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Abstract

In the one-parameter regression model with AR(1) and AR(2) errors we find explicit expressions
and a continuous approximation of the optimal discrete design for the signed least square
estimator. The results are used to derive the optimal variance of the best linear estimator
in the continuous time model and to construct efficient estimators and corresponding optimal
designs for finite samples.
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1. Introduction

Consider a linear regression model

yj = θTf(tj) + ǫj (j = 1, . . . , N) , (1.1)

where θ ∈ R
m is a vector of unknown parameters, f(t) = (f1(t), . . . , fm(t))

T is a vector of
linearly independent functions defined on some interval, say [A,B], and ǫ1, . . . , ǫN are random
errors with E[ǫj] = 0 for all j = 1, . . . , N and covariances E[ǫjǫk] = ρ(tj − tk). It is well known
that the use of optimal or efficient designs yields to a reduction of costs by a statistical inference
with a minimal number of experiments without loosing any accuracy. Optimal design theory
has been studied intensively for the case when errors are uncorrelated using tools from convex
optimization theory, see Pukelsheim (2006), but the design problem in the case of dependent
data is substantially harder because the corresponding optimization problems are usually non-
convex. Most authors use asymptotic arguments to construct optimal designs, which do not
solve the problem of non-convexity, see for example Sacks and Ylvisaker (1966, 1968); Bickel and
Herzberg (1979); Näther (1985a); Zhigljavsky et al. (2010); Dette et al. (2015). Some optimal
designs for the location model (in this case the optimization problems are in fact convex)
and for a few one-parameter linear models have been discussed in Boltze and Näther (1982);
Näther (1985a,b); Pázman and Müller (2001) and Müller and Pázman (2003) among others.
Recently, for multi-parameter models, Dette et al. (2013) determined a necessary condition for
the optimality of (asymptotic) designs for least squares estimation. Dette et al. (2014) studied
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nearly universally optimal designs, while Dette et al. (2016) constructed new matrix-weighted
estimators with corresponding optimal designs, which are very close to the best linear unbiased
estimator with corresponding optimal designs. Although these results are promising, they rely
on certain structural assumptions on the covariance kernel. For example, Dette et al. (2013)
assume that the regression functions in model (1.1) are eigenfunctions of an integral operator
associated with the covariance kernel of the error process and Dette et al. (2016) assume that
the covariance kernel is triangular, see Mehr and McFadden (1965) for an exact definition.
While these results cover the frequently used AR(1)-process as error structure, they are not
applicable in models with autoregressive error processes of larger order.
The goal of the present paper is to give first insights in the optimal design problem for lin-
ear regression models with autoregressive error processes. We concentrate on a one-parameter
linear regression model with an AR(1) and AR(2)-error process. In Section 2 we will intro-
duce a signed least squares estimator and consider approximate designs on the design space
T = {t1, . . . , tN}, where the weights are not necessarily non-negative. We determine the opti-
mal (signed) approximate design for signed least squares estimation, such that the signed least
squares estimator has the same variance as the weighted least squares estimator based on obser-
vations at the experimental conditions t1, . . . , tN . In Section 3 we consider the one-parameter
linear regression model with autoregressive errors of order 1 and study the asymptotic behav-
ior of the signed least squares estimator with corresponding optimal design as the sample size
tends to infinity. Section 4 is devoted to the case of an AR(2)-error process, where the situa-
tion is substantially more complicated. Finally, the results are illustrated on several numerical
examples.

2. Various least squares estimators

For estimating θ, we use the following two estimators: the best linear unbiased estimator
(BLUE)

θ̂BLUE,N = (XTΣ−1X)−1XTΣ−1Y

and the signed least squares estimator (SLSE)

θ̂SLSE,N = (XTSX)−1XTSY, (2.1)

where X = (fi(xj))
N,m
j,i=1 is the design matrix of size N × m, S is an N×N diagonal matrix

with entries +1 and −1 on the diagonal and Σ = (ρ(ti − tj))
N
i,j=1 is the covariance matrix of

observations. If S is the N×N identity matrix, then SLSE coincides with the ordinary least
squares estimator (LSE). The covariance matrix of the BLUE and the SLSE are given by

Var(θ̂BLUE,N) = (XTΣ−1X)−1 ,

Var(θ̂SLSE,N) = (XTSX)−1(XTSΣSX)(XTSX)−1,

respectively. Throughout this paper we concentrate on the one-parameter regression model

yj = θf(tj) + ǫj, (2.2)
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and remark that an extension to the multi-parameter model (1.1) could be performed following
the discussion in Dette et al. (2016). A design on the (fixed) design space T = {t1, . . . , tN} is
an arbitrary discrete signed measure of the form ξ = {t1, . . . , tN ;w1, . . . , wN}, where wi = sipi,
si ∈ {−1, 1}, pi ≥ 0, i = 1, . . . , N , and

