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Abstract The retrieval of non-rigid 3D shapes is an
important task. A common technique is to simplify this
problem to a rigid shape retrieval task by producing a
bending invariant canonical form for each shape in the
dataset to be searched. It is common for these techniques to
attempt to “unbend” a shape by applying multidimensional
scaling to the distances between points on the mesh, but
this leads to unwanted local shape distortions. We instead
perform the unbending on the skeleton of the mesh, and
use this to drive the deformation of the mesh itself. This
leads to a computational speed-up and less distortions of
the local details of the shape. We compare our method
against other canonical forms and our experiments show that
our method achieves state-of-the-art retrieval accuracy in a
recent canonical forms benchmark, and only a small drop
in retrieval accuracy over state-of-the-art in a second recent
benchmark, while being significantly faster.

Keywords canonical forms, shape retrieval, skeletons, pose
invariance.

1 Introduction

The task of example based retrieval of non-rigid objects is
both a key problem to solve and a challenging one. There are
increasing numbers of 3D shape collections being created,
so the ability to search these collections is an increasingly
important task. There have been many successes in the
retrieval of rigid objects, with methods such as view based
techniques proving very successful [14]. The problem
is that many of these techniques cannot be applied to
non-rigid shape retrieval. To address this issue Elad and

1 School of Computer Science and Informatics,
Cardiff University, Cardiff, CF24 3AA, UK. E-
mail: PickupD@Cardiff.ac.uk, SunX2@Cardiff.ac.uk,
RosinPL@Cardiff.ac.uk, MartinRR@Cardiff.ac.uk.

Manuscript received: xxxx-xx-xx; accepted: xxxx-xx-xx.

Kimmel [9] proposed a bending invariant 3D embedding
of a mesh, named a canonical form. The canonical form
of a mesh effectively standardises its pose, and therefore
when a canonical form is computed for each shape in a
dataset the non-rigid retrieval problem becomes a rigid
retrieval problem. This means that any of the wide range
of rigid shape retrieval methods available are then able to
perform retrieval on this data. There are two issues with the
canonical form method by Elad and Kimmel. The first is that
it requires the geodesic distance between all pairs of vertices
to be computed, which has a super-quadratic computational
complexity. The second issue is that the small scale local
details of the shapes are lost in the canonical form.

In this paper we address both these issues by applying
the method by Elad and Kimmel to the skeleton of the
mesh, rather than to the mesh itself. The pose of the mesh
is then deformed by the pose of the resulting canonical
skeleton. This is far more efficient because the skeleton
of a mesh contains far fewer vertices than the mesh itself,
resulting in far fewer geodesic distance computations. Less
shape details are distorted, because the method effectively
produces a set of canonical angles at the articulated joints
of the shape, and the shape deformations are localised to
these joint regions. This leads to an increased retrieval
performance on a recent canonical forms benchmark [21].

The structure of our paper is as follows. Section 2
outlines the related work in this area, Section 3 describes
the technical details of our method, Section 4 presents the
results of our experiments, and we make our conclusions in
Section 5.

2 Related Work

There are many works which aim to solve the retrieval
problem for rigid shapes, such as lightfield descriptors [7]
and spin images [12]. We refer readers to [14] and [28] for
detailed reviews of this field of research.

In recent years more research has concentrated on
the problem of retrieving non-rigid models. Several
methods extract local features from a mesh to compute a
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shape descriptor [6], including meshSIFT [26], conformal
factors [3], area projection transforms [10] and heat
kernal signatures [27]. Computing histograms of local
features has proven to perform very well in recent retrieval
benchmarks [18, 20].

Graphs have also been used as shape descriptors. Hilga et
al. [11] used multiresolution Reeb graphs to match the
topology between 3D shapes, and Sfikas et al. [23] proposed
formulating a graph based on conformal factors [3].

Matching global information of 3D shapes has also
proved successful. Reuter et al. [22] demonstrated that the
Laplace-Beltrami spectra can be used as a shape descriptor,
which they name ShapeDNA. Various global descriptors can
also be extracted from the geodesic distance matrix of a
mesh, as shown by Smeets et al. [25].

