A DIXMIER-DOUADY THEORY FOR STRONGLY SELF-ABSORBING
C^\ast-ALGEBRAS II: THE BRAUER GROUP

MARIUS DADARLAT AND ULRICH PENNIG

Abstract. We have previously shown that the isomorphism classes of orientable locally trivial fields of C^\ast-algebras over a compact metrizable space X with fiber $D \otimes K$, where D is a strongly self-absorbing C^\ast-algebra, form an abelian group under the operation of tensor product. Moreover this group is isomorphic to the first group $\bar{E}^{1}_D(X)$ of the (reduced) generalized cohomology theory associated to the unit spectrum of topological K-theory with coefficients in D. Here we show that all the torsion elements of the group $\bar{E}^{1}_D(X)$ arise from locally trivial fields with fiber $D \otimes M_n(C)$, $n \geq 1$, for all known examples of strongly self-absorbing C^\ast-algebras D. Moreover the Brauer group generated by locally trivial fields with fiber $D \otimes M_n(C)$, $n \geq 1$ is isomorphic to $\text{Tor}(\bar{E}^{1}_D(X))$.

Keywords: strongly self-absorbing, C^\ast-algebras, Dixmier-Douady class, Brauer group, torsion, opposite algebra
MSC-classifier: 46L80, 46L85, 46M20

1. Introduction

Let X be a compact metrizable space. Let K denote the C^\ast-algebra of compact operators on an infinite dimensional separable Hilbert space. It is well-known that $K \otimes K \cong K$ and $M_n(C) \otimes K \cong K$. Dixmier and Douady [7] showed that the isomorphism classes of locally trivial fields of C^\ast-algebras over X with fiber K form an abelian group under the operation of tensor product over $C(X)$ and this group is isomorphic to $H^3(X,\mathbb{Z})$. The torsion subgroup of $H^3(X,\mathbb{Z})$ admits the following description. Each element of $\text{Tor}(H^3(X,\mathbb{Z}))$ arises as the Dixmier-Douady class of a field A which is isomorphic to the stabilization $B \otimes K$ of some locally trivial field of C^\ast-algebras B over X with all fibers isomorphic to $M_n(C)$ for some integer $n \geq 1$, see [8], [1].

In this paper we generalize this result to locally trivial fields with fiber $D \otimes K$ where D is a strongly self-absorbing C^\ast-algebra [17]. For a C^\ast-algebra B, we denote by $\mathcal{C}_B(X)$ the isomorphism classes of locally trivial continuous fields of C^\ast-algebras over X with fibers isomorphic to B. The isomorphism classes of orientable locally trivial continuous fields is denoted by $\mathcal{C}^0_B(X)$, see Definition 2.2. We have shown in [4] that $\mathcal{C}_{D \otimes K}(X)$ is an abelian group under the operation of tensor product over $C(X)$, and moreover, this group is isomorphic to the first group $E^1_D(X)$ of a generalized cohomology theory $E^*_D(X)$ which we have proven to be isomorphic to the theory associated to the unit spectrum of topological K-theory with coefficients in D, see [5]. Similarly $(\mathcal{C}^0_{D \otimes K}(X), \otimes) \cong \bar{E}^1_D(X)$ where $\bar{E}^*_D(X)$ is the reduced theory associated to $E^*_D(X)$. For $D = \mathbb{C}$, we have, of course, $\bar{E}^1_{\mathbb{C}}(X) \cong H^3(X,\mathbb{Z})$.

M.D. was partially supported by NSF grant #DMS–1362824.
U.P. was partially supported by the SFB 878 – “Groups, Geometry & Actions”.

1
We consider the stabilization map \(\sigma : \mathcal{C}_{D \otimes M_n(\mathbb{C})}(X) \to (\mathcal{C}_{D \otimes \mathbb{K}}(X), \otimes) \cong E_D^1(X) \) given by \([A] \mapsto [A \otimes \mathbb{K}]\) and show that its image consists entirely of torsion elements. Moreover, if \(D \) is any of the known strongly self-absorbing \(C^*\)-algebras, we show that the stabilization map

\[
\sigma : \bigcup_{n \geq 1} \mathcal{C}_{D \otimes M_n(\mathbb{C})}(X) \to \text{Tor}(E_D^1(X))
\]

is surjective, see Theorem 2.10. In this situation \(\mathcal{C}_{D \otimes M_n(\mathbb{C})}(X) \cong \mathcal{C}_{D \otimes M_n(\mathbb{C})}^0(X) \) by Lemma 2.2 and hence the image of the stabilization map is contained in the reduced group \(E_D^1(X) \). In analogy with the classic Brauer group generated by continuous fields of complex matrices \(M_n(\mathbb{C}) \) [8], we introduce a Brauer group \(Br_D(X) \) for locally trivial fields of \(C^*\)-algebras with fibers \(M_n(D) \) for \(D \) a strongly self-absorbing \(C^*\)-algebra and establish an isomorphism \(Br_D(X) \cong \text{Tor}(E_D^1(X)) \), see Theorem 2.15.

Our proof is new even in the classic case \(D = \mathbb{C} \) whose original proof relies on an argument of Serre, see [8, Thm.1.6], [1, Prop.2.1]. In the cases \(D = \mathbb{Z} \) or \(D = \mathcal{O}_\infty \) the group \(E_D^1(X) \) is isomorphic to \(H^1(X, BSU_\otimes) \), which appeared in [20], where its equivariant counterpart played a central role.

We introduced in [4] characteristic classes

\[
\delta_0 : E_D^1(X) \to H^1(X, K_0(D)^\mathbb{Z}_+) \quad \text{and} \quad \delta_k : E_D^1(X) \to H^{2k+1}(X, \mathbb{Q}), \quad k \geq 1.
\]

If \(X \) is connected, then \(E_D^1(X) = \ker(\delta_0) \). We show that an element \(a \) belongs to \(\text{Tor}(E_D^1(X)) \) if and only if \(\delta_0(a) \) is a torsion element and \(\delta_k(a) = 0 \) for all \(k \geq 1 \).

In the last part of the paper we show that if \(A^{op} \) is the opposite \(C^*\)-algebra of a locally trivial continuous field \(A \) with fiber \(D \otimes \mathbb{K} \), then \(\delta_k(A^{op}) = (-1)^k \delta_k(A) \) for all \(k \geq 0 \). This shows that in general \(A \otimes A^{op} \) is not isomorphic to a trivial field, unlike what happens in the case \(D = \mathbb{C} \).

Similar arguments show that in general \([A^{op}]_{Br} \neq -[A]_{Br} \) in \(Br_D(X) \) for \(A \in \mathcal{C}_{D \otimes M_n(\mathbb{C})}(X) \), see Example 3.5.

We would like to thank Ilan Hirshberg for prompting us to seek a refinement of Theorem 2.10 in the form of Theorem 2.11.

2. Background and main result

The class of strongly self-absorbing \(C^*\)-algebras was introduced by Toms and Winter [17]. They are separable unital \(C^*\)-algebras \(D \) singled out by the property that there exists an isomorphism \(D \to D \otimes D \) which is unitarily homotopic to the map \(d \mapsto d \otimes 1_D \) [6], [19].

If \(n \geq 2 \) is a natural number we denote by \(M_{n,\infty} \) the UHF-algebra \(M_n(\mathbb{C})^\otimes_\infty \). If \(P \) is a nonempty set of primes, we denote by \(M_{P,\infty} \) the UHF-algebra of infinite type \(\bigotimes_{p \in P} M_{p,\infty} \). If \(P \) is the set of all primes, then \(M_{\infty} \) is the universal UHF-algebra, which we denote by \(M_\infty \).

The class \(D_{pi} \) of all purely infinite strongly self-absorbing \(C^*\)-algebras that satisfy the Universal Coefficient Theorem in KK-theory (UCT) was completely described in [17]. \(D_{pi} \) consists of the Cuntz algebras \(\mathcal{O}_2, \mathcal{O}_\infty \) and of all \(C^*\)-algebras \(M_{P,\infty} \otimes \mathcal{O}_\infty \) with \(P \) an arbitrary set of primes. Let \(D_{qd} \) denote the class of strongly self-absorbing \(C^*\)-algebras which satisfy the UCT and which are quasidiagonal. A complete description of \(D_{qd} \) has become possible due to the recent results of Matui and Sato [13, Cor. 6.2] that build on results of Winter [18], and Lin and Niu [12]. Thus \(D_{qd} \) consists of \(\mathbb{C} \), the Jiang-Su algebra \(\mathcal{Z} \) and all UHF-algebras \(M_{P,\infty} \) with \(P \) an arbitrary set of primes.
The class \(D = \mathcal{D}_{pt} \cup \mathcal{D}_{pt} \) contains all known examples of strongly self-absorbing \(C^* \)-algebras. It is closed under tensor products. If \(D \) is strongly self-absorbing, then \(K_0(D) \) is a unital commutative ring. The group of positive invertible elements of \(K_0(D) \) is denoted by \(K_0(D)_+ \).