∑N

i=1 pi = 1. The variance of the SLSE for the design ξ
is given by

D(ξ) = Var(θ̂SLSE,N) =
N∑

i=1

N∑

j=1

ρ(ti − tj)wiwjfifj

/( N∑

i=1

wif
2
i

)2

, (2.3)

where we use the notation fi = f(ti) throughout this paper. The optimal design problem
consists in the minimization of this expression with respect to the weights w1, . . . , wN assuming
that the observation points t1, . . . , tN are fixed. Despite the fact that the functional D in (2.3)
is not convex as a function of w1, . . . , wN , the problem of determining the optimal weights can
be easily solved by a simple application of the Cauchy-Schwarz inequality. The proof of the
following lemma is given in Dette et al. (2016); see also Theorem 5.3 in Näther (1985a), where
this result was proved in a slightly different form.

Lemma 2.1. Assume that the matrix Σ = (ρ(ti − tj))i,j=1,...,N is positive definite and fi 6= 0
for all i = 1, . . . , N . Then the optimal weights w∗

1, . . . , w
∗
N minimizing the expression (2.3) are

given by

w∗
i = eTi Σ

−1f/fi; i = 1, . . . , N, (2.4)

where f = (f1, . . . , fN)
T , ei = (0, . . . , 0, 1, 0, . . . , 0)T ∈ R

N is the i-th unit vector. Moreover,
for the design ξ∗ = {t1, . . . , tN ;w∗

1, . . . , w
∗
N} with weights (2.4) we have D(ξ∗) = D∗, where

D∗ = 1/(fT Σ−1f) is the variance of the BLUE.

Note that the optimal weights in Lemma 2.1 are not uniquely defined. In fact, they can
always be multiplied by a non-zero constant without changing their optimality. In the following
discussion we will consider the case where the points ti are given by the equidistant points on
the interval [A,B] and the sample size N tends to infinity. Heuristically the BLUE converges in
this case to the BLUE in the continuous time model, where the full trajectory of the stochastic
process can be observed. Note that for any finite N the SLSE with the optimal weights defined
in Lemma 2.1 has the same variance as the BLUE.
Further we study the asymptotic properties of the SLSE and the optimal weights w∗

i defined
in (2.4) as the sample size increases. In many cases we will be able to approximate an N -point
design ξ = {t1, . . . , tN ;w∗

1, . . . , w
∗
N} with optimal weights defined in (2.4) by a signed measure

(an approximate design) of the form

ξ(dt) = PAδA(dt) + PBδB(dt) + p(t)dt , (2.5)

where δA(dt) and δB(dt) are Dirac-measures concentrated at the point A and B, respectively,
and p(·) is a density function (not necessarily non-negative) on the interval [A,B]. Approximate
designs of the from (2.5) are easier to understand and analyze than discrete designs of the form
ξ = {t1, . . . , tN ;w∗

1, . . . , w
∗
N}, and we will illustrate in Sections 3 and 4 the derivation of the
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limits in the case of autoregressive error processes of order one and two, respectively.
As already mentioned in the introduction the AR(1) process corresponds to a triangular kernel
and could also be treated with methodology developed in Dette et al. (2016). We discuss it
here because for this case the arguments are simpler than for the AR(2) process. In fact, for the
AR(2) error process the derivation of asymptotically optimal weights w∗

1, . . . , w
∗
N of the form

(2.4) as the sample size tends to infinity is substantially harder.

3. Autoregressive errors of order one

Consider the regression model (1.1) with N equidistant points

tj = A+ (j − 1)∆ , (j = 1, . . . , N) (3.1)

on the interval [A,B], where ∆ = (B −A)/(N − 1). Assume that the errors ǫ1, . . . , ǫN in (2.2)
satisfy the discrete AR(1) equation

ǫj − aǫj−1 = zj (3.2)

for some 0 < a < 1, where ǫ1 ∼ N(0, σ2) and z2, . . . , zN are Gaussian independent identically
distributed random variables with mean 0 and variance σ2

z = (1 − a2)σ2. Without loss of
generality, we assume σ2 = 1.

Remark 3.1. Note that discrete AR(1) processes (3.2) are often considered for the parameter
−1 < a < 1. For the subsequent discussion we need a continuous real-valued analogue, say
{ε(t)}t∈[A,B], of the discrete AR(1) error process, which is only available in the case 0 < a < 1;
see Chan and Tong (1987). The corresponding process with drift is denoted by y(t) = θf(t) +
ε(t), t ∈ [A,B]. For −1 < a < 0 the discrete AR(1) process (3.2) does not have a continuous
real-valued analogue and therefore in this case the limiting behavior of our estimators and
designs is much harder to understand.
It is also worthwhile to mention that the autocovariance function of errors ǫ1, . . . , ǫN is given
by

E[ǫjǫk] = ρ(tj − tk) = e−λ|tj−tk| = eλtje−λtk if tj ≤ tk,

where λ = − ln(a)/∆. Thus, if a ∈ (0, 1), the AR(1) error process has a triangular covariance
kernel in the sense of Mehr and McFadden (1965), and the results of Dette et al. (2016) are
applicable. In the following discussion we provide a different derivation of the asymptotically
optimal weights, because the arguments will be useful for the discussion of an AR(2) error
process in Section 4.