For a more detailed review of the latest non-rigid
retrieval methods, we refer the reader to the recent SHREC
benchmarks [18, 20].

The use of canonical forms to normalise the pose of non-
rigid shapes was first proposed by Elad and Kimmel [9].
They use multidimensional scaling to map the geodesic
distances of a mesh into 3D Euclidean distances. Several
variations to this method have been proposed. Shamai et
al. [24] accelerate the classical MDS procedure using their
proposed Nyström Multidimensional Scaling framework.
Lian et al. [17] attempt to preserve the features of a mesh
by segmenting the original mesh and transforming each
segment to its location in the canonical mesh computed
using Elad and Kimmel’s method, thus correcting some of
the local shape distortions. Wang and Zha [29] speed up the
canonical form computation by only computing geodesic
distances between all pairs of a set of detected feature points,
and unbending the mesh by creating target axes used to
align sets of geodesic contours. Pickup et al. [19] also use
feature points, but restrict their number to the square root of
the number of mesh vertices. They maximise the distance
between pairs of these feature points whilst preserving the
mesh’s edge lengths. Boscaini et al. [5] proposed a method
which assigns a repelling electrical charge at each vertex of
the mesh to form a canonical form. They are also able to
correct certain very small localised topological errors in the
mesh, by cutting parts of the mesh which are likely to have
been incorrectly joined. Their method is faster than Elad
and Kimmel’s, but still suffers from distorting local shape
details. There is also work on parallelising or speeding
up the computation of geodesic distances [8, 31]. Recent
benchmarks [15, 18] have shown that using canonical forms
along with the view-based shape retrieval method by Lian et
al. [16] performs very competitively compared with other
non-rigid retrieval approaches.

Our method differs from those above by normalising

the pose of the shape’s skeleton, rather than performing
the computation on the mesh vertices. This causes less
distortion to the local shape details compared with other
methods, whilst providing a practical level of efficiency.

3 Method

To describe the workings of our method, we first give
an overview of the canonical form work by Elad and
Kimmel [9] in Section 3.1 as our work builds from this
approach. We then detail our novel skeleton-based approach
in Section 3.2.

3.1 Background

Our method extends the canonical form work by Elad
and Kimmel [9]. Their method transforms the mesh so
that the geodesic distance between all pairs of vertices are
mapped to Euclidean distances. To accomplish this they
first compute the geodesic distance between all pairs of
mesh vertices using the fast marching method [13]. Next
they use multidimensional scaling to calculate a new set
of vertex positions, where the Euclidean distance between
each pair of vertices is as close as possible to the already
computed geodesic distances. They show results with three
different multidimensional scaling techniques, but the one
which tends to provide the best results, and which we use in
our work, solves the multidimensional scaling problem by
minimising the following least squares functional:

S(X) =
N−1∑
i=1

N∑
j=i+1

wi,j(δi,j − di,j(X))2, (1)

where N is the number of vertices, wi,j are weighting
coefficients, δi,j is the geodesic distance between vertices i
and j of the original mesh, and di,j is the Euclidean distance
between vertices i and j of the resulting canonical mesh X .
This functional is minimised using the SMACOF (scaling by
maximising a convex function) algorithm [4].

This method is computationally expensive to compute, as
the geodesic distances are calculated in O(N2 logN) time
and each iteration of the SMACOF algorithm in O(N2)

time. As this method works on the vertices of the mesh,
it deforms the details of its shape as well as normalising its
pose. These details may be important when analysing the
shape of the object.

3.2 Skeleton Canonical Forms

The purpose of computing a canonical form is to
normalise the pose of a 3D object. The pose of an object
can be defined as the articulation of the object’s skeleton.
This leads us to our method, which normalises the pose
of an object by transforming it so that its skeleton is in a
normalised pose. The stages of our method are depicted
in Figure 1. We first extract the skeleton of the mesh
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(a) Extract the skeleton from the mesh. (b) Compute the canonical skeleton. (c) Deform the mesh using the skeleton.

Fig. 1 Outline of our method.

