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Substantial data demonstrate that the early-life environment, including in utero, plays a key role

in later life disease. In particular, maternal stress during pregnancy has been linked to adverse

behavioural and emotional outcomes in children. Data from human cohort studies and experi-

mental animal models suggest that modulation of the developing epigenome in the foetus by

maternal stress may contribute to the foetal programming of disease. Here, we summarise

insights gained from recent studies that may advance our understanding of the role of the pla-

centa in mediating the association between maternal mood disorders and offspring outcomes.

First, the placenta provides a record of exposures during pregnancy, as indicated by changes in

the placental trancriptome and epigenome. Second, prenatal maternal mood may alter placental

function to adversely impact foetal and child development. Finally, we discuss the less well

established but interesting possibility that altered placental function, more specifically changes

in placental hormones, may adversely affect maternal mood and later maternal behaviour, which

can also have consequence for offspring well-being.
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Introduction

Pregnancy can be a challenging time in a woman’s life, during which

she may experience many changes in her circumstances. Pregnancy

can also be a time of vulnerability to perinatal mental illnesses,

including depression, stress and postnatal psychosis (1). In the UK,

it is estimated that maternal mood disorders, either prenatally or in

the immediate period after birth, affect approximately one in five

women, and is therefore one of the most common conditions of

pregnancy. These disorders affect women of all ethnicities, national-

ities and social strata (2). In addition to the distress that this causes

women and their families, mental health disorders are one of the

leading causes of death during pregnancy and the year after birth

(1). Of equal concern is an additional consequence for her child’s

well-being, with an increased risk of adverse behavioural and meta-

bolic outcomes following exposure to maternal prenatal stress (3).

Thus, a greater understanding of both the causes and the

consequences of prenatal maternal stress and mood disorders is

imperative.

Foetal programming by maternal stress

Prenatal stress at its broadest level includes major life event

stress, catastrophic disasters, chronic stress, daily hassles, per-

ceived stress or pregnancy-specific anxiety along with related

symptoms of depression or general anxiety during pregnancy (4).

Both animal and human studies indicate that maternal prenatal

stress is associated with an increased risk of adverse emotional,

behavioural and cognitive outcomes in the offspring, a subject

that has been reviewed extensively (5,6). Several studies, including

the large Avon Longitudinal Study of Parents and Children

(ALSPAC) cohort, allow for multiple confounders, including prena-

tal paternal and postnatal maternal mood. The findings from such

studies indicate that the increased risk for adverse outcomes in

the offspring is programmed in utero by the maternal emotional

state, in least in part (7). If the mother is in the top 15% of a

normal population for prenatal symptoms of anxiety or depres-

sion, her child has double the risk of a probable mental disorder,

raised from approximately 6–12% at the age of 13 years (7).
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However, it is clear that not all children are affected equally by

exposure to maternal stress, and also the effects of prenatal

stress on child development are inconsistent. Recent data suggest

that this may partly be a result of a gene/environment interplay,

including the interaction between prenatal maternal anxiety and

the child with respect to the genes for brain-derived neurotrophic

factor (BDNF) (8) and catechol-O-methyltransferase (COMT)

(O’Donnell and Glover, unpublished data), during the development

of emotional and cognitive outcomes, respectively.

