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Abstract 

In this paper, we present a general EOQ model for items that are subject to inspection for imperfect 

quality. Each lot that is delivered to the sorting facility undertakes a 100% screening and the 

percentage of defective items per lot reduces according to a learning curve. The generality of the 

model is viewed as important both from an academic and practitioner perspective. The 

mathematical formulation considers arbitrary functions of time that allow the decision maker to 

assess the consequences of a diverse range of strategies by employing a single inventory model. A 

rigorous methodology is utilised to show that the solution is a unique and global optimal and a 

general step-by-step solution procedure is presented for continuous intra-cycle periodic review 

applications. The value of the temperature history and flow time through the supply chain is also 

used to determine an efficient policy. Furthermore, coordination mechanisms that may affect the 

supplier and the retailer are explored to improve inventory control at both echelons. The paper 

provides illustrative examples that demonstrate the application of the theoretical model in different 

settings and lead to the generation of interesting managerial insights. 

 
Keywords: Inventory; Imperfect quality; Deterioration; Perishable items; Periodic review.  

 

1. Introduction and background  

Since the introduction of the Economic Order Quantity (EOQ) model by Harris (1913), 

frequent contributions have been made in the literature towards the development of 

alternative models that overcome the unrealistic assumptions embedded in the EOQ 

formulation. For example, the assumption related to the perfect quality items is 

technologically unattainable in most supply chain applications (Cheng, 1991). In contrast, 

products can be categorised as ‘good quality’, ‘good quality after reworking’, ‘imperfect 

quality’ and ‘scrap’ (Chan et al., 2003; Pal et al., 2013). In practice, the presence of defective 

items in raw material or finished products inventories may deeply affect supply chain 

coordination and, consequently, the product flows among supply chain levels may become 

unreliable (Roy et al., 2013). In response to this concern, the enhancement of currently 

available production and inventory order quantity models, that accounts for imperfect items 
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in their mathematical formulation, has become an operational priority in supply chain 

management (Khan et al., 2011). This enhancement may also include the knowledge 

transfer between supply chain entities in order to reduce the percentage of defective items.  

 
EOQ models are associated with another implicit assumption that stored items may retain 

the same utility indefinitely, i.e. they do not lose their value as time goes on. This 

assumption may be valid for certain items. However, real-life systems analysis suggests that 

goods are subject to ‘obsolescence’, ‘perishability’ and  ‘deterioration’ that have a direct 

impact on the flow of an item as it moves through the supply chain (Goyal and Giri, 2001; 

Bakker et al., 2012; Pahl and Voß, 2014). In relation to the perishable items, Amorim et al. 

(2013) presented a classification of perishable models for items that have explicit 

characteristics related to their physical status (e.g. by spoilage, decay or depletion) and/or 

changes in their value as perceived by the customer and/or a risk of future reduced 

functionality according to specialist's opinion.  

 
The complexity and drivers associated with product waste and loss have been increasingly 

discussed in the academic literature and include such issues as imperfect quality items (that 

necessitate an inspection to take place at various supply chain stages to ensure the quality 

of the product is adequate) (Gunders, 2012). For example, in the food and drink industry, 

different proportions of food waste are attributed to different stages in the supply chain, 

from production to handling and storage, processing and packaging, distribution and retail 

and finally at the household consumption stage. In particular, the fresh meat sector has 

been identified as the largest producer of waste and accounts overall for 25% of the waste, 

ahead of fruit and vegetables at 13% (WRAP, 2012a). The waste and spoilage related to 

inventory decisions represent a large proportion, and it is estimated that around 10% of all 

perishable goods are spoiled before they reach consumers (Roberti, 2005; Tortola, 2005; 

Boyer, 2006). WRAP (2012b) published that “5-25% of fruit and vegetable crop might not 

get through the supply chain to retail customers”. For example, in the onion supply chain, 

losses related to grading account for 9-20%; storage 3-10% and in the packing process they 

equate to 2-3% loss. The main causes of waste in these examples relate to product 

specification, product deterioration and reliance on (excessive) storage to cope with 

fluctuations in (forecasted) demand. The product shelf lifetime also depends on various 
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environmental factors such as the product’s temperature history, humidity, transportation 

and handling (Ketzenberg et al., 2015). Further, increases in the time products are being 

stored as well as changes in the environment of the storage facilities (e.g. temperature 

storage and controlled atmosphere storage) may result in an increase (or a decrease) of the 

deterioration rate of certain commodities. This means that the identification of an 

appropriate ordering policy is an essential but challenging task.  

 
Appropriate management of perishable inventories, in conjunction with modern 

technologies, play an important role in monitoring the condition of those goods in different 

stages of the supply chain. Ketzenberg et al. (2015) emphasised the importance of the value 

of information generated from using different systems in the decision making process in the 

grocery industry (that is associated with low net margins). For example, continuous 

automated inventory control systems are capable of tracking, recording and transmitting 

relevant information regarding an item as it moves through the network. The deployment of 

radio-frequency identification (RFID) systems, data loggers and time–temperature 

integrators and sensors lead to a reduction of product spoilage and economic benefits 

(Ketzenberg et al., 2015). The potential benefits of RFID for logistics, transportation and 

warehousing relate to increased supply chain visibility, which in turn increases efficiency, 

lowers safety stocks, and provides the same or even better customer service level (Gaukler 

et al., 2007). For further details related to this technology, see Jedermann et al. (2008) and 

Wessel (2007).  

 
This paper aims to address the quality related issues discussed above when modelling 

inventories for items that require 100% screening. In particular, a general EOQ model for 

items with imperfect quality is presented; the solution to the underlying inventory system, if 

it exists, is shown to be a unique and global optimal. The mathematical formulation 

considers arbitrary functions of time that allow the decision maker to assess the 

consequences of a diverse range of strategies by employing a single inventory model. 

Previously published models in this area are shown to be special cases of our model. The 

behavior of different conditions (such as using functions for varying demand, screening, 

defective and deterioration rates, value of information (VOI) and perishable items that are 

subject to deterioration while in storage) is studied using illustrative examples, and 
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interesting insights are offered to practitioners. This paper intersects the areas of fixed and 

random items’ lifetimes since the assumption that each lot is subjected to a 100% screening 

will render the (potential) random lifetime of a product deterministic. The focus of this 

study is on the value and use of technologies such as RFID to capture the time and 

temperature history (TTH) to model shelf lifetime and not the technologies themselves.  

 
The remainder of the paper is organised as follows: Section 2 discusses the literature related 

to perishable inventories, value of information (VOI) and models that consider imperfect 

quality items. Our EOQ model for items with imperfect quality, the assumptions and 

notations of the inventory system are presented in Section 3. The solution procedures are 

presented in Section 4, followed, in Section 5, by illustrative examples and special cases that 

demonstrate the application of the theoretical results in practice. Managerial insights and 

concluding remarks are provided in Sections 6 and 7 respectively. Finally, supplementary 

material presented in an electronic companion to this paper offers a proof of the optimality 

and uniqueness of our solution. 

 

2. Literature review 

The academic literature related to inventory control for imperfect quality items is 

multidisciplinary in nature and, for reviewing / presentation purposes in this paper, is 

thematically organised around three main streams of research: 1) deterioration, 

perishability and shelf lifetime constraints; 2) the value of information; and 3) model 

formulations and related solution techniques that consider imperfect quality items.  

 
2.1. Deterioration, perishability and lifetime constraints  

The terms ‘deterioration’, ‘perishability’ and ‘obsolescence’ are used interchangeably in the 

literature and may often be perceived as ambiguous because they are linked to particular 

underlying assumptions regarding the physical state/fitness and behaviour of items over 

time (Teunter and Flapper, 2003; Pahl and Voß, 2010; 2014; Krommyda et al., 2013). In this 

paper, deterioration refers to the process of decay, damage or spoilage of a product, i.e. the 

product loses its value of characteristics and can no longer be sold/used for its original 

purpose (Dave, 1986; Wee, 1993; Shah et al., 2005; Darlington and Rahimifard, 2006; 

Ferguson and Koenigsberg, 2007; Pei-xin, 2007). In contrast, an item with a fixed lifetime 
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perishes once it exceeds its maximum shelf lifetime and then must be discarded (Ferguson 

and Ketzenberg, 2005; Olsson, 2009). Obsolescence incurs a partial or a total loss of value of 

the on hand inventory in such a way that the value for a product continuously decreases 

with its perceived utility (Joglekar and Lee, 1993; Jain and Silver, 1994; Dohi and Osaki, 

1995; Song and Zipkin, 1996; Van Delft and Vial, 1996; Elmaghraby and Keskinocak, 2003; 

Leung and Ng, 2007). Pahl and Voß (2014) provided an extensive discussion on 

mathematical modelling and the quality of information underlying deterioration, 

perishability and lifetime constraints of items. They demonstrate that the combination of 

such aspects is important in many industries where deterioration effects significantly 

influence the business outcomes. Nahmias (1975, 1977) introduced the fixed lifetime case 

and analysed the problem of a random lifetime product managed under periodic review 

with stationary stochastic demand. He assumed no fixed order cost and backlogged demand 

and orders perishing in the same sequence that they enter stock (i.e. a First In First Out - 

FIFO policy). Ketzenberg et al. (2012) extended the work of Nahmias (1977) and addressed 

the random lifetime as a function of the product’s TTH in the supply chain. They allowed for 

orders to perish out of sequence, to discard inventory that remains good for sale and to sell 

inventory that may have already perished. In a follow-up study, Ketzenberg et al. (2015) 

considered a case according to which unsatisfied demand is lost, products may arrive 

already perished and orders may not perish in sequence by focusing on determining the VOI 

for integrating the TTH into the order policy. As we attempt to provide a general model that 

takes into account many possible practical scenarios, the behaviour of these conditions will 

be discussed through illustrative examples. In this paper, we consider perishable and non-

perishable (infinite shelf lifetime) items, which are subject to deterioration while they are in 

storage. As discussed above, this study intersects two areas of fixed and random lifetimes 

since the assumption that each lot is subjected to a 100% screening will render a potential 

random lifetime of a product deterministic. 