(Section 3.2.1), then transform the skeleton into a canonical
form (Section 3.2.2), and finally deform the mesh according
to the skeleton transformation (Section 3.2.3).

3.2.1 Skeleton Extraction
We first extract the mesh’s skeleton using the method

by Au et al. [1]. This method works by first contracting
the mesh to a zero-volume skeletal shape using Laplacian
smoothing. The mesh is then converted to a 1D curve
skeleton by removing all the mesh faces while preserving
the skeletal topology.

The skeleton is then refined by merging junctions with
neighbouring joints, if the merged junction has a better
“centeredness”. A junction is defined as a joint attached
to three or more bones. The centeredness of a junction is
defined as the standard deviation of the distances between
the junction’s position and the position of each vertex
assigned to that junction during the skeleton extraction
process. A junction is merged with a neighbour if σ′ <
0.9σ, where σ′ and σ are the centeredness of the merged and
original junctions respectively. Finally the skeleton joints
are repositioned to better centre them in the mesh.

Please see the original paper for the full details. An
example of the resulting skeleton is shown in Figure 1(a).

3.2.2 Skeleton Transformation
Next we apply the canonical form method by Elad and

Kimmel [9] to the skeleton. We use Dijkstra’s algorithm to
compute the geodesic distances between all the joints of the
skeleton, and then use Equation 1 for the multidimensional
scaling. An example of this is shown in Figure 1(b). This
still has a high time complexity, but it is related to the
number of joints in the skeleton instead of the number
of mesh vertices. In practice this number is significantly
smaller, and therefore computing the canonical form of a
skeleton has a significantly shorter runtime.

3.2.3 Mesh Deformation
Finally we deform the mesh according to the canonical

transformation of its skeleton using the method by Yan et
al. [30]. We use this method as it is simple to implement,

fully automatic, does not require any vertex weights to be
assigned, and does not have any parameters which require
training or manual-tuning. This works by first assigning
each triangle to a bone of the original skeleton, and then
calculating the transformation of each bone between the
original and canonical skeletons. A sparse linear system
is then solved, which transforms each triangle according
to the transformation of its assigned bone whilst preserving
the mesh’s connectivity. For the full details of this method,
please refer to the original paper.

Yan et al.’s method takes into account the translation,
rotation and scaling of the skeleton when deforming the
mesh, but we ignore scaling and translation as we only
care about transforming the articulation of the mesh, and
we do not want any stretching of the skeleton caused by
the canonicalisation to be transferred to the mesh. We
also use our own method for assigning triangles to bones,
because the method by Yan et al.requires that the ends of
the skeleton protrude outside the mesh, which is not true for
our skeletons, and because we can retain information from
the skeleton extraction procedure to make this assignment.

The skeleton extraction method results in each vertex
being assigned to a joint of the skeleton [1]. This assignment
is based on which joint each vertex was collapsed into
during the skeleton extraction method. We use these
assignments to assign each triangle to a bone of the skeleton,
as required by Yan et al.’s deformation method. For each
joint we find all the triangles which have at least one vertex
assigned to that joint. Each triangle is then assigned to one
of the bones connected to that joint. To determine which
of these bones a particular triangle is assigned to, we first
calculate a plane which bisects each pair of bones that meet
at the joint. A triangle is assigned to a particular bone if
two or more of its vertices lie on that bone’s side of all
the bisection planes between it and the other bones. This
is illustrated in Figure 2. If a triangle does not meet the
assignment criteria for any of the bones, then one of its
neighbours is randomly selected and it is given the same
bone assignment as that neighbour. This is outlined in

3
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Algorithm 1.

