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Abstract The retrieval of non-rigid 3D shapes is an

important task. A common technique is to simplify this

problem to a rigid shape retrieval task by producing a

bending invariant canonical form for each shape in the

dataset to be searched. It is common for these techniques to

attempt to “unbend” a shape by applying multidimensional

scaling to the distances between points on the mesh, but

this leads to unwanted local shape distortions. We instead

perform the unbending on the skeleton of the mesh, and

use this to drive the deformation of the mesh itself. This

leads to a computational speed-up and less distortions of

the local details of the shape. We compare our method

against other canonical forms and our experiments show that

our method achieves state-of-the-art retrieval accuracy in a

recent canonical forms benchmark, and only a small drop

in retrieval accuracy over state-of-the-art in a second recent

benchmark, while being significantly faster.

Keywords canonical forms, shape retrieval, skeletons, pose

invariance.

1 Introduction

The task of example based retrieval of non-rigid objects is

both a key problem to solve and a challenging one. There are

increasing numbers of 3D shape collections being created,

so the ability to search these collections is an increasingly

important task. There have been many successes in the

retrieval of rigid objects, with methods such as view based

techniques proving very successful [14]. The problem

is that many of these techniques cannot be applied to

non-rigid shape retrieval. To address this issue Elad and
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Kimmel [9] proposed a bending invariant 3D embedding

of a mesh, named a canonical form. The canonical form

of a mesh effectively standardises its pose, and therefore

when a canonical form is computed for each shape in a

dataset the non-rigid retrieval problem becomes a rigid

retrieval problem. This means that any of the wide range

of rigid shape retrieval methods available are then able to

perform retrieval on this data. There are two issues with the

canonical form method by Elad and Kimmel. The first is that

it requires the geodesic distance between all pairs of vertices

to be computed, which has a super-quadratic computational

complexity. The second issue is that the small scale local

details of the shapes are lost in the canonical form.

In this paper we address both these issues by applying

the method by Elad and Kimmel to the skeleton of the

mesh, rather than to the mesh itself. The pose of the mesh

is then deformed by the pose of the resulting canonical

skeleton. This is far more efficient because the skeleton

of a mesh contains far fewer vertices than the mesh itself,

resulting in far fewer geodesic distance computations. Less

shape details are distorted, because the method effectively

produces a set of canonical angles at the articulated joints

of the shape, and the shape deformations are localised to

these joint regions. This leads to an increased retrieval

performance on a recent canonical forms benchmark [21].

The structure of our paper is as follows. Section 2

outlines the related work in this area, Section 3 describes

the technical details of our method, Section 4 presents the

results of our experiments, and we make our conclusions in

Section 5.

2 Related Work

There are many works which aim to solve the retrieval

problem for rigid shapes, such as lightfield descriptors [7]

and spin images [12]. We refer readers to [14] and [28] for

detailed reviews of this field of research.

In recent years more research has concentrated on

the problem of retrieving non-rigid models. Several

methods extract local features from a mesh to compute a

1



2 David Pickup et al.

shape descriptor [6], including meshSIFT [26], conformal

factors [3], area projection transforms [10] and heat

kernal signatures [27]. Computing histograms of local

features has proven to perform very well in recent retrieval

benchmarks [18, 20].

Graphs have also been used as shape descriptors. Hilga et

al. [11] used multiresolution Reeb graphs to match the

topology between 3D shapes, and Sfikas et al. [23] proposed

formulating a graph based on conformal factors [3].

Matching global information of 3D shapes has also

proved successful. Reuter et al. [22] demonstrated that the

Laplace-Beltrami spectra can be used as a shape descriptor,

which they name ShapeDNA. Various global descriptors can

also be extracted from the geodesic distance matrix of a

mesh, as shown by Smeets et al. [25].

For a more detailed review of the latest non-rigid

retrieval methods, we refer the reader to the recent SHREC

benchmarks [18, 20].

The use of canonical forms to normalise the pose of non-

rigid shapes was first proposed by Elad and Kimmel [9].

