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Abstract 

The bioluminescence reaction is catalysed by firefly luciferase, converting the substrates D-

luciferin, ATP and molecular oxygen with Mg2+ to produce light and this reaction has had 

wide ranging implications within a number of fields from industry to academia. The 

discovery of luciferase has been revolutionary in the real time in vivo study of cells given 

that it requires no energy for excitation, delivering a high signal to background ratio 

providing a highly sensitive assay. This protein, to date, has been utilised in molecular cell 

biology, cellular imaging, microbiology and numerous other fields. The extensive 

application of this protein has paved the way for the generation of toolbox of variants with 

altered properties. Protein engineering involving substitution mutations made within 

Photinus pyralis (Ppy) FLuc has led to the discovery of a number of novel variants however 

there is a bank of growing evidence displaying the power of deletions as an alternative for 

the development of proteins with altered properties since deletions can sample structural 

diversity not accessible to substitutions alone. 

A novel mutagenic strategy was implemented to incorporate single amino acid deletions 

within thermostable firefly luciferase (x11FLuc) targeting loop structures (M1-G10, L172- 

T191, T352-F368, D375-R387, D520-L526, K543-L550). Of 43 deletion mutants obtained, 

41 retained bioluminescent activity and other characteristics such as resistance to thermal 

inactivation. Surprisingly, only 2 variants, ΔV365 and ΔV366, exhibited a complete loss of 

activity showing that the luciferase protein is largely tolerant to single amino acid deletions.  

In order to identify useful mutants in the extensive library, a 96-well format luminometric 

cell lysate assay was developed which indicated the effect of deletions was largely region 

specific, for example,  N- terminal deletions did not alter the activity of x11FLuc, whilst 

deletions within L172- T191, D375-R387, D520-L526 and the C- terminal loop reduced 

overall activity. On the other hand, deletions within T352-F368 enhanced overall 

bioluminescent activity and remarkably exhibited other important characteristics such as 

increases in specific activity and a reduced KM for luciferin. Therefore, a novel motif (omega 

loop) was identified as important for FLuc activity after full characterization of mutants. 
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Characterisation of the deletion mutants originating from the omega loop (T352-F368), 

ΔP359 and ΔG360 both presented a reduced KM for luciferin, whilst ΔA361, ΔV362, ΔG363 

presented an increase in KM towards ATP as compared to x11FLuc. Thus, deletions in the 

omega loop, in the main, improved activity and altered reaction kinetics, in particular ΔG363 

retained 53% of initial activity after 250s. As such, it is considered that the field of protein 

engineering should not only overlook the utility of single amino acid deletions, since such 

mutagenic strategies may sample structural space not achieved by substitutions alone and 

mutations within less popularized secondary structures such as omega loops are can act as a 

useful tool in the improvement of proteins.  
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“Some things, indeed, are not seen in daylight, though they produce sensation in the dark: as for 

example the things of fiery and glittering appearance for which there is no distinguishing name, “ 

Aristotle De Anima (BookII, Chap 7, Sec4), In R.D. Hicks translation 
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Chapter 1 

Introduction 

 

 

1.1. Bioluminescence 

 

Humans have always irrevocably been fascinated by organisms with “electric organs” 

and indeed from Pliny to Aristotle to Darwin all have made commentary about these 

curiosities of nature, those organisms with the characteristic of ‘self-luminosity’.  

 

Bioluminescence, as coined by Harvey (1940) and literally translated as “living light”, 

has been noted to be widely distributed throughout many different ecosystems, from 

those that walk on the land to those that inhabit the lower reaches of the ocean where 

bioluminescence is no longer considered as the exception but the rule (Harvey, 1940). 

Simply, bioluminescence is a natural form of chemiluminescence through which living 

organisms convert chemical energy into the emission of light and it was in 1885, that the 

German scientist, Emil du Bois-Reymond, (McElroy and Hastings, 1955) identified two 

extracts from jellyfish which were responsible for this striking phenomenon when mixed 

together, one heat sensitive and one heat resistant which over the next 70 decades were 

termed luciferase (Luc) and luciferin respectively (Green and McElroy, 1956).  

 

  

1.1.1. Bioluminescent Systems 

 

1.1.1.1. The Evolution of Bioluminescent Systems 

Bioluminescence is noted throughout the natural world, from bacteria to insects and 

marine life, and, at present, there are known to be some 30 differing bioluminescent 

systems which whilst all displaying bioluminescence, utilise differing bioluminogenic 

substrates spanning a number chemical classes (Wilson and Hastings, 1998; Purtov et al., 
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2015). Indeed, between the Lucs, there is large variation with little sequence and 

structural homology and the Luc proteins vary from between 20kDa to 62kda in size 

(Wilson and Hastings, 1998). This is indicative that bioluminescence itself arose as a 

result of convergent evolution, whereby these novel characteristics, arose on multiple 

occasions from different origins. This necessity for nature to have selected the 

development of bioluminescent systems is considered amongst five key theories, those 

being that luminous organs are essential for camouflage, attraction, repulsion, 

communication and illumination (Haddock et al., 2010).  

 

Despite the lack of homology between enzymes, and a range of substrates which are 

chemically unrelated, all bioluminescent systems are considered as Luc-catalysed 

reactions involving oxygenation of a bioluminogenic substrate (Hastings and Tu, 1981), 

and there is some commonality, whereby the decay of a Luc-bound-peroxy-luciferin 

intermediate provides energy for excitation (Wilson and Hastings, 1998). Due to this, it is 

considered that bioluminescence initially arose as a function to detoxify reactive oxygen 

species (Day et al., 2004) which is concurrent with the requirement of oxygen to provide 

adequate energy for emission.  

 

Concurrent with the theory of detoxification, with regards to luciferin, studies report of 

the antioxidant properties against oxidative and nitrosative stress (Dubuisson et al., 

2004). It is considered that due to this vital role that bioluminescence arose, not due to 

Luc, but rather the luciferin as a chemical to remove oxidative species that would 

otherwise be toxic to cells (Dubuisson et al., 2004). Luciferin can be considered to be key 

to the evolution of bioluminescence, since Luc acts as a catalyst and primarily as a 

solvent cage to protect the emitter from environmental photophysical or photochemical 

deactivation processes in the active site of Luc, resulting in higher intensity than would 

be achieved by chemilluminescence (Vassel et al. 2012). It is considered that following 

the evolution of firefly luciferin (LH2), the Luc evolved from other metabolic pathways 

involved in the synthesis of fatty acids. 
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1.1.1.2. Common Bioluminescent Systems 

It is estimated that 80% of bioluminescent systems originate from organisms that inhabit 

the oceans, whereas 20% may be attributed to terrestrial organisms. Despite this disparity, 

bioluminescence originating from terrestrial organisms, such as fireflies, has been more 

heavily investigated and characterized. This is due to the propensity for Lucs derived 

from terrestrial organisms to have evolved typically brighter luminescence due to the 

generally higher background or incident light with which they compete (Seliger and 

McElroy, 1959). Amongst the most studied bioluminescent systems include those that 

originate within beetles (coleoptera), and amongst marine organisms, the sea pansy, 

dinoflagellates, copepods and jellyfish.  Lucs derived from the oceans tend to emit within 

a narrower range of wavelengths (circa. 440-478nm) (Shimomura and Johnson, 1975), 

since emissions within this range confer the greatest optical transparency within the 

oceans.  

 

The Lucs and the bioluminescent reactions in which they take part are numerous. Lucs 

derived from the sea pansy (Renilla reniformis) and copepods (Gaussia princeps), coined 

RLuc and GLuc respectively, both utilize a bioluminogenic substrate benzylimidazo-

pyrazinone coelenterazine in a calcium dependent manner to produce coelenteramide 

with the concurrent emission of a photon at circa 480nm. On the other hand, whilst many 

Lucs are found intracellularly, Lucs have been identified which are secreted originating 

from marine ostracods. Such Lucs include that derived from Vargula hilgendorfii and 

more recently Cypridina noctiluca both of which are characteristically very similar 

(Thompson et al., 1990) (Nakajima et al., 2004). Many marine bioluminescent systems 

also employ photoproteins such as aequorin which are coupled to fluorescent proteins 

(such as the green fluorescent proteins, GFP) to red-shift bioluminescence via the 

exploitation of bioluminescence resonance energy transfer (BRET) (Shimomura, 1995). It 

is theorised that such red shifted bioluminescence occurs amongst those marine 

organisms able to see red light to act as a tool to attract mates and hunt without being 

detected (Schrope, 2007). 
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Bioluminescence may also be observed within bacteria which unlike many other 

bioluminescent systems which require the addition of substrates for bioluminescence, the 

lux operon encodes all the components necessary to achieve bioluminescence thereby 

being a wholly contained system (Tu and Mager, 2008). This bacterial system encodes a 

heterodimeric bacterial luciferase which reduces a further encoded, flavin 

mononucleotide, the product of which is a peroxyflavin responsible for emission (circa. 

490nm) (Tu and Mager, 2008).  

 

Despite the number of bioluminescent systems available, perhaps the most versatile 

belongs to the beetle Lucs which catalyze the oxidation of a benzothiazole-based LH2 in a 

reaction requiring ATP, Luciferin, Mg2+ and molecular oxygen and emits within a wide 

spectral range of ca. 550-630nm (White et al., 1971; Viviani et al., 2002). 

 

1.1.2. The Beetle Luciferases 

 

Of the terrestrial organisms, bioluminescence is most prevalent in the three families of 

luminous beetles, those being the true fireflies (Lampyridae), glow worms (Phengodidae) 

and click beetles (Elateridae) all of which utilize the same LH2 molecule (Wood, 1990). 

 

1.1.2.1. Firefly Bioluminescence 

The beautiful glow in the North American summer night sky can be attributed, in part, to 

the lower abdomen of the family of fireflies, Lampyridae, in which resides a structure 

known as the lantern. Belonging to the order Coleptera, firefly luciferase (FLuc), key to 

the bioluminescence reaction, resides within this light emitting organ, confined to the 

peroxisomes of the cells due to the small peptide signal sequence residing within the C 

terminus (Conti et al., 1996). Bioluminescence remained a mystery for decades since it 

was first reported by Emil Du Bois and it was only in the 1950s, close to a century after 

Du Bois, that William McElroy, Emil White and Howard Seilger began to undertake 

basic research of the Lucs, starting with Photinus pyralis (Ppy).  
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Firefly bioluminescence was the first system to receive extensive investigation with  

modern biochemical techniques, the most studied of this family being the North 

American firefly or Ppy. More recently, FLucs from other families have been studied due 

in part, to the interest in elucidating the mechanism underlying the colour differences, as 

different beetle and even different species of fireflies display bioluminescence of a wide 

variety of colours. The extent to which the North American FLuc has been studied can be 

in part attributed to the quantum yield, which defines the number of luciferin molecules 

required to produce a single photon, which although revised down to 41.0 ±7.4% in 2008 

(Ando et al., 2008) and later confirmed Niwa et al. (2010), nevertheless remains as one of 

the most efficient of all known Lucs. 

 

1.1.2.2. Evolution of Firefly Bioluminescence 

Key to the evolution of bioluminescence within fireflies, as seen amongst other species, 

was selection for bioluminescence in communication, reproduction and in the attraction 

of prey (Haddock et al., 2010). Amongst the fireflies, bioluminescence is heavily 

implicated in mating behaviors, allowing for flash synchrony, intensity and the flashing 

patterns characteristic of fireflies (Lloyd, 1983), although it has been noted to be also 

involved in predator deterrence, whereby lucibufagin compounds in fireflies are 

distasteful and toxic to predators, who associate this with light emission (Eisner et al., 

1978; Knight et al., 1999). 

 

Biochemically, the FLuc has not only been associated with bioluminescence, it has been 

noted to be implicated in alternative pathways which highlight the potential origins of 

bioluminescence within these insects. FLuc is homologous to common fatty acyl-CoA 

synthetase enzymes (Oba et al., 2003) and when taken together in combination with 

phylogentic studies suggests that FLuc arose from this family of super adenylating 

enzymes via gene duplication (Oba et al., 2006). Other enzymes belonging to this family 

of super adenylating enzymes includes iron-binding siderphores, gramicidin S, tyrocidine, 

penicillin, fatty acyl CoA ligase and 4-coumarate CoA ligase (Conti et al., 1996). 
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1.1.3. The Coleopteran Bioluminescent Reaction 

 

The core mechanism underlying bioluminescence interested researchers since the initial 

determination of the components and it was only until McElroy & Deluca in 1978 who 

proposed that the general scheme of the firefly bioluminescent reaction must be a 

multistep process, as outlined in equation 1.1, where the production of ‘cold light’ can be 

split into two processes utilising the substrates D-LH2, ATP (adenosine triphosphate), 

molecular oxygen and a metallic cation, commonly Mg2+. 

 

Beetle luciferase (EC 1.13.12.7), chemically acknowledged as luciferin 4-

monooxygenase, is classified as an oxidoreductase enzyme (White et al., 1971) and 

catalyzes the ATP-dependent conversion of the LH2, 2-(6-hydroxy-2-benzothiazolyl)-2-

thiazoline-4-carboxylic acid, into an electronically excited species. Characteristically, 

oxygenases typically involve the use of a redox prosthetic group and it is interesting to 

note that this is not such the case with firefly bioluminescent reaction. The core 

mechanism that underlies this conversion is a Sn2 nucleophillic displacement reaction 

(Marques and Silva, 2009).  

 

Equation 1.1. Bioluminescent Reaction of Beetle Luciferase  

 

 

 

 

 

 

 

 

 

 Key: *designates excited species; ATP: adenosine triphosphate; PPi: inorganic 

pyrophosphate; AMP: adenosine monophosphate; CO2: carbon dioxide; hv: photon 

 

1) Luciferase  +  LH2  +  ATP                  LH2-AMP  +  PPi 

 

2) LH2-AMP    +  O2                                       Luciferase-Oxyluciferin* +  AMP  +  CO2  

 

3) Luciferase-Oxyluciferin*                        Oxyluciferin  +  hv  +  AMP  
    

Mg2+ 
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The first step of the enzymatic reaction involves the binding of LH2 and Mg.ATP with the 

FLuc, and then an adenylation reaction which gives rise to an enzyme bound luciferyl-

adenylate (LH2-AMP). The oxygen of the carboxyl moiety within the thiazoline ring of 

LH2 is a nucleophile and a proton is transferred to the electrophilic moiety α-phosphoryl 

group of the ATP and it is this transfer that displaces inorganic pyrophosphate and 

couples the resulting adenylate to the LH2 (Marques and Silva, 2009).  

 

Following the formation of the LH2-AMP, the second step involves the incorporation of a 

single atom of oxygen and the decarboxylation of the LH2, where the intermediate reacts 

with oxygen leading to the production of a spin-singlet excited species, oxylucferin, CO2 

and AMP (White et al., 1971). It is considered that the loss of a proton at C4 resulting in 

the formation of a carbanion is a key step in this process and the nature of this loss is 

conjectured (Marques and Silva, 2009; Branchini et al., 2015). Whilst adenylation 

increases the pKa of the C4 and is considered to be a defining factor for this loss of a 

proton, it is also considered that an enzymatic base may function to catalyse this removal 

(Branchini et al., 1998). As a carbanion, it is highly reactive and will rapidly undergo 

nucleophilic attack of molecular oxygen resulting in a hydroperoxide (Marques and Silva, 

2009). Subsequently, the hydroperoxide undergoes an internal nucleophilic attack which 

generates a four membered cyclic intermediate, termed the LH2 dioextanone, resulting in 

the displacement of the AMP (Marques and Silva, 2009). Throughout all luminescent 

reactions, the LH2 dioextanone is a key intermediate for all bioluminescent emitters since 

the spontaneous decarboxylation of this energy rich moiety releases the some 0.2kJ/mole 

(with regards to Ppy FLuc) which is concurrent with the energy required to generate the 

high yield singlet excited state oxyluciferin, CO2 and AMP (Wilson and Hastings, 1998). 

The mechanism for this is by a postulated chemically initiated electron exchange 

luminescence (CIEEL) (Figure 1.1) (McElroy and Hastings, 1955; White et al., 1971; 

Koo et al., 1980). Bioluminescence is emitted as the excited oxyluciferin rapidly relaxes 

to the ground state, with the concurrent release of a photon of light emitting at an λmax 

circa. 550-560nm corresponding to yellow-green light (McElroy and Seilger, 1961). 
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Figure 1.1. Chemically Initiated Electron Exchange Luminescence (CIEEL) 

 

a.  

 

 

 

 

 

 

b. 

 

 

 

 

 

 

 

 

c. 

 

 

 

 

 

Mechanism for CIEEL. a. Adenylation of D-LH2 via the displacement of PPi from ATP 

forming D-luciferyl-adenylate. b. Proton loss from D-LH2-AMP leads to the formation of a 

reactive carbanion able to undergo nucleophillic attack of molecular oxygen. The resulting 

hydroperoxide undergoes subsequent internal nucleophilic attack to the electrophilic carbon 

displacing AMP, producing a cyclic dioxethanone ring. c. Spontaneous oxidative 

decarboylation of the dioetanone produces an excited state oxyluciferin able to decay to 

ground level. (Marques and Silva, 2009).  
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While some reports suggest that it is only when oxyluciferin is dissociated from the 

enzyme that bioluminescence may be emitted, it is more commonly believed that the 

oxyluciferin must remain bound to FLuc during decay (Gandleman et al., 2010). This is 

understood on the premise that a dissociated excited species, free within a solvent, would 

non-radiatively decay resulting in an absence of light emission. 

 

1.1.4. Structure of Firefly Luciferase 

 

Following the crystallisation of FLuc (Green and McElroy, 1956), the X ray structure was 

finally solved to a 2.0Å resolution in 1996 (Conti et al., 1996). Further study of the 

enzyme and its structure has greatly expanded our understanding of not only the fold of 

the protein, but enabled the elucidation of the mechanism of bioluminescence.  

 

FLuc has an unusual fold shared with the acyl-CoA ligases and is grouped into two major 

domains linked via a four residue loop. The secondary structure of the N- terminal 

domain lies between 1 and 436 amino acid residues and is composed of a ß barrel, two ß 

sheets, two ß strands and three α helices (Conti et al., 1996). The C- terminal domain on 

the other hand is the smaller of the two domains and lies between 440-550 amino acid 

residues and is comprised of five ß-strands and three α-helices (Conti et al., 1996) (Figure 

1.2.).  

 

The sequence of the gene encoding FLuc, and more specifically FLuc isolated from Ppy, 

contains 1976bp genomic DNA (Wet et al., 1987), translating into 550 amino acid 

residues. The gene itself is shorthanded to luc however, in this Thesis, this abbreviation 

may also refer to the enzyme itself (as Branchini et al., 2001). 

 

Generally, proteins have a maturation time during which the polymer of amino acids 

comprising the proteins folds into the correct functioning structure.  In the case of FLuc, 

this maturation time has been deduced to be small since the first 190 residues fold co-

translationally and the rest of the polypeptide folds rapidly on release from the ribosome 

(Svetlov et al., 2007).  
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1.1.4.1. The Firefly Luciferase Active site and Catalysis 

The active site itself, responsible for the binding of the substrate and the co-factors lies 

between the two domains (Conti et al., 1996). In the unbound state, the two domains are 

relatively far apart (Conti et al., 1996) as such, it is generally considered that due to the 

small but highly flexible linker between the two domains, once there is binding of the 

substrate, the protein effectively “sandwiches”, bringing the two domains within closer 

proximity and closing around the substrates (Conti et al., 1996) (Figure 1.3). This closed 

conformational state of the protein holds the benzothiazole ring of the LH2 in a 

hydrophobic pocket allowing for deprotonation within the active site of FLuc (Figure 

1.3), resulting in higher intensity than chemiluminescence of the same substrates (Thorne 

et al., 2010). In fact, it has been shown that the complete removal of the C- terminal 

domain while luminescence can still be observed, the N- terminal domain continues to 

bind the substrates with a lesser affinity and overall  bioluminescence is a mere 0.03% to 

that compared to the non-truncated structure (Zako et al., 2003). 

 

The superfamily to which the FLuc belongs utilizes a domain alternation catalytic 

strategy whereby the first adenylation is conducted via one conformation whilst the 

second decarboxylation reaction is conducted within an alternative conformation (Gulick 

et al., 2003; Reger et al., 2008). Following adenylation, there is a 140O rotation of the C- 

terminal domain which allows the second conformation to be utilized for reaction 

purposes (Figure 1.3). This feature has been confirmed to take place within FLuc both via 

biochemical means (Branchini et al., 2000; Branchini et al., 2005) and structural 

methodology (Sundlov et al., 2012).  

 

The active site itself, responsible for the binding of the substrate and the co- factors which 

are required for bioluminescence, may be elucidated via identification of conservation 

between the superfamily of adenylating enzymes (Marahiel and Stachelhaus, 1997). 

Amongst this family, the active site is comprised of 10 conserved regions termed the A1-

A10 motifs (Marahiel and Stachelhaus, 1997) and these motifs are important in either or 

both the adenylation and decarboxylation reactions. The specifics of the residues 

comprising the FLuc active site have not been conclusively determined however within 
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the last decade there has been much progression that has been made within this field 

which began with the development of a working model of the FLuc active site based on 

the X-ray structure of the enzyme without bound substrates (Branchini et al.,1998). Based 

on this working model, LH2 binding studies have identified positions which may be 

involved in the active site of FLuc (Branchini et al., 2003). Site directed mutagenesis was 

conducted to mutate 15 potential active site residues which were positioned within 5Å 

from the active site. Characterization of these mutants identified that 12 had altered 

binding affinities for LH2.  Residues that have been further characterised include Lys 529, 

Thr 343 and His 245 (Branchini et al., 2000). Lys 529, a particularly well conserved 

residue appears to be critical in determining correct orientation of the substrates since it 

provides beneficial polar interactions (Branchini et al 1998).   
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Figure 1.2. Secondary Structure of Firefly Luciferase  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Secondary structural elements within firefly luciferase (Conti et al., 1996). The 

overall secondary structural elements are highlighted coloured via subdomains. Arrows 

are representative of β-strands and are numbered in order whilst circles are representative 

of the α-helices and are also numbered in order. All secondary structure elements were 

determined with the database of secondary structure assignments (DSSP).   
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Figure 1.3. Changes in the structure of luciferase promoted by conformational changes as a 

result of substrate binding 

 

 

 

 

  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conformational changes of luciferase sub-domains during catalysis. a) Open 

conformation b) Adenylate forming conformation c) Second catalytic conformation. On 

binding of the substrate within the hydrophobic pocket (red) the C- terminal (cyan) moves 

down on top of the N- terminal (purple) pocket and following adenylation, rotates 140o to 

undergo further catalysis. Image generated via VMD using PDB files ID: 1LC1, 4G36, 

4G37. 
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1.1.5. Characteristic Kinetics of Firefly Bioluminescence  

 

FLuc exhibits a characteristic profile of light output over time in the presence of the 

substrates at saturating conditions (DeLuca and McElroy, 1974; Ugarova, 1989) wherein 

there is an initial flash followed by a steady-state glow (Figure 1.4.). These kinetics arise 

due to the conformational changes that occur within the enzyme in combination with end 

product inhibitors of the reaction. Prior to the production of light, there is an initial lag 

time which lasts for ca. 25ms, which was initially hypothesized to be due to the 

independent binding of the substrates, ATP and LH2 after which a ternary complex is 

achieved and it is this that allows for a rapid rise to the peak intensity (Imax) at 300ms 

(DeLuca, 1976) .  However, a prominent study investigating these characteristics 

concluded that oxygen addition was a key step to this rapid rise in activity and that the 

initial lag was a result of two rate limiting conformational changes occurring during the 

formation of the adenylate to enzyme complex (DeLuca and McElroy, 1974). It is 

hypothesized that the conformational changes that occur place the enzymatic proton 

acceptor close to the 4C of the LH2-AMP in readiness for the abstraction of the proton 

(Branchini et al., 1998) along with the movement of the two domains to enclose the 

substrates within the active site (as discussed previously see Section 1.1.4.). 

 

The characteristic flash kinetic wherein following the rise to Imax, there is a rapid decay 

in light output, is primarily due to end product inhibition promoted by oxyluciferin.  

However inhibition by oxyluciferin does not wholly account for the rapidity of decay 

observed (Ugarova, 1989). The decay can be considered as a multistep process, due to 

this initial inhibition by oxyluciferin in combination with dark reaction products of FLuc, 

the potent inhibitor dehydroluciferyl adenylate (Lemasters and Hackenbrock, 1977). 

Secondly, bioluminescence, although reduced, continues as a factor of various 

inactivation pathways in combination with the amount of remaining LH2 (DeLuca and 

Mc Elroy 1974; Brovoko et al., 1994). 
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Figure 1.4 Typical flash kinetic observed during luciferin-luciferase mediated reactions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Characteristic profile of light observed during initiation of the bioluminescent 

reaction.  Bioluminescent activity measured over 30s from wildtype Ppy FLuc 

(WTFLuc) in the presence of the substrates ATP and LH2, at saturating conditions. Peak 

activity observed occurring prior to 1s with an Imax of 4.8E+06 RLU with subsequent 

rapid decay as a result of end product inhibition along with other inactivation pathways.  
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1.1.6. Further Reactions of Firefly Luciferase 

 

The activity of FLuc, most likely due to its ancestry, has applications not only restricted 

to the bioluminescence pathway. Due to the heritage of the enzyme, FLuc can act as an 

acyl-CoA synthetase, and this function appears to be is vital in certain of the side 

reactions. Indeed, its known activities also are now involved in the LH2 synthesis 

pathway, production of the inhibitor dehydroluciferin and may convert long chain fatty 

acids into fatty acyl-CoA (Nakamura et al., 2006; Fontes et al., 199; Fraga et al., 2005; 

Oba et al., 2003).  

 

LH2, has two potential enantiomers, the D- and the L-LH2. The specific chirality has been 

described to be critical for bioluminescence, since beetle FLucs show high 

bioluminescence specificity with the D enantiomer whilst the L enantiomer acts as a 

competitive inhibitor for the reaction (Seliger et al., 1961; White et al., 1961; McElroy 

and Seliger, 1962). FLuc can utilize its acyl-CoA synthetase function to convert L-LH2 to 

luciferyl-CoA (Nakamura et al., 2005). As such, it is considered that both the D- and L-

LH2 substrates inhibit the reaction of its corresponding enantiomer. 

 

Luciferase is involved in the generation of D-LH2 by slow stereoisomerisation of L-LH2.  

Niwa et al (2006) considered that the biosynthetic pathway of D-LH2 may be formed 

from L-cysteine and provided evidence suggesting that firefly luciferase mediated the 

steroisomeration of L- LH2 into D- LH2 using CoA. As previously discussed, as a CoA 

ligase, FLuc may act upon L-LH2 giving rise to racemic luciferyl-CoA which 

subsequently could yield both forms of the substrate.  

 

As noted previously (see Section 1.1.5), typically FLucs display a characteristic profile of 

light emission however there are mechanisms whereby this kinetic may be altered. The 

production of inhibitor dehydroluciferyl adenylate may be released from FLuc, lifting 

inhibition via the addition of CoA (Airth et al., 1958; Fontes et al., 1998). It is considered 

that FLuc itself may catalyse both the adenylation of the dehydrolucferin and the 

subsequent conversion into deyhroluciferyl- CoA (L-CoA), removing AMP, whose 
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adenosine moiety blocks the access of substrates to active site. L-CoA whilst an inhibitor 

of the reaction, is substantially less potent than the initial LH2 derivative (Ford et al, 

1995). This being the case, CoA lends itself to utility within applications requiring 

sustained light output. D- LH2 inhibits the luciferyl-CoA synthetase activity of L-LH2. 

 

The complexity of the reactions in which FLuc may take part can be further broadened to 

those reactions involved in the synthesis of dinucleoside polyphosphates, able to catalyze 

the transfer of a nucleotidyl moiety via nucleotidyl-containing intermediates, with release 

of pyrophosphate. This reaction is considered as part of the pathway involving the 

formation of dehydroluciferyl adenylate since it appears to act as an intermediate for the 

synthesis nucleoside polyphosphates (Sillero and Sillero, 2000).  

 

1.1.7. Bioluminescence and Colour Modulation 

 

Conventional bioluminescence of Ppy WTFLuc typically emits with a peak emission 

(λmax) of 550nm-560nm corresponding to yellow-green light and is pH-dependent 

(McElroy and Seilger, 1961). However alterations in this colour of emission in nature and 

by protein engineering are common and the mechanisms contributing to such variations 

are wide ranging. 

 

1.1.7.1. The Bathochromic Shift of Firefly Luciferase 

The bathochromic shift is characteristic of WTFLuc in response to denaturation, wherein 

the light emission from the emitter broadens and becomes red-shifted either due to low 

pH, high temperature or the presence of heavy metals, denaturants and other various ions. 

This effect is noted wholly within FLuc and does not extend to other beetle luciferases 

such as click beetles and railroad worms indicative that the bathochromic shift is a protein 

mediated event. It is considered that in order for this effect to occur, there must be at least 

two different conformations of the protein within altered environments of the emitter. 

Mutagenesis studies identified that binding of ATP may be critical to this effect, 

highlighting that stabilization made via interaction by the 2’ hydroxyl of ATP may favour 

green light emission (Tisi et al., 2002). It is also noted that in the unbound state, there is a 
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salt bridge set up between residues R437 and E455 (Tisi et al., 2002) and denaturation 

disrupts these interactions and perhaps alter the ability of ATP to bind correctly (Tisi et 

al., 2002). 

 

1.1.7.2. Bioluminescence Emission Colour Mechanisms 
The colour of bioluminescence may be modulated by FLucs, with wide shifts from λmax 

560nm to 610nm for Ppy FLuc and the mechanism for this has been heavily studied.  

 

The colour-shifting mechanism can be categorized into one of two separate types of shift, 

shifts caused by specific or non-specific effects on the emitting species. Specific effects 

comprise those spectral changes whereby there is a change in the spectral full width at 

half maximum (FWHM), whilst nonspecific effects are those whereby there is a no 

change in the spectral FWHM however there is change in the peak emission (Ugarova 

and Brovko, 2002). These effects can be invoked by different mutations in the structure 

of FLuc. 

 

Specific effects whereby the spectra narrows or broadens are due to the degree of 

freedom of the oxyluciferin emitter and provides information on the variable forms that 

the emitter may take. The spectral shape has a predominant peak corresponding to the 

most common form of the emitter state of the oxyluciferin however surrounding this peak 

there is an asymmetrical distribution attributing to the other various potential emitting 

species. Bandwidths that are narrower have greater specificity, rigidity of the emitter and 

tend to have higher stabilization within the active site. Specific effects are due to direct 

stabilization of LO* emitter forms via acid-base interactions, H-bonds or electrostatic 

interactions. Changes as a result of nonspecific effects are considered to be due to 

solvent-like global shifts of all emitter forms (Ugarova, 2008).  Non-specific effects have 

been described in terms of orientation polarizability of the emitter(s) (Ugarova and 

Brovko, 2002).  

 

Specific effects can also be sub-categorised. Branchini et al (2004) have proposed a 

model based on the observations made by White et al (1980) in which it is considered 
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that there are two forms of the emitter, the keto and enol forms of the 4-hydroxyl of LO*. 

However, various other studies have concluded that this theory is unsupported (Branchini 

et al., 2002; Nakatani et al., 2007).  5,5-dimethylluciferin was utilized which blocks 

enolization of the emitter and this led to red or green emission. Utilising a 2-(4-toluidino) 

naphthalene-6-sulfonate probe it was identified that the LH2 binding site is polar when 

emitting red shifted bioluminescence when compared to green-yellow emissions. This 

suggests that the keto form of the excited oxyluciferin is the true emitter whilst the colour 

of emission is modulated by the 6'-hydroxy group of oxyluciferin interacting with basic 

residues (specific effect) and the polarity of the active site (non-specific). Branchini 

proposed and alternative hypothesis termed the resonance-based charge delocalisation 

mechanism to explain differences in colour and this has been supported by quantum 

mechanical calculations and recent chemical evidence (Jathoul et al., 2014). 

 

1.1.7.3. Modulation of Colour Utilizing Luciferin Analogues 
Bioluminescence may be modulated simply via the utilization of analogues of the LH2 

substrate (Sun et al., 2012). Various LH2 analogues have been synthesized which have 

inherently altered emission. Jathoul et al. (2014), synthesized a dual color, far-red to 

near-infrared analogue by increased conjugation within the LH2. Similar to native LH2 it 

exhibits pH dependent spectra and emits differently dependent on the mutant FLuc 

enzymes with a maxima of up to 706nm. Aminoluciferin (White et al., 1966) is another 

analogue with which FLucs typically emit red shifted light with a higher catalytic 

efficiency (kcat/KM) than native LH2. 

 

. 

1.1.8. Current Protein Engineering Strategies Utilized for Improved Characteristics 

of Firefly Luciferase 

 

WT Ppy FLuc is highly thermolabile (Tisi et al., 2002). In addition to this, WT has a half-

life of  3-12 hours (Auld et al., 2009), which is advantageous for investigating dynamic 

responses in gene reporter systems, is a disadvantage for in vitro diagnostics since the 

protein activity is heavily dependent on the environment in which it is used. This 
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instability has impeded its utility within academia and industry, in particular, instability 

of this enzyme towards environmental factors, such as temperature and pH. Stabilizing 

compounds can in part ease these issues, but protein engineering strategies have been 

extensively employed to overcome these fundamental issues with FLuc. Strategies that 

have been employed through mutagenesis efforts range from substitution mutagenesis to 

chimerisation of different enzymes and have led to the development of a bank of FLucs 

with altered emission peaks, enhanced activities and greater stability towards temperature 

and also common inhibitory agents, such as pH, the presence of solvent, ions and other 

denaturants (White et al., 1996; Tisi et al., 2002; Law et al., 2002; Jathoul et al., 2012; 

Branchini et al., 2014).  