Algorithm 1 Algorithm for assigning triangles to bones.
Input: mesh, skeleton, assignment of vertices to joints.
Output: each triangle is assigned to a bone.
for all joints j in skeleton do

bisectionPlanes← ∅
for all bones b1 connected to j do

for all bones b2 connected to j, where b1 6= b2 do
bisectionPlanes← plane bisecting b1 and b2

end for
end for
for all triangles t with a vertex assigned to j do

for all bones b connected to j do
if≥ 2 vertices of t fall on b’s side of all bisectionPlanes
then

assign t to b

end if
end for
if t is unassigned then

randomly select a neighbouring triangle n of t
copy bone assignment of n to t

end if
end for

end for

An example of a resulting canonical mesh is shown is
Figure 1(c). As you can see, the mesh has been placed into
the canonical pose of the skeleton, but with very little shape
distortion, hence preserving the surface details.

4 Experiments

We compare our skeleton canonical forms to several other
methods using the two most recently developed publicly
available datasets for benchmarking. Firstly we present our
retrieval performance on the SHREC’15 canonical forms
benchmark [21] in Section 4.1. Secondly we present the
results of our experiments on the SHREC’15 non-rigid
retrieval benchmark [18] in Section 4.2. Finally we show
some limitations of our method in Section 4.3.

4.1 SHREC’15 Canonical Forms Benchmark

Our method was recently entered into the SHREC’15
canonical forms benchmark [21]. The purpose of this
benchmark was to compare the effectiveness of different
methods at producing canonical forms for 3D shape
retrieval. The dataset used for this benchmark contains
100 meshes, split into 10 different shape classes. Each
shape class contains a mesh in 10 different non-rigid
poses. The average number of vertices per mesh is 21,141.
The dataset contains models from both the SHREC’11
non-rigid benchmark [15], which provides a wide range
of shape classes, and the SHREC’14 non-rigid humans

(a) Two neighbour example.

(b) Three neighbour example.

Fig. 2 Two dimensional illustration of the assignment regions for bone
assignment. The separation planes are shown in red, and the assignment regions
are illustrated in the same colour as the corresponding bone. If at least two
vertices of a triangle fall within an assignment region, the triangle is assigned to
the corresponding bone.

Tab. 1 Comparison of methods on the SHREC’15 canonical forms
benchmark [21] using a view-based retrieval method [16]. Original meshes
refers to performing retrieval without using canonical forms. Our method
achieves the highest retrieval score on three of the four measures.

NN FT ST DCG
Original Meshes 0.50 0.567 0.702 0.753

Classic MDS 0.73 0.597 0.741 0.796
Fast MDS 0.66 0.590 0.718 0.789

Least Squares MDS 0.75 0.694 0.829 0.838
Non-Metric MDS 0.77 0.687 0.811 0.836

GPS 0.72 0.556 0.697 0.783
Euclidean Random 0.54 0.640 0.783 0.793

Euclidean Normalised 0.61 0.673 0.796 0.816
Least Squares MDS B 0.66 0.662 0.788 0.813

Our method - simplified meshes 0.74 0.682 0.791 0.825
Our method - full meshes 0.77 0.714 0.824 0.849
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Fig. 3 Precision-recall curves for each method tested on the SHREC’15
canonical forms benchmark [21] using a view-based retrieval method [16]. Our
method achieves the best precision for low and high recall values, falling below
least-squares MDS for mid-range recall values.

benchmark [20], where the details of the shapes are
important for distinguishing between them. Our method was
one out of ten methods which took part. All the canonical
forms from each method were input to a view-based retrieval
method [16] to test their effectiveness for non-rigid retrieval.
Here we update our results for this benchmark, as we have
rewritten some of our code to improve the speed of our
implementation and therefore no longer require the largest
meshes (∼60,000 vertices) contained in the dataset to be
simplified, which was done for the original benchmark
paper. This speed-up is achieved purely through changes
to our code, with no alterations to the actual algorithms
used. The MDS based methods tested all use simplified
meshes with 2,000 vertices as input, as these methods are
too computationally expensive to compute the canonical
forms of the full resolution meshes in a reasonable amount
of time. All the other methods use the full resolution meshes
as input. The retrieval results are shown in Table 1. All the
performance measures produce a value in the interval [0, 1]
and are defined as:

Nearest Neighbour (NN) The fraction of closest matches
which are members of the query model’s class.

First Tier (FT) The fraction of models which are members
of the query model’s class that appear within the top C
closest matches, where C is the number of models in
the query’s class.