 
2.2. Value of information (VOI)     

There is a unanimous agreement among researchers and practitioners on the benefits of 

information sharing that allows more timely material flows in a supply chain (Kahn, 1987; 

Metters, 1997; Costantino et al., 2013). Ketzenberg et al. (2007) conducted an extensive 

literature review of papers that: (1) address VOI in the context of inventory control, (2) 
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provide a numerical study to explore VOI over a set of varying operating characteristics and 

(3) compare two or more scenarios. In addition, they developed and tested a VOI framework 

to help identify the determinants of VOI. Common examples are agricultural, food or 

chemical products that are transported over long distances in refrigerated containers, 

where temperature variability has a direct impact on product shelf lifetime. Moreover, 

temperature control is not absolute and may indeed vary for items shipped in the same 

container (Doyle, 1995; Taoukis et al., 1999; Koutsoumanis et al., 2005).  

 
Accurate shelf lifetime monitoring is a goal of technologies that have been developed to 

collect and transmit data about the state of a product. For certain items, if temperature 

departs from a pre-defined range, the items are spoiled and must be discarded (Zacharewicz 

et al., 2011). Ketzenberg and Ferguson (2008) examined the VOI for a product with fixed 

lifetime in the context of a serial supply chain. They evaluated the case in which a supplier 

shares retailer’s demand and inventory information as well as the case in which a 

centralised decision maker collects full information at both echelons. Recently, Ketzenberg 

et al. (2015) addressed the VOI for inventory replenishment decisions to demonstrate the 

wide fluctuations in a supply chain’s TTH, the applicability and accuracy of using RFID 

temperature tags to capture the TTH, and the use of TTH to model shelf lifetime. White and 

Cheong (2012) considered the benefit of observing the quality of a perishable product in a 

food supply chain that is processed in multiple stages from origin to destination. At each 

stage, it is presumed essential to decide whether or not to inspect the quality of the product 

at a certain cost. In this regard, a 100% screening assumption not only guarantees the 

isolation of defective and/or already perished items, but also classifies the order quantity 

based on a first-to-expire first-out (FEFO) policy, rather than a FIFO one.   

 
2.3 Imperfect quality items  

The classical EOQ has been a widely accepted model for inventory control purposes due to 

its simple and intuitively appealing mathematical formulation. However, it is true to say that 

the operation of the model is based on a number of explicitly or implicitly made unrealistic 

mathematical assumptions that are never actually met in practice (Jaber et al., 2004; Liao et 

al., 2013). Salameh and Jaber (2000) developed a mathematical model that permits some of 

the items to drop below the quality requirements, i.e. a random proportion of defective 
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items are assumed for each lot size shipment, with a known probability distribution. The 

researchers assumed that each lot is subject to a 100% screening, where defective items are 

kept in the same warehouse until the end of the screening process and then can be sold at a 

price lower to that of perfect quality items. Huang (2004) developed a model to determine 

an optimal integrated vendor–buyer inventory policy for flawed items in a just-in-time (JIT) 

manufacturing environment. Maddah and Jaber (2008) developed a new model that 

rectifies a flaw in the one presented by Salameh and Jaber (2000) using renewal theory. 

Jaber et al. (2008) extended it by assuming that the percentage defective per lot reduces 

according to a learning curve. They examined empirical data from the automotive industry 

for several learning curve models and the S-shaped logistic learning curve (Jordan, 1958; 

Carlson, 1973) was found to fit well. Jaggi and Mittal (2011) investigated the effect of 

deterioration on a retailer’s EOQ when the items are of imperfect quality. In that paper, 

defective items were assumed to be kept in the same warehouse until the end of the 

screening process. Jaggi et al. (2011) and Sana (2012) presented inventory models, which 

account for imperfect quality items under the condition of permissible delay in payments. 

Moussawi-Haidar et al. (2014) extended the work of Jaggi and Mittal (2011) to allow for 

shortages. 

 
In a real manufacturing environment, the defective items are not usually stored in the same 

warehouse where the good items are stored. As a result, the holding cost must be different 

for the good items and the defective ones (e.g. Paknejad et al., 2005). With this 

consideration in mind, Wahab and Jaber (2010) presented the case where different holding 

costs for the good and defective items are assumed. They showed that if the system is 

subject to learning, then the lot size with the same assumed holding costs for the good and 

defective items is less than the one with differing holding costs. When there is no learning in 

the system, the lot size with differing holding costs increases with the percentage of 

defective items. In this section, we have cited only references that are directly relevant to 

this paper. For more details about the extensions of a modified EOQ model for imperfect 

quality items, see Khan et al. (2011). 

 
One basic assumption of the above cited contributions is that the demand rate is assumed 

to be constant and known. A survey of the inventory literature reveals that there is no 
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published work that investigates the model of Wahab and Jaber (2010) for time-varying 

demand and product deterioration. Product life cycle analysis suggests that a constant 

demand rate assumption is usually valid in the mature stage of the life cycle of the product. 

In the growth and/or declining stages, the demand rate can be well approximated by a 

linear demand function (e.g. Alamri and Balkhi (2007)). Also, one implicit assumption is that 

the stored items that are screened may retain the same utility indefinitely, i.e. they do not 

lose their value as time goes on. In fact, the variation of demand and/or product 

deterioration with time (or due to any other factors) is a quite natural phenomenon.  

 

3. Formulation of the general EOQ model  

This paper presents a general EOQ model for items with imperfect quality under varying 

demand, defective items, a screening process and deterioration rates for an infinite 

planning horizon. Consequently, the generality of the model goes beyond academic 

interests to enable inventory managers to establish the optimum order quantities that 

minimise the total system cost. In the model, each lot is subject to a 100% screening where 

items that are not conforming to certain quality standards are stored in a different 

warehouse. Therefore, different holding costs for the good and defective items are 

considered in the mathematical model. Items deteriorate while they are in storage, with 

demand, screening and deterioration rates being arbitrary functions of time. The 

percentage of defective items per lot reduces according to a learning curve. After a 100% 

screening, imperfect quality items may be sold at a discounted price as a single batch at the 

end of the screening process or incur a disposal penalty charge. Moreover, a general step-

by-step solution procedure is provided for continuous intra-cycle periodic review 

applications.  

 
3.1 Assumptions and notations  

The mathematical model is developed under the following assumptions and notations: 

1. A single item is held in stock. 

2. The lead-time is negligible and no capacity restrictions are assumed, i.e. any 

replenishment ordered at the beginning of a cycle arrives just prior to the end of that 

same cycle.  
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3. The demand, screening and deterioration rates are arbitrary functions of time 

denoted by 𝐷(𝑡), 𝑥(𝑡)  and 𝛿(𝑡) respectively. The percentage defective per lot 

reduces according to a learning curve denoted by 𝑝𝑗, where 𝑗 is the cycle index.  

4. Shortages are not allowed, i.e. we require that  (1 − 𝑝𝑗)𝑥(𝑡) ≥ 𝐷(𝑡) ∀ 𝑡 ≥ 0.  

5. The following notations are used for the cost parameters: 

𝑐 is the unit purchasing cost.          

𝑑 is the unit screening cost.          

ℎ𝑔 denotes the holding cost of good items per unit per unit time.     

ℎ𝑑 denotes the holding cost of defective items per unit per unit time.   

𝑘   is the ordering cost per cycle. 

 

3.2 The model 

At the beginning of each cycle 𝑗(𝑗 = 1,2, … ), a lot of size 𝑄𝑗 is delivered, which covers the 

actual demand and deterioration during both the first phase (screening) and the second 

phase (non-screening). Each lot is subjected to a 100% screening process at a rate of 𝑥(𝑡) 

that starts at the beginning of the cycle and ceases by time 𝑇1𝑗, by which point in time 𝑄𝑗 

units have been screened and 𝑦𝑗 units have been depleted, which is the summation of 

demand and deterioration. During this phase, items not conforming to certain quality 

standards are stored in a different warehouse. 

 

The variation in the inventory level during the first and second phase (please refer to Figure 

1) and the variation in the inventory level for the defective items (shaded area) is given by 

(1), (3) and (4) respectively. 

𝑑𝐼𝑔𝑗(𝑡)

𝑑𝑡
= −𝐷(𝑡) − 𝑝𝑗𝑥(𝑡) − 𝛿(𝑡)𝐼𝑔𝑗(𝑡),    0 ≤ 𝑡 < 𝑇1𝑗          (1) 

with the boundary condition  𝐼𝑔𝑗(0) = 𝑄𝑗, 

where   

     𝑄𝑗 = ∫ 𝑥(𝑢)𝑑𝑢
𝑇1𝑗

0
.             (2) 

𝑑𝐼𝑔𝑗(𝑡)

𝑑𝑡
= −𝐷(𝑡) − 𝛿(𝑡)𝐼𝑔𝑗(𝑡),                𝑇1𝑗 ≤ 𝑡 ≤ 𝑇2𝑗          (3) 

with the boundary condition  𝐼𝑔𝑗(𝑇2𝑗) = 0. 

𝑑𝐼𝑑𝑗(𝑡)

𝑑𝑡
= 𝑝𝑗𝑥(𝑡),       0 ≤ 𝑡 ≤ 𝑇1𝑗          (4)  

with the boundary condition 𝐼𝑑𝑗(0) = 0. 
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                                 Cycle length 
 

Figure 1. Inventory variation of an Economic Order Quantity (EOQ) model for one cycle. 
 

 

The solutions of the above differential equations are:  

𝐼𝑔𝑗(𝑡) = 𝑒−(𝑔(𝑡)−𝑔(0)) ∫ 𝑥(𝑢)𝑑𝑢
𝑇1𝑗

0
− 𝑒−𝑔(𝑡) ∫ [𝐷(𝑢) + 𝑝𝑗𝑥(𝑢)]𝑒𝑔(𝑢)𝑑𝑢

𝑡

0
, 0 ≤ 𝑡 < 𝑇1𝑗   (5) 

𝐼𝑔𝑗(𝑡) = 𝑒−𝑔(𝑡) ∫ 𝐷(𝑢)𝑒𝑔(𝑢)𝑑𝑢
𝑇2𝑗

𝑡
,                          𝑇1𝑗 ≤ 𝑡 ≤ 𝑇2𝑗   (6) 

𝐼𝑑𝑗(𝑡) = ∫ 𝑝𝑗𝑥(𝑢)𝑑𝑢
𝑡

0
,                                  0 ≤ 𝑡 ≤ 𝑇1𝑗   (7) 

respectively, where 

𝑔(𝑡) = ∫ 𝛿(𝑡) 𝑑𝑡.          (8) 

The per cycle cost components for the given inventory system are as follows: 

Total purchasing cost during the cycle = 𝑐 ∫ 𝑥(𝑢)𝑑𝑢
𝑇1𝑗

0
. Note that this cost includes the 

defective and deterioration costs. 