 

Substitution mutation strategies have given rise to mutants with wide ranging 

characteristics, e.g. kinetics, spectra and enhanced stability by screening of mutant FLucs 

expressed within bacterial colonies aimed to identify desirable mutants. Novel mutants 

are not limited to changes close to the active site of the protein, but involve a myriad of 

mutations occurring throughout the protein from the core to the outer surface. For 

example, changes to the outer surface can cause non-specific effects on the emitter while 

leaving the catalytic activity unperturbed (Ugarova and Brovoko., 2002; Law et al., 

2006). In addition to this, the Luc genes have been manipulated via codon optimisation 

for increased expression within bacteria or human expression systems or cells (Sherf and 

Wood, 1994; Davies et al., 2010). 

 

Thermostabilising mutations have revolutionized the applications of FLuc. Historically, 

thermostability refers to thermodynamic stability which reflects the initial and final states 

of a protein and is commonly expressed as Gibbs free energy of unfolding. However the 

term is now commonly used with reference resistance to thermal inactivation of FLuc, 

meaning stability to high temperatures is conferred, but this may be heavily influenced by 

both kinetic stability, which is a measure of the activation of free energy and 

thermodynamic stability, is a measure of unfolding of the protein at equilibrium either 

due to heating or denaturant inclusion.  
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Improvements made to the stability of enzyme, as is often seen amongst other proteins, 

typically involve a trade-off between thermostability and activity (White et al., 1996; 

Jathoul et al., 2012) that by improvement of thermostability, the rigidity imposed upon 

the protein can reduce the activity or the catalytic efficiency. This trade-off is normally 

compensated by running the reaction at higher temperatures. The impact of 

thermostabilising mutations can also alter the landscape of protein folding and prevent 

aggregation.  

 

Ultra-Glo, as patented by Promega (Promega Corp., Madison, WI, USA), is suggested to 

contain up to 27 mutations within Photuris pennsylvanica luc (Amit Jathoul, PhD Thesis, 

University of Cambridge, 2008) and is considered as one of the most thermostable FLucs 

engineered to date (Hall et al., 1999). As a result of directed evolution, whereby selection 

was based on a number of criteria including overall bioluminescence, thermostability and 

quantum yield, the mutagenesis methodologies employed to give rise to extensive 

libraries on which selection could be made included site directed mutagenesis and DNA 

shuffling. Throughout characterization a mutant was isolated able to tolerate 50oC for a 

total of 5 days whilst kinetically the mutations had had no impact on the catalytic 

mechanism and as such, additional investigation was conducted to isolate mutants 

whereby selection was based on product inhibition reduction through which Ulta-Glo was 

discovered.  

 

Characteristically, Ultra-Glo is highly stable, able to withstand 65oC for up to 5 hours, 

has high affinity for the LH2 substrate and over time has a higher overall light yield in 

comparison to its predecessors (Hall et al., 1999).  Whilst Ultra-Glo has a predominantly 

lower flash kinetic, the decay of signal is also reduced showing that Ultra-Glo is more so 

resistant to product inhibition (Hall et al., 1999).  

 

1.1.8.1. The Development of Thermostable and pH Tolerant Ppy, x11Fluc 

Combinations of mutations have previously been shown to amplify the characteristics 

caused by individual substitutions.  E354K and E354R were both implicated in increasing 

thermostability (White et al., 1996) considered to be due to a loss of the negative charge 
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at this position. These mutations may also have a role in stabilization of the active site 

since E354I caused a red shift in the peak emission (White et al., 1996). Further work 

then identified thermostability mutations D357Y and D357F (White et al., 2002). 

Combining these gave rise to mutants E354R/D357Y and E354I/D357Y. Despite 

similarities in their makeup, E354R/D357Y termed x2FLuc (Table 1.1.) resisted the 

bathochromic shift at low pH whilst E354I/D357Y was red-shifted with wider bandwidth 

throughout all pH values. 

 

Further thermostabilised mutants have been developed with the  hypothesis that reduction 

in the burial of hydrophilic residues that there would be an increase in the packing of the 

enzyme (Prebble et al., 2001) and through combinations of residues identified as either 

hydrophobic and hydrophilic, x4FLuc was developed (Tisi et al., 2002) containing 

mutations T214C, I232A, F295L E354K, which enhanced thermostability and resistance 

to bathochromic shift, albeit with lower specificity activity and kcat and an increase in the 

KM for the LH2 substrate compared to WTFLuc. 

 

In 2002, Law et al utilized positions previously identified to confer thermostability when 

mutated to alanines (Tisi et al., 2001) and substituted these positions to other residues. 

Specifically, the residues selected were surface exposed and initially hydrophobic which 

throughout the study were mutated to hydrophilic residues. It is suggested that mutations 

of this fashion would increase the surface polarity. One mutant was derived from the 

study and termed x5 containing mutations F14R, L35Q, V182K, I232K and F465R 

(Table 1.1). x5 was more resistant to thermal inactivation at higher temperatures than 

previous mutants, without an increase the KM for the substrate or lowered specific activity 

compared to WTFLuc derived from Ppy.  

 

Further work led to the development of x12FLuc (Table 1.1), an enzyme constructed by 

combination of the x2, x4, and x5 mutations and with 1 additional mutation. This mutant 

was not only resistant to thermal inactivation (retaining 85-90% of initial activity after 1 

hour at 40ºC whilst x2 and x4 were reduced to 75-80% and x5 reduced to 20%), but was 

also more tolerant to alterations in activity with fluctuations in pH, with 80% of 
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maximum activity retained by the enzyme over a pH range of 6.6-8.6 (Jathoul et al., 

2012). It must be noted that all these mutants were more stable than the WT which 

rapidly deactivates within 10 minutes at the same temperature.  

 

Following on from this work, two revertants of x12FLuc were made: T214C and F295L 

(Jathoul et al., 2012). Whilst the T214C revertant showed little dissimilarity to the 

template x12, F295L had a lower KM for LH2, a higher kcat and a resulting higher kcat/  KM 

ratio. The enzyme was termed x11 firefly luciferase (x11Fluc) (Table 1.1) and in 

summary contains 11 mutations, 9 surface and 2 internal mutations exhibiting KM of 

3.7±0µM for LH2, compared to 18±1µM for the WT. The specific activity in particular 

was two-fold higher than x12FLuc whilst still retaining similar activities at both 40 ºC 

and 50 ºC. An enzyme such as this has wide ranging implications since it is more 

beneficial compared to previous mutants in terms of sensitivity at elevated temperatures, 

for example as an in vivo reporter gene for studies in mice. 
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Table 1.1. Summary of mutants involved in the development of x11FLuc (modified from 

Jathoul et al., 2012) 

Mutation  Mutants 

x2 x4 x5 x11 x12 

F14R   + + + 

L35Q   + + + 

A105V    + + 

V182K   + + + 

T214A  +    

T214C    + + 

I232A  +    

I232K   + + + 

D234G    + + 

F295L  +   + 

E354R +   + + 

E354K  +    

D357Y +   + + 

S420T    + + 

F465R   + + + 

Summary of Mutants involved in the development of x11FLuc. Mutations present 
within each of the 4 mutants, x2FLuc, x4FLuc, x5FLuc, x12FLuc which were precursors 
to x11FLuc are presented for comparison to x11FLuc.   
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1.1.9. Applications for Bioluminescence 

 

Today, light emitting systems are used as indispensable analytical tools in various fields 

of science, technology and medicine from GFPs to phycobiliproteins to the 

bioluminescent proteins all of which have their own advantage and disadvantages. GFPs 

are heavily utilised as useful marker proteins due to the intrinsic fluorescence (Tsien, 

1998) whilst phycobiliproteins, proteins covalently linked to a fluorescence group, are 

employed for use in flow cytometery amongst others (Telford et al., 2001). Currently, 

bioluminescence is key in a variety of fields and improvements to this system has been 

actively pursued. This popularity of luminescence has become more prominent since 

unlike fluorescence it requires no energy for excitation allowing for imaging of deep 

tissues (DeLuca and McElroy, 1978; Jathoul et al., 2014), it is non-toxic in mammalian 

cells, it can deliver a high signal to background ratio providing a highly sensitive assay. 

Such applications include but are not limited to; High Through-Put Screening (HTS) 

assays, pyrosequencing, in vivo imaging and as a reporter for gene expression (Ronaghi, 

2001; Branchini et al, 2009; Taurianen et al., 2000). The degree to which luminescence 

systems have been implicated in new technologies may be demonstrated by the circa. 420 

bioluminescent assays listed within the PubChem database, approximately, 21% of the 

total assays listed.  

 

Red shifted variants of FLuc tend to have lower quantum yields of bioluminescence, 

however, use of bioluminescence for bio imaging is becoming an important tool due its 

high sensitivity, which is part due to high signal to noise ratios in vivo. As discussed, the 

limitation of FLuc bioluminescence for in vivo imaging due to the restriction imposed by 

the D-LH2 substrate whereby haemoglobin in mammal tissues absorbs visible 

wavelengths below 600nm and this reduces the effectiveness of the native system as in 

vivo imaging tool in deep tissues. To overcome the restricted wavelengths of emission of 

native LH2, novel LH2 analogues have been synthesized to incorporate extra conjugation 

with the resulting molecule giving emission shifted into the near infra-red (Iwano et al., 

2013; Jathoul et al., 2014).     
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1.1.9.1. Firefly Luciferase as ATP Sensors 
There are many differing methods in the quantification of ATP such as QUEEN 

(Yaginuma et al., 2014), a genetically-encoded ratiometric fluorescent ATP indicator, 

however to date, FLuc bioluminescence remains to be the most sensitive, reliable and 

most practical technique (Branchini et al., 2015). FLuc is sold commercially as a 

sensitive and accurate assay for ATP and it is able to detect ATP down to femtomolar 

(10-15 M) concentrations. This ATP-sensing behaviour is important in a plethora of 

technologies.  

 

A common use for luciferase-based ATP quantification within the commercial sector is in 

continual hygiene monitoring practises within a number of industries, ranging from 

restaurants to hospitals to those companies involved in the manufacture of food. ATP 

quantification has been adopted by these industries in the measurement of bacterial 

contamination since ATP is the universal energy carrier of cells and indicates the 

presence of microbes. To this end, all hygiene monitoring tests based on this principle 

inevitably also test not only for bacteria, but also other contaminating substances such as 

the presence of blood or food matter. 
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1.2. Dogma and New Directions in Firefly Luciferase Protein Engineering 

 

1.2.1. The Central Dogma  

 

Within nature there is an abundance of proteins which are diverse in their sizes, shapes 

and functionality. Principally these proteins are comprised of 20 natural amino acids, and 

the central dogma dictates that DNA is converted to mRNA which encodes the exact 

sequence of amino acids that comprise the polypeptide chain, which ultimately dictate the 

structure, folding and subsequent function of the protein. This inherent structure, folding, 

function relationship allows the modification of proteins, which not only has enabled the 

elucidation of underlying mechanisms to determine protein function, it has led to the 

development of the field of protein engineering.  

 

1.2.2. Protein engineering 

 

Protein engineering, has been crucial for the construction of novel variants of many types 

of enzymes in biotechnology, lending itself to the redesign and improvement of existing 

catalysts in research and industry (Brannigan and Wilkinson, 2002; Baldwin et al., 2008). 

Additionally, it has acted as a tool to understand the mechanisms through which enzymes 

function (Brannigan and Wilkinson, 2002) and is quoted to be “an extremely powerful 

tool” within fields concerned with the link between sequence, structure, folding and 

function (Price and Nagai, 2002).   

 

1.2.3. Strategies for Protein Design and Engineering 

 

It is commonly understood that there are two major methods by which proteins can be 

adapted to generate new variants: rational protein design or directed evolution. Both of 

these methods have their limitations as well as advantages (Lutz and Patrick, 2004), for 

example rational site-directed mutagenesis (SDM) requires prior structural knowledge of 

the protein while directed evolution requires the construction of extensive libraries 

containing many different variants of the protein being studied. Despite this limitation, 
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following the generation of a library of variants, screening those proteins with desired 

characteristics to identify beneficial mutations makes directed evolution a very powerful 

tool in the adaptation of proteins. Conventional methodologies that have been employed 

in generating such mutants include; random mutagenesis (Koksharov and Ugarova, 

2008), DNA shuffling (Maguire et al., 2010) and to a lesser extent circular permutation 

(Osuna et al., 2002), a technique involving the intramolecular relocation of the N- and C-

termini of a protein and yet to date mutagenesis involving insertions and to a greater 

extent deletions are rarely employed. 

 

In nature, the insertion and deletion (InDel) mutations are some of the most common 

stressing that this type of mutation may be an important an evolutionary mechanism in 

nature and therefore may offer an alternative to the current tools utilized within the field 

of protein engineering (Taylor et al., 2004). Substitution mutations, which are most 

commonly utilized, affect only the side chain of the amino acid, allowing for diverse 

changes at the target site, however, the backbone of the protein remains unperturbed. 

Insertions and deletions on the other hand, inherently alter the backbone of the protein 

due to the addition or removal of amino acid residues and this is considered to be far 

more destabilsing to a protein. In addition to this, whilst the structure of a protein as a 

result of substitutions can largely be predicted by molecular visualization and analyses, 

changes as a result of the InDel mutations are difficult to predict with current software. 

However, in spite of these difficulties, whilst substitution mutations restrict the 

conformational space that a protein may assume, insertion and deletions allow for greater 

sampling and provide the potential for the development of novel variants.  

 

Proteins are thought to be less tolerant to deletions in comparison to the insertions since 

insertions can increase the conformational space, however, deletions may reduce it. 

However, within nature deletions occur up to three times more often than insertions 

(Zhang and Gerstein, 2003) and in light of this argument perhaps deletions are not so 

deleterious to function as once considered. This frequency for which deletions occur may 

be understood via understanding of the repair mechanism of DNA. Commonly a piece of 

ssDNA will loop out as a result of a change to the base pair sequence. The mismatch that 
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arises between the ssDNA and the complementary strand will tend to target the loop for 

cleavage promoting the deletion of base pairs.  

 

InDels of amino acids in certain locations of proteins are significantly well tolerated 

compared to other locations. At the level of DNA, firstly, InDels of nucleotides may 

promote a frame shift of the entire gene and this is far more deleterious to the 

functionality of the protein, however those InDels occurring in multiples of three base 

pairs, bypass such frame shifts. In addition to this, it is known that certain elements 

within the protein are more so tolerant to the registry shifts that occur as a result of such 

mutagenic methods. Loops are such an example owing to larger conformational 

flexibility in comparison to other structural elements whereby registry shifts are thought 

to impact the protein to a greater extent, as illustrated in Figure 1.5. Within secondary 

structural elements, where a single amino acid deletion occurs within a β-strand, the side 

chains shift to opposite faces of the strand, promoting the loss of previous interactions 

and the introduction of new interactions. Another registry shift that may occur is as a 

result of a single amino acid deletions within α-helices whereby as a result of a deletion 

there is a rotation in the position of the side chains. As discussed, the ubiquitous nature of 

InDels within nature, highlights the importance of InDels as part of evolution. For 

example, InDels within human antibodies against the HIV envelope protein are critical 

for the variety of epitope recognition sequences within its hypervariable regions (Kepler 

et al., 2014). Taken together, despite the dogma that amino acid deletions likely 

compromise the structural integrity of proteins, the potential novelty that may be 

imparted by deletions cannot be overlooked. Whilst substitution methodologies are 

heavily employed to develop new proteins, investigation into the utility of the InDels 

must be examined.  
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Figure 1.5. Registry shifts occurring as a result of a single amino acid deletions 
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The effect of single amino acid deletions within structural elements. a. Deletion within a loop 
cause a shortening of the loop. b. If there is a deletion within a β strand, the side chains shifts to the 
opposite face of the strand. c. Deletions within an α-helix cause a rotation in the position of the side 
chains.   
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1.2.4. Current Protein Engineering Incorporating Deletion Mutations 

 

In recent years, despite the dogma surrounding functionality of proteins following 

deletion mutations, new studies are confirming the utility of these mutagenic methods and 

highlight the importance of deletions. Indeed, proteins can benefit even when the deletion 

is within secondary structures. Simm et al. (2007) has encouraged this new outlook 

describing not only toleration of deletions within loops and secondary structures of TEM-

1 ß-lactamase, but an enhanced activity towards a ceftazidime substrate compared to the 

WT, displaying a 64-fold increase in activity of a deletion in P174. Similarly, deletions of 

six amino acids promoting a closer compacted state within Staphylococcal nuclease 

increases the catalytic activity and stability compared to the WT (Baldisseri et al., 1991).  

 

Directed evolution in combination with random single amino acid deletion sampling 

within eGFP has shown that certain deletions are tolerated throughout the protein, 

suggesting the beta-barrel fold remains intact despite deletions throughout it (Arpino et 

al., 2014). This study confirmed that loops, helical elements and the termini of strands 

were more tolerant to single amino acid deletion in comparison to other structures. In 

addition to this, a variant termed G4 displayed higher fluorescence due to a single amino 

acid deletion within α-helix. Structural analysis showed that a helical registry shift had 

resulted in a new polar interaction network, possibly stabilising a cis proline peptide 

bond, indicative that in some cases registry shifts are not detrimental to protein function.  

 

Incorporating extra such diversity into libraries via InDel approaches increases the 

potential for other strategies such as directed evolution whereby the power of the strategy 

is wholly reliant on the diversity of libraries to be screened. Shortle and Sondek (1995) 

stated, “although their effects are difficult to anticipate, insertions and deletions provide 

important tools for altering protein structures in directions not achievable by substitutions 

alone” (Shortle and Sondek 1995). 
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1.2.5. Deletions of Amino Acids within Firefly Luciferase 

 

As is the case for many proteins, whilst there are a plethora of FLuc mutants derived from 

substitution mutagenesis as has been previously discussed, there are no reported 

systematic studies which concern the FLucs with regards to the sampling of deletions. 

 

There are two main methods for the incorporation of single amino acid deletions within a 

protein, these include oligonucleotide based methods or a transposon based technique 

(Lutz and Patrick, 2004; Neylon, 2004).  

 

In the 1987, Gould et al conducted a study whose primary interest involved the 

movement of proteins throughout the cell and in the elucidation of peptide targeting 

signals in the transport of proteins into the peroxisomes. Since FLuc is naturally localized 

within peroxisomes of cells, the study utilized FLuc as a model for their study. By 

removal of up to 20 amino acids from the terminals of the protein, this study concluded 

that the signal peptide was no more than 12 amino acids in length and existed at the 

carboxy-terminus of the FLuc. Despite the generation of deletion mutants, due to the 

focus of this study centering on the transport system, no characterization of mutant 

proteins was considered (Gould et al., 1987). Other studies involving deletions within 

FLuc include the cumulative addition of deletion of amino acids MRSAMSGLH from the 

C- terminus of FLuc (Sala Newby and Campbell, 1994). Removal of up to seven of the 

C-terminal amino acids did not results in a complete loss of function, however, there was 

an increasing loss in activity when amino acids 8-12 were removed. Replacement of 539-

550 and 543-550 resulted in FLucs that displayed 22% and 35% of activity respectively.  

 

Further studies have investigated deletions within the N- terminal of FLuc (Sung and 

Kang, 1998; Wang et al, 2002). Deletion of amino acid residues 3 to 10 within the N 

terminal are noted to reduce the bioluminescent activity of the FLuc to less than 1% 

displayed by the WTFLuc (Sung and Kang, 1998). Additional investigations studying the 

deletion of the first six amino acid residues demonstrated a 29% loss in the 
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bioluminescent activity whilst deletion of an additional amino acid residue at position 7 

gave less than 0.5% of the original activity.  
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1.3. Aims and Objectives 

 

Owing to the importance of FLuc within academia, medicine and technology, 

development of ‘toolboxes’ of FLuc variants is highly desirable, for example, mutants 

with altered characteristics such as shifted spectral properties, enhanced stability in 

various assay conditions. Over the years, FLuc has been heavily engineered, however, to 

date, all existing mutants of FLuc were generated via SDM. The use of deletions as a 

method of improving FLuc appears to have been completely overlooked.   

 

The overarching aim of this project, is to employ single amino acid deletions within 

x11Fluc in order to address two questions. Firstly, if FLuc can tolerate single amino acid 

deletions and to what extent, and secondly, to identify those mutations which result in 

desirable characteristics such as increases brightness, altered colour and altered kinetics. 

Furthermore, screening methodologies will be optimised within this study with the aim to 

identify desirable characteristics from a large library of mutants, without the necessity of 

protein purification and for detailed characterisation.  
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Chapter 2 

Materials and Methods 

 

 

2.1. Materials 

 

2.1.1. Chemicals 

Deionised or MilliQTM (MQ) water were used throughout. Stock solutions of sterile 

ampicillin (Melford, Suffolk) or carbenicillin (Melford, Suffolk, UK) were made at 100 

mg/ml and filter sterilized with a 0.22 μm filter unit (Thermo Fisher Scientific, MA, USA) 

and were stored at -20oC. Stock solutions of sterile 1M isopropyl β-D-

thiogalactopyranoside (IPTG) (Melford, Suffolk, UK) were filter sterilized and stored at -

20 oC. Stock solutions of 31.4 mM D-LH2 (Europa Bioproducts, Ely, Cambridgeshire, UK) 

and 100mM ATP (Roche Diagnostics, IN, USA) (pH 7.8) were stored at -20oC prior to use. 

Both D-LH2 and ATP were diluted in ‘TEM’ buffer (100mM Tris-acetate, 2mM 

ethylenediaminetetraacetic acid (EDTA) and 10mM magnesium sulphate (MgSO4)). The 

pH of TEM buffer was adjusted with NaOH or acetic acid and stored as a 10x stock at room 

temperature (RT). Agarose (Melford, Suffolk, UK) was of molecular biology grade and 

prepared by boiling 1.0% (w/v) in TAE (Tris Acetate EDTA) (Sigma-Aldrich, St. Louis, 

MO, USA). For the purposes of colony screening, LH2 and ATP in TEM buffer was diluted 

in 0.1 M sodium citrate (pH 5.0) to various concentrations. 
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Figure 2.1. Plasmid Map of pET16b-x11FLuc 

 

 

 

 

 

Plasmid map of pET16bx11Fluc. AmpR encodes β lactamase; Luc encodes for the P. 

pyralis x11 Fluc luciferase gene; T7 is a promoter that produces high levels of transcription 

in the E.coli BL21 background; lacI encodes for the repression of the T7 promoter. 

Image generated using MacVector from sequenced pET16b-x11FLuc. 
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Figure 2.2. Detailed map of pET16b cloning/ expression region 

 

 

 

Cloning expression region of pET16b of the coding strand transcribed by T7 RNA polymerase as modified from Novagen pET16b 

manual (EMD Millipore Corporation, Darmstadt, Germany) highlighting the position and nucleotide sequences of the T7 promoter, 

lac operator, rbs, the N- terminal 10x His tag and T7 terminator. Position and identity of restriction sites included within this region 

are Bgl III, XbaI, NcoI, NdeI, XhoI, BamHI, Bpu1102 I. Figure adapted from Novagen (2011). 
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2.1.2. Bacterial Cell Strains and Plasmids 

 

Plasmids containing the relevant FLuc genes of interest were sourced; the two pET16b 

plasmids containing the WT and x11Fluc genes were kindly donated by Amit Jathoul 

(University of Cardiff, UK) (Figure 2.1.). pDEST17 containing the x2 insert was sourced 

from Erica Law. Both plasmids encode ampicillin resistance as a selection marker, with 

gene expression under the control of IPTG (Figure 2.2.). NEB 5-alpha Chemical Competent 

E. coli  (New England BioLabs Inc. (NEB), Ipswich), of genotype fhuA2∆(argF-lacZ)U169 

phoA glnV44 F80? (lacZ)M15 gyrA96 recA1 relA1 endA1 thi-1 hsdR17. E. coli 

BL21(DE3) (pLysS) strain of genotype F–, ompT, hsdSB (rB–, mB–), dcm, gal, λ(DE3), 

pLysS, Cmr were obtained from Promega (Madison, WI, USA).   

 

2.1.3. Bacterial growth media 

 

Lysogeny Broth (Melford, Suffolk, UK) was prepared by dissolving 20g/l of distilled 

water. LB Agar (Melford, Suffolk, UK) was prepared by dissolving 35g/l of distilled water. 

SOC prepared comprising Super Optimal Broth (10ml, SOB, Melford, Suffolk, UK) 

supplemented with filter sterilized 20mM Glucose (Melford, Suffolk, UK). All media were 

sterilized by autoclave at 121oC. Bacterial growth media were supplemented with 100μg/ml 

carbenicillin. 

 

2.1.4. Molecular Reagents 

 

Molecular biology reagents were obtained from Roche Diagnostics (USA), NEB (Ipswich) 

and Sigma Aldrich (St. Louis, MO, USA). Restriction enzymes and complementary buffers 

were obtained from NEB (Ipswich). DNA Ladder (1 Kb, NEB) was prepared to a final 

concentration of 100 ng/µl in deionised water and 1x loading dye (6x, New England 

Biolabs, MA, USA). A total of 5µl was loaded onto gels. Protein molecular weight markers 

were obtained from NEB and used according to the manufacturer’s protocol. Stock 10mM 

dNTPs solutions were prepared by premixing 4x individual 100mM NTP solution and 

diluted in water. 
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2.1.5 Oligonucleotide primers 

 

Stock solutions of all primers were prepared as a 100mM following supply as a lyophilised 

stock from Sigma and were reconstituted with ultra-high purity water. Short-term stock 

solutions of all primers were diluted to 10µM and as with longer term primers, all were 

stored at -20oCuntil required. 

 

2.1.5.1. Sequencing 

Primers (Table 2.1.), were utilized for use in sequencing throughout the whole study. 

 

2.1.5.2. Mutagenesis 

Primers (Table 2.2.), were utilized for incorporating the deletions within the luc gene within 

x11Fluc pET16b via site directed mutagenesis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Chapter 2 – Materials and Methods 

40 

 

Table 2.1. Sequence of primers used for sequencing 

 

Primer Notation Primer Sequence (5’-3’) 

pEXP-F 5’–TGCTCACATGTGCGTAGAGG-3’ 

DDJ013 5’CAGGGTTATTGTCTCATGAGC-3’ 

T7 Forward 5’-TAATACGACTCACTATAGGG-3’ 

T7 Reverse 5’- GCTAGTTATTGCTCAGCGG-3’ 

Sequence of primers used for sequencing. Primers are listed including the name of the 

primer and its corresponding sequence.  

 

Table 2.2. Primers Designed to Incorporate a Single Amino Acid Deletion at Specified 

Sites.  

Amino Forward Forward Primer Sequence Reverse Reverse Primer Sequence 
     
M1 FOR1 gaagacgccaaaaacataaagaaagg REV1 atgacgaccttcgatatggcc 
E2 FOR2 gacgccaaaaacataaagaaaggcc REV2 catatgacgaccttcgatatggcc 
D3 FOR3 gccaaaaacataaagaaaggcccg REV3 ttccatatgacgaccttcgatatgg 
A4 FOR4 tttctttatgtttttggcgtcttccata REV4 aaaaacataaagaaaggcccggc 
K5 FOR5 gtcttccatatgacgaccttcgatatg REV5 aacataaagaaaggcccggcac 
N6 FOR6 ggctcttccatatgacgacc REV6 ataaagaaaggcccggcac 
I7 FOR7 tttggcgtcttccatatgacgac REV7 aagaaaggcccggcac 
K8 FOR8 gtttttggcgtcttccatatgacga REV8 aaaggcccggcacca 
K9 FOR9 tatgtttttggcgtcttccatatgacg REV9 ggcccggcaccac 
G10 FOR10 ctttatgtttttggctgcttccatat REV10 ccggcaccacgctatcc 
     
L172 FOR172 cctcccggttttaatgaatacgat REV172 atgagatgtgacgaacgtgtacatc 
P173 FOR173 cccggttttaatgaatacgatttt REV173 tagatgagatgtgacgaacgtgtac 
P174 FOR174 ggttttaatgaatacgattttaaaccagaaa REV174 aggtagatgagatgtgacgaacg 
G175 FOR175 tttaatgaatacgattttaaaccagaaagc REV175 gggaggtagatgagatgtgacg 
F176 FOR176 aatgaatacgattttaaaccagaaagct REV176 accgggaggtagatgagatgtg 
N177 FOR177 gaatacgattttaaaccagaaagctttg REV177 accgggaggtagatgagatgtg 
E178 FOR178 tacgattttaaaccagaaagctttgat REV178 attaaaaccgggaggtagatgagatg 
Y179 FOR179 gattttaaaccagaaagctttgatcg REV179 ttcattaaaaccgggaggtagatgag 
D180 FOR180 tttaaaccagaaagctttgatcgtg REV180 gtattcattaaaaccgggaggtagatg 
F181 FOR181 aaaccagaaagctttgatcgtga REV181 atcgtattcattaaaaccgggaggtag 
K182 FOR182 ccagaaagctttgatcgtgac REV182 aaaatcgtattcattaaaaccgggag 
P183 FOR183 gaaagctttgatcgtgacaaaaca REV183 Tttaaaatcgtattcattaaaaccggg 
E184 FOR184 agctttgatcgtgacaaaacaatt REV184 Tggtttaaaatcgtattcattaaaaccg 
S185 FOR185 tttgatcgtgacaaaacaattgc REV185 ttctggtttaaaatcgtattcattaaaacc 
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F186 FOR186 gatcgtgacaaaacaattgcac REV186 Gctttctggtttaaaatcgtattcattaaa
D187 FOR187 cgtgacaaaacaattgcactg REV187 aaagctttctggtttaaaatcgtattca 
R188 FOR188 gacaaaacaattgcactgataatga REV188 atcaaagctttctggtttaaaatcgtattc 
D189 FOR189 aaaacaattgcactgataatgaattcc REV189 acgatcaaagctttctggtttaaaatc 
K190 FOR190 acaattgcactgataatgaattcctc REV190 gtcacgatcaaagctttctggtttaa 
T191 FOR191 attgcactgataatgaattcctctg REV191 tttgtcacgatcaaagctttctg 
     
T352 FOR352 ccccgcggggattataaac REV352 Aatcagaatagctgatgtagtctcagtg
P353 FOR353 cgcggggattataaaccg REV353 Tgtaatcagaatagctgatgtagtctca
R354 FOR354 gggattataaaccgggcg REV354 Gggtgtaatcagaatagctgatgtagtc
G355 FOR355 gattataaaccgggcgcg REV355 gcggggtgtaatcagaatagctg 
D356 FOR356 tataaaccgggcgcgg REV356 cccgcggggtgtaatc 
Y357 FOR357 aaaccgggcgcgg REV357 atccccgcggggtg 
K358 FOR358 ccgggcgcggtc REV358 ataatccccgcgggg 
P359 FOR359 ggcgcggtcggtaaagt REV359 tttataatccccgcgggg 
G360 FOR360 gcggtcggtaaagttgttcc REV360 cggtttataatccccgcg 
A361 FOR361 gtcggtaaagttgttccattttttg REV361 gcccggtttataatccccg 
V362 FOR362 ggtaaagttgttccattttttgaagc REV362 cgcgcccggtttataatc 
G363 FOR363 aaagttgttccattttttgaagcg REV363 gaccgcgcccgg 
K364 FOR364 gttgttccattttttgaagcgaag REV364 accgaccgcgccc 
V365 FOR365 gttccattttttgaagcgaagg REV365 tttaccgaccgcgcc 
V366 FOR366 ccattttttgaagcgaaggttg REV366 aactttaccgaccgcgc 
P367 FOR367 ttttttgaagcgaaggttgtg REV367 aacaactttaccgaccgcg 
F368 FOR368 tttgaagcgaaggttgtggatc REV368 tggaacaactttaccgaccg 
     
D520 FOR520 gaagtaccgaaaggtcttaccgg REV520 cacaaacacaactcctccgc 
E521 FOR521 gtaccgaaaggtcttaccggaaaac REV521 gtccacaaacacaactcctccg 
V522 FOR522 ccgaaaggtcttaccggaaaac REV522 ttcgtccacaaacacaactcc 
P523 FOR523 aaaggtcttaccggaaaactcg REV523 tacttcgtccacaaacacaactcc 
K524 FOR524 ggtcttaccggaaaactcgac REV524 cggtacttcgtccacaaacac 
G525 FOR525 cttaccggaaaactcgacgc REV525 tttcggtacttcgtccacaaac 
L526 FOR526 accggaaaactcgacgc REV526 acctttcggtacttcgtccac 
     
K543 FOR543 aagggcggaaagtccaaattg REV543 ggcctttatgaggatctctctgatt 
K544 FOR544 ggcggaaagtccaaattgtaaaat REV544 cttggcctttatgaggatctctc 
G545 FOR545 ggaaagtccaaattgtaa aatgtaactg REV545 cttcttggcctttatgaggatctc 
G546 FOR546 aagtccaaattgtaaaatgtaactggatc REV546 gcccttcttggcctttatgag 
K547 FOR547 tccaaattgtaaaatgtaactggatcc REV547 tccgcccttcttggc 
S548 FOR548 aaattgtaa aatgtaactggatccgg REV548 ctttccgcccttcttggc 
K549 FOR549 ttgtaaaatgtaactggatccggc REV549 ggactttccgcccttcttg 
L550 FOR550 taaaatgtaactggatccggctg REV550 tttggactttccgcccttc 

Sequence of primers used for mutagenesis. Primers are listed including the name of the 

primer and its corresponding sequence.  
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2.2. General Molecular Biology and Recombinant DNA Methods 

 

2.2.1. DNA Sequencing 

 

All colonies of interest were sequenced at the Cardiff University DNA sequencing core. 

Sample preparation and submission was carried out as to the specifications found online at 

http://probe.biosi.cf.ac.uk/seq/submitting_samples.php with primers specified previously 

(see 2.1.5. Sequencing). Chromatograms returned were analysed utilizing MacVector/ 

Serial Cloner.   

