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Abstract In this paper, we present new reliable model order
reduction strategies for computational micromechanics. The
difficulties rely mainly upon the high dimensionality of the
parameter space represented by any load path applied onto
the representative volume element. We take special care of
the challenge of selecting an exhaustive snapshot set. This
is treated by first using a random sampling of energy dissi-
pating load paths and then in a more advanced way using
Bayesian optimization associated with an interlocked divi-
sion of the parameter space. Results show that we can insure
the selection of an exhaustive snapshot set from which a reli-
able reduced-order model can be built.
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1 Introduction

Multiscale modelling permits to take into account partial
microscopic data when deriving engineering-scale working
models. In solidmechanics, homogenisation is routinely used
to obtain coarse-scale stress/strain relationships that are con-
sistent with some statistical knowledge of the microstructure
[1–4]. This is particularly useful when modelling complex
phenomena that would require cumbersome heuristic infer-
ence if the subscale physics was ignored. In more advanced
applications of upscaling concepts, the conservation laws of
the coarse-scale medium themselves may be obtained from
lower-scale data [5,6]. Homogenisation can be seen as one
particular class of upscaling technique, whereby coarse-scale
models approximate the limit of the underlying microscale
model when the scale ratio tends to zero [1,7]. In the clas-
sical setting of micromechanics (see for instance [3,4,8]),
the homogenisation process leads to two interlinked prob-
lems: a macroscale mechanical problem with homogeneous
constitutive relations, and a microscale problem set over a
representative volume element (RVE) of the microstructure,
which is often interpreted as a material point of the homo-
geneous continuum. The solution to the macroscale problem
defines a far-field loading for the RVE, usually in the form
of boundary conditions. In turns, the solution of the RVE
problem permits to find the homogenised coefficients of
the coarse-scale constitutive relations, for instance by using
micro/macro energy equivalence (Fig. 1).

RVE problems were traditionally solved approximately
using analytical or semi-analytical approaches [2,3,9–11]. In
the last 20 years, computational homogenisation has emerged
as an interesting alternative approach [12–16], whereby the
RVE problem is solved using direct numerical simulation.
In linear elasticity, the homogenised constitutive relation
can be pre-computed by performing a small set of mate-
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Fig. 1 Semi-concurrent homogenisation procedure. At each
macrostructural quadrature point, an RVE boundary value prob-
lem can be stated with boundary conditions dictated by the macrostrain
at this point. Once the boundary value problem solved, the correspond-
ing macrostress is evaluated as a spatial average of the microstress over
the RVE

rial tests. The results of these tests are then assembled in
the form of a homogenised Hooke tensor that can be read-
ily used at the coarse-scale. In a nonlinear setting, a “naive”
implementation of computational homogenisation requires
to solve the RVE problem at every (quadrature) point of the
macroscopic domain, which, although attractive due to its
generality, may render the approach prohibitively expensive.
A considerable amount of recent work aims at providing an
answer to this dilemma. On the one hand, the community that
relied heavily on semi-analytical approaches to solve RVE
problems has developed methods to circumvent the limita-
tions due to the restrictive assumptions upon which these
approaches were traditionally based, at the cost of increased
computational requirements. The (non-) uniform transfor-
mation analysis [17–19] (see also [20,21]) and the Voronoi
cell approach developed in [22] are remarkable instances of
such developments. On the other hand, the community that
relied primarily on computational homogenisation methods
has tried to reduce the amount of RVE computations by using
meta-modelling, often calledmeso-modelling in this context.
Such developments include the R3M [23,24] and the method
developed in [25], which both rely on a combination of a
proper orthogonal decomposition (POD) expansion [26,27]
for the solution field, and a surface response approach to
interpolate the coefficients of this expansion over the space
of admissible loading conditions. Our proposed approach is
a further step in this direction, which bypasses the need for
the surface response step and replaces it by reduced-order
modelling (ROM).

Projection-based ROM is an increasingly popular tech-
nique for the fast solution of parametrised boundary-value

problems. The key idea is to represent the parametric vari-
ations of the solution in a low-dimensional subspace. This
subspace can be identified using the snapshot-POD [28–36],
which compresses the posterior information contained in an
exhaustive sampling of the parameter domain, or the reduced
basis method [37–41], which searches for this attractive sub-
space in the form of a linear combination of samples chosen
quasi-optimally via a greedy algorithm (“offline stage”). In
a second stage, the boundary value problem is projected into
this subspace, for instance by a Galerkin method, resulting in
a reduced model of number of unknowns equal to the dimen-
sion of the attractive space. This reduced model is used to
deliver an approximation of the solution to the parametric
BVP for any set of parameters, and as such can be seen as
an implicit interpolation method over the parameter domain
(“online stage”). Early contributions concerning these type of
methods have shown an increased accuracy compared to tra-
ditional response surfacemethods, for a given sampling of the
parameter domain. Perhaps more importantly, these methods
are based on approximation theories, and therefore “natu-
rally” incorporate reliability estimates (e.g., [29,35,37,40]).

In this paper, we propose to reformulate the nonlinear
RVEproblem as a parametrised boundary value problem, and
subsequently to approximate it using projection-based ROM.
Without loss of generality, we will consider an elastic dam-
ageable material represented by a network of damageable
beams, with non-homogeneous material properties repre-
senting a random distribution of stiff inclusions into a softer
matrix. TheRVEproblemwill be parametrised by its far-field
loading, represented by homogeneous Dirichlet conditions
that belong to a vector space of dimension six (three in two
2D), the time evolution of the coefficients of the associated
linear combination being a priori unknown,which effectively
results in a parametric space of infinite dimension for the
RVE. Therefore, our aim is to characterise the solution of the
RVE problem for any history of the far-field load, within the
restriction of ellipticity (which implicitly define the bounds
of the parameter domain).

In a first attempt to approximate this parametrised solu-
tion,wewill generate random loadings, enforcing aminimum
amount of energy dissipation at each timestep and deploy the
Galerkin-POD methodology to derive a reliable ROM. In a
second, more advanced approach, we will develop a tailored
reduced basis approach to sample the infinite-dimensional
parameter space in a reliable and efficient manner. Our pro-
cedure relies on two major ingredients. Firstly, we will make
use of a gradient algorithm to find points of the parame-
ter space that need to be corrected during the iterates of
the greedy algorithm. Although the gradient-based optimi-
sation proposed in [39] is a promising strategy, we will
make use of an alternative optimisation technique based
on Bayesian optimisation [42]. More precisely, the load
path of worst prediction will be found using a Gaussian
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process regression of an error indicator following [43]. The
second ingredient of our approach is to coarsen the a pri-
ori infinite-dimensional parameter by applying the complex
macroscopic load hierarchically, following a sequence of
piecewise linear trajectories. Specifically, we will fully train
a reduced basis method in a space of proportional loadings.
We will then train a new reduced basis model in an enriched
parameter domain, by representing the macroscopic load as
a sequence of two piecewise linear loads, and further enrich
our parameter domain in this hierarchicalmanner until a stag-
nation criterion is reached.

We will pay particular attention in the efficiency of the
proposed strategy. In particular, projection-based ROM in
the nonlinear setting is known to require an additional level
of approximation to remain efficient, known as “hyperre-
duction” or “system approximation” [31–33,38,44–47]. We
will make use of tailored version of the discrete empirical
interpolation method (DEIM) [38,46], which is, to date, the
most widely used system approximation methodology. The
original DEIM will be slightly modified to allow for the
approximation of a vanishing nonlinear term in the balance
equations of the discrete RVE problem.We will also propose
a way to choose a good ratio between level of approxima-
tions in the truncation of attractive subspace versus system
approximation.

The paper is organised as follows. In Sect. 2, we define
the class of nonlinear homogenisation problems that we
want to reduce, and explain how these problems can be
parametrised. In Sect. 3, we develop specific model order
reduction approaches based on the snapshot-POD and the
reduced basis methodologies.We highlight the pros and cons
of these two distinct approaches in the context of nonlinear
homogenisation, and show results for each method. Conclu-
sions are drawn in Sect. 4.

2 Computational homogenisation setting

We consider a generic RVE occupying domain � (Fig. 2),
corresponding to a microscopically heterogeneous structure.
The computational homogenisation approach that is con-
sidered in this work is a classical FE2 scheme [12]: the
RVE problem is to be solved numerically, under homoge-
neous Dirichlet boundary conditions, at every quadrature
point of the macroscopic domain, which implicitly defines
the nonlinear constitutive law at the macroscopic level. We
will work under the assumption of small perturbations and
isothermalmechanical evolution. Thematerial studied in this
paper is damageable elastic, but the methodology is general.
In this paper, the RVE will be modelled by a 2D network
of damageable beams (see for instance [48,49] for more
details), whose mechanical properties materialise hetero-
geneities (random distribution of stiff inclusions in our case).