The role of the placenta in mediating foetal
programming

Placental function is important both for optimal foetal growth and

maternal health (9). The placenta is a transient organ of pregnancy

that transports nutrients and oxygen to the growing foetus and

removes waste products. Additionally, the placenta functions to

mitigate the mother’s immune response to her semi-allogeneic foe-

tus and manufactures large quantities of hormones that flood the

maternal system to induce the adaptations required for a successful

pregnancy (10). An optimally functioning placenta can provide pro-

tection to the foetus against some forms of prenatal adversity. For

example, the placental enzyme 11b-hydroxysteroid dehydrogenase

2 (HSD11B2) regulates foetal exposure to maternal cortisol by con-

verting it to inactive cortisone. Thus, the placenta is able to partially

protect the foetus against elevated maternal cortisol levels. How-

ever, there is evidence that placental function may be affected by

prenatal stress (11–15). Both endogenous and synthetic glucocorti-

coids have been shown to impact a variety of placental functions,

including vascularisation, apoptosis and nutrient transport, in a

range of animal models and human studies (16–20). Moreover,

there is evidence that other maternal factors, such as catecholami-

nes (21), may transfer the effects of maternal stress to the foetus

by altering placental function. Consequently, suboptimal placental

function induced by the maternal state may contribute to altered

and, in our environment, poorer outcomes for children (22). Prena-

tal anxiety is associated with both lower expression and activity of

placental HSD11B2 (14), potentially mitigating the protective role

that this enzyme usually plays, and theoretically exposing the foe-

tus to higher cortisol levels. Foetal glucocorticoid exposure is also

regulated by the placental glucocorticoid (GR; NR3C1) and miner-

alocorticoid (MR; NR3C2) receptors. Placental NR3C1 and NR3C2

expression is higher among depressed compared to nondepressed

new mothers, providing another mechanism for the programming

of adverse offspring outcomes (15). Alterations in the expression of

genes for placental corticotrophin-releasing hormone [pCRH; which

stimulates the production of cortisol via the hypothalamic-pitui-

tary-adrenal (HPA) axis], monoamine oxidase A (MAOA; which

metabolises serotonin into 5-hydroxyindoleacetic acid) and placental

serotonin transporter (SLC6A4; which transports the neurotransmit-

ter serotonin) and P-glycoprotein have also been linked to prenatal

stress (11,23–25). Interestingly, very recent evidence suggests that

the associations between prenatal maternal mood and placental

gene expression may be different in Caucasian and non-Caucasian

populations (Capron and Glover, unpublished data). Thus, alterations

in the expression of a number of genes in the placenta may medi-

ate aspects of foetal programming associated with prenatal stress

(Fig. 1); however, these findings may have ethnic specificities.

Maternal stress and epigenetic changes in the placenta

Although it is clear that there are changes in the expression of

genes in the placenta in relation to prenatal stress exposure, the

mechanisms underpinning these changes are unclear. One possibil-

ity is the epigenetic deregulation of gene expression. Epigenetics

describes the marks or tags that are added or removed from DNA

sequence and the histones that regulate gene expression in a man-

ner heritable through cell division. Such marks may be altered by

exposure to stress during prenatal development, a period when the

epigenome is rapidly changing (26). Animal research demonstrates

that maternal stress can induce epigenetic changes in the placenta.

DNA methylation changes have been reported in the promoter

region of Hsd11B2 (12) and altered chromatin methylation has

been linked to the gene for O-linked-N-acetylglucosamine trans-

ferase (Ogt) (27). Such alterations may be mediated by sex-specific

changes in the placental epigenetic machinery (28). In humans,

maternal anxiety has been linked to greater placental methylation

of HSD11B2, whereas maternal depression (but not anxiety) has

been associated with increased placental methylation of NR3C1

(29). Recent research with mothers in a conflict-ridden region of
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Fig. 1. The role of the placenta in prenatal stress. Prenatal stress can influ-

ence the placental and foetal transcriptomes and epigenomes, which may

contribute to adverse outcomes for children. Dysfunctional placental sig-

nalling may also influence maternal mood during pregnancy and maternal

behaviour in the postnatal period, further contributing to adverse outcomes.
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the Democratic Republic of Congo has reported that higher levels

of war trauma and chronic stress were associated with DNA methy-

lation levels in multiple placental genes involved in HPA axis regu-

lation, including CRH, CRHBP, NR3C1 and FKBP5 (30). Stress-linked

variation in DNA methylation was observed in placental tissue, as

well as maternal and umbilical cord blood. However, similar to Jen-

sen Pena et al. (12), the effects at individual CpG sites differed

between tissues. The majority of CpG sites identified were situated

in transcription factor binding regions, and several were associated

with offspring birth weight (30). Similar effects of maternal war

trauma and chronic stress have been observed with placental BDNF

methylation (31). Considering that many affected CpG sites bind

transcription factors, as well as the associations with mRNA levels

or offspring birth weight, this suggests that stress-linked variation

in placental methylation may have functional consequences for off-

spring outcomes.

Maternal stress and epigenetic changes in offspring

Experimental animal models have demonstrated that early-life

stress can leave a mark on the offspring epigenome, with alter-

ations reported in offspring exposed to prenatal stress (28), mater-

nal separation (32) and low levels of maternal postnatal care (33).

In humans, variation in CpG methylation in umbilical cord blood at

NR3C1 has been associated with prenatal maternal anxiety (34) and

depressive symptoms (29,35). Also in cord blood, CpG methylation

at both NR3C1 and CRH is associated with maternal experiences of

war trauma and chronic stress (30). The NR3C1 and CRH CpG sites

identified in these studies are the same as those linked to pre-

eclampsia in cord blood (36) or prenatal exposure to inter-partner

violence in offspring venous blood (37). In animal models, methyla-

tion at the NR3C1 sites affects NGFI-A binding (38). These may be

sites for which DNA methylation is particularly sensitive to several

stress-linked phenotypes. Prenatal maternal chronic stress and war

trauma is associated with BDNF methylation in cord blood at birth

(31) and prenatal depression has been associated with DNA methy-

lation at the BDNF promoter region in buccal cells at 2 months of

age (39). BDNF plays an essential role in brain development and

has been linked to psychiatric risk (40), thus suggesting that BDNF

DNA methylation may be an important target for future investiga-

tion. Maternal cortisol and self-reported depressive and anxiety

symptoms have also been associated with altered DNA methylation

of the imprinted genes IGF2 and GNASXL (41). However, it is impor-

tant to note that, across both rodent and human studies, there are

tissue specific associations of prenatal stress and DNA methylation.

