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SUMMARY 

Natural killer (NK) cells possess potent cytotoxic mechanisms that need to be tightly controlled. 

We here explored the regulation and function of GPR56/ADGRG1, an adhesion G protein-

coupled receptor implicated in developmental processes and expressed distinctively in mature 

NK cells. Expression of GPR56 was triggered by Hobit, a homolog of Blimp-1, and declined upon 

cell activation. Through studying NK cells from polymicrogyria patients with disease-causing 

mutations in the ADGRG1 gene, encoding GPR56, and NK-92 cells ectopically expressing the 

receptor, we found that GPR56 negatively regulates immediate effector functions, including 

production of inflammatory cytokines and cytolytic proteins, degranulation, and target cell 

killing. GPR56 pursues this activity by associating with the tetraspanin CD81. We conclude that 

GPR56 inhibits natural cytotoxicity of human NK cells. 
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INTRODUCTION 

Natural killer (NK) cells are innate lymphoid cells that develop, mainly in the bone marrow, 

through a series of distinct phenotypic stages before they enter the circulation to specifically 

eradicate virus-infected and transformed cells (Freud and Caligiuri, 2006). Upon target cell 

encounter, differentiated CD56dim NK cells produce large amounts of cytokines, chemokines, and 

cytolytic proteins, similar to effector-type CD8+ T cells (Fauriat et al., 2010; Nagler et al., 1989; 

Vivier et al., 2008). The activity of cytotoxic CD56dim NK and CD8+ T cells is regulated by a 

comprehensive repertoire of activating and inhibitory receptors, including immunoglobulin-like 

receptors and C-type lectins (Lanier, 2008; Pegram et al., 2011). 

G protein-coupled receptors (GPCRs) guide numerous cellular processes, including development 

and differentiation (Pierce et al., 2002), yet, in the immune system, they have been linked 

primarily with chemotaxis (Walzer and Vivier, 2011). Others and we recently showed that human 

cytotoxic lymphocytes, including CD56dim NK cells and CD27–CD45RA+ T cells, express the 

adhesion family GPCR (aGPCR) GPR56/ADGRG1 (Chiesa et al., 2010; Peng et al., 2011). 

Expression of GPR56 correlated closely with production of the cytolytic proteins perforin, 

granzyme A, and granzyme B and was not found in non-cytotoxic lymphocytes or myeloid cells. 

aGPCRs possess an N-terminal fragment (NTF) and a C-terminal fragment (CTF) that arise from 

autocatalytic cleavage at a GPCR-proteolytic site (GPS), embedded in a juxtamembranous GPCR 

autoproteolysis-inducing (GAIN) domain (Araç et al., 2012; Lin et al., 2004). At the cell surface, 

the NTF remains non-covalently attached to the CTF, giving rise to a characteristic bipartite 

structure with the two fragments being engaged in distinct activities (Langenhan et al., 2013). 

The NTF of GPR56 binds transglutaminase and collagen III, while the CTF recruits G proteins 

leading to activation of RhoA (Ras homolog gene family member A) and mTOR (mechanistic target 

of rapamycin) pathways (Ackerman et al., 2015; Giera et al., 2015; Iguchi et al., 2008; Little et al., 

2004; Luo et al., 2011; Paavola et al., 2011; Stoveken et al., 2015; White et al., 2014; Xu et al., 

2006).

We here tested the relation of GPR56 with the differentiation, activation, and function of human 

NK cells. We provide evidence that GPR56 expression is triggered by the transcriptional repressor 

Hobit (homolog of Blimp-1 in T cells), is downregulated upon cellular activation, and inhibits 

immediate effector functions, including inflammatory cytokine and cytolytic protein production, 

degranulation, and target cell killing. We conclude that GPR56 is a differentiation marker and 

inhibitory receptor on human NK cells.
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RESULTS 

Hobit, the human homolog of Blimp-1 in T cells, drives expression of GPR56 in non-

dividing, fully differentiated human NK cells 

GPR56 is expressed by all human cytotoxic lymphocytes, including CD56dim NK cells (Chiesa et 

al., 2010; Peng et al., 2011). Upon stimulation with common gamma chain cytokines, such as 

interleukin (IL)-2, proliferating NK cells lose expression of GPR56 (Chiesa et al., 2010) (Figure 

1A). IL-2-dependent cytotoxic NK-92 cells weakly express GPR56. IL-2 withdrawal stopped NK-

92 cell division, leading to cell cycle arrest in the G1 phase and surface expression of GPR56 

(Figure 1B). Of note, IL-2 deprivation caused upregulation of surface markers commonly 

associated with terminal cell differentiation, such as KLRG1 (killer cell lectin-like receptor 

subfamily G member 1) and B3GAT1 (galactosylgalactosylxylosylprotein 3-beta-

glucuronosyltransferase 1), the enzyme that generates the CD57 glycosylation epitope, and 

downregulation of the cell exhaustion marker PD1 (programmed cell death 1) (Figure 1C). 

These changes correlated with altered expression of transcription factors involved in effector 

lymphocyte development, such as Blimp-1 (B lymphocyte-induced maturation protein-1), Bcl-6 

(B-cell lymphoma 6), T-bet (T-box expressed in T cells), Eomes (eomesodermin), and the 

recently identified Hobit (homolog of Blimp-1 in T cells) (van Gisbergen et al., 2012; Vieira Braga 

et al., 2015) (Figure 1C). In line with their in part contrary activities (Crotty et al., 2010; Daussy 

et al., 2014; Knox et al., 2014), downregulation of Blimp-1 and T-bet was accompanied by 

upregulation of Bcl-6 and Eomes, respectively. The most prominent change, with a ~25-fold 

induction, occurred with Hobit.

We next correlated GPR56 protein expression with the presence of various surface molecules, 

cytolytic proteins, and transcription factors in primary NK cells. In line with its absence on 

immature CD56high NK cells, we detected almost no GPR56 on NK cells from tonsil (data not 

shown). In contrast, mature circulating NK cells commonly expressed GPR56. GPR56 was 

acquired prior to the late differentiation/senescence markers KLRG1 and CD57 (Björkström et 

al., 2010; Lopez-Vergès et al., 2010), as most clearly exemplified by cells from cord blood (Figure 

1D). In line with the uniform presence of GPR56 on CD56dim NK cells, no association was found 

with the expression of activating or inhibitory natural cytotoxicity receptors (NKp30, NKp44, 

NKp46), NK-cell receptors (NKG2a, NKG2c, NKG2d), and killer immunoglobulin-like receptors 

(KIR2DL1/S1, KIR2DL2/L3, KIR3DL1) (Figure S1). Supporting previous findings (Peng et al., 

2011), the presence of GPR56 correlated with production of the cytolytic mediators perforin 

and granzyme B (Figure S1). Cells expressing GPR56 were positive for the transcription factors 

T-bet, Eomes, and Hobit; in particular, expression of GPR56 and Hobit was strongly associated 
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(Figure 1D). Thus, non-dividing, fully differentiated NK cells, found in the circulation and 

commonly identified as CD56dim cells, express GPR56 in a distinctive manner. 

Recent studies identified a subset of long-lived memory-like NK cells, associated with prior 

human cytomegalovirus infection, that can mount long-term effective recall responses (Lee et 

al., 2015; Schlums et al., 2015; Zhang et al., 2013). We found that these memory-like NK cells, 

which can be distinguished by low expression of the transcription factor PLZF (promyelocytic leukemia zinc finger) and lack of FcRγ (high-affinity IgE receptor, γ subunit), express GPR56 
(Figure 1E). 

The T-box transcription factor Eomes is crucially involved in effector lymphocyte differentiation 

and, like GPR56, is expressed in differentiating neurons in the developing human brain (Elsen et 

al., 2013). Intriguingly, lack of Eomes causes a microcephaly syndrome (Baala et al., 2007) 

similar to the malformation seen in patients with null GPR56 expression (Piao et al., 2004). To 

test a causal relationship between Eomes and the expression of GPR56, we applied shRNA 

knockdown of EOMES in NK-92 cells. Reduced Eomes expression did not prevent GPR56 

induction upon IL-2 withdrawal (Figure 1F). In contrast, knockdown of ZNF683, encoding Hobit, 

largely prevented GPR56 induction in NK-92 cells cultured without IL-2 (Figure 1F-H). 

Furthermore, ectopic expression of Hobit in Jurkat cells, which express neither GPR56 nor 

Hobit, induced expression of GPR56 (Figure 1I-K), indicating that Hobit drives the expression of 

GPR56 in human lymphocytes. 