Let \(B \) be a \(C^* \)-algebra. We denote by \(\text{Aut}_0(B) \) the path component of the identity of \(\text{Aut}(B) \) endowed with the point-norm topology. Recall that we denote by \(\mathcal{C}_B(X) \) the isomorphism classes of locally trivial continuous fields over \(X \) with fibers isomorphic to \(B \). The structure group of \(A \in \mathcal{C}_B(X) \) is \(\text{Aut}(B) \), and \(A \) is in fact given by a principal \(\text{Aut}(B) \)-bundle which is determined up to an isomorphism by an element of the homotopy classes of continuous maps from \(X \) to the classifying space of the topological group \(\text{Aut}(B) \), denoted by \([X, B\text{Aut}(B)]\).

Definition 2.1. A locally trivial continuous field \(A \) of \(C^* \)-algebras with fiber \(B \) is orientable if its structure group can be reduced to \(\text{Aut}_0(B) \), in other words if \(A \) is given by an element of \([X, B\text{Aut}_0(B)]\).

The corresponding isomorphism classes of orientable and locally trivial fields is denoted by \(\mathcal{C}^0_B(X) \).

Lemma 2.2. Let \(D \) be a strongly self-absorbing \(C^* \)-algebra satisfying the UCT. Then \(\text{Aut}(M_n(D)) = \text{Aut}_0(M_n(D)) \) for all \(n \geq 1 \) and hence \(\mathcal{C}_D \otimes M_n(\mathbb{C})(X) \cong \mathcal{C}^0_D \otimes M_n(\mathbb{C})(X) \).

Proof. First we show that for any \(\beta \in \text{Aut}(D \otimes M_n(\mathbb{C})) \) there exist \(\alpha \in \text{Aut}(D) \) and a unitary \(u \in D \otimes M_n(\mathbb{C}) \) such that \(\beta = u(\alpha \otimes \text{id}_{M_n(\mathbb{C})})u^* \). Let \(e_{11} \in M_n(\mathbb{C}) \) be the rank-one projection that appears in the canonical matrix units \((e_{ij})\) of \(M_n(\mathbb{C}) \) and let \(1_n \) be the unit of \(M_n(\mathbb{C}) \). Then \(n[1_D \otimes e_{11}] = [1_D \otimes 1_n] \) in \(K_0(D) \) and hence \(n[\beta(1_D \otimes e_{11})] = n[1_D \otimes e_{11}] \) in \(K_0(D) \). Under the assumptions of the lemma, it is known that \(K_0(D) \) is torsion free (by [17]) and that \(D \) has cancellation of full projections by [19] and [15]. It follows that there is a partial isometry \(v \in D \otimes M_n(\mathbb{C}) \) such that \(v^*v = 1_D \otimes e_{11} \) and \(vv^* = \beta(1_D \otimes e_{11}) \). Then \(u = \sum_{i=1}^n \beta(1_D \otimes e_{11})v(1_D \otimes e_{11}) \in D \otimes M_n(\mathbb{C}) \) is a unitary such that the automorphism \(u^*\beta u \) acts identically on \(1_D \otimes M_n(\mathbb{C}) \). It follows that \(u^*\beta u = \alpha \otimes \text{id}_{M_n(\mathbb{C})} \) for some \(\alpha \in \text{Aut}(D) \). Since both \(U(D \otimes M_n(\mathbb{C})) \) and \(\text{Aut}(D) \) are path connected by [17], [15] and respectively [6] we conclude that \(\text{Aut}(D \otimes M_n(\mathbb{C})) \) is path-connected as well. \(\square \)

Let us recall the following results contained in Cor. 3.7, Thm. 3.8 and Cor. 3.9 from [4]. Let \(D \) be a strongly self-absorbing \(C^* \)-algebra.

1. The classifying spaces \(BAut(D \otimes \mathbb{K}) \) and \(BAut_0(D \otimes \mathbb{K}) \) are infinite loop spaces giving rise to generalized cohomology theories \(E^2_D(X) \) and respectively \(\tilde{E}^2_D(X) \).
2. The monoid \((\mathcal{C}_{D \otimes \mathbb{K}}(X), \otimes)\) is an abelian group isomorphic to \(E^1_D(X) \). Similarly, the monoid \((\mathcal{C}^0_{D \otimes \mathbb{K}}(X), \otimes)\) is a group isomorphic to \(\tilde{E}^1_D(X) \). In both cases the tensor product is understood to be over \(C(X) \).
3. \(E^1_{M_0}(X) \cong H^1(X, \mathbb{Q}^\times) \oplus \bigoplus_{k \geq 1} H^{2k+1}(X, \mathbb{Q}) \),
 \(E^1_{M_0 \otimes O_\infty}(X) \cong H^1(X, \mathbb{Q}^\times) \oplus \bigoplus_{k \geq 1} H^{2k+1}(X, \mathbb{Q}) \),
4. \(E^1_{M_0 \otimes O_\infty}(X) \cong E^1_{M_0 \otimes O_\infty}(X) \cong \bigoplus_{k \geq 1} H^{2k+1}(X, \mathbb{Q}) \).
5. If \(D \) satisfies the UCT then \(D \otimes M_0 \otimes O_\infty \cong M_0 \otimes O_\infty \), by [17]. Therefore the tensor product operation \(A \mapsto A \otimes M_0 \otimes O_\infty \) induces maps
 \(\mathcal{C}_{D \otimes \mathbb{K}}(X) \to \mathcal{C}_{M_0 \otimes O_\infty \otimes \mathbb{K}}(X), \quad \mathcal{C}^0_{D \otimes \mathbb{K}}(X) \to \mathcal{C}^0_{M_0 \otimes O_\infty \otimes \mathbb{K}}(X) \) and hence
\[E_D^1(X) \xrightarrow{\delta} E_D^1_{M_0 \otimes \mathcal{O}_X}(X) \cong H^1(X, \mathbb{Q}^\times) \oplus \bigoplus_{k \geq 1} H^{2k+1}(X, \mathbb{Q}),\]

\[\delta(A) = (\delta_0^A(A), \delta_1(A), \delta_2(A), \ldots), \quad \delta_k(A) \in H^{2k+1}(X, \mathbb{Q}),\]

\[\tilde{E}_D^1(X) \xrightarrow{\tilde{\delta}} \tilde{E}_D^1_{M_0 \otimes \mathcal{O}_X}(X) \cong \bigoplus_{k \geq 1} H^{2k+1}(X, \mathbb{Q}),\]

\[\tilde{\delta}(A) = (\tilde{\delta}_1(A), \tilde{\delta}_2(A), \ldots), \quad \tilde{\delta}_k(A) \in H^{2k+1}(X, \mathbb{Q}).\]

The invariants \(\delta_k(A)\) are called the rational characteristic classes of the continuous field \(A\), see [4, Def.4.6]. The first class \(\delta_0^A\) lifts to a map \(\delta_0^A : E_D^1(X) \to H^1(X, K_0(D)_+)\) induced by the morphism of groups \(\text{Aut}(D \otimes \mathbb{K}) \to \pi_0(\text{Aut}(D \otimes \mathbb{K})) \cong K_0(D)^+_+\). \(\delta_0^A\) represents the obstruction to reducing the structure group of \(A\) to \(\text{Aut}_0(D \otimes \mathbb{K})\).

Proposition 2.3. A continuous field \(A \in \mathcal{C}_D \otimes \mathbb{K}(X)\) is orientable if and only if \(\delta_0(A) = 0\). If \(X\) is connected, then \(\tilde{E}_D^1(X) \cong \ker(\delta_0)\).

