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The Application of Visual Saliency Models in
Objective Image Quality Assessment:

A Statistical Evaluation
Wei Zhang, Student Member, IEEE, Ali Borji, Member, IEEE, Zhou Wang, Fellow, IEEE,

Patrick Le Callet, Senior Member, IEEE, and Hantao Liu, Member, IEEE

Abstract— Advances in image quality assessment have shown
the potential added value of including visual attention aspects
in its objective assessment. Numerous models of visual saliency
are implemented and integrated in different image quality
metrics (IQMs), but the gain in reliability of the resulting IQMs
varies to a large extent. The causes and the trends of this
variation would be highly beneficial for further improvement of
IQMs, but are not fully understood. In this paper, an exhaustive
statistical evaluation is conducted to justify the added value of
computational saliency in objective image quality assessment,
using 20 state-of-the-art saliency models and 12 best-known
IQMs. Quantitative results show that the difference in predicting
human fixations between saliency models is sufficient to yield a
significant difference in performance gain when adding these
saliency models to IQMs. However, surprisingly, the extent to
which an IQM can profit from adding a saliency model does not
appear to have direct relevance to how well this saliency model
can predict human fixations. Our statistical analysis provides
useful guidance for applying saliency models in IQMs, in terms
of the effect of saliency model dependence, IQM dependence, and
image distortion dependence. The testbed and software are made
publicly available to the research community.

Index Terms— Image quality assessment, quality metric,
saliency model, statistical analysis, visual attention.

I. INTRODUCTION

OVER the past decades, we have witnessed tremendous
progress in the development of image quality met-

rics (IQMs), which can automatically predict perceived image
quality aspects. A variety of IQMs have proven successful
in terms of being able to serve as a practical alternative
for expensive and time-consuming quality evaluation by
human observers. These IQMs are now taking an increasingly
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important role in digital imaging systems for a broad range
of applications, e.g., for the optimization of video chains,
the benchmarking and standardization of image and video
processing algorithms, and the quality monitoring and control
in displays [2]. They range from dedicated IQMs that assess
a specific type of image distortion to general IQMs that
measure the overall perceived quality. Both the dedicated and
the general IQMs can be classified into full-reference (FR),
reduced reference (RR), and no-reference (NR) metrics,
depending on to what extent they use the original, distortion-
free image material as [2]. FR metrics assume the reference is
fully accessible, and they are based on measuring the similarity
or fidelity between the distorted image and its original.
RR metrics are mainly used in scenarios where the reference is
partially available, e.g., in complex communication networks.
They make use of certain features extracted from the reference,
which are then employed as side information to evaluate the
quality of the distorted image. In many real-world applications,
however, there is no access to the reference at all. Hence,
it is desirable to have NR metrics that can assess the overall
quality or some aspects of it based on the distorted image
only.

Since the human visual system (HVS) is the ultimate
assessor of image quality, the effectiveness of an IQM is
generally quantified by to what extent its quality prediction
is in agreement with human judgements [2]. In this respect,
researchers have taken different approaches to predict the
perceived image quality mainly by including the functional
aspects of the HVS. Advances in human vision research have
increased our understanding of the mechanisms of the HVS,
and allowed expressing these psychophysical findings into
mathematical models [3]–[5]. Some well-established models
that address the lower level aspects of early vision, such as
contrast sensitivity, luminance masking, and texture masking,
are integrated in the design of various IQMs [6]–[10]. These
so-called HVS-based IQMs are claimed to be much more
reliable than the purely pixel-based IQMs, such as peak
signal-to-noise ratio (PSNR). This approach, however, remains
limited in its sophistication, and thus also in its reliability,
mainly due to our limited knowledge of the HVS, which makes
it nearly impossible to precisely simulate all image quality
perception-related components. Instead of imitating the func-
tional operations of the HVS, alternative approaches are based
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on modeling the overall functionality of the HVS [11]–[18],
e.g., by utilizing the observation that the HVS is highly
adapted to extract the structural information from visual
scenes [11]. It has been demonstrated that these IQMs are
rather effective in predicting perceived image quality.