Fig. 2 Lattice model of the computational representative volume ele-
ment. Beams have different mechanical properties that depend on their
location with respect to the distribution of heterogeneities in the com-
putational domain. An arbitrary distribution of inclusions is chosen as
a test case for this paper

Fig. 3 Schematic representation of computational homogenisation.
The constitutive law of the macro-structure is defined implicitly. The
macroscopic strain is applied as boundary condition to the RVE bound-
ary value problem. In turn, themacroscopic stress field is extracted from
the solution of the RVE problem using duality principles

However, for the sake of simplicity, the idea of the approach
will first be exposed in the context of continuum mechanics
and then discretised, the formulation of the spatially discre-
tised continuum-based or lattice-based model being similar
(Fig. 3).

2.1 RVE boundary value problem

At the RVE level, the displacement field is additively split
into a fluctuation ũ and a smooth (or “macroscopic”) part ū:
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u(x, t) = ũ(x, t) + ū(x, t), (1)

where the fluctuation ũ vanishes on the boundary ∂� of RVE
domain �, t denotes time, and the smooth part of the dis-
placement belongs to a two-dimensional vector space,1

ū(t) = εM (t)(x − x̄), (2)

where x is the position of amaterial point of the RVE, while x̄
is its centroid and εM(t) gathers three scalar load coordinates
that depend on the position of the corresponding material
point of the macroscopic structure:

εM (t) =
(

εMxx (t) εMxy(t)
εMxy(t) εMyy(t)

)
. (3)

The mechanical equilibrium of the RVE is expressed by
the principle of virtual work:

∫
�

σm: ε(δu)d� = 0, ∀δu s.t. δu|∂� = 0, (4)

where σm is the microscopic Cauchy stress, ε is the strain
operator that extracts the symmetric part of the gradient of a
displacement vector, and δu is a virtual fluctuation field.

The (damageable elastic) constitutive relation of the dif-
ferent micro-constituents of the material is assumed to be
known at any time t of the analysis:

σm = σm ((ε(u(τ )))τ≤t
)
, (5)

where rate independence, causality and locality are assumed.
The history dependence that appears in the previous expres-
sion is due to non-reversible damage processes such as
plasticity or damage. For the sake of clarity, explicit history-
dependance of the variables will be omitted in the remainder
of the paper.

2.2 Scale coupling

Following the classical computational homogenisation app-
roach, the relationship between the macroscopic stress σ M

and the macroscopic strain at time t and at an arbitrary
macroscopicmaterial point canbeobtainedbyusing theHill–
Mandel micro–macro energy consistency condition, which
reads in the present context:

σ M
((

ε
(

uM (τ )
))

τ<t

)
: εM

� = 1

|�|
∫

∂�

(
σm · n

) · u�d�,

(6)

1 We make the formulation in a 2D context, but the same principles
apply in 3D.

for any microscopic displacement u� and any macroscopic
strain εM

�
related by the “strain averaging” Ansatz u�(x) =

εM
�
(x− x̄). In the previous expression, uM denotes the value

of the macroscopic displacement field, and σm is the micro-
scopic stress field that is the solution of the RVE problem
under far field load ū(τ ) = ε(uM (τ ))(x − x̄) for any time
τ < t.

Equation (6) leads directly to the definition of the macro-
scopic stress as a function of the macroscopic strain history
(ε(uM (τ )))τ<t :

σ M
((

ε
(

uM (τ )
))

τ<t

)
= 1

|�|
∫

∂�

(
σm · n

)⊗ (x − x̄)d�,

(7)

which is subsequently used as constitutive equation for the
macroscopic problem.

2.3 Space discretisation and Newton solution algorithm

Equilibrium equation (4), after substitution of the micro-
scopic constitutive relation, is discretised in space using for
instance the finite element method (FEM):

∀t, ∀δu s.t.Cδu = 0, δuT fint
(
(u(τ ))τ≤t

) = 0. (8)

This equation is complemented by the kinematic admissi-
bility condition u(t) = ũ(t) + ū(t), where u denotes the
vector of degrees of freedom of the FEM solution of the RVE
problem at time t, the vector ū(t) of degrees of freedom cor-
responding to the smooth “macroscopic” continuous field is
known, and the vector of degrees of freedom ũ(t) correspond-
ing to the continuous fluctuation field satisfies the discrete
version of the vanishing boundary condition Cũ(t) = 0.

We will use a classical implicit time stepping procedure
to discretise the RVE problem in time (i.e., integrate the his-
tory dependance in the microscopic constitutive relation).
This will be further justified in the next paragraph. The con-
tinuous time interval T is discretised into nt subintervals
([tntn+1]). Equilibrium and kinematic relations are enforced
at successive discrete times tn, while the continuous history
dependency appearing in the constitutive relation is replaced
by its discrete counterpart. The fully discrete, non-linear ver-
sion of the system of Eq. (8) arising at time tn is solved
using a Newton–Raphson (NR) algorithm. At each iteration
of this algorithm, the following linearisation is computed and
solved:

∀δu s.t.Cδu = 0, δuT
(

Ki�ũi+1 + ri
)

= 0, (9)

where Ki = ∂fint
∂u |ui is the tangent stiffness matrix, ri =

fint(ũi + ū) is the residual vector and �ũi+1 = ũi+1 − ũi =
ui+1−ui (the second equality is only true if the smooth field
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is used as an initialisation for the NR algorithm, i.e., u0 = ū)
is the variation in the fluctuation vector.

2.4 Parametrised RVE problem: description
of the macroscopic load

In a FE2 setting, the RVE problem is solved independently
for every quadrature point of the macroscopic mesh. In order
to apply our ROM technique, we recast the RVE problem as
a family of boundary value problems subject to parameter
dependency.

The parameters are the three independent components of
the far field load tensor εM (εMxx , εMyy and εMxy). Physically,
they correspond to scalar descriptors of the loading history
applied to the macroscopic material point. We emphasise the
fact that these parameters are three functions of time, which
is not a classical setting for model order reduction. This high
(theoretically infinite) dimensionality is a challenge. Some
realisations of the loading functions are depicted in Fig. 4.

The next step is to define the parameter domain, or in
other words the space in which the three load functions can
vary freely. This seems to be a largely problem-dependent
issue, and we will focus the discussion on the class of rate-
independent, damageable elastic materials. In this case, the
first remark is that homogenisation loses its meaning once
ellipticity is lost at the macroscopic level. Therefore, bounds
are implicitly and collectively defined on the values of the
loading functions by enforcing that the macroscopic tangent
should remain positive definite. A second remark is that the
speed at which the load is applied has no influence on the
RVE solution; only the load path matters, which eliminates
the need to describe loads that would be applied at different
speeds but would essentially result in the same path.

Fig. 4 Representation of the parameter domain for the nonlinear RVE
problem

We finally define a time integration scheme for the load
history by forcing the macroscopic load to vary by a given
amount between two successive time steps. More precisely,

∀n ∈ �1, nt� ,

∥∥∥εM (tn) − εM (t6n−1)

∥∥∥
2

= �l and

εM (t0) = 0. (10)

Load parameter �l should be sufficiently small for the con-
stitutive equations of the RVE to be correctly integrated and
for the nonlinear solutions algorithms to converge.

Note that in this time-discrete setting, the number of para-
meters is two2 times the number of pseudo-time steps nt ,
which highlights the high-dimensionality of the problem.

3 Reduction of the RVE boundary value problem

Our goal is to solve the balance equations of the RVE prob-
lem for any history of themacroscopic strain at reduced costs
whilst retaining the accuracy of the computed macroscopic
stress field. In order to do so, we postulate that for any load
applied to the RVE, the fluctuation part of the displacement
field can be approximated with an acceptable level of accu-
racy in a vector space of small dimension, called reduced
space. This space being identified, we will find an approxi-
mation of the displacement field by looking for the amplitude
(i.e., generalised coordinates) associated to the (few) basis
vectors of this space. In this context, three questions arise:

• How can we identify the reduced space?
• How can we find the generalised coordinates in an effi-
cient and stable manner?

• How can we evaluate the reliability of the approach?