They use multidimensional scaling to map the geodesic

distances of a mesh into 3D Euclidean distances. Several

variations to this method have been proposed. Shamai et

al. [24] accelerate the classical MDS procedure using their

proposed Nyström Multidimensional Scaling framework.

Lian et al. [17] attempt to preserve the features of a mesh

by segmenting the original mesh and transforming each

segment to its location in the canonical mesh computed

using Elad and Kimmel’s method, thus correcting some of

the local shape distortions. Wang and Zha [29] speed up the

canonical form computation by only computing geodesic

distances between all pairs of a set of detected feature points,

and unbending the mesh by creating target axes used to

align sets of geodesic contours. Pickup et al. [19] also use

feature points, but restrict their number to the square root of

the number of mesh vertices. They maximise the distance

between pairs of these feature points whilst preserving the

mesh’s edge lengths. Boscaini et al. [5] proposed a method

which assigns a repelling electrical charge at each vertex of

the mesh to form a canonical form. They are also able to

correct certain very small localised topological errors in the

mesh, by cutting parts of the mesh which are likely to have

been incorrectly joined. Their method is faster than Elad

and Kimmel’s, but still suffers from distorting local shape

details. There is also work on parallelising or speeding

up the computation of geodesic distances [8, 31]. Recent

benchmarks [15, 18] have shown that using canonical forms

along with the view-based shape retrieval method by Lian et

al. [16] performs very competitively compared with other

non-rigid retrieval approaches.

Our method differs from those above by normalising

the pose of the shape’s skeleton, rather than performing

the computation on the mesh vertices. This causes less

distortion to the local shape details compared with other

methods, whilst providing a practical level of efficiency.

3 Method

To describe the workings of our method, we first give

an overview of the canonical form work by Elad and

Kimmel [9] in Section 3.1 as our work builds from this

approach. We then detail our novel skeleton-based approach

in Section 3.2.

3.1 Background

Our method extends the canonical form work by Elad

and Kimmel [9]. Their method transforms the mesh so

that the geodesic distance between all pairs of vertices are

mapped to Euclidean distances. To accomplish this they

first compute the geodesic distance between all pairs of

mesh vertices using the fast marching method [13]. Next

they use multidimensional scaling to calculate a new set

of vertex positions, where the Euclidean distance between

each pair of vertices is as close as possible to the already

computed geodesic distances. They show results with three

different multidimensional scaling techniques, but the one

which tends to provide the best results, and which we use in

our work, solves the multidimensional scaling problem by

minimising the following least squares functional:

S(X) =
N−1
∑

i=1

N
∑

j=i+1

wi,j(δi,j − di,j(X))2, (1)

where N is the number of vertices, wi,j are weighting

coefficients, δi,j is the geodesic distance between vertices i

and j of the original mesh, and di,j is the Euclidean distance

between vertices i and j of the resulting canonical mesh X .

This functional is minimised using the SMACOF (scaling by

maximising a convex function) algorithm [4].

This method is computationally expensive to compute, as

the geodesic distances are calculated in O(N2 logN) time

and each iteration of the SMACOF algorithm in O(N2)

time. As this method works on the vertices of the mesh,

it deforms the details of its shape as well as normalising its

pose. These details may be important when analysing the

shape of the object.

3.2 Skeleton Canonical Forms

The purpose of computing a canonical form is to

normalise the pose of a 3D object. The pose of an object

can be defined as the articulation of the object’s skeleton.

This leads us to our method, which normalises the pose

of an object by transforming it so that its skeleton is in a

normalised pose. The stages of our method are depicted

in Figure 1. We first extract the skeleton of the mesh

2
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(a) Extract the skeleton from the mesh. (b) Compute the canonical skeleton. (c) Deform the mesh using the skeleton.

Fig. 1 Outline of our method.

(Section 3.2.1), then transform the skeleton into a canonical

form (Section 3.2.2), and finally deform the mesh according

to the skeleton transformation (Section 3.2.3).

