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Adaptive Designs for Optimizing Online

Advertisement Campaigns

Andrey Pepelyshev, Yuri Staroselskiy and Anatoly Zhigljavsky

Abstract We investigate the problem of adaptive targeting for real-time bidding in

online advertisement using independent advertisement exchanges. This is a problem

of making decisions based on information extracted from large data sets related

to previous experience. We describe an adaptive strategy for optimizing the click

through rate which is a key criterion used by advertising platforms to measure the

efficiency of an advertisement campaign. We also provide some results of statistical

analysis of real data.

1 Introduction

Online advertisement is a growing area of marketing where advertisements can be

personalized depending on user’s behaviour. To determine user preferences, adver-

tising platforms record data with visited webpages, previous impressions (i.e. ads

shown), clicks, conversions, geographical information derived from IP address and

then use these data to design strategies when, where and to whom to show some

advertisements. Online advertisement has two main forms: one is related to lead-

ing technology companies like Google and another is processed by independent ad

exchanges [12].

Ad exchanges use auctions with Real-Time Bidding (RTB), which is a magnif-

icent way of delivering online advertising. As mentioned in [3], spending on RTB

in the US during 2014 reached $10 billion. The participants of auctions are demand
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partners, which are essentially advertising platforms whose core business is the de-

sign of bidding strategies for ad requests for delivery advertisements. Specifically,

each time when an ad exchange sends information about a user visiting a webpage,

the demand partner can identify the prospectiveness of the request depending on the

parameters (e.g., user id, webpage visited, IP address, user browser agent) and be-

haviour data (e.g., track record of the user over the latest few months) and propose

a bid to compete in the auction with other demand partners. Thus, RTB enables a

demand side to find a favorable ad campaign and submit a bid for a request depend-

ing on parameters of the request and behaviour data. Supposedly, online advertising

brings customers at lower cost which is achieved by targeting narrow groups of

users.

The process of showing online advertisements through the RTB systems occurs

billions of times every day and consists of the steps displayed in Figure 1.

 

A user visits a webpage of a web site. 

The web site via the ad exchange 
notifies several demand partners that 
there is a possibility to show an ad via 
bid request containing information 
about user (user id, time of request, IP, 
geo, user agent) and information about 
the site (site, url, minimal bid). The 
demand partners can store the 
information about requests. 

If a demand partner opts for delivering 
an ad for the given request, it responds 
with a bid.  

The website via the ad exchange decides which demand 
partner won the auction.  

If a demand partner wins, it delivers the ad and can store 
information about ad delivery in order to analyze historical 
efficiency. 

If the user clicks on the delivered ad, the demand partner can 
store the information about clicks. 

If the user visits the advertised site, the demand partner can 
store the information about the visit and can use it to optimize 
campaign efficiency further. 

If the user buys a product on the advertised site, the demand 
partner can store the purchase information to update 
optimization strategies on historical data. 

Fig. 1 Process of RTB and actions of a demand partner for delivering an ad.

The demand partner has to solve the problem of maximizing either the click

through rate (CTR, i.e. the proportion of the number of clicks to the number of

impressions) or the conversion rate (i.e. the proportion of the number of purchases to

the number of impressions) by bidding on a set of requests under several constraints:

C1: Budget (total amount of money available for advertising);

C2: Number of impressions Ntotal (the total amount of ad exposures);

C3: Time (ad campaign is restricted to a certain time period).

In practice, the demand partner designs a strategy which cleverly chooses 5 – 500

million requests out of 50 billion available ones. To construct a good strategy, the

demand partner has to use all log records.

General principles of adaptive designing are considered in [2, 4, 5, 6]. The design

problem for optimizing the CTR has the following specifics compared to assump-

tions of the standard response surface methodology.

A1: The demand partner cannot choose requests with desired conditions but can

leave an auction or suggest a bid for a user currently visiting a webpage.
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A2: The design space is very complicated compared to typical [0,1]d and {0,1}d

cases. Usually, the demand partner considers about 20 categorical factors; some

factors (e.g. website, city, behaviour category) have hundreds of levels as well as

other factors typically have about 10 levels.

A3: We observe the binary outcome but we have to consider the CTR as a function

of the request.

The problem of adaptive targeting for ad campaigns was discussed in dozens

of papers, see e.g. [8, 11, 15]. Some papers, for example [1, 14], use the look-

alike idea implying that a new request will lead to the click/conversion if the new

request is similar to (looks like one of) the previous successful requests. In 2014

two contests were organized at the Kaggle platform (www.kaggle.com), see [16]

and [17], on algorithms for predicting the CTR using a dataset with subsampled

non-click records so that the CTR for the dataset is about 20% while for a typical

advertising campaign the CTR is about 0.4% or less. The algorithms, which were

proposed by many teams are publicly available and give approximately the same

performance with respect to the logarithmic loss criterion

log(loss) =−
N

∑
i=1

{

yi log(pi)+(1− yi) log(1− pi)
}

/N,

where N is the size of the data set, pi is the predicted probability of a click for

the i-th request, and yi = 1 if the i-th request leads to a click and yi = 0 otherwise.