For an AR(1) error process, the inverse of the covariance matrix Σ = (ρ(ti − tj))
N
i,j=1 is given

by the tridiagonal matrix

Σ−1 =
1

S




1 k1 0 0 . . .
k1 k0 k1 0 . . .
0 k1 k0 k1 0
...

. . . . . . . . . . . . . . .

0 k1 k0 k1
0 0 k1 1




,
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where k0 = 1+ a2 = 1+ e−2λ∆, k1 = −a = −e−λ∆, S = 1− a2 = 1− e−2λ∆ and λ = − ln(a)/∆.
Recalling the definition of the optimal weights w∗

i , i = 2, . . . , N − 1, in (2.4) we have

Sw∗
i f(ti) = k1fi−1 + k0fi + k1fi+1 = (1 + a2)fi − afi−1 − afi+1

= a(2fi − fi−1 − fi+1) + (1− 2a+ a2)fi = a(2fi − fi−1 − fi+1) + (a− 1)2fi .

We now assume that λ = − ln(a)/∆ is fixed and ∆ = (B − A)/(N − 1) → 0. Since S(∆) =
S ′(0)∆ + o(∆) with S ′(0) = 2λ and a = 1− λ∆+ o(∆), we obtain

w∗
i f(ti) =

∆

S(∆)
· a(2fi − fi−1 − fi+1) + (a− 1)2fi

∆2
∆ =

1

S ′(0)
[−f ′′(ti) + λ2f(ti)]∆ + o(∆).

Thus, we have
w∗

i

∆
=

1

2λf(ti)
[−f ′′(ti) + λ2f(ti)] + O(∆). Therefore, for small ∆, the discrete

signed measure {t2, . . . , tN−1;w
∗
2, . . . , w

∗
N−1} is approximated by the continuous signed measure

with density

p(t) = − 1

2λf(t)

(
f ′′(t)− λ2f(t)

)
. (3.3)

Now we consider the weights at the boundary points. For the left boundary weight, we obtain

w∗
1f(t1) =

f1 + k1f2
S(∆)

=
∆

S(∆)
· f1 − af2

∆
=

∆

S(∆)

[f1 − f2
∆

+
f2 − af2

∆

]

=
1

S ′(0)
[−f ′(t1)− a′(0)f(t1)] +O(∆).

Since t1 = A, for small ∆, we have w∗
1 ≈ PA, where

PA =
1

f(A)S ′(0)

(
− f ′(A)− a′(0)f(A)

)
=

1

2λf(A)

(
− f ′(A) + λf(A)

)
. (3.4)

Similarly, for the right boundary weight, we obtain

w∗
Nf(tN) =

fN + k1fN−1

S(∆)
=

∆

S(∆)

fN − afN−1

∆
=

1

S ′(0)
[f ′(tN)− a′(0)f(tN−1)] +O(∆).

Since tN = B, for small ∆, we have w∗
N ≈ PB, where

PB =
1

f(B)S ′(0)

(
f ′(B)− a′(0)f(B)

)
=

1

2λf(B)

(
f ′(B) + λf(B)

)
. (3.5)

Summarizing, we have proved the following result.

Proposition 3.1. Consider the one-parameter regression model (2.2) with AR(1) errors of the
form (3.2), where 0 < a < 1 and f(·) is a twice continuously differentiable function such that
f(t) 6= 0 for all t ∈ [A,B]. For large N , the optimal discrete SLSE (defined in Lemma 2.1) is
approximated by the continuous SLSE

θ̂=D∗
(
PAf(A)y(A)+PBf(B)y(B)+

∫ B

A

p(t)f(t)y(t)dt
)

(3.6)
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where D∗=
(
PAf

2(A)+PBf
2(B)+

∫ B

A

p(t)f 2(t)dt
)−1

, and p(t), PA and PB are defined in (3.3),

(3.4) and (3.5), respectively. For this approximation, we have

D∗ = lim
N→∞

Var(θ̂SLSE,N),

i.e. D∗ is the limit of the variances (2.3) of the optimal discrete SLSE designs as N → ∞.

Throughout the following discussion we call a triple (p, PA, PB) containing a (signed) density p
and two weights PA and PB, an approximate design for the continuous SLSE defined in (3.6).

