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1Institut Néel, C.N.R.S - Université Joseph Fourier, BP 166, 38042 Grenoble, France.

2School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA, United Kingdom.

3Clarendon Laboratory, Physics Department, Oxford University,

Oxford, OX1 3PU, United Kingdom.

4Department of Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom

5Kyushu Institute of Technology, Kitakyushu 804-8550, Japan.

6London Centre for Nanotechnology and Department of Physics and Astronomy,

University College London, 17-19 Gordon Street, London, WC1H 0AJ, United Kingdom.

∗ E-mail: carley.paulsen@grenoble.cnrs.fr

A non-Ohmic current that grows exponentially with the square root of applied elec-

tric field is well known from thermionic field emission (the Schottky effect)1, electrolytes

(the second Wien effect)2 and semiconductors (the Poole-Frenkel effect)3. It is a uni-

versal signature of the attractive Coulomb force between positive and negative electrical

charges, which is revealed as the charges are driven in opposite directions by the force

of an applied electric field. Here we apply thermal quenches4 to spin ice5–11 to pre-

pare metastable populations of bound pairs of positive and negative emergent magnetic

monopoles12–16 at millikelvin temperatures. We find that the application of a magnetic

field results in a universal exponential-root field growth of magnetic current, thus con-

firming the microscopic Coulomb force between the magnetic monopole quasiparticles

and establishing a magnetic analogue of the Poole-Frenkel effect. At temperatures above

300 mK, gradual restoration of kinetic monopole equilibria causes the non-Ohmic current

to smoothly evolve into the high field Wien effect2 for magnetic monopoles, as confirmed

by comparison to a recent and rigorous theory of the Wien effect in spin ice17,18. Our

results extend the universality of the exponential-root field form into magnetism and il-

lustrate the power of emergent particle kinetics to describe far-from equilibrium response
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in complex systems.
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Spin ices like Ho2Ti2O7 and Dy2Ti2O7 are almost ideal ice-type or 16-vertex model magnets,

embellished by dipole-dipole interactions5–11. These long-range interactions are self-screened in the

ground state10 but survive in excited states, where they transform to a Coulomb interaction between

emergent magnetic monopole quasiparticles12,13. Spin ice may be represented as a generalised Coulomb

gas in the grand canonical ensemble, with for Dy2Ti2O7, a chemical potential of µ ≈ −4.35 K, set

by the original Hamiltonian parameters12–15. Monopoles are thermally generated in dipole pairs

which subsequently fractionalise to form free monopoles. At equilibrium, free monopoles coexist

with a thermal population of bound pairs that are closely analogous to Bjerrum pairs in a weak

electrolyte20,21, or more generally analogous to excitons in a semiconductor. Monopole generation

and annihilation is thus represented by the following scheme of coupled equilibria:

(0) = (+−) = (+) + (−), (1)

where (0) denotes the monopole vacuum, (+−) denotes the bound pairs and (+) and (−) denote the

free charges. The reactions that make up this scheme define an emergent particle kinetics that may

be used to calculate dynamical quantities that depend on the monopole density.

At temperatures below 0.6 K, the spin degrees of freedom of Dy2Ti2O7 gradually fall out of

equilibrium19 and spin ice enters a state with the residual Pauling ice entropy7. The entropy may

diminish on exceptionally long time scales (≥ 106 s) suggesting an approach to an ordered22 or

quantum spin liquid state23, but this physics is irrelevant here. We address ordinary experimental

time scales, where spin ice is of great interest as a model non-equilibrium system.

From Maxwell’s equations, the current density of magnetic monopoles (‘magnetricity’) is the rate

of change of sample magnetisation, J = ∂M/∂t. The generalised thermodynamic force that drives the

monopole current13,24 is H − DM −M/χ, where H is applied magnetic field, −M/χ is an entropic

reaction (‘Jaccard’) field and DM is the demagnetising field. To simplify the analysis and avoid

problematic demagnetising corrections25 we work at very small magnetisation. This ensures that the

Jaccard and demagnetising fields are negligible and that the monopole conductivity becomes κ = J/H,

analogous to the conductivity of an electrolyte (= current density/electric field). Our experiments

are conducted in the low temperature regime of very dilute monopoles, where it is expected13 that κ

is a measure of the instantaneous monopole density, κ ∝ n. Further details, and a discussion of the

definition of conductivity, are given in the Supplementary Information (SI1 and SI2 respectively).
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The loss of magnetic equilibrium at ∼ 0.6 K is connected to the rarifaction of the monopole gas.