Holding cost = ℎ𝑔[𝐼𝑔𝑗(0, 𝑇1𝑗) + 𝐼𝑔𝑗(𝑇1𝑗, 𝑇2𝑗)] + ℎ𝑑𝐼𝑑𝑗(0, 𝑇1𝑗). 

Thus, the total cost per unit time of the underlying inventory system during the cycle 

[0, 𝑇2𝑗], as a function of 𝑇1𝑗 and 𝑇2𝑗, say 𝑍(𝑇1𝑗, 𝑇2𝑗) is given by: 

𝑍(𝑇1𝑗, 𝑇2𝑗) =
1

𝑇2𝑗
{(𝑐 + 𝑑) ∫ 𝑥(𝑢)𝑑𝑢 + ℎ𝑔 [−𝐺(0) ∫ 𝐷(𝑢)𝑒𝑔(𝑢)𝑑𝑢

𝑇2𝑗

0
+

𝑇1𝑗

0

∫ 𝐷(𝑢)𝐺(𝑢)𝑒𝑔(𝑢)𝑑𝑢
𝑇1𝑗

0
− ∫ [𝐺(0) − 𝐺(𝑢)]𝑝𝑗𝑥(𝑢)𝑒𝑔(𝑢)𝑑𝑢

𝑇1𝑗

0
+ ∫ 𝐷(𝑢)𝐺(𝑢)𝑒𝑔(𝑢)𝑑𝑢

𝑇2𝑗

𝑇1𝑗
] +

ℎ𝑑 [∫ [𝑇1𝑗 − 𝑢]𝑝𝑗𝑥(𝑢)𝑑𝑢
𝑇1𝑗

0
] + 𝑘},                      (9)  

where  
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     𝐺(𝑡) = ∫ 𝑒−𝑔(𝑡) 𝑑𝑡.               (10) 

Our objective is to find 𝑇1𝑗 and 𝑇2𝑗 that minimise 𝑍(𝑇1𝑗, 𝑇2𝑗). However, the variables 

𝑇1𝑗 and 𝑇2𝑗 are related to each other as follows:  

              0 < 𝑇1𝑗 < 𝑇2𝑗,              (11) 

      𝑒𝑔(0) ∫ 𝑥(𝑢)𝑑𝑢
𝑇1𝑗

0
= ∫ 𝐷(𝑢)𝑒𝑔(𝑢)𝑑𝑢

𝑇2𝑗

0
+ ∫ 𝑝𝑗𝑥(𝑢)𝑒𝑔(𝑢)𝑑𝑢

𝑇1𝑗

0
.           (12) 

Thus, our goal is to solve the following optimisation problem, which we shall call 

problem (𝑚) 

(𝑚) = {
minimise  𝑍(𝑇1𝑗 , 𝑇2𝑗) given by (9)

subject to (11) and  ℎ𝑗 = 0 
}, 

where  

ℎ𝑗 = 𝑒𝑔(0) ∫ 𝑥(𝑢)𝑑𝑢
𝑇1𝑗

0
− ∫ 𝑝𝑗𝑥(𝑢)𝑒𝑔(𝑢)𝑑𝑢

𝑇1𝑗

0
− ∫ 𝐷(𝑢)𝑒𝑔(𝑢)𝑑𝑢

𝑇2𝑗

0
. 

It can be noted from Eq. (12), that 𝑇1𝑗 = 0 ⟹ 𝑇2𝑗 = 0 and 𝑇1𝑗 > 0 ⟹ 𝑇1𝑗 < 𝑇2𝑗. Thus Eq. 

(12) implies constraint (11). Consequently, if we temporarily ignore the monotony 

constraint (11) and call the resulting problem as (𝑚1) then (11) does satisfy any solution of 

(𝑚1). Hence (𝑚) and (𝑚1)  are equivalent. Moreover, 𝑇1𝑗 > 0 ⟹  RHS of  (6) > 0, i.e. Eq. 

(12) guarantees that the number of good items is at least equal to the demand during the 

first phase.   

 
 

4. Solution procedure 

First, we note from (2) that 𝑇1𝑗 can be determined as a function of 𝑄𝑗, say 

      𝑇1𝑗 = 𝑓1𝑗(𝑄𝑗).              (13) 

Taking also into account Eq. (12) we find that 𝑇2𝑗 can be determined as a function of 𝑇1𝑗, 

and thus of 𝑄𝑗, say  

     𝑇2𝑗 = 𝑓2𝑗(𝑄𝑗).              (14) 

Thus, if we substitute (12)-(14) in (9) then problem (𝑚) will be converted to the following 

unconstrained problem with the variable 𝑄𝑗 (which we shall call problem (𝑚2)). 

𝑊(𝑄𝑗) =
1

𝑓2𝑗
{(𝑐 + 𝑑) ∫ 𝑥(𝑢)𝑑𝑢 + ℎ𝑔 [−𝐺(0)𝑒𝑔(0) ∫ 𝑥(𝑢)𝑑𝑢

𝑓1𝑗

0
+

𝑓1𝑗

0

∫ 𝑝𝑗𝑥(𝑢)𝐺(𝑢)𝑒𝑔(𝑢)𝑑𝑢
𝑓1𝑗

0
+ ∫ 𝐷(𝑢)𝐺(𝑢)𝑒𝑔(𝑢)𝑑𝑢

𝑓2𝑗

0
] + ℎ𝑑 [∫ [𝑓1𝑗 − 𝑢]𝑝𝑗𝑥(𝑢)𝑑𝑢

𝑓1𝑗

0
] + 𝑘}.

                                       (15) 

Now, the necessary condition for having a minimum for problem (𝑚2) is  
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𝑑𝑊

𝑑𝑄𝑗
= 0.                (16) 

To find the solution of (16), let   𝑊 =
𝑤

𝑓2𝑗
  then 

𝑑𝑊

𝑑𝑄𝑗
=

𝑤𝑄𝑗
′ 𝑓2𝑗−𝑓2𝑗,𝑄𝑗

′ 𝑤

𝑓2𝑗
2 ,                 (17) 

where 𝑤𝑄𝑗

′  and 𝑓2𝑗,𝑄𝑗

′  are the derivatives of 𝑤 and 𝑓2𝑗 w.r.t 𝑄𝑗, respectively. Hence, (16) is 

equivalent to     

        𝑤𝑄𝑗

′ 𝑓2𝑗 = 𝑓2𝑗,𝑄𝑗

′ 𝑤.                   (18) 

Also, taking the first derivative of both sides of (12) w.r.t 𝑄𝑗 we obtain 

         𝑒𝑔(0) − 𝑝𝑗𝑒𝑔(𝑓1𝑗) = 𝑓2𝑗,𝑄𝑗

′ 𝐷(𝑓2𝑗)𝑒𝑔(𝑓2𝑗).       (19) 

From which and (13)-(15) we have  

𝑤𝑄𝑗

′ = (𝑐 + 𝑑) + ℎ𝑔 [(𝐺(𝑓2𝑗) − 𝐺(0)) 𝑒𝑔(0) + (𝐺(𝑓1𝑗) − 𝐺(𝑓2𝑗)) 𝑝𝑗𝑒𝑔(𝑓1𝑗)] +

ℎ𝑑

𝑥(𝑓1𝑗)
∫ 𝑝𝑗𝑥(𝑢)𝑑𝑢

𝑓1𝑗

0
.                          (20) 

Also, (18) ⇔   𝑊 =
𝑤

𝑓2𝑗
=

𝑤𝑄𝑗
′

𝑓2𝑗,𝑄𝑗
′  ,                    (21) 

where 𝑊  is given by (15) and 𝑤𝑄𝑗

′

 
is given by (20). Eq. (21) can be used to determine the 

optimal value of 𝑄𝑗 and its corresponding total minimum cost. Then the optimal values of 

𝑇1𝑗 and 𝑇2𝑗 can be found from (13) and (14), respectively. 

 

5. Illustrative examples for different settings 

In this section we present a number of examples and special cases to illustrate the efficiency 

of our mathematical model and solution procedures. First we consider scenarios with 

varying demand, screening, defective and deterioration rates. Then we present special cases 

for intra-cycle periodic review, perishable products and renewal theory. 

 
5.1 Varying demand, screening, defective, and deterioration rates 

In practice, the demand for products relies heavily on price (when price elasticity holds), 

time and quality (Karmarkar and Pitbladdo, 1997). In addition, increasing (decreasing) 

demand functions over time with quadratic, linear, exponential and stock-dependent trends 

is a natural phenomenon (Murdeshwar, 1988; Hariga and Benkherouf, 1994; Datta et al. 

1998; Alamri, 2011; Benkherouf et al., 2013 ). For example, essential commodities and 
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seasonal products may follow steadily increasing quadratic or linear demand functions over 

time (Mandal and Maiti, 2000). On the other hand, exponentially increasing demand applies 

to products such as new spare parts, new electronic chips and seasonal goods in which the 

demand rate is likely to increase very fast with time (Sana, 2010). As such, the mathematical 

formulation presented in this paper considers arbitrary functions of time, which allows the 

decision maker to assess the consequences of a diverse range of strategies by employing a 

single inventory model. It is worth noting that the dominant form of a learning curve 

implemented by researchers and practitioners alike is either an S-shaped (Jordan, 1958; 

Carlson, 1973), or a power one as suggested by Wright (1936); please refer to Jaber (2006) 

for discussion on this issue.  