This criterion, however, does not look very sensible when the probabilities pi are

very small as it pays equal weights to type I and type II error probabilities (as noted

above, typical values of pi’s are in the vicinity of 0.004 or even less).

In this paper, we provide a unified approach which comprises the popular

methodologies, give a short review of these methodologies and make a compari-

son of several methods on real data.

2 Formal Statement of the Problem

Suppose that the advertisement we want to show is given and first assume that the

price for showing a given ad is fixed; we shall also ignore the time constraint C3.

Then the problem can be thought of as an optimization problem for a single opti-

mality criterion which is the CTR. We discuss a generic adaptive targeting strategy

which should yield the decision whether or not to show the ad to a request from

a webpage visited by a user. If the strategy decides to show the ad, it then has to

propose a bid.

An adaptive decision should depend on the current dataset of impressions and

clicks which include all the users to whom we have shown the ad before and those

who have clicked on the ad. Note that the dataset size N grows with time. We can

increase the size of the dataset by including all our previous impressions of the
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same or similar advertisements (perhaps applying some calibration to decrease the

influence of past ad campaigns), so that N could be very large.

Denote the i-th request by Xi =(xi,1, . . . ,xi,m), i= 1, . . . ,N, where m is the number

of features (factors); these features include the behavioural characteristics of the

user, characteristics of the website, time of exposure, the device used (e.g. mobile

telephone, tablet, PC , etc.), see the assumption A2. Let K be the number of the

requests leading to a click on the ad, say, X j1 , . . . ,X jK , where 1 ≤ j1 < .. . < jK ≤ N,

among N requests of the current dataset of impressions. Note that K depends on N.

The running performance criterion of the advertising campaign is the CTR defined

by PN = K/N. It is clear that the CTR changes as N grows.

We impose the following assumption of independence: if we choose a request

X = (x1, . . . ,xm) then the probability of a click is p(X); different events (‘click’ or

‘no click’) are independent. The assumption of independence obviously fails on the

set of users that have already made a click on the ad at an earlier time (these users

comprise the set L(0) defined in Section 4) but it seems a reasonable assumption for

the general set of users.

We also assume that all possible vectors X = (x1, . . . ,xm) belong to some set X,

which is either partly or fully discrete (see the assumption A2) and whose struc-

ture is difficult for determining a distance between different elements of X. We also

assume that for any two points X and X ′ ∈ X, we can define a similarity measure

d(X ,X ′) which does not have to satisfy mathematical axioms of the distance func-

tion.

If X is a discrete set with all possible requests X = (x1, . . . ,xm) ∈ X given on the

nominal scale then we can use the Hamming distance

d(X ,X ′) =
m

∑
j=1

δ (x j,x
′
j), δ (x j,x

′
j) =

{

1 x j = x′j,

0 x j 6= x′j,

or the weighted Hamming distance d(X ,X ′) = ∑
m
j=1 w jδ (x j,x

′
j), where the coeffi-

cients w j are positive and proportional to the importance of the j-th feature (factor),

j = 1, . . . ,m. These weight coefficients can be chosen on the basis of the analysis of

previous data of similar advertising campaigns, see Table 1 below.

Alternative ways of defining the similarity measure d(X ,X ′) are a logistic model

for pX (as is done in the so-called ‘field-aware factorization machines’ (FFM), see

[13]) or to use sequential splitting of the set X based on the values of the most im-

portant factors of X (‘gradient boosting machines’ (GBM), see [7]). For FFM, the

distance is defined on the space of parameters of the logistic model but in GBM

d(X ,X ′) is small if d(X ,X ′) belongs to the same subset of X and it is large if the

subsets which X and X ′ belong to have been split at early stages of the sequen-

tial splitting algorithm (that is, the values of the most influential features are very

different).
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2.1 Field-Aware Factorization Machines (FFM)

FFM describes the probability pX by some sigmoidal parametric function, for ex-

ample, the logistic function

pX =
1

1+ e−m(X ,θ)
,

where θ is a vector of parameters and m(X ,θ) is linear in the parameters. For ex-

ample, the second-order function m(X ,θ) is given by

m(X ,θ) = θ0 +
m

∑
i=1

ni

∑
k=1

θi,kδ (xi, li,k)+
m−1

∑
i=1

ni

∑
k=1

m

∑
j=i+1

n j

∑
s=1

βi,k; j,sδ (xi, li,k)δ (x j, l j,s),

where βi,k; j,s = ∑
q
z=1 θi,k,zθ j,s,z describes a factorization procedure, li,k are all possi-

ble levels of the ith factor, i = 1, ...,m, k = 1, . . . ,ni, δ (xi, li,k) equals 1 if xi = li,k and

0 otherwise. The vector of parameters θ consists of θ0,θi,k,θi,k,z and is estimated

by an iterative use of the gradient descent method for the logarithmic loss criterion,

see [13].

