1))-2,(4*(i+1)))*Delta2)+(p3*p4*Delta3)); 
    gammam=(estiff(4*(i+1),4*(i+1))-... 
        ((estiff((4*(i+1))-2,4*(i+1))^2)*Delta2)-... 
        ((p4^2)*Delta3)); 
    Dstiff=[am bm -dm em; bm cm -epsm fm; 
        -dm -epsm alpham -betam; em fm -betam gammam]; 
    estiff(((4*(i+1))-3):(4*(i+1)),... 
        ((4*(i+1))-3):(4*(i+1)))=Dstiff; 
end; 
DFstiff(3:6,3:6)=Dstiff; 
else 
DFstiff(3:6,3:6)=estiff; 
end; 
DFstiff=[DFstiff(1,1) 0 0 DFstiff(1,2) 0 0; 
     0 DFstiff(3,3) DFstiff(3,4) 0 DFstiff(3,5) DFstiff(3,6); 
     0 DFstiff(4,3) DFstiff(4,4) 0 DFstiff(4,5) DFstiff(4,6); 
     DFstiff(2,1) 0 0 DFstiff(2,2) 0 0; 
     0 DFstiff(5,3) DFstiff(5,4) 0 DFstiff(5,5) DFstiff(5,6); 
     0 DFstiff(6,3) DFstiff(6,4) 0 DFstiff(6,5) DFstiff(6,6)]; 
t=[cos(angle(f)) sin(angle(f)) 0; -sin(angle(f)) cos(angle(f)) 0; 
    0 0 1]; T=[t zeros(3,3);zeros(3,3) t]; 
DFstiff=T'*DFstiff*T; 
n1=conn(f,1); n2=conn(f,2); 
DFGstiff(((3*n1)-2):(3*n1),((3*n1)-2):(3*n1))=... 
    DFGstiff(((3*n1)-2):(3*n1),((3*n1)-2):(3*n1))+... 
    DFstiff(1:3,1:3); 
DFGstiff(((3*n1)-2):(3*n1),((3*n2)-2):(3*n2))=... 
    DFGstiff(((3*n1)-2):(3*n1),((3*n2)-2):(3*n2))+... 
    DFstiff(1:3,4:6); 
DFGstiff(((3*n2)-2):(3*n2),((3*n1)-2):(3*n1))=... 
    DFGstiff(((3*n2)-2):(3*n2),((3*n1)-2):(3*n1))+... 
    DFstiff(4:6,1:3); 
DFGstiff(((3*n2)-2):(3*n2),((3*n2)-2):(3*n2))=... 
    DFGstiff(((3*n2)-2):(3*n2),((3*n2)-2):(3*n2))+... 
    DFstiff(4:6,4:6);     
end; 
if isempty(sup)  %In the case of no supports or restraints for 

the whole frame 
dis(1:((3*nodes)-length(sup)-1))=... 
    (inv(DFGstiff(1:((3*nodes)-length(sup)-1),... 
    1:((3*nodes)-length(sup)-1))))*... 
    DFGstiff(1:((3*nodes)-length(sup)-1),... 
    ((3*nodes)-length(sup))); 

dis(((3*nodes)-length(sup)))=-1; %The highest numbered degree of 

freedom is assumed to have a unit displacement (or rotation) 
WTWLfDKAGModeshapes=dis; 
else 
DFGstiff([sup],:)=[]; DFGstiff(:,[sup])=[]; 
dis(1:((3*nodes)-length(sup)-1))=... 
    (inv(DFGstiff(1:((3*nodes)-length(sup)-1),... 
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    1:((3*nodes)-length(sup)-1))))*... 
    DFGstiff(1:((3*nodes)-length(sup)-1),... 
    ((3*nodes)-length(sup))); 

dis(((3*nodes)-length(sup)))=-1; 
WTWLfDKAGModeshapes=dis; 
end; 
end 

 