 
In this example (example 1), we consider the following functions for varying demand, 

screening, defective, and deterioration rates:  

𝑥(𝑡) = 𝑎𝑡 + 𝑏,                  𝐷(𝑡) = 𝛼𝑡 + 𝑟,  

𝑝𝑗 =
𝜏

𝜋 + 𝑒𝛾𝑗
,                  𝛿(𝑡) =

𝑙

𝑧 − 𝛽𝑡
 

where 𝑏, 𝑑, 𝑙, 𝜏, 𝜋, 𝑧 > 0;       𝑎, 𝑟, 𝛾, 𝛽, 𝑡 ≥ 0, and  𝛽𝑡 < 𝑧. 

 
The parameter “𝛼”, represents the rate of change in the demand. The case of 𝛼 = 0 reflects 

a constant demand rate, when then 𝐷(𝑡) = 𝑟  ∀ 𝑡 ≥ 0. A similar behaviour is observed for 

the effect of “𝑎”, the rate of change in the screening rate. Note that 𝛿(𝑡) is an increasing 

function of time. The case of 𝛽 = 0 reflects a constant deterioration rate and 𝑙 = 0 

corresponds to the case associated with no deterioration. The percentage defective per lot 

reduces according to an S-shaped logistic learning curve (Jordan, 1958; Carlson, 1973), 

where 𝜏 and 𝜋 are model parameters, 𝛾 is the learning exponent and 𝑗 is the cycle index. 

The case 𝛾 = 0 applies to a constant percentage of defective items per lot.  

 
The problem (𝑚2) has been coded in MATLAB for the above demand, screening, defective, 

and deterioration rates and solutions were obtained using Eq. (21) for a wide range of the 

control parameter values. Here, we adopt the values considered in the study by Wahab and 

Jaber (2010), that are presented in Table 1 below. 
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Table 1. Input parameters for example 1.  

     𝑐               𝑑           ℎ𝑔                    ℎ𝑑                   𝑘                𝑎                       𝑏                 𝛼                      𝑟           

   100           0.5               20                     5                3000          1000              100200         500               50000 

 $/unit       $/unit    $/unit/year     $/unit/year     $/cycle      unit/year    unit /year     unit/year         unit /year    

 

    𝑙              𝑧                   𝛽              𝜏        𝜋                    𝛾                    

    1                   20                  25            70.067           819.76          0.7932               

unit /year     unit/year      unit /year       unit /year     unit/year      unit /year        

 
The optimal values of 𝑄𝑗

∗, 𝑇1𝑗
∗ , 𝑇2𝑗

∗ , 𝜔𝑗
∗, and the corresponding total minimum cost for 10 

successive cycles are obtained and the results are shown in Table 2. In the first cycle, we 

have taken  𝑝1 = 0.08524  resulting in a total number of 𝑄1
∗ = 3550 units, which is 

screened by time 𝑇11
∗ =  0.0354 ≅ 13 days and consumed by time 𝑇21

∗ = 0.0648 ≅ 24 days. 

The total minimum cost per year is 𝑊1
∗ = $558,546  and the total minimum cost per cycle is 

𝑤1
∗ = $362030. The amount of defective items is 𝑝1𝑄1

∗ = 303 units and the amount of 

deteriorated items is 𝜔1
∗ = 5.4 units, which is the difference between the actual demand 

and the amount held in stock at the beginning of the cycle. The amount 𝑝1𝑄1
∗ may be sold at 

a salvage price at time 𝑇11
∗  or incur a disposal penalty charge. The tabulated results indicate 

that all optimal quantities decrease as learning increases except for the amount of 

deteriorated items that incur a minor increase that can be justified by the slight increase in 

the cycle length (Table 2). Figure 2 depicts the effect of each additional model parameter on 

the EOQ and Figure 3 compares the case of having the same holding costs for the good and 

defective items with that of differing holding costs.  
  

Table 2. Optimal results for varying demand, screening, and deterioration rates with 𝑝𝑗 =
70.067

819.76 + 𝑒0.7932 × 𝑗.  

𝑗                  𝑝𝑗             𝑓1𝑗
∗                   𝑓2𝑗

∗                   𝑄𝑗
∗               𝑝𝑗𝑄𝑗

∗         𝜔𝑗
∗              𝑊𝑗

∗                    𝑤𝑗
∗                 

1  0.08524         0.035424 0.06482         3550             303          5.4         5585464          362030  
2  0.08497        0.035419 0.06483         3550             302          5.4         5583830          361980  
3  0.08436        0.035407 0.06485         3548             299          5.4         5580142          361850  
4  0.08305        0.035380 0.06489         3546             294          5.4         5572240          361580  
5  0.08030        0.035324 0.06498         3540             284          5.4         5555724          361020  
6  0.07482        0.035212       0.06516         3529             264          5.5         5523107          359900  
7  0.06502        0.035013 0.06548         3509             228          5.5         5465734          357890  
8  0.05042        0.034715 0.06594         3479             175          5.6         5382467          354900  
9  0.03369        0.034376 0.06644         3445             116          5.7         5290159          351490  
10  0.01944        0.034088 0.06686         3416             66            5.8         5214030          348600 
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Figure. 2. The effect of model parameters on the Economic Order Quantity (EOQ). 

 

 

Figure. 3. EOQ with same and differing holding costs when 𝑝𝑗 =
70.067

819.76 + 𝑒0.7932 × 𝑗.. 

 

 

The results presented in Table 3 summarise the sensitivity analysis of the optimal order 

quantity, total minimum cost per unit time and total minimum cost per cycle with respect to 

all model parameters. The first row represents the original values of the proposed model 

and the last one yields the values of the EOQ model. As can be seen from the tabulated 

results the effect of 𝛼, significantly influences the optimal order quantity and the total 

minimum cost per year. Moreover, this effect holds true for the case in which the 

deterioration rate is assumed to be of a fixed value as well as for the case associated with 

no deterioration. A comparison between the results obtained in Tables 2 and 3 reveals that 

the reduction of the optimal order quantity does not imply that the total minimum cost per 

year decreases; in fact it may increase. Example 1 is replicated for 20 consecutive cycles to 

compare 𝑝𝑗 =
𝜏

𝜋+𝑒𝛾𝑗
 (Jordan, 1958; Carlson, 1973) with 𝑝𝑗 =

𝜏

𝜋+1
𝑗−𝛾 (Wright, 1936) and the 

result is shown in Figure 4 for 𝜏 = 40, 𝜋 = 999, 𝛾 = 0.75. Wright’s learning curve leads to 

         EOQ p hd a A l/z B
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smaller quantities in the incipient phase. However, in practice, improvement is slow in this 

short phase making the S-shaped learning curve an appropriate model to use (Dar-El, 2000). 

 
Table 3. Sensitivity analysis for the general model.  

𝑎                  𝑏       𝛼          𝑟              𝑝𝑗   ℎ𝑔   ℎ𝑑    𝑙     𝑧      𝛽           𝑓2𝑗
∗            𝑄𝑗

∗        𝜔𝑗
∗          𝑊𝑗

∗              𝑤𝑗
∗ 

1000  100200     500     50000     0.08524   20    5    1    20    25    0.06482    3550     5.4     5585464     362030 
1000  100200     500     50000     0.08524   20    20  1    20    25    0.06397    3504     5.2     5586696     357370 
1000  100200     500     50000     0.08524   20    5    1    40    25    0.06874    3762     3        5580407     383600 
1000  100200     500     50000     0.08524   20    5    1    10    25    0.05827    3196     9        5595130     326040 
1000  100200     500     50000     0.08524   20    5    1    20    50    0.06440    3528     5.5     5585745     359730 
1000  100200     500     50000     0.08524   20    5    1    20    10    0.06505    3563     5.4     5585305     363310 
1000 100200     500     50000     0.08524   20    5    1    20    0      0.06519    3571     5.6     5585202     364110 
0  100200     500     50000     0.08524   20    5    1    20    25    0.06482    3550     5.4     5585464     362030 
-1000  100200     500     50000     0.08524   20    5    1    20    25    0.06482    3550     5.4     5585464     362030 
1000  100200     0         50000     0.08524   20    5    1    20    25    0.06612    3621     5.6     5583646     369190 
1000  100200    -500    50000     0.08524   20    5    1    20    25    0.06751    3695     5.9     5581790    376800 
0  100200     0         50000     0.08524   20    5    1    20    25    0.06612    3621     5.6     5583646     369190 
0  100200     0         50000     0.08524   20    5    0    20    25    0.07511    4105*   0        5573127     418590 
0  100200     0         50000     0.08524   20   20   0    20    25    0.07380    4034*   0        5574546     411390 
0             100200      0         50000     0.00         20   20   0    20    25    0.07746     3873     0       5102460     395230 

* The order quantity as in Wahab and Jaber (2010).  

 

 

Figure. 4. A comparison of the optimal lot sizes for 𝑝𝑗 =
40

999 + 𝑒0.75  × 𝑗  and  𝑝𝑗 =
40

999 + 1
𝑗−0.75. 

 
As illustrated above, the dis-location of good and defective items together with other forms 

of varying demand, screening, defective and deterioration rates may be incorporated to 

allow managers to assess the consequences of a diverse range of strategies. The result 

obtained using the S-shaped learning curve coincides with the behaviour observed in many 

industrial situations. The proposed model is not limited to the above contributions; its 

formulation may trigger other applications as shown in section 5.2 below. 
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5.2 Special cases 

5.2.1 Intra-cycle periodic review 

It is often desirable to adjust input parameters to be responsive to a new policy due to 

acquired new knowledge. Such adjustment may occur due to the dynamic nature of 

demand, screening and deterioration rates or as a result of price fluctuations. Therefore, the 

periodic review is also beneficial for the purpose of illustrating what happens if the decision 

maker deviates from the optimal solution to assess the consequences of such a deviation. In 

this section, we present a step-by-step solution procedure to determine the optimal policy 

for intra-cycle periodic review applications. 

 
For each periodic review: 

1. Reset the new input parameters and obtain the optimal values using Eq. (21). 

2. The optimal quantity that needs to be added to the on hand inventory for the next 

replenishment is given by 

𝑄𝑟𝑗 = 𝑄𝑗−𝐼𝑔𝑗−1(𝑡𝑟𝑗),  (22) 

where 𝑡𝑟𝑗 is the time up to the periodic review.  