GPR56 deficiency does not affect NK-cell development but correlates with elevated NK-

cell functions 

Loss-of-function mutations in ADGRG1, encoding GPR56, cause a severe cortical malformation, 

known as bilateral frontoparietal polymicrogyria (BFPP) (Piao et al., 2004; 2005). To test 

whether defective expression of GPR56 would affect NK-cell differentiation and/or function, we 

studied two unrelated pairs of BFPP siblings bearing the mutations 1693C>T (R565W) and 

1036T>A (C346S), respectively. Previous in vitro-analysis revealed that both mutations strongly 

reduce surface expression of GPR56 (Chiang et al., 2011; Jin et al., 2007). We found that the 

R565W mutation abolished GPR56 expression on NK (and T) cells completely, whereas the 

C346S mutation reduced surface levels of GPR56 by about 20-fold (Figure 2A and Figure S2). All 

patients had normal numbers of circulating NK cells (Figure 2A and Figure S2C). Moreover, their 

NK cells had a fairly normal phenotype, based on the expression of surface molecules, including 

receptors with activating or inhibiting effector functions, cytolytic proteins, and transcription 

factors (Figure 2A and Figure S2). However, CD56dim NK cells in the R565W patients, which 
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completely lacked GPR56, expressed lower levels of CD94, indicating maturation. Moreover, the 

cells expressed less/no inhibitory KIR2DL1/S1, probably due to allelic variation, while steady-

state expression of cytolytic proteins was unchanged (granzyme B) or marginally reduced 

(perforin). 

The phenotypic changes found in CD56dim NK cells in the 1693C>T (R565W) siblings raised the 

possibility that the cytolytic capacity of NK cells in these patients was altered. Indeed, their NK 

cells killed K562 cells more efficiently than control cells, as indicated by enhanced 

degranulation (CD107a expression) and induction of apoptosis in the target cells. In addition, 

target cell contacts resulted in enhanced production of tumor necrosis factor (TNF) and 

interferon (IFN)γ by GPR56-deficient NK cells (Figure 2B,C). Thus, lack of GPR56 did not hamper 

normal NK-cell development, but appeared to enhance their functional capacity. 

NK cells downregulate GPR56 upon cytokine stimulation 

Upon encounter of virus-infected or transformed cells, NK cells downregulate inhibitory 

receptors to acquire maximal killing capacity (Pegram et al., 2011). PMA (phorbol-12-myristate-

13-acetate) stimulation downregulates ectopic GPR56 in monocytic U937 cells (Little et al., 

2004). In primary NK cells, PMA treatment resulted in loss of GPR56 at concentrations as low as 

1 ng/ml, which was enhanced by ionomycin (data not shown, Figure 3A, and Figure S3A). With a 

loss of >60% of cell surface GPR56 within 10 min and >80% after 2 h, kinetics resembled the 

downregulation of CD16 (Figure 3B). Studies with pharmacological inhibitors confirmed the 

involvement of protein kinase (PK)C, but not MAP kinases, in PMA-induced GPR56 

downregulation (Figure S3B). Activation of PKA with forskolin did not affect GPR56 surface 

levels (Figure S3A). 

aGPCRs are downregulated by internalization or shedding (Karpus et al., 2013; Langenhan et al., 

2013). The dynamin inhibitor dynasore that prevents internalization and GM6001, a broad-

spectrum matrix metalloproteinase (MMP) inhibitor, synergistically blocked the 

downregulation of GPR56 upon PMA stimulation (Figure 3C). In contrast, downregulation of 

CD16 upon PMA stimulation was primarily blocked by GM6001 (Figure S3C). Cleavage of CD16 

involves a disintegrin and metalloproteinase (ADAM)17, expressed in NK cells (Romee et al., 

2013). Indeed, two ADAM17 inhibitors affected PMA-induced downregulation of CD16, but not 

GPR56 (Figure S3C). NK cells pre-incubated with fluorescently labeled anti-GPR56 or anti-CD16 

monoclonal antibodies (mAbs) on ice and subsequently treated with PMA for 2 h had lost ~10% 

of the GPR56-bound mAb, but ~70% of the CD16-bound mAb, indicating that GPR56 was 

partially endocytosed from the cell surface (Figure 3D). Moreover, an increase in soluble GPR56 
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in the medium was detected after NK-cell stimulation with PMA, which was abrogated by 

inhibitors of PKC and MMPs (Figure 3E). Thus, PKC activation induces downregulation of GPR56 

in primary NK cells via internalization and shedding. 

Physiological activation of primary NK cells occurs through pro-inflammatory cytokines, 

crosslinking of activating receptors, or exposure to target cells. To test the effect of cytokines, 

we incubated peripheral blood mononuclear cells (PBMCs) for 12–24 h with IL-2, IL-15, or IL-

18, alone or in combination. A combination of IL-15 and IL-18 reduced GPR56 surface levels by 

~40% after 12 h and by ~70% after 24 h, which was more efficient as compared to the 

downregulation of CD16 by these cytokines (Figure 3F). Inhibition of PKC and MMPs blocked 

the downregulation of GPR56 and CD16, while blockade of endocytosis with dynasore had no 

effect (Figure 3G). In line with our former data, inhibition of ADAM17 blocked the 

downregulation of CD16, but not GPR56, leaving the identity of the sheddase that releases the 

NTF of GPR56 open (data not shown). Crosslinking CD16 or exposure to K562 had a small effect 

on GPR56 surface expression (data not shown). In sum, physiological NK-cell activation through 

cytokines causes downregulation of GPR56 by shedding of the NTF of the receptor. 

Notably, activation of primary NK cells downregulates the expression of Hobit. In PBMCs 

stimulated for 2 h with PMA or for 12–24 h with cytokines, we found a clear decrease in Hobit 

and GPR56 transcript levels (Figure 3H), indicating that NK-cell activation causes 

downregulation of GPR56, immediately, by shedding of the NTF (see above), and permanently, 

by terminating gene expression. 

GPR56 controls NK-cell effector functions 

To further examine the role of GPR56 in NK-cell function, we applied ectopic GPR56 expression 

in NK-92 cells (Peng et al., 2011). Proper expression and autoproteolytic modification of the 

receptor were confirmed by flow cytometry and Western blot analysis, respectively (data not 

shown). GPR56 overexpression did not affect cell growth (data not shown). Quantification of 

cytolytic proteins revealed a much-reduced expression of granzyme B, both at the transcript 

and protein level, in NK-92–GPR56 cells (Figure 4A,B). In contrast, mRNA and protein levels of 

perforin were comparable between NK-92–Neo and NK-92–GPR56 cells. Moreover, a lower 

level of TNF but not IFNγ transcript was detected in NK-92–GPR56 cells (Figure 4C). When 

activated by PMA, NK-92–GPR56 cells produced less TNF and IFNγ than NK-92–Neo cells 

(Figure 4D,E). These results suggested that forced GPR56 expression in NK-92 cells negatively 

regulates the expression of effector molecules. 

Hence, we examined various NK-cell effector activities, including target cell conjugation and 
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killing, degranulation, and cytokine production (both intracellular and secreted). GPR56 

significantly attenuated cytotoxicity against K562 cells, as indicated by reduced target cell 

apoptosis, NK-cell degranulation, and production of TNF and IFNγ, when compared with NK-

92–Neo cells (Figure 4F-H). The compromising effects of GPR56 on NK-cell cytotoxicity were 

also observed when NK-92–GPR56 cells were incubated with target cells more resistant to cell 

conjugation and killing, such as THP-1 and HeLa cells (Figure S4). Taken together, we concluded 

that GPR56 expression in NK-92 cells attenuates cytotoxic capacity, in accordance with the 

findings derived from the primary NK cells of BFPP patients. 

GPR56 complexes with CD81 to negatively regulate NK-cell effector functions 

aGPCRs possess a characteristic bipartite structure (Hamann et al., 2015). Notably, target cell 

killing was also reduced in NK-92 cells expressing cleavage-deficient GPR56, indicating that 

autocatalytic processing at the GPS is not a prerequisite for the inhibitory activity of GPR56 in 

NK cells (Figure S5). Moreover, we could not confirm interaction with collagen III, the binding 

partner of GPR56 on neuronal cells (Luo et al., 2011) (Figure S6). These findings are in line with 

reports showing that the CTF of GPR56 can signal independently of the NTF (Kishore et al., 

2016; Paavola et al., 2011; Yang et al., 2011). 

The CTF of GPR56 forms complexes with the tetraspanin proteins CD9 and CD81 at the cell 

surface (Little et al., 2004). CD81 has been previously reported to inhibit human NK-cell 

functions, when crosslinked by the major hepatitis C virus (HCV) envelope protein E2 or anti-

CD81 mAbs (Crotta et al., 2002; Tseng and Klimpel, 2002). Flow-cytometric analysis showed 

significant amounts of CD81, but little CD9, in NK-92 cells. Interestingly, GPR56 overexpression 

strongly lowered CD81 protein levels, even though RNA transcript levels were reduced only 

slightly (Figure S7A), which might be explained by a relatively high turnover of GPR56 (and 

complexed CD81) in NK-92–GPR56 cells (data not shown). Western blotting indicated that NK-

cell activation by PMA reduced GPR56 protein levels without affecting CD81, but interaction 

with K562 target cells diminished the levels of both GPR56 and CD81 (Figure S7B). On the other 

hand, no significant changes in CD81 protein levels were observed when NK-92–Neo cells were 

activated by PMA or by interaction with K562 cells (Figure S7B). This result suggested that NK-

92–K562 cell interaction might cause dynamic changes of the GPR56–CD81 complex on the cell 

surface. 