The answer to the second question is now relatively well
established in the literature. We will make use of a Petrov–
Galerkin projection of the discrete set of balance equations
(8) into the reduced space. More precisely, we will proceed
in two stages: a first “ideal” Galerkin projection,3 followed
by a second stage of approximation, called “system approx-
imation” [32] or “hyperreduction” [45] to make the solution
of the projected system computationally tractable.

The answers to the first and third questions are strongly
intertwined, andwe describe in the following paragraphs two
different manners to approach the problem.

A POD-based approach looks for the best reduced space,
in the sense of the minimisation of the projection error on

2 It is not 3 since we fixed the value of the load between two successive
time steps.
3 Some authors advocate the need for a residual minimising approach
to ensure the optimality of this step [32,41].
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average over the parameter domain. In practice, this opti-
mization problem is reduced to a problem of minimum
projection error over a representative set of solutions to the
parametrised problem, the so-called snapshots [26]. In the
case of large parametric dimensions, the sampling of the
parameter domain needs to be done in such a way that
it overcomes the “curse of dimensionality”, for instance
by using quasi-random sampling techniques. The reliabil-
ity of the approach can then be evaluated by resampling
(cross-validation, bootstrap,. . .) or other statistical tools. This
approach suffers from twomajor drawbacks. Firstly, the opti-
mality of the reduced space is established in an average sense
over the parameter domain, which potentially results in inac-
curate representation of outliers even for large dimensions of
the reduced model. Secondly, the exhaustive sampling of the
parameter domainmight be prohibitively expensive, and is, in
any case, inefficient if performed in a (statistically) uniform
manner. The interested reader canfindpossibleways to tackle
this difficult in [50]. Nonetheless, the POD-based method-
ology remains attractive because the optimization problem
associated with the search of the reduced space can be solved
using standard linear algebra tools, namely singular value
decomposition.

The reduced basis [37] methodology aims at minimising
the maximum projection error over the parameter domain.
In practice, this is performed in a suboptimal manner using
a greedy algorithm: the ROM is constructed iteratively by
enriching the reduced space in order to decrease the error at
the point of the parameter domain where some measure of
projection error is at its largest. When reliable error esti-
mates are available for the projection, the search for the
highest level of error over the parameter domain is very
efficient, whichmakes the approach very attractive. The sam-
pling of the parameter domain is performed in a rational
manner, which ensures that the construction of the ROM
remains affordable. When error estimates are not available,
the approach remains attractive in the context of large para-
metric dimensions. Indeed, the point of the parameter domain
that corresponds to the largest level of projection error can
be found using gradient-based optimization, whose numeri-
cal complexity may be made independent of the parametric
dimension by using the adjoint methodology [39] to compute
the sensitivities. In this setting, the “curse” of dimensionality
can be overcome whilst retaining reliability of the ROM over
the entire parameter domain.4

In the remainder of this section, we explore these two dif-
ferent possibilities for the reduction of the nonlinear RVE
problem. We first propose a snapshot-POD approach, where
the sampling is performed randomly, enforcing the random

4 This is arguable as the gradient-based optimizer will converge to a
local minimum in the parameter domain, see [39] for a more detailed
discussion and the proposition of a remedy.

samples to undergo a minimum dissipation at each time
step. In a second stage, we will develop a reduced basis
approach for general loading, which allows for a more con-
tinuous approach which takes into account the error of the
reduced model not only at the snapshots, but also between
the snapshots thanks to a Gaussian process regression. We
will propose specific ideas to overcome the “curse of dimen-
sionality”.

3.1 Galerkin projection of the governing equations
in a reduced space

The fluctuating part of the displacement over the RVE5 is
searched for in a reduced space UMOR = span((φi )i=1,N ) of
dimension N (see Fig. 5). The displacement is parametrised
by the history of the far field load (εM(t))t∈[0,T ], which will
subsequently be denoted by εM for simplicity. Mathemati-
cally, the surrogate for the displacement can be expressed at
any time t as:

u
(
t; εM

)
= ū

(
t; εM

)
+ ũ

(
t; εM

)
≈ ū

(
t; εM

)

+
N∑
i=1

φiαi

(
t; εM

)
= ū

(
t; εM

)
+ �α

(
t; εM

)
. (11)

The degrees of freedom of the surrogate are the components
of the vector of generalised coordinates α. In the previous
equation, operator � is the matrix whose columns are the
basis vectors of the reduced spaceUMOR. In the following, for
the sake of beingmore general, we will refer to the parameter
as μ rather than being an explicit loading path defined by a
macro-strain εM.

Substituting the trial and test vectors of balanced equation
(8) by surrogate (11) leads to the Galerkin formulation

∀t, ∀δα, δαT�T fint
(

ū
(
t; εM

)
+ �α

(
t; εM

))
= 0.

(12)

This reduced nonlinear system of equations can be solved
using a NR algorithm. At iteration i of this algorithm, we
solve the linear system

�T
(

K̃i��αi+1 + r̃i
)

= 0, (13)

where K̃i = ∂fint
∂u |ū+�(x)αi is the tangent operator, r̃i =

fint(ū+�αi ) is the residual vector. It is important to recall that
although the number of degrees of freedomof this system, N ,

5 We work at a fully discrete level with vectors of degrees of freedom
corresponding to continuous fields that belong to FE spaces, but we will
refer to such quantities as “fields” or simply “displacements” to avoid
unnecessary complication of the explanations.
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Fig. 5 Surrogate model for the
displacement field in the RVE.
The surrogate is the sum of a
macroscopic contribution
(known a priori) and a
fluctuation that is represented as
a linear combination of basis
vectors and obtained through the
ROM

may be small, the cost of assembling the tangent operators
and residuals remains expensive. The reduced model cannot
be used “online” in this form, which is why an additional
“system approximation” is necessary, which will be detailed
in Sect. 3.1.2. For now, we will focus on our first proposi-
tion to construct a reduced space using the snapshot-POD
methodology.

3.1.1 Snapshot POD

Once the snapshot is computed, an optimization problem can
be solved to identify the reduced space that minimises amea-
sure of the projection error of the samples. We define the
snapshot matrix S = [s1(t1), s1(t2), . . . s1(tnt ), s2(t1), . . . ,
snμ(tnt )], whose columns correspond to the computed sam-
ples in various far-field load cases over nt time steps.6

The POD minimisation problem reads:

⎧⎨
⎩

min
φ1,...,φl

J s〈·〉 (φ1, . . . ,φl ) ,

〈φi , φ j 〉 = δi j ,
(14)

where the scalar product 〈·〉 remains to be defined and
∀x, ‖x‖ = √〈x, x〉. The cost function is defined as:

6 Note that in practice, nt is different between different load cases. Here
we try to keep simple notations.

J s〈·〉 (φ1, . . . ,φl )=
tnt∑

t j=t1

nμ∑
i=1

∥∥∥∥∥si
(
t j
)−

N∑
k=1

〈
φk, si

(
t j
)〉

φk

∥∥∥∥∥
2

.

(15)

Now, we need to define the scalar product 〈·〉. Themost com-
mon choice is the canonical scalar product (i.e., 〈x, y〉 =
xT y) which induces the L2-norm. In our case, the L2-
norm of the displacement field has little interest. Since
we are interested in the energy output of the RVE, we
choose a scalar product induced by the initial structure
stiffness K0: 〈x, y〉K0 = xT K0y. This gives a structure spe-
cific measure of the displacement quantities. One can then
show that solving (14) is equivalent to solve the eigenvalue
problem:

SST K0φi = λiφi . (16)

This will provide a set of K0-orthogonal vectors that best
represent the snapshot space in terms of elastic energy. We
then have the following error (which represents how well the
POD basis of order N approximates the snapshot S):

νPOD (φ1, . . . ,φN ) =
√∑nu

k=N+1 λk∑nu
k=1 λk

. (17)
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(a) Original structure (b) Example of a surrogate structure

Fig. 6 Example of a surrogate structure. The stiffness of the structure is evaluated on controlled elements only, while the other ones are just like
ghosts

3.1.2 System approximation

Constricting the displacement in a low-dimensional space
does not provide a significant computational gain, even if
the systems to be solved are of smaller dimension. This
is because the material of study is nonlinear and history-
dependent, and its stiffness varies not only in different areas
of thematerial but alsowith time.This requires to evaluate the
stiffness everywhere in the material and this at each time step
of the simulation. This means that the numerical complex-
ity remains despite the simplification on the displacement.
Hence, to decrease the numerical complexity, thedomain
itself needs to be approximated. Several authors have looked
into that. Notable contributions include the hkyperreduc-
tion method [45], the missing point estimation [44], system
approximation [32], DEIM [51] or more recently the energy-
conserving andweightingmethod [47]. Thosemethods share
the idea that the material properties will be evaluated only at
a small set of points or elements within the material domain
(Fig. 6). They differ in the way of selecting those points and
in the treatment of that reduced information. In this paper, we
will use the “gappy” method [52], very much like in [32,51].