Proof. Let us recall from [4, Cor. 2.19] that there is an exact sequence of topological groups

\[(1) \quad 1 \to \text{Aut}_0(D \otimes \mathbb{K}) \to \text{Aut}(D \otimes \mathbb{K}) \xrightarrow{\pi} K_0(D)^+_+ \to 1.\]

The map \(\pi\) takes an automorphism \(\alpha\) to \([\alpha(1_D \otimes e)]\) where \(e \in \mathbb{K}\) is a rank-one projection. If \(G\) is a topological group and \(H\) is a normal subgroup of \(G\) such that \(H \to G \to G/H\) is a principal \(H\)-bundle, then there is a homotopy fibre sequence \(G/H \to BH \to BG \to B(G/H)\) and hence an exact sequence of pointed sets \([X, G/H] \to [X, BH] \to [X, BG] \to [X, B(G/H)]\). In particular, in the case of the fibration (1) we obtain

\[(2) \quad [X, K_0(D)^+_+] \to [X, B\text{Aut}_0(D \otimes \mathbb{K})] \to [X, B\text{Aut}(D \otimes \mathbb{K})] \xrightarrow{\delta_0} H^1(X, K_0(D)^+_+).\]

A continuous field \(A \in \mathcal{C}_D \otimes \mathbb{K}(X)\) is associated to a principal \(\text{Aut}(D \otimes \mathbb{K})\)-bundle whose classifying map gives a unique element in \([X, B\text{Aut}(D \otimes \mathbb{K})]\) whose image in \(H^1(X, K_0(D)^+_+)\) is denoted by \(\delta_0(A)\). It is clear from (2) that the class \(\delta_0(A) \in H^1(X, K_0(D)^+_+)\) represents the obstruction for reducing this bundle to a principal \(\text{Aut}_0(D \otimes \mathbb{K})\)-bundle. If \(X\) is connected, \([X, K_0(D)^+_+] = \{\ast\}\) and hence \(\tilde{E}_D^1(X) \cong \ker(\delta_0)\). \(\square\)

Remark 2.4. If \(D = \mathbb{C}\) or \(D = \mathbb{Z}\) then \(A\) is automatically orientable since in those cases \(K_0(D)^+_+\) is the trivial group.

Remark 2.5. Let \(Y\) be a compact metrizable space and let \(X = \Sigma Y\) be the suspension of \(Y\). Since the rational K"unneth isomorphism and the Chern character on \(K^0(X)\) are compatible with the ring structure on \(K_0(C(Y) \otimes D)\), we obtain a ring homomorphism

\[\text{ch} : K_0(C(Y) \otimes D) \to K^0(Y) \otimes K_0(D) \otimes \mathbb{Q} \to \prod_{k=0}^{\infty} H^{2k}(Y, \mathbb{Q}) =: H^\text{ev}(Y, \mathbb{Q}),\]

which restricts to a group homomorphism \(\text{ch} : \tilde{E}_D^0(Y) \to SL_1(H^\text{ev}(Y, \mathbb{Q}))\), where the right hand side denotes the units, which project to \(1 \in H^0(Y, \mathbb{Q})\). If \(A\) is an orientable locally trivial continuous field with fiber \(D \otimes \mathbb{K}\) over \(X\), then we have

\[(3) \quad \delta_k(A) = \log \text{ch}(f_A) \in H^{2k}(Y, \mathbb{Q}) \cong H^{2k+1}(X, \mathbb{Q}),\]
where \(f_A : Y \to \Omega B \text{Aut}_0(D \otimes \mathbb{K}) \simeq \text{Aut}_0(D \otimes \mathbb{K}) \) is induced by the transition map of \(A \). The homomorphism \(\log : SL_1(H^e(Y, \mathbb{Q})) \to H^e(Y, \mathbb{Q}) \) is the rational logarithm from [14, Section 2.5]. For the proof of (3) it suffices to treat the case \(D = M_\mathbb{Q} \otimes O_\infty \), where it can be easily checked on the level of homotopy groups, but since \(E^B_2(Y) \) and \(H^e(Y, \mathbb{Q}) \) have rational vector spaces as coefficients this is enough.

Lemma 2.6. Let \(D \) be a strongly self-absorbing \(C^* \)-algebra in the class \(D \). If \(p \in D \otimes \mathbb{K} \) is a projection such that \([p] \neq 0 \) in \(K_0(D) \), then there is an integer \(n \geq 1 \) such that \([p] \in nK_0(D)_+^\times \). If \([p] \in nK_0(D)_+ \), then \(p(D \otimes \mathbb{K})p \cong M_n(D) \). Moreover, if \(n, m \geq 1 \), then \(M_n(D) \cong M_m(D) \) if and only if \(nK_0(D)_+ = mK_0(D)_+ \).

Proof. Recall that \(K_0(D) \) is an ordered unital ring with unit \([1_D]\) and with positive elements \(K_0(D)_+ \) corresponding to classes of projections in \(D \otimes \mathbb{K} \). The group of invertible elements is denoted by \(K_0(D)^\times \) and \(K_0(D)_+^\times \) consists of classes \([p]\) of projections \(p \in D \otimes \mathbb{K} \) such that \([p] \in K_0(D)^\times \). It was shown in [4, Lemma 2.14] that if \(p \in D \otimes \mathbb{K} \) is a projection, then \([p] \in K_0(D)_+^\times \) if and only if \(p(D \otimes \mathbb{K})p \cong D \). The ring \(K_0(D) \) and the group \(K_0(D)_+^\times \) are known for all \(D \in D \), [17]. In fact \(K_0(D) \) is a unital subring of \(\mathbb{Q} \), \(K_0(D)_+ = \mathbb{Q}_+ \cap K_0(D) \) if \(D \in D_{qd} \) and \(K_0(D)_+ = K_0(D) \) if \(D \in D_{pe} \). Moreover:

\[
K_0(\mathbb{C}) \cong K_0(\mathbb{Z}) \cong K_0(\mathbb{O}_\infty) \cong \mathbb{Z}, \quad K_0(\mathbb{O}_2) = \{0\},
\]

\[
K_0(M_\mathbb{P}) \cong K_0(M_\mathbb{P} \otimes \mathbb{O}_\infty) \cong \mathbb{Z}[1/P] \cong \bigotimes_{p \in P} \mathbb{Z}[1/p] \cong \{np_k^{k_1}p_2^{k_2} \cdots p_r^{k_r} : p_i \in P, n, k_i \in \mathbb{Z}\},
\]

\[
K_0(\mathbb{C})_+ \cong K_0(\mathbb{Z})_+ = \{1\}, \quad K_0(\mathbb{O}_\infty)_+ = \{\pm 1\},
\]

\[
K_0(M_\mathbb{P})_+ \cong \{p_1^{k_1}p_2^{k_2} \cdots p_r^{k_r} : p_i \in P, k_i \in \mathbb{Z}\},
\]

\[
K_0(M_\mathbb{P} \otimes \mathbb{O}_\infty)_+ \cong \{\pm p_1^{k_1}p_2^{k_2} \cdots p_r^{k_r} : p_i \in P, k_i \in \mathbb{Z}\}.
\]

In particular, we see that in all cases \(K_0(D)_+ = \mathbb{N} \cdot K_0(D)_+^\times \), which proves the first statement. If \(p \in D \otimes \mathbb{K} \) is a projection such that \([p] \in nK_0(D)_+^\times \), then there is a projection \(q \in D \otimes \mathbb{K} \) such that \([q] \in K_0(D)_+^\times \) and \([p] = n[q] = [\text{diag}(q, q, \ldots, q)] \). Since \(D \) has cancellation of full projections, it follows then immediately that \(p(D \otimes \mathbb{K})p \cong M_n(D) \) proving the second part.

To show the last part of the lemma, suppose now that \(\alpha : D \otimes M_n(\mathbb{C}) \to D \otimes M_m(\mathbb{C}) \) is a \(*\)-isomorphism. Let \(e \in M_n(\mathbb{C}) \) be a rank one projection. Then \(\alpha(1D \otimes e)(D \otimes M_m(\mathbb{C})) \alpha(1D \otimes e) \cong D \).

By [4, Lemma 2.14] it follows that \(\alpha_{1D} = [\alpha(1D \otimes e)] \in K_0(D)_+^\times \). Since \(\alpha \) is unital, \(\alpha_{n[1D]} = m[1D] \) and hence \(m[1D] \in nK_0(D)_+^\times \). This is equivalent to \(nK_0(D)_+^\times = mK_0(D)_+^\times \).

Conversely, suppose that \(m[1D] = nu \) for some \(u \in K_0(D)_+^\times \). Let \(\alpha \in \text{Aut}(D \otimes \mathbb{K}) \) be such that \([\alpha(1D \otimes e)] = u \). Then \(\alpha_{n[1D]} = nu = m[1D] \). This implies that \(\alpha \) maps a corner of \(D \otimes \mathbb{K} \) that is isomorphic to \(M_n(D) \) to a corner that is isomorphic to \(M_m(D) \). \(\square \)

Corollary 2.7. Let \(D \in D \) and let \(\theta : D \otimes M_{nr}(\mathbb{C}) \to D \otimes M_{n\infty} \) be a unital inclusion induced by some unital embedding \(M_{nr}(\mathbb{C}) \to M_{n\infty} \), where \(n \geq 2, r \geq 0 \). Let \(R \) be the set of prime factors of \(n \). Then, under the canonical isomorphism \(K_0(D \otimes M_{nr}(\mathbb{C})) \cong K_0(D) \), we have

\[
\theta^{-1}_r(K_0(D \otimes M_{n\infty})_+^\times) = \bigcup_{r} rK_0(D)_+^\times \subset K_0(D)
\]

where \(r \) runs through the set of all products of the form \(\prod_{q \in R} q^{k_q} \), \(k_q \in \mathbb{N} \cup \{0\} \).