 

2.2.2. Purification of Plasmid DNA 

 

2.2.2.1. From E. coli cell cultures 

Plasmids were purified from <5ml of BL21 E.coli bacterial culture utilising kits obtained 

from Promega (Madison, WI, USA) Ltd as according to the manufactures protocol. The kit 

employs alkaline lysis of pelleted cells followed by 1-3M solution of sodium acetate, pH 5. 

DNA was eluted from the column using warm Milli-Q water.  DNA concentrations and 

degree of purity were estimated by applying 1µl volumes to the NanoDrop® ND-1000 UV-

Vis spectrophotometer (Thermo Fisher Scientific, MA, USA). When required, plasmid 

DNA was concentrated via use of a Speed Vac as per manufacturer’s protocol. 

 

2.2.2.2. From agarose gel 

Purification of DNA from agarose gel slices was performed using the NucleoSpin Gel and 

PCR Clean-up kit (Machery-Nagel). The DNA was subsequently washed and eluted from 

the column using warm Milli-Q water. When required, plasmid DNA was concentrated via 

use of a Speed Vac as per manufacture’s protocol. 
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2.2.3. Agarose Gel Electrophoresis 

 

DNA fragments were separated and analysed based on size via agarose gel electrophoresis. 

Agarose (1% (w/v)) was suspended in TAE buffer (40mM Tris-acetate pH 9.5 and 1mM 

EDTA) and melted before the addition with ethidium bromide (0.5μg/ml). A 1/6 dilution of 

a 6x stock solution loading buffer (Tris pH 8.0, 40% sucrose (w/v), 0.01% (w/v) 

bromophenol blue) was added to DNA samples prior to loading onto the gel. 

Electrophoresis was then performed at between 80-120V for 30 - 60 mins in 

complementary tanks containing 1x TAE. DNA bands were visualised using an UV-

transilluminator (GelDoc-It Imaging System, Ultra-Violet Products Ltd). For samples 

exceeding 20µl volumes, well casters were taped together to the desired volume. 

 

2.2.4. PCR with GoTaq polymerase 

 

GoTaq DNA polymerase (1.25 U) (Promega Ltd) was used to amplify DNA and was 

carried out in 50mM KCl, 10 mMTris-HCL pH 9.0, 0.1% (v/v) Triton X-100 and 1.5mM 

MgCl2 with 0.2mM dNTPs, 2M of each primer, template DNA (< 1-10 ng) made to a total 

volume of 50μl. Reactions were placed in a TC-412 thermocycler (Techne, MN, USA) and 

raised to 95oC for 10 min. The following cycle was repeated 30 times: the temperature was 

taken to 95oC for 30 sec for denaturation of the DNA: The temperature was dropped to 55-

65oC for 30 sec to allow the primers to anneal to the template DNA: The temperature was 

then taken to 72oC for 1 min/kb of template DNA to allow DNA chain to elongate by the 

polymerase. After 25 cycles the temperature was held at 72oC for 5 min to complete 

elongation before being held at 4oC until removed from the thermocycler. The reaction 

(2μl) was analysed by agarose gel electrophoresis (1.0% (w/v)).  

 

2.2.5. Site directed mutagenesis Phusion polymerase 

 

Phusion High Fidelity DNA polymerase (1 U) (Thermo Fisher Scientific, MA, USA) was 

used to amplify DNA according to a modified Quikchange (Agilent Technologies, CA, 

USA) protocol in order to introduce trinucleotide deletions into the x11Fluc template and to 
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amplify the whole plasmid (Figure 3.8). Non overlapping complementary mutagenic 

primers (Table 2.2.) were designed to miss the amplification of a trinucleotide, 

corresponding to the amino acid targeted for deletion.  Plasmids were amplified with 

mutagenic primers in a buffer containing 10mM Tris-HCL, pH 8.8, 50mM MgCl2 and 

0.1% (v/v) Triton X-100 with 0.2mM dNTPs, 2μM of each primer, template DNA (<1-10 

ng) made to a total volume of 50μl. Reactions were amplified in a TC-412 thermocycler as 

manufactures guidelines and raised to 98oC for 30 sec. The following cycle was repeated 30 

times: the temperature was taken to 98oC for 15 sec for denaturation of the DNA: The 

temperature was dropped to 55-65oC for 15 sec to allow the primers to anneal to the 

template DNA: The temperature was then taken to 72oC for 30 sec/kb of template DNA to 

allow DNA chain elongation by the polymerase. After 30 cycles the temperature was held 

at 72oC for 5 min to complete elongation before being held at 4oC until removed from the 

thermo cycler. The reaction (2μl) was analysed by agarose gel electrophoresis (1.0% 

(w/v)). As per Quikchange protocol, digestion of all reactions was underwent via the 

addition of 1µl Dpn1 directly to products of the SDM reaction and incubated for 1 hour at 

37 oC in order to remove adenomethylates E.coli (Dam+)-derived plasmids, that being 

template plasmids.  

 

2.2.6. Restriction digestion 

 

Dpn1 (1 U/μg DNA) (NEB) restriction digests were performed in 1 x CutSmart buffer 

(50mM potassium acetate , 20mM tris-acetate, 10mM magnesium acetate, 100μg/ml BSA, 

pH 7.9) in a total reaction volume of 50μl , and incubated at 37oC (1 hr/μg DNA). NdeI and 

NcoI were heat inactivated at 65 oC for 20 mins.  

 

2.2.7. Ligation 

 

DNA ligations were carried out using T4 DNA ligase (1μl/reaction) (NEB, MA, USA) in 1 

x quick ligation reaction buffer (66mM Tris-HCL, 10mM MgCl2, 1mM DTT, 1mM ATP, 

15% (w/v) PEG 6000, pH 7.6) (NEB, ). Ligation of an insert gene into a plasmid was 

performed using 50 ng of vector DNA with a 3-fold molar excess of insert in a total 
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reaction volume of 20μl. Recircularisation (intramolecular) ligation of linear DNA was 

performed with 50ng of the linear plasmid. Ligation reactions were incubated at 4oC 

overnight then the DNA was immediately transformed into competent cells. 

 

2.2.8. Preparation of electro-competent cells 

 

An LB broth (10ml) overnight culture was prepared from a single E. coli colony and 

incubated in a shaking incubator (200 rpm) at 37oC overnight. The 10 ml overnight culture 

was diluted into two 500ml cultures of LB broth and grown to an OD600 of 0.4-0.8. The 

cells were harvested by centrifugation (1500 x g for 15 mins at 4oC). The pellet was 

resuspended in 1L of ice-cold sterile water and harvested by centrifugation (1500 x g for 20 

mins at 4oC). The pellet was resuspended in 500ml of ice cold sterile water and the 

previous harvesting step was repeated. The pellet was resuspended in 250ml of ice-cold 

sterile water and harvested according to the last step. The pellet was resuspended in 100ml 

ice-cold sterile 10% glycerol and harvested as before. The pellet size was estimated and 

resuspended in an equal volume of 10% glycerol. The cells were divided into 40μl aliquots, 

snap frozen in liquid nitrogen and stored at -80oC. 

 

2.2.9. Transformation by electroporation 

 

Electrocompetent cells stored at -80 oC were thawed on ice. DNA (10ng – 20ng) was added 

to an aliquot of thawed cells (40μl), mixed and transferred to a pre-chilled, sterile 

electroporation cuvette and subjected to a 4.5–5 ms electrical pulse at 12.5 kV.cm-1 field 

strength using a gene pulser (Bio-Rad laboratories Ltd, CA, USA) with capacitance and 

resistance set to 25μF and 200 Ω, respectively. The cells were recovered by the addition of 

460μl RT SOC in a sterile tube and incubated (37oC at 200 rpm) for 1 hr. After recovery 

the cells were plated on LB agar supplemented with suitable antibiotics. 
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2.2.10. Transformation by heat shock 

 

Chemical competent cells stored at -80oC were thawed on ice. DNA (50ng -100ng) was 

added to an aliquot of thawed cells (40μl), mixed and incubated on ice for 20 minutes prior 

to inducing heat shock. The incubated cells were heated for 30 seconds in a 42°C water 

bath and immediately chilled on ice for an additional 2 minutes. The cells were recovered 

in 460µl SOC and incubated in a sterile tube and incubated (37oC at 200 rpm) for 1 hr. 

After recovery the cells were plated on LB agar supplemented with suitable antibiotics. 

 

2.2.11. Quantification of DNA 

 

The NanoDrop spectrophotometer was routinely used to assess the DNA concentration of 

the FLuc variants.  

 

2.2.12. Determination of concentration 

 

Determination of the substrate concentrations were quantified routinely using UV/Vis 

spectroscopy and utilization of the Beer-Lambert law (molar extinction coefficient of 18 

200 M-1 cm-1 for D-LH2, from Morton et al. 1969) to derive the final concentration using 

the equation A= εCl. 

 

2.2.13. Growth and Maintenance of E.coli strains 

 

When required, bacteria from glycerol stocks were spread on fresh LB agar plates with 

appropriate antibiotics and grown overnight at 37oC and single colonies picked from these 

and cultured in LB broth and antibiotic overnight at 37 oC, shaking circa 200rpm for further 

analysis. Where crude protein extracts were required 5ml cultures were grown overnight 

and centrifuged at 4000xg for 15 minutes. Plasmids were maintained short and long term in 

E.coli BL21. Aseptic technique was maintained throughout. Strains were stored at -80oC as 

0.5ml LB broth and antibiotic cultures with a final concentration of 8% (v/v) glycerol 

added to the Ecoli BL21 cells. 
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2.3. Methods for the Construction and Screening Single Amino Acid Deletion Variants 

 

2.3.1. Cloning of 10x Histag x2FLuc DNA from pDEST17 into the pET16b backbone 

 

A plasmid was constructed for the expression of x2 under the control of the pET16b in 

E.coli BL21 (DE3) pLysS to produce the vector pET16b-x2. The x2 luc gene was amplified 

from pDEST17 utilising primers to incorporate the restriction sites Nde1 and BamH1. Both 

the linear fragment of gene encoding x2FLuc and pET16b-x11Fluc were digested with 

Nde1 and BamH1 restriction enzymes and following gel purification to isolate the vector 

was phosphorylated. The vector and insert were ligated using T4 DNA ligase and 5µl of the 

ligation reaction was transformed into NEB 5-alpha chemically competent cells and spread 

onto LB agar plates containing 100ug/ml amplicillin and incubated overnight at 37oC. 

Sequencing was conducted on resultant colonies to confirm the presence of the x2FLuc 

gene within pET16b.  

 

2.3.2. Methods for Screening 

 

Colonies resulting from the primer-based site-directed deletion mutagenesis were screened 

using the primary colony screen and secondary colony screening procedures described. 

Colonies were optimally plated to provide circa. 100-500 colonies per petri dish after 

incubation overnight at 37oC. This ensured colonies were not confluent as identification of 

mutants was easier.  

 
2.3.2.1. Primary screening 
The primary screen of colonies refers to the initial transformation of mutants resulting from 

the deletional mutagenesis strategy in which photographs are taken following 

bioluminescence induction. x11FLuc deletion mutants within E.coli BL21 (DE3) 

transformants where expression was induced by adsorbing colonies onto HybondTM- N 

nitrocellulose membrane (Amersham Biosciences Corp). Sterile tweezers were utilized to 

remove the colonies from the old medium onto fresh LB agar plates containing 100ug/ml 
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ampicillin and 1mM IPTG, on which they would be incubated between 3-6 hours at RT. 

The membrane was then transferred from these plates and placed face up onto a petri dish 

and bioluminescence was induced by spraying colonies with 500mM D-LH2 in citrate 

buffer, pH5. Bioluminescence emitted by the colonies was collected using a charge-coupled 

device (CCD) camera from Nikon with 30s integration time in a dark room.  

 

2.3.2.2. Secondary screen 
After primary screening, colonies of interest were subjected to a secondary screen. The 

secondary screen refers to testing of the mutants with regards to apparent resistance to 

thermal inactivation. Single colonies of x11FLuc deletion mutants within E.coli BL21 

(DE3) transformants were picked from plates using sterile pipette tips and spotted into rows 

of 4-5 genetically identical colonies onto LB agar along with x11FLuc template and 

incubated overnight at 37oC. The induction of bioluminescence was similar as described in 

section 2.3.2.1 however colonies were incubated for 30minutes at 42oC  following 

induction with 1mM IPTG but prior to screening with LH2. From the secondary screen, 

potential mutants were selected, cultured, and DNA prepared for sequencing to confirm 

trinculeotide deletions. 

 

2.3.2.3. Bioluminescent Spectra from Whole Cells 
To determine differences in the bioluminescent spectra from the variants generated, single 

colonies were picked using pipette tips and use to inoculate 5ml LB broth containing the 

appropriate antibiotic.  Cells were grown at 37oC overnight and subsequently diluted to an 

OD600 of 0.8-0.9 at which point they were induced with IPTG (1mM) for 3 hours. 

Following on from this, the cell suspension was mixed with a solution of 0.1M sodium 

citrate buffer pH5.0, containing 500mM D-LH2 and spectra recorded within the Varian 

Cary Eclipse (Agilent Technologies, CA, USA).  

 

2.3.2.3. Preparation of the 96-well format screening 
Single colonies of deletion mutants were isolated and used to inoculate 5ml LB broth 

containing the appropriate antibiotic and grown overnight at 37oC. Cultures were 

subsequently diluted to an O.D600 of 0.8- 0.9 for induction with IPTG (1mM) for 3 hours. 

Following 3 hours induction, the colonies were diluted to the same absorbance at OD600nm 
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and aliquoted 100µl into a 96 well plate in triplicate. The cells were harvested in the plates 

after centrifugation at 4500RPM for 20 minutes and any remaining LB broth was removed. 

The cell pellets were further resuspended in a mixture of 100mM TEM, 0.1% Triton-X100 

and 10%glycerol. These were then stored at –80oC.  

 

2.3.2. Assaying with the 96 well format screening 
Once ready for assaying, plates stored at -80oC were removed from the freezer and left to 

come to RT. Each crude cell lysate was then assayed against several conditions. These 

conditions included; saturating conditions of the substrates at RT and following incubation 

at 42oC and 60oC, saturating conditions of the substrates pending a 5 minute settle time, 

saturating conditions of the substrates in the presence of 2mM PPi and non-saturating 

conditions of the LH2.  
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2.4. Methods for Overexpression and Purification of Proteins  

2.4.1. Overexpression of luciferases and mutants 

 

Single colonies of each FLuc variant were picked and used to inoculate a LB broth (20ml) 

medium supplemented with 50µg/ml ampicillin. The culture was left to grow for circa 8 

hours at 37°C, shaking (200rpm) and pending this,  0.5ml of the culture was placed into a 

further 100ml LB broth, under the previous conditions, overnight. Subsequently, 20ml of 

the culture was used to inoculate an additional 400ml LB broth with antibiotics and grown 

at 37°C for circa 1-2 hours. The growth of the culture was monitored until the cells 

measured an OD600 between 0.6-0.7 AU by a spectrophotometer (Pharmacia Biotech, 

Sweden) at which point IPTG, at a final concentration of 1mM was used to induce protein 

expression. The cultures were reincubated at RT, shaking (200rpm) for a further 6 hours. 

Pending this, the cells were harvested at 14700xg for 30 minutes at 4°C and the supernatant 

discarded.  

 

2.4.2. Cell Lysis and Purification of Variants 

 

Protein purification was carried out on a HisPur Ni-NTA affinity column (ThermoFisher 

Scientific, MA, USA). Bacterial pellets of overexpressed variants were resuspended in 5ml 

lysis buffer (Buffer A supplemented with 2% Triton X-100 (v/v), 20mM imidazole) per 

gram of pellet and incubated with 10ul benzonase nuclease (250U/ul) on ice for 15-

30minutes. Buffer A comprises 10mM phosphate, 2.7mM KCl, 0.3M NaCl, 10mM 2β-

mercaptoethanol, 20% glycerol (v/v), 1 xEDTA-free protease cocktail inhibitor (Roche 

Diagnostics, USA). The suspension was centrifuged at 12000rpm for 30 minutes at 4°C and 

the supernatant removed as the soluble fraction. 10ml volumes of supernatant comprising 

the soluble fraction was loaded onto a HisPur Ni-NTA  (pre-equilibrated in Buffer A 

supplemented with 20mM imidazole (IMD) (ThermoFisher Scientific, MA, USA) and the 

flow through was reapplied 1-2 times prior to 50mM imidazole in Buffer A application to 

the column in order to elute non-specifically bound proteins. His tagged mutants were then 

eluted from the column in 2.5ml sets of 500mM IMD in Buffer A. 20µl of elution were 
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kept on ice and assayed for bioluminescence. Immediately fractions containing activity 

were desalted by applying them to PD-10 columns, pre equilibrated in 25ml storage buffer.  

 

2.4.3. Luminometric quantification during protein purification  

 

The average activity of 1µl of each fraction assayed by addition of 500mM D-LH2 and 

1mM ATP in TEM (pH7.8) in triplicate. The concentrations utilized are approximately 10x 

the calculated KM values for x11FLuc.  

 

2.4.4. Quantification of Protein Concentration 

 

Bradford assays (Bradford, 1976) were carried out according to the manufacturer’s 

protocol. 5µl of protein sample or bovine serum albumin (BSA) standards were applied in 

triplicate to a 96 well plate and 200µl of protein assay reagent was added. The reaction was 

left to incubate at RT for 10 mins prior to reading. Absorbance was measured at 595nm in 

triplicate and protein concentration determined by linear regression of the standard plot.  

 

2.4.5. SDS-PAGE of Expression of Variants 

 

To analyse the protein expression from the FLuc variants, samples (10µl) were prepared 

and loaded onto a sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

comprising a 12.5% separating gel and stacking gel. The gels were submerged in an SDS 

running buffer (Glycine 144g/2L, Tris Base 40g/2L, 0.1% (w/v) SDS). Once the broad 

range pre-stained protein marker (NEB) and samples were loaded, 200V was applied to the 

gel for 40-60 minutes until separation of the observed molecular bands was sufficient. 

2.4.6. Staining of the SDS Gel 

 

Once the SDS PAGE had run to completion, the stacking gel was discarded and the 

separating gel was placed into a container a Coomassie staining solution (40% Methanol 

(v/v), 10% Acetic acid (v/v), 0.1% Coomassie (w/v)). The gel was then incubated for 24 
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hours on the orbital shaker (New Brunswick Scientific, USA). After staining the Coomassie 

stain was removed and replaced with a destaining solution (40% Methanol (v/v), 10% 

Acetic acid (v/v)) for 48 hours.  
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2.5. Firefly Luciferase Characterization Methodologies 

 

2.5.1. Luminometric Methods 

 

All bioluminescent measurements were carried out in a Fluoroskan Ascent (Thermo 

Scientific, MA, USA) instrument utilizing one injector in order to inject the substrates of 

the reaction into wells within a 96-well plate containing the FLuc at the required 

concentration, diluted to 10µM in pre-chilled TEM buffer. Measurements were integrated 

for 20ms-1s over variable time periods comprising between 50 to 250 consecutive 

measurements. Approximate KM values were deduced for each enzyme and concentrations 

were utilized representing 10-times above and below the calculated KM. Additionally, a 

correction was made in order to overcome the sensitivity of the photomultiplier tube (PMT) 

to different wavelengths of emission by measuring the fluorescence spectrum of lucifer 

yellow-CH (Sigma-Aldrich, MO, USA) and correcting it to an absolute spectrum supplied 

by the manufacturer.  

 

2.5.2. Measurement of Bioluminescent Spectra 

 

Bioluminescent spectra were calculated with a Cary Eclipse Fluorescence 

Spectrophotometer. The fluorimeter and associated software was set up with variable 

emission slit whilst the PMT setting was set to 950V. All data was corrected against the 

calibration made for the PMTs sensitivity towards different wavelengths. In addition, all 

data was corrected against the baseline. In all experiments, saturating conditions were set 

up that substrates D-LH2 and ATP were 10x the KM for their substrates respectively.  

 

 

2.5.3. Determination of Kinetic Constants 

 

Since the bioluminescence reaction displays flash kinetics, conventional methodology may 

not be employed in order to determine the kinetic constants. However, the peak intensity 

(Imax) is a representation of the pre-steady state of maximal light intensity at a given 
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substrate concentration and occurs at one turnover of the enzyme (Brovko et al, 1994). Use 

of Imax to determine kinetic constants obeys Michaelis-Menten kinetics for the reaction 

prior to other complicating factors such as end product inhibitors (Ugarova, 1989). The 

Imax of the different FLucs were measured as described previously in a Fluoroskan Ascent 

instrument. Measurements to determine kinetic constants with regards to LH2 were made in 

conditions where the concentration of ATP was saturating whilst the concentration of LH2 

were varied. Measurements to determine kinetic constants with regards to ATP were made 

in conditions where the concentration of LH2 were saturating whilst the concentration of 

ATP were varied. 50µl of solutions containing the varying concentrations of the substrate 

(LH2, ATP) diluted in TEM (pH7.8, RT) were injected onto 0.5µM Luc. Concentrations of 

D-LH2 were diluted such that the final working concentration within the reaction mix 

included 0.1, 0.5, 1, 5, 10, 20, 35, 70, 140, 200µM. Concentrations of ATP were diluted 

such that the final working concentration within the reaction mix included 0.1, 0.5, 10, 25, 

50, 100, 200, 400, 800, 1000µM. Once injection had occurred, measurements were taken 

immediately recorded over 1 minute. All measurements were made in triplicate for each 

concentration point and each experiment was repeated independently between 2-4 times for 

every FLuc with all substrates. Data were analysed by plotting substrate concentration 

against Imax and subsequently kinetic constants were derived using the Hanes-Woolf plot 

(Athel-Cornish Bowden, 1999). 

 

2.5.4. Specific Activity Determination 

 

Measurements were made to determine specific activities of the enzymes in saturating 

conditions of both substrates (500µM LH2, 1mM ATP). 50µl of solutions containing 

saturating concentrations of the substrates were injected onto 50µl of 0.5µM Luc at which 

point measurements were integrated over 1s for a total period of 250s minutes. All 

measurements were made in triplicate for each FLuc.   
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2.5.5. pH Dependence of Bioluminescent Spectra 

 

Measurements were made to determine spectral changes of the enzymes within buffers at 

variable pH (pH6.3, 6.8, 7.3, 7.8, 8.3, 8.8) whilst saturating conditions of both substrates 

(500µM Luc, 1mM ATP). TEM was utilized as buffer and pH was adjusted using acetic 

acid or sodium hydroxide. 50µl of solutions containing saturating concentrations of the 

substrates at variable pH were injected onto 50µl of 0.5µM Luc and measurements were 

made within a fluorimeter. All measurements were made in triplicate for each FLuc.  

 

2.5.6. Determination of pH Dependence of Activities 

 

Measurements were made to determine activities of the enzymes within buffers at variable 

pH (6.3, 6.8, 7.3, 7.8, 8.3, 8.8) whilst saturating conditions of both substrates (500µM D-

LH2, 1mM ATP). 50µl of solutions containing saturating concentrations of the substrates at 

variable pH were injected onto 50µl of 0.5µM Luc and measurements were made within a 

fluorimeter. All measurements were made in triplicate for each FLuc. 

 

2.4.7. Determination of Thermal Stability 

 

Typical working temperatures for applications involving luciferase range from between 

room temperature to 50oC as such, characterization of mutants up to this temperature is 

desirable.   Determination of thermal stability was carried out using two methods. Firstly, 

500µl aliquots of 0.5µM Luc solutions at pH7.8 at 4oC were incubated at either 20oC, 30oC, 

35oC, 40oC, 45oC, 50oC and 150µl aliquots removed every 15 minutes over a total period of 

1 hour. All removed aliquots were placed onto ice for 30 minutes prior to assay conducted 

at room temperature. The second method investigated the activity of the mutants at a set 

temperature. For this assay, 500µl aliquots of 0.5µM Luc solutions at pH7.8 were pre-

incubated at either 30oC, 35oC, 42oC for 10 minutes prior to assaying at a temperature equal 

to incubation. For both methods, measurements were made within saturating conditions of 

both substrates (500µM LH2, 1mM ATP) at pH7.8 injected onto 0.5µM Luc. Measurements 
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were made within a luminometer with point measurements integrated over 0.2s for a total 

period of 5s. All measurements were made in triplicate for each FLuc   
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Chapter 3 

Construction and Screening of Single Amino Acid Deletion 

Mutants Within Thermostable and pH tolerant Photinus 

Pyralis x11 Firefly Luciferase 

 

 

3.1. Chapter Summary 

 

In this work I hypothesise that the incorporation of single amino acid deletions within 

FLuc derived from Ppy will exhibit potentially beneficial characteristics upon the 

protein as has been shown in previous studies with other model proteins such as; the 

green fluorescent protein (GFP) and TEM 1 β lactamase. Conventionally, terminals and 

loops are more tolerant to single amino acid deletions in comparison to more highly 

structured elements such as alpha helices and beta sheets. Therefore, molecular 

visualisation was utilised to identify loop regions within the structure of Fluc which 

would be interesting targets for deletion. Utilising a primer based targeted strategy, 

single amino acid deletion mutants of Fluc were designed and the resulting effects upon 

bioluminescence activity, colour of emission and apparent stability were assessed. x11 

luciferase is remarkably tolerant to single amino acid deletions within its structure in 

respect to bioluminescence activity and in terms of ability to retain the of characteristics 

of native x11 luciferase, such as resistance to thermal inactivation and bioluminescence 

emission peak wavelength. Interestingly, through this deletional strategy a variety of 

colour mutants were obtained, displaying significant spectral shifts with large variations 

in the degree of red-shift. In addition to this, it appears that certain single amino acid 

deletions improve bioluminescence activity compared to x11 luciferase, which will be 

explored in further chapters.  
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3.2. Introduction 

 

An overriding dogma in protein engineering is that amino acid deletions tend to 

compromise the structural integrity of proteins, abolishing function however more 

recent studies have shown that this is not always the case (Simm et al., 2007; Baldisseri 

et al., 1991; Arpino et al., 2014). Simm et al. (2007) used deletion mutations to enhance 

the activity of TEM-1 ß-lactamase towards a ceftazidime substrate, with a 64-fold 

increase in activity of a deletion in P174 compared to the wildtype (WT). Similarly, 

deletions of six amino acids promoting a closer compacted state within Staphylococcal 

nuclease increases the catalytic activity and stability compared to the WT (Baldisseri et 

al., 1991). In addition to this, the insertion/deletion mutations of single amino acids 

commonly occur throughout nature (Taylor et al., 2004) with small insertions most 

often tolerated in proteins (Shortle and Sondek, 1995).   

 

FLuc has been heavily engineered in terms of a number of desirable characteristics, e.g. 

activities, kinetics, emission colours and resistances to thermal inactivation. To date, 

this has been achieved using substitution mutations, insertion of amino acids and 

domain replacement. However, no attempts have been made to incorporate and test 

single amino acid deletions in FLuc, which would increase the sample space and 

improve the chances of isolation of novel phenotypes. FLuc provides a good model 

protein in which to explore this rationale, and that is the aim of this thesis. 

 

A powerful screening strategy is critical in any FLuc protein engineering effort, the 

most common strategy employed was that as first described by Wood and Deluca 

(1987). This approach required E.coli colonies expressing functional FLuc to be 

saturated with a citrate buffer containing D-LH2 at pH 5.0 since it was discovered that 

whilst LH2 cannot be efficiently delivered into prokaryotic cells at physiological pH 

under acidic conditions, such as that managed by a citrate buffer at pH 5, LH2 readily 

passes through the cell membrane (Wood and Deluca, 1987; Jawhara and Morodn 

2004). This change can be attributed to the carboxyl group of the molecule being 

charged at physiological pH whereas at the lower pH, the LH2 is protonated which 

allows for the passage into cells. Since this time, others have made adaptations to 
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improve upon this initial approach (Erica Law, PhD Thesis, University of Cambridge, 

2004) by incorporating: 

 The introduction of a secondary screen in addition to the primary screen (single 

colonies). 

 The additional screening of mutants after incubation at 42oC. 

 The analysis of the light emission from colonies by image analysis software. 

 Subsequent screening of cell lysates in a 96-well or 384-well formats. 

 

The aim of this investigation is to incorporate sequential single amino acid deletions via 

a primer design based method within both conserved and non-conserved regions of 

thermostable Ppy x11FLuc, which has stable light emission characteristics up to 50oC, 

to identify whether its phenotype is tolerant to the deletions in internal loops. This 

chapter also seeks to identify whether deletions can not only retain but further improve 

on the already beneficial characteristics displayed by x11FLuc, such as activity or 

resistance to thermal activation in order to design an enhanced protein developed by 

both substitution and deletion methodologies. I also aim to determine whether deletions 

appear to promote any desirable or potentially desirable novel phenotypes.  
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3.3. Results and Discussion 

 

Initially attempts were made to utilise the Tri-NEX transposon based strategy in order to 

generate a library of luciferase single amino acid deletion mutants with the intention of 

utilising a directed evolution approach throughout screening however this proved 

unsuccessful and as such a primer design method was employed. The advantage of 

using a targeted approach to incorporate single amino acid deletions is the ability to 

develop a rationale to target interesting regions within the protein and incorporate 

specific mutations within these regions.  

 

3.3.1. Analysis of Secondary Structure 

 

Secondary structure elements such as the loops within a protein are more tolerant to 

deletion than more ordered structures such as - sheets (Arpino et al., 

2014). In order to identify these regions more likely to exhibit beneficial characteristics 

as a result of deletions, a secondary structure of the x11FLuc was required. To date, no 

structural determination of x11FLuc has been conducted to access the degree of 

structural variation imparted as a result of the 11 mutations that have been incorporated 

into the WTFLuc. YASPIN secondary structure prediction software (Centre for 

Integrative Bioinformatics, University of Amsterdam) was assessed for utility by 

comparison of submission results obtained for the WTFLuc to those results obtained 

from Ppy FLuc protein structure from Protein Data Bank (PDB) file Ppy FLuc ID: 

4G36 as resolved to 2.62Å (Sundlov et al., 2012) (Table 3.1.).  

 

Results derived from this comparison highlighted that the YASPIN secondary structure 

prediction identified secondary structures correlated to the secondary structure 

displayed in the PDB model, however there were some discrepancies between the 

prediction and the model such as between positions 300 – 315, the model presented α- 

helix and a β-sheet whilst the prediction presented an α-helix between 306 – 315, unable 

to identify the β-sheet. In addition to this, the prediction was able to identify the 

secondary structure, however, it was unable to determine the exact boundaries of the 

structural element.  
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YASPIN secondary structure prediction was then conducted with the known x11FLuc 

sequence in order to determine whether it was likely that structural changes had 

occurred within x11FLuc as a result of the x11 mutations. YASPIN was only able to 

identify two potential sites that had been altered compared to the WTFLuc, those being, 

a deletion of a β-sheet at position 361-363 and the shortening of a β-sheet at position 

390-395.  

 

These results suggest that the mutations present within x11FLuc do not affect the 

structure of the protein significantly. In order to identify loop regions present within 

x11FLuc, the secondary structure from the crystal structure of P. pyralis luciferase 

reported by Sundlov et al., (2012) Protein Data Bank (PDB) file Ppy FLuc ID: 4G36 as 

resolved to 2.62Å (Figure 3.1.) was utilised.  

 

DSSP (Kabsch and Sander, 1983) and STRIDE (Frishman and Argos, 1995) analysis 

conducted on the Ppy FLuc ID: 4G36 structure identified that approximately 29% and 

21% of the total protein was comprised of helical and -sheet elements respectively, 

suggesting that remaining elements (including turns and loops) comprise circa 50% of 

the total protein. However, direct observation of the crystal structure showed that there 

were a total of 40 loops ranging in size from 1 amino acid in length to 15 amino acids 

within Ppy FLuc. The loops comprise a total of 224 amino acid residues, equal to 40% 

of the residues.  

 

All of these positions are potential candidates for deletion however within the remit of 

study it is not experimentally feasible to introduce deletions at all these positions. 

Instead, in this work, candidate positions based on homology (degree of conservation), 

secondary structure and 3D-structural analyses (i.e. those that are likely to impact on 

important active site residues) were targeted for deletion.  
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Table 3.1. Comparison of Secondary Structures both Known and Predictions made by YASPIN.  