These differences may reflect the different physiological functions

of each tissue or differences in the epigenetic status of certain tis-

sues at the time of exposure. Nonetheless, it is clear that the

maternal stress can impact both the placental and the foetal epi-

genomes to alter gene expression.

The programming of maternal mood by the placenta

Although considerable data from both animal models and human

studies support changes in the placenta and foetus in response

to maternal stress, which may then contribute to the program-

ming of neurodevelopmental changes in offspring, few studies

have explored a placental origin for maternal mood disorders.

Pituitary prolactin and the placental lactogens are a group of evo-

lutionarily and functionally-related hormones important in preg-

nancy. Human placental lactogen (hPL) is produced by the

placental syncytiotrophoblast and secreted into the maternal cir-

culation, replacing prolactin as the main lactogenic hormone dur-

ing pregnancy (42). Numerous studies highlight a functional role

for these hormones and their shared receptor (prolactin receptor;

PRLR) in the onset of maternal behaviours in rodents and, in the

case of prolactin and PRLR, also maternal neurogenesis (43–53).

In humans, these hormones may contribute to suppression of

anxiety-related behaviours during pregnancy (54). Decreased serum

prolactin levels have been reported in human mothers with post-

natal depression (55,56), whereas increased levels of prolactin

have been associated with low anxiety scores during pregnancy

(57). Impaired hPL production has also been associated with

adverse infant outcomes such as foetal growth restriction (58,59).

Thus, the altered placental expression of the genes for placental

lactogen could contribute to both maternal mood disorders and

adverse outcomes (Fig. 1).

Imprinted genes, foetal programming and maternal mood
disorders

Imprinted genes are expressed from one parental allele through

epigenetic marking in the germline (60). Imprinted genes are

known to regulate foetal growth, placental development, adult

behaviour and metabolism (61). These multifunctional roles and

the flexibility of epigenetic marks have led to the suggestion that

imprinted genes may contribute to the foetal programming of

adverse outcomes (62). Numerous studies have reported the aber-

rant expression of imprinted genes in the placenta in relation to

foetal growth restriction and low birth weight (63). Altered expres-

sion of imprinted genes in the placenta has also been linked to

infant neurobehavioral developmental outcomes (64,65). Recently,

imprinted genes have been highlighted as key regulators of the

endocrine lineages that express placental hormones in rodents

(66). This newly defined function suggests that the aberrant

expression of imprinted genes in the placenta could contribute to

the mispriming of maternal behaviour, at least in rodents, by

modulating exposure of the maternal brain to key placental hor-

mones such as the placental lactogens. If the function of

imprinted genes in regulating the endocrine lineage was conserved

across species, aberrant imprinting could help to explain the co-

occurrence of low birth weight with prenatal mood disorders,

which has been reported in a number of studies (67–73). Epige-

netic changes in cord blood DNA at imprinted loci have been

associated with depressed maternal mood during pregnancy (74)

and with maternal stress (41,75). One study reported changes in

DNA methylation in both cord blood DNA and placental DNA at

an imprinted locus (76). Although it is generally presumed that

such changes occur in response to prenatal adversity with the

focus primarily concerning offspring outcomes, it is possible that
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such changes contribute to altered maternal mood by changing

the endocrine function of the placenta (Fig. 1). Consistent with

this hypothesis, recent data have identified a significant associa-

tion between both symptoms of prenatal depression and clinically

diagnosed depression with placental expression of both an

imprinted gene and placental lactogen, a hormone predicted to be

regulated by this gene (77). Determining the cause and effect

relationships in human studies of pregnancy is challenging. How-

ever, very recent work utilising a novel rodent model suggests

that imprinted genes in the placenta can influence both the

maternal neural transcriptome during pregnancy and maternal

behaviour in the early postnatal period (Creeth et al., in prepara-

tion), comprising data that support a causal relationship.

Summary and outlook

In summary, the placenta plays a key role in supporting a success-

ful healthy pregnancy. The placenta can provide a record of prena-

tal adversity, including maternal stress. Changes in placental

function, potentially driven by epigenetic processes, may impact

neurodevelopmental outcomes for children and both mental and

metabolic health into adulthood. Importantly, placental dysfunction

may also contribute to maternal mood disorders, either during

pregnancy and/or in the immediate postnatal period, by exposing

the mother to abnormal levels of placental hormones. At present,

most women experiencing heightened levels of prenatal depression,

stress and anxiety are undetected and untreated. The potential clin-

ical implications of maternal prenatal mood on foetal and child

neurodevelopment are substantial. The provision of better emotional

care for all pregnant women and enhanced identification and sup-

port for women at particularly high risk of maternal mood disorders

will help not only them, but also their children, and potentially sub-

sequent generations.
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