Gappy method The internal forces generated by the
reduced displacement fint(�α)7 will be evaluated only in a
small subset of the degrees of freedom I of the domain �.

A procedure to select I will be described later on. All the
elements in contact with those degrees of freedom have to
be considered. We refer to those as the controlled elements.
The internal forces will then be reconstructed by writing the

7 To simplify the notations we denote fint(ū + �α) by simply fint(�α)

in the remaining of this paper.

internal forces as a linear combination of a few basis vectors
themselves (just like it was made for the displacement).

fint(�α) ≈
ngap∑
1

ψ iβi = 
β, (18)

where [ψ1, . . . ,ψngap
] = 
 is the forces basis of size ngap

and β the associated scalar coefficients.
The coefficients β of the expansion are found so that

to minimise the norm of the difference between the linear
expansion and the nonlinear term over the subset I:

argmin
β�

∥∥fint(�α) − 
β�
∥∥

P , (19)

with P being a matrix so that Pi j =
{
1 if i ∈ I and i = j,

0 otherwise,

and ‖x‖P = ‖PT xP‖2. P can be written EET with E being
an extractor matrix so that ET x is the restriction of x to the
set I. If the number of points in I is identical to the number
of basis vectors (ψi )i=1,ngap , β� can be found by solving the
equation:

ET
β = ET fint(�α), (20)

which implies:

β =
(

ET

)−1

ET fint(�α), (21)

assuming ET
 is invertible. This assumption is true when
using DEIM, since it insures the linear independence of the
restriction of the basis to the reduced integration domain.
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In other strategies, such as hyperreduction, the size of the
reduced integration domain may be chosen larger to guaran-
tee well-posedness of the reduced equations.

At a Newton iteration of our POD-Galerkin framework,
this reduces Eq. (13) to:

�T

(

ET

)−1

ET K̃i��α + �T

(

ET

)−1

ET r̃i = 0.

(22)

This can be rewritten in the form:

�T GET K̃i��α + �T GET r̃i = 0, (23)

where we define the gappy operator G = 
(E
)−1.

Remark Note that once the “offline” stage operations are
done, the bases � and 
 are calculated and the set of control
points I is selected and the gappy operator is evaluated. In
the “online” stage, all that remains to do is build a system
of dimension equal to the size of the displacement basis and
solve itwhich is computationallymuch cheaper. In particular,
the evaluation of K will be substituted by the evaluation of
ET K, which allows great time savings.

Selection of the controlled elements: the selection of the
control elements will be done using the DEIM [51]. This
methodfinds a set of degrees of freedomI in a greedymanner
from the internal forces basis 
. We briefly describe the
method.

At iteration j of the greedy algorithm, j − 1 points have
been already selected.We define the extractorEj that extracts
those j selected degrees of freedom (i.e., for any vector
v, Ejv is a smaller vector containing only the j entries of
v corresponding to the selected degrees of freedom). The
residual rgap = |ψ [1,j]βj − ψ j+1| is evaluated, where ψ [1,j]
is the matrix containing the first j vectors of the basis 
 and
ψ j+1 is the j + 1th vectors in that basis. β is the solution of
the minimisation problem

β = argmin
β�

∥∥∥Ejψ [1,j]β� − Ejψ j+1

∥∥∥
2
. (24)

The solution is easily found: β = (Ejψ [1,j])−1Ejψ j+1. The
greedy procedure then selects the index of the highest entry
in rgap as the j + 1th control degree of freedom. This pro-
cedure essentially selects the set of degrees of freedom that
maximises the conditioning of the system (20). At the end
of the greedy algorithm, the number of control degrees of
freedom chosen equals the number of basis vectors (ψ i)ngap
which makes system (20) well defined.

3.2 A first “brute force” model reduction approach
using snapshot POD on a snapshot randomly
generated ensuring dissipation

In this section, we present the construction of a reduced
model based on a random selection of the snapshot, con-
stricting the random load paths to dissipate some energy of
the structure each timestep. This is done to ensure the vari-
ability of the load paths so that maximum knowledge can be
gained from the snapshot. In following, we show the method
used to approximate the generation of such snapshots.

3.2.1 Random sampling of the parameter domain

To insure load paths that do not “turn back on themselves”,
we enforce them to dissipate some energy in the structure at
each timestep. The idea is that if no energy is dissipated, the
structure will deform in an elastic manner, which will not
add to the complexity of the snapshot space and will not be
informative. We want the snapshot to be as varied as possible
so that the reduced basis built from it can be exhaustive (in the
sense that it is able to represent any solution resulting from
any load path with a controlled error). Note that one could
not put any dissipation constraint on the random load paths,
but one would have to generate a much larger snapshot for
it to statistically extend to the edges of the parameter space.
Forcing dissipation saves computational time by computing
only the most “informative” solutions.

To generate snapshots following this dissipation property,
we will divide the load paths in increments, and enforce that
at each increment, the maximum value of load path history
is increased in either tension in x, y or shear. This is an
approximation, since this is not strictly equivalent to dissi-
pating energy. However, this constraint is explicit, easy to
implement, and provides essentially the extended snapshots
we are looking for.

In mathematical terms, the parameter space is sampled
randomly by iteratively generating random load increments

˜�εM(tn) =
[

˜�εxx (tn) ˜�εxy(tn)
˜�εxy(tn) ˜�εyy(tn)

]
of predefined norm �l.

Initialising the loading path to be generated by εM(t0) = 0,

the path is iteratively incremented as:

εM (tn+1)=εM (tn) + ˜�εM (tn) , with
∥∥∥˜�εM (tn)

∥∥∥=�l,

(25)

where ‖˜�εM(tn)‖=
√

˜�εxx
2
(tn) + ˜�εyy

2
(tn) + ˜�εxy

2
(tn).

The random load increments ˜�εM(tn) are forced to create
dissipation, by ensuring that at least one of the following
inequalities is true at each timestep:
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Fig. 7 Example of loading paths obtained using the random procedure

〈
˜�εxx (tn)

〉+
> max

k∈�0,n−1�
˜�εxx (tk) , (26)

〈
˜�εyy (tn)

〉+
> max

k∈�0,n−1�
˜�εyy (tk) , (27)

∣∣∣˜�εxy (tn)
∣∣∣ > max

k∈�0,n−1�

∣∣∣˜�εxy (tk)
∣∣∣ , (28)

where 〈x〉+ is the positive part of x . These conditions mean
that either the tension in x direction, in y directionor shear has
to increase at each timestep. When no dissipation is created,
the damage law behave essentially linearly and do not add
to the complexity of the snapshot space. An example of a
few loading paths generated using thismethod is displayed in
Fig. 7. The randomness of this procedurewill allow to explore
the parameter space exhaustively, as long as the number of
paths generated is large enough.

To improve the reliability of the procedure, the quality of
the ROM could be tested by evaluating the error over some
random validation set�test different from the snapshot set�.

If the average error over that set is larger than some tolerance,
the initial snapshot could be enriched iteratively until that
tolerance is achieved. This is described in pseudo-code in
Algorithm 2. This strategy will not be developed further in
this paper.

Algorithm 1 Example of a “Brute force” sampling method:
the parameter space is randomly sampledwith a high number
of values and the reduced-order model is built upon it. The
random set is enriched until reaching some convergence.
1: Input target tolerance ν

2: Initialise N
3: errsnap ← ∞
4: while errsnap > ν do
5: Generate N new random “dissipating” snapshots
6: Build new reduced-order model to achieve tolerance ν

7: Evaluate errsnap by computing the average value ofQHR (defined
in Eq. (29)) over some validation set �test

3.2.2 Application of the random snapshot-POD procedure
and numerical findings

Displacement basis: we proceed to apply the snapshot-
POD procedure with random snapshot selection described
in Sect. 3.2. 36 Load paths are randomly generated. The first
few vectors of the POD expansion are displayed in Fig. 8.

System approximation: we follow the procedure described
in 3.1.2. The basis 
 is extracted from the snapshot space
generated by the same loading paths used for the displace-
ment basis�.The set of controlled elements is selected using
the DEIM [51]. The amount of vectors in the basis 
 is cho-
sen so that the error generated by the system approximation
is of the same order than the global error of the ROM.