 
From Eq. (22) we distinguish two cases. 

 

Case 1: 0 ≤ 𝑡𝑟𝑗 < 𝑇1𝑗−1. 

Considering Eqs. (5)-(7) and (22) we have  

𝑄𝑟𝑗 = ∫ 𝑥(𝑢)𝑑𝑢
𝑇1𝑗

0
− 𝑒−(𝑔(𝑡𝑟𝑗)−𝑔(0))

∫ 𝑥(𝑢)𝑑𝑢
𝑇1𝑗−1

0
+ 𝑒−𝑔(𝑡𝑟𝑗) ∫ [𝐷(𝑢) + 𝑝𝑗𝑥(𝑢)]𝑒𝑔(𝑢)𝑑𝑢

𝑡𝑟𝑗

0
, 

          0 ≤ 𝑡𝑟𝑗 < 𝑇1𝑗−1         (23) 

from which the number of units to be screened is given by 

𝑞𝑟𝑗 = 𝑄𝑟𝑗 + ∫ 𝑥(𝑢)𝑑𝑢
𝑇1𝑗−1

𝑡𝑟𝑗
.                                                             0 ≤ 𝑡𝑟𝑗 < 𝑇1𝑗−1          (24) 

Note that the time 𝑇𝑞𝑗, by which 𝑞𝑟𝑗 units are screened can be readily determined by  

𝑞𝑟𝑗 = ∫ 𝑥(𝑢)𝑑𝑢
𝑇𝑞𝑗

0
, where  𝑞𝑟𝑗 ≥ 𝑄𝑟𝑗 and  𝑠𝑟𝑗 = ∫ 𝑥(𝑢)𝑑𝑢

𝑡𝑟𝑗

0
. 

 

Thus, the total cost per unit time of the underlying inventory system during the periodic 

review is adjusted as: 
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𝑊(𝑄𝑗) =
1

𝑓2𝑗
{𝑐𝑄𝑟𝑗 + 𝑑𝑞𝑟𝑗 + ℎ𝑔 [−𝐺(0)𝑒𝑔(0) ∫ 𝑥(𝑢)𝑑𝑢

𝑓𝑞𝑗

0
+ ∫ 𝑝𝑗𝑥(𝑢)𝐺(𝑢)𝑒𝑔(𝑢)𝑑𝑢

𝑓𝑞𝑗

0
+

∫ 𝐷(𝑢)𝐺(𝑢)𝑒𝑔(𝑢)𝑑𝑢
𝑓2𝑗

0
] + ℎ𝑑 [𝑓𝑞𝑗 (∫ 𝑝𝑥(𝑢)𝑑𝑢

𝑓𝑟𝑗

0
+ ∫ 𝑝𝑥(𝑢)𝑑𝑢

𝑓𝑞𝑗

0
) − ∫ 𝑢𝑝𝑗𝑥(𝑢)𝑑𝑢

𝑓𝑞𝑗

0
] +

𝑘}.                             (25) 

 
It is worth noting here that the amount of defective items held up to the periodic review 

may be sold at a salvage price at time 𝑡𝑟𝑗. In this case, we can set 𝑡𝑟𝑗 = 0 (without loss of 

generality) in Eq. (25) or it can be kept as is in Eq. (25) up to time 𝑇𝑞𝑗 by which the screening 

process ceases. Moreover, in the extreme case 𝑡𝑟𝑗 = 0 ⟹ 𝑇𝑞𝑗 = 𝑇1𝑗−1, then the LHS of (23) 

is equal to zero (recall (24), then the optimal values resulted from solving Eq. (21) constitute 

the optimal policy for the decision maker. Alternatively, 𝑄𝑟𝑗 is to be substituted by 𝑞𝑟𝑗 in Eq. 

(25).  

 
Case 2: 𝑇1𝑗−1 ≤ 𝑡𝑟𝑗 ≤ 𝑇2𝑗−1. 

𝑄𝑟𝑗 = ∫ 𝑥(𝑢)𝑑𝑢
𝑇1𝑗

0
− 𝑒−𝑔(𝑡𝑟𝑗) ∫ 𝐷(𝑢)𝑒𝑔(𝑢)𝑑𝑢

𝑇2𝑗−1

𝑡𝑟𝑗
,                 𝑇1𝑗−1 ≤ 𝑡𝑟𝑗 ≤ 𝑇2𝑗−1          (26) 

 
Note that 𝑄𝑟𝑗 = 𝑞𝑟𝑗, i.e. the items ordered to fulfil the demand, defects and deterioration 

during the planning horizon are the only ones that need to be screened (recall that the on 

hand inventory has been already screened). 

 
Thus, the total cost per unit time of the underlying inventory system during the periodic 

review is adjusted to: 

 

𝑊(𝑄𝑗) =
1

𝑓2𝑗
{(𝑐 + 𝑑)𝑄𝑟𝑗 + ℎ𝑔 [−𝐺(0)𝑒𝑔(0) ∫ 𝑥(𝑢)𝑑𝑢

𝑓𝑞𝑗

0
+ ∫ 𝑝𝑗𝑥(𝑢)𝐺(𝑢)𝑒𝑔(𝑢)𝑑𝑢

𝑓𝑞𝑗

0
+

∫ 𝐷(𝑢)𝐺(𝑢)𝑒𝑔(𝑢)𝑑𝑢
𝑓2𝑗

0
] + ℎ𝑑 [𝑓𝑞𝑗 (∫ 𝑝𝑥(𝑢)𝑑𝑢

𝑓𝑟𝑗

0
+ ∫ 𝑝𝑥(𝑢)𝑑𝑢

𝑓𝑞𝑗

0
) − ∫ 𝑢𝑝𝑗𝑥(𝑢)𝑑𝑢

𝑓𝑞𝑗

0
] +

𝑘}.                  (27)      

From Eq. (27), the extreme case 𝑡𝑟𝑗 = 𝑇2𝑗−1 ⟹ 𝑇𝑞𝑗 = 𝑇1𝑗 (recall (26)).  

 
Remark 1 

The above suggested procedure is valid for 𝑡𝑟𝑗 ∈ [0, 𝑇2𝑗−1] as well as for the generalised 

models and the proposed idea can be further extended to be implemented in inventory 
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mathematical modelling. Note that the structure of the model allows for both continuous 

and discrete periodic review.   

 
Let us now assume that the decision maker would like to change the current status within 

the fifth cycle. Here, we consider the same set of values as in the previous example 

(Example 1) except that a different demand rate is assumed, 𝑟 = 45000,  and the 

coordination regarding the on hand inventory for the fifth batch of defective items has been 

made, i.e. 𝑝6 = 0.07482 is to be implemented. The optimal values of 

𝑄6
∗, 𝑄𝑟6

∗ , 𝑞𝑟6
∗ , 𝑇16

∗ , 𝑇26
∗ , 𝑇𝑞6

∗ , and the total minimum cost are obtained for a given periodic 

review time say 𝑡𝑟6 = 0.0137 = 5 days . In this periodic cycle, we have taken 𝑝6 = 0.07482 

resulting in a total number of 𝑄6
∗ ≅ 3348 units, which is screened by time 𝑇16

∗ = 0.0334 ≅

12 days and consumed by time 𝑇26
∗ = 0.0687 ≅ 25 days. The optimal quantity that needs 

to be added to the on hand inventory is 𝑄𝑟6
∗ = 617 units. The number of units that need to 

be screened is 𝑞𝑟6
∗ ≅ 2784 units, which is being done by time 𝑇𝑞6

∗ = 0.0278 ≅ 10 days, by 

which point in time the total amount of defective items is accumulated. The total minimum 

cost per year is 𝑊𝑟6
∗ = $877640 and the total minimum cost in this periodic cycle is 𝑤𝑟6

∗ =

$60270. The amount of defective items is 𝑝6𝑞𝑟6
∗ = 208 units. Note that this amount is to be 

added to the previous defective items that have been accumulated during time 𝑡𝑟6 =

0.0137, i.e. 𝑝5𝑠𝑟6 = 103 units, where both quantities constitute the total amount of 

defective items.  

 

5.2.2 Perishable products  

In real life settings, a large number of perishable items encounter spoilage and deterioration 

that occur out of sequence. This can be attributed to random lifetimes that are associated 

with the time elapsing for the items to flow through the supply chain. Packaged foods, 

seafood, fruit, baked goods, milk, cheese, processed meet, pharmaceutical and blood 

products, etc. would be examples of such items (Lashgari et al., 2016). To show that our 

model can be easily responsive to manage such perishable items, consider the amount 

ordered 𝑄𝑗 = (𝑞𝑚𝑗 , 𝑞𝑚−1𝑗, … , 𝑞0𝑗) where 𝑞𝑖𝑗 is the number of units with 𝑖(𝑖 = 0,1, … , 𝑚) 

useful periods of shelf lifetime. The special case of shelf lifetime equal to zero refers to 

newly replenished items that have arrived already perished or items not satisfying certain 

quality standards (defective items). It is worth noting here that the assumption that each lot 
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is subject to a 100% screening underpins such classification, where 𝑝𝑗𝑄𝑗 = 𝑞0𝑗. It is often 

the case that the system is credited so that no outdating costs apply for this quantity. 