Remark 3.2. Observing the discussion in the second part of Remark 3.1 it is reasonable to
compare Proposition 3.1 with Theorem 2.1 in Dette et al. (2016). Note that the expressions
for the optimal signed density p(·) and optimal weights PA and PB at boundary points are
particular cases of the general formulae

p(t) = − 1

f(t)v(t)

[h′(t)

q′(t)

]′
, PA =

1

f(A)v2(A)q′(A)

[f(A)u′(A)

u(A)
− f ′(A)

]
, PB =

h′(B)

f(B)v(B)q′(B)

with u(t) = eλt and v(s) = e−λs, where q(t) = u(t)/v(t) and h(t) = f(t)/v(t). Indeed,
we easily see that h(t) = f(t)eλt, h′(t) = f ′(t)eλt + f(t)λeλt, q′(t) = 2λe2λt, h′(t)/q′(t) =
f ′(t)e−λt + f(t)λe−λt and, consequently,

p(t) = − 1

f(t)e−λt
(f ′(t)e−λt + f(t)λe−λt)′

= −f ′′(t)e−λt − λf ′′(t)e−λt + f ′(t)λe−λt − f(t)λ2e−λt

f(t)e−λt
= − 1

2λf(t)

(
f ′′(t)− λ2f(t)

)
.

as desired. Similarly, we have

PA =
1

f(A)e−2λA2λe2λA

[f(A)λeλA
eλA

− f ′(A)
]
=

1

2λf(A)

(
− f ′(A) + λf(A)

)

PB =
f ′(B)eλB + f(B)λeλB

f(B)e−λB2λe2λB
=

1

2λf(B)

(
f ′(B) + λf(B)

)
.

4. Autoregressive errors of order two

In this section we assume that the observations in model (2.2) are taken at N equidistant points
of the form (3.1) and that the errors ǫ1, . . . , ǫN satisfy the discrete AR(2) equation

ǫj − a1ǫj−1 − a2ǫj−2 = zj, (4.1)

where zj are Gaussian independent identically distributed random variables with mean 0 and
variance σ2

z = σ2(1 + a2)((1− a22)− a21)/(1− a2). Here we make a usual assumption that (4.1)
defines the AR(2) process for j ∈ {. . . ,−2,−1, 0, 1, 2, . . .} but we only take the values such
that j ∈ {1, 2, . . . , N}. Note that the AR(2) process is often considered for parameters a1 and
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a2 satisfying the following three inequalities: a2 + a1 < 1, a2 − a1 < 1 and |a2| < 1 (these
inequalities ensure that the AR(2) process is causal). Since we need a continuous real-valued
analogue for the discrete AR(2) process, we will assume that parameters in (4.1) satisfy stricter
inequalities: a2 + a1 < 1, −1 < a2 < 0 and a1 > 0.
Let rk = E[ǫjǫj+k] be the autocovariance function of the AR(2) process {ǫ1, . . . , ǫN} and assume
without loss of generality that σ2 = 1. The inverse of the covariance matrix Σ = (E[ǫjǫj])j,k of
the discrete AR(2) process is the five-diagonal matrix

Σ−1 =
1

S




k11 k12 k2 0 0 0 . . .
k21 k22 k1 k2 0 0 . . .
k2 k1 k0 k1 k2 0 . . .
0 k2 k1 k0 k1 k2
...

. . . . . . . . . . . . . . . . . .

0 k2 k1 k0 k1 k2
0 0 k2 k1 k22 k12
0 0 0 k2 k21 k11




(4.2)

where the non-vanishing elements are given by k0 = 1 + a21 + a22, k1 = −a1 + a1a2, k2 = −a2,
k11 = 1, k12 = k21 = −a1, k22 = 1 + a21 and S = (1 + a1 − a2)(1 − a1 − a2)(1 + a2)/(1 − a2).
Using Lemma 2.1 and the explicit form (4.2) for Σ−1 we straightforwardly obtain the explicit
expressions for the optimal weights w∗

i defined in (2.4).
To derive asymptotic approximations for w∗

i , we have to study the behavior of w∗
i in dependence

on the autocovariance function rk of the AR(2) process (4.1). There are three different types
of autocovariance functions which we consider below.
Formally, a continuous AR(2) process is a solution of the linear stochastic differential equation
of the form

dε′(t) = ã1ε
′(t) + ã2ε(t) + σ2

0dW (t),

where W (t) is a standard Wiener process, see Brockwell et al. (2007). Note that the process
ε(t) has the continuous derivative ε′(t) and the continuous process with drift is again denoted
by y(t) = θf(t)+ ε(t), t ∈ [A,B]. We also note that y(t) is differentiable on the interval [A,B].
There are three different forms of the autocovariance function (note that we assume throughout
σ2 = 1) of continuous AR(2) processes, see e.g. formulas (14)–(16) in He and Wang (1989):