The equilibrium monopole density decreases with temperature as n0 ∼ exp(µ/T ) (where µ ≈ −4.35 K

as above). Spin flips correspond to monopole hops, so a finite monopole density is required to mediate

the spin dynamics. Therefore, at our base temperature, 65 mK, close-to equilibrium relaxation will be

exceedingly small and very difficult to measure. A stratagem to avoid this fate, and to ensure access

to non-equilibrium behaviour, is to use fast thermal quenches to prepare the sample with a significant

density of frozen in, ‘non-contractable’ monopole-antimonopole pairs16 as well as, perhaps, a small

density of free monopoles. In a previous work4 we demonstrated that the magneto-thermal Avalanche

Quench protocol (AQp) results in the fastest thermal quench, giving a very large and reproducible non-

equilibrium density of defects, or monopoles, at very low temperature. In Ref. 4 the time-dependent

magnetisation at relatively long times was qualitatively interpreted by a non-interacting monopole

theory. Here we investigate the short-time limit, where a strong effect of monopole interactions is

expected (see below). We exploit the AQp as well as the Conventional Cooling protocol (CCp) of Ref.

4, to quantitatively determine the initial monopole current and monopole interactions.

To this end, we made extensive low temperature magnetisation measurements on three different

single crystals of Dy2Ti2O7 prepared at different facilities (labelled 1-3, see Fig.1 and SI1). One of

the samples (1) was measured along two different field orientations, while another (3) had the ∼ 10%

nuclear spins removed. The results were essentially the same in each case, so for simplicity, we describe

results for a single sample in a particular orientation: sample (1), a flat ellipsoidal crystal, with the

field applied along the long [111] axis. Crucial to the present investigation was our ability to change

the magnetic field at a rate of 1.8 T.s−1 (where T = tesla), and to make reliable measurements at

the instant the field attains the target value. For these extremely detailed and nonstandard low

temperature measurements (see SI1), we used a SQUID magnetometer that was developed at the

Institut Néel in Grenoble. It was equipped with a miniature dilution refrigerator capable of cooling

the sample to 65 mK.

Fig. 1a and b shows how the magnetisation at 65 mK evolves with time and applied field following

AQp and a 360 second wait period before the field application (details in SI1). During the short

time that the field is being ramped up to the target value, the data points are spurious (shown as

the grey area in Fig. 1b), but for longer times the data points are dependable. After the field

change the magnetisation M grows precipitously, suggesting that frozen monopole pairs dissociate
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and separate, forming chains of overturned spins. The magnification of rapid growth period (Fig. 1b)

shows polynomial fits to the data (disregarding the spurious points) from which the magnetic current

density J = ∂M/∂t was evaluated at the moment the field has reached its target value. Two examples

are shown as straight lines in Fig. 1b and J(H) at 65 mK is plotted as a function of magnetic field

in Fig. 1c. Note that an initial jump in M , clearly seen in the figure, occurs while the field is being

energized. This jump is very small: < 0.3 % of the final equilibrium magnetisation. Most of the

jump can be accounted for by a temperature and frequency independent adiabatic susceptibility. It is

discussed in detail in SI1 and is not considered further here.

The effect of the quench rate and wait time is shown in Fig. 1d, where we plot log J vs
√
H at

T = 65 mK for three different sample preparations (i.e. AQp or CCp with a 2 h or 360 s wait). As

anticipated, J depends on the quenched monopole density with AQp resulting in a larger monopole

current than CCp. However, the effect of wait time shows very clearly that even at very low temper-

atures, quenched monopoles are not dynamically frozen, but apparently can still hop and recombine,

reducing the density, and resulting in lower monopole current for longer wait times. Yet, all the curves

shown in Fig. 1d are qualitatively similar: the current density shows a linear increase at small fields,

corresponding to Ohmic conduction, followed by a dramatic non-Ohmic growth at larger fields. In the

inset of Fig. 1c we plot the high field (µ0H ≥ 0.02 T) data points to determine the exponent α of H

in J ∼ exp(Hα) and find α ≈ 1/2.