Proof. From Lemma 2.6 we see that \(K_0(D) \cong \mathbb{Z}[1/P] \) for a (possibly empty) set of primes \(P \). The order structure is the one induced by \((\mathbb{Q}, \mathbb{Q}_+)\) if \(D \) is quasidiagonal or \(K_0(D)_+ = \mathbb{Z}[1/P] \) if \(D \) is
purely infinite. If $R \subseteq P$, then θ induces an isomorphism on K_0 and the statement is true, since θ_s is order preserving and $\mathbb{Z}[1/R]^\times \subseteq K_0(D)^\times$. Thus, we may assume that $R \nsubseteq P$. Let $S = P \cup R$ and thus $K_0(D \otimes M_n) \cong \mathbb{Z}[1/S]$. The map θ_s induces the canonical inclusion $\mathbb{Z}[1/P] \hookrightarrow \mathbb{Z}[1/S]$. We can write $x \in \mathbb{Z}[1/P]$ as

$$x = m \cdot \prod_{p \in P} p^{r_p} \cdot \prod_{q \in R \setminus P} q^{k_q}$$

with $m \in \mathbb{Z}$ relatively prime to all $p \in P$ and $q \in R$, only finitely many $r_p \in \mathbb{Z}$ non-zero and $k_q \in \mathbb{N} \cup \{0\}$. From this decomposition we see that x is invertible in $\mathbb{Z}[1/S]$ if and only if $m = \pm 1$. This concludes the proof since $p^{r_p} \in K_0(D)_+^\times$.

Remark 2.8. Let $q \in D \otimes K$ be a projection and let $\alpha \in \text{Aut}(D \otimes K)$. As in [4, Lemma 2.14] we have that $[\alpha(q)] = [\alpha(1 \otimes e)] \cdot [q]$ with $[\alpha(1 \otimes e)] \in K_0(D)_+^\times$. Thus, the condition $[q] \in nK_0(D)_+^\times$ for $n \in \mathbb{N}$ is invariant under the action of $\text{Aut}(D \otimes K)$ on $K_0(D)$. Given $A \in \mathcal{E}_{D \otimes K}(X)$, a projection $p \in A$, $x_0 \in X$ and an isomorphism $\phi: A(x_0) \to D \otimes K$ the condition $[\phi(p(x_0))] \in nK_0(D)_+^\times$ is independent of ϕ. Abusing the notation we will write this as $[p(x_0)] \in nK_0(D)_+^\times$.

Corollary 2.9. Let $D \in \mathcal{D}$ and let $A \in \mathcal{E}_{D \otimes K}(X)$ with X a connected compact metrizable space. If $p \in A$ is a projection such that $[p(x_0)] \in nK_0(D)_+^\times$ for some point x_0, then $(pAp)(x) \cong M_n(D)$ for all $x \in X$ and hence $pAp \in \mathcal{E}_{D \otimes M_n(C)}(X)$. If $p \in A$ is a projection with $[p(x_0)] \in K_0(D)_+^\times$ for some $n \in \mathbb{N}$.

Proof. Let V_1, \ldots, V_k be a finite cover of X by compact sets such that there are bundle isomorphisms $\phi_i: A(V_i) \cong C(V_i) \otimes D \otimes K$. Let p_i be the image of the restriction of p to V_i under ϕ_i. After refining the cover (V_i), if necessary, we may assume that $\|p_i(x) - p_i(y)\| < 1$ for all $x, y \in V_i$. This allows us to find a unitary u_i in the multiplier algebra of $C(V_i) \otimes D \otimes K$ such that after replacing ϕ_i by $u_i \phi_i u_i^*$ and p_i by $u_i p_i u_i^*$, we may assume that p_i are constant projections. Since X is connected and $[p(x_0)] \in nK_0(D)_+^\times$ by assumption, it follows from $[p_i(x_0)] \in nK_0(D)_+^\times$ for $x_0 \in V_i$ and the above remark that $[p_j(x)] \in nK_0(D)_+^\times$ for all $1 \leq j \leq k$ and all $x \in V_j$. Then Lemma 2.6 implies $(pAp)(V_j) \cong C(V_j) \otimes M_n(D)$. By Lemma 2.6 we also have that $[p(x_0)] \neq 0$ implies $[p(x_0)] \in nK_0(D)_+^\times$ for some $n \in \mathbb{N}$ proving the statement about the case $[p(x_0)] \in K_0(D)_+^\times$.

We study the image of the stabilization map

$$\mathcal{E}_{D \otimes M_n(C)}(X) \to \mathcal{E}_{D \otimes K}(X)$$

induced by the map $A \mapsto A \otimes K$, or equivalently by the map

$$\text{Aut}(D \otimes M_n(C)) \to \text{Aut}(D \otimes M_n(C) \otimes K) \cong \text{Aut}(D \otimes K).$$

Let us recall that \mathcal{D} denotes the class of strongly self-absorbing C^*-algebras which satisfy the UCT and which are either quasidiagonal or purely infinite.

Theorem 2.10. Let D be a strongly self-absorbing C^*-algebra in the class \mathcal{D}. Let A be a locally trivial continuous field of C^*-algebras over a connected compact metrizable space X such that $A(x) \cong D \otimes K$ for all $x \in X$. The following assertions are equivalent:

1. $\delta_k(A) = 0$ for all $k \geq 0$.
2. The field $A \otimes M_Q$ is trivial.
(3) There is an integer \(n \geq 1 \) and a unital locally trivial continuous field \(\mathcal{B} \) over \(X \) with all fibers isomorphic to \(M_n(D) \) such that \(A \cong B \otimes \mathbb{K} \).

(4) \(A \) is orientable and \(A^{\otimes m} \cong C(X) \otimes D \otimes \mathbb{K} \) for some \(m \in \mathbb{N} \).

Proof. The statement is immediately verified if \(D \cong \mathcal{O}_2 \). Indeed all locally trivial fields with fiber \(\mathcal{O}_2 \otimes \mathbb{K} \) are trivial since \(\text{Aut}(\mathcal{O}_2 \otimes \mathbb{K}) \) is contractible by [4, Cor. 17 & Thm. 2.17]. For the remainder of the proof we may therefore assume that \(D \not\cong \mathcal{O}_2 \).

(1) \(\iff \) (2) If \(D \in D_{pd} \), then it is known that \(D \otimes M_Q \cong M_Q \). Similarly, if \(D \in D_{pd} \) and \(D \not\cong \mathcal{O}_2 \) then \(D \otimes M_Q \cong \mathcal{O}_\infty \otimes M_Q \). If \(A \) is as in the statement, then \(A \otimes M_Q \) is a locally trivial field whose fibers are all isomorphic to either \(M_Q \otimes \mathbb{K} \) or to \(\mathcal{O}_\infty \otimes M_Q \otimes \mathbb{K} \). In either case, it was shown in [4, Cor. 4.5] that a field is trivial if and only if \(\delta_k(A) = 0 \) for all \(k \geq 0 \). As reviewed earlier in this section, this follows from the explicit computation of \(E^1_{M_Q}(X) \) and \(E^1_{M_Q \otimes \mathcal{O}_\infty}(X) \).