ρ(1)(t) =
λ2

λ2 − λ1

e−λ1|t| − λ1

λ2 − λ1

e−λ2|t| , (4.3)

where λ1 6= λ2, λ1 > 0, λ2 > 0,

ρ(2)(t) = e−λ|t|
{
cos(q|t|) + λ

q
sin(q|t|)

}
,

where λ > 0, q > 0, and

ρ(3)(t) = e−λ|t|(1 + λ|t|) ,
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where λ > 0. From formulas (11)–(13) in He and Wang (1989) we obtain that the corresponding
three forms of the autocovariances of the discrete AR(2) process (4.1) are:

r
(1)
k = E[ǫjǫj+k] = Cpk1 + (1− C)pk2, C =

(1− p22)p1
(1− p22)p1 − (1− p21)p2

, (4.4)

where j ≥ 0, p1 6= p2, 0 < |p1|, |p2| < 1,

r
(2)
k = pk

(
cos(bk) + C sin(bk)

)
, C = cot(b)

1− p2

1 + p2
, (4.5)

where 0 < p < 1, 0 < b < 2π and b 6= π, and

r
(3)
k = pk (1 + kC), C =

1− p2

1 + p2
, (4.6)

where 0 < |p| < 1. We determine approximations for the optimal weights w∗
i in Lemma 2.1 for

the three different types of autocovariance functions. All results are summarized in Theorem
4.1 below. The proof is somewhat similar (but more difficult) to the derivation above presented
for the AR(1) errors.

Theorem 4.1. Consider the one-parameter model (2.2) such that the errors follow the AR(2)
equation. Assume that f(·) is a four times continuously differentiable and f(t) 6= 0 for all
t ∈ [A,B]. Define the following constants depending on the form of the autocovariance function
rk. If rk is of the form (4.4), set

λ1 = − ln(p1)

∆
, λ2 = − ln(p2)

∆
, τ0 = λ2

1λ
2
2, τ2 = λ2

1 + λ2
2, β1 = λ1 + λ2, β0 = λ1λ2,

γ1 = λ2
1 + λ1λ2 + λ2

2 , γ0 = λ1λ2(λ1 + λ2), s3 = 2λ1λ2(λ1 + λ2).

If rk is of the form (4.5), set

λ = − ln(p)

∆
, q = − b

∆
, τ0 = (λ2 + q2)2, τ2 = 2(λ2 − q2), β1 = 2λ, β0 = λ2 + q2,

γ1 = (3λ2 − q2) , γ0 = 2λ(λ2 + q2), s3 = 4λ(λ2 + q2).

If rk is of the form (4.6), set

λ = − ln(p)

∆
, τ0 = λ4, τ2 = 2λ2, β1 = 2λ, β0 = λ2, γ1 = 3λ2 , γ0 = 2λ3, s3 = 4λ3.

For large N , the optimal discrete SLSE (defined in Lemma 2.1) can be approximated by the
continuous SLSE

θ̂=D∗
(
QBf(B)y′(B)−QAf(A)y′(A)+PAf(A)y(A)+PBf(B)y(B)+

∫ B

A

p(t)f(t)y(t)dt
)

where

D∗=
(
QBf(B)f ′(B)−QAf(A)f

′(A)+PAf
2(A)+PBf

2(B)+

∫ B

A

p(t)f 2(t)dt
)−1

.
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For this approximation, we have D∗ = limN→∞ Var(θ̂SLSE,N), i.e. D
∗ is the limit of the variance

(2.3) of the optimal discrete SLSE design as N → ∞. Here the quantities p(t), QA, QB, PA

and PB in the continuous SLSE are defined by

p(t) = − 1

s3f(t)

(
τ2f

′′(t)− τ0f(t)− f ′′′′(t)
)
, (4.7)

PA =
1

s3f(A)

(
f ′′′(A)− γ1f

′(A) + γ0f(A)
)
,

PB =
1

s3f(B)

(
− f ′′′(B) + γ1f

′(B) + γ0f(B)
)
,

QA =
1

s3f(A)

(
f ′′(A)− β1f

′(A) + β0f(A)
)
,

QB =
1

s3f(B)

(
f ′′(B) + β1f

′(B) + β0f(B)
)
. (4.8)

5. Examples

5.1. Approximations of the discrete SLSE

Consider the one-parameter model with f(t) = tα and AR(1) errors. The design space is an
interval [A,B] such that f(t) 6= 0 for all t ∈ [A,B]. Then the optimal discrete design for the
SLSE is approximated by a design of the form (2.5), where the density p(t), and the weights
PA and PB are defined by

p(t) = − 1

2λ

(
α(α− 1)t−2 − λ2

)
, PA =

1

2λ

(
− αA−1 + λ

)
, PB =

1

2λ

(
αB−1 + λ

)
.