3.2.1 Skeleton Extraction

We first extract the mesh’s skeleton using the method

by Au et al. [1]. This method works by first contracting

the mesh to a zero-volume skeletal shape using Laplacian

smoothing. The mesh is then converted to a 1D curve

skeleton by removing all the mesh faces while preserving

the skeletal topology.

The skeleton is then refined by merging junctions with

neighbouring joints, if the merged junction has a better

“centeredness”. A junction is defined as a joint attached

to three or more bones. The centeredness of a junction is

defined as the standard deviation of the distances between

the junction’s position and the position of each vertex

assigned to that junction during the skeleton extraction

process. A junction is merged with a neighbour if σ′ <

0.9σ, where σ′ and σ are the centeredness of the merged and

original junctions respectively. Finally the skeleton joints

are repositioned to better centre them in the mesh.

Please see the original paper for the full details. An

example of the resulting skeleton is shown in Figure 1(a).

3.2.2 Skeleton Transformation

Next we apply the canonical form method by Elad and

Kimmel [9] to the skeleton. We use Dijkstra’s algorithm to

compute the geodesic distances between all the joints of the

skeleton, and then use Equation 1 for the multidimensional

scaling. An example of this is shown in Figure 1(b). This

still has a high time complexity, but it is related to the

number of joints in the skeleton instead of the number

of mesh vertices. In practice this number is significantly

smaller, and therefore computing the canonical form of a

skeleton has a significantly shorter runtime.

3.2.3 Mesh Deformation

Finally we deform the mesh according to the canonical

transformation of its skeleton using the method by Yan et

al. [30]. We use this method as it is simple to implement,

fully automatic, does not require any vertex weights to be

assigned, and does not have any parameters which require

training or manual-tuning. This works by first assigning

each triangle to a bone of the original skeleton, and then

calculating the transformation of each bone between the

original and canonical skeletons. A sparse linear system

is then solved, which transforms each triangle according

to the transformation of its assigned bone whilst preserving

the mesh’s connectivity. For the full details of this method,

please refer to the original paper.

Yan et al.’s method takes into account the translation,

rotation and scaling of the skeleton when deforming the

mesh, but we ignore scaling and translation as we only

care about transforming the articulation of the mesh, and

we do not want any stretching of the skeleton caused by

the canonicalisation to be transferred to the mesh. We

also use our own method for assigning triangles to bones,

because the method by Yan et al.requires that the ends of

the skeleton protrude outside the mesh, which is not true for

our skeletons, and because we can retain information from

the skeleton extraction procedure to make this assignment.

The skeleton extraction method results in each vertex

being assigned to a joint of the skeleton [1]. This assignment

is based on which joint each vertex was collapsed into

during the skeleton extraction method. We use these

assignments to assign each triangle to a bone of the skeleton,

as required by Yan et al.’s deformation method. For each

joint we find all the triangles which have at least one vertex

assigned to that joint. Each triangle is then assigned to one

of the bones connected to that joint. To determine which

of these bones a particular triangle is assigned to, we first

calculate a plane which bisects each pair of bones that meet

at the joint. A triangle is assigned to a particular bone if

two or more of its vertices lie on that bone’s side of all

the bisection planes between it and the other bones. This

is illustrated in Figure 2. If a triangle does not meet the

assignment criteria for any of the bones, then one of its

neighbours is randomly selected and it is given the same

bone assignment as that neighbour. This is outlined in
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Algorithm 1.

Algorithm 1 Algorithm for assigning triangles to bones.

Input: mesh, skeleton, assignment of vertices to joints.

Output: each triangle is assigned to a bone.

for all joints j in skeleton do

bisectionPlanes← ∅

for all bones b1 connected to j do

for all bones b2 connected to j, where b1 6= b2 do

bisectionPlanes← plane bisecting b1 and b2

end for

end for

for all triangles t with a vertex assigned to j do

for all bones b connected to j do

if≥ 2 vertices of t fall on b’s side of all bisectionPlanes

then

assign t to b

end if

end for

if t is unassigned then

randomly select a neighbouring triangle n of t

copy bone assignment of n to t

end if

end for

end for

An example of a resulting canonical mesh is shown is

Figure 1(c). As you can see, the mesh has been placed into

the canonical pose of the skeleton, but with very little shape

distortion, hence preserving the surface details.