A similar approach is the follow-the-regularized-leader (FTRL) methodology,

where the function m(X ,θ) has a simpler expression, see [10].

2.2 Gradient Boosting Machines (GBM)

GBM is a method of iterative approximation of the desired function pX by a function

of the form

p
(k)
X =

k

∑
j=1

α jT (X ,θk),

where the vector θk is estimated at the k-th iteration, through minimizing the loss

criterion [7]. Tree-based GBM considers the function T (X ,θ) as the indicator func-

tion of the form

T (X ,θ) =

{

θin, θi,low ≤ xi ≤ θi,up, i = 1, . . . ,m,

θout , otherwise,

where θ = (θin,θout ,θ1,low,θ1,up, . . . ,θm,low,θm,up). Note that levels of categorical

variables are encoded by integer numbers.
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3 Generic Adaptive Strategy for Maximizing the CTR of an

Advertising Campaign

The purpose of the strategy for maximizing the CTR is to employ the training set

of past records for the new requests we will be showing the ad, to increase PN as N

increases.

We can always assume that Ntotal defined in the assumption C2 is very large.

Mathematically, we can then assume that N → ∞. If we assume that the bid price is

the same (that is, we ignore C1) and there is no time constraint (here we ignore C3)

then formally our aim becomes devising a strategy such that limN→∞ PN is maxi-

mum. This is simply an optimization problem of pX , x ∈X. The algorithms solving

this problem do this either in the parameter space (for the factorization machines)

or in the original space X (for GBM and the look-alike strategies).

The main problems for applying these algorithms are as follows:

• Factorization machines: the number of parameters is of the order of billions. In

practice, this number is reduced by confounding parameters.

• Gradient boosting: the number of observations with certain ranges of levels for

several factors is small.

• Computational time grows very fast for all approaches as the size of training data

increases. Consequently, in practice training data are often subsampled.

• All approaches have several tuning parameters which should be carefully chosen.

By the nature of the methods, the look-alike approach is applicable in practice

if the number of observed clicks K is at least a few dozens, the GBM approach is

applicable if K is at least several hundreds and the FFM approach is applicable if K

is at least several thousands.

A generic adaptive strategy is an evolutionary one which chooses new requests

in the vicinity of the requests that were successful previously; in marketing these

kinds of methods are called look-alike methods. To define the preference criterion,

for all N we need an estimator p̂N(X) of the function p(X), which is defined for all

X ∈ X. We do not need to construct the function p̂N(X) explicitly; we just need to

compute values of p̂N(X) for a given X , where X is a request which is currently on

offer for a demand partner. We hence suggest the following estimator p̂N(X) :

p̂N(X) =
∑

K
k=1 ω jk exp{−λNd(X ,X jk)}

∑
N
i=1 ωi exp{−λNd(X ,Xi)}

+ εN , (1)

where λN and εN are some positive constants (possibly depending on N) and ωi is

the weight of the i-th observation made after a calibration of the data is made (the

possibility of making such calibration has been mentioned above). The sum in the

numerator in (1) is taken over all users who have clicked on the ad. If all these

(good) requests are far away from X then the value p̂N(X) will be very close to

zero. The constant εN is a regularization constant. As εN > 0 there is always a small

probability assigned to each X , even if in the past there were no successful requests

that were similar to X . Theoretically, as N → ∞, we may assume that εN → 0.
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Note that an estimator p̂N(X) for p(X) is implicitly constructed in the factoriza-

tion machines and in gradient boosting machines too. Using an estimator p̂N(X),
we can suggest how much the demand partner can offer for the request X in the

bidding procedure (that is, we stop optimizing p(X) and take into account the con-

straint C2). For example, the demand partner can offer larger bids if p̂N(X) ≥ p∗,

where p∗ is the desired probability we want to reach. Another possible use of an

estimator p̂N(X) can be based on the following idea: the amount of money the ad-

vertising platform offers for X is proportional to the difference p̂N(X)−K/N, if

this difference is positive, and a very small bid, if the difference is negative. For

these strategies we do not obtain limN p̂N(X) = maxX p(X) but we construct effec-

tive strategies which take into account not only the constraint C2 but also C1 and

C3. Note in this respect that it is always a good idea to offer very small bids to the

users with small values of p̂N(X) for the following reasons: (a) learning about p(X)
in the subregions of X where we perhaps do not have much data, (b) the difference

(ratio) between large values of probabilities p(X) for ‘good’ X and ‘bad’ X can be

smaller than the difference of the option prices for these ‘good’ and ‘bad’ X’s, (c)

the constraint C3 is easier to satisfy, and (d) by saving some funds on cheap X’s we

can afford higher prices on X’s with large values of p̂N(X).