(2) \(\Rightarrow \) (3) Assume now that \(A \otimes M_Q \) is trivial, i.e. \(A \otimes M_Q \cong C(X) \otimes D \otimes M_Q \otimes \mathbb{K} \). Let \(p \in A \otimes M_Q \) be the projection that corresponds under this isomorphism to the projection \(1 \otimes e \in C(X) \otimes D \otimes M_Q \otimes \mathbb{K} \) where \(1 \) is the unit of the \(C^\ast \)-algebra \(C(X) \otimes D \otimes M_Q \) and \(e \in \mathbb{K} \) is a rank-one projection. Then \([p(x)] \neq 0 \) in \(K_0(A(x) \otimes M_Q) \) for all \(x \in X \) (recall that \(D \not\cong \mathcal{O}_2 \)). Let us write \(M_Q \) as the direct limit of an increasing sequence of its subalgebras \(M_{k(i)}(\mathbb{C}) \). Then \(A \otimes M_Q \) is the direct limit of the sequence \(A_i = A \otimes M_{k(i)}(\mathbb{C}) \). It follows that there exist \(i \geq 1 \) and a projection \(p_i \in A_i \) such that \(\|p - p_i\| < 1 \). Then \(\|p(x) - p_i(x)\| < 1 \) and so \([p_i(x)] \neq 0 \) in \(K_0(A_i(x)) \) for each \(x \in X \) that its image in \(K_0(A(x) \otimes M_Q) \) is equal to \([p(x)] \neq 0 \). Let us consider the locally trivial unital field \(B := p_i(A \otimes M_{k(i)}(\mathbb{C}))p_i \). Since the fibers of \(A \otimes M_{k(i)}(\mathbb{C}) \) are isomorphic to \(D \otimes \mathbb{K} \otimes M_{k(i)}(\mathbb{C}) \cong D \otimes \mathbb{K} \), it follows by Corollary 2.9 that there is \(n \geq 1 \) such that all fibers of \(B \) are isomorphic to \(M_n(D) \). Since \(B \) is isomorphic to a full corner of \(A \otimes \mathbb{K} \), it follows by [3] that \(A \otimes \mathbb{K} \cong B \otimes \mathbb{K} \). We conclude by noting that since \(A \) is locally trivial and each fiber is stable, then \(A \cong A \otimes \mathbb{K} \) by [9] and so \(A \cong B \otimes \mathbb{K} \).

(3) \(\Rightarrow \) (2) This implication holds for any strongly self-absorbing \(C^\ast \)-algebra \(D \). Let \(A \) and \(B \) be as in (3). Let us note that \(B \otimes M_Q \) is a unital locally trivial field with all fibers isomorphic to the strongly self-absorbing \(C^\ast \)-algebra \(D \otimes M_Q \). Since \(\text{Aut}(D \otimes M_Q) \) is contractible by [4, Thm. 2.3], it follows that \(B \otimes M_Q \) is trivial. We conclude that \(A \otimes M_Q \cong (B \otimes M_Q) \otimes \mathbb{K} \cong C(X) \otimes D \otimes M_Q \otimes \mathbb{K} \).

(2) \(\iff \) (4) This equivalence holds for any strongly self-absorbing \(C^\ast \)-algebra \(D \) if \(A \) is orientable. In particular we do not need to assume that \(D \) satisfies the UCT. In the UCT case we note that since the map \(K_0(D) \to K_0(D \otimes M_Q) \) is injective, it follows that \(A \) is orientable if and only if \(A \otimes M_Q \) is orientable, i.e. \(\delta_0(A) = 0 \) if and only if \(\delta_0(A) = 0 \). Since \(\delta_0(A) = 0 \), \(A \) is determined up to isomorphism by its class \([A] \in \bar{E}_2^D(X)\). To complete the proof it suffices to show that the kernel of the map \(\tau : \bar{E}_2^D(X) \to \bar{E}_1^{D \otimes M_Q}(X) \), \(\tau[A] = [A \otimes M_Q] \), consists entirely of torsion elements. Consider the natural transformation of cohomology theories:

\[
\tau \otimes \text{id}_Q : \bar{E}_2^D(X) \otimes \mathbb{Q} \to \bar{E}_1^{D \otimes M_Q}(X) \otimes \mathbb{Q} \cong \bar{E}_1^{D \otimes M_Q}(X).
\]

If \(D \not\cong \mathbb{C} \), it induces an isomorphism on coefficients since \(\bar{E}_2^{-i}(pt) = \pi_i(\text{Aut}_0(D \otimes \mathbb{K})) \cong K_i(D) \) by [4, Thm. 2.18] and since the map \(K_i(D) \otimes \mathbb{Q} \to K_i(D \otimes M_Q) \) is bijective. We conclude that the kernel of \(\tau \) is a torsion group. The same property holds for \(D = \mathbb{C} \) since \(\bar{E}_2^C(X) \) is a direct summand of \(\bar{E}_2^C(X) \) by [4, Cor. 3.8].

\(\square\)
Theorem 2.11. Let D, X and A be as in Theorem 2.10 and let $n ≥ 2$ be an integer. The following assertions are equivalent:

1. The field $A ⊗ M_{n∞}$ is trivial.
2. There is a $k ∈ \mathbb{N}$ and a unital locally trivial continuous field B over X with all fibers isomorphic to $M_{nk}(D)$ such that $A ∼= B ⊗ K$.
3. A is orientable and $A ⊗^{nk} ∼= C(X) ⊗ D ⊗ K$ for some $k ∈ \mathbb{N}$.

Proof. By reasoning as in the proof of Theorem 2.10, we may assume that $D ≠ O_2$.

1 $⇒$ 2: By assumption the continuous field $A ⊗ M_{n∞}$ is trivializable and hence it satisfies the global Fell condition of [4]. This means that there is a full projection $p_∞ ∈ A ⊗ M_{n∞}$ with the property that $p_∞(x) ∈ K_0(A(x) ⊗ M_{n∞})_+$ for all $x ∈ X$. Let $ν_t : M_{n^t}(C) → M_{n^t}$ be a unital inclusion map.

Since $A ⊗ M_{n∞}$ is the inductive limit of the sequence

$A → A ⊗ M_{n^t}(C) → \cdots → A ⊗ M_{n^t}(C) → A ⊗ M_{n^t+1}(C) → \cdots$

there is an $i ∈ \mathbb{N}$ and a full projection $p ∈ A ⊗ M_{n^t}(C)$ with $||(|id_A ⊗ ν_t|)(p) − p_∞|| < 1$. Fix a point $x_0 ∈ X$. Let $θ : A(x_0) ⊗ M_{n^t}(C) → A(x_0) ⊗ M_{n∞}$ be the unital inclusion induced by $ν_t$. Note that $θ_∗([p(x_0)]) = (id_A ⊗ ν_t)([p(x_0)]) = [p_∞(x_0)] ∈ K_0(A(x_0) ⊗ M_{n∞})_+$. By Corollary 2.7 this implies that $[p(x_0)] ∈ rK_0(A(x_0))_+$ for some $r ∈ \mathbb{N}$ that divides nk for some $k ∈ \mathbb{N} ∪ \{0\}$. Then $B_0 := p(A ⊗ M_{n^t}(C))p ∈ C_{D⊗M_{n^t},i}(X)$ by Corollary 2.9. Write $nk = mr$ with $m ∈ \mathbb{N}$. It follows that $B := B_0 ⊗ M_{n^t}(C) ⊂ C_{D⊗M_{nk},i}(X)$. The fact that $B ⊗ K ∼= A$ follows just as in step (2) $⇒$ (3) in the proof of Theorem 2.10.

(2) $⇒$ (1): This is just the same argument as step (3) $⇒$ (2) in the proof of Theorem 2.10.

(1) $⇔$ (3): The orientability of A follows from Theorem 2.10. Observe that the elements $[A] ∈ C_{D⊗K}^0(X) = E_D^1(X)$ such that $nk[A] = 0$ or equivalently $A ⊗^{nk}$ is trivializable for some $k ∈ \mathbb{N} ∪ \{0\}$ coincide precisely with the elements in the kernel of the group homomorphism $E_D^1(X) → E_D^1(X) ⊗ \mathbb{Z}^1/\mathbb{Z}^1$. Since $\mathbb{Z}^1/\mathbb{Z}^1$ is flat, it follows that $X → E_D^* (X) ⊗ \mathbb{Z}^1/\mathbb{Z}^1$ still satisfies all axioms of a generalized cohomology theory. In particular, we have the following commutative diagram of natural transformations of cohomology theories:

$$
\begin{array}{ccc}
\tilde{E}_D^1(X) & \longrightarrow & \tilde{E}_{D⊗M_{n∞}}^1(X) \\
\downarrow & & \downarrow \\
\tilde{E}_D^* (X) ⊗ \mathbb{Z}^1/\mathbb{Z}^1 & \longrightarrow & \tilde{E}_{D⊗M_{n∞}}^* (X) ⊗ \mathbb{Z}^1/\mathbb{Z}^1
\end{array}
$$

where the isomorphism on the right hand side can be checked on the coefficients. A similar argument shows that for $D ≠ C$ the bottom homomorphism is an isomorphism. Thus the kernel of the left vertical map agrees with the one of the upper horizontal map in this case. For $D = C$ we can use that $E_D^1(X)$ embeds as a direct summand into $E_Z^2(X)$ via the natural *-homomorphism $C → \mathbb{Z}$ [4, Cor. 4.8]. In particular, $\tilde{E}_C^* (X) ⊗ \mathbb{Z}^1/\mathbb{Z}^1 → \tilde{E}_D^* (X) ⊗ \mathbb{Z}^1/\mathbb{Z}^1$ is injective.