Indeed, confocal immunofluorescence microscopy revealed marked redistribution of GPR56 and 

CD81 in NK-92–GPR56 cells before and after target cell conjugation (Figure 5A). At steady state, 

GPR56 and CD81 were largely co-localized and distributed homogenously on the cell surface. 
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After conjugation with K562 cells, the levels of both GPR56 and CD81 were reduced, and the two 

receptors were clustered mostly to areas resembling immune synapses, where granzyme B also 

accumulated (Figure 5A). Such reduction and clustering of CD81 protein was not observed in 

NK-92–Neo cells, suggesting a critical role for GPR56 in this process. 

We confirmed the formation and reduction of GPR56–CD81 complexes in NK-92–K562 co-

cultures by (immunoprecipitation) IP and IP–re-IP experiments (Figure 5B). CD81 was readily 

detected in NK-92–GPR56 cell lysate immunoprecipitated with the anti-GPR56 CG2 mAb. 

Critically, the amount of precipitated CD81 was comparable in the lysate of resting and PMA-

activated NK-92–GPR56 cells, but much reduced in the same cells co-cultured with K562 cells. 

This result was further verified by IP with the anti-CD81 mAb first, followed by re-IP with anti-

GPR56 CG2 mAb (Figure 5B). These results indicated that GPR56 indeed associates with CD81 

and that the GPR56–CD81 complexes are diminished upon NK-cell interaction with target cells. 

To delineate how the GPR56–CD81 complex modulated NK-cell function, anti-GPR56 mAbs 

were employed. Crosslinking of GPR56 by mAb ligation with CG2 and CG5, but not CG3, caused a 

rapid dissociation of the GPR56–CD81 complex as shown by the IP experiments (Figure 5C and 

Figure S7C). Importantly, the cytolytic function and cytokine (TNF and IFNγ) secretion of NK-

92–GPR56 and human primary NK cells were greatly enhanced in the presence of CG2 or CG5 

mAbs, whereas the isotype control Ab and CG3 mAb failed to show such an effect (Figure 5D-G). 

Similarly, shRNA knockdown of CD81 restored K562 target cell killing by NK-92–GPR56 cells 

(Figure S7D-F). Finally, we tested whether Gαq/11, which has been implicated in GPR56–CD81 

complex signaling (Little et al., 2004), is required. Of note, a highly selective Gαq/11/14 inhibitor 

(FR900359) (Schrage et al., 2015) did not restore cytolytic activity in NK-92–GPR56 cells (Figure 

S7G). We concluded that association with CD81, but not Gαq/11 signaling, is crucial for the ability 

of GPR56 to inhibit NK-cell functions. 
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DISCUSSION 

We here describe GPR56 as an inhibitory receptor expressed by human CD56dim NK cells. 

CD56dim NK and CD27–CD45RA+ T cells are highly reactive cytotoxic effector lymphocytes that 

protect the body against harmful viruses and neoplasms. The effective cytotoxicity, displayed by 

these cells, requires a tight interplay between activating and inhibiting control mechanisms 

(Caligiuri, 2008). We previously reported that cytotoxic human lymphocytes, in contrast to non-

cytotoxic lymphoid or myeloid blood cells, express GPR56 (Peng et al., 2011). This study 

extends these findings by showing that GPR56 is induced in CD56dim NK cells prior to the 

upregulation of KLRG1 and CD57, which both appear at later stages of differentiation, 

associated with terminal differentiation (Björkström et al., 2010; Lopez-Vergès et al., 2010; 

Voehringer et al., 2002). Of note, long-lived memory-like NK cells, defined by absent/low 

expression of FcRγ and PLZF (Lee et al., 2015; Schlums et al., 2015; Zhang et al., 2013), also 

expressed GPR56. GPR56 seems to be the best currently available surrogate surface marker to 

indicate cytolytic capacity across all lymphocyte subsets.

The restricted expression of GPR56 by only CD56dim NK (and CD27–CD45RA+ T) cells indicates 

tight control of its induction and regulation at the transcript and protein level. We obtained 

evidence that expression of GPR56 is induced by Hobit, a close relative of Blimp-1, recently 

discovered by us (van Gisbergen et al., 2012). In humans, Hobit is expressed in quiescent 

effector NK and T cells, very closely matching the expression of GPR56 (Vieira Braga et al., 

2015). Implying a causal relationship, Hobit knockdown in NK-92 cells prevented induction of 

GPR56 upon IL-2 withdrawal, and ectopic Hobit enabled GPR56 expression in Jurkat T cells. In 

contrast, manipulating the expression of Eomes did not affect GPR56 expression, despite its 

prominent role in the differentiation and maturation of effector NK and T cells and, like GPR56, 

its expression in developing neurons and relationship with polymicrogyria (Baala et al., 2007). 

Thus, on current evidence, GPR56 is a transcriptional target of Hobit in human NK and T cells. 

Of note, the GPR56 locus has 17 transcriptional start sites in humans, which are targets of 

different transcription factors, such as peroxisome proliferator-activated receptor gamma co-

activator 1-alpha 4 (PGC-1α4) in muscle cells (White et al., 2014) and so-called heptad complex 

factors in hematopoietic stem cells (Solaimani Kartalaei et al., 2015), giving rise to a widespread 

cellular distribution (Hamann et al., 2015). Hobit comprises DNA-binding zinc finger domains, 

which closely resemble their homologous domains in Blimp-1 (van Gisbergen et al., 2012; Vieira 

Braga et al., 2015). In agreement with the presumed role of Hobit as transcription factor, 

multiple copies of the consensus binding sequence for Blimp-1/Hobit G(T/C)GAAAG(T/C)(G/T) 

(Doody et al., 2007) are identified in the 5’-region of GPR56 (data not shown). 

In mice, peripheral NK and T cells barely express GPR56 (www.immgen.org), which is in line 
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with the absence of Hobit in these cells (van Gisbergen et al., 2012). Interestingly, resting 

murine NK cells are minimally cytotoxic; they contain little granzyme B or perforin protein, 

whereas the respective mRNAs are abundant (Fehniger et al., 2007). Cytokine- and virus-

induced activation of murine NK cells results in potent cytotoxicity, associated with a strong 

increase in granzyme B and perforin protein. It is tempting to speculate that murine NK and T 

cells do not express GPR56 due to the different ways they acquire cytotoxic capacity. 

By studying two pairs of BFPP siblings with the recurrent R565W and C346S mutations in the 

second extracellular loop and the GAIN domain, respectively (Piao et al., 2004; 2005), which 

both obstruct cell surface expression of the receptor (Chiang et al., 2011; Jin et al., 2007), we 

found that GPR56 is not required for the development of functionally competent NK cells. 

Entirely GPR56-deficient NK cells with the R565W mutation killed K562 cells even more 

efficiently, indicated by enhanced degranulation, enhanced cytokine secretion, and enhanced 

induction of apoptosis in target cells. This observation provided a clue that GPR56 might 

regulate NK-cell cytotoxicity, a finding that we substantiated in NK-92 cells stably 

overexpressing GPR56. NK-92–GPR56 cells contained less granzyme B and TNF transcripts at resting state and produced less TNF and IFNγ protein upon PMA stimulation. Moreover, their 
ability to kill K562 was impaired, as indicated by reduced degranulation, reduced cytokine 

secretion, and reduced induction of apoptosis in target cells. Similar results were found in more 

killing-resistant THP1 and HeLa cells, altogether demonstrating that GPR56 inhibits NK-cell 

cytotoxicity. 

Of note, no immune-related clinical phenotype has been reported for BFPP patients. This, 

however, is not surprising since effector functions of NK cells are balanced by activating and 

inhibitory signals that are simultaneously delivered to the cells following the engagement of 

several distinct families of transmembrane receptors (Caligiuri, 2008). GPR56 does not belong 

to a receptor family commonly associated with NK-cell regulation, such as immunoglobulin-like 

receptors and C-type lectins (Lanier, 2008; Pegram et al., 2011). GPR56 is a member of the 

aGPCR family. While the functional mechanism of aGPCRs is still poorly understood, evidence 

accumulates that they are true GPCRs that regulate wide cellular programs through the action of 

G proteins (Hamann et al., 2015; Monk et al., 2015). Indeed, the broad activity of GPR56 is 

indicated by its ability to control cytolytic proteins and pro-inflammatory cytokines, which 

present the two major arms of NK-cell activity. Moreover, we previously showed that GPR56 

inhibits spontaneous and SDF-1-stimulated NK-cell migration (Peng et al., 2011). Studies in 

other cell types have implicated roles of GPR56 in generation and maintenance of the 

hematopoietic stem cell pool, cortical development, male fertility, muscle hypertrophy, and 

melanoma tumor growth and progression (Ackerman et al., 2015; Bae et al., 2014; Chen et al., 
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2010; Giera et al., 2015; Piao et al., 2004; Saito et al., 2013; Solaimani Kartalaei et al., 2015; 

White et al., 2014; Xu et al., 2006). 