To this purpose we define the quantity of interest Q as
the norm of the error. More specifically, we denote QR

the average norm over time of the error between exact and
reduced-order solution using no hyperreduction and QHR

the average norm over time of the error between exact and
“hyperreduced-order solution” actually using the hyperre-
duction:

QR(μ)
2 =

tnt∑
t=t0

‖u(μ, t) − uR(μ, t)‖2K0

nt + 1
and

QHR(μ)
2 =

tnt∑
t=t0

‖u(μ, t) − uHR(μ, t)‖2K0

nt + 1
, (29)

with u(t) the exact solution, uR(μ, t; �), the reduced-
order solution without the system approximation using the
displacement basis �, and uHR(μ, t; �, 
) the complete
ROM with system approximation using the displacement
basis � and the static basis 
. Note that we skip the depen-
dency of the solution on the bases � and 
 in the following
for simplicity of the notations.QHR(μ)

2
can then be decom-

posed in the following way:

QHR(μ)
2 =

tnt∑
t=t0

‖u(μ, t) − uR(μ, t) + uR(μ, t) − uHR(μ, t)‖2K0

nt + 1

(30)

≤ QR(μ)
2 +

tnt∑
t=t0

‖uR(μ, t) − uHR(μ, t)‖2K0

nt + 1︸ ︷︷ ︸
de f= ˜QHR(μ)

2

. (31)

Taking this in consideration, the basis 
 is chosen to be the
smallest (i.e., the one with the least amount of vectors) that
verifies the inequality:

˜QHR(μ) ≤ QR(μ). (32)

This guarantees that the error generated by the system
approximation is controlled by the error generated by approx-
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(a) Mode 1 (b) Mode 2

(c) Mode 3

Fig. 8 Vectors associated to the three largest eigenvalues obtained using the snapshot-POD procedure with random snapshot selection. Darker
bars indicates larger damage. The damage localises between pairs of inclusions

imating the displacement. The location of controlled ele-
ments (which are all the elements in contact with the control
degrees of freedom) is shown in Fig. 9 for various basis sizes.
It is interesting to remark that the controlled elements gather
around inclusions where damage is the highest. Figure10
illustrate this effect.

Remark Note that in Eq. (31), we defined the quantity
˜QHR(μ) which defines the error between the reduced and

the hyperreduced model which is different from QHR(μ),

which defines the error between the exact solution and the
hyperreduced model.

Numerical savings in this section, we will test the perfor-
mance of themethod by comparing the relative error between
the “truth” solution of theRVEproblem,which is the solution
obtained when using the full order model, and the ROM.

The following load path considered for testing the effi-
ciency of themodel is set using the following effective strain:

εM(t) = t
T ·
[
1 1
1 1

]
. Note that this case is not in the snapshot

set.
We thenproceed to solve theRVEboundary value problem

subjected to this loading path using both the full order model
and the ROMwhile varying the sizes of the displacement and
static bases. Induced errors and times gained are displayed
in Fig. 11.

Several remarks can be made:

• As expected, the error decreases when the number of
either the displacement or static bases vectors increases.
A higher dimensional representation of the solution leads
unsurprisingly to more accuracy.

• The time gained using the reduced model becomes more
and more important when the number of vectors in the
bases decreases.

• Looking at Fig. 11b, it can be seen that the speedup is
roughly dependent on the size of the static bases, rather
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(a) (b)

(c)

Controlled elements with 3 displacement basis
vectors. 10 “static“ basis vectors are needed to
achieve the minimal accuracy condition (32)

Controlled elements with 5 displacement basis
vectors. 28 “static“ basis vectors are needed to
achieve the minimal accuracy condition (32)

Controlled elements with 15 ”dynamic” basis
vectors. 60 “static“ basis vectors are needed to
achieve the minimal accuracy condition (32)

Fig. 9 Controlled elements selected using various basis sizes. The larger the basis, the more controlled elements are needed. The elements tend to
gather around the regions where the variation of displacement is the highest, hence where the variation of the internal forces will be high

than on the displacement basis. Indeed, the number of
controlled elements, which is linked to the amount of
computations to be done, is directly linked to the dimen-
sion of the static basis 
.

• To have a well defined ROM, the dimension of the static
basis 
 should at least match the dimension of the dis-
placement basis�.However, it can be seen that to achieve
a reasonable tolerance on the error, the dimension of the
static basis should actually be relatively larger.

The error with respect to the speedup for a range of reduced
space sizes is displayed in Fig. 12. What we call speedup
here is the ratio of the elapsed time of the full order simula-
tion over the elapsed time of the reduced model. It represents

howmany times faster is the ROM compared to the full order
model.

It can be seen that there is a proportional relation between
speedup and error: as the number of basis functions increases,
the speedup and the error decrease. The user can reduce the
error at the price of having a slower simulation. What makes
the reduced model faster is purely the bypassing of most of
the elements when computing the internal forces or the tan-
gent stiffness (this bypassing is possible thanks to the system
approximation technique).Note that the speedup is not purely
equal to the ratio between controlled elements and total num-
ber of elements since the NR procedure requires more steps
to converge in the ROM scheme than in the full order model.
Another remark is that beyond a certain dimension of the

123



Comput Mech (2016) 58:213–234 225

Fig. 10 Regions of interest selected by the system approximation pro-
cedure. Those regions (it circled in the figure) are matching the areas of
higher displacement found in the POD bases. This is intuitively good,
since those elements have to give enough information to be able to

reconstruct the internal forces over the entire domain. Those are the
elements whose behaviour vary the most when changing the loading
path (which is the parameter of the reduced model), hence containing
the core information necessary to build up an accurate reconstruction
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(a) (b)Evolution of the error varying the number of dis-
placement and static basis vectors.

Ratio of time time gained from running the full order
model and the reduced model.

Fig. 11 Numerical results tested on a loading path not included in the
snapshot space. Here, the snapshot selectionwas arbitrary and relatively
fine which allows to consider various number of basis sizes. Note that

one could use these plots as a way to determine the sizes of the bases
to maximise the speedup for aspecific target error

reduced space, the error does not decrease very much and
reaches a plateau. This means that no matter how many vec-
tors in the basis, a maximum accuracy is achieved. This can

be explained by the fact that the loading path tested is not
part of the snapshot. The only way to decrease this residual
error is to enrich the snapshot space. Let us define usnap(t) as
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Fig. 12 Evolution of the error with respect to the speedup while
increasing the number of basis vectors. For each size of the displace-
ment basis �, the number of vectors in the static basis 
 is chosen
according to the rule defined in Eq. (32)

the projection of the exact solution onto the snapshot space.
Using the same principle than Eq. (31), we can decompose
the error further (dropping parameters for clarity):

QHR2 =
tnt∑
t=t0

‖u(t) − usnap(t)+usnap(t) − uR(t)+uR(t) − uHR(t)‖2K0

nt +1

(33)

≤
tnt∑
t=t0

‖u(t)−usnap(t)‖2K0

nt +1
+

tnt∑
t=t0

‖usnap(t)−uR(t)‖2K0

nt +1
+˜QHR

2
.

(34)

∑tnt
t=t0

‖usnap(t)−uR(t)‖2K0
nt+1 and ˜QHR

2
can be made as small as

desired by taking high dimensional bases � and 
. The

residual error that remains is
∑tnt

t=t0

‖u(t)−usnap(t)‖2K0
nt+1 , which

entirely depends upon the richness of the snapshot space.
We will deal with this issue in the next section by using a

Bayesian-optimized snapshot selection which will allow to
guess the error between the discrete solutions computed for
the snapshot set.

3.3 Model reduction using a POD-greedy algorithm
based on a Bayesian-optimized snapshot selection
designed for dealing with high-dimensional
parameter spaces

As said in the previous section, it may not be satisfactory
to use an arbitrary sampling method, since some important
information could be unwittingly dropped out. The accu-
racy of the reduced model greatly depends on the snapshot
space and howwell it samples the parameter space. Here, the
parameter space contains any load path (based on the macro-
strain εM(t)) over a certain period of time until ellipticity of

the mechanical problem is lost. After time discretisation, the
parameter space is of dimension 2× nt, since in two dimen-
sions the load can be uniaxial in the x or y direction or in
shear, and we set a fixed load increment norm between two
timesteps. nt stands for the number of time steps required to
reach fracture.

This section attempts to address the problem of ensuring
that the snapshot space is sufficiently fine so that a reduced
model of sufficient accuracy can be built upon it. Given the
high dimension of the parameter space, its effective sampling
is based on a combination of three necessary cost-effective
strategies:

• First, the high-dimensional parameter space P is restric-
ted to a hierarchical sequence ofmuch lower dimensional
pseudo-parameter spaces P̂n which enable to avoid
the “curse of dimensionality”. Starting from a pseudo-
parameter space P̂0 containing proportional loadings
only, it is iteratively refined until reaching some “con-
vergence”. This approach is described in Sect. 3.3.1.