However, the potential interest exists so as to reduce the presence of both defective and 

already perished items in subsequent replenishments. Therefore, coordination can be made 

between inter-related entities from which we can set 𝑝𝑗+1 = 𝜉 (
𝑞0𝑗

𝑄𝑗
) without loss of 

generality. This is so, since such an assumption seems realistic given that any information 

gained from previous replenishments can be incorporated to enhance the subsequent 

delivery. Now, let 𝜔𝑖𝑗 denote the quantity of the on hand inventory of shelf lifetime 𝑖 that 

perishes by the end of period 𝑖. Thus, we have  

𝜔𝑖𝑗 =

{
𝑞𝑖𝑗 − [𝐷𝑖𝑗 − (∑ 𝑞𝑥𝑗

𝑖−1
𝑥=1 − ∑ 𝜔𝑥𝑗

𝑖−1
𝑥=1 − ∑ 𝑑𝑥𝑗

𝑖
𝑥=1 )],     𝐷𝑖𝑗 < (∑ 𝑞𝑥𝑗

𝑖
𝑥=1 − ∑ 𝜔𝑥𝑗

𝑖−1
𝑥=1 − ∑ 𝑑𝑥𝑗

𝑖
𝑥=1 )

0                                                                                                                                                  otherwise,
  

 
where 𝐷𝑖𝑗 is the actual demand observed up to the periodic review 𝑖, and 𝑑𝑖𝑗 is the number 

of items of shelf lifetime 𝑖 that deteriorate while on storage. Hence, ∑ 𝜔𝑖𝑗
𝑚
𝑖=1  denotes the 

total sum of inventory that perishes in cycle 𝑗, excluding any replenished items that have 

arrived already perished, and ∑ 𝑑𝑦𝑗
𝑚
𝑦=𝑖  refers to the total sum of deteriorated items in 

period 𝑖, i.e. an item may not retain the same utility throughout its shelf lifetime. Therefore, 

the two amounts that need to be discarded in each periodic review 𝑖 are 𝜔𝑖𝑗 and ∑ 𝑑𝑦𝑗
𝑚
𝑦=𝑖 .  

 
Assuming an automated inventory control system, the observation of 𝐷𝑖𝑗 seems realistic 

since all items are tracked. Thus, the information gained so far, collectively, constitutes a 

means by which the input parameters can be known and then may or may not be adjusted. 

Note that 𝑄𝑖𝑗 = (𝑞𝑚𝑗, 𝑞𝑚−1𝑗, … , 𝑞0𝑗) and the amounts 𝜔𝑖𝑗  and ∑ 𝑑𝑦𝑗
𝑚
𝑦=𝑖  are known and 

that 𝐷𝑖𝑗 is fulfilled based on a FEFO policy. Then we have 

 

𝐼𝑔𝑖𝑗(𝑡𝑖𝑗) = {
𝑄𝑗 − 𝑞0𝑠𝑗 − 𝐷𝑖𝑗 − ∑ 𝜔𝑥𝑗

𝑖
𝑥=1 − ∑ ∑ 𝑑𝑦𝑗

𝑚
𝑦=𝑥

𝑖
𝑥=1 ,              0 ≤ 𝑡𝑖𝑗 < 𝑇1𝑗 ,

(1 − 𝑝𝑗)𝑄𝑗 − 𝐷𝑖𝑗 − ∑ 𝜔𝑥𝑗
𝑖
𝑥=1 − ∑ ∑ 𝑑𝑦𝑗

𝑚
𝑦=𝑥

𝑖
𝑥=1 ,           𝑇1𝑗 ≤ 𝑡𝑖𝑗 ≤ 𝑇2𝑗 ,

   (32) 

 

⇔ 𝐼𝑔𝑖𝑗(𝑡𝑖𝑗) = {
(𝑞𝑚−𝑖𝑗, 𝑞𝑚−𝑖−1𝑗 , … , 𝑞1𝑗, 𝑞0𝑟𝑗),                                0 ≤ 𝑡𝑖𝑗 < 𝑇1𝑗,

(𝑞𝑚−𝑖𝑗, 𝑞𝑚−𝑖−1𝑗 , … , 𝑞1𝑗),                                      𝑇1𝑗 ≤ 𝑡𝑖𝑗 ≤ 𝑇2𝑗 ,
 

 



 

21 

 

where 𝑞0𝑟𝑗 = ∫ 𝑝𝑗𝑥(𝑢)𝑑𝑢
𝑇1𝑗

𝑡𝑖𝑗
, 𝑞0𝑠𝑗 + 𝑞0𝑟𝑗 = 𝑝𝑗𝑄𝑗, and 

    𝑄𝑖𝑗 = 𝑄𝑗+1 − 𝐼𝑔𝑖𝑗(𝑡𝑖𝑗 + Δ).                                                 (33) 

 

The necessary condition to place an order is given by  

𝐼𝑔𝑖𝑗(𝑡𝑖𝑗) ≤ (𝐷𝑖𝑗 + 𝜔𝑖𝑗 + ∑ 𝑑𝑦𝑗
𝑚
𝑦=𝑖 − 𝐷𝑖−1𝑗)Δ,              (34) 

 

with a lead-time Δ(Δ ≤ 𝑇2𝑗 − 𝑡𝑖𝑗), the initial amount 𝐷0𝑗 = 0 and 𝑡𝑖𝑗 being the time up to 

the periodic review. If condition (34) holds true for periodic review 𝑖, then Eq. (33) calculates 

the next optimal replenishment quantity that needs to be added to the on hand inventory 

(given by (32)).  In Eq. (34), the quantity (𝐷𝑖𝑗 + 𝜔𝑖𝑗 + ∑ 𝑑𝑦𝑗
𝑚
𝑦=𝑖 − 𝐷𝑖−1𝑗) is taken as an 

approximation for the behaviour of inventory fluctuation during the lead-time Δ. Note that 

if 𝑄𝑖𝑗 = 𝑄𝑗+1, then we may assume that unsatisfied demand is lost. On the other hand, if 

demand is fulfilled based on a record of known quantity, then the unsatisfied demand 𝐷𝑙𝑗 =

|𝐼𝑔𝑖𝑗(𝑡𝑖𝑗 + Δ)| is known and consequently any relevant cost may apply. In this case, 

(1 − 𝜑)|𝐼𝑔𝑖𝑗(𝑡𝑖𝑗 + Δ)| forms the lost sales quantity with a fraction 𝜑(0 ≤ 𝜑 ≤ 1) being 

backordered, i.e. 𝐼𝑔𝑖𝑗(𝑡𝑖𝑗 + Δ) < 0. 

 
We now introduce a third example where we consider the values summarised in Table 4 

below for an item with a maximum shelf life-time 𝑚 = 5, i.e. 𝑖 ∈ [0,5]. 

 
Table 4. Input parameters for Example 3. 

     𝑐               𝑑            ℎ𝑔                   ℎ𝑑                       𝑘                     𝑎                    𝑏                     𝛼                       𝑟                 

    10             0.2               0.4                  0.1                    300                 500             20000               50                    700          

 $/unit    $/unit     $/unit/week     $/unit/week        $/cycle      unit/week    unit/week     unit/week       unit/week  

   

    𝑙                   𝑧                          𝛽             𝜏                 𝜋               𝛾                  𝑚             Δ 

    1                  20                        2                1                49             0                   5              1 

unit/week    unit/week     unit/week     unit/week    unit/week     unit/week       days        days 

 

The optimal values of 𝑄𝑗
∗, 𝑇1𝑗

∗ , 𝑇2𝑗
∗ , 𝜔𝑗

∗, and the corresponding total minimum cost is 

obtained. The system parameters specified in Table 4 yield a lot size of 𝑄1
∗ ≅ 518 units, 

which is screened by time 𝑇11
∗ =  0.026 ≅ 0.18 days and consumed by time 𝑇21

∗ =  0.695 ≅

4.8 days. The total minimum cost per week is 𝑊1
∗ = $ 8136  and the total minimum cost per 
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cycle is 𝑤1
∗ = $5650. The amount of defective items is  𝑝1𝑄1

∗ = 10.4 units and the amount 

of outdated (spoiled) and /or deteriorated items is 𝜔1
∗ = 9 units. If it is beneficial to operate 

on a discrete cycle length of a complete period, then 𝑊1
∗ = min [𝑊1 =

𝑤

0.5714
, 𝑊1 =

𝑤

0.7143
]. 

The optimal order quantity in this case is 𝑄1
∗ = 533 units, which is given by 𝑊1

∗ =
𝑤1

∗

0.7143
=

$8136 per week to satisfy the demand, defects and deterioration for 5 days. This quantity is 

screened by time 𝑇11
∗ = 0.027 ≅ 0.19 days and the total minimum cost per cycle is 𝑤1

∗ =

$5812. The amount of defective items is 𝑝1𝑄1
∗ = 10.6 units and the amount of outdated 

(spoiled) and/or deteriorated items is 𝜔1
∗ = 9.6 units.  

 
Suppose that after a 100% screening the lot size is classified based on a FEFO policy and is 

found to be on the set 𝑄1 = (120,114,134,91,67,7), which corresponds to a 5 day policy, 

i.e. 𝑄1
∗ = 533 units. Now, let us assume that at the end of the first day the relevant 

information gathered indicates that 𝐷11 = 63, 𝜔11 = 3  and ∑ 𝑑𝑦1
5
𝑦=1 = 1 + 0 + 1 + 0 +

0 = 2, then 𝐼𝑔𝑟1(0.1429) = 526 − 63 − 3 − 2 = 458 units. The necessary condition to 

place an order is 𝐼𝑔𝑟1(𝑡11) ≤ (𝐷11+ 𝜔11 + ∑ 𝑑𝑦1
5
𝑦=1 − 𝐷01)(𝑇21 − 𝑡11), but 𝐼𝑔𝑟1(0.1429) >

68(4) and consequently we do not place an order. Suppose that after the third day we 

have: 

𝐷21 = 151,  𝐷31 = 276, 𝜔31 = 7, ∑ 𝜔𝑖1 =3
𝑖=1 12, ∑ 𝑑𝑦1

5
𝑦=3 = 0 + 1 + 0 =

1 and ∑ ∑ 𝑑𝑦1
5
𝑦=𝑥

3
𝑥=1 = 1 + 1 + 2 + 2 + 1 = 7, then 𝐼𝑔41(0.429) = 526 − 276 − 12 −

7 = 231 units and 𝐼𝑔𝑟1(0.429) < 134(2).  