WTFLuc 
Known 
Secondary 
Structure 

WTFLuc 
YASPIN 
Prediction 

x11FLuc 
YASPIN 
Prediction 

 WTFLuc 
Known 
Secondary 
Structure 

WTFLuc 
YASPIN 
Prediction 

x11FLuc 
YASPIN 
Prediction 

 WTFLuc 
Known 
Secondary 
Structure 

WTFLuc 
YASPIN 
Prediction 

x11FLuc 
YASPIN 
Prediction 

H 22 – 34 H 22-33  H 22-33 E 261 – 264 E 263 – 266 E 263 – 266 E 432 - 437 E 423 – 429 E 423 – 429 
E 40 – 44 E  40-45 E  40-45 H 270 – 279 H 272 – 281 H 272 – 281 H 438 – 440 E433 – 438 E433 – 438 
E 49 – 52 E 49-51  E 49-51 H 270 – 279 H 272 – 281 H 272 – 281  E 442 444 E 443 – 446 E 443 – 446 
H 53 – 70 H 54-70  H 54-70 E 284 – 286 E 284 – 288 E 284 – 288 E 447 - 449   
E 77 – 81 E 78-83  E 78-83 H 289 – 295 H292 – 299 H292 – 299 H 451 458 H 453 – 461 H 453 – 461 
H 89 – 97 H 88 – 98 H 88 – 98 H 300 – 302 H 306 – 315 H 306 – 315 E 467 - 472 E 466 – 473 E 466 – 473 
E 101 – 104 E 102 – 104 E 102 – 104 E 311 – 315    E 480 - 485 E 482 – 489 E 482 – 489 
H 111 -121 H 112 – 120 H 112 – 120 H 321 – 330 H 323 -332 H 323 -332  H 495 -502   
E 125 -128 E  124 – 131 E  124 – 131 E 337 -340 E 337 – 342 E 337 – 342 H 508 -510   
H 130 – 140 H 133 – 144 H 133 – 144 H 343 -354   E 516 -518 E 516 – 522 E 516 – 522 
E 148 – 151 E 149 – 154 E 149 – 154 E 350 -351 E 350 -354 E 350 -354 H535 - 539 H 531 - 545 H 531 - 545 
H 164 – 171 H 164 – 173 H 164 – 173 E 364 – 365 E 361 – 363  E 516 -518 E 516 – 522 E 516 – 522 
E 192 – 196 E 194 – 199 E 194 – 199 E 370 – 374 E 371 – 377 E371 – 37 H535 - 539 H 531 - 545 H 531 - 545 
E 208 – 211 E 210 – 213 E 210 – 213 E388  - 393 E389 – 395 E390 – 395    
H 212 – 223 H 215 -230 H 215 -230 E 400 – 401 H 401- 405 H 401- 405    
E 236 – 239 E 237 – 240 E 237 – 240 H 405 -  409 H 407 – 414 H 407 – 414    
H 246 – 258 H 243 – 260 H 243 – 260 E 418 – 426 E 419 – 421 E 419 – 421    

 

Comparison of WTFLuc secondary structure as determined by YASPIN secondary structure prediction software against known 
structure of WTFLuc. Positions of α-helices and β-sheets present within luciferase as determined by YASPIN and the corresponding positons 
of α-helices and β-sheets within the known structure are compared. The x11FLuc YASPIN prediction is also included to compare differences in 
secondary structure as a result of the 11 mutations within x11FLuc. H: α helix, E: β sheet.
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Figure 3.1. Secondary Structure of Ppy FLuc ID: 4G36 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Schematic of Secondary Structure derived from Ppy FLuc ID: 4G36 highlighting 
the position and type of secondary structural elements. Analysis identifies that the loops 
comprise between 40 -50% of the protein whilst approximately 29% and 21% of the 
total protein was comprised of helical and -sheet elements respectively. Figure 
sourced from PDB, Sequence Chain View, 4G36. 
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3.3.2. Regions of Disorder 

 

From both secondary structure and alignment analysis a number of potential sites for 

deletion were identified, however, further analysis was required in order determine the  

specific sites of interest. 

 

Proteins in their native state have regions that do not adopt a single conformation, 

resulting in flexibility. This flexibility can impart useful traits such as interaction with 

binding partners or to be involved in molecular recognition of biological processes such 

as regulation, signaling and cell cycle control (Dunker et al., 2002; Wright and Dyson, 

1999).  Following binding, commonly proteins will transition to an ordered, rigid 

structure (Ishida & Kinoshita, 2007).  

 

It is considered that the inherent flexibility of highly disordered segments imparts 

instability within a protein promoting difficulties both in purification of the protein and 

in subsequent crystallisation (Oldfield et al., 2005). Therefore, for the purposes of 

structural genomics or purposes that require large volumes of correctly folded protein it 

is desirable to remove these regions and impart greater stability, providing these 

segments do not hinder the functioning of the protein. There are multiple prediction 

tools that have been developed for the purposes of disorder prediction such as those 

supplied by Robetta or PSIPRED and PrDOS (Ishida and Kinoshita, 2007). These 

methods utilise the amino acid sequence of a protein in combination with the tertiary 

structure of template proteins to identify disorder. Initially, a support vector machine 

(SVM) algorithm maps specific residues after which a secondary analysis assumes 

conservation of intrinsic disorder occurring within protein families and utilises this in 

PSI-BLAST against an index of disorder. The overall prediction is presented as a 

measure of both set of results and due to the rigorous nature of this test, PrDOS was 

utilised for the purposes of analysing the x11FLuc amino acid sequence to identify 

regions of disorder.  

 

Figure 3.2. displays the output generated following x11FLuc amino acid sequence 

submission to PrDOS. The tool indicates that the N- and C-terminals are highly 

disordered indicating a greater than 90% chance that the primary 4 amino acid residues 

M1-A4 and the final 15 amino acid residues I535 –L550 are disordered compared to 
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surrounding regions. It is common for N- and C-terminals to display intrinsic disorder 

since they tend to lack the stabilisation and coordination often imparted by surrounding 

amino acid residues. Conventionally, it has been seen that termini are more tolerant to 

deletions than other structures within a protein (Arpino et al., 2014). 

 

Indeed throughout a single amino acid deletion survey conducted within eGFP, even 

secondary struc helices occurring within terminals were 

tolerant to deletion. We can consider that this tolerance may be due to the removal of 

these unstable residues. Previous studies have explored deletions within the N- and C-

terminals of luciferase however to date, single amino acid deletion mutagenesis has not 

been utilised (Sala Newby and Campbell, 1994; Sung and Kang, 1998; Wang et al, 

2002). Therefore, I shall consider both x11FLuc N- and C-termini as the first candidate 

targets for the single amino acid deletion strategy.  

 

In addition to the termini, there are another 6 amino acid residues P173 to Y179 that 

indicate a probability of disorder of more than 90% within the loop comprising L172- 

T191. This prediction suggests that this loop is unlikely to adopt a single conformation 

and as such should have a high degree of flexibility. The requirement for such flexibility 

is often considered to be vital in allowing some proteins to interact with binding 

partners or to play a role in biological events such as molecular recognition, signalling 

and cell cycle control (Dunker et al 200; Wright and Dyson, 1999). At present, this loop 

has no reported associations with such functions and it is reasonable to explore this loop 

further. Molecular visualisation using Visual Molecular Dynamics (VMD, Beckman 

Institute for Advanced Science and Technology, University of Illinois, USA) using the 

model provided by the crystal structure of P. pyralis luciferase reported by Sundlov et 

al. (2012) (PDB file Ppy FLuc ID: 4G36) which highlighted that this loop is located on 

the solvent exposed surface of the C-terminal domain (Figure 3.7). Therefore, it is 

interesting to identify whether this disordered loop is tolerant to deletions and therefore 

shall be chosen as the second set of candidates, along with the first candidates (N- and 

C-terminal loops) (Table 3.4.). 
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Figure 3.2. Disorder prediction output based on the x11FLuc Amino Acid Sequence 

 

Disorder prediction output following submission of the amino acid sequence of x11FLuc 

to PrDOS. PrDOS calculates the probability of disorder and denotes those amino acid 

residues with a 90% or greater of disorder and annotates these residues with X. Those 

residues indicating such disorder include the N-terminal M1-A4, the C-terminal I540 – 

L550 with the exception of K544 and residues P174 – Y179.  
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3.3.3. The Omega (Ω) Loop of Luciferase 

 

Random mutagenesis experiments have identified a region within luciferase, substitution of 

which gives wide-ranging phenotypes dependent on the type of mutations that are targeted 

to this particular site. This “hot spot” is the loop T352-F368 in which mutations E354R and 

D356Y have been shown to confer resistance to thermal inactivation to x2FLuc and 

x11FLucs (White et al. 1996; Jathoul et al., 2012). In addition to substitution mutations, 

Tafreshi et al (2007) noted that insertion of a critical residue Arg356 within this region 

increased the optimum temperature for bioluminescent activity and produced a bimodal 

bioluminescence spectrum red-shifting the bioluminescence emission peak to a wavelength 

maximum (λmax) of 615nm and a smaller peak at 560nm. This study additionally 

determined that whilst these changes occurred as a result of the insertion, the basic kinetic 

properties of the enzyme had been retained. Furthermore, Moradi et al (2009) confirmed 

this finding of red shifts as a result of an insertion within this region and sought to identify 

the role charge distribution played in determining the colour of bioluminescence. Both 

Arg356 and Lys356 conferred red bioluminescence whist Glu356, an amino acid with a 

negative side chain and Gln356, an amino acid with a neutral side chain presented no such 

shift.  

 

Considering the apparent plastic nature of this loop, molecular analysis was conducted to 

explore the usefulness of single amino acid deletions within this loop, as an additional 

target for deletional mutagenesis. Molecular analysis was conducted within VMD using the 

model provided by the crystal structure of luciferase reported by Sundlov et al. (2012) 

(PDB file  FLuc ID: 2D1Q). Figure 3.3. shows the loop as it exists within the native state of 

the protein and it is interesting that this loop conforms to what is considered in protein 

structural terms as an omega (Ω) loop motif, despite not as yet having been defined within 

luciferase. Ω loops are non-regular secondary structure elements characterised by a 

polypeptide chain that follows a loop-shaped course in three dimensional space, giving rise 

to, and as so named, an Ω loop (Fetrow et al., 1995). Since 1986 when the structure was 

first described, it has become clear that these relatively simple structures are often far more 

dynamic and  
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Figure 3.3. Identification of the Omega Loop of Luciferase  

 

 

 

 

 

 

 

 

 

 

 

 

 

The characteristic shape of the omega loop within x11FLuc. Residues comprising the 

omega loop, T352-G363 highlighted in cyan. Image generated via VMD using PDB file ID: 

4G36. 
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involved in both protein function, molecular recognition and are important for substrate 

specificity (Fetrow et al., 1995). Characteristics of an omega loop include a large number 

of hydrogen bonds which are less periodic than seen in other structural elements and are 

found at the surface of the protein (Fetrow et al., 1995). Taking this into account, further 

molecular visualisation of Ppy FLuc ID: 4G36 in which the luciferase is locked in to its 

adenylate-forming conformation, showed that the Ω loop of luciferase lies adjacent to the 

active site of the protein (within circa 10Å) and may play a role in the function of 

luciferase, as seen in other proteins (Figure 3.4). As such, it is interesting to identify 

whether this Ω loop is tolerant to deletions, since both substitutions and insertions within 

this region show large changes in activity. This will be the first example of the detailed 

exploration of the function of the Ω loop in the bioluminescent reaction. Therefore, the loop 

comprising T352-F368 was targeted for single amino acid deletion as a third candidate in 

this study (Figure 3.7) (Table 3.4). 

 

3.3.4. Molecular Graphics Analysis to Identify Regions within 5 Å of the Active Site 

 

From previous studies within other model proteins it has been identified that substitutions 

within the proximity of the active site can alter function (Kaiser et al., 1988). It is common 

for protein engineering attempts to focus on amino acid residues within or proximal to the 

active site when screening for mutants with altered catalytic activities. Recently, single 

amino acid deletions close to the tripeptide chromophore of GFP have been shown to 

inhibit activity (Arpino et al., 2014). In this work, a tolerance survey was implemented to 

identify which single amino acid deletions retained or lost fluorescence within GFP. This 

led to the conclusion that fluorescence was better retained or even enhanced, when the 

deletion occurred furthest from the chromophore, whereas deletions occurring proximal to 

the chromophore led to loss of fluorescence or reduced chromophore maturation rates. GFP 

is highly structured protein in which the chromophore microenvironment provided by the 

barrel is critical for activity preventing the quenching of the fluorescence by water 

molecules (Tsien, 1998). In such a highly organised protein it is not surprising that there is 

little flexibility in response to the registry shifts that can occur as a result of a single amino 

acid deletions (see Section 1.2.3.). In contrast, x11FLuc is roughly twice as large as GFP  
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Figure 3.4. Proximity of MgATP to Resdiue V362 within the Omega Loop 

 

 

 

 

 

 

 

 

 

 

 

 

The omega loop within 10Å of the active site. The loop T352-F368, identified as an 

omega loop, is highlighted in green, within 7.84Å of MgATP in red.  Image generated via 

VMD using PDB file ID: 2D1Q 
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and is a complex flexible, dual-domain globular enzyme. As previously discussed (see 

Section 3.3.1), according to analysis provided by DSSP and STRIDE, 40%-50% of FLuc 

comprises secondary structural elements in comparison to GFP of which 60% comprise 

secondary structural elements. This being the case, it is of interest to survey the tolerance 

exhibited by x11FLuc to single amino acid deletions occurring proximal to the active site to 

assess whether more globular proteins promote an increase in the level of tolerance to 

deletion within this site. 

 

To assess if candidate loops were present within x11FLuc 5Å of the active site (Branchini 

et al., 2003), an analysis within VMD was conducted using the model provided by the 

crystal structure of P. pyralis luciferase reported by Sundlov et al. (2012) (PDB file Ppy 

FLuc ID: 4G36) (Table 3.2.). The analysis identified a total of 38 amino acid residues 

within 5Å of the active si - sheets. Within the remit of 

this investigation the primary focus was to target loops in or near the active site to isolate 

novel phenotypes. Two loops of interest were identified which comprised more than 7 

amino acids those being, T352-F368 (noted previously see Section 3.3.3.) and D520-L526, 

which are 12 and 14 amino acids in length, respectively.  Therefore, the loop comprising 

D520-L526 was targeted for single amino acid deletion as a fourth candidate in this study 

(Figure 3.7) (Table 3.4). 

 

3.3.5. Multiple Sequence Alignment of Beetle Luciferases  

 

Since the aim of this thesis is to use the deletional strategy as an alternative and/ or 

complementary method for FLuc engineering, it was important to survey the effect of 

deletions on bioluminescence activity within both conserved and non-conserved regions of 

the enzyme. It is likely that deletions will be less tolerated within conserved regions 

compared to non-conserved regions, but to date, this assumption has not been tested. 

Therefore, protein sequence alignment of different beetle luciferases (shown in Figure 3.5-

3.6) was used to identify these regions of conservation with particular reference to the 

regions previously selected in prior sections of this chapter. Utilising MacVector Inc (North 

Carolina, USA) a total of 20 homologues of beetle luciferases whose sequences were  
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Table 3.2. Amino Acid Residues occurring within 5Å of the active site 

Amino 

Acids  

Structure Loop  Length of Loop Comprising 

Amino Acid  

S198 Loop N197 – G207 6 

R218 Alpha Helix   

H245-F247 Alpha Helix   

T251 Alpha Helix   

L286 Beta Sheet   

A313-G315 Beta Sheet   

G316-P318 Loop G316 – L319 4 

R337-Y340 Beta Sheet   

G341 Loop G341 1 

L342-E344 Alpha Helix   

T346 Alpha Helix   

S347-A348 Loop S347 – A348 4 

I351 Beta Sheet   

V362 Loop T352-F368 12 

S420 Beta Sheet   

D422 Beta Sheet   

I434 Beta Sheet   

R437 Beta Sheet   

T519-K530 Loop D520-L526 14 

Table highlighting all amino acid residues occurring within 5Å of the active site of 

FLuc. The secondary structural element to which each amino acid belongs is identified and 

for those that belong within loops, the position and length of the loop is presented. 
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derived from the NCBI database were aligned via the multiple sequence alignment tool. 

Generally there appears to be a high level of homology between luciferases however the 

candidate regions for targeted deletion in this work display variable levels of conservation.   

 

Standard analysis packages can determine conservation of individual amino acids within a 

protein however a method does not currently exist to quantify the overall conservation 

displayed by a particular loop (group of amino acids). To determine the level of 

conservation of a loop, a table was constructed to assess the number of amino acid residues 

within each loop grouped by percentage identity (Table 3.3.). Based on this data, a method 

was derived within this thesis to provide a conservation score.  

 

The conservation score ranges from between 0-90 and acts as a measure to determine 

relative conservation of a loop whereby the greater the score, the greater the conservation 

of that loop. To derive this conservation score, the amino acids present within a loop are 

grouped by conservation identity of either >80%, 60-79%, 40-59%, 20-39% and 20% and 

the number of amino acids per group quantified, as Table 3.3. All data is converted to a 

fraction of the total amino acids present within that specific loop and these fractions are 

subsequently scaled utilising the mean % Conservation Identity of that group. Lastly, the 

conservation score is determined by the addition of each set of scaled fractions pertaining to 

a specific loop (Table 3.3.).  

 

Of candidate regions, a conservation score of 56 and 60 was derived for the N- (M1-G10) 

and C-termini (K543-L550), respectively whilst the lowest score calculated pertained to 

L172-T191. On the other hand, conservation scores derived for T352-F368 and D520-L526 

were 82.94 and 87.5, respectively. Therefore of the loops selected within this investigation, 

in order of conversation from most conserved to least conserved are T352-F368, D520-

L526, K543-L550, M1-G10 and L172-T191. 

 

Of these candidate loops, 2 loops are better conserved (T352-F368 and D520-L526) whilst 

3 loops show less conservation (M1-G10, L172- T191, K543-L550). It is desirable to select 

an additional loop with a conservation score similar to T352-F368 and D520-L526.  
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Figure 3.5. Multiple sequence alignment of Luciferases (Residues 1-403) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sequence alignment of P. pyralis luciferase against selected beetle luciferases 

(Residues 1-403). A total of 20 homologues of beetle luciferase aligned on MacVector Inc 

(North Carolina, USA) to determine the level of conservation of target regions (highlighted 

blue) 
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Figure 3.6. Multiple sequence alignment of Luciferases (337 - 555) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sequence alignment of P. pyralis luciferase against selected beetle luciferases 

(Residues 337 - 555). A total of 20 homologues of beetle luciferase aligned on MacVector 

Inc. to determine the level of conservation of target regions (highlighted blue). 
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Table 3.3. Conservation of Amino Acids identified from Multiple Sequence Alignment 

Table showing the number of amino acids within each specific candidate loop, that have a conservation identity of either >80%, 

60-79%, 40-59%, 20-39% and 20% as indicated by the consensus strand from multiple sequence alignment. A conservation score for 

each loop is highlighted. Conservation scores derived by converting all data in the table to a fraction of the total amino acids within 

that specific loop. These fractions are subsequently scaled utilising the mean % Conservation Identity and the conservation score was 

determined via the addition of each set of scaled fractions pertaining to a specific loop

Structure Number of Amino 

Acids Where 

Conservation 

Identity >80% 

Number of Amino 

Acids Where 

Conservation  

Identity  60-79% 

Number of Amino 

Acids Where 

Conservation   

Identity 40-59% 

Number of Amino 

Acids Where 

Conservation   

Identity  20- 39% 

Number of 

Amino Acids 

Where 

Conservation  

Identity  <20% 

Conservation 

Score 

M1-G10 4 1 2 0 3 56 

L172- T191 5 1 2 0 13 35.71 

T352-F368 15 0 1 0 1 82.94 

D375-R387 9 0 0 0 2 75.45 

D520-L526 7 1 0 0 0 87.5 

K543-L550 5 0 0 0 3 60 
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Therefore, loop D375-R387, which exhibited a conservation score of 75.45 was selected 

as the last candidate loop for sequential single amino acid deletions (Figure 3.7). 

 

3.3.6. Summary of Single Amino Acid Deletion Candidates 

 

In summary of Sections 3.3.1. through to 3.3.6, loops that shall be targeted for single 

amino acid deletion include M1-G10, L172- T191, T352-F368, D375-R387, D520-

L526, K543-L550 (Table 3.4. and Figure 3.7.). These loops were isolated for deletion 

based on analysis of the structure by a number of techniques including disorder 

prediction, residues occurring within 5Å of the active site and the identification of an 

omega loop amongst others.  

 

3.3.7. One-Step Adapted Site-Directed Mutagenesis to Generate Single Amino Acid 

Deletions 

 

Sequential single amino acid deletion within regions identified as targets (see Table 

2.2.) was conducted by the careful design of mutagenic primers whereby a PCR reaction 

amplifies the whole plasmid whilst removing a trinucleotide corresponding to the 

selected deletion. Primers were designed such that the forward and reverse primer 

would not incorporate the targeted three nucleotides corresponding to a single amino 

acid in the final product as shown in Figure 3.8. For each targeted amino acid, the 5’ 

end of both forward and reverse primers would amplify away from the trinucleotide to 

be deleted. 

  

SDM reactions were transformed into BL21 (DE3) E.coli cells for screening and 

selection based on two criteria: brightness at RT and apparent resistance to thermal 

inactivation at 42oC. 
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Table 3.4. Summary of Positions for Targeted Single Amino Acid Deletion 

Region Secondary 
Structure 

Conservation Status Additional 
Comment  

M1-G10 N Terminal 56  
L172- T191 Loop 35.71 Disorded Loop  
T352-F368 Loop 82.94 Omega Loop 
D375-R387 Loop 75.45  
D520-L526 Loop 87.5 Within 5Å of 

Active Site 
K543-L550 C Terminal 60  

Summary the regions of the x11FLuc protein to be targeted for deletion and the 

corresponding secondary structure and the calculated conservation score. 
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Figure 3.7. Position of Loops Selected for Single Amino Acid Deletion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rotated structure of substrate bound luciferase highlighting loops targeted for 

deletion. Loops M1-G10 (grey), L172- T191 (yellow), T352-F368 (green), D375-R387 

(orange), D520-L526 (dark blue), K543-L550 (grey) are highlighted. Luciferin substrate 

(red). Image generated via VMD using PDB file ID: 4G36. 
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Figure 3.8. Illustration of site directed mutagenesis for the incorporation of single amino 
acids 

 

 

 

 

 

 

 

 

 

 

 

Whole plasmid amplification of the pET16bx11FLuc for the introduction of single 

amino acid deletions. SDM carried out using primers as described by Table 2.2. used 

to generate single amino acid deletions at different positions throughout x11FLuc. 

Phusion polymerase was utilised in all experiments and Dpn I digestions of PCR 

products was carried out. Once mutated, the plasmid were directly transformed and 

screened in E.coli BL21 (DE3) cells (Figure donated by Dr. Dafydd Jones, Cardiff 

University).  
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3.3.8. Mutant Screening for Activity and Resistance to Thermal Inactivation 

 

An effective screening method is key in any protein engineering strategy to identify 

possible candidates for purification and subsequent characterisation. The method 

initially trialed to identify potentially useful mutants in transformant colonies of E. coli 

was that reported by Wood and Deluca (1987) and improvement by Dr. Erica Law (PhD 

Thesis, University of Cambridge, 2004) to include a secondary screen.  

 

3.3.8.1. Primary Colony Screening and Sequencing Confirmation of Deletion 
Strategy  
x11FLuc mutants generated from this site-directed deletion (SDD) strategy were 

initially screened for activity and sequenced in order answer key two initial questions; i) 

to identify whether bioluminescence was retained by the protein and ii) to confirm that 

the phenotype displayed was as a result of a single amino acid deletion.   

 

All SDD reactions (with 62 primer sets) were transformed into E.coli and a primary 

screen was carried out. A representation of the primary screening conducted is 

illustrated in Figure 3.9. Ideally, all colonies present on any given transformant plate 

should be identical clones, containing the same single amino acid deletion and as a 

result should display identical phenotypes. However, multiple phenotypes were 

observed. Such variation is likely due either to incomplete DpnI digestion, allowing the 

appearance of the x11FLuc template or as a result of aberrant mutagenesis during PCR. 

Sequencing was conducted on any colonies that were representative of the different 

phenotypes identified on each plate to isolate those that contained the single amino acid 

deletion. 

 

Of the 62 SDD reactions, sequencing confirmed that a total of 41 reactions had 

successfully incorporated the desired single amino acid deletion. Of the unsuccessful 

single amino acid deletion reactions, mutants had been generated which had promoted a 

frame shift by deletion or the incorporation of additional bases. In other cases, the PCR 

had been unsuccessful.  

 

 

 



Chapter 3 - Construction and Screening of Single Amino Acid Deletion Mutants 

82 

 

Figure 3.9. Representation of Primary Colony Screening 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Representation of primary colony screening. Nitrocellulose membranes with E.coli 

BL21 (DE3) containing single amino acid deletions mutants of x11FLuc were induced 

for 3-4hours at RT with IPTG (1mM). a) ΔT378 b) ΔK544 c) ΔG379 d) ΔK543 e) 

ΔS548 f) ΔL550 g) x111Fluc (Positive Control) h) Negative Control. All plates were 

screened with 1mM LH2 and then imaged on a Nikon D300 camera over an integration 

period of 30 seconds.  

a. b. 

c. d. 

e. f. 

g. h. 
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Sequencing additionally identified one mutant which had been generated incorporating 

two deletions (ΔF176 and ΔN177) which displayed bioluminescence activity, whereas a 

mutant which incorporated a single amino acid deletion in combination with a 

substitution, ΔP183/ E184D causes a loss of function. A focus of this investigation is to 

determine the overall tolerance of x11FLuc to single amino acid deletions. However, it 

is of interest that in the example where a double deletion, ΔF176/ ΔN177, has occurred, 

x11FLuc exhibits bioluminescent activity, while a loss of function has been has been 

observed due to ΔP183 in combination with a random substitution, E184D. Without 

further investigation it is difficult to attribute the loss of function of ΔP183/ E184D to 

either to the deletion, the substitution or a combination of both.  

 

Of the 43 successful SDD reactions, 39 colonies displayed bioluminescence to varying 

degrees. In fact, only 2 variants, ΔV365 and ΔV366, exhibited a complete loss of 

activity. Both V365 and V366 are within 10Å of the ATP binding site and it is possible 

that the loss of function noted by ΔV365 and ΔV366 may be attributed to a loss in the 

ability for the substrate ATP to bind effectively to the protein. 

 

3.3.8.2. Secondary Screening of Mutants 
Significant variation was observed between plates during primary screening, which may 

be due to differences in incubation times or the lag time between spraying and 

collection of bioluminescence. Therefore, all 43 confirmed deletion mutants were 

subjected to a secondary screen (Figure 3.10). The purpose of implementing the 

secondary screen was to compare activity of the single amino acid deletion variants on 

one plate against the x11FLuc parental control in order to identify whether any mutants 

were likely to display increased bioluminescent activity. In addition to this, the 

secondary screen was implemented to assess whether the characteristic resistance to 

thermal inactivation displayed by the x11FLuc had been retained.  
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Figure 3.10. Representation of Secondary Screening of Mutants  

  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Representation of Secondary Screening of Mutants. Nitrocellulose membranes with 

E.coli BL21 (DE3) containing single amino acid deletions mutants of x11FLuc were 

induced for 3-4hours at RT with IPTG (1mM). a-c) ΔD356, e-f) ΔK358, g) x11FLuc h) 

ΔT352, i) ΔP353 j) R354, k)G355, l) x11FLuc.  All were firstly sprayed with 1mM LH2 

and then imaged on a Nikon D300 camera over an integration period of 30 seconds. 
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In order to conduct the secondary screen, single clones expressing the same single 

amino acid deletion were grown on two identical plates along with a control line of 

x11FLuc and two screens were carried out with and without incubation at 42oC for 15-

30 minutes. Following secondary screening, after incubation at 42oC, of the 43 deletion 

mutants derived, all retained some activity. Even the double deletion mutant ΔF176/ 

ΔN177 displayed resistance to thermal inactivation at 42oC by secondary screen, 

suggesting that the properties of x11FLuc were well maintained despite the location of 

the deletion. 

This screening strategy is useful in answering basic questions in a library of mutants. 

However, the perception of brightness by an individual is subjective and an additional 

methodology would be advantageous for the quantification of bioluminescence during 

screening.  

 

3.3.8.3. Image J Analysis for Colony Brightness at Elevated Temperatures 
ImageJ is an image processing programme (National Institutes of Health, Bethesda, 

Maryland, USA) that may be utilised to overcome subjective observations and was 

utilised to quantify the overall light emitted from each colony in photographs of the 

secondary screens over a 30 second integration period. To do this, images were 

converted to 32-bit, manually defining the space in which the colony was to be analysed 

and the mean gray value, whose values are divided into 256 bins, were measured. The 

average bioluminescence was determined across each row of colonies expressing the 

same mutants and statistical tests applied (Figure 3.11.) (Table 3.5.)(Figure 3.12).  

 

The spread of the data ranged from an average of 197.68 to 25.17, below the 256bins 

utilised within the software, indicating all values were not saturated. A trend was 

observed whereby deletions occurring in the N-terminal (M1-G10), displayed similar 

intensities to x11FLuc, with mean gray values of between 99-122 compared to 91 for 

x11FLuc. Deletions occurring within the C-terminal displayed values of between 172-

174. Apparent resistance to thermal inactivation for both the N and C terminal were 

between 172-174, which appeared brighter than x11FLuc. With regards to the loop 

regions, deletions between L172- T191 displayed mean gray values of between 25-131, 

whereby 8 deletion mutations had reduced activity compared to x11FLuc whilst 3 were 

enhanced (Table 3.5, Figure 3.11). With regards to apparent resistance to thermal 
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inactivation at 42oC within this loop, surprisingly ΔP173, ΔD180, ΔF186 and ΔR188 

had higher levels of activity compared to the results at RT. Deletions within loop T352-

F368 displayed mean gray values of between 28-178. Eight deletion mutations had 

enhanced activity at RT compared to x11FLuc. However, only ΔT352 and ΔD356 in 

this loop promoted higher levels of activity at 42oC compared to RT. Deletions within 

loop D375-R387 displayed means gray values of between 8-125 and 1 deletion mutant 

had enhanced activity, whilst ΔG379, ΔN385 and ΔR387 promoted higher levels of 

activity at 42oC compared to RT. Lastly, D520-L526 displayed mean gray values of 

between 5-52, however, no deletion mutants had enhanced activity compared to 

x11FLuc, however again, all displayed higher levels of activity at 42oC compared to 

RT. 

 

A trend was observed (Figure 3.11.) where deletions within the N-terminal displayed 

similar Image J results to x11FLuc, whilst C-terminal deletions promoted an 

enhancement of activity, suggesting that the N- terminal does not play a role in 

modulating activity. Interestingly, deletions occurring within the less conserved loop 

L172- T191 and the most stringently conserved loop, D520-L526 both resulted in 

reduced activity. This suggests that with regards to loops, the degree of conservation 

exhibited by a particular loop will not ultimately determine the overall tolerance of that 

deletion. Moreover, these effects indicate the importance of these loops for catalytic 

activity, suggesting residues present within these loops are implicated in the 

reaction/mechanism or indirectly co-ordinate residues that are involved. This shows the 

degree of conservation does not necessarily correlate to tolerance of a region to single 

amino acid deletion, for example, amongst the highest activity was displayed within 

T352-F368 (Ω loop). It has been considered that this Ω loop may be important for 

determining substrate specificity and the wide ranging activities displayed by deletions 

within this region are indicative that some modulation of the reaction is occurring. 