4 Experiments

We compare our skeleton canonical forms to several other

methods using the two most recently developed publicly

available datasets for benchmarking. Firstly we present our

retrieval performance on the SHREC’15 canonical forms

benchmark [21] in Section 4.1. Secondly we present the

results of our experiments on the SHREC’15 non-rigid

retrieval benchmark [18] in Section 4.2. Finally we show

some limitations of our method in Section 4.3.

4.1 SHREC’15 Canonical Forms Benchmark

Our method was recently entered into the SHREC’15

canonical forms benchmark [21]. The purpose of this

benchmark was to compare the effectiveness of different

methods at producing canonical forms for 3D shape

retrieval. The dataset used for this benchmark contains

100 meshes, split into 10 different shape classes. Each

shape class contains a mesh in 10 different non-rigid

poses. The average number of vertices per mesh is 21,141.

The dataset contains models from both the SHREC’11

non-rigid benchmark [15], which provides a wide range

of shape classes, and the SHREC’14 non-rigid humans

(a) Two neighbour example.

(b) Three neighbour example.

Fig. 2 Two dimensional illustration of the assignment regions for bone

assignment. The separation planes are shown in red, and the assignment regions

are illustrated in the same colour as the corresponding bone. If at least two

vertices of a triangle fall within an assignment region, the triangle is assigned to

the corresponding bone.

Tab. 1 Comparison of methods on the SHREC’15 canonical forms

benchmark [21] using a view-based retrieval method [16]. Original meshes

refers to performing retrieval without using canonical forms. Our method

achieves the highest retrieval score on three of the four measures.

NN FT ST DCG

Original Meshes 0.50 0.567 0.702 0.753

Classic MDS 0.73 0.597 0.741 0.796

Fast MDS 0.66 0.590 0.718 0.789

Least Squares MDS 0.75 0.694 0.829 0.838

Non-Metric MDS 0.77 0.687 0.811 0.836

GPS 0.72 0.556 0.697 0.783

Euclidean Random 0.54 0.640 0.783 0.793

Euclidean Normalised 0.61 0.673 0.796 0.816

Least Squares MDS B 0.66 0.662 0.788 0.813

Our method - simplified meshes 0.74 0.682 0.791 0.825

Our method - full meshes 0.77 0.714 0.824 0.849

4
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Fig. 3 Precision-recall curves for each method tested on the SHREC’15

canonical forms benchmark [21] using a view-based retrieval method [16]. Our

method achieves the best precision for low and high recall values, falling below

least-squares MDS for mid-range recall values.

benchmark [20], where the details of the shapes are

important for distinguishing between them. Our method was

one out of ten methods which took part. All the canonical

forms from each method were input to a view-based retrieval

method [16] to test their effectiveness for non-rigid retrieval.

Here we update our results for this benchmark, as we have

rewritten some of our code to improve the speed of our

implementation and therefore no longer require the largest

meshes (∼60,000 vertices) contained in the dataset to be

simplified, which was done for the original benchmark

paper. This speed-up is achieved purely through changes

to our code, with no alterations to the actual algorithms

used. The MDS based methods tested all use simplified

meshes with 2,000 vertices as input, as these methods are

too computationally expensive to compute the canonical

forms of the full resolution meshes in a reasonable amount

of time. All the other methods use the full resolution meshes

as input. The retrieval results are shown in Table 1. All the

performance measures produce a value in the interval [0, 1]

and are defined as:

Nearest Neighbour (NN) The fraction of closest matches

which are members of the query model’s class.

First Tier (FT) The fraction of models which are members

of the query model’s class that appear within the top C

closest matches, where C is the number of models in

the query’s class.

Second Tier (ST) The fraction of models which are

members of the query model’s class that appear within

the top 2C closest matches, where C is the number of

models in the query’s class.