Our data indicate that GPR56 executes its inhibitory activity in concert with the tetraspanin 

protein CD81. The GPR56–CD81 complex represents an early example of aGPCR in the 

tetraspanin web, an important membrane protein scaffold for regulating signal transmission 

(Little et al., 2004). More recently, the Drosophila aGPCR Flamingo was shown to interact in cis 

with the tetraspanin Van Gogh in the acquisition of planar cell polarity (Lawrence et al., 2008). 

The tetraspanin web is well known to modulate immune signaling, and CD81 has been shown to 

inhibit NK-cell functions when crosslinked (Crotta et al., 2002; Tseng and Klimpel, 2002). Our 

findings that the GPR56–CD81 complex on the NK-cell surface was quickly reduced and 

relocated to the contact points with the target cells suggested a role in regulating NK-cell 

activities. Indeed, ligation of GPR56 receptor by mAbs was found to dissociate the GPR56–CD81 

complex, leading to enhanced NK-cell cytotoxicity and increased cytokine secretion. Based on 

these results, we suggest that GPR56 acts as a cell-autonomous NK-cell inhibitory receptor by 

laterally crosslinking with CD81. Removing GPR56 hence resulted in stronger NK-cell functions, 

as exemplified by the GPR56-deficient NK cells of BFPP patients as well as NK-92 and primary 

NK cells upon activation by PMA, cytokines, and contact with target cells. 

At present, it is not known exactly how the GPR56–CD81 complex is recruited to the immune 

synapses upon NK–target cell conjugation. However, possible mechanisms can be envisioned 

based on earlier works. We have previously shown that while the majority of the GPR56 NTF–
CTF heterodimeric receptor complex is located in the non-raft region, some of the GPR56 CTF is 

partitioned to the lipid raft microdomains (Chiang et al., 2011). Moreover, although lipid rafts 

and the tetraspanin-enriched microdomains (TEMs) are considered distinct membrane 

constitutions, co-clustering of lipid rafts and TEMs is possible upon cell activation or 

transformation (Krementsov et al., 2010; Ono, 2010). 

Signaling molecules, including Gq/11, G12/13, PKC, RhoA, and mTOR, have been linked to GPR56 

in different cell types (Ackerman et al., 2015; Giera et al., 2015; Iguchi et al., 2008; Little et al., 

2004; Luo et al., 2011; Paavola et al., 2011; Stoveken et al., 2015; White et al., 2014). Of interest 

is the specific association with CD81 and Gq/11, reported by Little et al., in which CD81 was 

critical in promoting/stabilizing the GPR56–Gq/11 association (Little et al., 2004). The GPR56–
CD81–Gq/11 complex was dynamically regulated: anti-CD81 mAb led to the uncoupling of Gq/11

from the GPR56–CD81 complex, while cell activation by PMA dissociated GPR56 from CD81 and 

Gq/11, leading to GPR56 internalization. In the present report, we applied a highly selective

inhibitor of Gq/11/14, called FR900359 (Schrage et al., 2015). Of note, FR900359 did not restore 

cytotoxicity in NK-92–GPR56 cells. Thus, signaling capacity of the GPR56–CD81 complex in NK 
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cells does not rely on the engagement of Gq proteins. 

The ability to downregulate inhibitory receptors enables effector NK and T cells to unfold their 

full functional capacity. We found that PMA rapidly and completely downregulates GPR56 

through PKC-mediated shedding and internalization. Moreover, an inflammatory milieu, created 

by the potent NK-cell activating cytokines IL-15 and IL-18 (Fehniger et al., 1999), caused PKC-

dependent shedding of GPR56. Receptor shedding is a hallmark of aGPCRs and likely relates to 

the extended extracellular domains (Hamann et al., 2015). Previous studies indicate that in 

absence of the NTF, the CTF of GPR56 and other aGPCRs can overtly provide activating signals 

(Liebscher et al., 2014; Paavola and Hall, 2012; Paavola et al., 2011; 2014; Stephenson et al., 

2013). GPR56 expression on cytotoxic lymphocytes will provide an interesting model to 

determine the fate and possible activities of an aGPCR upon activation-mediated release of its 

NTF and to explore therapeutic possibilities provided by the unique structure of this non-

canonical GPCR. 
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EXPERIMENTAL PROCEDURES 

Donors and cell isolation 

PBMCs were isolated using a Lymphoprep gradient (Axis-Shield, Oslo, Norway) from fresh 

blood of healthy donors and four BFPP patients, diagnosed with single mutations in GPR56. 

Studied were two newly identified Dutch siblings of 46 and 49 years (1693C>T, R565W) and 2 

previously described Palestinian siblings of 25 and 26 years (1036T>A, C346S) (Piao et al., 

2004). Samples were obtained under informed consent and in accordance with ethical 

guidelines of the Academic Medical Center, Amsterdam, the Netherlands, the Radboudumc, 

Nijmegen, the Netherlands, and the Schneider Children's Medical Center, Petah Tiqva, Israel. 

CD56+CD3– NK cells with ≥99% purity were isolated on a FACSAria™ III cell sorter (BD 
Biosciences, San Diego, CA, USA). 

Stable transduction of cells

Generation of NK-92 cells stably overexpressing GPR56 has been described previously (Peng et 

al., 2011). The wild type and cleavage deficient mutant (T383A) of GPR56 were transduced 

using retroviruses in NK-92 cells. For gene knockdown, NK-92 cells were transduced using 

lentiviruses containing pKLO.1 plasmids with non-target scrambled short hairpin RNA (shRNA) 

(SHC002; sequence CCGGCAACAAGATGAAGAGCACCAACTC) from Sigma-Aldrich (St. Louis, MO, 

USA) or Eomes shRNA (TRCN0000013175; target sequence GCCCACTACAATGTGTTCGTA) and 

CD81 shRNA (TRCN0000057609; target sequence CCTGCTCTTCGTCTTCAATTT) from Open 

Biosystems (GE Healthcare, Lafayette, CO, USA). Cells were transduced in retronectin (Takara 

Bio Inc., Shiga, Japan)-coated plates and selected on 2 ng/ml puromycin (Sigma-Aldrich). NK-92 

cells expressing pKLO.1 with Hobit shRNA (TRCN0000162720; CAGAAGAGCTTCACTCAACTT) 

or Jurkat cells expressing LZRS pBM-IRES-EGFP with Hobit fragment were generated previously 

(Vieira Braga et al., 2015). Transduced Jurkat cells were sorted to ≥95% purity on a FACSAria™ 
III cell sorter using green fluorescent protein (GFP) expression as selection marker. 

Cytotoxicity assay 

This assay employs 7-hydroxy-9H-(1,3-dichloro-9,9-dimethylacridin-2-one) (DDAO; Invitrogen, 

Carlsbad, CA, USA) to label target cells and 3,3'-dihexyloxacarbocyanine iodide (DiOC6; 

Invitrogen) to label live cells. Washed target cells (5106 cells/ml) were resuspended in 1 nM 

DDAO/phosphate-buffered saline (PBS), incubated at 37°C for 15 min in the dark, washed, and 
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resuspended in NK-92 medium. PBMCs or NK-92 stable cells were incubated at various 

effector/target ratios (5/1 to 1/5) with target cells at 37°C for 5 h, followed by addition of 0.1 μg/ml DiOC6 at 37°C for 15 min, and analysis by flow cytometry.
Cell stimulation 

For activation of PKC, 1106 cells/ml PBMCs were incubated for 2 h in medium plus 10 ng/ml 

PMA (Sigma-Aldrich). For cytokine stimulation, 1106 cells/ml PBMCs were incubated for 12-24 

h in medium containing 400 U/ml IL-2, 10 ng/ml IL-15, or 100 ng/ml IL-18 (all R&D Systems, 

Minneapolis, MN, USA), either alone or in combination, as indicated. For GPR56 Ab crosslinking, 

48-well plates (Greiner bio-one, Frickenhausen, Germany) were coated with PBS containing 

mouse IgG, CG2, CG3, or CG5 at 37°C for 2 h followed by overnight coating at 4°C. After washing 

the plates with PBS, 2106/ml NK-92–GPR56 cells or primary human NK cells were incubated in 

coated wells in complete NK-92 medium. Following 2 h of crosslinking at 37°C, 8106/ml K562 

cells were added to wells at E/T ratio=2. For cytokine production assay, supernatants were 

collected following 6 h of stimulation with K562 cells. 