• MATLAB function file for calculating the ranges of the normalised natural 
frequency variations: 

function[NormalisedFreq]=interval(reqnfreq,freqs,merror) 
% ‘reqnfreq’ is the index of the natural frequency for which the 

normalised variation is required, ‘freq’ are the simulated or 

measured natural frequency inputs, ‘merror’ is the measurement 

error in each frequency  

LLUL=[freqs'-merror freqs'+merror]; 
  for i=1:((length(LLUL(:,1)))/2) 
      if (1-(LLUL(2*i,2)/LLUL(((2*i)-1),1))) >= 0 
          %Delta Squared 
          dsq(i,:)=[(1-(LLUL(2*i,2)/LLUL(((2*i)-1),1)))^2 ... 
              (1-(LLUL(2*i,1)/LLUL(((2*i)-1),2)))^2]; 
      else 
          dsq(i,:)=[0  (1-(LLUL(2*i,1)/LLUL(((2*i)-1),2)))^2]; 
      end; 
  end; 
sumsqu=[(sum(dsq(1:((length(LLUL(:,1)))/2),1))-... 
    dsq(reqnfreq,1))/dsq(reqnfreq,2)... 
    (sum(dsq(1:((length(LLUL(:,1)))/2),2))-... 
    dsq(reqnfreq,2))/dsq(reqnfreq,1)];... 
    %sum(di^2/(d^2 of the required normalised freq.)) 
NormalisedFreq=[(1+sumsqu(2))^-0.5  (1+sumsqu(1))^-0.5]; 
End 

 

• MATLAB code for calculating the natural frequencies and mode shapes: 

clear; clear all; format long; 
fe=10;   %Number of frame elements 
Ec=206e9; %Young’s modulus in N m-2 

Ic=0.198*((0.122)^3)/12; %Second moment of area in m4 

mc=185.3973; %Mass per unit length in Kg m-1 

Ac=0.198*0.122; %Cross-sectional area in m2 
h=0.122; %Cross-sectional height in m   
E(1:fe,1)=Ec; A(1:fe,1)=Ac; I(1:fe,1)=Ic; m(1:fe,1)=mc; %Vectors 

of properties for each and every frame member  
conn=[1 2; 2 3; 3 4; 4 5; 5 6; 4 7; 7 8; 8 9; 2 5; 5 8]; 
nodes=9; angle=[pi/2 pi/2 0 -pi/2 -pi/2 0 -pi/2 -pi/2 0 0]; 
sup=[1 2 3 16 17 18 25 26 27]; %Nodes 1, 6, and 9 are clamped 
mem=[1 1 1 1 1 1 1 1 1 1]; %Frame is uncracked 
L=[3 0; 3 0; 6 0; 3 0; 3 0; 6 0; 3 0; 3 0; 6 0; 6 0]; %The column 

of zeros can be deleted if all members are uncracked. 

B=0.3; %Crack depth to section height ratio 
CB=B*(2-B)/(0.9*((B-1)^2)); %Function corresponding to the 

rotational spring model implemented by Caddemi and Caliò  
ksc=Ec*Ic/(h*CB); ks(9,1)=ksc; %Equivalent spring stiffness for a 

crack in Member 9. 
reqmodes=[1 2 3 4]; %Required natural frequencies, must be 

arranged in ascending order of modes 

fr=length(reqmodes); %Total number of required natural 

frequencies 
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fe350=350; %Number of short elements the frame is divided into 

for mode shape calculation 
E350(1:fe350,1)=Ec; A350(1:fe350,1)=Ac;... 
    I350(1:fe350,1)=Ic; m350(1:fe350,1)=mc; %Properties of the 

short elements 
L350(1:fe350,1)=0.12; L350(275,1)=0.03;... 
    L350(275,2)=0.12-L350(275,1); %Each short element is 0.12 m 

in length. Cracked element no. 275 is part of Member 9  
mem350(1:fe350)=1; mem350(275)=2; %Lengths and number of portions 

of the small elements 
%X and Y Coordinates of the small elements’ nodes, required for 