Discounted Cumulative Gain (DCG) This weights

correct matches more if they are higher in the list

of retrieved results. The DCG is computed by first

assigning each model Gi in the retrieved list G a value

of 1 if it is a member of the query’s class, and 0 if it is

not. An initial DCG is then computed as

DCGi =

{

Gi i = 1,

DCGi−1 +Gi/ log2(i) otherwise.

(2)

The final result where i = N , where N is the number

of models in the dataset, is divided by the optimal DCG

DCG =
DCGN

1 +
∑C

i=2
1/ log2(i)

, (3)

where C is the number of models in the query’s class.

The original submission of our method gave a very

competitive performance, achieving the third highest

retrieval scores behind the least-squares and non-metric

MDS methods which use the mesh’s geodesic distances.

Our updated result, which uses the full resolution meshes,

raises our ranking to achieve state-of-the-art results with

the highest retrieval performance on three of the four

performance measures. This performance increase is likely

due to the full resolution meshes containing important

details which are lost when the mesh is simplified. This

highlights the importance of being able to efficiently handle

meshes with a large number of vertices, and using a

canonical form method which preserves the local details.

We also show the precision-recall curve [2] of each method

in Figure 3. Our method achieves the best precision for low

and high recall values, falling below least-squares MDS for

mid-range recall values as reflected by the slightly lower

second tier measure in Table 1.

4.2 SHREC’15 Non-Rigid Shape Retrieval

Benchmark

The SHREC’15 non-rigid benchmark [18] contains a

far larger number of 3D models, and therefore we also

perform experiments on this dataset. The purpose of this

benchmark was to compare the state-of-the-art methods

in non-rigid shape retrieval. This dataset contains 1,200

meshes, split into 50 different shape classes. Each

shape class contains a mesh within 24 different non-rigid

poses. Four meshes in each shape class contain topological

errors, such as disconnected components, or unwanted

connections (Figure 9). The average number of vertices

per mesh is 9,607. We compare our canonical forms

against those submitted to the SHREC’15 canonical forms
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(a) Original meshes (b) Classic MDS

(c) Fast MDS (d) Least Squares MDS

(e) Non-Metric MDS (f) GPS

(g) Euclidean Random (h) Euclidean Normalised

(i) Our method

Fig. 4 Example canonical forms for each method tested on the SHREC’15 non-rigid dataset [18].

6
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(a) Original meshes

(b) Classic MDS

(c) Fast MDS

(d) Least Squares MDS

(e) Non-Metric MDS

(f) GPS

(g) Euclidean Random

(h) Euclidean Normalised

(i) Our method

Fig. 5 Example of six canonical forms of the same mesh for each method tested

on the SHREC’15 non-rigid dataset [18].

benchmark [21], as we have their implementations. We

leave out the least squares MDS B method, as it is simply

the same as the least squares method, but with an early

termination from the MDS algorithm which has shown to

decrease the quality of the canonical forms [21].

Figure 4 shows two example meshes and their associated

canonical forms produced using each method. It is

noticeable that the GPS method and the MDS based

methods severely distort the local shape details. The

Euclidean canonical form methods cause slightly less shape

distortions, but sometimes fail to completely stretch out the

limbs of the shape. Our skeleton method achieves a similar

pose to the MDS based methods, but with the least shape

distortions of all the methods.

Figure 5 shows the canonical forms for six meshes from

the “armadillo” shape class of the SHREC’15 non-rigid

dataset, for each of the methods. Our method produces a

similarly consistent pose to least squares MDS, but with

less shape distortions. Our method however does exhibit

some extra inconsistency with respect to the pose of the

head of the armadillo. The classic MDS, Fast MDS, and

GPS methods distort the shape so much it becomes almost

unrecognisable. The Euclidean-based methods distort the

shape details less than all methods except ours, but do not

produce as consistent a canonical pose.