• Second, within each pseudo-parameter spaces P̂n, rather
than a random and fine sampling typically used in tra-
ditional POD-greedy approaches, an effective selection
procedure allowing few evaluations of an error indicator
is done using a Gaussian process predictor. This strategy
is explained in Sect. 3.3.2.

• A statistical correspondence between the error indicator
and the true error is built using Gaussian process regres-
sion to control the convergence of the procedure. This is
described in Sect. 3.3.3.

3.3.1 Definition of a sequence of surrogate parameter
spaces of low dimension

We would like to sample the parameter space exhaustively.
To this purpose, the use of Gaussian processmethods [42,53]
are attractive as they provide an excellent predictor as well
as statistical information that allows to trust the model. How-
ever, it is almost inapplicable in a high-dimensional context,
as it requires a decent amount of data in proportion with the
dimensionality of the phenomenon to study. To circumvent
the curse of dimensionality, we propose to define a sequence
of low-dimensional surrogate parameter spaces of progres-
sively finer dimension P̂ i .The initial surrogate space P̂0 con-
tains all proportional loadings only (i.e., the loading path is a
straight line). This space only is of dimension 2 (well-defined
by two angles when considering spherical coordinates). The
surrogate space P̂1 is defined as two successive proportional
loadings with different directions (Fig. 13). This space has
fivedimensions since twodimensions canbe counted for each
proportional part of the loading plus one more dimension for
the length of the load at which the second proportional load-
ing starts. This sequence can carry on with space n, the space
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(a) (b)Initial surrogate parameter space ̂P0: only
proportional loadings are considered. Its dimen-
sion is 2, corresponding to two angles in spherical
coordinates.

Level 1 of the surrogate parameter space ̂P1:
the loading can be made of 2 different proportional
loads of various length. Its dimension is 5, with 2
times 2 for the dimension of 2 proportional load
segments, and 1 for the longitudinal position of
the link between the two segments.

Fig. 13 Examples of loadings paths for levels 0 and 1 of the surrogate parameter spaces

of loads with n+ 1 distinct proportional loadings, which has
dimension 2 × n + (n − 1). We also have the property that
surrogate space n is included in surrogate space n + 1:

∀n ∈ N, P̂n ⊂ P̂n+1. (35)

Now,with such an inclusive decomposition of the parame-
ter space, it becomespossible to inferwhat level of refinement
is necessary to consider, for building an accurate reduced
model. Indeed, aROMcan be constructed based on snapshots
from surrogate parameter space P̂n, and if it represents well
any solution in parameter space P̂n+1 (which is a space with
a finer discretisation of the loading paths εM ), we can assume
that the current reduced model is satisfactory and there is no
need to consider finer parameter spaces. The procedure is
described in Algorithm 2.

Algorithm 2 Main loop of the procedure
1: Define a tolerance target ε for the reduced-order model
2: n ← 0
3: Initialise �0 to the empty matrix
4: while no convergence do
5: Update the reduced-ordermodel basis�n with pseudo parameter

space P̂n to achieve tolerance ε following Algorithm 4
6: IF convergence
7: Break;
8: n ← n + 1

3.3.2 Exhaustive sampling of the surrogate parameter
spaces using a Gaussian process predictor

In this section, given a dimension for the surrogate parameter
space,we are looking for the value of the parameter leading to

the highest error between the exact solution and the solution
computed using our reduced model.

Standard POD-greedy procedure in traditional POD-
greedy strategies [40], an a posteriori error bound �k(μ)

inexpensive to compute is assumed available, which allows
for the estimation of the error between the full order model
and the ROM at step k of the procedure, on a fine discretisa-
tion� ∈ P of the parameter space.At step k of the procedure,
the full order model is evaluated at the parameter value μk

max
satisfying:

μk
max = argmax

μ∈�

�k(μ). (36)

The ROM is updated with this new information and the algo-
rithm carries on until reaching some tolerance.

In practice, error bounds �k(μ) are available for linear
problems. In the general nonlinear case, no sharp error bound
is available, and one has to rely on an error indicator at the
parameter value μ instead: J (μ). This error indicator, does
not provide a bound on the error, but rather a measure of
its magnitude. Though less expensive than computing the
exact solution at μ, we will see in the next section that the
evaluation of this indicator at all values of a fine discretisation
of the parameter space is not affordable. To alleviate this
issue, the error indicator surface over the parameter space
will be approximated using a Gaussian process predictor to
allow for only a few,well chosen, evaluations of the indicator.

Definition of an error indicator based on the residual in
our case the quantity of interest is the error QHR defined
in Eq. (29). Having no rigorous error bound at hand, we
will use an error indicator instead. The norm of the resid-
ual r(tk, μ; �, 
) can be used as such an indicator at
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each timestep (as described in [43,54]). Here the residual
at timestep tk is defined as:

r (tk, μ; �, 
) = fint (ū (tk; μ) + �α (tk; μ)) , (37)

where α(tk; μ) is the converged solution at t = tk obtained
from the Newton procedure described in Eq. (23).

Since we would like an error indicator that is taking into
account the entire time-history of the solution, we define a
time-independent normof the residual for the completeROM
(i.e., including both approximation of the displacement in
a low-dimensional space and approximation of the internal
forces):

R(μ; �, 
) =
√∑k=N

k=0 ‖r(tk, μ; �, 
)‖2
N + 1

. (38)

Remark Note that the residual R will almost always not be
null. Indeed, what is solved in the reduced model leads to the
cancellation, at each timestep, of the projected residual:
�T GET fint(Nu(tk; V εM )+�α(tk; εM)), using Newton iter-
ations.

Now, since the residual is defined on the fine discretisa-
tion of the domain, the cost of its evaluation presents still a
significant cost. This can be partly alleviated by evaluating
a surrogate R̃ of the global residual R over only a subset of
the timesteps. We then define the error indicator:

J (μ; �, 
)

= R̃(μ; �, 
) =
√∑

tk∈T̃ ‖r(tk, μ; �, 
)‖2
|T̃ | , (39)

where T̃ is a subset of the time discretisation used to compute
the simulation; for example T̃ may contain only one in every
five timesteps. In Sect. 3.3.4, wemay refer toJ (μ; �, 
) as
J R or J HR depending on if we are considering the residual
of the ROM without or with hyperreduction, respectively.
The main advantage is that it can provide an indicator of
the magnitude of the error for various values of the parame-
ter μ (which in our problem is the far-field strain εM ) at a
much cheaper cost that having to evaluate both the exact and
reduced solution. Nevertheless J remains a non-negligible
quantity to compute and we show in the next paragraph how
to exhaustively explore the parameter space despite a limita-
tion on the number of evaluation of this error indicator and
hence of that residual.

Gaussian process regression of the residual surface for
efficient evaluation of the error in traditional POD-greedy
procedures, a discrete set� ∈ Pn is built arbitrarily to sample
the parameter space. It is typically very fine. The goal of this
section is to define a set� that is of relatively small cardinality

but is chosen so that it is likely to contain the values of the
parameter leading to the highest error. To this purpose, we
follow a procedure similar to the one described in [42,43].

The first ingredient is Gaussian process regression [53]
(also called kriging in the literature): starting from an initial
set �0 chosen randomly containing few values of the para-
meter and an associated set of values of the error indicator
{J (μi )|μi ∈ �0}, a Gaussian process regression approxi-
mating the error indicator J with a confidence interval over
the entire parameter domainPn,will be constructed for each
stepm of the samplingprocess. This regressionwill be used to
iteratively enrich�m with values of the parameter μm where
the probability of having large values of the error indicator
J is the highest.