4 Analysis of Real Data

In the present section we analyze an ad campaign which was executed by Crimtan

from 2015-02-01 to 2015-02-17, the number of impressions is slightly above 3 mil-

lions and the number of clicks is slightly above 700, so that the CTR p̂ ∼= 2.4 ·10−4,

thus FFM approach is not applicable.

To investigate the performance of the strategies for the database of requests for

the ad campaign, we split the database of impressions into 2 sets: the training set

Xp(T ) of past records with dates until a certain time T (where T is interpreted as the

present time) and the test set X f (T ) of future records with dates from the time T .

We now compare GBM and the look-alike approach by comparing the CTR for the

samples of most favorable requests with the highest chances to click in Figure 2.

To form the sample of most favorable requests for the look-alike approach, we

define the set

L(r) = {X j from X f (T ): minclicked X̃i∈Xp(T )
d(X j, X̃i)≤ r};

that is, L(r) is a set of requests where we have shown the ad and the minimal distance

to the set of clicked requests from the set of past records is not greater than r. In

other words, the set L(r) is an intersection of the set of our requests with the union

of balls of radius r centered around the clicked past requests. We consider X j with 7

factors: website, ad exchange, city, postcode, device type, user agent, user behaviour

category. In Figure 2 the points corresponding to the look-alike approach are given

by
(

size of L(r), CTR for L(r)
)

, r = 0, . . . ,4.
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To form the sample of most favorable requests for the GBM approach, we con-

struct the GBM model using the training set Xp(T ) and then apply this model to

predict the probability to click for each request from the test set X f (T ). Now we

can sort the predicted probabilities and create samples of requests with highest pre-

dicted probabilities to click.

In Figure 2 we can see that the look-alike approach and the GBM approach have

similar possibilities to increase the CTR for the considered ad campaign.
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Fig. 2 The CTR for favorable samples of requests of certain sizes for the look-alike approach
(squares) and the GBM approach (dots), T =2015-02-08, 7 factors are used.

Let us perform a sensitivity analysis of the CTR for the sets L(r). In Table 1

we show the CTR for several sets L(r) with T =2015-02-08 and different choices of

factors, and the index of the influence of the ith factor

I fi =
2

∑
r=0

(

1−
CTR[L(r)| f1, . . . , fi−1, fi+1, . . . , fm]

CTR[L(r)| f1, . . . , fm]

)2

where CTR[L(r)| f1, . . . , fm] is the CTR for the set L(r) with requests containing

only factors f1, . . . , fm. We can observe that IDe = 0.0003 and IEx = 0.09; that is, the

device type has no influence and the ad exchange has a small influence on the CTR;

consequently such factors can be removed from the model (and computations). The

postcode has no influence on the CTR for the set L(0) but has some influence on the

CTR for the set L(1).
In contrast, the user agent, the user behaviour category, and the city are very

influential factors. It is rather surprising that the postcode has no influence but the

city has a big influence on the CTR for the set L(0).
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of proprietary ad technology platform and University of Cardiff. Research of the

third author was supported by the Russian Science Foundation, project No. 15-11-
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Table 1 The CTR multiplied by 104 for several sets L(r) with T =2015-02-08 and different choices
of factors. Abbreviation of factors are Be:behaviour category, We:website, Ex:ad exchange, Ci:city,
Po:postcode, De:device type, Ag:user agent.

Set of used factors, S CTR[L(0)|S] CTR[L(1)|S] CTR[L(2)|S] fi I fi

Be,We,Ex,Ci,Po,De,Ag 15.3 5.01 2.36
We,Ex,Ci,Po,De,Ag 5.13 2.43 2.35 Be 0.71

Be, Ex,Ci,Po,De,Ag 11.69 2.81 2.35 We 0.25
Be,We, Ci,Po,De,Ag 12.29 3.89 2.31 Ex 0.09
Be,We,Ex, Po,De,Ag 7.62 2.46 2.32 Ci 0.51
Be,We,Ex,Ci, De,Ag 14.96 2.45 2.32 Po 0.26
Be,We,Ex,Ci,Po, Ag 15.27 5.09 2.38 De 0.0003
Be,We,Ex,Ci,Po,De 4.87 3.37 2.20 Ag 0.58
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