 

With regards to Image J analysis of secondary screening for resistance to thermal 

inactivation, all deletion mutants retained activity after incubation at 42oC, however, the 

location of loop could not be used to predict the degree of resistance to thermal 

inactivation. N- and C-terminal deletions exhibited similar resistance to thermal 

inactivation as conferred by x11FLuc and also deletions within D520-L526 did not 

affect the phenotype. 
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Statistical analysis was conducted to determine the significance of the differences 

observed (Figure 3.12). A statistically significant difference between groups was found 

by a one-way ANOVA, F(77, 154) = 42.67, p = 0.000. The Tukey method was further 

employed to group variants by means that are not significantly different to confirm 

observations such that there is not significant difference in activity between x11FLuc at 

RT and at 42oC.  
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Figure 3.11. Image J Quantification of Bioluminescent Activity following Secondary Screening 

Image J analysis of colony brightness of mutants obtained from SDD. The data presented were obtained from secondary screening. Those 

bars in blue represent colony brightness at RT whilst those bars in red represent colony brightness at 42oC. The average bioluminescence was 

determined by averaging of the mean gray values between each row of colonies expressing the same mutants and the standard error calculated 

(error bars).
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Table 3.5. Image J Quantification of Bioluminescent Activity 

Mutant Average 

Bioluminescent 

Activity at RT 

Standard 

Deviation 

at RT 

Average 

Bioluminescent 

Activity at 42oC 

Standard 

Deviation 

at 42oC 

x11FLuc 91.71667 1.3811 90.95525 15.296 

ΔE2 99.56 18.36374 174.4815 0.006414 

ΔD3 106.5468 12.55756 174.6648 3.433884 

ΔA4 101.9443 17.54107 172.5038 0.208003 

ΔK5 122.6643 4.894652 174.533 0.05279 

ΔK8 104.1933 3.390704 174.638 0.878785 

ΔP173 25.1725 5.345311 31.0765 2.587806 

ΔG175 106.4893 5.564744 42.648 14.12239 

ΔF176 45.51025 0.195093 45.37525 11.54067 

ΔD180 42.306 1.311436 61.203 3.765027 

ΔF181 34.9655 2.13981 30.32425 2.757206 

ΔK182 38.43375 1.481907 35.04675 1.907736 

ΔF186 17.36075 8.794219 23.84375 8.859266 

ΔD187 113.651 9.867305 93.71225 19.03901 

ΔR188 131.9813 0.68552 133.0295 5.270331 

ΔK190 46.58425 4.108691 39.22275 19.97117 

ΔT191 72.00675 6.91147 58.095 6.9846 

ΔT352 28.464 6.592046 40.43175 16.7816 

ΔP353 157.7977 13.04921 153.8425 9.083142 

ΔG355 124.8703 2.021349 81.9795 1.451428 

ΔD356 61.6325 11.07943 67.67075 24.16931 

ΔK358 158.928 27.14638 81.03125 23.00792 

ΔP359 197.677 30.67849 127.2963 22.56761 

ΔG360 178.0798 7.924617 111.7083 16.13466 

ΔA361 134.7478 20.92089 109.8783 13.23135 

ΔV362 146.5563 15.80108 127.1085 26.68634 

ΔG363 113.5715 2.881687 89.769 3.549213 

ΔD377 27.63625 7.249553 26.01675 6.57649 

ΔG379 46.7025 2.739517 47.7225 4.600916 

ΔK380 123.523 2.794327 89.55275 8.116116 

ΔN385 2.09375 0.032987 26.81425 1.732864 

ΔR387 8.91825 1.507288 12.8685 0.50384 

ΔD520 19.10975 2.543419 52.79625 2.31786 

ΔE521 52.59625 4.240126 78.0265 1.303664 

ΔP523 5.78425 0.373989 7.34375 0.556983 

ΔK543 174.4815 0.196984 174.6648 0.006414 

ΔK544 174.6648 0.006414 172.5038 3.433884 

ΔK547 172.5038 3.433884 174.533 0.208003 

Image J analysis of bioluminescent activity within colonies following secondary 

screening. Bioluminescent activity observed within colonies of x11FLuc and deletion 

mutants at RT, and following incubation at 42oC. Bioluminescent activities measured by 

averaging of the mean gray values taken from 4 clone colonies.   
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Figure 3.12. One-Way ANOVA and Tukey HSD to Determine Statistically Significant 

Differences between Variants at RT and 42oC from Colony Screening 

 
Analysis of Variance 
 
Source    DF  Adj SS  Adj MS  F-Value  P-Value 
Variant   77  707873  9193.2    42.67    0.000 
Error    154   33178   215.4 
Total    231  741051 
 

Tukey Pairwise Comparisons  
 
Grouping Information Using the Tukey Method and 95% Confidence 
 
Variant          N     Mean  Grouping 
ΔK358 RT         3    183.7  A 
ΔK544 RT         3  174.669  A B 
ΔK543  42        3  174.669  A B 
ΔD3  42          3  174.669  A B 
ΔK8  42          3  174.622  A B 
ΔK547 RT         3  174.547  A B 
ΔK544  42        3  174.547  A B 
ΔA4  42          3  174.547  A B 
ΔK547  42        3  174.488  A B 
ΔK5  42          3  174.488  A B 
ΔK543 RT         3  174.420  A B 
ΔE2  42          3  174.420  A B 
ΔT352  42        3   163.21  A B C 
ΔP359 RT         3    161.9  A B C 
ΔK380  42        3   161.58  A B C 
ΔT352 RT         2    157.5  A B C D E F 
ΔD356 RT         3   153.98  A B C D 
ΔA361 RT         3    143.1  A B C D E F G 
ΔD187  42        3    140.4  A B C D E F G H 
ΔD187 RT         2    135.9  A B C D E F G H I 
ΔG360 RT         3   133.87  A B C D E F G H I 
ΔA361  42        3    126.0    B C D E F G H I J 
ΔG379 RT         3   122.22      C D E F G H I J 
ΔP359  42        3    121.7      C D E F G H I J K 
ΔP353 RT         3    119.7      C D E F G H I J K L 
ΔK358  42        3    119.3      C D E F G H I J K L 
ΔF186 RT         3    117.0      C D E F G H I J K L M 
ΔG360  42        3    113.7      C D E F G H I J K L M 
ΔK5 RT           3   112.60      C D E F G H I J K L M N 
ΔG175 RT         3   108.13        D E F G H I J K L M N 
ΔV362 RT         3   105.36        D E F G H I J K L M N 
ΔK8 RT           3   102.27            F G H I J K L M N O 
x11FLuc  42      3  100.130          E F G H I J K L M N O 
ΔF186  42        3    96.70              G H I J K L M N O P 
ΔD3 RT           3     95.6              G H I J K L M N O P 
ΔA4 RT           3     95.2              G H I J K L M N O P Q 
x11FLuc RT       3    91.72              G H I J K L M N O P Q R 
ΔG379  42        3    91.66              G H I J K L M N O P Q R 
ΔE2 RT           3     89.1                H I J K L M N O P Q R S 
ΔD356  42        3     87.3                  I J K L M N O P Q R S 
ΔP353  42        3    84.56                  I J K L M N O P Q R S T 
ΔV362  42        3     82.6                  I J K L M N O P Q R S T 
ΔE521  42        3    78.03                    J K L M N O P Q R S T U 
ΔK380 RT         3    77.36                    J K L M N O P Q R S T U V 
ΔK190 RT         3    70.71                      K L M N O P Q R S T U V W 
ΔG355  42        3   68.522                        L M N O P Q R S T U V W X 
ΔK190  42        3     66.9                          M N O P Q R S T U V W X Y 
ΔG355 RT         3    62.11                            N O P Q R S T U V W X Y Z 
ΔF176+ΔN177  42  3     61.4                            N O P Q R S T U V W X Y Z 
ΔE521 RT         3    52.12                              O P Q R S T U V W X Y Z AA 
ΔD520  42        3   51.443                              O P Q R S T U V W X Y Z AA 
ΔD377 RT         3    51.01                              O P Q R S T U V W X Y Z AA 
ΔF176  42        3     48.3                                P Q R S T U V W X Y Z AA 
ΔF176 RT         3    46.78                                P Q R S T U V W X Y Z AA 
ΔR188 RT         3   46.307                                P Q R S T U V W X Y Z AA 
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ΔD377  42        3    46.04                                P Q R S T U V W X Y Z AA 
ΔT191  42        3    43.87                                  Q R S T U V W X Y Z AA 
ΔG175  42        3    42.81                                    R S T U V W X Y Z AA 
ΔR188  42        3    42.39                                    R S T U V W X Y Z AA 
ΔF176+ΔN177 RT   3    42.19                                    R S T U V W X Y Z AA 
ΔF181 RT         3   39.619                                      S T U V W X Y Z AA 
ΔF181  42        3    35.63                                        T U V W X Y Z AA 
ΔD180 RT         3    34.40                                        T U V W X Y Z AA 
ΔP173  42        3    30.80                                          U V W X Y Z AA 
ΔD180  42        3    29.29                                          U V W X Y Z AA 
ΔG363  42        3    26.81                                          U V W X Y Z AA 
ΔN385  42        3    26.39                                            V W X Y Z AA 
ΔG363 RT         3    26.31                                            V W X Y Z AA 
ΔP173 RT         3    25.81                                              W X Y Z AA 
ΔT191 RT         3    24.68                                              W X Y Z AA 
ΔK182  42        3    24.51                                              W X Y Z AA 
ΔD520 RT         3    18.48                                                X Y Z AA 
ΔK182 RT         3   16.500                                                  Y Z AA 
ΔR387  42        3   13.149                                                    Z AA 
ΔR387 RT         3    9.802                                                      AA 
ΔP523  42        3    7.109                                                      AA 
ΔP523 RT         3    5.718                                                      AA 
ΔN385 RT         3   2.0833                                                      AA 

 

Minitab session output displaying results of a One-way ANOVA and Tukey HSD 

test from data obtained from Image J analysis from bioluminescent colonies.  A 

statistically significant difference between groups was determined by a one-way 

ANOVA, F(77, 154) = 42.67, p = 0.000. Grouping information using the Tukey method 

and 95% confidence. Means that do not share a letter are significantly different.  

.x11FLuc is highlighted in bold. RT= Variant at Room Temperature. 42= Variant at 42 

oC. N=3.  
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3.3.8.4. Spectral Shifts Resulting from Single Amino Acid Deletions.  
It was observed through in vivo colony screening that single amino acid deletions can 

alter the colour of bioluminescent emission. Five replicate colonies expressing deletion 

mutants within the Ω loop of the x11FLuc were screened (Figure 3.13-3.14.). It is 

intriguing that the deletions in close proximity to the ends of the N- and C-termini of the 

Ω loop, such as mutants ΔT352, ΔP353 and ΔG363 exhibit larger red shifts than 

deletions closer to the centre (e.g. ΔP359, ΔG360, ΔA361 and ΔV362), which exhibit 

emission colour similar to that of x11FLuc. 

To study the bioluminescent spectra of the deletion variants, proteins were 

overexpressed and crude cell lysates were utilised to obtain bioluminescent spectra 

(Table 3.6.). Of a total of 43 mutants, a majority of deletion mutants (38) displayed a 

similar bioluminescent emission peak to the x11FLuc (λmax = 555nm). However, a red 

shift of 50nm was observed for mutant ΔT352 (λmax = 605nm) whilst ΔG363 displayed 

a smaller shift of 16nm (λmax = 571nm) (Figure 3.13). In addition to this, deletions 

within the loop D520-L526 promoted similar red shifts (λmax = 571nm). The majority 

of mutants exhibited a bioluminescence spectral half-bandwidth (full width at half 

maximum, FWHM) of between 51-61nm, similar to that of x11FLuc (60nm) whilst 

deletions within T352-F368 exhibited FWHM of between 38-74nm. 

It is interesting that the majority of deletions throughout the structure of x11FLuc have 

not resulted in large alterations in the bioluminescence spectra of x11FLuc, considering 

that single amino acid substitution (S284T) results in a ca. 50nm red shift (Branchini  et 

al., 2005). However, one particular region, the Ω loop results in large alterations in 

λmax and FWHM. Previous in vivo colony screening of deletion mutants within this 

region showed a number of spectral changes. Based on this data, ΔP353, ΔP359, 

ΔG360, ΔA361 and ΔV362 primarily displayed changes in FWHM. ΔT352 displayed a 

prominent shift in λmax, while ΔG363 appears to be a combination of both. 

As suggested by colour theory, the differences noted here may be attributed to a number 

of factors. FWHM provides information on the distribution of the population of emitting 

species. However, with regards to ΔT352 whereby no such alteration in FWHM has 

occurred, shifts may be due to micro-environmental changes (see Chapter 1).  
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Figure 3.13. Colour shifted single amino acid deletion mutants 

 

 

 

 

 

 

 

Colour-shifted single amino acid deletions mutants. Nitrocellulose membrane of 

E.coli BL21 (DE3) containing single amino acid deletions within x11FLuc (ΔT352, 

ΔP353, ΔP359, ΔG360, ΔA361, ΔV362, ΔG363) compared to native x11FLuc, induced 

for 210 min at RT with IPTG (1mM). All were sprayed three times with 1mM LH2 in 

citrate buffer (pH 5.0) and imaged on a Nikon D300 camera over an integration period 

of 30 seconds.  
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b, 

c, 

a, 

Figure 3.14. Representation of Emission Spectra from Crude Cell Lysates of Omega 
loop mutants 

  

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Representation of Emission Spectra from Crude Cell Lysates. Crude cell lysates of 

E.coli BL21 containing a) x11Fluc b) ΔT352 c) ΔG363 induced for 6 hours at RT with 

IPTG (1mM). Spectral emission measured within Cary Eclipse fluorimeter following 

injection of 500uM LH2 and 1mM ATP.  
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3.4. Further Discussion 

The overarching aim of this investigation was to address whether single amino acid 

deletions could be tolerated by x11FLuc a thermostable and pH-tolerant mutant of Ppy 

WTFLuc. In order to answer this question, a targeted approach (SDD) was utilised to 

incorporate the single amino acid deletions as an alternative to substitution or random 

deletion mutagenic methods, such that specific loops are targeted for deletion and this 

provides a rational survey of the effects of deletions in loop structures.  

  

Analysis of the secondary and crystal structures indicated that N- and C-terminals and 

an internal loop were good candidates for deletion due to high relative disorder. In 

addition to this, another and previously overlooked structure within the protein was 

identified as an Ω loop, a well characterised structure with links to protein specificity 

and activity in other proteins (Fetrow et al., 1995). Furthermore, loops were surveyed 

within 5Å of the active site to identify if deletions would be tolerated when in close 

proximity to the catalytic site as such M1-G10, L172- T191, T352-F368, D375-R387, 

D520-L526, K543-L550 were selected to undergo SDD.  

   

The screening and selection of mutants resulting from any mutagenesis strategy is a 

crucial step in identifying mutants of desired characteristics for further study. A 

convenient colony screening strategy has been utilised for the initial identification of 

mutants displaying bioluminescence activity. The protocol utilised was a method 

described by Wood and DeLuca (1987) which was useful for high throughput 

identification of tolerant mutations, however there were some limitations and biases 

within using the technique.  

 

Firstly, whilst the in vivo colony screening method was useful for determining whether 

deletions were either tolerated or not tolerated, the subjective nature of the estimation of 

brightness by the human eye was considered problematic when aiming to quantify 

brightness in a large number of mutants. Image J analysis was utilised to overcome such 

problems however some bias remained. For example, often there is not 100% efficiency 

in the lifting of colonies using a nitrocellulose membrane. Secondly, another common 

problem involves obtaining an even spray of the LH2 substrate and as a result colonies 

towards the periphery of the plate may be less exposed to the substrate compared to 

those cells within the centre of the plate and they may appear dimmer. Practically, there 
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is a lag time between the spraying and the taking of the photograph and this can be 

variable. Decay in the luminescent signal between spraying and image acquisition can 

result in differences in the apparent brightness of colonies.  

 

Variations in brightness may also be attributed to the expression or the stability of the 

luciferase itself within the E.coli, where the expression pattern of x11FLuc may be 

different to those of the mutants. For example, we may consider that single amino acid 

deletions can impact upon the folding efficiency of an enzymes (Arpino et al., 2014) 

changing the landscape of folding in favour of the production of soluble protein or 

perhaps a more stable protein appears more active after induction at RT (Jathoul et al., 

2012).  

 

At present, utilising deletional mutagenesis 43 deletion mutants were generated (Figure 

3.15) and 41 retained bioluminescence activity, whilst 2 mutants were knock-outs. This 

is remarkable considering these mutants contain deletions in different loops connecting 

important areas throughout their structure. As hypothesised, prior to this survey (based 

on previous work with GFP), luciferase being a more globular and lesser highly 

structured protein is able to tolerate single amino acid deletions both within regions 

close to the active site and also remarkably within sites that are highly conserved. The 

loss of function within the mutants ΔV365 and ΔV366 indicates that these residues play 

a vital role in bioluminescence either directly or indirectly via H-bond networks with 

other residues or water molecules (Nakatsu et al., 2006). 

 

Further characterisation was conducted to assess the tolerance of x11FLuc to deletions 

in terms of characteristics such as thermostability and emission colour (Table 3.6.). 

Investigation showed that x11FLuc retained bioluminescence up to 42oC despite the 

location of the single amino acid deletion. One key difference in mutants compared to 

x11FLuc was in reference to their bioluminescence emission  and FWHM. Both 

specific and non-specific effects on the emitter were seen using crude cell lysates, as 

indicated by shifts with and without a change in spectral FWHM. 

 

Despite improvements in this traditional in vivo colony screening technique, there are a 

number of drawbacks which lead to results which are difficult to interpret to select 

mutants for further characterisation from a large pool. To further improve the screening 
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method optimisation to accelerate the identification of useful mutants. In particular, a 

method able to quantify bioluminescent activity would be desirable.  
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Table 3.6. Summary of Bioluminescence Properties of Deletion Mutants from Colony 

Screening and Crude Cell Lysates  

Variant Structure  Biolumi
nescence 
Activity  

Apparent 
Resistance to 
Thermal 
Inactivation  
(42oC) 

Bioluminescenc
e λmax (nm) 

FWHM (nm) 

x11FLuc Control   555 60.97 
E2 N Terminal   ND  ND 
D3 N Terminal   ND  ND  
A4 N Terminal   ND  ND  
K5 N Terminal   ND  ND  
K8 N Terminal   ND  ND  
P173 L172- T191   555 54 
G175 L172- T191   555 59.91 
F176 L172- T191   555 61.05 
F176+N177 L172- T191   555 55.99 
D180 L172- T191   555 58.06 
F181 L172- T191   555 58.04 
K182 L172- T191   555 61.02 
P183+E184D L172- T191     
F186 L172- T191   555 56.99 
D187 L172- T191   555 51 
R188 L172- T191   555 54.87 
K190 L172- T191   555 52.94 
T191 L172- T191   555 56.9 
T352 T352-F368   605 62.04 
P353 T352-F368   555 48.04 
G355 T352-F368   555 57.97 
D356 T352-F368   555 38.05 
K358 T352-F368   555 54.95 
P359 T352-F368   555 56.9 
G360 T352-F368   555 59.98 
A361 T352-F368   555 64 
V362 T352-F368   555 52.93 
G363 T352-F368   571 73.9 
V365 T352-F368     
V366 T352-F368     
L376 D375-R387   555 ND  
D377 D375-R387   555 ND  
G379 D375-R387   555 ND  
K380 D375-R387   555 ND  
V384 D375-R387   555 ND  
N385 D375-R387   555 ND  
R387 D375-R387   555 ND  
D520 Proximal to   571 ND  
E521 Proximal to   572 ND  
P523 Proximal to   571 ND  
K543 C Terminal   555 ND  
K544 C Terminal   555 ND  
K547 C Terminal   555 ND  

A combination of data from colony screens and crude cell lysates to illustrate 

properties of x11FLuc deletion mutants

are approximate values determined from crude cell lysates. ND: not determined. 
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Figure 3.15. Position of Successful Deletions in the Secondary Structure of x11FLuc   

 

Position of Amino Acid Deletions made within x11FLuc (adapted from Conti et al., 
1996). The secondary structure is shown, coloured by domains. Those single amino acid 
deletions retaining bioluminescence are highlighted via green triangles whilst those 
single amino acids deletions where bioluminescence is lost is marked via red triangle.  
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3.5. Conclusion 

A SDD approach was used to mutate x11FLuc in specific positions chosen both for 

likely tolerance to single amino acid deletion and to investigate particular regions of 

interest in the luciferase protein. Analysis of the secondary and crystal structures 

indicated that N- and C-termini and an internal loop were good candidates for deletion 

due to high relative disorder. In addition to this, another and previously overlooked 

structure within the protein was identified as an Ω loop, a well characterised structure 

with links to protein specificity and activity in other proteins. Furthermore, loops were 

surveyed within 5Å of the active site to identify if deletions would be tolerated when in 

close proximity to the active site.   

  

This targeted approach and subsequent screening of the mutants for brightness and 

apparent thermostability revealed that, in the main, mutants retained bioluminescent 

activity and the thermostable properties of x11FLuc parent up to 42oC. In addition, it 

was revealed that the level of the conservation of the loops did not dictate tolerance to 

deletion.  

 

Whilst the traditional in vivo colony screening technique is useful in determining the 

tolerance of the amino acids to deletion, there are drawbacks which lead to results 

which are difficult to interpret to select mutants for further characterisation from a large 

pool. To further improve the screening method optimisation is required to overcome 

some of these the drawbacks and accelerate the identification of useful mutants. In 

particular, a method able to quantify bioluminescent activity would be desirable and that 

is the focus of the next Chapter.  
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Chapter 4 

Optimisation of Screening Strategies to Identify Useful x11 

FLuc Deletion Mutants 

 

 

4.1 Chapter Summary 

 

Whilst conventional methodologies of colony screening activity in a large library of 

mutant luciferases are useful for determining certain characteristics such as apparent 

resistance to thermal inactivation, they are less suitable for the determination of other 

desirable characteristics, such as changes in kinetics or the specific activity of the 

enzyme, increased tolerance to pH and increased resistance to inhibition. 

Conventionally, such characteristics may not be determined until after proteins have 

been overexpressed, purified and characterised, which is both costly and time 

consuming. Therefore, methods to more accurately quantify bioluminescence under a 

variety of assay conditions prior to purification are desirable. Therefore 96-well format 

luminometric cell lysate assays were developed to refine the selection of the x11FLuc 

deletion library. Utilisation of this technique provided robust results with which it was 

possible to select mutants for purification and analysis using a wide range of selection 

criteria, such as resistance to inhibition by a number of factors. The Ω loop of x11FLuc 

was also confirmed to be an important structural feature, whereby single amino acid 

deletions cause wide-ranging phenotypic effects, such as alteration of bioluminescence 

kinetics, bioluminescence spectra, resistances to thermal inactivation and brightness. 

 

 

4.2. Introduction 

 

Colony screening of recombinant FLucs was first described by Wood and Deluca 

(1987). However, this method proved to be limited for the selection of Lucs with 

different beneficial characteristics from the deletion mutant library generated in Chapter 

3. For example, desirable characteristics for ATP monitoring include enhanced 
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activities, kinetics, resistance to inhibitors, such as dehydroluciferin, spectral stability, 

and resistance to thermal inactivation or changes in pH.  

 

FLuc reaction kinetics describe the rates of the bioluminescence reaction. The Michaelis 

constant (KM) provides an indication of substrate affinity of enzymes, whilst kcat is a 

measure of the turnover of FLuc and much protein engineering has been used to 

modulate these characteristics. The LH2 substrate is a key cost in technologies that 

utilise FLuc therefore mutants identified with a reduced KM for LH2 are desirable within 

industry, in addition, kinetically altered enzymes provide insight into the mechanism of 

FLuc which is desirable within academia. Lucs able to resist inhibitors are also highly 

desirable, for example, FLuc is strongly inhibited by dehydroluciferin (L), which is an 

oxidation product of LH2 and this can impact on the reproducibility of assays, therefore, 

mutants which resist such inhibitors may be of benefit to diagnostic applications of 

FLuc.  

 

Characterisation of FLucs following purification provides the most meaningful analysis 

of kinetic and inhibition parameters, however this can limit the ability to quickly select 

multiple useful phenotypes from large mutant libraries. Furthermore, less bright mutants 

which have other useful characteristics may not be selected. Therefore, it was 

hypothesised that a screening strategy could be optimised which can better determine a 

number of Fluc characteristics prior to enzyme purification. The development of a new 

screening technique would allow for characterisation of a greater number of novel 

deletion mutants and provide more information about mutants that could be overlooked 

by conventional colony screening methods.  

 

The aim of this Chapter is to adapt the conventional library screening methods into high 

throughput 96-well format assays for activity and resistance to inhibition or inactivation 

in conditions relevant to in vitro and field diagnostics, such as at physiological pH and 

at RT. Furthermore, this method will be used to better characterise all 43 deletion 

mutants of x11FLuc generated in Chapter 3 to help selection of bright, stable and less 

inhibited mutants for in vitro diagnostics applications.  
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4.3 Results and Discussion  

 

4.3.1 Construction of plasmid pET16b-x2 

 

The x2 Fluc (White et al., 2001) gene was cloned into the pET16b vector for to compare 

the properties of this mutant to x11 Fluc and its deletion mutants using 96-well format 

assays (see Chapter 2). This construct was named pET16b-x2.  

 

 

4.3.2 Construction of a 96-Well Format Screening Strategy in Different Assay 

Conditions 

 

In Chapter 3, 43 deletion mutants were screened to identify whether luciferase tolerated 

single amino acid deletions and whether the resistance to thermal inactivation typically 

displayed by x11FLuc had been retained. The results highlighted that in all bar two of 

the deletion mutants activity had been retained, however, it is not feasible to purify and 

characterise all 41 mutants, as such, a method able to better select desirable properties 

form this library was developed as an alternative to colony screening for better 

quantification of bioluminescence, to indicate low KM for LH2, and determine resistance 

to inhibitors. 

 

To test whether this strategy would be robust enough to identify useful mutants, 

controls (WTFLuc, x2FLuc and x11FLuc) were overexpressed in E. coli, normalised to 

their O.D.600, lysed and resuspended in TEM buffer before assaying for 

bioluminescence by injecting luminometry. The assays were performed with a settle 

time of 2000ms and followed by an integration period of 5000ms as to capture steady 

state bioluminescence following the flash. Three conditions were utilised for testing, 

saturating substrate conditions, non-saturating LH2 conditions and a PPi assay.  

 

Results presented that under saturating substrate conditions WTFLuc, x2FLuc and 

x11FLuc exhibited activities of 12359226 RLU, 47009667 RLU and 29399000 RLU 

respectively, whilst non-saturating LH2 conditions exhibited activities of 86943 RLU 

(0.7%), 1296500 RLU (2.75%) and 626920 RLU (2.13%), respectively. The PPi assay 
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exhibited activities of 3734667 RLU (30.2%), 3351467 RLU (7.12%) and 1291270 

RLU (4.39%), respectively (Figure 4.1.) (Table 4.1.).  

 

Previous investigations note that at RT x2FLuc displays greater activity compared to  

WTFLuc and x11FLuc, a result which correlates to what was seen using the cell lysate 

assay (Figure 4.1). In addition to this, it is known that PPi is an inhibitor of the reaction 

and the results were concurrent with this, showing a reduction in activity within all 3 

controls. Lastly, a screen was conducted to test whether the screening methodology 

would be able to discriminate differences in KM. Of the controls, within the literature, 

WTFLuc has the highest KM for Luciferin whilst x11FLuc has the lowest. In substrate 

limiting conditions, WT presented the lowest activity suggesting that during large scale 

screening those mutants with lower activity given such conditions are more likely to be 

characterised with a higher KM.   

 

Statistical analysis was conducted to determine the significance of the differences 

observed (Figure 4.2). A statistically significant difference between WT, x2 and 

x11FLuc was found by a one-way ANOVA, F(2,6) = 47.35, p = 0.000. The Tukey 

method was further employed to group variants by means that are not significantly 

different to confirm observations such that there is a significant difference in activity of 

these controls under saturating conditions.  

 

Further analysis was conducted to determine the significance of the difference between 

WT, x2 and x11FLuc under given conditions. Under limiting substrate conditions, a 

statistically significant difference between all variants was found by a one-way 

ANOVA, F(2,5) = 179.81, p = 0.000 and confirmed by the Tukey method (Figure 4.3) 

whilst under inclusion of 2mM PPi, a one-way ANOVA, F(2,6) = 12.39, p = 0.007 and 

Tukey test identified a non significant difference between WT and x2 and a significant 

difference between x11FLuc compared to WT and x2 (Figure 4.4). 
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Figure 4.1. Bioluminescence activity of Control Variants under 500µM LH2/ 1mM 

ATP, 20µM LH2/1mM ATP and 500µM LH2/ 1mM ATP/2mM PPi 

 

 

Bioluminescence activity displayed by controls under varying conditions. Crude 

cell lysates, normalised by OD600 of E.coli BL21 containing WTFLuc, x2FLuc and 

x11FLuc, induced for 6 hours at RT with 1mM IPTG. Bioluminescence activity 

measured within Fluoroskan Ascent luminometer following injection of M LH2 

with 1mM ATP, 500 M LH2 with 1mM ATP with 2mM PPi and 20 M LH2 with 

1mM ATP. 

 

 

 

 

 

 



Chapter 4 – Optimisation of Screening Strategies 

106 

 

Table 4.1. Bioluminescence Activity of Control Variants under 500µM LH2/ 1mM 

ATP, 20µM LH2/1mM ATP and 500µM LH2/ 1mM ATP/500mM PPi 

Variant 

Mean 
500µM 
LH2/ 
1mM 
ATP 

St.Dev 
500µM 
LH2/ 
1mM 
ATP 

Mean 
20µM 
LH2/1mM 
ATP 

St. Dev 
20µM 
LH2/1mM 
ATP 

Mean 
500µM 
LH2/ 
1mM 
ATP/2mM 
PPi 

St. Dev 
500µM 
LH2/ 
1mM 
ATP/2mM 
PPi 

WT 
12359226 215136.7 86943 

(0.7%) 
13254.09 3734667 

(30.21%) 
136345 

x2 
47009667 4351651 1296500 

(2.75%) 
66820.14 3351467 

(7.12%) 
616594.5 

x11FLuc 

29399000 994018.8 626920 
(2.13% 

) 

26633.58 1291270 
(4.39%) 

290348.3 

 

Bioluminescence activity of WT, x2 and x11FLuc. Values within brackets denote the 

percentage activity retained as compared to LH2/ 1mM ATP.  
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Figure 4.2. One-Way ANOVA and Tukey HSD to Determine Statistically Significant 

Differences between Controls under 500µM LH2 

 
Analysis of Variance 
 
Source   DF       Adj SS       Adj MS  F-Value  P-Value 
Variant   2  1.80114E+15  9.00571E+14    47.35    0.000 
Error     6  1.14113E+14  1.90188E+13 
Total     8  1.91526E+15 
 

Tukey Pairwise Comparisons  
 
Grouping Information Using the Tukey Method and 95% Confidence 
Variant  N      Mean  Grouping 
x2       3  47009667  A 
x11FLuc  3  29399000    B 
WT       3  12359226      C 
 
 

Minitab session output displaying results of a One-way ANOVA and Tukey HSD 

test from data obtained from Control Variants under 500µM LH2/ 1mM ATP.  A 

statistically significant difference between groups was determined by a one-way 

ANOVA, F(2,6) =47.35, p = 0.000. Grouping information using the Tukey method and 

95% confidence. Means that do not share a letter are significantly different. N=3 

Figure 4.3. One-Way ANOVA and Tukey HSD to Determine Statistically Significant 

Differences between Controls under 20µM LH2 

 
Analysis of Variance 
 
Source   DF       Adj SS       Adj MS  F-Value  P-Value 
Variant   2  1.82033E+12  9.10166E+11   179.81    0.000 
Error     5  25309807298   5061961460 
Total     7  1.84564E+12 
 
 

Tukey Pairwise Comparisons  
 
Grouping Information Using the Tukey Method and 95% Confidence 
Variant           N     Mean  Grouping 
x2 20uM Luc       3  1296500  A 
x11FLuc 20uM Luc  3   626920    B 
WT 20uM Luc       2    86943      C 
 
 

Minitab session output displaying results of a One-way ANOVA and Tukey HSD 

test from data obtained from Control Variants under 20µM LH2/ 1mM ATP.  A 

statistically significant difference between groups was determined by a one-way 

ANOVA, F(2,5) =179.81, p = 0.000. Grouping information using the Tukey method and 

95% confidence. Means that do not share a letter are significantly different. N=3 
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Figure 4.4. One-Way ANOVA and Tukey HSD to Determine Statistically Significant 

Differences between Controls under 2mM PPi 

 
Analysis of Variance 
 
Source   DF       Adj SS       Adj MS  F-Value  P-Value 
Variant   2  1.03614E+13  5.18072E+12    12.39    0.007 
Error     6  2.50844E+12  4.18073E+11 
Total     8  1.28699E+13 
 
 

Tukey Pairwise Comparisons  
 
Grouping Information Using the Tukey Method and 95% Confidence 
Variant           N     Mean  Grouping 
WT 2mM Ppi        3  3734667  A 
x2 2mM Ppi        3  3351467  A 
x11FLuc  2mM Ppi  3  1291270    B 
 
 

Minitab session output displaying results of a One-way ANOVA and Tukey HSD 

test from data obtained from Control Variants under 2mM PPi.  A statistically 

significant difference between groups was determined by a one-way ANOVA, F(2,6) 

=12.39, p = 0.007. Grouping information using the Tukey method and 95% confidence. 

Means that do not share a letter are significantly different. N=3  
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4.3.3. Loop Deletion Mutant ‘Fingerprinting’: A 96-Well Format Screen for Facile 

Isolation of Novel and Useful Mutants 

 

Using the 96-well format, the deletion library of x11Fluc was assayed at RT with 

saturating LH2 in triplicate by injecting luminometry with 100ms integration, which 

only measures the short period of the flash (indicator of Imax). The results of this assay 

are illustrated in Figure 4.2.  

 

The N-terminal deletions mirrored x11Fluc (29399000RLU), exhibiting activities 

between 22995000–25600667 RLU (78%-87% of x11FLuc) with the exception of ΔK8 

(11708000 RLU, 40% of x11FLuc). The C-terminal deletions exhibited activities of 

between 2961733-8341067 RLU (11%-28% of x11FLuc). With regards to loops L172- 

T191 deletions exhibited activities between 1094600–18960667 RLU (3.7%-64% of 

x11FLuc). T352-F368 deletions exhibited activities between 5316867–30609000 RLU 

(18%-104% of x11FLuc). D375-R387 deletions exhibited activities between 7753 – 

25667667 RLU (0.0002%-87% of x11FLuc). D520-L526 deletions exhibited activities 

between 2961735–8341067RLU (10%-28% of x11FLuc).   

 

This assay confirmed findings from Chapter 3, confirming the tolerance of x11FLuc to 

single amino acid deletions, whereby all bar two variants largely retained activity and 

 976373 RLU (3.3% of 

x11FLuc) and 93067 RLU (0.3% of x11FLuc), respectively. Highlighting the sensitivity 

of this method compared to in vivo colony screening, and several mutants displayed 

reduced flash heights.  

 

A clear trend (a ‘fingerprint’ pattern of activity) was seen throughout screening which 

broadly correlated to observations in colony screens within Chapter 3 (Figure 4.5.). 

Although some variation was noted, there was a trend whereby N-terminal deletions 

were similar to x11FLuc, suggesting that the N-terminal does not play a significant role 

in modulating activity compared to other regions. However, whilst in vivo colony 

screening determined that C- terminal deletions enhanced activity, the 96-well format 

concluded that the C-terminal deletions reduced activity. In previous studies making 

deletions in eGFP (Arpino et al., 2014), both terminals were seen to have similar 
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[Grab your reader’s 
attention with a great 

Figure 4.5. Bioluminescence Activity of Crude Cell lysates under Saturating Substrate Conditions (Settle Time 0s) 

 

 

Bioluminescence Activity of Variants under Saturating Substrate Conditions. Crude cell lysates, normalised by OD600 of E.coli 

BL21 containing WTFLuc, x2FLuc and x11FLuc and deletion variants, induced for 6 hours at RT with IPTG. Bioluminescenet activity 

measured within Fluoroskan As M LH2, 1mM ATP.  
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Figure 4.6. One-Way ANOVA and Tukey HSD to Determine Statistically Significant 

Differences between x11FLuc and Single Amino Acid Deletion Mutants 

Analysis of Variance 
 
Source    DF       Adj SS       Adj MS  F-Value  P-Value 
Variant   43  1.37137E+16  3.18923E+14   233.61    0.000 
Error     88  1.20138E+14  1.36520E+12 
Total    131  1.38338E+16 
 

Tukey Pairwise Comparisons  
 
Grouping Information Using the Tukey Method and 95% Confidence 
 
 
Variant      N      Mean  Grouping 
ΔP359        3  30609000  A 
ΔA361        3  30560667  A 
x11FLuc      3  29399000  A B 
ΔP353        3  29010000  A B 
ΔL376        3  25667667    B C 
ΔE2          3  25600667    B C 
ΔK5          3  24936333      C D 
ΔA4          3  24478000      C D 
ΔD3          3  22995000      C D E 
ΔD377        3  21466000        D E F 
ΔG360        3  20448000          E F G 
ΔR188        3  18960667            F G 
ΔT191        3  16656333              G H 
ΔV362        3  14103000                H I 
ΔD187        3  12342000                  I J 
ΔK8          3  11708000                  I J K 
ΔG355        3  10099100                    J K L 
ΔG379        3   8976500                    J K L M 
ΔK544        3   8341067                      K L M 
ΔG363        3   7932433                      K L M N 
ΔK380        3   7265533                        L M N 
ΔK543        3   6451700                        L M N O 
ΔD356        3   5593200                          M N O P 
ΔK358        3   5316867                          M N O P 
ΔT352        3   4082133                            N O P Q 
ΔP183+E184D  3   3365600                              O P Q R 
ΔK547        3   2961733                              O P Q R 
ΔG175        3   2940833                              O P Q R 
ΔP173        3   2536267                                P Q R 
ΔK190        3   2528767                                P Q R 
ΔF176        3   2121033                                P Q R 
ΔD180        3   1910333                                P Q R 
ΔN385        3   1830633                                P Q R 
ΔF181        3   1815067                                P Q R 
ΔF186        3   1400227                                  Q R 
ΔF176+ΔN177  3   1345033                                  Q R 
ΔK182        3   1094600                                  Q R 
ΔV365        3    976373                                  Q R 
ΔE521        3    578757                                  Q R 
ΔD520        3    432790                                  Q R 
ΔV366        3     93067                                    R 
ΔP523        3     31640                                    R 
ΔR387        3      7753                                    R 
ΔV384        3      2000                                    R 

Minitab session output displaying results of a One-way ANOVA and Tukey HSD test from data 

obtained from x11FLuc and deletion mutants under normal conditions.  A statistically significant 

difference between group was determined by a one-way ANOVA, F(43, 88) = 233.61, p = 0.000. 