The method is based on the assumption that the data stud-
ied is following a joint Gaussian distribution defined by a
mean m̄, which can be unknown, and a covariance matrix,
whose shape is defined a priori by the user.A common covari-
ance function is the squared exponential:

cov
(
xp, xq) = σ 2 exp

((
xp − xq)T Iθ

(
xp − xq)) , (40)

with Iθ being a diagonal matrix with diagonal element θi on
the i th row. For the observations at parameter values � (of
cardinality N ), J follows the joint Gaussian distribution of
mean m̄ and covariance Cov(�, �):

Jm̄,σ 2,θ (x) ∼ 1

(2π)N/2|Cov(�, �)|1/2
e− 1

2 (x−m̄)(Cov(�,�))−1(x−m̄), (41)

or more simply written:

J ∼ N (m̄, Cov(�, �)), (42)

where the element in i th row and j th column of Cov(�, �)

is {Covi j } = cov(xi, xj) with xi, xj ∈ �. m̄, θ and σ 2 are
hyperparameters that need to be determined. Assuming the
knowledge of the data�, it is done through themaximisation
of the likelihood function:

L�

(
m̄, σ 2, θ

)
= 1

(2π)N/2|Cov(�, �)|1/2
e− 1

2 (x−m̄)(Cov(�,�))−1(x−m̄). (43)

This maximization aims to make the Gaussian process dis-
tribution we are constructing as consistent as possible with
the data at hand. Poorly chosen values of the hyperparame-
ters will lead to poor predictions. This is typically the case
with little data at hand but improves as more and more sam-
ples are computed. See [53] or [42] for more details on the
determination of the hyperparameters.
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Then, adding test inputs, we have (with the input parame-
ters � carrying a subscript � being the test inputs, the other
ones being the training inputs):

[
J
J�

]
∼ N

(
m̄,

[
Cov(�, �) Cov(�, ��)

Cov(��, �) Cov(��, ��)

])
. (44)

This distribution makes no use of the data we have at end.
To obtain the posterior distribution which actually uses the
knowledge of the data points, one can condition the prior
distribution to the observations and obtain the distribution:

J�|��, �, J ∼ N (
m̄ + Cov(��, �)Cov(�, �)−1(J − m̄),

(45)

Cov(��, ��) − Cov(��, �)Cov(�, �)−1Cov(�, ��)
)
.

(46)

From this expression one can deduce a predictor at any para-
meter value μ by taking the mean value,

J m
� (μ) = m̄ + Cov({μ}, �)Cov(�, �)−1(J − m̄), (47)

together with a standard error, using the covariance:

s(μ)2 = Cov({μ}, {μ}) − Cov({μ}, �)Cov(�, �)−1

Cov(�, {μ}). (48)

Using this regression at step m of the sampling process,
the maximum valueJ m

� max of the current Gaussian predictor
J m

� over the parameter domain is computed. Rather than
considering the parameter value achieving thismaximumas a
new test point, the procedure searches for the parameter value
that has the highest probability of improving that maximum
value by some predefined percentage, which defines a target
value T (J m

� max). Indeed, this allows to take into account
the trade-off between maximal value of the predictor and
uncertainty characterized by the standard error. Since J�(μ)

has a normal distribution with mean J m
� (μ) and standard

error s(μ), the probability of improvement of J�(μ) beyond
the target T (J m

� max) is:

π
(
εM; T

)
= ϕ

(J m
� (μ) − T (J�max)

s(μ)

)
, (49)

where ϕ is the normal cumulative distribution function. The
parameter μm maximising this probability is then added to
the set �m−1, creating the new set �m that will be used
to build the Gaussian predictor for the next step (with new
values of the hyperparameters m̄, σ, θ ):

�m = �0 ∪ {μ1} ∪ {μ2} ∪ · · · ∪ {μm
}
. (50)

The procedure stops at some step M (which can either be
defined arbitrarily or by some tolerance on the value of the

Fig. 14 Computing the error indicator J for an initial arbitrary selec-
tion of parameters (denoted by the crosses), a Gaussian regression is
iteratively computed to evaluate the indicator at locations where it is
likely to be the highest (shown as the squares). Eventually, the parame-
ter value selected is the one where the indicator indeed is the highest
among this discrete set (shown as the star)

error indicator, and the value of the parameter that maximises
the error indicator over the set �M is then selected as μk

max
(defined in Eq. (36)), where the exact solution will be com-
puted:

μk
max = argmax

μ∈�m

J m
� (μ). (51)

This is graphically sketched in Fig. 14. The process is also
described in Algorithm 3.

Algorithm 3 Gaussian process sampling algorithm to find
parameter value leading to the maximum value of the error
indicator
1: Input: Current ROM bases, � and 
.

2: Output: Load μk
max with maximum value of the error indicator

3: Define a subset of random loading values �0
4: �curr ← �0
5: m ← 0
6: while m < nsteps do
7: Evaluate estimator for each parameter value μ ∈ �m
8: Build kriging response surface and find parameter μm of maxi-

mum probability of improvement π
9: �m+1 ← �m ∪ {μm}
10: m ← m + 1
11: μk

max = max(�m) (The load among�m that leads to the maximum
value of the error estimator)

3.3.3 Construction of a Gaussian regression between the
exact error and the error estimator to monitor the
convergence of the procedure

One important matter in this procedure is that the error
indicator (the norm of the residual in our case), for computa-
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(a) Gaussian regression with two snapshots. (b) Gaussian regression with four snapshots.

Fig. 15 Evolution of the map between error indicator and exact error as the number of observations (snapshots) increases. From each snapshot,
two errors can be computed: one before the enrichment of the basis and one afterwards. This allows to include more points to build the map

tional saving reasons, is driving the control of our algorithm.
Beyond a certain proportionality, which drives the algorithm
assuming smaller error indicators lead to smaller errors, there
is no control on the magnitude of the actual error. This is a
problem as we would like to build a reduced model that is
accurate up to a certain tolerance that is chosen by the user.
Hence, it is necessary to build some sort of map between
estimator and error, which can then be used as a stopping
criterion in our greedy algorithm by linking the value of the
indicator to the actual error. This problem has been treated in
[43] by using a linear regression using data samples obtained
from the snapshots, that regression being updated each time
a new snapshot is available. In this paper, we use again a
Gaussian regression (in a similar way to [55]), just like it
was done for the regression of the error indicator against the
parameters. However, in this case, we consider noise, since
there is not an exact monotonic match between error indica-
tor and exact error a priori. This implies that the covariance
expression changes slightly:

covn(x, y) = σ 2 exp
((

xp − xq)T Iθ

(
xp − xq))+ σ 2

n δpq ,

(52)

where δpq is the Kronecker delta, and σ 2
n is the variance of

a noise assumed Gaussian, which is a new hyperparameter.
Again,more details can be found in [53]. Themain advantage
over a linear regression is that it provides a more flexible fit
as well as a confidence interval that can be used to ensure a
bound on the error. Examples of regression with confidence
intervals of one standard error from various numbers of data
samples are displayed in Figs. 15 and 16. We define Q̂+,

the “pessimistic” estimate of the quantity of interest QHR,

0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
10−6

10−5

10−4

10−3

10−2

10−1

Fig. 16 Gaussian process regression between error estimator and exact
error, with 70% confidence interval. Given the current observations
(i.e., the snapshots in our reduced-order modelling jargon), a Gaussian
regression is performed to establish amap between exact error and error
estimator with statistical knowledge, which gives a confidence interval.
Given a value of the error indicator, the user can use the map to have a
safe estimate of the exact error using the confidence interval so as not
to underestimate the error

computed from a value of the error indicator J HR through
the Gaussianmap G plus one standard deviation σ (estimated
from the data in the Gaussian process regression), which
gives about an 85% confidence that the actual error is below
this value:

Q̂+ = G
(
J HR

)
+ σ. (53)
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3.3.4 Optimal choice of the size of the reduced spaces to
achieve a user-defined tolerance

One important matter, once a new solution has been com-
puted together with a singular value decomposition of its
error on the current reduced basis �, is to choose how many
basis vectors (φaddi )i=1,...,nadd should be concatenated to the
basis �, so that the ROM achieves some user-defined tar-
get tolerance ε. The same question goes for the number of
basis vectors
 representing the internal forces for the system
approximation.

We choose to tackle this issue in two stages, by first mak-
ing sure the size of the displacement reduced basis� is large
enough for QR to achieve a certain fraction of the tolerance
ε, and then choosing the dimension of
 to achieve the toler-
ance as well as insuring a monotonic decrease of the reduced
and hyperreduced residuals J R and J HR.

The procedure starts by computing an initial solution, cho-
sen for an arbitrary value of the parameter μ, as well as its
residuals J R

ini , J HR
ini . These two residuals will be used as

initial residual tolerances.
Determining the size of the displacement reduced basis�

assume we are at step k of the greedy algorithm. We denote
the displacement basis �k . The snapshot was enriched with
a new exact solution whose projection error with the current
reduced basis �k was decomposed into a POD expansion
�add, i.e., eproj � ∑nadd

i αiφaddi .