In Table 1 we display values of p(t), P (A) and PB for several exponents α and also for the
regression function f(t) = et. For example, if f(t) = et we observe that PA is positive for λ > 1
and negative for 0 < λ < 1, PB is positive for λ > 0, p(t) is positive for λ > 1 and negative for
λ ∈ (0, 1). For large λ, the contribution of observations at the interval (A,B) to the continuous
SLSE is significant. For the location model f(t) = 1, we can see that PB = PB = 1/2 and
p(t) = λ/2. This implies that for small λ the contribution of observations at boundary points to
the continuous SLSE is large and the contribution of observations at the interval (A,B) to the
continuous SLSE is small. For large λ, the contribution of observations at the interval (A,B)
to the continuous SLSE is essential.
Next we consider the same models with an AR(2) error process. If f(t) = tα then SLSE is
approximated by the continuous SLSE of the form (2.5), where

p(t) = − 1

s3

(
τ2α(α− 1)t−2 − τ0 − α(α− 1)(α− 2)(α− 3)t−4

)
,

PA = 1
s3

(
α(α−1)(α−2)A−3−γ1αA

−1+γ0
)
, PB = 1

s3

(
−α(α−1)(α−2)B−3+γ1αB

−1+γ0
)
, QA =

1
s3

(
α(α− 1)A−2−β1αA

−1+β0

)
, QB = 1

s3

(
α(α− 1)B−2+β1αB

−1+β0

)
. Note that signs of p(t),

QA, QB, PA and PB depend on the form of the autocovariance function and its parameters.
For the form (4.6), we provide values of p(t), QA, QB, PA and PB for several functions f(t) in
Table 2. The other cases can be obtained similarly and are not displayed for the sake of brevity.
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Table 1: The function p(t) and the weights PA and PB of the continuous SLSE for several functions f(t) and
an AR(1) error process.

f(t) PA PB p(t)

1 1
2

1
2

λ
2

t 1
2
− 1

2Aλ
1
2
+ 1

2Bλ
λ
2

t2 1
2
− 1

Aλ
1
2
+ 1

Bλ
λ
2
− 1

λt2

t3 1
2
− 3

2Aλ
1
2
+ 3

2Bλ
λ
2
− 3

λt2

t4 1
2
− 2

Aλ
1
2
+ 2

Bλ
λ
2
− 6

λt2

et 1
2
− 1

2λ
1
2
+ 1

2λ
λ
2
− 1

2λ

For example, if f(t) = et we can see that both PA andQA are positive for all λ 6= 1, PB is positive
for λ > 0.5 and negative for λ ∈ (0, 0.5), p(t) is positive for λ >

√
2 and negative for λ ∈ (0,

√
2).

For large λ, the contribution of observations at the interval (A,B) to the continuous SLSE is
notable. For the location model f(t) = 1, we can see that PA = PB = 1/2, QA = QB = 1/(4λ)
and p(t) = λ/4. This implies that for small λ the contribution of observations at boundary
points to the continuous SLSE is very large and the contribution of observations at the interval
(A,B) to the continuous SLSE is small. For large λ, the contribution of observations at the
interval (A,B) to the continuous SLSE is essential.

Table 2: The function p(t) and the weights PA, PB, QA and QB in the continuous SLSE for several functions
f(t) and an AR(2) error process with the autocovariance function (4.6).