Pharmacological inhibitors were added for 1 h at 37°C prior to stimulation. Specific inhibitors of 

PKC (staurosporine, calphostin, bisindolylmaleimide I), PKB/Akt (Akt1/2 kinase inhibitor), 

PI3K (LY294002), MAP kinases ((Erk (U0126), JNK (SP600125) and p38 (SB 203580)), MMPs 

(GM6001), and dynamin (dynasore) were all obtained from Sigma-Aldrich. Inhibitors of 

ADAM10 and ADAM17 (GW) were a gift from GlaxoSmithkline, courtesy of Dr. A. Amour 

(Stevenage, United Kingdom); a second ADAM17 inhibitor (TNF484) was kindly provided by Dr. 

U. Neumann (Novartis, Basel, Switzerland). G signaling was inhibited using FR900359, a 

selective inhibitor of Gq/11/14 (Schrage et al., 2015). 

Quantitative PCR 

Total RNA was isolated with RNeasy mini kit (Qiagen, Hilden, Germany), and cDNA was 

synthesized using RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher Scientific, 

Waltham, MA, USA). Relative gene expression levels were measured using Fast SYBR Green 

Master Mix (Applied Biosystems, Foster City, CA, USA) on a StepOnePlus™ System (Applied 
Biosystems) with the cycle threshold method. Primers are described in Extended Supplemental 

Procedures.   

Flow cytometry 
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Staining of extracellular antigens was performed according to standard procedures. Abs are 

described in Extended Supplemental Procedures. For intracellular antigens, cells were first 

stained for surface molecules, followed by fixation with Foxp3 Transcription Factor Staining 

Buffer Set (eBioscience, San Diego, CA, USA) and incubation with antibodies directed against 

intracellular molecules. Flow cytometric analysis was performed on FACSCalibur, FACSCanto II, 

and LSRFortessa machines (BD Biosciences), and all data were analyzed with FlowJo software 

(Tree Star, Ashland, OR, USA). 

For intracellular cytokine and degranulation staining, PBMCs and stable NK-92 cells were mixed 

with K562 in the presence of anti-CD107a and incubated at 37°C for 1 h in the dark. A mixture of 

brefeldin A (1 μg/ml; BD Biosciences) plus monensin (10 μg/ml; BD Biosciences) was then 

added, and samples were incubated for a further 5 h. Cells were labeled with antibodies 

recognizing extracellular antigens, fixed/permeabilized, stained for TNF and IFNγ, and 

examined by flow cytometry. 

Enzyme-linked immunosorbent assayTNF and IFNγ levels in culture supernatants were assessed using DuoSet ELISA Development 
Systems from R&D. Soluble GPR56 was quantified as described (Yang et al., 2015). 

Spectrophotometric analysis was performed at 450 nm wavelength on a SpectraMax 

M2 spectrophotometer (Molecular Devices, Sunnyvale, CA, USA) using Softmax Pro 5.3 software 

(Molecular Devices). 

Indirect immunofluorescence 

NK-92 were conjugated to K562 at 2/1 ratio, centrifuged at 25g for 3 min at 4°C, and incubated 

for 30 min at 37°C. After conjugation, a total of 6105 cells were gently resuspended and 

allowed to adhere to each poly-D-lysine coated coverslip (BD Biocoat) at 37°C for 30 min, 

centrifuged again at 30g for 3 min, then washed by dipping in DPBS (Invitrogen) several times 

at room temperature. Subsequent fixation was carried out in 4% paraformaldehyde/PBS 

(Sigma-Aldrich) at room temperature for 20 min. Cells were blocked in PBS containing 2% 

normal goat serum and 0.5% BSA, and incubated first with mouse anti-CD81 mAb (TS81, 

Abcam, Cambridge, UK) and Alexa Fluor 594 conjugated goat anti-mouse IgG (Invitrogen), then 

washed and blocked again before staining with Alexa Fluor 488 conjugated mouse anti-GPR56 

mAb (CG2). Permeabilization was carried out using 0.5% saponin (Sigma-Aldrich) and cells 

were stained subsequently with Alexa Fluor 647-conjugated anti-granzyme B mAb (GB11, BD 

Biosciences). Coverslips were mounted using ProLong Gold (with DAPI) mounting medium 
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(Invitrogen). Confocal images were captured on a Zeiss LSM 510 META confocal microscope 

(Carl Zeiss, Oberkochen, Germany) using a ×64 oil immersion objective. Single images were captured with an optical thickness of 1.5 μm. Analysis was performed using LSM510 META 
software (Carl Zeiss). 

Immunoprecipitation 

Cells were lysed in a 1% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate 

(CHAPS) buffer containing 20 mM Tris-HCl, pH7.4, 150 mM NaCl, 5 mM MgCl2, 5% glycerol, and 

protease inhibitors including 1 mM sodium orthovanadate, 10 µg/ml aprotinin, 5 mM 

levamisole, 1 mM 4-(2-aminomethyl)benzenesulfonyl fluoride hydrochloride (AEBSF) and 

cOmplete protease inhibitor from Roche Diagnostics (Basel, Switzerland). Lysates were 

extracted on an end-over-end rotator at 4°C for 3 h and collected after removing insoluble 

fraction by centrifugation at 12,000 rpm for 25 min at 4°C. Supernatants were pre-cleared with 

Protein G Sepharose (Sigma-Aldrich) for at least 1 hour at 4°C on a rotator, or, for lysates 

collected from Ab-pre-treated cells, with mouse IgG conjugated to agarose (A0919; Sigma-

Aldrich). Specific mAbs (4 µg) were then mixed with pre-cleared lysates (5106 cell equivalents) 

and incubated on ice for 2 h before adding 20 µl of 1:1 diluted Protein G Sepharose beads. 

Immunoprecipitates were then collected overnight at 4°C on a rotator, washed five times with 

cold 1% CHAPS lysis buffer, eluted with 2 Laemmli buffer at 95°C for 8 min, and resolved on a 

8% (for GPR56) or on a 12% (for CD81 and CD9) nonreduced SDS-PAGE. For re-IP, CD81 

associated molecules were eluted with 1% Triton X-100 lysis buffer following anti-CD81 (clone 

TS81) IP. Eluates were then subjected for a second IP using anti-GPR56 (clone CG2) mAb. 

Immunoprecipitates were analyzed by immunoblotting using anti-GPR56 (clone CG4), anti-

CD81 (clone 5A6), and anti-CD9 (clone MM2/57) mAbs. 

Statistics 

All results were analyzed by Excel (Microsoft, Redmond, WA, USA) or GraphPad Prism 

(GraphPad Software, La Jolla, CA, USA) and expressed as means ± standard error of the mean 

(SEM). A Student t test was used to determine P values. Significance was set at P<0.05. 
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SUPPLEMENTAL INFORMATION 

Supplemental Information includes Supplemental experimental procedures and twelve figures and can be found with this article online at http://…
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FIGURES 

Figure 1. Hobit drives the expression of GPR56 in non-dividing, fully differentiated NK 

cells. (A) Expression of GPR56 on proliferating CD56+CD3– NK cells was measured using CFSE 

dilution after 6 days of stimulation with 50 U/ml IL-2. Flow cytometry plots of one 

representative experiment (left) and quantification of the mean percentage of proliferating cells 

(right). (B) NK-92 cells were incubated with or without 50 U/ml IL-2 for 18 h and analyzed for 

cell cycle and expression of GPR56 by flow cytometry (left). Quantification of percentages of 

cells in G1, S, and G2/M phase, and relative geoMFI of GPR56 expression, compared to isotype 

controls (right). (C) Quantification of mRNA expression of surface molecules and transcription 

factors by RT-PCR in NK-92 cells, incubated with or without 50 U/ml IL-2 for 18 h. (D) Protein 

expression of surface molecules and transcription factors by CD56+CD3– NK cells in cord blood 

and peripheral blood in relation to GPR56 expression, measured by flow cytometry. (E) 

Expression of GPR56 on long-lived memory-like NK cells, defined by absent/low expression of 

FcRγ and PLZF, determined by flow cytometry. (F-H) NK-92 cells overexpressing scrambled 

shRNA, Eomes shRNA, or Hobit shRNA were incubated with or without 50 U/ml IL-2 for 18 h 

and analyzed by flow cytometry for expression of Eomes, Hobit, and GPR56. Representative 

flow cytometry plots (F), quantification of Hobit and GPR56 protein expression, compared to 

isotype controls, by flow cytometry (G), and quantification of mRNA expression of GPR56 by RT-

PCR (H). (I-K) Parental Jurkat cells and Jurkat cells overexpressing vector control or Flag-tagged 

Hobit were incubated with 10 µg/ml doxycycline for 48 h and analyzed by flow cytometry for 

expression of Flag and GPR56. Representative flow cytometry plots (I), quantification of Flag 

and GPR56 protein expression, compared to isotype controls, by flow cytometry (J), and 

quantification of mRNA expression of Hobit and GPR56 by RT-PCR (K). All data are means ± 

SEM of 3-5 independent experiments. *p<0.05, **p<0.01, ***p<0.005. See also Figure S1.