 
Thus, an order must be placed in which Eqs. (21) and (33) can be used to obtain the optimal 

replenishment quantity that takes into account a suitable adjustment to avoid lost sales. As 

such, approximations for the demand and deteriorating rates, say �̂� =  𝐷�̂� =
∑ (𝐷𝑖𝑗−𝐷𝑖−1𝑗)𝑚

𝑖=1

𝑚
, 

�̂� = max [0, 𝛼 (
𝑄𝑗+1

𝑄𝑗
)], and �̂� = 𝑧

∑ 𝑑𝑖𝑗
𝑚
𝑖=1 +∑ 𝜔𝑖𝑗

𝑚
𝑖=1

𝜔𝑗
∗   may be employed. Note that if a record is 

kept for the actual demand requested, then the unsatisfied demand is given by 𝐷𝑙𝑗, where 

𝜑𝐷𝑙𝑗 is backordered and the rest (1 − 𝜑)𝐷𝑙𝑗 is lost.  

 
Finally, let us assume that VOI such as TTH of an item as it moves through a supply chain is 

transferable within that supply chain. In this case, the remaining shelf lifetime can be readily 
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calculated. For example, Bremner (1984) and Ronsivalli and Charm (1975) developed a shelf 

lifetime model for fresh fish that links the spoilage rate to a given temperature. Let 

℃𝑦 and 𝑡𝑦 denote respectively, the temperature and time elapsed of an item in a supply 

chain entity 𝑦, then the remaining shelf lifetime  is given by 

 
𝐿 = 𝑀 − 𝑠(℃𝑎)𝑡𝑎 − 𝑠(℃𝑏)𝑡𝑏, 

where  

𝑠(℃𝑦) = (0.1℃𝑦 + 1)2. 

 
If this VOI is available to the next supply chain entity 𝑥, then a significant reduction in the 

cost per cycle can be achieved (Ketzenberg et al., 2015). In our model, the VOI can be 

perceived at external and/or internal domains of coordination. At the domain of external 

coordination, this model addresses the VOI to capture a safe remaining shelf lifetime and 

acknowledges the potential impact of transporting and handling of a product at both 

external and internal levels. Hence, the reflection of the VOI can result in a reduction of the 

percentage of imperfect items that may arrive already perished and/or defective, i.e.  

𝑓2𝑗 ≤ 𝐿, 𝛿(𝑡) =
𝑙

𝑧(1+𝛾)−𝛽𝑡
, 𝑝𝑗 =

𝜏

𝜋+𝑒𝛾𝑗 , 𝛾 =
𝜙

𝑀
   and  𝜙 = [𝑠(℃𝑎)𝑡𝑎 + 𝑠(℃𝑏)𝑡𝑏]. 

 
To illustrate this, consider the same set of values as in the previous example (Example 3) 

and let 𝑀 = 𝑚 + 𝑡𝑎 + 𝑡𝑏 , ℃𝑎 = 3, 𝑡𝑎 = 2, ℃𝑏 = 0 and 𝑡𝑏 = 2, then 𝐿 = 9 − 3.38 − 2 =

3.62 ≅ 4 days. If this information is available, then the optimal quantity with shelf lifetime 

𝑖 ∈ [0,4] is 𝑄1
∗ = 420 units, which is consumed in 4 days. The total minimum cost per week 

is 𝑊1
∗ = $ 8108 and the total minimum cost per cycle is 𝑤1

∗ = $ 4633. The amount of 

defective items is 𝑝1𝑄1
∗ = 8.3 units and the amount of outdated (spoiled) and/or 

deteriorated items is 𝜔1
∗ = 3.7 units. Thus, with the VOI, a reduction of 𝑐𝑠 = $1460/ year  

can be achieved for this single item.  

 
Remark 2 

The proposed model is viable for the case in which items are classified based on their quality, 

size, appearance, freshness, etc. In this case, a distinct selling price 𝑠𝑖 may be linked to its 

corresponding quantity 𝑞𝑖𝑗, i.e. 𝑆 = (𝑠𝑚, 𝑠𝑚−1, … , 𝑠0) is applied for the set 𝑄𝑗 =

(𝑞𝑚𝑗 , 𝑞𝑚−1𝑗 , … , 𝑞0𝑗). Further, it is still applicable if an item loses partially its value based on 
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its perceived actuality (obsolescence). Here 𝜔𝑖𝑗 can be kept on store at a discounted price 

and  𝑠(℃𝑦) is based on the shelf lifetime model suitable for the item ordered.  

 
5.2.3 Renewal theory 

When it comes to defective items, according to the academic literature, a random 

proportion of such items is usually assumed with a known probability distribution. Hence, 

from (25) we have  

𝐸(𝑊) =
𝐸(𝑤)

𝐸(𝑓2𝑗)
=

𝐸(𝑤𝑄𝑗
′ )

𝐸(𝑓2𝑗,𝑄𝑗
′ )

,                                        (35) 

where (1 − 𝐸[𝑝𝑗])𝑥(𝑡) > 𝐷(𝑡). 

 
Eqs. (2), (18), (22), (23) and (27) can be used to find Eq. (35).  

 

If  𝛿(𝑡) =
𝑙

𝑧
= 𝜃, 𝐷(𝑡) = 𝑟, and 𝑥(𝑡) = 𝑏, then we have  

𝐸[𝑓2𝑗] =
log (

𝐸[𝐾]𝜃

𝑟
)

𝜃
, 𝐸[𝐾] = (𝑏𝑓1𝑗 −

𝐸[𝑝𝑗]𝑒
𝜃𝑓1𝑗𝑏

𝜃
) +

𝐸[𝑝𝑗]𝑏

𝜃
+

𝑟

𝜃
.   

 
In this paper, we have introduced the assumption that defective items are stored in a 

different warehouse. This assumption relaxes the behaviour of the inventory level that is 

presented by Jaggi and Mittal (2011) and Moussawi-Haidar et al. (2014). This is because not 

every defective item can be sold at a salvage price; rather defective items may encounter a 

disposal cost. For comparison purposes, Table 5 presents the input parameters of the 

example used by Jaggi and Mittal (2011). Their model leads to 𝑄𝐽𝑀 = 1283 units, which is 

larger than the optimal quantity obtained using Eq. (21) in our paper, i.e. 𝑄∗ = 1167 units.  

 

Table 5. Input parameters for comparison examples for renewal theory (𝑝 ∼ 𝑈[0, ℓ], E [𝑝] = ∫ 𝑝𝑓(𝑝)
ℓ

0
𝑑𝑝 =

ℓ

2
). 

     𝑐              𝑑         ℎ                    𝑘              𝑟                 𝑏                 𝑙                  𝑧              ℓ                     

    25          0.25             5                  100        50000       175200          1                 10           0.04                 

 $/unit     $/unit    $/unit/year    $/cycle   unit/year   unit/year   unit/year   unit/year                   

 

Similarly, Moussawi-Haidar et al. (2014) use the same set of values from Jaggi and Mittal 

(2011) except from the following parameters: 𝑑 = $0.5 , 𝑧 = 20, where 𝑄𝑀 𝑒𝑡 𝑎𝑙 =

1280 units, which is greater than our optimal 𝑄∗ = 1278 units. In both papers, the 
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objective is to maximise the total profit per unit time, where 𝑠 = $50 (𝑣 = $20) is the 

selling price for a good (defective) item. Therefore, the maximum total profit per year, is set 

equals to: 

𝑇𝑃𝑈∗(𝑄) =
𝑠(𝑄∗(1−𝑝)−𝜔∗)+𝑣𝑝𝑄∗

𝑇2
∗ − 𝑊∗ =

50×(1166.8×0.98−1.3)+20×(1166.8)×0.02

0.0228
− 1297016 =

$1223400 < 𝑇𝑃𝑈(𝑄)𝐽𝑀 = $1224183.  

On the other hand, when 𝑑 = $0.5 , 𝑧 = 20, the corresponding maximum total profit per 

year is reduced to 𝑇𝑃𝑈(𝑄)𝑀 𝑒𝑡 𝑎𝑙 = $1211414 ≅ 𝑇𝑃𝑈∗(𝑄) = $1211415.  

Although the difference in the order quantities is negligible between the two compared 

papers, our model produces larger quantity when the deterioration rate decreases, which 

supports the findings presented by Moussawi-Haidar et al. (2014).  

Now, if  𝛿(𝑡) = 0, then  
𝐸(𝑤)

(𝛼𝐸[𝑓2𝑗]+𝑟)𝐸[𝑓2𝑗]
=

𝐸(𝑤𝑄𝑗
′ )

(1−𝐸[𝑝𝑗])
, 𝐸[𝑓2𝑗] =

−𝑟+(𝑟2+2𝛼𝑄𝑗(1−𝐸[𝑝𝑗]))

1
2

𝛼
. 

 

For simplicity, let 𝐷(𝑡) = 𝑟, 𝑥(𝑡) = 𝑏, and 𝛿(𝑡) = 0, then Eq. (35) reduces to the model of 

Wahab and Jaber (2010) as follows:  𝑄𝑗
∗ = √

2𝑟𝑘

ℎ𝑔𝐸[(1−𝑝𝑗)
2

]+
𝑟𝐸[𝑝𝑗]

𝑏
[ℎ𝑔+ℎ𝑑]

. 

For ℎ𝑔 = ℎ𝑑 = ℎ , it reduces to the work of Jaber et al. (2008) and with 𝑝𝑗 = 𝑝 it yields the 

optimal order quantity presented by Salameh and Jaber (2000) and (Maddah and Jaber 

(2008) as follows: 𝑄𝑗
∗ = √

2𝑟𝑘

ℎ𝐸[(1−𝑝𝑗)
2

]+
2ℎ𝑟𝐸[𝑝𝑗]

𝑏

. Finally, if 𝑝𝑗 = 0, then, 𝑄𝑗
∗ = √

2𝑟𝑘

ℎ
= EOQ. 

 

6. Implications and managerial insights  

In this section we emphasise the financial implications and managerial aspects of our work 

and we offer a number of cases to illustrate the efficiency of our mathematical model. 

 
6.1. Model overview  

The general model developed in this paper reflects a number of practical concerns with 

regards to product quality related issues and may assist operations managers to respond to 

many real world challenges/opportunities for inventory improvements. Those opportunities 

include poor supplier service levels (imperfect items received from suppliers), potential dis-

location of good and defective items (different warehouses for the good and defective 



 

26 

 

items), tracking the quality of perishable products in a supply chain and transfer of 

knowledge from one inventory cycle to another. Furthermore, it provides a general 

procedure for continuous intra-cycle periodic reviews so as to adjust and control flows of 

raw materials, component parts and finished goods to maintain sustainable competitive 

advantage. This formulation could also potentially be of some value to software 

manufactures since it forms a generalised model inclusive of many existing ones.  