We successively evaluate the quantity of interest QR

(defined in Eq. (29)) with an increasing number of basis vec-
tors untilQR < γ R

Q ·ε andJ R < νRcurrent,where γ R
Q is a scalar

smaller than 1 that forces the reduced model (not hyperre-
duced) to achieve “comfortably” the tolerance ε, allowing
the hyperreduced model, which is an approximation of the
reduced model, to actually achieve the tolerance ε. In math-
ematical terms, this can be written:

min dim (�add) such thatQR
(
�k+1

)
< γ R

Q · ε

and J R
(
�k+1

)
< νRcurrent, (54)

where �k+1 = [�k, �add] (i.e., �k+1 is the concatenation
of �k and �add).

The residual tolerance is updated as: νRcurrent = γ R
ν ·νRcurrent,

with γ R
ν < 1. The condition on the residual ensures its

decrease throughout the procedure. This is important since
the indicator quantity J R (influencing J HR) drives the pro-
cedure, the exact error being used for the stopping criterion
only (through the Gaussian process regression between error
indicator and actual error). The value of νRcurrent is initialized
with the value of the initial residual of the initial ROM,whose
size is chosen minimal, typically only of dimension 1 to start
with.

Note that this step is quite expensive, as it requires to
evaluate the reduced solution several times with no hyper-

reduction. It could be made cheaper by substituting the
evaluations of the non-hyperreduced ROM by a finely (i.e.,
with a high-dimensional basis
) hyperreduced ROMwhich
would be cheaper to evaluate. However, the construction
of the hyperreduction ROM is expensive in itself since it
requires evaluation of the non-hyperreduced counterpart to
build the snapshot necessary to build the internal forces basis

. A trade-off would have to be found. In our case, we keep
the strategy as it is, keeping in mind that although computa-
tionally intensive, this procedure is performed offline.

Determining the size of the internal forces reduced basis

in a similar way, wewill successively evaluate the quantity of
interestQHR with an increasing number of basis vectors until
the tolerance is reached for all the values of the parameter in
the current snapshot:

min dim(
) such that

(
max
μ∈�k

QHR(
, μ)

)
< ε

and

(
max
μ∈�k

J HR(
)

)
< νHRcurrent. (55)

In this case, the tolerance ε has to be reached for all solutions
in the current snapshot �k, and not only the last one com-
puted. This guarantees the stability of the method. Indeed,
unlike when enriching the displacement basis �, there is no
guarantee on the monotonic decrease of the quantity of inter-
est. To guarantee the monotonic convergence of the error
indicator, the residual is updated at each step: νHRcurrent =
γHR
ν νHRcurrent. The general construction of the reduced basis

within one pseudo-parameter space P̂n is described in Algo-
rithm 4.

Remark Note that this step is not computationally expensive
since it only requires evaluations of the hyperreduced model.

3.3.5 Application of the Bayesian POD-greedy algorithm

Wenowproceed to apply the POD-greedyAlgorithms 2–4 on
the RVE problem described in Sect. 2. We define the target
tolerance ε = 10−3, γ R

Q = 1
2 , γ R

ν = 1
2 and γHR

ν = 0.9.
We proceed to build a ROM achieving tolerance ε on the
successive pseudo parameter spaces P̂ of dimensions 2, 5
and 8. The very initial parameter value is the proportional
loading of equal value in all directions (that is in εxx , εyy
and εxy). Results are displayed in Fig. 17.

After achieving the tolerance for snapshots in the initial
pseudo parameter space of dimension 2, the pessimistic value
of the error (up to one standard error) Q̂+ increases slightly
when moving on to the space of dimension 5. This is not
surprising since the ROMwas constructed to achieve the tol-
erance on the space of dimension 2 and does not represent as
well the space of dimension 5. However, this error increase is
small and remains underneath the target tolerance ε.Moving
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Algorithm 4 Sampling algorithm within one pseudo para-
meter space P̂n .

1: Define error target tolerance ε, initial loadμ0
max, and tolerance para-

meters smaller than 1: γ R
Q , γ R

ν and γHR
ν .

2: Evaluate solution for load μ0
max and build initial ROM �, 


3: Initialise residual tolerances νRcurrent and νHRcurrent
4: Q̂+ ← ∞
5: k ← 0
6: while Q̂+ > ε do
7: k ← k + 1
8: μk

max ← GaussianProcessPredictor(�, �) defined in Algo-
rithm 3

9: Evaluate solution for load μk
max

10: Update the ROM using the tolerances ε, νRcurrent and νHRcurrent:
11: increase the size of � until QR < γ R

Qε and J R(�k+1) <

νRcurrent
12: increase the size of
 untilQHR(
, μ) < ε AND error indi-

cator J HR(
) < νHRcurrent FOR ALL elements of the snapshot
13: νRcurrent ← γ R

ν νRcurrent
14: νHRcurrent ← γHR

ν νHRcurrent
15: Update Gaussian regression between error and residual (as

shown in Sect. 3.3.3)
16: Evaluate the pessimistic error Q̂+ from μk

max using the updated
Gaussian map.

on to the space of dimension 8 leads to the same analysis.
When considering the space of dimension 11, we can see that
the error decreases. Thismeans that despite the last computed
solution belongs to a space of larger dimension (and is the

1 2 3 4 5 6 7 8 9
10−4

10−3

10−2

10−1

Fig. 17 Evolution of the pessimistic error Q̂+ (defined in Eq. (53))
inside and across pseudo-parameter spaces. The error is computed from
the error indicator using the Gaussian process predictor plus one stan-
dard error as explained in Sect. 3.3.2. The ROM is first build based on
solutions from pseudo parameter space P̂0 that is of dimension 2 up
to reaching the tolerance ε = 10−3. Once the tolerance is reached,
pseudo parameter space P̂1 of dimension 5 is considered. Because the
first evaluation of the error is already achieving the tolerance ε, the pro-
cedure moves on to space P̂2 of dimension 8 which also achieves this
tolerance straight away. Moving onto the space P̂3 of dimension 11, the
error decreases: one can consider that convergence has been achieved
for parameter spaces of any size

least well represented one) than the space used to build the
ROM, it is correctly approximated. One can then argue that
the currentROMis accurate enough to represent the solutions
issued from parameter spaces of any dimension. Hence, there
is no need to consider any finer spaces and the procedure can
stop there.

Remark For dimension 8 and 11, we used a quasi-random
Latin-hypercube sampling [56] rather that the Gaussian
process regression described in Sect. 3.3.3. Indeed, in higher
dimensions, the Gaussian process regression requires pro-
portionally more data to make sensible predictions.

4 Conclusion and perspectives

In this paper, we have developed an offline/online reduced
basis strategy to reduce the computational cost of solving
the RVE boundary value problem involved in nested com-
putational homogenisation (i.e., FE2). Our strategy has been
illustrated in the context of elastic-damageable particulate
composites. Such problems can be parametrised by the his-
tory of the far-fields that are applied as boundary conditions
to the RVE. The main challenge comes from the very high-
dimensionality of the parameter domain which consists of
all possible macroscopic load histories that preserve mater-
ial stability. This makes the sampling of the parameter space,
which is necessary to train projection-based reduced models,
a complicated task. We have proposed two strategies to solve
this problem:

• The sampling is done randomly, in a brute force manner,
whilst enforcing that a certain increment of energy dissi-
pation occurs at each timstep of the discrete load history.
The reduced space is found by using the POD.

• The problem is solved using a POD-greedy reduced-
basis method. To reduce the dimensionality of the RVE
problem to tractable levels, the parameter space is substi-
tuted by a hierarchy of approximate spaces of small and
increasing dimensions. A ROM is computed for each of
these approximate spaces, using a POD-greedy training
algorithm, in conjunction with a Bayesian-optimisation-
based a posteriori error estimate.

The brute force strategy can be very expensive when
requiring a high accuracy of the ROM. Indeed, despite
the minimum dissipation constraint, the exhaustiveness of
the snapshot requires a large number of random solutions.
This approach can be appealing nevertheless if the accuracy
required is relatively low, due to its low computational cost
and ease of implementation. On the other hand, the hierarchi-
cal reduced basis strategy is exploring the parameter space
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in a robust and quasi-optimal manner, at the cost of a certain
algorithmic complexity.

Coming back to the context of multiscale modelling, we
can question the necessity of computing reduced models
of RVE problems in the space of arbitrary far-field loads.
Indeed, in practical applications, only specific loadings may
actually be applied to the RVE, making the pursuit of an
exhaustive snapshot irrelevant.We are currently investigating
the possibility of integrating some knowledge about poten-
tial macroscopic solutions in order to restrict the size of the
parameter domain a priori.
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