Second Tier (ST) The fraction of models which are
members of the query model’s class that appear within

the top 2C closest matches, where C is the number of
models in the query’s class.

Discounted Cumulative Gain (DCG) This weights
correct matches more if they are higher in the list
of retrieved results. The DCG is computed by first
assigning each model Gi in the retrieved list G a value
of 1 if it is a member of the query’s class, and 0 if it is
not. An initial DCG is then computed as

DCGi =

{
Gi i = 1,

DCGi−1 +Gi/ log2(i) otherwise.

(2)
The final result where i = N , where N is the number
of models in the dataset, is divided by the optimal DCG

DCG =
DCGN

1 +
∑C

i=2 1/ log2(i)
, (3)

where C is the number of models in the query’s class.

The original submission of our method gave a very
competitive performance, achieving the third highest
retrieval scores behind the least-squares and non-metric
MDS methods which use the mesh’s geodesic distances.
Our updated result, which uses the full resolution meshes,
raises our ranking to achieve state-of-the-art results with
the highest retrieval performance on three of the four
performance measures. This performance increase is likely
due to the full resolution meshes containing important
details which are lost when the mesh is simplified. This
highlights the importance of being able to efficiently handle
meshes with a large number of vertices, and using a
canonical form method which preserves the local details.
We also show the precision-recall curve [2] of each method
in Figure 3. Our method achieves the best precision for low
and high recall values, falling below least-squares MDS for
mid-range recall values as reflected by the slightly lower
second tier measure in Table 1.

4.2 SHREC’15 Non-Rigid Shape Retrieval
Benchmark

The SHREC’15 non-rigid benchmark [18] contains a
far larger number of 3D models, and therefore we also
perform experiments on this dataset. The purpose of this
benchmark was to compare the state-of-the-art methods
in non-rigid shape retrieval. This dataset contains 1,200
meshes, split into 50 different shape classes. Each
shape class contains a mesh within 24 different non-rigid
poses. Four meshes in each shape class contain topological
errors, such as disconnected components, or unwanted
connections (Figure 9). The average number of vertices
per mesh is 9,607. We compare our canonical forms
against those submitted to the SHREC’15 canonical forms
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6 David Pickup et al.

(a) Original meshes (b) Classic MDS

(c) Fast MDS (d) Least Squares MDS

(e) Non-Metric MDS (f) GPS

(g) Euclidean Random (h) Euclidean Normalised

(i) Our method

Fig. 4 Example canonical forms for each method tested on the SHREC’15 non-rigid dataset [18].
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(a) Original meshes

(b) Classic MDS

(c) Fast MDS

(d) Least Squares MDS

(e) Non-Metric MDS

(f) GPS

(g) Euclidean Random

(h) Euclidean Normalised

(i) Our method

Fig. 5 Example of six canonical forms of the same mesh for each method tested
on the SHREC’15 non-rigid dataset [18].

benchmark [21], as we have their implementations. We
leave out the least squares MDS B method, as it is simply
the same as the least squares method, but with an early
termination from the MDS algorithm which has shown to
decrease the quality of the canonical forms [21].

Figure 4 shows two example meshes and their associated
canonical forms produced using each method. It is
noticeable that the GPS method and the MDS based
methods severely distort the local shape details. The
Euclidean canonical form methods cause slightly less shape
distortions, but sometimes fail to completely stretch out the
limbs of the shape. Our skeleton method achieves a similar
pose to the MDS based methods, but with the least shape
distortions of all the methods.

Figure 5 shows the canonical forms for six meshes from
the “armadillo” shape class of the SHREC’15 non-rigid
dataset, for each of the methods. Our method produces a
similarly consistent pose to least squares MDS, but with
less shape distortions. Our method however does exhibit
some extra inconsistency with respect to the pose of the
head of the armadillo. The classic MDS, Fast MDS, and
GPS methods distort the shape so much it becomes almost
unrecognisable. The Euclidean-based methods distort the
shape details less than all methods except ours, but do not
produce as consistent a canonical pose.