Grouping information using the Tukey method and 95% confidence. Means that do not share a letter are 

significantly different. x11FLuc is highlighted in bold. N=3. 
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tolerance levels to deletion but this does not appear to be the case for FLuc. This may be 

because the C-terminal is in close proximity to the active site of FLuc which is not the 

case of eGFP. This observation is exemplified by the reduction in the flash noted for 

loop D520-L526. Deletions occurring within T352-F368 and D375-R387 displayed the 

highest Imax values in crude lysates as compared to x11FLuc. Interestingly, ΔP359 and 

ΔA361 were marginally enhanced with regards to Imax within the initial 100ms.  

 

Furthermore, a double deletion mutant ΔF176+ΔN177 retained similar activity to single 

amino acid deletions within the same loop. These results suggest that x11FLuc may be 

able to tolerate larger-scale deletions.  

 

Statistical analysis was conducted to determine the significance of the differences 

observed (Figure 4.6.). A statistically significant difference between x11FLuc and the 

deletion variants was found by a one-way ANOVA, F(43, 88) = 233.61, p = 0.000. The 

Tukey method was further employed to group variants by means that are not 

significantly different to confirm observations such that there is a significant difference 

in activity when comparing x11FLuc to the majority of deletion mutants apart from 

ΔP359,  ΔA361, ΔP353, ΔL376 and ΔE2 which display no significant difference.  

 

4.3.4. Fingerprinting the x11Fluc Loop Deletion Library to Identify Mutants with 

Higher Integrated Activities 

 

To investigate the deletion mutants with regards to integrated activity, following 

injection of substrate, a reading was measured following a 5 minute settle time with an 

integration of 100ms using the Fluoroskan instrument. The results of this assay are 

illustrated in Figure 4.7-4.8. This data indicates the amount of steady-state activity that 

the enzymes produce after the flash and may help identify mutants with higher specific 

activities and less decay of signal. This is advantageous in ATP diagnostic assays, 

which are typically conducted by integration of light over longer periods than the flash. 

 

All mutants displayed a decay in activity over time, however to different degrees. 

Certain deletion variants displayed higher integrated activity compared to x11FLuc, 

including ΔK8, ΔP359, ΔV362, ΔG363, ΔV365, ΔV384, R387 and ΔP523 which 
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showed 7.49%, 4.53%, 6.49%, 22%, 10%, 76%, 6.4% and 22% decay of initial 

activities, respectively.  

 

Again, a clear trend was seen throughout screening which correlated better with colony 

screens than the flash height 96-well assay (section 4.3.5.). This is primarily because in 

vivo colony screening rarely capture the flash which occurs within the first 300ms of the 

reaction, but captures the overall activity over the 30s of integration. 

 

Eight single amino acid deletion mutants display less decay in activity compared to 

x11FLuc and include amino acid deletion mutants ΔK8, ΔP359, ΔV362, ΔG363, 

ΔV365, ΔV384, R387 and ΔP523. This suggests that these mutants either utilise 

substrates at a slow rate, have less product inhibition or higher specific activity than the 

parental x11FLuc. It is interesting that 4 of these mutants are derived from the Ω loop. 

 

Statistical analysis was conducted to determine the significance of the differences 

observed x11FLuc and deletion mutants were bioluminescent output was measured 

following 5000ms (Figure 4.9). A statistically significant difference between x11FLuc 

and the deletion variants was found by a one-way ANOVA, F(43, 88) = 119.88, p = 

0.000. The Tukey method was further employed to group variants by means that are not 

significantly different to confirm observations such that there is a significant difference 

in activity when comparing x11FLuc to the majority of deletion mutants apart from 

ΔV362, ΔK5, ΔK8, ΔA4, ΔD3 and ΔA361 which display no significant difference. 
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Figure 4.7. Bioluminescence Activity of of Crude Cell lysatess with Saturating Substrate Conditions (Settle Time 5mins)  

 

 

Bioluminescence Activity of Variants under Saturating Substrate Conditions. Details as in Figure 4.5., but light measured for 100ms 

after a 5 minute settle time.  
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Figure 4.8. Bioluminescence Activity of of Crude Cell lysatess with Saturating Substrate Conditions (Settle Time 5mins) compared to Saturating 

Substrate Conditions (Settle Time 0mins)    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bioluminescence Activity of Variants under Saturating Substrate Conditions. Details as in Figure 4.7.  
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Figure 4.9. One-Way ANOVA and Tukey HSD to Determine Statistically Significant 

Differences between Activity of  x11FLuc and Single Amino Acid Deletion Mutants 

after a Settle Time of 5000ms 

Analysis of Variance 
 
Source    DF       Adj SS       Adj MS  F-Value  P-Value 
Variant   43  2.25766E+13  5.25038E+11   119.88    0.000 
Error     88  3.85420E+11   4379768772 
Total    131  2.29621E+13 
 

Tukey Pairwise Comparisons  
 
Grouping Information Using the Tukey Method and 95% Confidence 
Variant      N     Mean  Grouping 
ΔG363        3  1755533  A 
ΔP359        3  1386867    B 
x11FLuc      3   977433      C 
ΔV362        3   916557      C 
ΔK5          3   911717      C 
ΔK8          3   877367      C D 
ΔA4          3   842087      C D E 
ΔD3          3   829407      C D E 
ΔA361        3   805473      C D E 
ΔE2          3   685913        D E F 
ΔL376        3   676970        D E F 
ΔD377        3   656143          E F 
ΔP353        3   522850            F G 
ΔG360        3   516803            F G H 
ΔG355        3   388793              G H I 
ΔG379        3   377460              G H I J 
ΔK544        3   357320              G H I J K 
ΔR188        3   301047                H I J K L 
ΔK358        3   286113                  I J K L 
ΔT191        3   270910                  I J K L M 
ΔK547        3   184847                  I J K L M N 
ΔD187        3   163483                    J K L M N 
ΔK380        3   157407                    J K L M N 
ΔD356        3   147280                      K L M N 
ΔK543        3   121409                        L M N 
ΔT352        3   117313                        L M N 
ΔV365        3   106415                        L M N 
ΔP173        3    53896                          M N 
ΔP183+E184D  3    42352                            N 
ΔF181        3  42170.3                            N 
ΔF176        3    39166                            N 
ΔK190        3    35107                            N 
ΔG175        3    32948                            N 
ΔF176+ΔN177  3    30909                            N 
ΔD180        3    29457                            N 
ΔN385        3    28463                            N 
ΔK182        3    28095                            N 
ΔE521        3    26594                            N 
ΔD520        3    17507                            N 
ΔF186        3    10529                            N 
ΔP523        3     6911                            N 
ΔV384        3     1520                            N 
ΔV366        3   1516.0                            N 
ΔR387        3    499.3                            N 
 

Minitab session output displaying results of a One-way ANOVA and Tukey HSD test from data 

obtained from x11FLuc and deletion mutants under normal conditions measured after 5000ms.  A 

statistically significant difference between group was determined by a one-way ANOVA, F(43, 88) = 

119.88, p = 0.000. Grouping information using the Tukey method and 95% confidence. Means that do not 

share a letter are significantly different. x11FLuc is highlighted in bold. N=3. 
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4.3.5. Fingerprinting the x11Fluc Loop Deletion Library to Identify Mutants for 

Lower KM for D-LH2 

 

To screen the deletion mutants for lower KM for LH2,  LH2 (non-saturating 

concentration of LH2) substrate was injected and light measured with an integration of 

100ms and results were compared to the results obtained in section 4.3.3 (saturating 

concentration of LH2). The results of this assay are illustrated in Figure 4.10-4.11.  

 

Four mutants in particular displayed the potential for a lower KM for LH2, those being 

ΔP173, ΔP353, ΔD356 and ΔP359. In comparison to x11FLuc whose activity was 

2.13% under substrate limiting conditions, ΔP173, ΔP353, ΔD356 and ΔP359 displayed 

activities of 8.3%, 4.4%, 5.14%, 3.89%, respectively.  

 

It appears that of the single amino acid deletion mutants, particularly, 4 appeared to 

have the potential to achieve higher velocity at low concentrations of the LH2 substrate 

in comparison to the controls, these include ΔP173, ΔP353, ΔD356 and ΔP359.  It is of 

note that 3 of these potential candidates were deletions derived from the Ω loop.  

Statistical analysis was conducted to determine the significance of the differences 

observed x11FLuc and deletion mutants when subject to limiting conditions of the 

substrate (Figure 4.12). A statistically significant difference between x11FLuc and the 

deletion variants was found by a one-way ANOVA, F(43, 88) = 22.55 p = 0.000. The 

Tukey method was further employed to group variants by means that are not 

significantly different to confirm observations such that there is a significant difference 

in activity when comparing x11FLuc to the majority of deletion mutants apart from 

ΔA361, ΔE2, ΔD377, ΔA4, ΔR188, ΔL376, ΔK5, ΔD3, ΔG360, ΔT191, D187 which 

display no significant difference. 
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Figure 4.10. Bioluminescence Activity of Variants under Conditions of Non Saturating LH2 

 

Bioluminescence Activity of Variants under Non Saturating Substrate Conditions. Details as in Figure 4.5., but light measured for 100ms 

2 and 1mM ATP. 
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Figure 4.11. Bioluminescence Activity of Variants under Conditions of Non Saturating LH2 compared to Saturating Substrate Conditions (Settle 

Time 0mins)    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bioluminescence Activity of Variants under Non-Saturating Substrate Conditions. Details as in Figure 4.10.  
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Figure 4.12. One-Way ANOVA and Tukey HSD to Determine Statistically Significant 

Differences between Activity of  x11FLuc and Single Amino Acid Deletion Mutants 

under Non-Saturating Conditions 

Analysis of Variance 
 
Source    DF       Adj SS       Adj MS  F-Value  P-Value 
Variant   43  1.20968E+13  2.81321E+11    22.55    0.000 
Error     88  1.09775E+12  12474466428 
Total    131  1.31946E+13 
 

Tukey Pairwise Comparisons  
 
Grouping Information Using the Tukey Method and 95% Confidence 
Variant      N     Mean  Grouping 
ΔP353        3  1291533  A 
ΔP359        3  1191813  A 
ΔA361        3   693337    B 
ΔE2          3   644780    B C 
x11FLuc      3   626920    B C 
ΔD377        3   580097    B C D 
ΔA4          3   552160    B C D E 
ΔR188        3   547723    B C D E 
ΔL376        3   530253    B C D E F 
ΔK5          3   514737    B C D E F 
ΔD3          3   456070    B C D E F G 
ΔG360        3   452253    B C D E F G H 
ΔT191        3   404307    B C D E F G H I 
ΔD187        3   329010    B C D E F G H I J 
ΔD356        3   288003      C D E F G H I J 
ΔK8          3   253653        D E F G H I J 
ΔG355        3   248977        D E F G H I J 
ΔP173        3   210767        D E F G H I J 
ΔK380        3   207343          E F G H I J 
ΔK544        3   191250          E F G H I J 
ΔV362        3   171687            F G H I J 
ΔG379        3   169727            F G H I J 
ΔK543        3   168120            F G H I J 
ΔG363        3   133530              G H I J 
ΔK358        3    84263              G H I J 
ΔK547        3    83447                H I J 
ΔP183+E184D  3    56066                  I J 
ΔT352        3    55339                  I J 
ΔG175        3    51958                  I J 
ΔK190        3    45273                  I J 
ΔF181        3    41207                  I J 
ΔN385        3    39892                  I J 
ΔF176        3    37324                  I J 
ΔD180        3    36307                  I J 
ΔF176+ΔN177  3    23049                    J 
ΔK182        3    22946                    J 
ΔF186        3    15537                    J 
ΔD520        3     5839                    J 
ΔE521        3     5743                    J 
ΔV366        3   2497.0                    J 
ΔP523        3    309.3                    J 
ΔV365        3     40.0                    J 
ΔV384        3    39.33                    J 
ΔR387        3     16.0                    J 
 

Minitab session output displaying results of a One-way ANOVA and Tukey HSD test from data 

obtained from x11FLuc and deletion mutants under non-saturating conditions.  A statistically 

significant difference between group was determined by a one-way ANOVA, F(43, 88) = 22.55, p = 

0.000. Grouping information using the Tukey method and 95% confidence. Means that do not share a 

letter are significantly different. x11FLuc is highlighted in bold. N=3. 
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4.3.6. Fingerprinting the x11FLuc Loop Deletion Library to Identify Mutants for 

Resistance to Inhibition by Inorganic Pyrophosphate 

 

To investigate the deletion mutants with regards to resistance to inhibition by 2mM 

inorganic pyrophosphate (PPi), following injection of LH2 substrate light emission was 

measured with an integration of 100ms and results compared to those obtained in 

section 4.3.3. The results of this assay are illustrated in Figure 4.13-4.14 

 

Three mutants (ΔV384, ΔD520 and ΔP523) displayed a particularly high resistance to 

PPi. Their activities were 36%, 23% and 86% in the presence of PPi compared to 

without it, compared to 4.4% for x11FLuc. In addition to this, certain of the Ω loop 

variants also displayed an enhanced resistance to PPi compared to x11FLuc, there being 

ΔP353, ΔG360, ΔA361 and ΔG363, whose activities are 9.2, 8.95, 7.4 and 6.72%, 

respectively, with PPi compared to without it. Utilising this strategy, many deletion 

mutants have been identified which appear to be more resistant to PPi inhibition than 

x11FLuc.  

 

The crude cell lysate strategy correlates well with the levels of inhibition of FLuc by 

PPi reported in the literature (Fontes et al., 2008). The presence of the PPi inhibits 

bioluminescence due to the reversible nature of the adenylation reaction. Le Châtliers 

principle states that high concentrations of PPi will reverse the direction of the reaction 

toward the left (see Chapter 1, Equation 1.1.).  

 

Statistical analysis was conducted to determine the significance of the differences 

observed x11FLuc and deletion mutants when subject to PPi (Figure 4.15). A 

statistically significant difference between x11FLuc and the deletion variants was found 

by a one-way ANOVA, F(43, 88) = 95.59, p = 0.000. The Tukey method was further 

employed to group variants by means that are not significantly different to confirm 

observations such that there is a significant difference in activity when comparing 

x11FLuc to the majority of deletion mutants apart from ΔK5, ΔP359, ΔA4, ΔD3, ΔE2, 

ΔK8, ΔL376 which display no significant difference. 
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Figure 4.13. Bioluminescence Activity of Variants under Conditions of PPi 

 

BioluminesceneceActivity of Variants under Saturating Substrate Conditions of PPi. Details as in Figure 4.5., but light measured for 100ms 

after addition of 2mM PPi. 
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Figure 4.14. Bioluminescence Activity of Variants under Conditions of PPi compared to Saturating Substrate Conditions (Settle Time 0mins)    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BioluminesceneceActivity of Variants under Saturating Substrate Conditions of PPi. Details as in Figure 4.13.
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Figure 4.15. One-Way ANOVA and Tukey HSD to Determine Statistically Significant 

Differences between Activity of  x11FLuc and Single Amino Acid Deletion Mutants 

under PPi 

Analysis of Variance 
 
Source    DF       Adj SS       Adj MS  F-Value  P-Value 
Variant   43  5.48991E+13  1.27672E+12    95.59    0.000 
Error     88  1.17535E+12  13356247151 
Total    131  5.60745E+13 
 
 

Tukey Pairwise Comparisons  
 
Grouping Information Using the Tukey Method and 95% Confidence 
 
Variant      N     Mean  Grouping 
ΔP353        3  2696900  A 
ΔA361        3  2286567    B 
ΔG360        3  1830500      C 
ΔK5          3  1383300        D 
ΔP359        3  1372100        D 
x11FLuc      3  1291270        D 
ΔA4          3  1215067        D E 
ΔD3          3  1125770        D E 
ΔE2          3  1113533        D E 
ΔK8          3  1022777        D E F 
ΔL376        3  1005420        D E F 
ΔD377        3   837390          E F G 
ΔV362        3   711293            F G H 
ΔR188        3   637793            F G H I 
ΔG379        3   535057              G H I J 
ΔG363        3   533577              G H I J 
ΔG355        3   469810              G H I J K 
ΔD187        3   365573                H I J K L 
ΔT191        3   333707                H I J K L 
ΔK543        3   307530                  I J K L 
ΔK544        3   304397                  I J K L 
ΔK547        3   254703                  I J K L 
ΔT352        3   243893                    J K L 
ΔK380        3   236253                    J K L 
ΔK358        3   188537                    J K L 
ΔE521        3   109936                      K L 
ΔD520        3   102860                      K L 
ΔD356        3    93718                      K L 
ΔK190        3    91737                      K L 
ΔP183+E184D  3    71544                        L 
ΔF176        3    64783                        L 
ΔP173        3    57622                        L 
ΔF176+ΔN177  3    47994                        L 
ΔG175        3    40233                        L 
ΔF181        3    34683                        L 
ΔD180        3    31470                        L 
ΔP523        3    27291                        L 
ΔN385        3    23113                        L 
ΔK182        3    22835                        L 
ΔV366        3    13038                        L 
ΔF186        3     4698                        L 
ΔV384        3      736                        L 
ΔV365        3      273                        L 
ΔR387        3    192.7                        L 
 

Minitab session output displaying results of a One-way ANOVA and Tukey HSD test from data 

obtained from x11FLuc and deletion mutants under non-saturating conditions.  A statistically 

significant difference between group was determined by a one-way ANOVA, F(43, 88) = 95.59, p = 

0.000. Grouping information using the Tukey method and 95% confidence. Means that do not share a 

letter are significantly different. x11FLuc is highlighted in bold. N=3. 
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4.3.7. Fingerprinting the x11FLuc Loop Deletion Library to Identify Mutants for 

Resistance to Thermal Inactivation 

 

To investigate the deletion mutants with regards to those potentially exhibiting 

resistance to thermal inactivation, light emission was measured for an integration time 

of 100ms post LH2 injection following incubation at RT, 42oC and 60oC. The results of 

this assay are illustrated in Figure 4.6.   

 

WTFluc displayed a large decrease in activity at 42oC to 60oC, with activities of 19% to 

0.006% compared to at RT (100%), respectively, whilst x11FLuc exhibited activities of 

237 to 142%, which was increased compared to the RT value. The N-terminal deletions 

mirrored x11FLuc, exhibiting activities between 204-252% at 42oC and between 123-

146% at 60oC, with the exception of ΔK8 which reduced to 40% activity at 60oC. The 

C-terminal deletions exhibited activities between 277-352% at 42oC and between 140- 

163% at 60oC. With regards to loops, L172- T191 deletions exhibited activities between 

163%-301% at 42oC, with the exception of ΔK182 and ΔF186 (95% and 18%, 

respectively) and between 107%-242% at 60o E184D, 

F186 and D187 (2.09, 0.09 and 21% respectively). T352-F368 loop deletions 

exhibited activities between 107%-252% at 42oC, with the exception of ΔK358 and 

between 0.08%-76% at 60oC with the exception of ΔT353 (118%). D375-R387 loop 

deletions exhibited activities between 166%-327% at 42oC, with the exception of 

ΔR387 (23%) and between 147%-325% at 60oC with the exception of ΔK380, ΔN385 

and ΔR387 (99%, 5% and 0.82% respectively). D520-L526 deletions exhibited 

activities between 148%-155% at 42oC with the exception of ΔP523 (52%) and between 

31%-89% at 60oC.  

 

In this assay, the basic fingerprint of loop activities was the similar to the results of 

ImageJ of secondary screens (see Chapter 3, section 3.3.8.3.). Whilst deletions within 

the N- and C-termini were similar in terms of resistance to thermal inactivation to 

x11FLuc, remarkably, deletions within loop L172- T191 appeared to confer greater 

stability than that of x11FLuc. Of all the loops investigated, deletion mutants in the Ω 

loop T352-F368 displayed the greatest losses in activity at 60oC, although their stability 

still appeared higher than that of either the WTFLuc or x2FLuc. Therefore, although 

mutants have altered peptide backbones, the 11 mutations involved in the stabilisation 
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of x11FLuc still confer some stabilisation. On the other hand, deletions in loop D375-

R387, which is in close proximity downstream of the Ω loop, result in variations in 

resistance to thermal inactivation. Deletions promoted enhanced activity at 60oC as 

when located towards the N-terminal of this loop, whilst when towards the C-terminal 

of the loop, they exhibited the opposite characteristic, displaying less activity at 60oC 

compared to RT. Lastly, the resistance of deletion mutants within the active site loop 

D520-L526 were similar to the Ω loop and were less stable at 60oC compared to 

x11FLuc. Indeed, ΔP523 retained less activity following incubation at 42oC suggesting 

that deletions close to active site destabilised the protein. 

 

It is of interest that whilst overall activity did not correlate well with conservation 

scoring (as determined in Chapter 3), conservation scoring does appear to correlate with 

the toleration of the deletions with regards to resistance to thermal inactivation. The 

loops presenting high conservation scores T352-F368 and D520-L526 (Chapter 3, Table 

3.3.) displayed the least resistance to thermal inactivation, whereas deletions within 

those loops with a low conservation score L172- T191 appear to promote further 

stabilisation of the enzyme. 

 

Statistical analysis was conducted to determine the significance of the differences 

observed x11FLuc and deletion mutants at 42oC and 60oC (Figure 4.17-4.18). A 

statistically significant difference between x11FLuc and the deletion variants was found 

by a one-way ANOVA at both temperatures. The Tukey method was further employed 

to group variants by means that are not significantly different to confirm observations 

such that there is a significant difference in activity when comparing x11FLuc to the 

majority of deletion mutants at 42oC apart from ΔV362, ΔK5, ΔL376, ΔA4, ΔD377, 

ΔE2, ΔD3 which display no significant difference. At 62oC, there is a significant 

difference in activity when comparing x11FLuc to the majority of deletion mutants 

apart from apart from apart from ΔE5, ΔL376, ΔD377, ΔA4, ΔE2, ΔA362 which 

display no significant difference.  
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Figure 4.16. Bioluminescence Activity of Variants Incubated at 40 oC and 60oC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bioluminescence Activity of Variants following Incubation at RT, 42oC and 60oC. Details as in Figure 4.5., but light measured following 

incubation at RT, 42 oC and 60oC. 
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Figure 4.17. One-Way ANOVA and Tukey HSD to Determine Statistically Significant 

Differences between Activity of  x11FLuc and Single Amino Acid Deletion Mutants at 

42 oC 

Analysis of Variance 
 
Source    DF       Adj SS       Adj MS  F-Value  P-Value 
Variant   43  5.69996E+13  1.32557E+12   293.02    0.000 
Error     88  3.98103E+11   4523897218 
Total    131  5.73977E+13 
 

Tukey Pairwise Comparisons  
 
Grouping Information Using the Tukey Method and 95% Confidence 
 
Variant      N     Mean  Grouping 
ΔP359        3  2807933  A 
ΔG363        3  2660200  A 
ΔA361        3  1460433    B 
ΔV362        3  1267833    B C 
x11FLuc      3  1196633      C D 
ΔK5          3  1167967      C D 
ΔL376        3  1151667      C D 
ΔA4          3  1139133      C D 
ΔD377        3  1077980      C D E 
ΔE2          3   980963        D E 
ΔD3          3   911350          E F 
ΔG360        3   885170          E F 
ΔP353        3   714880            F G 
ΔK8          3   703893            F G 
ΔG379        3   517937              G H 
ΔR188        3   459660                H I 
ΔT191        3   444263                H I J 
ΔG355        3   422753                H I J K 
ΔK544        3   351587                H I J K L 
ΔD187        3   260337                  I J K L M 
ΔK543        3   228567                    J K L M N 
ΔK380        3   212950                      K L M N O 
ΔK547        3   177157                        L M N O 
ΔT352        3   164450                        L M N O 
ΔD356        3   126997                          M N O 
ΔK358        3    97217                          M N O 
ΔF181        3    67653                          M N O 
ΔF176        3    63742                          M N O 
ΔP183+E184D  3    58215                          M N O 
ΔK190        3    56109                          M N O 
ΔF176+ΔN177  3    53185                          M N O 
ΔG175        3    51409                          M N O 
ΔD180        3    49159                          M N O 
ΔP173        3    46571                          M N O 
ΔN385        3    36838                          M N O 
ΔK182        3    17630                            N O 
ΔE521        3    12881                            N O 
ΔD520        3    12079                            N O 
ΔP523        3   2240.0                              O 
ΔV366        3     2093                              O 
ΔF186        3     1957                              O 
ΔV365        3    140.0                              O 
ΔV384        3    120.0                              O 
ΔR387        3     96.7                              O 
 

Minitab session output displaying results of a One-way ANOVA and Tukey HSD test from data 

obtained from x11FLuc and deletion mutants at 42oC.  A statistically significant difference between 

group was determined by a one-way ANOVA, F(43, 88) =293.02, p = 0.000. Grouping information using 

the Tukey method and 95% confidence. Means that do not share a letter are significantly different. 

x11FLuc is highlighted in bold. N=3. 
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Figure 4.18. One-Way ANOVA and Tukey HSD to Determine Statistically Significant 

Differences between Activity of  x11FLuc and Single Amino Acid Deletion Mutants at 

60 oC 

Analysis of Variance 
 
Source    DF       Adj SS       Adj MS  F-Value  P-Value 
Variant   43  7.99218E+12  1.85865E+11    76.00    0.000 
Error     88  2.15204E+11   2445496904 
Total    131  8.20739E+12 
 

Tukey Pairwise Comparisons  
 
Grouping Information Using the Tukey Method and 95% Confidence 
 
Variant      N     Mean  Grouping 
ΔK5          3  839767  A 
ΔL376        3  814357  A 
x11FLuc      3  718370  A B 
ΔD377        3  675173  A B 
ΔA4          3  621323    B C 
ΔE2          3  575060    B C 
ΔA361        3  558030    B C 
ΔD3          3  479643      C 
ΔT191        3  260107        D 
ΔG379        3  256847        D 
ΔR188        3  218337        D E 
ΔP359        3  215686        D E 
ΔV362        3  203176        D E F 
ΔK544        3  178260        D E F G 
ΔK543        3  126220        D E F G H 
ΔK8          3  123831        D E F G H 
ΔK547        3  101676        D E F G H 
ΔT352        3   96641        D E F G H 
ΔK380        3   83966          E F G H 
ΔP353        3   59760          E F G H 
ΔK190        3   47347            F G H 
ΔF176        3   44022            F G H 
ΔG175        3   37653              G H 
ΔF176+ΔN177  3   35738              G H 
ΔP173        3   35667              G H 
ΔG360        3   34127              G H 
ΔF181        3   26896              G H 
ΔD187        3   25667              G H 
ΔD180        3   25601              G H 
ΔK182        3   19803              G H 
ΔG355        3   16797              G H 
ΔG363        3   13937              G H 
ΔE521        3    7421                H 
ΔD520        3    6550                H 
ΔN385        3    3467                H 
ΔP523        3  1352.7                H 
ΔP183+E184D  3     740                H 
ΔV366        3   242.7                H 
ΔD356        3   203.3                H 
ΔK358        3   166.7                H 
ΔV384        3   119.3                H 
ΔV365        3    20.0                H 
ΔF186        3   10.00                H 
ΔR387        3    3.33                H 

 

Minitab session output displaying results of a One-way ANOVA and Tukey HSD test from data 

obtained from x11FLuc and deletion mutants at 60oC.  A statistically significant difference between 

group was determined by a one-way ANOVA, F(43, 88) = 78, p = 0.000. Grouping information using the 

Tukey method and 95% confidence. Means that do not share a letter are significantly different. x11FLuc 

is highlighted in bold. N=3. 
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Table 4.2 Summary of Maximal Activity of Variants in Different Assay Conditions as a 

Percentage  

 Bioluminescence Activity (RLU) 

0-100ms 

(RLU) 

5 

minutes 

(%) 

Low KM 

(20µM)(%

) 

PPi 

(2mM) 

(%) 

Incubated 

at 42oC 

(%) 

Incubated at 

60oC (%) 

WT 12359226.00 8.10 0.70 30.22 19.03 0.01 
x2 47009667.00 1.33 2.76 7.13 178.70 6.81 
x11FLuc 29399000.00 3.32 2.13 4.39 237.84 142.78 
ΔE2 25600667.00 2.68 2.52 4.35 229.61 134.60 
ΔD3 22995000.00 3.61 1.98 4.90 252.58 132.93 
ΔA4 24478000.00 3.44 2.26 4.96 226.66 123.63 
ΔK5 24936333.00 3.66 2.06 5.55 204.22 146.83 
ΔK8 11708000.00 7.49 2.17 8.74 231.64 40.75 
ΔP173 2536267.00 2.13 8.31 2.27 214.71 164.44 
ΔG175 2940833.00 1.12 1.77 1.37 226.43 165.84 
ΔF176 2121033.00 1.85 1.76 3.05 281.45 194.38 
ΔF176+

ΔN177

1345033.00 2.30 1.71 3.57 301.67 202.71 
ΔD180 1910333.00 1.54 1.90 1.65 249.15 129.75 
ΔF181 1815067.00 2.32 2.27 1.91 301.89 120.02 
ΔK182 1094600.00 2.57 2.10 2.09 95.65 107.44 
ΔP183+ 3365600.00 1.26 1.67 2.13 164.86 2.10 
ΔF186 1400227.00 0.75 1.11 0.34 18.57 0.09 
ΔD187 12342000.00 1.32 2.67 2.96 213.50 21.05 
ΔR188 18960667.00 1.59 2.89 3.36 257.17 122.16 
ΔK190 2528767.00 1.39 1.79 3.63 287.01 242.19 
ΔT191 16656333.00 1.63 2.43 2.00 258.34 151.25 
ΔT352 4082133.00 2.87 1.36 5.97 201.32 118.31 
ΔP353 29010000.00 1.80 4.45 9.30 190.75 15.95 
ΔG355 10099100.00 3.85 2.47 4.65 182.50 7.25 
ΔD356 5593200.00 2.63 5.15 1.68 119.91 0.19 
ΔK358 5316867.00 5.38 1.58 3.55 49.98 0.09 
ΔP359 30609000.00 4.53 3.89 4.48 238.26 18.30 
ΔG360 20448000.00 2.53 2.21 8.95 252.45 9.73 
ΔA361 30560667.00 2.64 2.27 7.48 199.12 76.08 
ΔV362 14103000.00 6.50 1.22 5.04 207.02 33.18 
ΔG363 7932433.00 22.13 1.68 6.73 174.66 0.92 
ΔV365 976373.30 10.90 0.00 0.03 107.69 15.38 
ΔV366 93067.33 1.63 2.68 14.01 143.38 16.62 
ΔL376 25667667.00 2.64 2.07 3.92 273.05 193.07 
ΔD377 21466000.00 3.06 2.70 3.90 234.85 147.09 
ΔG379 8976500.00 4.20 1.89 5.96 315.83 156.62 
ΔK380 7265533.00 2.17 2.85 3.25 252.13 99.41 
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Table illustrating the relative levels of activity at different stages of the reaction 

and in different conditions. Results displayed as a percentage of flash-based activity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ΔV384 1999.67 76.01 1.97 36.81 327.27 325.45 
ΔN385 1830633.00 1.55 2.18 1.26 166.73 15.69 
ΔR387 7753.00 6.44 0.21 2.49 23.97 0.83 
ΔD520 432790.00 4.05 1.35 23.77 148.60 80.58 
ΔE521 578756.70 4.60 0.99 19.00 155.96 89.85 
ΔP523 31640.00 21.84 0.98 86.25 52.94 31.97 
ΔK543 6451700.00 1.88 2.61 4.77 295.77 163.33 
ΔK544 8341067.00 4.28 2.29 3.65 277.07 140.48 
ΔK547 2961733.00 6.24 2.82 8.60 352.32 202.21 
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Table 4.3. Summary of Maximal Activity of Variants in Different Assay Conditions as a 

Percentage of x11FLuc  

 

 Bioluminescence Activity (RLU) 

0-100ms 

(RLU) 

5 

minutes 

(%) 

Low KM 

(20µM)(%

) 

PPi 

(2mM) 

(%) 

Incubated 

at 42oC 

(%) 

Incubated at 

60oC (%) 

ΔE2 87.08 70.17 102.85 86.24 81.97694 80.05067 
ΔD3 78.22 84.86 72.75 87.18 76.1595 66.76829 
ΔA4 83.26 86.15 88.08 94.10 95.19485 86.49071 
ΔK5 84.82 93.28 82.11 107.13 97.60439 116.8989 
ΔK8 39.82 89.76 40.46 79.21 58.82281 17.23777 
ΔP173 8.63 5.51 33.62 4.46 3.891863 4.96499 
ΔG175 10.00 3.37 8.29 3.12 4.296109 5.241449 
ΔF176 7.21 4.01 5.95 5.02 5.32675 6.128086 
ΔF176+

ΔN177

4.58 3.16 3.68 3.72 4.444525 4.974827 
ΔD180 6.50 3.01 5.79 2.44 4.108109 3.563716 
ΔF181 6.17 4.31 6.57 2.69 5.653612 3.744032 
ΔK182 3.72 2.87 3.66 1.77 1.4733 2.756704 
ΔP183+ 11.45 4.33 8.94 5.54 4.864871 0.103011 
ΔF186 4.76 1.08 2.48 0.36 0.163514 0.001392 
ΔD187 41.98 16.73 52.48 28.31 21.75576 3.57295 
ΔR188 64.49 30.80 87.37 49.39 38.41277 30.39334 
ΔK190 8.60 3.59 7.22 7.10 4.688933 6.590893 
ΔT191 56.66 27.72 64.49 25.84 37.1261 36.2079 
ΔT352 13.89 12.00 8.83 18.89 13.74272 13.45282 
ΔP353 98.68 53.49 206.01 208.86 59.74094 8.318787 
ΔG355 34.35 39.78 39.71 36.38 35.32856 2.33821 
ΔD356 19.03 15.07 45.94 7.26 10.61283 0.028305 
ΔK358 18.09 29.27 13.44 14.60 8.124182 0.023201 
ΔP359 104.12 141.89 190.11 106.26 234.6528 30.02441 
ΔG360 69.55 52.87 72.14 141.76 73.9717 4.750616 
ΔA361 103.95 82.41 110.59 177.08 122.0452 77.68003 
ΔV362 47.97 93.77 27.39 55.08 105.95 28.28296 
ΔG363 26.98 179.61 21.30 41.32 222.307 1.940133 
ΔV365 3.32 10.89 0.01 0.02 0.011699 0.002784 
ΔV366 0.32 0.16 0.40 1.01 0.174935 0.03378 
ΔL376 87.31 69.26 84.58 77.86 96.24224 113.3617 
ΔD377 73.02 67.13 92.53 64.85 90.0844 93.98685 
ΔG379 30.53 38.62 27.07 41.44 43.28282 35.75409 
ΔK380 24.71 16.10 33.07 18.30 17.79576 11.68841 
ΔV384 0.01 0.16 0.01 0.06 0.010028 0.016612 
ΔN385 6.23 2.91 6.36 1.79 3.078498 0.482667 
ΔR387 0.03 0.05 0.00 0.01 0.008078 0.000464 
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Table illustrating the relative levels of activity at different stages of the reaction 

and in different conditions. Results displayed as a percentage of x11FLuc activity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ΔD520 1.47 1.79 0.93 7.97 1.009415 0.911786 
ΔE521 1.97 2.72 0.92 8.51 1.076409 1.033033 
ΔP523 0.11 0.71 0.05 2.11 0.187192 0.188297 
ΔK543 21.95 12.42 26.82 23.82 19.10081 17.57033 
ΔK544 28.37 36.56 30.51 23.57 29.38132 24.81451 
ΔK547 10.07 18.91 13.31 19.73 14.80459 14.15371 
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4.4. Further Discussion 

 

The aim of this investigation was to utilise an alternative strategy in order to refine the 

pool of deletion mutants generated in Chapter 3 to take forward to characterisation. An 

alternative method based on crude cell lysate screening was developed in an effort to 

study bioluminescent properties observed in previous chapters. This alternative strategy 

incorporated a 96-well format to allow for the characterisation of the library of deletion 

mutants with regards to their kinetics, specific activities, resistance to inhibition and 

thermal inactivation. 