Corollary 2.12. Let D and X be as in Theorem 2.10. Then any element $x ∈ E_D^{11}(X)$ with $nx = 0$ is represented by the stabilization of a unital locally trivial field over X with all fibers isomorphic to $M_{nk}(D)$ for some $k ≥ 1$. Moreover if $A ∈ E_{D⊗K}^{11}(X)$, then $A ⊗ M_{\mathbb{Q}}$ is trivial if and only if A is orientable and $nk[A] = 0$ in $E_D^1(X)$ for some $k ∈ \mathbb{N}$ and some $n ∈ \mathbb{N}$. \[\Box\]
(An example from [1] for \(D = \mathbb{C} \) shows that in general one cannot always arrange that \(k = 1 \).)

Proof. The first part follows from Theorem 2.11. Indeed, condition (3) of that theorem is equivalent to requiring that \(A \) is orientable and \(n^k[A] = 0 \) in \(E_X^{1}(\mathbb{R}) \). The second part follows from Theorems 2.10 and 2.11. \(\square \)

Definition 2.13. Let \(D \) be a strongly self-absorbing \(C^* \)-algebra. If \(X \) is connected compact metrizable space we define the Brauer group \(Br_D(X) \) as equivalence classes of continuous fields \(A \in \bigcup_{n \geq 1} \mathcal{C}_{M_n(D)}(X) \). Two continuous fields \(A_i \in \mathcal{C}_{M_n(D)}(X) \), \(i = 1, 2 \) are equivalent, if

\[
A_1 \otimes p_1 C(X, M_{N_1}(D))p_1 \cong A_2 \otimes p_2 C(X, M_{N_2}(D))p_2,
\]

for some full projections \(p_i \in C(X, M_{N_i}(D)) \). We denote by \([A]_{Br} \) the class of \(A \) in \(Br_D(X) \). The multiplication on \(Br_D(X) \) is induced by the tensor product operation, after fixing an isomorphism \(D \otimes D \cong D \). We will show in a moment that the monoid \(Br_D(X) \) is a group.

Remark 2.14. It is worth noting the following two alternative descriptions of the Brauer group.

(a) If \(D \in \mathcal{D} \) is quasidiagonal, then two continuous fields \(A_i \in \mathcal{C}_{M_n(D)}(X) \), \(i = 1, 2 \) have equal classes in \(Br_D(X) \), if and only if \(A_1 \otimes p_1 C(X, M_{N_1}(\mathbb{C}))p_1 \cong A_2 \otimes p_2 C(X, M_{N_2}(\mathbb{C}))p_2 \), for some full projections \(p_i \in C(X, M_{N_i}(\mathbb{C})) \). (b) If \(D \in \mathcal{D} \) is purely infinite, then two continuous fields \(A_i \in \mathcal{C}_{M_n(D)}(X) \), \(i = 1, 2 \) have equal classes in \(Br_D(X) \), if and only if \(A_1 \otimes p_1 C(X, M_{N_1}(\mathbb{O}_\infty))p_1 \cong A_2 \otimes p_2 C(X, M_{N_2}(\mathbb{O}_\infty))p_2 \), for some full projections \(p_i \in C(X, M_{N_i}(\mathbb{O}_\infty)) \). In order to justify (a) we observe that if \(D \) is quasidiagonal, then every projection \(p \in C(X, M_{N}(D)) \) has a multiple \(p(m) : = p \otimes 1_{M_m}(\mathbb{C}) \) such that \(p(m) \) is Murray-Von Neumann equivalent to a projection in \(C(X, M_{N_m}(\mathbb{C})) \otimes 1_D \subset C(X, M_{N_m}(\mathbb{C})) \otimes D \) and that \(A_i \otimes D \cong A_i \) by [9]. For (b) we note that if \(D \) is purely infinite, then every projection \(p \in C(X, M_{N}(D)) \) has a multiple \(p \otimes 1_{M_m}(\mathbb{C}) \) that is Murray-Von Neumann equivalent to a projection in \(C(X, M_{N_m}(\mathbb{O}_\infty)) \otimes 1_D \).

One has the following generalization of a result of Serre, [8, Thm.1.6].

Theorem 2.15. Let \(D \) be a strongly self-absorbing \(C^* \)-algebra in \(D \).

(i) \(Tor(E_D(X)) = \ker \left(\overline{E_D^1(X)} \xrightarrow{\delta} \bigoplus_{k \geq 1} H^{2k+1}(X, \mathbb{Q}) \right) \)

(ii) The map \(\theta : Br_D(X) \rightarrow Tor(E_D^1(X)) \), \([A]_{Br} \mapsto [A \otimes \mathbb{K}] \) is an isomorphism of groups.

Proof. (i) was established in the last part of the proof of Theorem 2.10.

(ii) We denote by \(L_p \) the continuous field \(p C(X, M_{N}(D))p \). Since \(L_p \otimes \mathbb{K} \cong C(X, D \otimes \mathbb{K}) \) it follows that the map \(\theta \) is a well-defined morphism of monoids.

We use the following observation. Let \(\theta : S \rightarrow G \) be a unital surjective morphism of commutative monoids with units denoted by \(1 \). Suppose that \(G \) is a group and that \(\{ s \in S : \theta(s) = 1 \} = \{ 1 \} \). Then \(S \) is a group and \(\theta \) is an isomorphism. Indeed if \(s \in S \), there is \(t \in S \) such that \(\theta(t) = \theta(s)^{-1} \) by surjectivity of \(\theta \). Then \(\theta(st) = \theta(s)\theta(t) = 1 \) and so \(st = 1 \). It follows that \(S \) is a group and that \(\theta \) is injective.

We are going to apply this observation to the map \(\theta : Br_D(X) \rightarrow Tor(E_D^1(X)) \). By condition (3) of Theorem 2.10 we see that \(\theta \) is surjective. Let us determine the set \(\theta^{-1}(\{ 0 \}) \). We are going to show that if \(B \in \mathcal{C}_{D \otimes M_n(C)}(X) \), then \([B \otimes \mathbb{K}] = 0 \) in \(E_D^1(X) \) if and only if

\[
B \cong p(C(X) \otimes D \otimes M_n(C)p \cong L_{C(X,D)}(pC(X,D)^N)
\]
for some selfadjoint projection \(p \in C(X) \otimes D \otimes M_N(\mathbb{C}) \cong M_N(C(X, D)) \). Let \(B \in \mathcal{G}_{D \otimes M_n(\mathbb{C})}(X) \) be such that \([B \otimes \mathbb{K}] = 0\) in \(E^1_D(X)\). Then there is an isomorphism of continuous fields \(\phi : B \otimes \mathbb{K} \xrightarrow{\cong} C(X) \otimes D \otimes \mathbb{K} \). After conjugating \(\phi \) by a unitary we may assume that \(p := \phi(1_B \otimes e_{11}) \in C(X) \otimes D \otimes M_N(\mathbb{C}) \) for some integer \(N \geq 1 \). It follows immediately that the projection \(p \) has the desired properties. Conversely, if \(B \cong p(C(X) \otimes D \otimes M_N(\mathbb{C})) \) then there is an isomorphism of continuous fields \(B \otimes \mathbb{K} \cong C(X) \otimes D \otimes \mathbb{K} \) by [3]. We have thus shown that that \(\theta([B]_{Br}) = 0 \) if and only if \([B]_{Br} = 0\).

We are now able to conclude that \(Br_D(X) \) is a group and that \(\theta \) is injective by the general observation made earlier. \(\square \)

Definition 2.16. Let \(D \) be a strongly self-absorbing \(C^*\)-algebra. Let \(A \) be a locally trivial continuous field of \(C^*\)-algebras with fiber \(D \otimes \mathbb{K} \). We say that \(A \) is a torsion continuous field if \(A^\otimes k \) is isomorphic to a trivial field for some integer \(k \geq 1 \).

Corollary 2.17. Let \(A \) be as in Theorem 2.10. Then \(A \) is a torsion continuous field if and only if \(\delta_0(A) \in H^1(X, K_0(D)^\wedge) \) is a torsion element and \(\delta_k(A) = 0 \in H^{2k+1}(X, \mathbb{Q}) \) for all \(k \geq 1 \).