Some of the meshes contained within this dataset have
topological errors to increase the difficulty of the retrieval
challenge. One type of error present in some objects is
that the mesh is disconnected into two or three different
components. The Euclidean distance based methods by
Pickup et al. [19] do not require any modification for this,
but all the other methods fail on these meshes. For the
MDS and GPS methods, we therefore delete all but the
largest component. For our skeleton method, we test two
different solutions. The first is to join the separate skeletons
for each component by merging the closest joints between
components, and the second method is identical to the
solution for the MDS and GPS methods. Figure 6 shows
an example of this problem, where the mouse’s head is
disconnected from its body. The methods which only keep
the largest component therefore produce canonical forms
without the presence of the mouse’s head. The Euclidean
distance based methods separate out the head and the body,
as there are no edge connections keeping them together. Our
method which connects the skeletons, places the head in an
odd position. This is because, although the skeletons are
connected, the method has no mesh connections to preserve
between the head and the body.

All the canonical forms from each method were input to
a view-based retrieval method [16] to test their effectiveness
for non-rigid retrieval. The retrieval results are shown

7
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(a) Original mesh (b) Classic MDS (c) Fast MDS (d) Least Squares MDS

(e) Non-Metric MDS (f) GPS (g) Euclidean Random (h) Euclidean Normalised

(i) Our method (join skeleton
components)

(j) Our method (delete smallest
components)

Fig. 6 Canonical forms for a mesh with disconnected components.
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Tab. 2 Comparison of methods on the SHREC’15 non-rigid benchmark [18]
using a view-based retrieval method [16]. Original meshes refers to performing
retrieval without using canonical forms. Our method achieves the third highest
retrieval performance, behind two much more computationally expensive
methods.

NN FT ST DCG
Original Meshes 0.984 0.732 0.841 0.927

Classic MDS 0.969 0.731 0.833 0.922
Fast MDS 0.944 0.649 0.766 0.884

Least Squares MDS 0.992 0.863 0.938 0.969
Non-Metric MDS 0.991 0.853 0.929 0.965

GPS 0.749 0.453 0.582 0.745
Euclidean Random 0.975 0.770 0.868 0.936

Euclidean Normalised 0.978 0.793 0.884 0.943
Our method

0.986 0.843 0.932 0.963
(join skeleton components)

Our method
0.986 0.844 0.933 0.964

(delete smallest components)

in Table 2, and the precision-recall curves are shown in
Figure 7. Our method achieves the third highest retrieval
performance on this dataset, behind the least squares and
non-metric MDS methods. This may be because the details
matter less with this dataset, as the difference between
the shape classes is much larger, and therefore keeping
the details may only serve to increase the level of noise
in the result. Using no canonical forms at all achieved
a higher retrieval performance than the classic MDS, fast
MDS and GPS methods, and achieved a higher nearest
neighbour performance than the Euclidean distance based
methods. Such a high performance from a rigid retrieval
method shows that the different shape classes are easily
distinguishable even when the non-rigid nature of the shapes
is ignored. The precision-recall curves show that there is a
noticeable gap in performance between our method, along
with the least squares and non-metric MDS methods, and
the others.

Table 2 shows the performance of both our methods
for dealing with disconnected components. We achieve a
tiny performance increase of 0.001 when only keeping the
largest mesh component. This probably means that this is
a better solution, but as there is only a small proportion of
meshes with this problem (15 out of 1,200), they only make
a minor impact on the overall performance.

The timings for each canonical form method on the
non-rigid benchmark are shown in Table 3. The methods
were run on a Linux PC with an Intel i7-3930K 3.2 GHz
processor and 32 GB of memory. All methods are primarily
implemented in Matlab, but with some parts in C++ for
speed. The times for the four MDS based methods are
for meshes which were simplified to approximately 2,000
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Fig. 7 Precision-recall curves for each method tested on the SHREC’15 non-
rigid benchmark [18] using a view-based retrieval method [16]. Our method
achieves the third best performance.

Tab. 3 Run-time of each method on the SHREC’15 non-rigid benchmark [18].
Our method achieves the second fastest run-time on this dataset. * These
methods use meshes which have been simplified to∼2,000 vertices.