 

In each assay condition there was a clear and generic trend, which could be broadly 

correlated to in vivo colony screening (Chapter 3), that being, overall activity as a result 

N-terminal deletions was similar to x11FLuc, whilst C-terminal deletions and deletions 

within L172- T191 and D520-L526 promoted reductions in activity. On the other hand, 

deletions within T352-F368 and D375-R387 exhibited wide ranging impacts on activity. 

In particular, T352-F368 displayed enhancements in comparison to x11FLuc. It is of 

interest that deletions occurring within disparate loops broadly confer similar 

characteristics to x11FLuc. However, neighbouring mutations within a single loop, in 

particular T352-F368, can confer markedly different characteristics. 

 

This assay format allowed assessment of the impact of deletions on various 

characteristics, such as specific activity, resistance to PPi and may be useful to 

determine KM. ΔK8, ΔP359, ΔV362, ΔG363, ΔV365, ΔV384, R387 and ΔP523 were 

identified as potential mutants with higher specific activity whilst ΔP173, ΔP353, 

ΔD356 and ΔP359 exhibited potential to have a reduced KM for LH2. These results 

taken together with overall activity highlighted the deletions within the Ω loop 

generated mutants that were not only enhanced in activity compared to x11Fluc but also 

displayed colour shifts and lower KM for LH2. In addition to this, within Chapter 3, 

deletions within the Ω loop caused variation in  and FWHM of bioluminescence 

spectra from crude lysates. Therefore, due to the high variety of potentially useful 

phenotypes derived from deletions in the omega loop, and its structural significance, 

these mutants were taken forward and characterised in Chapter 5.  
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As with in vivo colony screening, there are limitations in the 96-well format screening 

strategy, which include that differences in the activity between mutants may be due to 

changes in their expression levels. Conventionally, substitution mutations tend to impart 

little change in the overall expression of mutants, however, in the literature, deletion 

mutants have been identified that improve the folding landscape of GFP (Arpino et al., 

2014). GFP conventionally has a long maturation time, however, a deletion of G4 

increased the rate of folding of a protein. In contrast, WTFLuc folds rapidly after 

translation by ribosomes (Svetlov et al., 2006), therefore, this changes in maturation 

time are likely to be less important in the case of mutants generated here. A likely 

scenario, is that there is an increase in activity due to an increase in expression and this 

may be attributed to better folding and thus increased levels of soluble active protein.  

 

With this assay however, it was not possible to address this issue. E. coli containing 

mutants were normalised by optical density measurement of cells for resulting in good 

correlation between assays. However, this does not overcome the issue of potentially 

varied expression fully. Assays could be redesigned to quantify protein expression 

during screening by linking of a fluorescent protein, such as Cyan Fluorescent Protein 

(CFP) (Kremer et al., 1995) or Enhanced Blue Fluorescent Protein 2 (EBFP2) (Ai et al., 

2007) onto the N-terminal of FLuc. Quantification of fluorescence could be utilised to 

determine the relative expression of FLuc mutants, whilst since the excitation of these 

fluorescent proteins is blue shifted compared to the emission of FLuc, bioluminescence 

resonance energy transfer (BRET) will not occur  

 

Another limitation of the strategy is that whilst this strategy is the inability to control 

levels of ATP. As part of this study, it would be desirable to screen mutants for 

reductions in ATP KM under low ATP conditions. However, as crude cell lysates 

naturally contain ATP these assays must be performed on purified protein.  

 

Despite the limitations of the technique, utilising this strategy has isolated brighter 

mutants, but whether this is due to a true increase in activity or merely as a result of an 

increase in expression is not known. Since deletions can promote changes in expression 

levels, and increased expression levels are desirable, they have the potential to improve 

mutants and ease of their purification in a way that substitutions cannot. This is 

particularly important in a manufacturing setting whereby it is desirable to have mutants 
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which are more likely to fold correctly to maximise the volume of functional enzyme 

produced.  

 

An advantage of this method is that unlike mutational studies which fully characterise 

few mutants generated from a library, it was possible to sample many single amino acid 

deletions within a number of loops simultaneously. This allowed the investigation of 

effects that deletions confer upon a structure-function of FLuc, highlighting how 

specific regions play a role in different characteristics of the protein. As such, in order 

to evaluate this method and whether the Ω loop variants are truly useful, these mutants 

shall be further characterised following purification.  

 

Either in vivo colony screening or 96-well format screening should be applied 

depending on the characteristics being sought, and the 96-well format is advantageous 

when screening for a number of parameters simultaneously especially from large 

libraries. This will ensure that potentially useful mutants are sampled and that mutations 

in regions that appear to bestow useful characters are not overlooked. 

 

4.5. Conclusion 

 

In this chapter an alternative screening strategy was developed in order to address 

drawbacks of the in vivo colony screen and to accelerate the identification of useful 

mutants. In particular the alternative strategy focused on the development of a method 

able to quantify bioluminescent activity by multi-parameter 96-well assays. 

 

Initial testing of WTFLuc, x2FLuc and x11FLuc controls provided evidence of its 

utility. With regards to the single amino acid deletion mutants, a trend initially observed 

throughout in vivo colony screening by ImageJ analysis was confirmed by this method, 

showing deletions within the N-terminal caused little effect on the properties of 

x11FLuc, whilst C- terminal deletions caused a reduction in activity. Deletions 

occurring between L172- T191 and D520-L526 largely reduced activity. Whilst 

deletions occurring within T352-F368 and D375-R387 caused variation in activity, and 

some of the highest activity imparted by deletions occurred within these regions. 
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Deletions occurring within the Ω loop confer interesting properties upon the protein, 

including enhancements in overall activity, specific activity and altered kinetics and as 

such it has been concluded that deletions occurring within the Ω loop shall be taken 

forward not only to characterise this further but to determine the utility of the 96-well 

format.  
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Chapter 5 

Biochemical Characterisation of Single Amino Acid Deletion 

within the Omega Loop of Luciferase 

 

 

5.1. Chapter Summary 

 

Previous Chapters showed that multiple phenotypes (enhanced activities and 

bioluminescence shifts) were obtained by SDD within the Ω loop structure of x11FLuc, 

however, all observations were made using colony level and 96-well format cell lysate 

screening assays. Characterisation of mutant FLucs following purification provides the 

most meaningful results, for example, the basic biochemical properties of the enzymes. 

In addition to this, it is possible to correlate the 96-well format screening with that at the 

level of protein. Within this chapter x11FLuc single amino acid deletion mutants 

ΔP353, ΔP359, ΔG360, ΔA361, ΔV362 and ΔG363, derived from the Ω loop, were 

purified and properties such as bioluminescence spectra, kinetics, specific activity and 

resistance to thermal inactivation and pH tolerance were analysed. Analyses revealed 

interesting properties, highlighting the importance of the Ω loop in the activity of 

x11FLuc. In addition, results correlated well to the 96-well format mutant fingerprinting 

method, further confirming the usefulness of the method. 

 

5.2. Introduction 

 

The number of applications in which Fluc may be utilised is extensive and mutants 

exhibiting enhanced characteristics are desirable within many fields (Ronaghi et al., 

2001; Branchini et al., 2009; Taurianen et al., 2000). In Chapters 3 and 4, it was 

identified that single amino acid deletions in the Ω loop of FLuc cause interesting and 

potentially useful phenotypes, such as colour shifts and improved specific activity.  

The Ω loop structure was first described in 1986 and subsequently characterised by 

Fetrow et al., (1995) and since then, the importance of this region has become clearer. 

In the recent past, protein engineering focusing on modulation of Ω loop structures 
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within other model proteins has proved successful. Guntas et al (2012) utilised a novel 

directed evolution engineering strategy termed circular permutation which involved 

random intramolecular relocation of the N- and C-termini within TEM-1 β-lactamase. 

This study isolated two permutated mutants within the Ω loop adjacent to the active site 

which conferred an increase in resistance to cefotaxime. In addition to this, triple 

mutants W165Y/E166Y/P167G occurring within the Ω loop indicated that substrate 

specificity could be greatly altered, increasing the hydrolytic activity for oxyimino-

cephalosporin and ceftazidime whilst activity for other β-lactams was decreased 

(Stojanoski et al, 2015). Structural analysis of the triple mutant revealed that there was a 

large conformational change in the Ω loop creating space for the ceftazidime side chain. 

Their results indicated that the plasticity of the active site Ω loop facilitated the 

evolution of the enzyme specificity and mechanism (Stojanoski et al, 2015).  

Substitutions with the Ω  loop of Ppy FLuc (E354R/D357Y and E354I/D357Y) have 

previously been identified to improve thermostability and affect emission colour (see 

Chapter 1), however, to date, the significance of this loop in FLuc has not been 

identified. Tafreshi et al (2007), studied region (see Chapter 3) by insertion mutagenesis 

and observed both colour and thermostability phenotypes. These changes were 

attributed to a significant conformational change that had occurred within the loop 

bringing about a new ionic interaction affecting the polarity of emitter site.  

The aim of this Chapter is to examine the effect of deletions in the Ω loop of x11FLuc 

(ΔP353, ΔP359, ΔG360, ΔA361, ΔV362, ΔG363).  ΔT352 and ΔK358 were omitted 

within this study due to red shifted bioluminescence and reduced activity respectively. 

For this, mutants were overexpressed, purified and characterised in terms of 

bioluminescence spectra, kinetics, activity, thermostability and pH stability compared to 

WTFLuc, x2FLuc and x11FLuc.  
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5.3. Results and Discussion 

 

5.3.1. Overexpression and purification of single amino acid deletion variants 

 

Single amino acid deletion variants containing a N-terminal x10 His-tag were 

overexpressed within E.coli BL21 cells and purified utilising affinity-based method 

using nickel-nitrilotriacetic acid (Ni-NTA) resin, as previously described (Law et al., 

2006). Proteins were overexpressed as described in Chapter 2. Fractions were analysed 

by SDS-PAGE (Figure 5.1.), the results of which were concurrent with enrichment 

calculations (Table 5.1.). A small amount of protein was lost in flow-through 1 and 2 of 

the supernatent, as well as the 50mM imidazole (IMD) wash, however the majority of 

expressed protein was isolated and eluted using fractions of 500mM IMD. Coomassie 

stained SDS-PAGE gels of each mutant showed no additional banding and the proteins 

were >90% pure. Eluted fractions displaying high activity were immediately desalted 

using PD10 size exclusion columns (GE Healthcare, WI, USA) into storage buffer 

(Chapter 2) and proteins were stored at -80oC. The concentration of each PD10 desalted 

purified fraction was determined via Bradford assay (Table 5.2). Concentrations 

achieved throughout purification varied between 0.413mg/ml to 1.35mg/ml and in order 

to ensure these calculated concentrations were correct, all concentration normalised 

(0.188mg/ml) proteins were analysed by SDS-PAGE (Figure 5.2.). This showed the 

quantification of proteins was accurate, allowing further comparison of enzymes. 

 

Figure 5.2 displayed an difference in molecular weight for the WTFLuc in comparison 

to other variants. Such “gel shifting” may be attributed to the tertiary structural changes 

that may have occurred within the protein as a result of the additional mutations 

comprising the x11FLuc since protein tertiary structure may affect both detergent-

loading levels and polypeptide-SDS-PAGE migration rates (Rath et al., 2008). 
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Figure 5.1. SDS-PAGE of Protein Purification 

a. 

 

b. 

 

Example SDS-PAGE of control and mutant purification process. Purification of a. 

WTFLuc and b. x11FLuc. PI: Pre-induction sample, SN: supernatant, FT1: flow-

through 1, FT2: flow-through 2, 50mM: 50mM IMD, 500mM: 500mM IMD, PD10: 

Desalted fraction. 
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Table 5.1. Representation of Activity in Purified Fractions 

Summary of activity in purified fractions from WT. Key S/N: supernatant, FT: flow 

through, 50IMD: 50mM IMD, 500IMD: 500mM IMD. The Imax of 1µl of each fraction 

was assayed in saturating conditions using 500mM D-LH2 and 1mM ATP. Vol. pertains 

to the fraction volume. Average Imax is the average observed Imax. Enrichment is the 

percentage activity of the crude extract in any one fraction in comparison to the 

supernatant. Enrichment of PD10 fractions considers only those desalted fractions 

against their initial non-desalted fractions. All activities were measured as flash heights.  

 

 

 

 

 

 

 

 

 

Fraction Vol 

(ml) 

Average 

Imax(RLU) 

Total 

Activity 

(RLU) 

Enrichment 

(% activity 

of crude 

extract) 

Enrichment in 

PD10 fractions 

(% of 500mM 

IMD fractions) 

S/N 20 3.99E+05 7.97E+06 100  

FT1 20 1.07E+04 2.13E+05 2.673662207  

FT2 20 3.43E+03 6.87E+04 0.861120401  

50IMD 10 1.46E+04 1.46E+05 1.826923077  

500IMD 1 2.5 1.35E+06 3.38E+06 42.33904682  

500IMD 2 2.5 1.27E+06 3.18E+06 39.88294314  

PD10 1 3.5 1.26E+06 4.41E+06 55.33862876 55.33862876 

PD10 2 3.5 1.30E+06 4.55E+06 57.06521739 57.06521739 
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Table 5.2. Summary of Average Protein Concentrations 

 

Summary of Average Protein Concentration. The concentration of each PD10 

desalted purified fraction as determined via Bradford assay. Concentrations presented 

both as mg/ml and corresponding µM.  

 

Figure 5.2. SDS-PAGE of Normalisation of Proteins 

 

 

 

 

 

 

 

 

 

SDS PAGE analysis for protein quantification. Proteins normalized to 0.1875mg/ml 

and applied to gel. Band size and density compared. All Lucs were mixed 3:1 in 4x 

protein sample buffer and loaded in the wells. Lanes 1. Molecular weight marker; 2. 

WT, 3. x2, 4. x11FLuc; 5. ΔP353, 6.ΔP359, 7.ΔG360, 8.ΔA361, 9.ΔV362, 10. ΔG363.  

 

 

 

 

 

 

Purified and 
desalted variant 

WTFLuc x2FLuc x11FLuc ΔP353 ΔP359 Δ 
G360 

Δ 
A361 

Δ 
V362 

Δ 
G363 

Average 
Concentration 
(mg/ml)  

0.944 

 
 

1.208 1.350 
 

0.556 
 

0.646 0.773 
 

0.569 0.531 0.413 

Average 
Concentration 

M)  

15.14 19.37 21.65 8.92 10.35 12.38 9.13 8.52 6.63 

70 

 60 

 



Chapter 5 – Biochemical Characterisation of Deletions within the Omega Loop 

144 

 

5.3.2. Bioluminescence spectra of x11 Deletion Mutants 

 

To begin with, the bioluminescence spectra of purified WTFLuc, x2FLuc and x11FLuc 

control enzymes were measured first using a Varian Cary Eclipse fluorimeter in the 

presence of saturating conditions of LH2 and ATP in TEM buffer at pH 7.8. Spectra 

were corrected for changes in the sensitivity of photomultiplier tube (PMT) to 

differences in the wavelengths of light emitted, as described previously (Law et al., 

2006). The spectra of WTFLuc, x2FLuc and x11FLuc at pH, 7.8 peaked at ca. 550nm 

(Figure 5.3.). The bioluminescence spectra of single amino acid deletion variants in the 

Ω loop (ΔP353, ΔP359, ΔG360,  similar to 

x11FLuc at pH 7.8 (λmax = ca. 555nm) (Figure 5.4.). However, variant ΔG363 showed 

a small increase in bandwidth toward the red region, indicating a direct or indirect 

specific change in the emitter.   

 

5.3.3. pH dependence of bioluminescent spectra of x11FLuc single amino acid 
deletion variants  

 

The bioluminescence spectra of single amino acid deletion variants were measured 

under various pH conditions (Figure 5.5-5.7 and Table 5.3). Ω loops variants, ΔP353, 

ΔP359, ΔG360, ΔA361 displayed similar spectra to x11FLuc (λmax ca.555nm) between 

pH 6.3 - 8.8, showing that deletions had little effect on the high degree of spectral 

stability of x11FLuc.  However, Ω loop variants, ΔV362, ΔG363 did not follow this 

trend and bathochromic shifted at low or high pH, in a similar manner to x2FLuc. It is 

interesting that ΔG363 displayed spectral broadening more so under alkali conditions 

than under acidic pH, as is typically observed. Therefore, the conformation of the loop 

comprising residues V362 and G363 appears important for the emission colour. 
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Figure 5.3. Bioluminescence spectra of WTFLuc, x2FLuc and x11FLuc  

 

Baseline-corrected and normalised bioluminescence spectra of WTFLuc, x2FLuc 

and x11FLuc with LH2 at pH 7.8. 0.5µM of each enzyme added to 500µM LH2 and 

1mM ATP in chilled TEM buffer (pH 7.8) and spectra measured after 15 seconds at RT.  

 

Figure 5.4. Bioluminescence spectra of ΔP353, ΔP359, ΔG360, ΔA361, ΔV362, ΔG363 

  

Baseline-corrected and normalised bioluminescence spectra of ΔP353, ΔP359, 

ΔG360, ΔA361, ΔV362, ΔG363 with LH2 at pH 7.8. 0.5µM of each enzyme added to 

500µM LH2 and 1mM ATP in chilled TEM buffer (pH 7.8) and spectra measured after 

15 seconds at RT.  
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5.5. pH dependence of bioluminescence spectra of WTFLuc, x2FLuc and x11FLuc 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Baseline corrected and normalised bioluminescence spectra of WTFLuc, x2FLuc 

and x11FLuc at varying pH with LH2.  a) WTFLuc b) x2FLuc c) x11FLuc assayed 

with 0.5µM of each enzyme added to 500µM LH2 and 1mM ATP in chilled TEM buffer 

(pH 7.8) and spectra measured after 15 seconds at RT. 
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a. 

b. 

c. 

5.6. pH-dependence of bioluminescent spectra of ΔP353, ΔP359, ΔG360 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Baseline corrected and normalised bioluminescence spectra of ΔP353, ΔP359, 

ΔG360 at varying pH with LH2.  a) ΔP353, b)ΔP359, c)ΔG360 assayed as 

details in Figure 5.4. 
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a. 

b. 

c. 

Figure 5.7. pH-dependence of bioluminescence spectra of ΔA361, ΔV362, ΔG363  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Baseline corrected and normalised bioluminescence spectra of ΔA361, ΔV362, 

ΔG363 at varying pH with LH2.  a)ΔA361, b)ΔV362, c)ΔG363. Details as in Figure 

5.4.  
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Table 5.3. Summary of pH-Dependence of Bioluminescence Spectra  

 Spectra 

pH 6.3 pH 6.8 pH 7.3 pH7.8 pH 8.3 pH 8.8 

Λmax FWHM Λmax FWHM λmax FWHM λmax FWHM λmax FWHM Λmax FWHM 

WTFLuc N/A N/A 553 61 554 57 553 58 554 59 554 63 

x2FLuc 575 90 564 85 556 75 555 69 555 74 561 83 

x11FLuc 554 61 554 62 554 62 554 62 554 62 554 62 

ΔP353 558 64 555 64 555 61 555 60 554 66 554 66 

ΔP359 
 

551 62 554 60 553 58 554 61 554 59 554 64 

ΔG360 
 

554 62 554 61 554 62 554 61 554 64 554 64 

ΔA361 
 

555 61 555 61 554 62 554 63 555 60 555 60 

ΔV362 
 

553 63 554 64 555 60 555 61 555 60 555 63 

ΔG363 
 

563 81 558 73 558 75 558 75 565 86 580 90 

Summary of characteristics of bioluminescence spectra exhibited by controls and deletions mutants at variable pH (between 6.3-8.8)

. 
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5.3.4. Michaelis-Menten Kinetic Characterization of Deletion Mutants Compared 
to WTFLuc, x2FLuc and x11FLuc 

 

Since the bioluminescence reaction displays flash kinetics, conventional methodology 

may not be employed in order to determine the kinetic constants. However, the peak 

intensity (Imax) is a representation of the pre-steady state of maximal light intensity at a 

given substrate concentration and occurs at one turnover of the enzyme (Brovko et al, 

1994). Use of Imax to determine kinetic constants obeys Michaelis-Menten kinetics for 

the reaction prior to other complicating factors such as end product inhibitors (Ugarova, 

1989). To determine kinetic constants by luminometry, enzymes were exposed to 

varying concentrations of the substrate in question and other components were injected 

at saturating concentrations. The resulting triplicate Imax values for each concentration 

were plotted according a rearranged version of the Michaelis-Menten plot, termed the 

Hanes-Woolf plot. Within this investigation, the Hanes-Woolf plot has been utilised in 

favour of the Lineweaver-Burke plot since it better copes with experimental error 

(Athel-Cornish Bowden, 1999). Regression analysis of the Hanes-Woolf plot (substrate 

concentration (S) plotted against S/v, wherein v is the initial rate) allows determination 

of constants KM (the Michaelis-Menten constant) and the Vmax (maximal reaction 

velocity), with which it is possible to characterise the different mutant FLucs. The 

catalytic constant, termed kcat, is further calculated from the Vmax value and represents 

the turnover of the enzyme, whilst the ratio kcat/KM is a useful measure of overall 

catalytic efficiency. Substrate ranges used were 10x above and below the approximate 

KM for enzymes, and as such concentrations of LH2 were diluted such that the final 

working concentration within the reaction mix included 0.1µM-200µM and 

concentrations of ATP were diluted such that the final working concentration within the 

reaction mix included 0.1µM-1000µM.  

 Kinetic parameters determined via this method were similar to those previously 

identified for the enzyme controls (Figure 5.8-5.11 and Table 5.4). In terms of Km 

values for LH2, the value for WTFLuc was 25µM, which was similar to that noted in 

previous studies (approximately 15µM) (Branchini et al., 1998; Tisi et al., 2002; Law et 

al., 2006). x2FLuc displayed a KM for LH2 of 10µM, which was very similar to that 

which is reported in the literature. The LH2 KM value derived for x11FLuc was 5µM, 

again, similar to previous studies (Jathoul et al., 2012). KM values for ATP were as 
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follows: WTFLuc: 125µM was calculated at 125µM, x2FLuc: 42.5µM, and, x11FLuc: 

75µM, which are in broad agreement with the literature.  

The single amino acid deletion variants had similar KM values to the parental x11FLuc 

(Figure 5.12-5.15, Table 5.5). ΔP353, ΔA361, ΔV362 and ΔG363 exhibited similar or 

slightly higher KM than x11FLuc, of between 6µM - 11µM. However, deletions of 

ΔP359 and ΔG360 appeared to lower the KM compared to x11FLuc, to 2µM and 3µM 

for ΔP359 and ΔG360 respectively. This indicates that the conformation of this region 

is important for the affinity of the enzyme toward LH2. However, since on the whole 

very small changes in KM for LH2 were seen, it appears that the other single amino acid 

deletions in loops of x11FLuc do not have a significant effect on the affinity with LH2. 

In regards to the KM of enzymes for ATP, ΔP353 and ΔG360 exhibited similar values to 

x11FLuc of 66.66µM and 58.33µM, respectively. However, the KM for ATP of mutant 

ΔP359 was increased to 100µM, whilst the other single amino acid deletion mutants 

ΔA361 (147µM), ΔV362 (150µM), ΔG363 (188µM) displayed a gradual increased KM, 

which appeared to correlate with the position of the deletion with respect to its distance 

from the C-terminal of the Ω loop. The variation in the KM for ATP was far more 

marked than variations in the KM for LH2 which indicates that the Ω loop plays a more 

important role in modulating the affinity for ATP. 

Statistical analysis was conducted to determine the significance of the differences 

observed (Figure 5.16-5.17). A statistically significant difference between WT, x2 and 

x11FLuc regarding KM Luciferin was determined by a one-way ANOVA, F(2,3) = 67, 

p = 0.003 however there was no statistically significant difference between WT, x2 and 

x11FLuc regarding KM ATP (F(2,3) = 5.97, p = 0.09). The Tukey method was further 

employed which identified that the WT KM Luciferin was significantly different from 

x2 and x11FLuc.  Of the Ω loop variants, one way ANOVA determined there was a 

statistically significant difference regarding both KM Luciferin (F(6,8) = 10.58, p = 

0.002) and KM ATP (F(6,10) = 13.58, p = 0.00). The Tukey method identified that 

there was a significant difference in the KM Luciferin between x11FLuc and ΔA361 

and ΔP359 whilst a significant difference in the KM ATP was found between x11FLuc 

and ΔG363. 
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Figure 5.8. Michaelis-Menten plots of WTFLuc, x2FLuc and x11FLuc with LH2 

 

Comparative plots of initial velocities against substrate concentration. To measure 

LH2 kinetic parameters, saturating ATP was injected at a final concentration of 1mM in 

the well prior to measurement of bioluminescence. Substrate ranges of LH2 were ca. 

0.1-10x the KM concentrations. 2-4 independent experiments (each in triplicate) carried 

out and examples of each enzyme have been plotted.  

 

Figure 5.9. Hanes-Woolf plot of WTFLuc, x2FLuc and x11FLuc with LH2 

 

Hanes-Woolf plots to determine the Michaelis-Menten kinetic parameters. Plots 

derived from data indicated in Figure 5.7. by plotting [S]/v against [S], where substrate 

concentration and v is estimated initial rate at each concentration. Kinetic parameters 

calculated by linear regression of plots. 
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Figure 5.10. Michaelis-Menten plots of WTFLuc, x2FLuc and x11FLuc with ATP 

 

Comparative plots of initial velocities against substrate concentration. To measure 

ATP kinetic parameters, saturating LH2 was injected at a final concentration of 500µM 

in the well prior to measurement of bioluminescence. Substrate ranges of ATP were ca. 

0.1-10x the KM concentrations. 2-4 independent experiments (each in triplicate) carried 

out and examples of each enzyme have been plotted.  

 

Figure 5.11. Hanes-Woolf plot of WTFLuc, x2FLuc and x11FLuc with ATP 

 

Hanes-Woolf plots to determine the Michaelis-Menten parameters. Plots derived 

from data indicated in Figure 5.10. Details as in Figure 5.9. 
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Figure 5.12. Michaelis-Menten plots of ΔP353, ΔP359, ΔG360, ΔA361, ΔV362, ΔG363 

with LH2 

 

Comparative plots of initial velocities against substrate concentration. Details as in 

Figure 5.8.  

 

Figure 5.13. Hanes-Woolf plot of ΔP353, ΔP359, ΔG360, ΔA361, ΔV362, ΔG363 with 

LH2 

 

Hanes-Woolf plots to determine the Michaelis-Menten parameters. Details as in 

Figure 5.9 
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Figure 5.14. Michaelis-Menten plots of ΔP353, ΔP359, ΔG360, ΔA361, ΔV362, ΔG363 

with ATP 

 

Comparative plots of initial velocities against substrate concentration. Details as in 

Figure 5.10.  

 

 

Figure 5.15. Hanes-Woolf plot of ΔP353, ΔP359, ΔG360, ΔA361, ΔV362, ΔG363 with 

ATP 

 

Hanes-Woolf plots to determine the Michaelis-Menten parameters. Details as in 

Figure 5.11.
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Table 5.4. Summary of kinetic parameters of WTFLuc, x2FLuc and x11FLuc with LH2 and ATP 

 LH2 ATP 

WTFLuc x2FLuc x11FLuc WTFLuc x2FLuc x11FLuc 

KM(µM) 27.5±1.88 

  

10 5 125±18.81 42.5±9.4 75.83±7.64 

kcat (RLU s-

1)(x1016) 

5 2.5 2 5 5 2.5 

kcat/KM 

(RLU s-1 M-

1 

2.5x1015 5x1015 3.33x1015 

 

4x1014  1.176x1015 3.29x1014 

 

Summary of kinetic parameters for control enzymes. Standard errors shown. No error if not shown. kcat/KM derived from average KM and kcat. 

 

 

 

 

 

 

 

 

 

 



Chapter 5 – Biochemical Characterisation of Omega Loop Deletion Mutants  

   

157 

 

Table 5.5. Summary of kinetic parameters of ΔP353, ΔP359, ΔG360, ΔA361, ΔV362, ΔG363 with LH2 and ATP 

 LH2 ATP 

ΔP353 ΔP359 ΔG360 ΔA361 ΔV362 ΔG363 ΔP353 ΔP359 ΔG360 ΔA361 ΔV362 ΔG363 

KM(µM) 6±1.5 2.08±0.31 3.33±0.81 11±0.75 7.73±0.44 6 66.66± 

8.3 

100 58.33± 

6.29 

147.59± 

13.49 

150± 

1.5 

188.35± 

23.47 

kcat 

(RLU s-

1)(x1016) 

2 1.45±1.56 2 2.25±1.88 1.54±0.86 1 2 2 2 2.16±1.58 1.58±0.91 1 

kcat/KM 

(RLU s-

1 M-

1)(x1015) 

3.33 7 6 2.04 2 1.66 3 2 3.42 1.4 0.1 0.05 

Summary of kinetic parameters for control enzymes. Standard errors shown. No error if not shown. kcat/KM derived from average KM and kcat. 
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Figure 5.16. One-Way ANOVA and Tukey HSD to Determine Statistically Significant 

Differences between KM for Luciferin and ATP for Control Variants 

a. 

Analysis of Variance 

 
Source   DF  Adj SS   Adj MS  F-Value  P-Value 
Variant   2  558.33  279.167    67.00    0.003 
Error     3   12.50    4.167 
Total     5  570.83 
 

Tukey Pairwise Comparisons  
 
Grouping Information Using the Tukey Method and 95% Confidence 

 

Variant  N   Mean  Grouping 
WT       2  27.50  A 
x2       2  10.00    B 
x11FLuc  2  5.000    B 

 

b. 

Analysis of Variance 

 
Source   DF  Adj SS  Adj MS  F-Value  P-Value 
Variant   2    6890  3444.9     5.97    0.090 
Error     3    1731   576.9 
Total     5    8621 
 

Tukey Pairwise Comparisons  
 
Grouping Information Using the Tukey Method and 95% Confidence 
 
Variant  N   Mean  Grouping 
WT       2  125.0  A 
x11FLuc  2  75.83  A 
x2       2   42.5  A 
 
 

Minitab session output displaying results of a One-way ANOVA and Tukey HSD 
test from data obtained from WT, x2 and x11FLuc.  a) A statistically significant 
difference between WT, x2 and x11FLuc regarding KM Luciferin was determined by a 
one-way ANOVA, F(2,3) = 67, p = 0.003. b) A non statistically significant difference 
between WT, x2 and x11FLuc regarding KM ATP was determined by a one-way 
ANOVA, F(2,3) = 5.97, p = 0.09. Grouping information using the Tukey method and 
95% confidence. Means that do not share a letter are significantly different. N=2. 
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Figure 5.17. One-Way ANOVA and Tukey HSD to Determine Statistically Significant 

Differences between KM for Luciferin and ATP for Ω  Loop Mutants  

a. 