To further improve the reliability of IQMs, a signifi-
cant current research trend is to investigate the impact of
visual attention, which refers to a process that enables the
HVS to select the most relevant information from a visual
scene [19]–[27]. Compared with what is known about many
other aspects of the HVS in IQMs, our knowledge on modeling
visual attention in the IQM design is, however, very limited.
This is primarily due to the fact that how human attention
affects the perception of image quality is unknown, and also
due to the difficulties of precisely simulating visual attention.
Researchers now attempt to simplify this problem by incorpo-
rating visual attention aspects into IQMs in an ad hoc way,
based on optimizing the performance increase in predicting
perceived quality [23]–[27]. The approaches taken in the
literature, which may be implemented in slightly different
ways, are generally based on the assumption that distortion
occurring in an area that attracts the viewer’s attention is more
annoying than in any other area. They weight local distortions
with local saliency, resulting in a more sophisticated means of
image quality prediction. It should, however, be noted that this
concept strongly relies on the simplification of the HVS that
the natural scene saliency (i.e., saliency driven by the original
content of the visual scene, and referred to as SS) and the
image distortions (i.e., the unnatural artifacts superimposed to
the original visual scene) are treated separately and the results
are then combined artificially to determine the overall quality.
The actual interactions between SS and distortions may be
more complex; modeling these interactions is so far limited by
our lack of knowledge of the HVS. In addition, to maintain a
low computational complexity of an IQM at sufficiently high
prediction accuracy, the potential performance increase should
be balanced against the additional costs needed for modeling
visual attention, including its interactions with distortions.
As such, this simplified approach appears to be a viable and,
probably so far the most acceptable way of including visual
attention aspects in IQMs [23]–[27]. Based on this approach,
some researchers resort to eye-tracking data in an attempt to
find out the intrinsic added value of visual attention to the
reliability of IQMs [19]–[22]. By integrating the measured
ground-truth SS into the state-of-the-art IQMs, one could
identify whether and to what extent the addition of saliency is
beneficial to objective image quality prediction in a genuine
manner. A dedicated study in [19] also demonstrates that if
saliency is added to IQMs, it should be the SS driven by the
original scene content rather than the saliency obtained during
scoring the quality of the scene being distorted. This finding
arises probably due to the saliency (or distraction power) of the
distortions present in an image is already sufficiently addressed
in an IQM, and should not be duplicated in the measurement of
saliency. This evidence supports our earlier statement that SS
and distortions need to be approached as separate components.

From a practical point of view, e.g., in a real-time imple-
mentation of an IQM, the saliency measured offline with eye

tracking needs to be substituted by a computational model of
visual saliency. In this respect, in addition to the eye-tracking
data-based results reported in [19], it is worth investigating
whether a saliency model, at least with the current soundness
of visual saliency modeling, is also able to improve the
performance of IQMs, and if so, to what extent. Literature
on studying the added value of the computational saliency in
IQMs is mainly focused on the extension of a specific IQM
with a specific saliency model; a map derived from an IQM
that represents the spatial distribution of image distortions is
weighted with the calculated saliency [23]–[27]. For example,
in [23], a saliency model developed in [29] is adopted to
improve a particular IQM [11] in assessing the quality induced
by packet loss. To enhance the performance of a sharpness
metric in [24], a new saliency model is proposed and integrated
in this metric. In [25], a dedicated saliency model is invented to
refine two IQMs called visual information fidelity (VIF) [12]
and MSSIM [30], resulting in a significant gain in their
performance. In both [26] and [27], computational saliency is
incorporated in the IQM design to increase its correlation with
subjective quality judgements. As shown above, employing a
specific saliency model to specifically optimize a target IQM is
often effective. There are, however, several concerns related to
this approach. First, a variety of saliency models are available
in the literature, which is summarized in [31]–[34]. They are
either specifically designed or chosen for a specific domain,
but the general applicability of these models in the context of
image quality assessment is so far not completely investigated.
A rather random selection of a particular saliency model runs
the risk of compromising the possibly optimal performance
gain equivalent to that may be obtained by adding eye-tracking
data in IQMs. It is, e.g., not known yet whether the gain
in performance (if existing) when adding a chosen saliency
model is comparable with its corresponding gain when ground-
truth saliency is used. Second, questions still arise whether a
saliency model successfully embedded in one particular IQM
is also able to enhance the performance of other IQMs, and
whether a dedicated combination of a saliency model and an
IQM that can improve the assessment of one particular type of
image distortion would also improve the assessment of other
distortion types. If so, it remains questionable whether the
gain obtained by adding this preselected saliency model to
a specific IQM (or to IQMs to assess a specific distortion) is
comparable with the gain that can be obtained with alternative
IQMs (or when assessing other distortion types). Finally, it
has been taken for granted in the literature that a saliency
model that better predicts human fixations is expected to be
more advantageous in improving the performance of IQMs.
This speculation, however, has not been statistically validated
yet. The various concerns discussed above imply that before
implementing saliency models in IQMs, it is desirable to have
a comprehensive understanding on whether and to what extent
the addition of computational saliency can improve IQMs, in
the context of the existing saliency models and IQMs available
in the literature.