As emphasised above, the exp(
√
H) behaviour is a defining characteristic of conduction in Coulomb

gases where the deviation from Ohm’s law arises from the field-induced unbinding of microscopic charge

pairs1–3. In spin ice (Fig. 1c) it is natural to associate the initial Ohmic current with quenched free

monopoles and the non-Ohmic current with field-induced unbinding of non-contractable pairs. The

analogy with the Poole-Frenkel effect3 is particularly apt as the latter is often associated with field

assisted ionisation of metastable traps. For a simple heuristic derivation of the exponential-root field

limiting form, consider a positive and negative monopole at coordinates ±r/2 respectively, that are

bound by their mutual Coulomb attraction and dissociate under the influence of a magnetic field. The

potential energy of the pair is:

E(r) =
−µ0Q

2

4π

1

r
− µ0QHr (2)

where Q is the monopole charge and µ0 the vacuum permeability. The maximum in the potential

energy is at r0 =
√
Q/4πH and the field lowers the Coulomb barrier to dissociation by an amount
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∆E =
√
µ2

0Q
3H/π. The rate of escape over this barrier and hence the current becomes:

J ∝ exp(∆E/kT ) = exp
√
βCH, (3)

where βC = µ2
0Q

3/πk2T 2 and k is Boltzmann’s constant. As shown in SI3, the amplitude βC more

generally depends on the detailed calculation and physical characteristics of the escape process, but

the exp(
√
H) form is robust to such details. It is a distinctive characteristic of the Coulomb force law,

rather than any other pair interaction.

Our observation of the non-Ohmic current at base temperature thus supports two of the most basic

predictions of the monopole model: that defects in the spin ice state interact by Coulomb’s law12 and

may be trapped in metastable pairs following a thermal quench16. We proceed to test a third basic

expectation, that as the temperature is raised from 65 mK there should be a gradual restoration of

the kinetic equilibria between the monopole vacuum, bound pairs and free monopoles (Eqn. 1). This

should lead18,20,21 to the appearance of the second Wien effect, the remarkable field-assisted density

increase, first understood by Onsager2.

Conductivity versus field curves are shown in Fig. 2a. We immediately note three qualitative

features that are strongly characteristic of the Wien effect. The first is an increase of conductivity

with temperature as the monopole states are thermally populated. The second is a crossover from

Ohmic conductivity at low field, caused by charge screening, to non-Ohmic conductivity at high field,

caused by the field sweeping away the Debye screening cloud2. The third is a crossing of the curves

as a function of field and temperature, which may arise from the competing effects of the zero field

charge density being an increasing function of temperature and the Wien effect being a decreasing

function of temperature. Given these qualitative features it is appropriate to fit our data to theoretical

expressions for the Wien effect for magnetic monopoles18. In SI4 we give a detailed analysis of the

applicability of the theory of Ref. 18 to our experiment.

As a first approach (Fig. 2b), we fit the high field conductivity to the Onsager expression κ =

κ0

√
F (H) where F (H) is unity in zero field and varies as exp(

√
H) in high field – see Methods and

SI3. Here the parameter κ0 represents the zero field conductivity of the ideal (unscreened) lattice

gas2,17,18. It was treated as an adjustable parameter along with the charge Q (which enters into F ) –

hence two parameters were estimated from fits to the data. Excellent fits were obtained (Fig. 2b - the

field range used for the fits is discussed in Methods and SI1). The fitted parameters κ0(T ) and Qexp(T )
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are shown in Fig. 2c. As expected, at lower temperatures, the Wien effect fits return values of the

charge that are quite far from the theoretical value. However, at T ≥ 0.3 K, the estimated monopole

charge is very close to the theoretical one and κ0(T ) is consistent with the theoretical expression

κ0 = ν0 exp(−4.35/T ), with ν0 ≈ 300 s−1 (Fig. 2c). Hence our data is consistent with the expected

restoration of monopole kinetic equilibria as the temperature is raised above 300 mK.

An alternative is to treat the temperature T in the Onsager function (Methods) as an adjustable

parameter, in place of the charge Q. The result, Fig. 2d, shows how the fitted parameter Teff(T )

tracks the set temperature at T > 0.3 K, but becomes roughly constant at lower temperatures. A

finite wait time or slower cooling, results in the experimental temperature becoming closer to the

set value, suggesting a return to equilibrium (Fig. 2d). Further work is needed to decide if such an

effective temperature has any physical meaning in characterising this non-equilibrium system.