Proof. Let \(m \geq 1 \) be an integer such that \(m\delta_0(A) = 0 \). Then \(\delta_0(A^\otimes m) = 0 \). We conclude by applying Theorem 2.10 to the orientable continuous field \(A^\otimes m \). \(\square \)

3. **Characteristic classes of the opposite continuous field**

Given a \(C^*\)-algebra \(B \) denote by \(B^{op} \) the *opposite \(C^*\)-algebra* with the same underlying Banach space and norm, but with multiplication given by \(b^{op}a^{op} = (a-b)^{op} \). The *conjugate \(C^*\)-algebra* \(\overline{B} \) has the conjugate Banach space as its underlying vector space, but the same multiplicative structure. The map \(a \mapsto a^* \) provides an isomorphism \(B^{op} \to \overline{B} \). Any automorphism \(\alpha \in \text{Aut}(B) \) yields in a canonical way automorphisms \(\overline{\alpha} : \overline{B} \to \overline{B} \) and \(\alpha^{op} : B^{op} \to B^{op} \) compatible with \(* : B^{op} \to \overline{B} \). Therefore we have group isomorphisms \(\theta : \text{Aut}(B) \to \text{Aut}(\overline{B}) \) and \(\text{Aut}(B) \to \text{Aut}(B^{op}) \). Note that \(\alpha \in \text{Aut}(B) \) is equal to \(\theta(\alpha) \) when regarded as set-theoretic maps \(B \to B \). Given a locally trivial continuous field \(A \) with fiber \(B \), we can apply these operations fiberwise to obtain the locally trivial fields \(A^{op} \) and \(\overline{A} \), which we will call the *opposite* and the *conjugate field*. They are isomorphic to each other and isomorphic to the conjugate and the opposite \(C^*\)-algebras of \(A \).

A *real form* of a complex \(C^*\)-algebra \(A \) is a real \(C^*\)-algebra \(A^\mathbb{R} \) such that \(A \cong A^\mathbb{R} \otimes \mathbb{C} \). A real form is not necessarily unique [2] and not all \(C^*\)-algebras admit real forms [16]. If two \(C^*\)-algebras \(A \) and \(B \) admit real forms \(A^\mathbb{R} \) and \(B^\mathbb{R} \), then \(A^\mathbb{R} \otimes_{\mathbb{R}} B^\mathbb{R} \) is a real form of \(A \otimes B \).

Example 3.1. All known strongly self-absorbing \(C^*\)-algebras \(D \in D \) admit a real form.

Indeed, the real Cuntz algebras \(O^\mathbb{R}_2 \) and \(O^\mathbb{R}_\infty \), are defined by the same generators and relations as their complex versions. Alternatively \(O^\mathbb{R}_\infty \) can be realized as follows. Let \(H^\mathbb{R} \) be a separable infinite dimensional real Hilbert space and let \(\mathcal{F}^\mathbb{R}(H^\mathbb{R}) = \bigoplus_{n=0}^{\infty} H^\mathbb{R}_n^\mathbb{R} \) be the real Fock space associated to it. Every \(\xi \in H^\mathbb{R} \) defines a shift operator \(s_\xi(\eta) = \xi \otimes \eta \) and we denote the algebra spanned by the \(s_\xi \) and their adjoints \(s_\xi^* \) by \(O^\mathbb{R}_\infty \). If \(\mathcal{F}(H^\mathbb{R} \otimes \mathbb{C}) \) denotes the Fock space associated to the complex Hilbert space \(H = H^\mathbb{R} \otimes \mathbb{C} \), then we have \(\mathcal{F}^\mathbb{R} \otimes \mathbb{C} \cong \mathcal{F}(H) \). If we represent \(O^\mathbb{R}_\infty \) on \(\mathcal{F}(H) \) using the above construction, then the map \(s_\xi + is_\xi' \mapsto s_{\xi+i\xi'} \) induces an isomorphism \(O^\mathbb{R}_\infty \otimes \mathbb{C} \to \mathcal{O}_\infty \). Likewise define \(M^\mathbb{R}_2 \) to be the infinite tensor product \(M_2(\mathbb{R}) \otimes M_3(\mathbb{R}) \otimes M_4(\mathbb{R}) \otimes \ldots \).
Since $M_n(\mathbb{C}) \cong M_n(\mathbb{R}) \otimes \mathbb{C}$, we obtain an isomorphism $M^n_0 \otimes \mathbb{C} \cong M^n_0$ on the inductive limit. Let K^n_0 be the compact operators on $H^n_\mathbb{R}$ and K those on H, then we have $K^n_0 \otimes \mathbb{C} \cong K$. Thus, $M^n_0 \otimes O_\infty \otimes \mathbb{K}$ is the complexification of the real C^*-algebra $M^n_0 \otimes O_\infty \otimes \mathbb{K}$.

The Jiang-Su algebra \mathcal{Z} admits a real form $\mathcal{Z}^\mathbb{K}$ which can be constructed in the same way as \mathcal{Z}. Indeed, one constructs $\mathcal{Z}^\mathbb{K}$ as the inductive limit of a system

$$\cdots \rightarrow C([0, 1], M_{p_n q_n}(\mathbb{R})) \xrightarrow{\phi_n} C([0, 1], M_{p_{n+1} q_{n+1}}(\mathbb{R})) \rightarrow \cdots$$

where the connecting maps ϕ_n are defined just as in the proof of [11, Prop. 2.5] with only one modification. Specifically, one can choose the matrices u_0 and u_1 to be in the special orthogonal group $SO(p_n q_n)$ and this will ensure the existence of a continuous path u_t in $O(p_n q_n)$ from u_0 to u_1 as required.

If B is the complexification of a real C^*-algebra $B^\mathbb{R}$, then a choice of isomorphism $B \cong B^\mathbb{R} \otimes \mathbb{C}$ provides an isomorphism $c: B \rightarrow \overline{B}$ via complex conjugation on \mathbb{C}. On automorphisms we have $\text{Ad}_{c^{-1}}: \text{Aut}(\overline{B}) \rightarrow \text{Aut}(B)$. Let $\eta = \text{Ad}_{c^{-1}} \circ \theta: \text{Aut}(B) \rightarrow \text{Aut}(B)$. Now we specialize to the case $B = D \otimes K$ with $D \in D$ and study the effect of η on homotopy groups, i.e., $\eta_*: \pi_{2k}(\text{Aut}(B)) \rightarrow \pi_{2k}(\text{Aut}(B))$. By [4, Theorem 2.18] the groups $\pi_{2k+1}(\text{Aut}(B))$ vanish.

Let R be a commutative ring and denote by $[K^0(S^{2k} \otimes R)]^\times_1$ the group of units of the ring $K^0(S^{2k} \otimes R)$. Let $[K^0(S^{2k} \otimes R)]^\times_1$ be the kernel of the morphism of multiplicative groups $[K^0(S^{2k} \otimes R)]^\times \rightarrow R^\times$. This is the group of virtual rank 1 vector bundles with coefficients in R over S^{2k}. Let $c_S: K^0(S^{2k}) \rightarrow K^0(S^{2k})$ and $c_R: K_0(D) \rightarrow K_0(D)$ be the ring automorphisms induced by complex conjugation.

Lemma 3.2. Let D be a strongly self-absorbing C^*-algebra in the class D, let $R = K_0(D)$ and let $k > 0$. There is an isomorphism $\pi_{2k}(\text{Aut}(D \otimes K)) \rightarrow [K^0(S^{2k} \otimes R)]^\times_1 (k > 0)$ such that the following diagram commutes

$$\begin{array}{ccc}
\pi_{2k}(\text{Aut}(D \otimes K)) & \xrightarrow{\eta_*} & \pi_{2k}(\text{Aut}(D \otimes K)) \\
\downarrow & & \downarrow \\
[K^0(S^{2k} \otimes R)]^\times_1 & \xrightarrow{c_S \otimes c_R} & [K^0(S^{2k} \otimes R)]^\times_1
\end{array}$$

Proof. Observe that $\pi_{2k}(\text{Aut}(D \otimes K)) = \pi_{2k}(\text{Aut}_0(D \otimes K))$ (for $k > 0$) and $\text{Aut}_0(D \otimes K)$ is a path connected group, therefore $\pi_{2k}(\text{Aut}(D \otimes K)) = [S^{2k}, \text{Aut}_0(D \otimes K)]$. Let $e \in K$ be a rank 1 projection such that $e(1D \otimes e) = 1D \otimes e$. It follows from the proof of [4, Theorem 2.22] that the map $\alpha \mapsto \alpha(1 \otimes e)$ induces an isomorphism $[S^{2k}, \text{Aut}_0(D \otimes K)] \rightarrow K_0(C(S^{2k}) \otimes D)^\times_1 = 1 + K_0(C_0(S^{2k} \setminus x_0) \otimes D)$. We have $\eta(\alpha)(1 \otimes e) = c^{-1}(\alpha(c(1 \otimes e))) = c^{-1}(\alpha(1 \otimes e))$, i.e., the isomorphism intertwines η and c^{-1}. Consider the following diagram of rings:

$$\begin{array}{ccc}
K^0(S^{2k} \otimes R) & \xrightarrow{c_S \otimes c_R} & K^0(S^{2k} \otimes R) \\
\downarrow & & \downarrow \\
K_0(C(S^{2k}) \otimes D) & \xrightarrow{p \rightarrow c^{-1}(p)} & K_0(C(S^{2k}) \otimes D)
\end{array}$$
The vertical maps arise from the Künneth theorem. Since \(K_1(D) = 0 \), these are isomorphisms. Since \(c_S \) corresponds to the operation induced on \(K_0(C(S^{2k})) \) by complex conjugation on \(\mathbb{K} \), the above diagram commutes. \(\square \)