Analysis of Variance 

 
Source   DF  Adj SS  Adj MS  F-Value  P-Value 
Variant   6  108.69  18.115    10.58    0.002 
Error     8   13.69   1.712 
Total    14  122.38 
 

Tukey Pairwise Comparisons  
 
Grouping Information Using the Tukey Method and 95% Confidence 
 
ΔA361    2  11.00  A 
ΔV362    2  7.720  A B 
ΔP353    2   6.00    B C 
ΔG363    2  6.000    B C 
x11FLuc  2  5.000    B C 
ΔG360    3  3.333    B C 
ΔP359    2  2.080      C 
 

b. 

Analysis of Variance 

 
Source   DF  Adj SS  Adj MS  F-Value  P-Value 
Variant   6   38549  6424.8    13.58    0.000 
Error    10    4730   473.0 
Total    16   43279 
 

Tukey Pairwise Comparisons  
 
Grouping Information Using the Tukey Method and 95% Confidence 
 
Variant  N    Mean  Grouping 
ΔG363    3   188.0  A 
ΔV362    2   150.0  A B 
ΔA361    3  147.59  A B 
ΔP359    2   100.0    B C 
x11FLuc  2   75.83    B C  
ΔP353    3   66.67      C 
ΔG360    2   58.34      C 
 

Minitab session output displaying results of a One-way ANOVA and Tukey HSD 
test from data obtained from Ω loop deletion mutants.  a) A statistically significant 
difference between ΔP353, ΔP359, ΔG360, ΔA361, ΔV362, ΔG363 regarding KM 
Luciferin was determined by a one-way ANOVA, F(6,8) = 10.58, p = 0.002. b) A 
statistically significant difference between ΔP353, ΔP359, ΔG360, ΔA361, ΔV362, 
ΔG363 regarding KM ATP was determined by a one-way ANOVA, F(6,10) = 13.58, p = 
0.00. Grouping information using the Tukey method and 95% confidence. Means that 
do not share a letter are significantly different. x11FLuc control highlighted in bold. 
N=2. 
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5.3.5. pH-dependence of bioluminescent activity of WTFLuc, x2FLuc and 
x11FLucs 

 

The activities of WTFLuc, x2FLuc and x11FLuc were measured at differing pH 

conditions by obtaining a bioluminescence emission spectra in the presence of 

saturating conditions of LH2 and ATP at different pH values and integrating PMT-

sensitivity corrected spectra (Figure 5.16. and Table 5.6.). WTFLuc was seen to retain 

up to 55% of activity at pH 6.8 (one unit lower than optimum), whilst activity 

diminished by up to 18% at pH 8.8 (one unit higher). It has previously been shown that 

x11FLuc better retains maximum activity across a wide pH range (Jathoul et al., 2012) 

and here x11FLuc was the most resistance to inactivation at pH 6.8 of all enzymes, 

retaining up to 63% of maximum activity.  

Previous investigations into the bioluminescent spectra of x2FLuc have shown a 

bathochromic shift of this mutant (Jathoul et al., 2012). White et al (2002) reported that 

x2FLuc is resistant to red-shift at low pH, and displays max of 550-560nm. However, 

here and in previous reports (Amit Jathoul, 2008, PhD thesis, University of Cambridge) 

x2FLuc displays a max with increased bandwidth at all pH 

values compared to WTFLuc. At pH 6.8 broadening of peaks toward the red was 

observed along with a shift in peak emission. x2FLuc is utilised commercially by 3M 

within the hygiene monitoring (FLuc-based ATP detection) industry and this 

bathochromic shift could be a disadvantage for luminometric assays involving x2FLuc. 

PMTs commonly employed in luminometers work on the principle of the photoelectric 

effect, whereby the signal from colours of higher frequency are amplified more than 

those of lower frequency. As a result PMTs are less sensitive in detecting red light and 

red-shifted FLucs, for example in environments with low pH, would give lower signals. 

However the use of CCD-based devices would overcome this problem. x11FLuc 

however, was seen to resist bathochromic shift at low pH, with max 554nm at all pH 

values. 

The specific activities of Ω loop deletion variants (Figure 5.17., Figure 5.18. and Table 

5.6.), showed high activity across a wide pH range compared to WTFLuc, illustrating 

that this attribute of x11FLuc had been retained despite the location of the loop deletion 

in the Ω loop. At their lowest activity values (least optimum pH) ΔP353, ΔP359, 
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ΔG360, ΔA361, ΔV362, ΔG363 retained 30%, 45%, 42%, 24%, 31% and 19%, 

respectively.  
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a. 

b. 

c. 

Figure 5.16. pH-dependence of bioluminescent activities of WTFLuc, x2FLuc, x11FLuc 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Baseline corrected bioluminescence spectra of WT, x2 and x11FLuc at varying pH 
with LH2. a) WFLuc b) x2FLuc c) x11FLuc assayed with 0.5µM of each enzyme added 
to 500µM LH2 and 1mM ATP in chilled TEM buffer (pH 7.8) and spectra measured 
after 15 seconds at RT.
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a. 

b. 

c. 

Figure 5.17 pH-dependence of bioluminescent activities of ΔP353, ΔP359, ΔG360  

 

Baseline corrected bioluminescence spectra of ΔP353, ΔP359, ΔG360 at varying pH 

with LH2 a) ΔP353, b) ΔP359, c)ΔG360. Details as Figure 5.16. 
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a. 

b. 

c. 

Figure 5.18. pH-dependence on bioluminescent activities of ΔA361, ΔV362, ΔG363  

 

 

Baseline corrected bioluminescence spectra of ΔA361, ΔV362, ΔG363 at varying 

pH with LH2 a) ΔA361, b) ΔV362, c) ΔG363. Details as Figure 5.16.
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Table 5.6 Summary of pH-dependence of Bioluminescence Activity  

 pH 6.3 pH 6.8 pH 7.3 pH 7.8 pH 8.3 pH 8.8 

Integrated 

Activity 

Percentage 

of Max 

Integrated 

Activity 

Percentage 

of Max 

Integrate

d 

Activity 

Percentage 

of Max 

Integrate

d 

Activity 

Percentage 

of Max 

Integrated 

Activity 

Percenta

ge of 

Max 

Integrated 

Activity 

Percenta

ge of 

Max 

WTFLuc 202693.6

92 

0.36 300600.78

9 

0.54 408550.1

6 

0.73 552150.5

5 

1 182143.13 0.32 108140.36 0.19 

x2FLuc 242562.3

81 

0.51 327497.61

5 

0.69 417297.6

83 

0.88 472071.5

24 

1 273175.09

9 

0.57 142918.40

6 

0.3 

x11FLuc 185090.1

1 

0.63 229701.74

5 

0.78 291910.1

6 

1 201594.4 0.69 192435.16 0.65 77905.548 0.26 

ΔP353 
 

201418.2

3 

0.34 395518.67 0.67 314331.5

4 

0.53 588997.2

2 

1 285974.87 0.48 146586.89 0.24 

ΔP359 
 

407138.7

4 

0.89 387094.78 0.85 454709.7

3 

1 366505.0

8 

0.80 267744.29 0.65 179049.96 0.39 

ΔG360 
 

190460.8

9 

0.69 273172.85 1 232842.2

8 

0.85 231874.2

8 

0.84 258144.28 0.94 102022.86 0.37 

ΔA361 
 

247034.4

5 

0.64 317869.95 0.82 384749.5

9 

1 368690.7

5 

0.95 275712.65 0.71 87827.41 0.22 

ΔV362 
 

254004.9

2 

0.57 42380.223 0.096 440395.6

6 

1 384117.0

5 

0.87 374242.84 0.84 111754.12 0.25 

ΔG363 
 

274232.8

8 

0.64 409059.31 0.96 58839.54 0.13 424569.2

3 

1 312691 0.73 107376.52 0.25 
 

Summary of pH-dependence of bioluminescence activity. Details as in Figures 5.16–5.18.  
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5.3.6. Specific Activity of x2FLuc, x11FLuc and Single Amino Acid Deletion 
Variants Derived from Flash Kinetics by Luminometry 

 

Assays were conducted under saturating conditions of the substrates and total 

bioluminescent output studied over a 250s period, integrating every 1s in order to 

compare differences between flash heights (Figure 5.19.) and overall bioluminescent 

output using a BMG Fluostar Optima (BMG Labtech, Ortenberg, Germany) (Table 

5.7.). Interestingly, all mutants tested, apart from x11FLuc ΔP353 displayed higher 

specific activities than the x11FLuc. In order from lowest to highest, ΔP353 displayed 

an integrated light-based specific activity of 10195718 RLU (54%), whilst ΔP359, 

ΔV362 and ΔG363 displayed activities of 38758893 RLU, 30381748 RLU and 

31124582 RLU (234%, 183% and 188% of x11FLuc), respectively. x11FLuc ΔG360 

displayed 16572912 RLU (100% of x11FLuc) and ΔA361: 26156105 RLU (158% of 

x11FLuc). Therefore, deletions made in the Ω loop, aside from at position 353, 

promoted an increase in the specific activity compared to native x11FLuc when 

measuring light output over long periods (Figure 5.20.). 

 

 

. 
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Table 5.7 Summary of Integrated Bioluminescence between 30-250s  

 

Variant Integrated Bioluminescence 

between 30s-250s (RLU) 

Percentage of x11Fluc 

(%) 

x11FLuc 16587278 100 

ΔP353 9020908 54.3845 

ΔP359 38758893 233.6664 

ΔG360 24859369 149.8701 

ΔA361 26156105 157.6877 

ΔV362 30381748 183.1629 

ΔG363 31124582 187.6413 

Table of integrated bioluminescence values measured by luminometery. Activity of 

x11FLuc is increased by deletional mutagenesis. 
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Figure 5.19. Flash Kinetics of FLucs and Mutants Over 250s 

 

 

Flash kinetics of controls and mutants over time. Flash height of x11FLuc is 

increased by deletional mutagenesis. 

 

Figure 5.20. Steady-State Kinetics of FLucs and Mutants Over 250s 

 

 

Steady-state kinetics of controls and mutants over time after the flash. Specific 

activity of x11FLuc is increased by deletional mutagenesis. 
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5.3.7. Thermal Inactivation of Single Amino Acid Deletion Variants 

There are two methods in which thermal inactivation of a protein may be studied, the 

conventional method, which involves the heating the enzyme to a specified temperature 

and subsequently cooling it on ice prior to taking measurements. Another method 

involves the measurement of activity whilst at the specified temperature. As part of this 

investigation a study was undertaken to characterise the degree to which the x2FLuc, 

x11FLuc and the Ω loop deletion enzymes performed under a range of temperatures 

using both these methods.  

x2FLuc resisted thermal inactivation up to 40oC (Figure 5.21.), however, above this 

temperature it is known to inactivate markedly, with 0% of initial activity remaining 

after 20 minutes at 44oC (White et al., 1996). In agreement, here x2FLuc was observed 

to rapidly inactivate at 45oC, retaining 22% of initial activity after 60 minutes and only 

0.002% after 60 minutes at 50oC.Throughout the investigation x11FLuc performed 

similar as described in the literature, retaining activity up to 93% of activity following 

60 minutes incubation at 50oC (Jathoul et al., 2012). 

The Ω loop variants displayed variable resistance to thermal inactivation up to a 

temperature of 45oC suggesting that deletions affect the thermostability of x11FLuc. 

However, x11FLuc Ω loop variants outperformed x2FLuc with regards to resistance to 

thermal inactivation. The largest difference between x11FLuc and deletion variants 

occurred at 50oC over a 60 minute time interval (Figure 5.21.). At this temperature, all 

thex11FLuc Ω loop variants inactivated more than x11FLuc. x11FLuc P353 and ΔP359 

displayed activity of 35% (as opposed to >90% for x11FLuc) and x11FLuc ΔV362 

retained the highest level of activity of the Ω  loop deletion mutants, of  up to 72% of 

initial activity, whilst ΔG363 retained the lowest level (14%) of initial activity after 60 

min at 50oC. 

Thermal inactivation of x2FLuc, x11FLuc and the Ω loop deletion variants were 

measured whilst enzymes were incubated at 3 temperatures: 30oC, 35oC and 42oC 

(Table 5.8.), which are pertinent to the temperature range at which diagnostic ATP 

assays may be carried out. At these temperatures, activity amongst all Ω loop variants 

bar ΔG363 was increased in comparison to x2FLuc and x11FLuc. Of the temperatures 

studied ΔP353, ΔP359, ΔG360, ΔA361 were more stable, akin to x11FLuc, whilst 

ΔV362, ΔG363 were less stable, similar to x2FLuc, with maximal activity at 35oC.   
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Table 5.8. Thermal Inactivation Assay Conducted at Temperature with x2, x11FLuc, 

ΔP353, ΔP359, ΔG360, ΔA361, ΔV362, ΔG363 

 Temperature 
30oC 35oC 42 oC 

x2FLuc 386764.3 400024.7 395468 

x11FLuc 440094.3 529217.3 559573.3 

ΔP353 
 

852537 940973 954703.7 

ΔP359 
 

554158.3 671513.3 689091.3 

ΔG360 
 

729496 858282 878304 

ΔA361 
 

597571.7 629020.3 634483.7 

ΔV362 
 

507992.7 561131.3 263037.3 

ΔG363 
 

232865 280963.3 17016 

Bioluminescence activity measured after equilibration to temperature. Assays 

reflect real assay conditions to which FLucs may be subjected. 
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Figure 5.21. x2FLuc, x11FLuc and ΔP353bioluminescent activity measured at varying 
temperatures 

a. 

 

 

 

 

 

 

 

b. 

 

 

 

 

 

 

c. 

 

 

 

 

 

 

 

Bioluminescent activity displayed by variants following incubation at various 
temperatures. a) x2FLuc b) x11FLuc c)ΔP353 assayed with 0.5µM of each enzyme, 
pre incubated at different temperatures, added to 500µM LH2 and 1mM ATP in chilled 
TEM buffer (pH 7.8) and spectra measured. 
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Figure 5.21. ΔP359, ΔG360 and ΔA361 bioluminescent activity measured at varying 
temperatures 
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Bioluminescent activity displayed by variants following incubation at various 
temperatures. a) ΔP359 b) ΔG360 c) ΔA361 assayed with 0.5µM of each enzyme, pre-
incubated at different temperatures, added to 500µM LH2 and 1mM ATP in chilled 
TEM buffer (pH 7.8) and spectra measured.  
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Figure 5.21. ΔV362 and ΔG363 bioluminescent activity measured at varying 
temperatures 

 

a. 
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b. 

 

 

 

 

 

 

 

Bioluminescent activity displayed by variants following incubation at various 
temperatures. a) ΔV362 b) ΔG363 assayed with 0.5µM of each enzyme, pre-incubated 
at different temperatures, added to 500µM LH2 and 1mM ATP in chilled TEM buffer 
(pH 7.8) and spectra measured.  
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5.4. Further Discussion 

 

The aim of this investigation was to characterise single amino acid deletion mutants 

identified in Chapter 4 to determine whether characteristics observed during 96-well 

format screening were true representations of the mutants and to conclusively determine 

whether single amino acid deletions in the loops selected enhance x11FLuc activity. As 

such single amino acid deletion mutants, ΔP353, ΔP359, ΔG360, ΔA361, ΔV362, 

ΔG363, derived from the Ω loop were purified and properties such as bioluminescence 

spectra, kinetics and specific activity were analysed. 

 

With regards to determination of kinetic parameters involving the LH2 substrate, whilst 

there was some alteration promoted due to deletions, these alterations were minimal, 

altering KM by at most 5µM. However, with regards to the kinetic parameters involving 

the ATP substrate, larger changes were noted, whereby differences compared to 

x11FLuc amongst certain deletion variants were double that of the x11FLuc.  It is of 

interest to note that with regards KM, neighbouring deletions appeared to perform 

similarly, for example, the lowest KM values for LH2 identified were attributed to 

deletions ΔP359 and ΔG360 whilst the highest KM values for ATP were attributed to 

deletions ΔA361, ΔV362, ΔG363, which displayed incremental increases of 147µM, 

150µM and 188µM, respectively. It has been determined that the Ω loops are often 

involved in the function of the protein and molecular recognition (Fetrow et al., 1995) 

and this functional role has been evidenced amongst a number of studies. The changes 

in KM values for ATP suggest the Ω loop plays a role in the function of the protein and 

molecular recognition with regards to ATP and this is in-line with the literature 

(Johnson and Holyoak., 2012; Wiesner et al. 2010). In Chapter 3 molecular analysis 

identified the Ω loop within proximity to the ATP binding site which provides 

additional evidence that this may be the case.  

 

With regards the spectrum of bioluminescence, all deletion mutants were similar to 

x11FLuc at optimum and physiological pH (7.4), which is pertinent to diagnostic assays 

with FLuc. Indeed, with regards to this characteristic, ΔP353, ΔP359, ΔG360, ΔA361, 

ΔV362 all showed no shift in  in the FWHM. For ΔG363 on the 

other hand, the spectra were not stable, similar to x2FLuc. However, whilst acidic 

conditions promoted an increase in the FWHM and λmax of x2FLuc, alkali conditions 
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promoted such changes within ΔG363, whilst within acidic conditions it displayed no 

such changes.  

 

The stability of the single amino acid deletion variants to pH and temperature was 

determined to identify whether deletions within the Ω loop region had retained the 

desirable characteristics of x11FLuc. Stability was determined by pH and thermal 

inactivation assays. Thermostability assays showed that whilst all deletions variants 

were unable to tolerate temperatures to the degree of x11FLuc, all outperformed 

x2FLuc. In addition to this, ΔP353, ΔP359, ΔG360, ΔA361, ΔV362, ΔG363 had either 

similar or lower pH tolerance in comparison to x11FLuc, and were superior to x2FLuc. 

This suggests that the Ω loop plays a role in catalytic activity, but does not play a vital 

role in dictating stability.  

 

In Chapter 4, to determine which mutants to take forward to purification and 

characterisation, 96-well format assays were developed to isolate mutants with apparent 

enhancements with reference to kinetic parameters, specific activity and reduction in the 

KM for the LH2 substrate. Of the Ω loop variants, this strategy correctly identified that 

ΔP359 exhibited a reduced KM for LH2, whilst in addition to this it correctly identified 

that there was a trend throughout the Ω loop for enhancement of specific activity. In 

particular ΔG363 and ΔP359 has the highest specific activity of all mutants investigated 

which was correlated to the previous 96-well screening, lending weight to its 

applicability. 

 

In this chapter we have determined that, following characterisation of pure protein, 

single amino acid deletions are useful in modulating characteristics of x11FLuc, 

including kinetics and bioluminescent spectra and SDD is useful technique that can be 

utilised to engineer FLucs. This adds to evidence that the employment of single amino 

acid deletional approaches, do not necessarily, nor typically disrupt the activity and can 

in fact enhance it. Therefore, FLuc protein engineering strategies should include such 

mutagenesis methods when aiming to improve existing proteins.  
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5.5. Conclusions 

 

Here in this Chapter, single amino acid deletions occurring within the Ω  loop, 

previously identified by in vivo colony screening and via a 96-well format as exhibiting 

potentially beneficial characteristics were purified and characterised with regards to 

kinetic parameters, specific activity and stability in terms of resistance to thermal 

inactivation and pH. 

 

Following characterisation it has been identified that deletions occurring within the Ω 

loop confer wide ranging beneficial phenotypic alterations. ΔP359 and ΔG360 confer a 

lower KM for the LH2 substrate, whilst deletions of ΔA361, ΔV362 and ΔG363 confer 

an increase in the KM for ATP. In addition this, 5 of 6 single amino acid deletions 

conferred a higher specific activity compared to x11FLuc, with ΔP359 and ΔG363 

displaying the highest specific activity, markedly increased compared to the parental 

protein. Deletions within the Ω loop region do not retain the same thermostability as 

x11FLuc, however with regards to thermal and pH stability all mutants exhibit greater 

stability than the WTFLuc and x2FLuc, indicating that the 11 mutation of the x11FLuc 

continue to confer some additional stability. 

 

Characterisations performed within this chapter also confirmed findings observed in 

Chapter 4, evidencing the utility of the 96-well format screens to identify important 

characteristics of mutants and the assay determined true representations of these 

characteristics.   

 

These results add to growing evidence that the use of single amino acid deletions should 

not be overlooked as a method for protein engineering. This method improves the 

sampling of conformational space, which is not accessible to substitution methodologies 

and enables the discovery of novel mutants which confer a great number of beneficial 

phenotypic effects, such as kinetic alterations and changes in the emission colour of the 

protein. 
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Chapter 6 

General Discussion 

 

 

6.0. Chapter Summary 

 

The aim of this project was to employ the use of single amino acid deletions within 

x11FLuc in order to address two questions i) to identify if, and to what extent, luciferase 

can tolerate single amino acid deletions in loop structures, and ii) to identify those 

deletions which result in desirable characteristics such as brightness, alteration of 

reaction kinetics, altered bioluminescence emission colours, pH tolerance and resistance 

to thermal inactivation.  

 

6.1. The Utility and Novelty of Deletions Mutations in Protein Engineering 

 

There is a misconception that amino acid deletions will likely compromise the structural 

integrity of a protein and abolish its function (Taylor et al., 2004). Therefore, whilst 

protein engineering strategies such as rational or random substitution mutagenesis are 

heavily applied to identify altered or enhanced FLuc proteins, until now, the use of 

deletion mutagenesis has been completely overlooked in the field of FLuc engineering.  

 

One of the key aims of this investigation was to deduce whether single amino acid 

deletions would be tolerated within the loop structures of FLuc, since there is growing 

stream of evidence that deletions may be useful as an alternative methodology to 

substitution mutagenesis for protein engineering (Simm et al., 1996; Arpino et al., 

2014). The rationale for targeting loops was based on previous studies whereby loops 

were determined to be most tolerant structural element (Taylor et al., 2004; Arpino et 

al., 2014). Utilising the SDD mutagenesis strategy, amino acids within the loops M1-

G10, L172- T191, T352-F368, D375-R387, D520-L526, K543-L550, were targeted for 
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sequential single amino acid deletion. From a total of 43 deletion mutants including 

both within regions close to the active site and within sites deemed to be more highly 

conserved, all bar two variants displayed bioluminescence.  This indicated that the 

x11FLuc was able to tolerate deletions within its backbone to a greater extent than that 

noted in previous deletion models, such as GFP. Since FLuc is a more globular and 

flexible multi-domain protein compared to GFP (a rigid beta-barrel fold), it may tolerate 

better the structural rearrangements occurring as a result of the deletions.  

 

In order to select mutants of interest from the 43 deletion variants, a 96-well format 

luminometric cell lysate assay was developed to estimate the specific activity of 

mutants, resistance to thermal inactivation, resistance to inhibition and to isolate 

mutants with kinetic alterations prior to purification and quantitative characterisation of 

selected proteins. This showed that sequential N-terminal deletions had little effect on 

the activity of x11FLuc, whilst deletions within L172- T191, D375-R387, D520-L526 

and the C-terminal loop K543-L550 reduced overall activity. Not only were single 

amino acid deletions largely well-tolerated, through the course of the investigation, 

mutants were identified with enhanced properties in comparison to the x11FLuc 

template on which they were based. Deletions in the Ω loop T352-F368 caused 

increases in bioluminescence activity compared to native x11FLuc. Therefore, deletion 

mutants in the Ω loop were chosen for purification and biochemical characterisation. Of 

these, ΔA361, ΔV362 and to a greater extent ΔP359 and ΔG363 displayed higher 

specific activity. In addition to this, deletion mutants ΔP359 and ΔG360 displayed 

lower KM for LH2 whilst mutants ΔA361, ΔV362 and ΔG363 increased in their KM for 

ATP. This highlighted the importance of sequentially deleting single amino acids along 

the length of each loop since neighboring deletion mutations did not always give rise to 

a similar characteristic. This also highlighted mutant ΔP359 as an enhanced version of 

x11FLuc for use in diagnostic assays carried out at temperatures up to 42oC. 

 

The bioluminescent spectra of deletion mutants within loops M1-G10, L172- T191, 

D375-R387 and K543-L550 had identical green emission spectra as native x11FLuc, 

whilst red shifts of up to 50nm were seen within some of the amino acid deletions 

occurring within loops T352-F368 and D520-L526. Therefore, deletions can promote 

enhancements with regards to activity and also colour. This may represent the 

incorporation of novel characteristics compared to substitution mutagenesis. It is 
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possible that this may include changes in the rates of successful FLuc folding, since the 

method may result in larger rearrangements of the backbone to improve the overall 

protein folding landscape. For example, deletion mutant ΔG363 bathochromically 

shifted under alkali conditions and yet resisted such changes under acidic conditions, 

the opposite to what is observed with WTFLuc or x2FLuc. Therefore, this work shows 

for the first time that that InDels may not only be tolerated but are beneficial, and can 

cause a broad range desirable phenotypes in FLuc.  

 

To understand the role of deletions within protein engineering we may look to 

evolution. Within nature it is commonly accepted that evolution is largely as a result of 

small and gradual substitution mutations, and in the evolution of enzymes, such changes 

may result in changes in substrate specificity. However, they do not account for the 

larger transitions such as the creation of new protein folds. InDels bridge this gap since 

they can cause far larger perturbations of the structure (Arodz and Plonka, 2012). As 

such. Therefore, InDels are a prime example of mutations able to facilitate a wide range 

of changes and increase the possibility of generating novel protein functions. 

 

6.2. The Role of the Ω Loop within Luciferase 

  

Through the course of this investigation an Ω loop was identified within 10Å of the 

active site of FLuc (T352-F368) and was shown that deletions in this loop generated 

novel and useful mutants. The function, stability and folding of a protein is inherently 

linked to the structure of that protein. As mentioned, the Ω loop structure was first 

described in 1986 and since then the function of these structures has been elucidated 

(Fetrow et al., 1995). Ω loops are non-regular secondary structures, whereby the 

characteristic shape is due to a large number of hydrogen bonds which are less periodic 

than seen in other structural elements. The less ordered structure of Ω loops has been 

shown to be important function, for example, substrate specificity or molecular 

recognition (Fetrow et al 1995). Ω loops may also be implicated in stability, therefore  

they may be classed as functional Ω loops, stability Ω loops, and folding Ω loops. 

 

Interestingly, the phenotype of substitutions and insertions within this particular loop of 

FLuc have been reported in previous studies with particular focus on the thermostability 
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and colour variation observed when modifications are made at this site. E354R and 

D357Y are responsible for conferring resistance to thermal inactivation to x2FLuc 

(White et al., 1996) and insertions within this region (see Chapter 3) increase the 

optimum temperature for bioluminescent activity  and emission colour (Tafreshi et al., 

2007). In this Thesis, deletion mutants in the Ω loop exhibited similar or altered colours 

compared to x11FLuc, however certain of the single amino acid deletion mutants 

(ΔA361, ΔV362 and ΔG363) also caused an increase (doubling in some cases) in the 

KM for ATP compared to x11FLuc. Therefore, the Ω loop may play a role in 

determining the binding affinity or adenylation with respect to ATP.  

 

6.3. Alternative Screening Strategies  

 

A 96-well format screens was used to reliably estimate characteristics of a large pool of 

mutants, such as resistance to thermal inactivation or inactivation by inhibitor 

compounds, which may be present in diagnostic assays in which FLuc is used. The 

screening methodology was optimised such that it enabled the estimation of such 

desirable characteristics without the need to purify the protein. This useful methodology 

correctly identified mutants with higher specific activity and a lower Km for LH2, 

however, the power of this technique for screening is the ability to determine 

characteristics of mutants that cannot be screened at the colony level, which can cause 

important mutant phenotypes to be overlooked. A clearly reproducible trend was 

identified in 96-well assays carried out at RT, which resembled a ‘fingerprint’ of 

activity caused by sequential deletions in loop regions spanning x11FLuc. For example, 

the N-terminal loop single amino acid deletions resulted in no significant changes in the 

activity of the luciferase, whereas deletion of 8 amino acids (together) is known to 

nearly abrogate activity (Wang et al., 2002; Sung and Kang, 1998). It is possible that the 

enhanced stability of x11FLuc compared to WTFLuc improves its tolerance to 

deletions. Single amino acid deletions within the loop L172- T191 caused a large 

reduction in activity whilst on the other hand, single amino acid deletion mutants within 

the Ω loop T352-F368 markedly increased activity in comparison to x11Fluc. However, 

deletions within the C-terminal loop (K543-L550) chosen in this study invariably and 

markedly reduced activity, as indicated by the consistent fingerprint pattern of activity 

in this region (Chapter 4). Conventionally those loops exhibiting lower activity such as 
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L172- T191 and the C-terminal would be discarded however utilsing the 96-well format 

screening strategy, loop L172- T191 was seen to be potentially important with regards 

to enzyme stability, since deletions made within this loop appeared to confer higher 

resistance to thermal inactivation. Within the remit of this study, the primary focus was 

to isolate mutants exhibiting enhancements in overall activity (mutants within the Ω 

loop), however, deletion mutations within the L172-T191 region may prove desirable 

for engineering higher thermostability of x11FLuc. This method addresses an additional 

issue raised by Kazlauskas and Bornscheuer (2010) who state that protein engineering 

successes (i.e. isolation of novel and useful phenotypes) should be accompanied by an 

experimentally supported hypothesis for the molecular basis of the novel function. It 

can be argued that all mutagenesis screens should not always discard non-functional 

proteins since exploration of their effects can lead to greater understand the mechanism 

of defined protein regions. However, colony screening methods are not easily able to 

accommodate or track the evolution of such variants, but this could be more easily 

achieved in 96-well or 384-well cell lysate formats as described in Chapter 4. 

 

Using such comprehensive screening in combination with a rational or even a random 

deletion platform (such as MuDel – see Chapter 1), or in combination with rational or 

random substitutions and insertions, has the potential to derive many novel FLuc 

mutants in a simple and robust manner. Unlike other studies which do not screen 

libraries for more than one parameter, this investigation was able to sample many single 

amino acid deletions within loops and estimate multiple properties, which led to quick 

identification of important candidates, whilst in parallel estimating the effects that 

deletions may confer upon a structure-function of all mutants. The fingerprint patterns 

that emerged from the experiments highlight how specific regions may play a role in 

different characteristics of the protein, in terms of overall activity, colour, kinetics or 

stability. 

6.4. Future Directions for Protein Engineering 

 

Directed evolution is a powerful technique within protein engineering, whereby the 

characteristics of a protein can be selected based on the screening strategy employed. 

Directed evolution is limited by the diversity of the protein libraries that may be 

generated for screening since routine mutagenic strategies employ substitutions but do 
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not employ the use of insertion or deletion mutations, which increase the 

conformational space that may be sampled.  

 

Deletions in proteins are engineered via two primary existing methods: firstly, a 

targeted approach based on primer design (as conducted in this study) and directed 

evolution by novel methods, for example,  a technique which allows for random large 

scale introduction of single amino acid deletions throughout an entire protein, is known 

as Trinucleotide exchange (Tri-NEX) (Figure 6.1.). 

  

TriNEx utilses a transposon based approach, using a transposon termed MuDel as 

derived from bacteriophage Mu and has been can be engineered to carry useful genes. A 

transposon is a linear strand of DNA which can insert into DNA, due to “Transposase 

Recognition Elements” (TREs) which lie within the terminal ends of the transposon 

which are identified by a MuA transpose through mediate the insertion of the 

transposon into DNA. During insertion, DNA cleavage is normally staggered due to the 

position of hydroxyl groups, resulting in duplication at the site of the insertion.  In the 

case of the Mu/ MuA system, there is a 5 base pair (bp) stagger resulting in 5bp site 

duplication flanking the transposon after insertion.   

 

TriNEx utilises the Mu/ MuA transposition mechanism to introduce trinucleotide 

deletion mutations translating into deletions of single amino acids. This technique is 

useful as the libraries generated with this technique are random and contain many 

different trinculetoide deletions. The transposon has been engineered to include a 

marker for selection by chloramphenicol resistance and to contain MlyI restriction sites 

1bp from the terminals of the transposon. These restriction sites allow for the removal 

of the transposon in combination with a removal of a trinucleotide from the gene of 

interest.  

 

TriNEx is not simply limited to the removal of single amino acid deletions since out of 

frame deletions promote a deletion and give rise to a subsequent neighboring 

substitution mutation increasing the number of potential mutants available for 

screening. The ability to derive deletion and substitution mutations is highly desirable 

since successful protein engineering strategies often mirror that situation in nature.  
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The accommodation of InDels within natural proteins tends to be dependent upon the 

presence of substitution in the spatial vicinity of the accepted InDel to enable the effect 

of the deletion. This being the case, future protein engineering strategies should 

incorporate both substitution methodologies in conjunction within deletions.  

 

Whilst this work is confined to the use of single amino acid deletions within loops 

within luciferase due to the more so tolerant nature of loops, previous studies within 

eGFP highlighted that a deletion within an α-helix allowed a beneficial registry shift 

resulting in a new polar interaction network. It may be considered that whilst deletions 

within loops are well tolerated within x11FLuc and have indeed conferred desirable 

properties onto the protein, deletions within secondary structural elements may hold a 

repertoire of many more novel proteins, which promote new interactions in the enzyme. 

It is desirable that future work investigates the use of single amino acid deletions within 

these secondary structural elements to not only determine tolerance within these 

structures but to identify whether beneficial registry shifts may be imparted as a result.  

 

Future work should not only involve the investigation of deletions within the secondary 

elements of x11FLuc, but should aim to elucidate the underlying causality for the 

improved function of the deletion mutants obtained within this study. To determine this, 

crystal structures may be determined for both x11FLuc and the deletion mutants, paying 

specific attention to those of particular interest, such as ΔP359 and ΔG363.  
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Figure 6.1. Schematic of TRiNEx 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Schematic of the mechanism of TRiNEx in order to generate a library of single amino 
acid deletion mutants.  
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