A much more stringent test of the theory18 is to fit the whole conductivity versus field curve, rather

than just the high field part. Theoretically, in the dilute limit, the ratio κ/
√
F is simply κ0(T ), the

conductivity of the ideal lattice gas. However at finite density, charge screening shifts the equilibrium

such that, in zero field, n and hence κ are elevated by a factor of 1/γ0, where γ0 < 1 is the Debye-

Hückel activity coefficient. A strong applied field ‘blows away’ the screening cloud and the correction

disappears. An exponential decrease of κ/
√
F from its zero field value κ0/γ0 to its limiting high-field

value κ0, has been confirmed numerically17. The decay rate is determined only by γ0 (see Methods).

To test this, we plot κ(experimental)/
√
F (see Methods) against applied field in Fig. 3a, where

the ratio is seen to behave qualitatively as expected, approaching a constant κ0(T ), at high field

(confirming the high field Wien effect), and rising exponentially to a higher value in zero field. Deter-

mining κ0 and γ0 from the limiting values allows us to compare the predicted exponential crossover

with experiment. There is relatively close agreement, (including reproduction of the non-monotonic

κ(H), Fig. 3b), with κ0 showing its theoretical temperature dependence κ0 ∝ exp(−4.35/T ) (above

0.3 K), as in Fig. 2c. However, the estimated γ0 ≈ 0.1 is much smaller than the theoretical value from

Debye-Hückel theory, ∼ 0.75: the origin of this quantitative discrepancy needs further investigation.

The corresponding current, J(H), is shown in Fig. 3c, where the deviations from Ohm’s law, and the

general success of the theory, are clearly illustrated. Fig. 3d illustrates the effect of waiting for 2 h

before the measurement, demonstrating that the functional form of J(H) is largely independent of

the initial monopole concentration.
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In SI5 we show how our experimental measurements in low field are consistent with previous

magnetic relaxation21 and alternating current (ac)susceptibility measurements32,33. The relevance of

material defects to magnetic relaxation in spin ice has been explored26,27, but such subtle near-to-

equilibrium effects are outside the resolution of our experiment which explores the intrinsic far from

equilibrium response. Finally, the first report of the low-field Wien effect for magnetic monopoles in

spin ice, based on a muon method 20, led to controversy28–30 which is as yet unresolved – see Ref. 31

for a review. In contrast, our more direct method unambiguously establishes the spectacular high-field

Wien effect for magnetic monopoles.

The monopole model provides an essentially complete analysis of the far-from equilibrium mag-

netisation in spin ice and shows how a model non-equilibrium system may be understood in terms

of quasiparticle kinetics (see Fig. 4). The monopole conductivity (which in magnetic language is a

time-dependent susceptibility) displays a field-dependence different to that of a paramagnet (typically

constant+O(H2)34) or a spin glass (typically a weakly decreasing function of field35,36). Our result

illustrates the advantages of mapping a complex far from-equilibrium system on to a weak electrolyte.

The emergent particle kinetics means that testable predictions may be made about spin relaxation,

even when the initial state of the system is not known. It would be interesting to see if this approach

can be generalised beyond spin ice to other complex magnets and other glassy systems.

Methods

Data for µ0H ≥ 0.15 T are excluded as they suffer excessive quasi-Joule heating (an issue in

analogous electrolytes), while points at ≥ 0.3 K, > 0.12 T are displayed but not fitted, to guard

against systematic error: see SI1 for details. Onsager’s function is F (b) = I1

(√
8b
)
/
√

2b, where I1

is the modified Bessel function and b = µ2
0Q

3H/8πk2T 2. In Fig. 3 κ̃(H) ≡ κ(H)/
√
F (H) is fitted

to18 κ̃(H) = κ(0)
[
γ0 + (1− γ0) exp

(
−µ20Q

3H(1−γ0)
16πk2T 2

)]
- see SI4 - where Q = 4.20132 × 10−13 Am

(theoretical charge calculated from a more accurate moment and lattice parameter than used in Ref.

12).

Data Accessibility. The underlying research materials can be accessed at the following:

http://dx.doi.org/10.17035/d.2016.0008219696.
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Figure 1: Magnetricity in spin ice Dy2Ti2O7 at 65 mK arising from nonequilibrium populations of
magnetic monopoles. Fig. 1a: Magnetisation versus time as a function of applied field after the sample
was first prepared using the AQp with a wait period 360 seconds before the field was applied. The
field values are from bottom to top µ0H= 0.001, 0.0025, 0.005, 0.0075, 0.01, 0.015 T and then 0.02 to
0.14 T in steps of 0.01 T. Note M vs time for the low field values fall on top of each other on the scale
used in this plot. Fig. 1b: Magnification of four relaxation curves. The dashed lines are polynomial
fits to the data points below 1.5 s but without using the data taken during the field ramp, the open
circles. Two examples of the derivative of the fit ∂M/∂t are shown by the straight full lines, and were
evaluated at the point in time immediately after the field has stabilised. Fig. 1c: Magnetic current
density J as a function of applied field H at 65 mK extracted from the data of Fig. 1a. Inset: log J
versus H for µ0H ≥ 0.02 T. The line is a free fit to the data points to determine the exponent α
of H in J ∼ exp(Hα). The observed α ≈ 1/2 is characteristic of the unbinding of pairs of magnetic
monopoles that interact according to Coulomb’s law of force. Fig. 1d: The effect of cooling, waiting
time and sample variation on J . For sample 1 the CCp data were cooled at the slowest rate, resulting
in a much smaller initial density of monopoles and thus smaller monopole current. The difference
between the two AQp curves taken with two different wait times for sample 1 indicate that even at 65
mK, monopoles gradually recombine as a function of time. The figure also displays data for two other
samples using the AQp with a wait period 360 seconds before the field was applied. Note sample (3)
had the ∼ 10% nuclear spins removed. All samples behave qualitatively similar.
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Figure 2: Ohmic and non-Ohmic monopole conductivity κ as a function of magnetic field. Fig.
2a: Field and temperature dependence for the AQp prepared sample with a 360 s wait period. The
roughly constant κ at low fields implies Ohmic conduction, while at higher fields the conduction is non–
Ohmic. Fig. 2b: An approximate analysis of the high field data (µ0H = 0.08 T - 0.12 T, points) using
Onsager’s unscreened Wien effect expression, κ = κ0

√
F (H) (the conservative field range used for the

fits is discussed in the Methods and SI1). Fig. 2c: The fitted parameters Qexp(T ) and κ0(T ) agree
with theory at T ≥ 0.3 K only (green shaded region where Qexp/Qtheory ≈ 1, κ0 ≈ 300 exp(−4.35/T )
s−1, blue line), with increasing departures from theory at T < 0.3 K (yellow shaded region). This
suggests a restoration of quasiparticle kinetics at T ≥ 0.3 K. Fig. 2d: Alternative parameterisation
with the temperature T replacing Q as the fitted parameter. Blue points as in Fig. 2a, b, green points
have a 2 h wait time and red points are CCp; the black line is the set temperature. The error bars
are calculated from the experimental standard deviation.
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Figure 3: High field Wien effect for magnetic monopoles in spin ice, fitted using the theoretical
charge12 and accounting for charge screening as in Refs. 17,18: data at > 0.12 T are displayed but
not fitted (see Methods and SI1). Fig. 3a: Reduced monopole conductivity κ̃ at 300-500 mK, versus
field, where κ̃ is the monopole conductivity divided by that predicted by Onsager’s unscreened theory
(Methods). The exponential approach to a finite asymptote confirms the high field Wien effect in
spin ice17,18. The exponential decay closely follows the screening theory of Ref. 18 (full line), albeit
with an anomalously small fitted activity coefficient, γ0. Inset: same, on a logarithmic scale. Fig. 3b:
corresponding conductivity, κ versus field. Fig. 3c: the current density, J versus field – the nonlinearity
clearly illustrates deviations from Ohm’s law that are accounted for by a strongly screened Wien effect.
Fig. 3d: equivalent data for 400 mK for different wait times, as indicated on the figure. The functional
form of J(H) is not severely affected by wait time.
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Figure 4: Far-from equilibrium magnetic monopole conductivity in spin ice: schematic of our main
results for the short-time monopole conductivity as a function of temperature and magnetic field.
There are four regimes: (i) a regime of Ohmic conduction at low field (blue), (ii) a regime of the ideal
Wien effect for magnetic monopoles (green, > 0.3 K), (iii) a regime of metastable pair unbinding,
where the observed characteristic exp(

√
H) conductivity is a direct experimental verification of the

pairwise Coulomb interaction between magnetic monopoles (yellow, < 0.3 K), and (iv) a regime of
breakdown or thermal runaway (red, see SI1). The inset shows the field-enhanced unbinding of a
metastable (thermally-quenched) monopole-antimonopole pair over the Coulomb barrier as a function
of distance (r). Thermal generation of such pairs from the monopole vacuum (0), (vertical arrow) sets
in above ∼ 0.3 K.
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