Some of the meshes contained within this dataset have

topological errors to increase the difficulty of the retrieval

challenge. One type of error present in some objects is

that the mesh is disconnected into two or three different

components. The Euclidean distance based methods by

Pickup et al. [19] do not require any modification for this,

but all the other methods fail on these meshes. For the

MDS and GPS methods, we therefore delete all but the

largest component. For our skeleton method, we test two

different solutions. The first is to join the separate skeletons

for each component by merging the closest joints between

components, and the second method is identical to the

solution for the MDS and GPS methods. Figure 6 shows

an example of this problem, where the mouse’s head is

disconnected from its body. The methods which only keep

the largest component therefore produce canonical forms

without the presence of the mouse’s head. The Euclidean

distance based methods separate out the head and the body,

as there are no edge connections keeping them together. Our

method which connects the skeletons, places the head in an

odd position. This is because, although the skeletons are

connected, the method has no mesh connections to preserve

between the head and the body.

All the canonical forms from each method were input to

a view-based retrieval method [16] to test their effectiveness

for non-rigid retrieval. The retrieval results are shown
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(a) Original mesh (b) Classic MDS (c) Fast MDS (d) Least Squares MDS

(e) Non-Metric MDS (f) GPS (g) Euclidean Random (h) Euclidean Normalised

(i) Our method (join skeleton

components)

(j) Our method (delete smallest

components)

Fig. 6 Canonical forms for a mesh with disconnected components.

8
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Tab. 2 Comparison of methods on the SHREC’15 non-rigid benchmark [18]

using a view-based retrieval method [16]. Original meshes refers to performing

retrieval without using canonical forms. Our method achieves the third highest

retrieval performance, behind two much more computationally expensive

methods.

NN FT ST DCG

Original Meshes 0.984 0.732 0.841 0.927

Classic MDS 0.969 0.731 0.833 0.922

Fast MDS 0.944 0.649 0.766 0.884

Least Squares MDS 0.992 0.863 0.938 0.969

Non-Metric MDS 0.991 0.853 0.929 0.965

GPS 0.749 0.453 0.582 0.745

Euclidean Random 0.975 0.770 0.868 0.936

Euclidean Normalised 0.978 0.793 0.884 0.943

Our method
0.986 0.843 0.932 0.963

(join skeleton components)

Our method
0.986 0.844 0.933 0.964

(delete smallest components)

in Table 2, and the precision-recall curves are shown in

Figure 7. Our method achieves the third highest retrieval

performance on this dataset, behind the least squares and

non-metric MDS methods. This may be because the details

matter less with this dataset, as the difference between

the shape classes is much larger, and therefore keeping

the details may only serve to increase the level of noise

in the result. Using no canonical forms at all achieved

a higher retrieval performance than the classic MDS, fast

MDS and GPS methods, and achieved a higher nearest

neighbour performance than the Euclidean distance based

methods. Such a high performance from a rigid retrieval

method shows that the different shape classes are easily

distinguishable even when the non-rigid nature of the shapes

is ignored. The precision-recall curves show that there is a

noticeable gap in performance between our method, along

with the least squares and non-metric MDS methods, and

the others.

Table 2 shows the performance of both our methods

for dealing with disconnected components. We achieve a

tiny performance increase of 0.001 when only keeping the

largest mesh component. This probably means that this is

a better solution, but as there is only a small proportion of

meshes with this problem (15 out of 1,200), they only make

a minor impact on the overall performance.

The timings for each canonical form method on the

non-rigid benchmark are shown in Table 3. The methods

were run on a Linux PC with an Intel i7-3930K 3.2 GHz

processor and 32 GB of memory. All methods are primarily

implemented in Matlab, but with some parts in C++ for

speed. The times for the four MDS based methods are

for meshes which were simplified to approximately 2,000
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Fig. 7 Precision-recall curves for each method tested on the SHREC’15 non-

rigid benchmark [18] using a view-based retrieval method [16]. Our method

achieves the third best performance.

Tab. 3 Run-time of each method on the SHREC’15 non-rigid benchmark [18].

Our method achieves the second fastest run-time on this dataset. * These

methods use meshes which have been simplified to ∼2,000 vertices.