mode shape plotting  

coorx(1:51)=0.0; coorx(52:101)=0.12:0.12:6.0; coorx(102:151)=6.0; 
coorx(152:201)=6.12:0.12:12.0; coorx(202:251)=12.0; 
coorx(252:300)=0.12:0.12:5.88; coorx(301:349)=6.12:0.12:11.88; 
coory(1:51)=0.0:0.12:6.00; coory(52:101)=6.0; 
coory(102:151)=5.88:-0.12:0.0; coory(152:201)=6.0; 
coory(202:251)=5.88:-0.12:0.0; coory(252:300)=3.0; 
coory(301:349)=3.0; 
%Node connectivity for the small elements 

for i=1:fe350 
    conn350(i,:)=[i i+1]; 
end; 
conn350(151,:)=[101 152]; conn350(251,:)=[26 252]; 
conn350(300,:)=[300 126]; conn350(301,:)=[126 301]; 
for i=302:349 
    conn350(i,:)=[i-1 i]; 
end; 
conn350(350,:)=[349 226]; 
nodes350=349; %Total number of nodes for the small elements 

%Angles of the small elements 

angle350(1:50)=pi/2;  
angle350([101:150 201:250])=-pi/2; 
angle350([51:100 151:200 251:350])=0; 

%Suppressed degrees of freedom for the small elements 
sup350=[1 2 3 451 452 453 751 752 753]; %Nodes 1, 151, and 251 

are clamped (these correspond to Nodes 1, 6, and 9 of the 

undivided frame 
ks350(275,1)=ksc; %Equivalent spring stiffness for the crack in 

Element 275, part of Member 9 
w=0.000001; %Trial value for ‘w’  
J=WWfDKAG(w, nodes, sup, conn, angle, L, E, A, I, m, ks,... 
    mem, fe); 
for r=reqmodes %Calculating the required natural frequencies, the 

orders of which are defined by ‘reqmodes’ 
    while r>J %Establishing the lower and upper limits around the 

required natural frequency 
        wl=w; w=2*w; wu=w;  
        J=WWfDKAG(w, nodes, sup, conn, angle, L, E,... 
            A, I, m, ks, mem, fe); 
    end; 
    while (wu-wl)>0.000000000001  %Required accuracy 
        w=(wu+wl)/2; %Bisection 
        J=WWfDKAG(w, nodes, sup, conn, angle, L, E,... 
            A, I, m, ks, mem, fe); 
        if r>J 
            wl=w; 
        else 
            wu=w; 
        end; 
    end; 
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    wr(r)=w; 
end; 
EUfHz(1:fr,1)=wr(reqmodes)./(2*pi) %Exact uncracked natural 

frequencies in Hz  
UfHz(1:fr,1)=fix(EUfHz*1000)/1000; %Uncracked natural frequencies 

considered up to three decimal places, to be used for crack 

detection simulations  
mem=[1 1 1 1 1 1 1 1 2 1]; %Member 9 has one crack 
L=[3 0; 3 0; 6 0; 3 0; 3 0; 6 0; 3 0; 3 0; 
    6*0.485 6*(1-0.485); 6 0]; 
w=0.000001;   
J=WWfDKAG(w, nodes, sup, conn, angle, L, E, A, I, m, ks,... 
    mem, fe); 
for r=reqmodes 
    while r>J 
        wl=w; w=2*w; wu=w; 
        J=WWfDKAG(w, nodes, sup, conn, angle, L, E,... 
            A, I, m, ks, mem, fe); 
    end; 
    while (wu-wl)>0.000000000001 
        w=(wu+wl)/2; 
        J=WWfDKAG(w, nodes, sup, conn, angle, L, E,... 
            A, I, m, ks, mem, fe); 
        if r>J 
            wl=w; 
        else 
            wu=w; 
        end; 
    end; 
    wr(r)=w; 
    modeshape(r,:)=WWfDKAGModeshapes(w, nodes350,... 
        sup350, conn350, angle350, L350, E350,... 
        A350, I350, m350, ks350, mem350, fe350); 
end; 
fHz(1:fr,1)=wr(reqmodes)./(2*pi) %Natural frequencies 

corresponding to a crack in Member 9, having a crack depth to 

section height ratio of 0.3 
MfHz(1:fr,1)=fix(fHz*1000)/1000; %Cracked natural frequencies 