Figure 2. Normal development and functional competence of NK cells in BFPP patients.

Shown are data of two Dutch siblings with the R565W mutation and age-matched healthy 

control donors. (A) Quantification of the percentage of NK cells among circulating lymphocytes 

and the expression of surface molecules, cytolytic proteins, and transcription factors by 

CD56dimCD3– NK cells, measured by flow cytometry. (B) PBMCs were incubated with K562 

target cells at an effector/target cell ratio of 1/1 for 5 h and analyzed by flow cytometry for 

K562 cell death, NK-cell degranulation (CD107a), and intracellular production of TNF and IFNγ. 
The control donor depicted here was analyzed in parallel with the Dutch patients. (C) 

Quantification of effector functions analyzed in (B), including additional control donors. All data 



25

are means ± SEM. *p<0.05, **p<0.001, ****p<0.0001. See also Figure S2. 

Figure 3. Inflammatory cytokines downregulate GPR56 in primary NK cells. PBMCs were 

stimulated as indicated and analyzed by flow cytometry. (A) Expression of GPR56 on 

CD56+CD3– NK cells, stimulated for 6 h with the indicated amounts of PMA, alone or in 

combination with ionomycin. (B) Expression of GPR56 and CD16 on CD56+CD3– NK cells, 

stimulated for 10 min or 2 h with 10 ng/ml PMA. (C) Expression of GPR56 on CD56+CD3– NK 

cells pre-incubated for 1 h with 1 μM bisindolylmaleimide I (BIM), 100 μM dynasore (Dyn), 10 μM GM6001 (GM), or dynasore plus GM6001 before incubation with 10 ng/ml PMA for 2 h. (D) 

Expression of GPR56 and CD16 on CD56+CD3– NK cells, pre-stained with anti-GPR56 or anti-

CD16 mAb prior to incubation with 10 ng/ml PMA for 2 h. (E) Culture supernatants of PBMCs, 

pre-incubated for 1 h with inhibitors before incubation with 10 ng/ml PMA for 2 h, were 

analyzed by ELISA for soluble GPR56. (F) Expression of GPR56 and CD16 on CD56+CD3– NK cells 

stimulated for 12 or 24 h with 500 U/ml IL-2, 10 ng/ml IL-15, 100 ng/ml IL-18, or IL-15 plus IL-

18. Representative flow cytometry plots (left) and quantification of relative geoMFI (right). (G) 

Expression of GPR56 and CD16 on CD56+CD3– NK cells pre-incubated with inhibitors and then 

stimulated for 12 or 24 h with IL-15 plus IL-18. (H) Quantification of mRNA expression of Hobit 

and GPR56 by RT-PCR in PBMCs, incubated with 10 ng/ml PMA for 2 h or with 10 ng/ml IL-15 

plus 100 ng/ml IL-18 for 12 and 24 h. All data are means ± SEM of 4 independent experiments. 

*p<0.05, **p<0.01, ***p<0.005. See also Figure S3. 

Figure 4. GPR56 expression in NK-92 cells reduces cytotoxic capacity. Vector-transduced 

(Neo) and GPR56-overexpressing NK-92 cells were studied. (A,B) Quantification of mRNA and 

protein expression of the cytolytic proteins perforin and granzyme B by RT-PCR (A) and flow 

cytometry (B) in NK-92–Neo and NK-92–GPR56 cells. (C,D) Quantification of mRNA and protein 

expression of the cytokines TNF and IFNγ by RT-PCR (C) and flow cytometry (D) in NK-92–Neo 

and NK-92–GPR56 cells. Protein expression was determined after stimulating cells with 10 nM 

PMA for 3 and 6 h. (E) Secretion of TNF and IFNγ by NK-92–Neo and NK-92–GPR56 cells treated 

with PMA for 1, 3, and 6 h, measured by ELISA. (F,G) NK-92 cells were incubated with 

fluorescently labeled or unlabeled K562 target cell (E/T=effector/target cell ratio) for 5 h and 

analyzed by flow cytometry for K562 cell death, NK-cell degranulation (CD107a), and intracellular production of TNF and IFNγ. Shown are representative flow cytometry plots (F) 

and quantification (G). (H) Secretion of TNF and IFNγ by NK-92–Neo and NK-92–GPR56 cells 

cultured with K562 target cells for 1, 3, and 6 h, measured by ELISA. All data are means ± SEM of 

3 independent experiments. ***p<0.005. See also Figure S4. 
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Figure 5. GPR56-CD81 complexes at the immune synapse repress cytotoxicity and 

cytokine production of NK cells. (A) Surface CD81 and GPR56, and intracellular granzyme B of 

NK-92–K562 cell conjugates were sequentially stained and detected using confocal microscopy. DAPI staining defined the morphology of nuclei. Scale bars, 10 μm. (B) 1% CHAPS cell lysate was 

immunoprecipitated with either anti-GPR56 or anti-CD81 mAb, as indicated. The presence of 

GPR56, CD81, and CD9 was revealed by immunoblotting (IB) using specific mAbs. (C) NK-92–GPR56 cells were incubated in the absence (untreated) or presence of 10 μg/ml of GPR56 mAbs 

at 37°C or 0°C for 15 min before lysate collection for IP using anti-GPR56 mAb. Mouse IgG1 was 

used as an isotype control. The presence of CD81 in each immunoprecipitate was revealed by 

immunoblotting. (D-G) NK-92–GPR56 (D,E) or human primary NK cells (F,G) were incubated in 

plates pre-coated with or without various anti-GPR56 mAbs (10 μg/ml) as indicated for 2 h 
before adding K562 target cells. Percentage of dead target cells in each sample was quantified 

by flow cytometric analysis following 4 h of co-culture (D,F), and amount of TNF and IFNγ 
released into medium during 6 h incubation was measured by ELISA (E,G). Data are 

representative of 3 independent experiments; values indicate the mean ± SEM. ***p<0.005. See 

also Figure S5, Figure S6, and Figure S7.
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SUPPLEMENTAL	EXPERIMENTAL	PROCEDURES

Cell	culture

Cells	 were	maintained	 in	 the	 following	media	 supplemented	with	 10%	 heat-inactivated	 fetal	

bovine	serum	(FBS):	Peripheral	blood	mononuclear	cells (PBMCs),	purified	CD56+CD3– NK	cells,	

and	 monocytic	 THP-1	 cells	 in	 Roswell	 Park	 Memorial	 Institute	 (RPMI)	 1640	 medium;	

erythroleukemic	K562	cells	and	Jurkat	T	cells	in	Iscove's	modified	Dulbecco's	medium	(IMDM);	

HeLa	cells	in	Dulbecco's	Modified	Eagle	Medium	(DMEM).	Human	NK-92	cells	were	cultured	in	

nucleoside-free	 α-Minimum	 Essential	 Medium	 (α-MEM)	 containing	 12.5	%	 FBS,	 12.5%	 horse	

serum,	0.2	mM	inositol,	0.1	mM	2-mercaptoethanol,	0.02	mM	folic	acid,	and	100	IU/ml	IL-2.	Cell	

culture	media	and	supplements	were	obtained	from	Invitrogen	(Carlsbad,	CA,	USA).

Cytotoxicity	assay

Alternative	 to	 the	 method	 described	 in	 the	 main	 text,	 target	 cells	 were	 labeled	 with	

carboxyfluorescein	 succinimidyl	 ester	 (CFSE;	 Invitrogen)	 and	 dead	 cells	 with	 7-

aminoactinomycin	 D	 (7-AAD;	 Invitrogen).	 Washed	 target	 cells	 (5×106 cells/ml)	 were	

resuspended	in	phosphate-buffered	saline (PBS) containing	CFSE	(2	µM	for	K562,	1	µM	for	THP-

1,	and	2.5	µM	for	HeLa)	and	incubated	at	37°C for	10	min	in	the	dark,	followed	by	quenching	the	

CFSE	staining	for	5	min	on	ice.	Washed	cells	were	resuspended	in	NK92	medium.	NK-92	stable	

cells	were	incubated	at	various	effector/target ratios	(40/1	to	1/10)	with	target	cells	at	37°C	for	

4	h,	 followed	by	addition	0.5	ml	of	 ice-cold	Dulbecco's	PBS	(DPBS;	 Invitrogen),	containing	1%	

bovine	serum	albumin (BSA)	and	5	µg/ml	7-AAD,	for 15	min	in	the	dark,	and	analysis	by	flow	

cytometry.