Remark 3.3. (i) If \(D \in \mathcal{D} \) then \(R = K_0(D) \subset \mathbb{Q} \) with \([1_D] = [1_{D^\mathbb{R}}] = 1 \). Thus \(c^{-1}(1_D) = 1_D \) and this shows that the above automorphism \(c_R \) is trivial. The \(K^0 \)-ring of the sphere is given by \(K^0(S^{2k}) \cong \mathbb{Z}[X_k]/(X_k^2) \). The element \(X_k \) is the \(k \)-fold reduced exterior tensor power of \(H-1 \), where \(H \) is the tautological line bundle over \(S^2 \). Since \(c_S \) maps \(H-1 \) to \(1-H \), it follows that \(X_k \) is mapped to \(-X_k \) if \(k \) is odd and to \(X_k \) if \(k \) is even. We have \([K^0(S^2) \otimes R] \cong \{1 + t X_k \mid t \in \mathbb{R} \} \subset R[X_k]/(X_k^2) \). Thus, \(c_S \) maps \(1 + t X_k \) to its inverse \(1 - t X_k \) if \(k \) is odd and acts trivially if \(k \) is even.

(ii) By [4, Theorem 2.18] there is an isomorphism \(\pi_0(\text{Aut}(D \otimes \mathbb{K})) \cong K_0(D)^{\times} \) given by \([\alpha] \mapsto [\alpha(1 \otimes e)] \). Arguing as in Lemma 3.2 we see that the action of \(\eta \) on this groups is given by \(c_R = \text{id} \).

Theorem 3.4. Let \(X \) be a compact metrizable space and let \(A \) be a locally trivial continuous field with fiber \(D \otimes \mathbb{K} \) for a strongly self-absorbing \(C^* \)-algebra \(D \in \mathcal{D} \). Then we have for \(k \geq 0 \):

\[
\delta_k(A^\mathbb{Q}) = \delta_k(A) = (-1)^k \delta_k(A) \in H^{2k+1}(X, \mathbb{Q}) .
\]

Proof. Let \(D^\mathbb{R} \) be a real form of \(D \). The group isomorphism \(\eta : \text{Aut}(D \otimes \mathbb{K}) \rightarrow \text{Aut}(D \otimes \mathbb{K}) \) induces an infinite loop map \(B\eta : B\text{Aut}(D \otimes \mathbb{K}) \rightarrow B\text{Aut}(D \otimes \mathbb{K}) \), where the infinite loop space structure is the one described in [4, Section 3]. If \(f : X \rightarrow B\text{Aut}(D \otimes \mathbb{K}) \) is the classifying map of a locally trivial field \(A \), then \(B\eta \circ f \) classifies \(\tilde{A} \). Thus the induced map \(\eta_* : E^1_D(X) \rightarrow E^1_D(X) \) has the property that \(\eta_*[A] = [\tilde{A}] \).

The unital inclusion \(D^\mathbb{R} \rightarrow B^\mathbb{R} := D^\mathbb{R} \otimes \mathcal{O}_{\mathbb{R}} \otimes M^\mathbb{R}_\mathbb{Q} \) induces a commutative diagram

\[
\text{Aut}(D \otimes \mathbb{K}) \xrightarrow{\eta} \text{Aut}(D \otimes \mathbb{K}) \quad \quad \quad \quad \text{Aut}(B \otimes \mathbb{K}) \xrightarrow{\eta} \text{Aut}(B \otimes \mathbb{K})
\]

with \(B := B^\mathbb{R} \otimes \mathbb{C} \). From this we obtain a commutative diagram

\[
E^1_D(X) \xrightarrow{\eta_*} E^1_D(X) \xrightarrow{\delta} E^1_B(X) \xrightarrow{\eta_*} E^1_B(X)
\]

As explained earlier, \(B \cong M^\mathbb{R} \otimes \mathcal{O}_{\mathbb{R}} \). Recall that \(E^1_{M^\mathbb{R} \otimes \mathcal{O}_{\mathbb{R}}}(X) \cong H^1(X, \mathbb{Q}^\mathbb{R}) \oplus \bigoplus_{k \geq 1} H^{2k+1}(X, \mathbb{Q}) \).

By Lemma 3.2 and Remark 3.3(i) the effect of \(\eta \) on \(H^{2k+1}(X, \pi_{2k}(\text{Aut}(B))) \cong H^{2k+1}(X, \mathbb{Q}) \) is given by multiplication with \((-1)^k \) for \(k > 0 \). By Remark 3.3(ii) \(\eta \) acts trivially on \(H^1(X, \pi_0(\text{Aut}(B))) = H^1(X, \mathbb{Q}^\mathbb{R}) \).

Example 3.5. Let \(\mathcal{Z} \) be the Jiang-Su algebra. We will show that in general the inverse of an element in the Brauer group \(Br_{\mathcal{Z}}(X) \) is not represented by the class of the opposite algebra. Let \(Y \) be the space obtained by attaching a disk to a circle by a degree three map and let \(X_n = S^n \wedge Y \) be \(n \)th reduced suspension of \(Y \). Then \(E^1_{\mathcal{Z}}(X_3) \cong K^0(X_2)^{\times} = 1 + \tilde{K}^0(X_2) \) by [4, Thm.2.22].
Since this is a torsion group, $Br_Z(X_3) \cong E^2_{2,0}(X_3)$ by Theorem 2.15. Using the Künneth formula, $Br_Z(X_3) \cong 1 + K^0(S^2) \otimes \mathbb{Z}/3$. Reasoning as in Lemma 3.2 with X_2 in place of S^{2k}, we identify the map $\eta : E^2_{2,0}(X_3) \to E^2_{2,0}(X_2)$ with the map $K^0(X_3) \to K^0(X_2)$ that sends the class $x = [V_1] - [V_2]$ to $\overline{x} = [V_1] - [V_2]$, where V_i is the complex conjugate bundle of V_i. If V is complex vector bundle, and c_1 is the first Chern class, $c_1(V) = -c_1(V)$ by [10, p.206]. Since conjugation is compatible with the Künneth formula, we deduce that $x = \overline{x}$ for $x \in K^0(X_2)$. Indeed, if $\beta \in \mathbb{K}^0(S^2)$, $y \in \mathbb{K}^0(Y)$ and $x = 1 + \beta y$, then $\overline{x} = 1 + (-\beta)(-y) = x$. Let A be a continuous field over X_3 with fibers $M_N(\mathbb{Z})$ such that $[A]_{Br} = 1 + \beta y$ in $Br(X_3) \cong 1 + K^0(S^2) \otimes \mathbb{K}(Y) \cong 1 + \mathbb{Z}/3$, where β a generator of $\mathbb{K}^0(S^2)$ and y is a generator of $\mathbb{K}^0(Y)$. Then $[A]_{Br} = 1 + (-\beta)(-y) = [A]_{Br}$ and hence

$$[A \otimes_{C(X_3)} A]_{Br} = (1 + \beta y)^2 = 1 + 2\beta y \neq 1.$$

Corollary 3.6. Let X be a compact metrizable space and let A be a locally trivial continuous field with fiber $D \otimes \mathbb{K}$ with D in the class D. If $H^{4k+1}(X, \mathbb{Q}) = 0$ for all $k \geq 0$, then there is an $N \in \mathbb{N}$ such that

$$(A \otimes_{C(X)} A_{op}) \otimes N \cong C(X, D \otimes \mathbb{K}).$$

Proof. If $H^{4k+1}(X, \mathbb{Q}) = 0$, then $\delta_{2k}(A \otimes_{C(X)} A_{op}) = 0$ for all $k \geq 0$. Moreover, $\delta_{2k+1}(A \otimes_{C(X)} A_{op}) = \delta_{2k+1}(A) - \delta_{2k+1}(A) = 0$. The statement follows from Corollary 2.17. \square

References

MD: Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA

E-mail address: mdd@math.purdue.edu

UP: Mathematisches Institut, Westfälische Wilhelms-Universität Münster, Einsteinstrasse 62, 48149 Münster, Germany

E-mail address: u.pennig@uni-muenster.de