considered up to three decimal places, to be used for crack 

detection simulations  
for mode=reqmodes; %Mode shape calculations and plotting 
dx([1 151 251])=0.0; %Zero horizontal displacements at clamped 

nodes 1, 151, and 251 of the divided frame  
dx([2:150 152:250 252:349])=0.2*modeshape(mode,1:3:1036); %0.2 is 

an arbitrary scaling factor, 1036 is the horizontal degree of 

freedom of node no. 346 
dy([1 151 251])=0.0; %Zero vertical displacements at clamped 

nodes 1, 151, and 251 of the divided frame 
dy([2:150 152:250 252:349])=0.2*modeshape(mode,2:3:1037); 
figure %Plotting the coordinates of each node + displacements  
plot(coorx(1:151)+dx(1:151), coory(1:151)+dy(1:151)) 
hold all 
plot(coorx([101 152:251])+dx([101 152:251]),... 
    coory([101 152:251])+dy([101 152:251])) 
hold all 
plot(coorx([26 252:300 126 301:349 226])+... 
    dx([26 252:300 126 301:349 226]),... 
    coory([26 252:300 126 301:349 226])+... 
    dy([26 252:300 126 301:349 226])) 
end; 
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• MATLAB code for detecting crack location ranges in frames: 

clear; clear all; format long; 
fe=10; 
Ec=206e9; Ic=0.198*((0.122)^3)/12; mc=185.3973; Ac=0.198*0.122; 
h=0.122;    
E(1:fe,1)=Ec; A(1:fe,1)=Ac; I(1:fe,1)=Ic; m(1:fe,1)=mc; 
conn=[1 2; 2 3; 3 4; 4 5; 5 6; 4 7; 7 8; 8 9; 2 5; 5 8]; 
nodes=9; angle=[pi/2 pi/2 0 -pi/2 -pi/2 0 -pi/2 -pi/2 0 0]; 
sup=[1 2 3 16 17 18 25 26 27]; 
B=0.1; %Randomly assumed crack depth to section height ratio 
CB=B*(2-B)/(0.9*((B-1)^2)); 
ksc=Ec*Ic/(h*CB); ks(1:10,1)=ksc; 
reqmodes=[1 2 3 4]; fr=length(reqmodes); 
UfHz=[3.267; 10.852; 12.084; 14.320]; %Simulated or measured 

uncracked natural frequencies in Hz 
MfHz=[3.267; 10.850; 12.069; 14.223]; %Simulated or measured 

cracked natural frequencies in Hz 
mem=[1 1 1 1 1 1 1 1 1 1]; 
L=[3 0; 3 0; 6 0; 3 0; 3 0; 6 0; 3 0; 3 0; 6 0; 6 0]; 
w=0.000001;   
J=WWfDKAG(w, nodes, sup, conn, angle, L, E, A, I, m, ks,... 
    mem, fe); 
for r=reqmodes %Calculation of accurate uncracked natural 

frequencies 
    while r>J 
        wl=w; w=2*w; wu=w; 
        J=WWfDKAG(w, nodes, sup, conn, angle, L, E,... 
            A, I, m, ks, mem, fe); 
    end; 
    while (wu-wl)>0.000000000001 
        w=(wu+wl)/2; 
        J=WWfDKAG(w, nodes, sup, conn, angle, L, E,... 
            A, I, m, ks, mem, fe); 
        if r>J 
            wl=w; 
        else 
            wu=w; 
        end; 
    end; 
    wr(r)=w; 
end; 
EUfHz(1:fr,1)=wr(reqmodes)./(2*pi) 
d=[1 2 3 4 5 9]; %Crack is placed at each discretisation point in 

the symmetric frame while calculating the cracked natural 

frequencies and normalising the frequency variations 
for di=1:length(d) 
    mem=[1 1 1 1 1 1 1 1 1 1]; 
    L=[3 0; 3 0; 6 0; 3 0; 3 0; 6 0; 3 0; 3 0; 6 0; 6 0]; 
    %Discretisation points 