f(t) PA PB p(t) QA QB

1 1
2

1
2

λ
4

1
4λ

1
4λ

t 1
2
− 3

4Aλ
1
2
+ 3

4Bλ
λ
4

1
4λ

− 1
2Aλ2

1
4λ

+ 1
2Bλ2

t2 1
2
− 3

2Aλ
1
2
+ 3

2Bλ
λ
4
− 1

λt2
1
4λ

− 1
Aλ2 +

1
2A2λ3

1
4λ

+ 1
Bλ2 +

1
2B2λ3

t3 1
2
− 9

4Aλ
+ 3

2A3λ3

1
2
+ 9

4Bλ
− 3

2B3λ3

λ
4
− 3

λt2
1
4λ

− 3
2Aλ2 +

3
2A2λ3

1
4λ

+ 3
2Bλ2 +

3
2B2λ3

t4 1
2
− 3

Aλ
+ 6

A3λ3

1
2
+ 3

Bλ
− 6

B3λ3

λ
4
− 6

λt2
+ 6

λ3t4
1
4λ

− 2
Aλ2 +

3
A2λ3

1
4λ

+ 2
Bλ2 +

3
B2λ3

et 1
2
− 3

4λ
+ 1

4λ3

1
2
+ 3

4λ
− 1

4λ3

λ
4
− 1

2λ
+ 1

4λ3

1
4λ

− 1
2λ2 +

1
4λ3

1
4λ

+ 1
2λ2 +

1
4λ3

5.2. Practical implementation

Suppose that the N equidistant points defined in (3.1) are the potential observation points.
Let K + 2 be the number of observations actually taken in the experiment and that we want
to construct a discrete design, which can be implemented in practice. If K is small and N is
large, then efficient designs and corresponding estimators for the model (2.2) can be derived
from the continuous approximations, which have been developed in the previous sections.
In Dette et al. (2016) a procedure with a good finite sample performance is proposed. It consists
of a slight modification of the SLSE given in (2.1) and a discretization of the density p(t) defined
in (3.3) for AR(1) errors and (4.8) for AR(2) errors. To be precise consider a continuous SLSE
with weights at the points A and B (the end-points of the interval [A,B]), which correspond
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to the masses PA and PB and, for the AR(2) errors, QA and QB as well. We thus only need
to approximate the continuous part of the design, which has a density on (A,B), by a K-point
design with equal masses.
We assume that the density p(·) is not identically zero on the interval (A,B). Define ϕ(t) =

κ|p(t)| for t ∈ (A,B) and choose the constant κ such that
∫ B

A
ϕ(t)dt = 1, that is, κ =

1/
∫ B

A
|p(t)|dt. Denote by F (t) =

∫ t

A
ϕ(s)ds the corresponding cumulative distribution func-

tion. As K-point design we use a K-point approximation to the measure with density ϕ(t),
that is ξ̂K = {t1,K , . . . , tK,K ; 1/K, . . . , 1/K}, where ti,K = R(F−1(i/(K + 1))) i = 1, 2, . . . , K.
Here R(t) is the operator of rounding a number t towards the set of points defined by (3.1);
that is, points R(F (i/(K + 1)) = ti,K := A+ (νi − 1)∆. For given i, νi is defined from

|F (i/(K + 1))− A+ (νi − 1)∆| = min{|F (i/(K + 1))− A+ (j − 1)∆| ; j = 1, . . . , N}.

If p(t) = 0 on a sub-interval of [A,B] and F−1(i/(K+1)) is not uniquely defined then we choose
the smallest element from the set R(F−1(i/(K +1)) as ti,K . Also we define si,K = sign(p(ti,K))
and obtain from the representation of the continuous SLSE for AR(1) errors in Proposition 3.1 a
reasonable estimator with corresponding design. To be precise, y1, . . . , yK+2 should be observed
at experimental conditions A, t1,K , t2,K , . . . , tK,K , B, respectively, and the parameter θ has to
be estimated by the following modified SLSE

θ̂K+2=DK+2

(
PAf(A)yA+PBf(B)yB+

B − A

κK

K∑

i=1

si,Kf(ti,K)yi

)
,

where

DK+2=
(
PAf

2(A)+PBf
2(B)+

B − A

κK

K∑

i=1

si,Kf
2(ti,K)

)−1

.

It follows from the discussion of the previous paragraph that Var(θ̂K+2) ≈ D∗, where D∗ is
defined in (3.6). Similarly, the modified SLSE for AR(2) errors is defined by

θ̂K+2=DK+2

(
QBf(B)y′(B)−QAf(A)y′(A)

+PAf(A)yA+PBf(B)yB+
B −A

κK

K∑

i=1

si,Kf(ti,K)y(ti,K)
)

(4.9)

where

DK+2=
(
QBf(B)f ′(B)−QAf(A)f

′(A)+PAf
2(A)+PBf

2(B)+
B−A

κK

K∑

i=1

si,Kf
2(ti,K)

)−1

.

Note that the expression in (4.9) contains the derivatives y′(A) and y′(B) of the observed
process {y(t)}t∈[A,B]. If these derivatives are not available then we recommend to make two
additional observations at the points A+∆ and B −∆ and to replace the derivatives by their
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approximations (yA+∆ − yA)/∆ and (yB − yB−∆)/∆. Thus, we replace the estimator (4.9) by
the weighted least squares estimator (WLSE)

θ̃K+4 = (XTWX)−1XTWY, (4.10)

where Y = (yA, yA+∆, yt1,K , . . . , ytK,K
, yB−∆, yB)

T and the matrix W is defined by

W = diag
{PA

2
+

QA

∆
,
PA

2
− QA

∆
, s1,K

B−A

κK
, . . . , sK,K

B−A

κK
,
PB

2
− QB

∆
,
PB

2
+

QB

∆

}
. (4.11)

Note that the variance of θ̃K+4 is given by Var(θ̃K+4) = (XTWX)−1(XTWΣWX)(XTWX)−1.