Cell	stimulation

Next	to	the	conditions	described	in	the	main	text, CD16	was	crosslinked	by	pre-coating flat	96-

well	microplates	(Corning,	Corning,	NY,	USA)	with	10	μg/ml	goat	anti-mouse	 immunoglobulin	

(Ig)G	 in	 PBS	 at	 37°C	 for	 2	 h.	 Plates	 were	washed	 twice	with	 PBS	 and	 coated	with	 10	 μg/ml	

purified	anti-CD16	 in	PBS	at	4°C	 for	overnight.	Then,	plates	were	washed	 twice	with	PBS	and	

blocked	with	RPMI	1640	medium/10%	FBS	at	37°C	for	1	h.	2×106	cells/ml	purified	CD56+CD3–

NK	cells	were	added	to	the	plates.

Proliferation	assay
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PBMCs	were	washing	three	times	in	PBS,	resuspended	at	5×106 cells/ml	in	PBS,	and	labeled	with	

2.5	 µM	 CFSE	 by	 shaking	 at	 37°C	 for	 10	 min.	 Cells	 were	 washed	 three	 times	 and	 subsequently	

cultured	in	RPMI	1640	medium	with	or	without	50	U/ml	IL-2	for	5	days.

Conjugation	assay

Target	 cells	 were	 labeled	 with	 CFSE	 as	 described	 above.	 1×106 of	 labeled	 target	 cells	 were	

mixed	 with	 5×105 NK-92	 cells	 at	 an	 effector/target	 ratio	 of	 1/2.	 The	 cell	 mixture	 was	

centrifuged	at	25×g	for	3	min	at	4°C,	then	placed	in	a	37°C water	bath	for	the	desired	lengths	of	

time.	After	conjugation,	cells	were	gently	resuspended,	fixed	in	2%	ice-cold	paraformaldehyde/

PBS	 for	 30	min,	 then	 subjected	 to	Ab	 staining	 using	 either	 allophycocyanin	 (APC)-conjugated	

anti-CD56	mAb	 (if	K562	and	HeLa	were	used	as	 targets)	or	APC-conjugated	anti-CD2	mAb	 (if	

THP-1	was	used	as	a	 target).	Conjugation	was	analyzed	by	 flow	cytometry	 (FL-1	versus FL-4),	

and	measured	by	percentage	of	NK	cells	that	formed	conjugates	with	target	cells	as	calculated	

by	the	ratio	of	two-color	events	to	total	effector	cell	events.

Quantitative	PCR

The	following	primers	were	used:	ADGRG1 (forward	5’-GATTGCTGGCCTGTTGTAG-3’,	reverse	5’-

GAATGATGGCTCCCTGTCC-3’);	 B3GAT1 (forward	 5’-GAAGCCAGGCCTACTTCAAGCT-3’,	 reverse	

5’-GTTGAGGGTGACAAGTTCTCGAA-3’);	 BCL6 (forward	 5’-AACCTGAAAACCCACACTCG-3’,	

reverse	 5’-CTGGCTTTTGTGACGGAAAT-3’);	 CD81 (forward	 5’-AGGGCTGCACCAAGTGC-3’,	

reverse	 5’-TGTCTCCCAGCTCCAGATA-3’);	 GZMB (forward	 5’-TGGGGGACCCAGAGATTAAAA-3’,	

reverse	5’-TTTCGTCCATAGGAGACAATGC-3’);	KLRG1 (forward	5’-AACGGACAATCAGGAAATGAG-

3’,	 reverse	 5’-CCTTGAGAAGTTTAGAGGTGATCC-3’);	 PDCD1 (forward	 5’-

CTCAGGGTGACAGAGAGAAG-3’,	reverse	5’-GACACCAACCACCAGGGTTT-3’);	PRDM1 (forward	5’-

GTGTCAGAACGGGATGAACA-3’,	 reverse	 5’-GCTCGGTTGCTTTAGACTGC-3’);	 PRF1 (forward	 5’-

CGCCTACCTCAGGCTTATCTC-3’,	 reverse	 5’-CCTCGACAGTCAGGCAGTC-3’);	 TBR1 (forward	 5’-

ACTGGTTCCCACTGGATGAG-3’,	 reverse	 5’-CCACGCCATCCTCTGTAACT-3’);	 TBX1 (forward	 5’-

GGGAAACTAAAGCTCACAAAC-3’,	 reverse	 5’-CCCCAAGGAATTGACAGTTG-3’);	 TNF (forward	 5’-

CCCAGGGACCTCTCTCTAATCA-3’,	reverse	5’-AGCTGCCCCTCAGCTTGAG-3’);	ZNF683 (forward	5’-

CATATGTGGCAAGAGCTTTGG-3’,	 reverse	 5’-GGCAAGTTGAGTGAAGCTCT-3’). Expression	 of	

specific	 genes	 was	 normalized	 to	 human	 GAPDH (forward	 5’-GAAGGTGAAGGTCGGAGTC-3’,	

reverse	5’-GAAGATGGT	GATGGGATTTC-3’)	as	endogenous	control.	
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Antibodies and	flow	cytometry

Conjugated	mAbs with	 the	 following	specificity	were	used:	anti-GPR56	(clone	CG4;	Biolegend,	

San	Diego,	CA,	USA);	anti-CD2	(clone	RPA-2.10;	BD	Biosciences,	San	Diego,	CA,	USA);	anti-CD3	

(clone	 SK7	 and	 UCHT1;	 BD	 Biosciences);	 anti-CD9	 (clone	 ML13;	 BD	 Biosciences);	 anti-CD16	

(clone	3G8;	BD	Biosciences);	anti-CD56	(clone	NAM16.2;	BD	Biosciences);	anti-CD57	(clone	NK-

1;	 BD	 Biosciences);	 anti-CD81	 (clone	 1D6-CD81;	 eBioscience,	 San	 Diego,	 CA,	 USA);	 anti-CD94	

(clone	 HP-3D9;	 BD	 Biosciences);	 anti-CD107a	 (clone	 H4A3;	 eBioscience);	 anti-CD158a/h	

(KIR2DL1/S1;	clone	EB6B;	Beckman	Coulter,	Miami,	FL,	USA);	anti-CD158b	(KIR2DL2/L3;	clone	

GL183;	 Beckman	 Coulter);	 anti-CD158e	 (KIR3DL1;	 clone	 DX9;	 BD	 Biosciences);	 anti-CD159a	

(NKG2a;	clone	#131411;	R&D	Systems);	anti-CD159c	(NKG2c;	clone #134591;	R&D	Systems);	

anti-CD226	 (DNAM-1;	 clone	 11A8;	 Biolegend);	 anti-CD279	 (PD-1;	 clone	 EH12.1;	 BD	

Biosciences);	anti-CD314	(NKG2d;	clone	1D11;	Biolegend);	anti-CD335	(NKp46;	clone	9E2; AbD

Serotec,	 Kidlington,	 UK);	 anti-CD336	 (NKp44;	 clone	 P44-8;	 Biolegend);	 anti-CD337	 (NKp30;	

clone	 P30-15;	 Biolegend);	 anti-KLRG1	 (kindly	 provided	 by	 Prof.	 H.P.	 Pircher,	 Freiburg)	

(Marcolino	 et	 al.,	 2004);	 anti-FcRγ (rabbit	 polyclonal	 antibody;	Millipore,	 Bedford,	MA,	 USA);	

anti-perforin	(clone	δG9;	BD	Biosciences);	anti-granzyme B	(clone	GB11;	BD	Biosciences);	anti-

TNF	(clone	MAb11;	eBioscience);	anti-IFNγ (clone	4s.B3;	eBioscience);	anti-T-bet	(clone	4B10;	

Biolegend);	 anti-Eomes (clone	 WD1928;	 eBioscience);	 anti-PLZF	 (clone	 R17-809;	 BD	

Biosciences);	anti-mouse	IgM	(clone	II/41;	eBioscience).		

The	 following	purified	mAb	were	used: anti-GPR56	(clone	CG2,	CG4,	CG3,	and	CG5;	Biolegend

and	 (Peng	 et	 al.,	 2011));	 anti-CD9	 (clone	 MM2/57;	 Millipore,	 Bedford,	 MA,	 USA);	 anti-CD16	

(clone	3G8;	Biolegend);	anti-CD81	(clone	TS81	and	5A6;	Abcam,	Cambridge,	UK	and	Santa	Cruz	

Biotechnology,	Dallas,	TX,	USA);	anti-Hobit	(Vieira	Braga	et	al.,	2015);	mouse	IgG1	(clone	MOPC-

21,	BD	Biosciences).

Collagen	I	and	III	(Abcam)	was	conjugated	with	fluorescein-5-Isothiocyanate	(FITC,	Invitrogen)	

and	used	to	explore	ligand	binding (Van	de	Walle	et	al.,	2005).