    if L(d(di),1)==3 
        p=[0.1 0.15:0.15:2.85 2.9]; location=p./L(d(di),1); 
    else p=[0.1 0.15:0.15:5.85 5.9]; location=p./L(d(di),1);    
    end; 
    mem(d(di))=2; 
    for dp=1:length(p) 
        if sum(L(d(di),:))==3.0 
            L(d(di),:)=[p(dp) 3.0-p(dp)]; 
        else L(d(di),:)=[p(dp) 6.0-p(dp)]; 
        end; 
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        w=0.000001; 
        J=WWfDKAG(w, nodes, sup, conn, angle, L, E, A,... 
            I, m, ks, mem, fe); 
        for r=reqmodes 
            while r>J 
                wl=w; w=2*w; wu=w; 
                J=WWfDKAG(w, nodes, sup, conn, angle,... 
                    L, E, A, I, m, ks, mem, fe); 
            end; 
            while (wu-wl)>0.000000000001 
                w=(wu+wl)/2; 
                J=WWfDKAG(w, nodes, sup, conn, angle,... 
                    L, E, A, I, m, ks, mem, fe); 
                if r>J 
                    wl=w; 
                else 
                    wu=w; 
                end; 
            end; 
            wr(r)=w; 
        end; 
        format long; 
        dltafHz(((fr*d(di))-(fr-1)):(fr*d(di)),dp)=... 
            (EUfHz-(wr(reqmodes)./(2*pi))')./EUfHz; 
        ndltafHz(((fr*d(di))-(fr-1)):(fr*d(di)),dp)=... 
            dltafHz(((fr*d(di))-(fr-1)):(fr*d(di)),dp)./... 
            norm(dltafHz(((fr*d(di))-(fr-1)):(fr*d(di)),dp)); 

        %Exact normalised natural frequency variations        
    end; 
    intervalinput(1,1:2:(2*fr))=UfHz'; 
    intervalinput(1,2:2:(2*fr))=MfHz'; %Preparing inputs to be 

used for the ‘interval’ function 
    %Error in uncracked freq. 
    error(1:2:(2*fr),1)=[0.005; 0.005; 0.005; 0.005]; 
    %Error in cracked freq. 
    error(2:2:(2*fr),1)=[0.005; 0.005; 0.005; 0.005]; 
    for i=1:fr 
        intervalindex(i:fr:(fr*fe),1)=i; %Required input for the 

function ‘interval’ where each natural frequency is assigned an 

index number 1, 2, 3,...etc. 
    end; 
    figure('DefaultAxesFontName','Arial',... 
        'DefaultAxesFontSize',11) 
    icounter=((fr*d(di))-(fr-1)):(fr*d(di)); 
    for i=1:length(icounter) %Loop for detecting the crack 

location ranges by calculating the intervals for the simulated or 

measured normalised natural frequency variations then calculating 

their intersections with the interpolated normalised frequency 

variation curves while plotting the results  
        rdloc(icounter(i),:)=interval(intervalindex... 
            (icounter(i),1),intervalinput,error); 
        v(icounter(i))=csapi(location,... 
            ndltafHz(icounter(i),1:length(location))); 
        LocLLtempv=fnzeros(fncmb(v(icounter(i)),... 
            '-',rdloc(icounter(i),1))); 
        LocLL(icounter(i),1:length(LocLLtempv(1,:)))=... 
            LocLLtempv(1,:); 
        LocULtempv=fnzeros(fncmb(v(icounter(i)),'-',... 
            rdloc(icounter(i),2)));  
        LocUL(icounter(i),1:length(LocULtempv(1,:)))=... 
            LocULtempv(1,:); 