 
6.2. Coordination mechanisms 

The generic nature of the model explores various coordination mechanisms that may 

improve inventory management as shown below.  

Let �̇�(𝑡) = (𝑞 − 𝑐1𝑒−𝑐𝑑ℊ)𝐷(𝑡) > 0, where �̇�(𝑡) is the demand based on an acceptance 

quality level 𝑞(𝑞𝑚𝑖𝑛 ≤ 𝑞 ≤ 1) and a discount rate ℊ(0 ≤ ℊ ≤ 1) for a cut-price 𝑐𝑑 offered 

by the supplier for a single purchased item and 𝑐1 is a positive parameter. The case of  𝑐1 =

0 implies that �̇�(𝑡) = 𝑞𝐷(𝑡), and the case of 𝑐1 = 0 and 𝑞 = 1 reflects an independent 

demand function, where �̇�(𝑡) = 𝐷(𝑡) ∀𝑡 ≥ 0. Any item that does not satisfy the minimum 

acceptance quality level 𝑞𝑚𝑖𝑛 is considered to be a defective item. This function may apply 

for a demand-driven pricing model assumed by the supplier for which a unit purchasing 

price �̇� = 𝑐𝑒, where 𝑒 can take the from 𝑒 = 𝑞 − 𝑐𝑑ℊ > 0 or 𝑒 = 𝑞 −
𝑐𝑑ℊ

𝑞
> 0. The case 𝑞 =

1 applies for a discounted purchasing price, where 𝑒 = 1 − 𝑐𝑑ℊ, and the case of ℊ = 0 and 

𝑞 = 1 reflects an independent purchasing cost, where �̇� = 𝑐. Note that �̇�(𝑡) increases 

(decreases) as the acceptance quality level and/or discount rate increases (decreases). Such 

a contract unifies three managerial decisions strategies that govern both the supplier and 

the retailer, i.e. the acceptance quality level, unit discount rate and unit purchasing price. 

Moreover, it encourages the supplier to invest in quality innovation to maintain sustainable 

product quality levels that may reduce defects per shipment in order to maximise its 

discounted stream of net revenue. Further, for the case of 𝑒 = 𝑞 − 𝑐𝑑ℊ, or 𝑒 = 𝑞 −
𝑐𝑑ℊ

𝑞
, the 

supplier would reap the benefit of improving quality levels by increasing the purchase price, 

while simultaneously the retailer would incur an additional charge payable to the supplier in 

order to receive better quality items.  
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Another demand function that can be increased by improving the quality level and 

decreased by increasing the unit purchasing price may be implemented, where �̈�(𝑡) =

𝐷(𝑡) − 𝑐1�̈�𝑒−𝑐2𝑞 > 0 and 𝑐2 is a positive parameter (Vörös, 2002). A similar demand 

function that depends on price and quality may take the form �⃛�(𝑡) = 𝐷(𝑡) − 𝑐1𝑐 + 𝑐2𝑞, 

where �⃛�(𝑡) increasers with an acceptance quality level 𝑞(𝑞𝑚𝑖𝑛 ≤ 𝑞 ≤ 1) and decreases 

with a unit purchasing price c⃛ (Chenavaz, 2012).  

For all of the above scenarios, a unit purchasing price �̇� = �̈� = 𝑐 = 𝑐𝑞 can be incorporated 

as well. In the last two demand functions, the case of 𝑐1 = 𝑐2 = 0 reflects an independent 

arbitrary demand function.  

In a decentralised coordinated scenario, where the supplier and the retailer cooperate in 

order to render the total minimum (maximum) cost (revenue) closer to that associated with 

a centralised one, a selling price for the retailer say 𝑐3𝑠𝑒−𝑐4𝑠 can be assumed with s ≥ �̇� and 

𝑐3 and 𝑐4 being positive parameters (Smith and Achabal, 1998; Roy et al., 2015). It is worth 

noting here, that 𝑐4 must be chosen such that 
1

𝑐4
> �̇�.  

6.3. Stochastic parameters   

It is often the case that input parameters are randomly distributed. The versatile nature of 

our model accommodates such randomness. Let 𝐷𝑗  be a random variable of the demand 

that is predetermined according to the information gained by the supplier due to its 

coordination as an output of the 𝑗𝑡ℎ inspection process. Suppose that 𝐷𝑗~𝑈[𝜇𝑗 − √3𝜎𝑗, 𝜇𝑗 +

√3𝜎𝑗]. It is clear that 𝐸(𝐷𝑗) = 𝜇𝑗 = 𝐷(𝑡) = 𝑟 (Modaka et al., in press). Similarly, 𝐸(𝑥𝑗) =

𝑥𝑗 = 𝑥(𝑡) = 𝑏, and 𝐸(𝛿𝑗) = 𝛿𝑗 = 𝛿(𝑡) =
𝑙

𝑧
, which is the case provided in section 5.2.3. 

Note that 𝐷𝑗  and hence the actual yield of may vary from one cycle to another (e.g. the 

parameters are nonstationary).  

If 𝑞 is assumed to be a random variable with known mean and variance, then the yield at 

the supplier site would be represented by a random draw from a quality distribution. If this 

is the case, then the yield is simultaneously influenced by internal and external randomness. 
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6.4. A 100% inspection and sampling test    

There is no doubt that many products require inspection, so as to guarantee an appropriate 

service to the customers. In addition, such inspection is essential to update the Information 

System records with good items that are actually available in stock in order to satisfy 

demand. Further, when raw materials are required in a production setting, their ordering 

policy depends on the production batch size of the products that require such raw 

materials. Therefore, the presence of defective items in raw materials has a direct impact on 

the production batch size. Moreover, there exists a plethora of factors that may force supply 

chain management to initiate both an inspection process and periodic review to enhance 

productivity, improve profitability, meet total product demand and avoid the tarnished 

reputation associated with product recalls (Klassen and Vereecke 2012). A 100% inspection 

may eliminate the return service cost caused by defective items. It can be used in real-life 

settings where the impact of letting through defective items could be severe. Different 

types of inspection can occur including seal inspection, outer case label inspection or 

damaged carton inspection. The service cost may include goodwill cost, transportation cost, 

and re-processing cost, etc. and that may affect all supply chain members. The assumption 

that each lot undergoes a 100% inspection implicitly applies to any smaller amount of the 

lot. For example, let 𝜖 be a fraction of the amount ordered representing a random sample 

size drawn from the batch. It is clear that 𝜖𝑥(𝑡) can also be implemented in the model.  

 
6.5. Further implications     

If safety issues exist in keeping defective items in store, then the model formulation allows 

for an immediate disposal of defective items, i.e. ℎ𝑑 = 0. 

 

In practice, the actual consumption period is random and, consequently,  𝑡𝑟𝑗(𝑇1𝑗−1 ≤ 𝑡𝑟𝑗 ≤

𝑇2𝑗−1) can be used to represent the actual cycle length. If 𝐼𝑔𝑗−1(𝑡𝑟𝑗) > 0, then the 

subsequent replenishment is cycle dependent, where Eq. (27) can be used to derive the 

optimal lot size. 

 

7. Conclusion 

In this paper, a general Economic Order Quantity model for items with imperfect quality was 

presented. Each lot is subjected to a 100% screening and items not conforming to certain 
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quality standards are stored in a separate facility with different holding costs of the good 

and defective items being considered. The obtained numerical results reflect the learning 

effects incorporated in the proposed model. The presence of product deterioration and 

varying demand and screening rates significantly impact on the optimal order quantity.   

 
The paper presents illustrative examples and special cases to support application of the 

model and solution procedures in different realistic situations. The proposed solution 

procedure to determine the optimal policy for continuous intra-cycle periodic review takes 

into account different inventory fluctuations during the planning horizon. We observe the 

effect of changing all model parameters and find that a reduction in the optimal order size 

does not necessarily lead to a lower total minimum cost per unit time.  

 
This study intersects the areas of fixed and random lifetimes of perishable products, where 

unsatisfied demand may or may not be lost, products may arrive already perished, and 

orders may not perish in sequence. The accuracy of RFID temperature tags that capture the 

TTH, and the use of that TTH data are adopted to model a shelf lifetime of an item.  

 
The generality of our model stems from the fact that the demand, screening, and product 

deterioration rates are arbitrary functions of time. The proposed model unifies and extends 

the academic literature related to imperfect quality items, which is quite diverse in nature. 

Practical examples that are published in the literature for generalised models are used to 

demonstrate that the solution quality is the same as in published sources or in some cases 

produces better results, i.e. the validity and realistic qualities of the general model are 

ascertained. The versatile nature of our model and the fact that it may accommodate many 

real world concerns has been emphasised, where the results obtained are compatible with 

the behaviour observed in many real-life settings. A mathematical proof is presented, which 

shows that the solution to the underlying inventory system, if it exists, is unique and global 

optimal. Coordination mechanisms that may affect the supplier and the retailer are also 

explored to improve inventory management at both echelons. To the best of our 

knowledge, this appears to be the first time that such a general EOQ model is formulated, 

investigated, and numerically verified. 
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Based on the findings of this paper, several interesting extensions are possible such as 

considering that the screening rate follows learning and forgetting curves with allowed 

shortages and the risk of failure during screening (Type I and Type II errors). Also, it seems 

plausible to assess the formulation of a two warehouse system (due to the capacity 

limitations of the owned warehouse), where a comparison between Last-In-First-Out (LIFO) 

and First-In-First-Out (FIFO) dispatching policies that are governed by a fixed shelf life time 

may be implemented. In addition, considering different supplier trade credit practices such 

as a permissible delay in payment and formulation of an EPQ model in which product quality 

levels depend on an instantaneous cost of investing in product innovation are interesting 

lines of further inquiry in this area. All of the above suggested next steps of research can be 

addressed for finite or infinite planning horizons. 
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