To	 analyze	 cell	 cycle	phase	distribution,	NK-92	 cells	were	washed	with	 cold	PBS	 and	 fixed	 in	

70%	ethanol	 for	1	h.	Fixed	cells	were	stained	with	20	µg/ml	propidium iodide/0.1%	Triton-X	

(both	 from	Sigma-Aldrich,	 St.	 Louis,	MO,	USA)	 in	 the	presence	 of	 200	µg/ml	RNaseA	 (Qiagen,	

Hilden,	Germany)	for	30	min	at	room	temperature	in	the	dark	and	analyzed	by	flow	cytometry.
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Figure S1. Expression profiling of NK cells from cord blood and peripheral blood in relation to GPR56 expression. Related to

Figure 1. Flow-cytometric analysis of CD56+CD3–NK cells for expression of various surface molecules, natural cytotoxicity receptors, NK-

cell receptors, killer immunoglobulin-like receptors, and cytolytic proteins, measured by flow cytometry.
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C
Cells/Molecule Control (n=1) C346S-Parents (n=2) C346S-BFPP (n=2)

CD56+CD3– NK 5.0 9.2 ± 3.7 21.7 ± 1.6

GPR56# 4251 2468 ± 265 241.0 ± 41.0

CD16# 2668 2815.5 ± 224.5 2780.0 ± 1265.0

CD27 0.5 2.4 ± 1.1 2.7 ± 0.2

CD94# 691.0 523.5 ± 32.5 560.0 ± 33.0

KLRG1 34.1 53.9 ± 27.3 45.6 ± 23.0

CD57 43.0 73.5 ± 0.6 62.2 ± 8.9

PD1 0.6 1.0 ± 0.4 2.0± 0.3

CD81# 3878 4639.5 ± 505.5 6119.5 ± 225.5

DNAM1 97.9 96.0 ± 0.9 89.8 ± 4.3

NKp30 79.6 54.5 ± 1.2 40.9 ± 23.1

NKp44 38.3 37.9 ± 0.7 37.3 ± 1.1

NKp46 73.5 53.9 ± 7.5 43.4 ± 14.8

NKG2a 3.8 7.3 ± 3.8 38.0 ± 37.6

NKG2c 29.5 26.8 ± 1.6 28.6 ± 0.9

NKG2d 97.4 98.8 ± 0.7 99.5 ± 0.2

KIR2DL1/S1 27.2 24.3± 14.7 17.4 ± 0.2

KIR2DL2/L3 26.8 50.3 ± 8.3 34.0 ± 8.6

KIR3DL1 9.8 16.6 ± 5.1 38.4± 12.6

Perforin# 17568 18101 ± 953 14139.5 ± 996.5

Granzyme B# 1744 2149 ± 225 4020 ± 1071

T-bet 77.2 69.6 ± 4.2 51.2 ± 16.4

Eomes 35.5 45.9±12.4 77.4 ± 0.5

Hobit 87.3 91.6 ± 0.2 96.5 ± 0.2

% positive cells or #geoMFI± SEM in CD56dimCD3-NK

Figure S2. Expression of various surface molecules, cytolytic proteins, and transcription factors by CD56+CD3–NK cells in BFPP

patients. Related to Figure 2. (A) Flow-cytometric analysis of CD56+CD3–NK cells of Dutch siblings with the R565W mutation and a

control donor. (B) Flow-cytometric analysis of CD56+CD3–NK cells of Palestinian siblings with the C346S mutation, their parents, and a

control donors. (C) Quantification of (B).
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Figure S3. PKC activation induces downregulation of GPR56 in primary NK cells. Related to Figure 3. PBMCs were stimulated as

indicated and analyzed by flow cytometry. (A) Expression of GPR56 on CD56+CD3–NK cells incubated for 6 h with the indicated amounts

of PMA, with or without 1 μM ionomycin, or with 10 μM forskolin, 10 μM anisomycin, or 3.6 μM cycloheximide. (B) Expression of GPR56

on CD56+CD3–NK cells pre-treated for 30 min with PKC inhibitors (1 μM staurosporine, 1 μM calphostin C, 1 μM bisindolylmaleimide I)

or with inhibitors of PKB/Akt (10 μM), PI3K (10 μM), and MAP kinases (Erk (10 μM), JNK (20 μM), and p38 (10 μM)), after which cells

were incubated with 10 ng/ml PMA for 2 h. (C) Expression of GPR56 (left panel) and CD16 (right panel) on CD56+CD3– NK cells pre-

incubated for 1 h with inhibitors as in (A), inhibitors of ADAM17 (10 μM GW and 100 nM TNF484) and ADAM10 (10 μM), or 1 μg/ml
phospholipase C in serum-free medium before incubation with PMA for 2 h. Provided are relative percentages of positive cells and

geoMFIs. Data are means± SEM of 3–5 independent experiments. *p<0.05, **p<0.01, ***p<0.005.
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Figure S4. Forced GPR56 expression suppresses cytotoxicity and conjugation of NK-92 and target cells. Related to Figure 4. (A)

Quantification of cytotoxic killing of K562, THP-1, and HeLa target cells by NK-92–Neo and NK-92–GPR56 cells, assessed by flow

cytometry. Various E/T ratios were tested at indicated. (B) Quantification of cell conjugates formed between NK-92 cells and K562, THP-

1, or HeLa target cells, incubated at an effector/target cell ratio of 1/2 for the indicated time periods. Fixed cells were analyzed by flow

cytometry. Data are means± SEM of 8 replicates from 4 independent experiments. ***p<0.005.



Figure S5. Suppression of cytotoxicity of NK-92 cells does not require autocatalytic processing of GPR56. Related to Figure 5. (A)

Overexpression of wild type and cleavage-deficient GPR56 in NK-92 cells, assessed by flow cytometry. (B) NK-92 cells were incubated

with fluorescently labeled or unlabeled K562 target cell (effector/target cell ratio=1/1) for 5 h and analyzed by flow cytometry for K562

cell death and NK-cell degranulation (CD107a). Data are means± SEM of 3 independent experiments. *p<0.05
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Figure S6. Collagen III does not bind GPR56 on NK-92–GPR56 cells. Related to Figure 5. (A,B) NK-92 and K562 cells overexpressing

GPR56 were incubated with 10 µg/ml FITC-conjugated collagen I or III for 30 min and analyzed by flow cytometry for ligand binding.

K562 cells overexpressing human (h) and mouse (m) LAIR were used to confirm collagen binding (Lebbink et al., 2006). FITC-conjugated

collagen III also did not stain PBMCs (data not shown). One of three comparable experiments is shown.



Figure S7. Molecular mechanism of GPR56 modulating effector functions in NK-92–GPR56 cells. Related to Figure 5. (A)

Expression of CD81 and CD9 in NK-92–Neo and NK-92–GPR56 cells, analyzed by flow cytometry (left panel) and RT-PCR (right panel).

(B) Western blot analysis of expression of GPR56, CD81, and CD9 in NK-92–Neo and NK-92–GPR56 cells. Cells were either stimulated

with PMA or activated by target cells (effector/target cell ratio=1/2) for 1 h, as indicated. 1% CHAPS extract collected from 2105

equivalents of K562 and 1105 equivalents of NK-92 cells were loaded in each lane and analyzed by Western blotting using anti-GPR56,

anti-CD81, and anti-CD9 mAbs. (C) NK-92–GPR56 cells were pre-treated with 10 g/ml of CG2 for the indicated times from 0 to 20 min

before lysate collection for IP using anti-GPR56 mAb CG2. Mouse IgG1 was used as an isotype control. The presence of CD81 in each

immunoprecipitate was revealed by immunoblotting. One of two comparable experiments is shown. (D,E) NK-92–Neo and NK-92–
GPR56 cells, transduced with scrambled shRNA or CD81 shRNA, were analyzed by for expression of CD81. Quantification of mRNA

expression by RT-PCR (D) and flow cytometry (E). (F) NK-92–Neo and NK-92–GPR56 cells, transduced with scrambled shRNA or CD81

shRNA, were incubated with fluorescently labeled or unlabeled K562 target cell (effector/target cell ratio=1/5) for 5 h and analyzed by

flow cytometry for K562 cell death, NK-cell degranulation (CD107a), and intracellular production of TNF and IFNγ. (G) NK-92–Neo and

NK-92–GPR56 cells, pretreated with the specific Gαq/11/14 inhibitor FR900359 (1 µM) for 5 h, were incubated with fluorescently labeled

or unlabeled K562 target cell (effector/target cell ratio=1/1) for 5 h and analyzed by flow cytometry for K562 cell death, NK-cell

degranulation (CD107a), and intracellular production of TNF and IFNγ. Data are means± SEM of 3-6 independent experiments. *p<0.05,

**p<0.01, ***p<0.005.
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