Appendix  128 

PhD Thesis, Amr Labib, 2015 

        format short 
        srange(icounter(i),1:length([LocLLtempv(1,:)... 
            LocULtempv(1,:)]))=sort([LocLLtempv(1,:)... 
            LocULtempv(1,:)]) %sorted ranges  
        subplot(fr,1,i); 
        if L(d(di),1)==2.9 
        xx=[0.1/3 0.04:0.01:0.95 2.9/3]; 
        else xx=[0.1/6 0.02:0.01:0.97 5.9/6]; 
        end; %Extra points for curve plotting 
        yy=[]; yy(1:length(xx))=0; 
        for pl=1:length(xx) 
            yy(pl)=csapi(location,ndltafHz(... 
                icounter(i),1:length(location)),xx(pl)); 
            if csapi(location,ndltafHz(icounter(i),... 
                    1:length(location)),xx(pl))<0 
                yy(pl)=0; 
            end; 
            if csapi(location,ndltafHz(icounter(i),... 
                    1:length(location)),xx(pl))>1 
                yy(pl)=1; 
            end; 
        end; 
        plot(xx,yy,'-k','LineWidth',2),hold on,... 
            plot([0 1],[rdloc(icounter(i),1) ... 
            rdloc(icounter(i),1)] ,':k'), hold on,... 
            plot([0 1],[rdloc(icounter(i),2) ... 
            rdloc(icounter(i),2)],':k'), hold on 
        for j=1:length(LocLL(icounter(i),:)) 
            if LocLL(icounter(i),j)~=0 
                plot([LocLL(icounter(i),j) ... 
                    LocLL(icounter(i),j)],[0 1],':k'),hold on 
            end; 
        end; 
        for j=1:length(LocUL(icounter(i),:)) 
            if LocUL(icounter(i),j)~=0 
                plot([LocUL(icounter(i),j) ... 
                    LocUL(icounter(i),j)],[0 1],':k'),hold on 
            end; 
        end; 
        daspect([1 5 1]);    %To control the axes width 
        text(0.3,rdloc(icounter(i),1),'Lower Limit',... 
            'HorizontalAlignment','right',... 
            'VerticalAlignment','Bottom','fontsize',... 
            11,'fontname','Arial') 
        text(0.3,rdloc(icounter(i),2),'Upper Limit',... 
            'HorizontalAlignment','right',... 
            'VerticalAlignment','Top','fontsize',11,... 
            'fontname','Arial') 
        xlabel('                  ','fontsize',11,... 
            'fontname','Arial','fontangle','italic'); 
        axis([0 1.0 0 1.005]) 
        set(gca,'XTick',0:0.1:1.0) 
        set(gca,'XTickLabel',{'0','','0.2','','0.4',... 
            '','0.6','','0.8','','1.0'}) 
        set(gca,'YTick',0:0.5:1.0) 
        set(gca,'YTickLabel',{'0','0.5','1.0'}) 
    end; 
end; 
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• MATLAB code for detecting crack severity ranges in frames: 

clear; clear all; 
fe=10; %Number of frame members 
Ec=206e9; Ic=0.198*((0.122)^3)/12; mc=185.3973; Ac=0.198*0.122; 
h=0.122; E(1:fe,1)=Ec; A(1:fe,1)=Ac; I(1:fe,1)=Ic; m(1:fe,1)=mc; 
conn=[1 2; 2 3; 3 4; 4 5; 5 6; 4 7; 7 8; 8 9; 2 5; 5 8]; 
nodes=9; angle=[pi/2 pi/2 0 -pi/2 -pi/2 0 -pi/2 -pi/2 0 0]; 
sup=[1 2 3 16 17 18 25 26 27]; 
UfHz=[3.267; 10.852; 12.084; 14.320]; %Simulated or measured 

uncracked natural frequencies in Hz 
MfHz=[3.267; 10.850; 12.069; 14.223]; %Simulated or measured 

cracked natural frequencies in Hz 
uerror=[0.005; 0.005; 0.005; 0.005]; %Error in uncracked freq. 
merror=[0.005; 0.005; 0.005; 0.005]; %Error in cracked freq. 
freq=[1 2 3 4]; %Mode numbers 
loc=[0.003:0.003:5.997]; %Detected crack location range in Member 

9 
for iloc=1:length(loc) 
    mem=[1 1 1 1 1 1 1 1 2 1]; 
    L=[3 0; 3 0; 6 0; 3 0; 3 0; 6 0; 3 0; 3 0; 
       loc(iloc) 6-loc(iloc); 6 0]; 
    for ifreq=1:length(freq) 

        %Two Possible cases for the uncracked and cracked natural 

frequency ranges corresponding to one mode 
        if MfHz(ifreq)+merror(ifreq) <=... 
                UfHz(ifreq)-uerror(ifreq) %No overlapping 

frequency ranges 
                w=(MfHz(ifreq)+merror(ifreq))*2*pi; 