5.3. Practical performance

Consider the regression model (2.2) with f(t) = 1, [A,B] = [0, 1] and AR(2) errors. Suppose
that N = 101 so that ti = i/100, i = 0, 1, . . . , N , are potential observation points. We also
assume that the autocorrelation function rk is of the form (4.6) with λ = 1. We investigate
the design ξK+2 with (K + 2) points 0, t1,K , t2,K , . . . , tK,K , 1 and the design ξK+4 with (K + 4)
points 0, 0.01, t1,K , t2,K , . . . , tK,K , 0.99, 1. The points t1,K , t2,K , . . . , tK,K are shown in the second
column of Table 3. In this table we also display the variances of the WLSE θ̃K+4, defined by
(4.11), the LSE θ̂LSE,K+2 based on the design ξK+2 and the BLUE θ̂BLUE,K+2 and θ̂BLUE,K+4 for

the designs ξK+2 and ξK+4, respectively. Let θ̂BLUE denote the BLUE based on 101 observations
at the points { i

100
| i = 0, . . . , 100}, then we observe 0.80158449 = Var(θ̂BLUE) ≈ D∗ = 0.8,

which is in agreement with Theorem 4.1. We also observe Var(θ̂BLUE,K+4) ∼= Var(θ̂BLUE) and

Var(θ̂BLUE,K+2) 6∼= Var(θ̂BLUE) showing the importance of taking one additional observation at
each boundary point A and B. Note that the proposed estimator θ̃K+4 defined in (4.11) is
nearly as accurate as the BLUE θ̂BLUE,K+4 at the same points and that the LSE θ̂LSE,K+2 is about
10− 15% worse than the BLUE.

Table 3: The variances of the LSE, the WLSE defined by (4.11) and the BLUE for designs with K + 2 and
K + 4 points. f(t) = 1, [A,B] = [0, 1], N = 101, the autocovariance structure is given by (4.6) with λ = 1,

which yields D∗ = 0.80000 and Var(θ̂BLUE) = 0.80158449.

K t1,K , . . . , tK,K Var(θ̂LSE,K+2) Var(θ̃K+4) Var(θ̂BLUE,K+2) Var(θ̂BLUE,K+4)
2 0.33, 0.67 0.914 0.80170 0.82663 0.80158714
3 0.25, 0.5, 0.75 0.921 0.80165 0.82022 0.80158533
4 0.2, 0.4, 0.6, 0.8 0.925 0.80162 0.81681 0.80158484
5 0.17, 0.33, 0.5, 0.67, 0.83 0.928 0.80161 0.81443 0.80158466

As a second example, consider the regression model (2.2) with f(t) = t2, [A,B] = [0.1, 1.1] and
AR(2) errors. Suppose that N = 101 so that ti = 0.1 + i/100, i = 0, 1, . . . , N , are potential
observation points. We also assume that the autocorrelation function rj is of the form (4.6) with
λ = 2. We investigate the design ξK+2 with (K + 2) points 0.1, t1,K , t2,K , . . . , tK,K , 1.1 and the
design ξK+4 with (K + 4) points 0.1, 0.11, t1,K , t2,K , . . . , tK,K , 1.09, 1.1. The non-trivial points
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are shown in the second column of Table 4. In the other columns we display the variances of the
different estimators introduced in the previous paragraph. We observe, similarly to the previous
example, 0.37055791 = Var(θ̂BLUE) ≈ D∗ = 0.36543 which is again in line with Theorem 4.1.
Note also Var(θ̂BLUE,K+4) ∼= Var(θ̂BLUE) and the estimator θ̂BLUE,K+2 without the two additional
observations at the boundary is not efficient. Again the proposed estimator θ̃K+4 is nearly as
accurate as the BLUE at the same points but the LSE θ̂LSE,K+2 is dramatically worse than the
BLUE.

Table 4: The variances of the LSE, the WLSE and the BLUE for designs with K + 2 and K + 4 points.
f(t) = t2, [A,B] = [0.1, 1.1], N = 101 and the autocovariance is given by (4.6) with λ = 2, which yields

D∗ = 60000/164189 ∼= 0.36543 and Var(θ̂BLUE) = 0.37055791.

K t1,K , . . . , tK,K Var(θ̂LSE,K+2) Var(θ̃K+4) Var(θ̂BLUE,K+2) Var(θ̂BLUE,K+4)
2 0.14, 0.22 0.723 0.40218 0.53175 0.37079053
3 0.12, 0.17, 0.27 0.751 0.40204 0.52509 0.37072082
4 0.12, 0.15, 0.20, 0.30 0.783 0.40176 0.52089 0.37068565
5 0.12, 0.14, 0.17, 0.22, 0.33 0.818 0.40139 0.51689 0.37065785
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Näther, W., 1985a. Effective Observation of Random Fields. Teubner Verlagsgesellschaft,
Leipzig.
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