Single mesh Dataset
Classic MDS* 45 seconds 14 hours, 50 minutes

Fast MDS* 44 seconds 14 hours, 37 minutes
Least Squares MDS* 66 seconds 21 hours, 53 minutes

Non-Metric MDS* 104 seconds 34 hours, 44 minutes
GPS 2 seconds 44 minutes

Euclidean Random 23 seconds 7 hours, 37 minutes
Euclidean Normalised 23 seconds 7 hours, 39 minutes

Our method 11 seconds 3 hours, 36 minutes

vertices. This is because for a single full resolution mesh
these methods take in excess of 20 minutes to compute the
canonical form, and therefore the meshes must be simplified
for these methods to finish within a reasonable length of
time. Even with much lower resolution meshes, the MDS
based methods are the slowest due to the use of geodesic
distances. Our method is the second fastest of all the
methods, being beaten in run-time by the GPS method. The
GPS method however performed worst on all our retrieval
experiments.

Our method therefore is significantly faster than
the methods which achieved a slightly better retrieval
performance, and achieves a significantly higher retrieval
performance than the only method which had a faster run-
time. We therefore achieve a very good trade-off between
retrieval accuracy and efficiency.
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(a) Original mesh and skeleton.

(b) Canonical form.

Fig. 8 Example of junctions which have not been correctly joined, and the
impact on the canonical form.

4.3 Limitations

The skeleton refinement step described in Section 3.2.1
does not always merge junctions which are undesirably
separate. An example of this is shown in Figure 8, where
each of the arms and legs of the alligator are connected to
the spine at a different junction. This is likely caused by
the curved pose of the alligator’s spine. This leads to the
neck of the alligator not fully straightening out correctly, but
even with this local inaccuracy we still achieve a retrieval
nearest neighbour score of 1 for this mesh. There is room
for future improvement to the skeleton refinement process,
but this is a challenging problem as looser conditions for
junction merging can lead to incorrect merging of junctions
which should be separate.

The SHREC’15 non-rigid benchmark [18] contains some
meshes with topological errors. We have already discussed
meshes which contain multiple components in Section 4.2,
but this dataset also contains meshes where parts of the mesh
are undesirably joined together. Figure 9 shows an example
mesh with this kind of topological error, and the resulting
canonical form produced by each canonical form method we
have tested. It can be seen that the arms of the manikin are
incorrectly fused together along the forearms, which means
that the arms are not correctly separated out by any of the
canonical form methods. There are currently no canonical
form methods that we are aware of which claim to be able
to be able to correct for this level of topological error. The
method by Boscaini et al. [5] proposes a method to handle
errors where the incorrect connections are much smaller.

Our method is designed to work on objects which have
a natural skeletal structure. Figure 10 shows a mesh from
the “paper” class of the SHREC’15 non-rigid dataset. This
mesh does not have a natural skeletal structure, and therefore
our method fails to produce a sensible result. Our method

(a) Original mesh (b) Classic MDS

(c) Fast MDS (d) Least Squares MDS

(e) Non-Metric MDS (f) GPS

(g) Euclidean Random (h) Euclidean Normalised

(i) Our method

Fig. 9 Canonical forms for a mesh with incorrect connections.
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Fig. 10 Example of a mesh which does not have a natural skeleton structure.

would work for other man-made objects, as long as they
have an obvious skeletal structure.

5 Conclusions

We have presented a novel method for computing the
canonical form of a 3D mesh, which uses the mesh’s
skeleton to normalise its pose. We have shown that our
method is able to achieve the same bending invariant pose
as the previous state-of-the-art, whilst causing far less shape
distortions than other methods. Our method is not able
to correct for topological errors present in a mesh, and
therefore there is room for future research in this direction.
The retrieval performance produced using our canonical
forms are competitive with other canonical form methods,
achieving top performance on a recent canonical forms
benchmark. Our method achieves high quality canonical
forms, whilst achieving a significantly faster computation
time over the previous state-of-the-art.
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