                %Frequency in rad s-1  

                      Bl=0.0001; Bu=1.0; %Lower and upper limits for 

the crack depth to section height ratio B 

                for r=freq(ifreq) 
                    while (Bu-Bl)>0.000000000001 
                        B=(Bu+Bl)/2; %Bisection 

                        CB=B*(2-B)/(0.9*((B-1)^2)); 
                        ksc=Ec*Ic/(h*CB); ks(1:10,1)=ksc; 
                        J=WWfDKAG(w, nodes, sup, conn, angle,... 
                            L, E, A, I, m, ks, mem, fe); 
                        if r>J 
                            Bl=B; 
                        else 
                            Bu=B; 
                        end; 
                    end; 
                    Br=B; 
                end; 
                LLBfinal(ifreq)=Br; %Lower limit for the crack 

severity 

                ULfHz(ifreq)=w/(2*pi); %Upper limit for the 

frequency 
                w=(MfHz(ifreq)-merror(ifreq))*2*pi; 

                Bl=0.0001; Bu=1.0; 

                for r=freq(ifreq) 
                    while (Bu-Bl)>0.000000000001 
                        B=(Bu+Bl)/2; CB=B*(2-B)/(0.9*((B-1)^2)); 
                        ksc=Ec*Ic/(h*CB); ks(1:10,1)=ksc; 
                        J=WWfDKAG(w, nodes, sup, conn, angle,... 
                            L, E, A, I, m, ks, mem, fe); 
                        if r>J 
                            Bl=B; 



Appendix  130 

PhD Thesis, Amr Labib, 2015 

                        else 
                            Bu=B; 
                        end; 
                    end; 
                    Br=B; 
                end; 
                ULBfinal(ifreq)=Br; %Upper limit for the crack 

severity 

                LLfHz(ifreq)=w/(2*pi); %Lower limit for the 

frequency 
        else %In the case of overlapping frequency ranges  
            w=(MfHz(ifreq)-merror(ifreq))*2*pi; 

            Bl=0.0001; Bu=1.0; 

            for r=freq(ifreq) 
                while (Bu-Bl)>0.000000000001 
                    B=(Bu+Bl)/2; CB=B*(2-B)/(0.9*((B-1)^2)); 
                    ksc=Ec*Ic/(h*CB); ks(1:10,1)=ksc; 
                    J=WWfDKAG(w, nodes, sup, conn, angle, L,... 
                        E, A, I, m, ks, mem, fe); 
                    if r>J 
                        Bl=B; 
                    else 
                        Bu=B; 
                    end; 
                end; 
                Br=B; 
            end; 
            ULBfinal(ifreq)=Br; LLfHz(ifreq)=w/(2*pi); 

            LLBfinal(ifreq)=0; ULfHz(ifreq)=w/(2*pi); 
        end; 
    end; 
    RBfinal(((length(freq)*iloc)-(length(freq)-1)):... 
             (length(freq)*iloc),1)=loc(iloc); 
    RBfinal(((length(freq)*iloc)-(length(freq)-1)):... 
             (length(freq)*iloc),2:5)=... 
             [ULfHz' LLBfinal' LLfHz' ULBfinal']; 
    CRBfinal(iloc,:)=[loc(iloc) max(LLBfinal) min(ULBfinal)]; 
    %Final Common Ranges for B 
end; 
RBfinal 
delindex=0;  %delete incorrect ranges and replace with zero 
for i=1:length(CRBfinal(:,1)) 
    if CRBfinal(i,2)>=CRBfinal(i,3) 
        delindex=delindex+1; 
        del(delindex)=i; 
    end; 
end; 
if delindex>0 
    CRBfinal(del,:)=[]; 
end; 
if isempty(CRBfinal) 
else 
    xlswrite('Branges.xlsx',CRBfinal) 
    figure 
    plot(CRBfinal(:,1), CRBfinal(:,2),... 
        CRBfinal(:,1), CRBfinal(:,3)) 
end; 
CRBfinal 
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