Single mesh Dataset

Classic MDS* 45 seconds 14 hours, 50 minutes

Fast MDS* 44 seconds 14 hours, 37 minutes

Least Squares MDS* 66 seconds 21 hours, 53 minutes

Non-Metric MDS* 104 seconds 34 hours, 44 minutes

GPS 2 seconds 44 minutes

Euclidean Random 23 seconds 7 hours, 37 minutes

Euclidean Normalised 23 seconds 7 hours, 39 minutes

Our method 11 seconds 3 hours, 36 minutes

vertices. This is because for a single full resolution mesh

these methods take in excess of 20 minutes to compute the

canonical form, and therefore the meshes must be simplified

for these methods to finish within a reasonable length of

time. Even with much lower resolution meshes, the MDS

based methods are the slowest due to the use of geodesic

distances. Our method is the second fastest of all the

methods, being beaten in run-time by the GPS method. The

GPS method however performed worst on all our retrieval

experiments.

Our method therefore is significantly faster than

the methods which achieved a slightly better retrieval

performance, and achieves a significantly higher retrieval

performance than the only method which had a faster run-

time. We therefore achieve a very good trade-off between

retrieval accuracy and efficiency.
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(a) Original mesh and skeleton.

(b) Canonical form.

Fig. 8 Example of junctions which have not been correctly joined, and the

impact on the canonical form.

4.3 Limitations

The skeleton refinement step described in Section 3.2.1

does not always merge junctions which are undesirably

separate. An example of this is shown in Figure 8, where

each of the arms and legs of the alligator are connected to

the spine at a different junction. This is likely caused by

the curved pose of the alligator’s spine. This leads to the

neck of the alligator not fully straightening out correctly, but

even with this local inaccuracy we still achieve a retrieval

nearest neighbour score of 1 for this mesh. There is room

for future improvement to the skeleton refinement process,

but this is a challenging problem as looser conditions for

junction merging can lead to incorrect merging of junctions

which should be separate.

The SHREC’15 non-rigid benchmark [18] contains some

meshes with topological errors. We have already discussed

meshes which contain multiple components in Section 4.2,

but this dataset also contains meshes where parts of the mesh

are undesirably joined together. Figure 9 shows an example

mesh with this kind of topological error, and the resulting

canonical form produced by each canonical form method we

have tested. It can be seen that the arms of the manikin are

incorrectly fused together along the forearms, which means

that the arms are not correctly separated out by any of the

canonical form methods. There are currently no canonical

form methods that we are aware of which claim to be able

to be able to correct for this level of topological error. The

method by Boscaini et al. [5] proposes a method to handle

errors where the incorrect connections are much smaller.

Our method is designed to work on objects which have

a natural skeletal structure. Figure 10 shows a mesh from

the “paper” class of the SHREC’15 non-rigid dataset. This

mesh does not have a natural skeletal structure, and therefore

our method fails to produce a sensible result. Our method

(a) Original mesh (b) Classic MDS

(c) Fast MDS (d) Least Squares MDS

(e) Non-Metric MDS (f) GPS

(g) Euclidean Random (h) Euclidean Normalised

(i) Our method

Fig. 9 Canonical forms for a mesh with incorrect connections.

10
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Fig. 10 Example of a mesh which does not have a natural skeleton structure.

would work for other man-made objects, as long as they

have an obvious skeletal structure.

5 Conclusions

We have presented a novel method for computing the

canonical form of a 3D mesh, which uses the mesh’s

skeleton to normalise its pose. We have shown that our

method is able to achieve the same bending invariant pose

as the previous state-of-the-art, whilst causing far less shape

distortions than other methods. Our method is not able

to correct for topological errors present in a mesh, and

therefore there is room for future research in this direction.

The retrieval performance produced using our canonical

forms are competitive with other canonical form methods,

achieving top performance on a recent canonical forms

benchmark. Our method achieves high quality canonical

forms, whilst achieving a significantly faster computation

time over the previous state-of-the-art.
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