In this paper, we quest the capability and capacity of com-
putational saliency in improving IQM’s performance in pre-
dicting perceived image quality. Based on [19], [31], and [32],
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Fig. 1. Illustration of saliency maps generated by 20 state-of-the-art saliency models for one of the source images in LIVE database [28].

an exhaustive statistical evaluation is conducted by integrating
the state-of-the-art saliency models in several IQMs well
known in the literature. We investigate whether there is a
significant difference in predicting human fixations between
saliency models, and whether and to what extent such dif-
ference can affect the actual gain in prediction performance
that can be obtained by including saliency in IQMs. The
statistics also allow us to explore whether or not there is a
direct relation between how well a saliency model can predict
human fixations and to what extent an IQM can profit from
adding this saliency. Furthermore, we explicitly evaluate to
what extent the amount of performance gain when adding
computational saliency depends on the saliency model, IQM,
and type of image distortion. We intend to, based on in-depth
statistical analysis, provide recommendations and practical
solutions with respect to the application of saliency models
in IQMs. We have made the testbed and software publicly
available to facilitate future research in saliency-based IQMs.

II. EVALUATION FRAMEWORK

To evaluate the added value of computational saliency in
IQMs, we follow the general framework established in [19].
In this evaluation, the saliency map derived from a saliency
model is integrated into an IQM, and the resulting IQM’s
performance is compared with the performance of the same
IQM without saliency. To ensure a study of sufficient statistical
power, our validation is carried out with 20 saliency models,
12 IQMs, and 3 image quality assessment databases, which
are all so far widely accepted in the research community.

A. Visual Saliency Models

The 20 state-of-the-art models of visual saliency, namely
AIM, AWS, CBS, EDS, FTS, Gazit, GBVS, CA, SR, DVA,
ITTI, SDFS, PQFT, salLiu, SDCD, SDSR, STB, SUN, SVO,
and Torralba, are implemented. These models are already
described in more detail in [31]–[35], and are only briefly
summarized here. ITTI [36] is perhaps the first notable work in
the field of computational modeling of visual attention, which
combines multiscale image features into a single topographical
saliency map. STB [29] is meant to improve the output of
ITTI for its use in region of interest (ROI) extraction. Based
on the principle of maximizing information sampled in a
scene, AIM [37] and SUN [38], which are implemented in
slightly different ways, compute saliency using Shannon’s self-
information measure of visual features. Similarly, DVA [39]
measures saliency with an attempt to maximize the entropy
of the sampled visual features. GBVS [40] is based on graph

theory and is achieved by concentrating mass on activation
maps, which are formed from certain raw features. The
salLiu [41] focuses on the salient object detection (SOD)
problem for images, using a conditional random field to learn
ROI from a set of predefined features. CA [42] employs both
local and global clues to separate the salient object from the
background. Torralba [43] contains both local features and
global scene context. SR [44] and PQFT [45] are simple
yet efficient models, which explore the phase spectrum of
Fourier transform. FTS [46] aims for the detection of well-
defined boundaries of salient objects, which is achieved by
retaining more frequency content from the image. EDS [47]
relies on multiscale edge detection and produces a sim-
ple and nonparametric method for detecting salient regions.
Holtzman-Gazit [48] employs a local-regional multilevel
approach to detect edges of salient objects. CBS [49] is
formalized as an iterative energy minimization framework,
which results in a binary segmentation of the salient object.
AWS [50] computes saliency by considering the decorrelation
and distinctiveness of multiscale low-level features. SDSR [51]
measures the likeness of a pixel to its surroundings. SDFS [52]
combines global features from frequency domain and local
features from spatial domain. SVO [53] improves SOD by
fusing generic objectness and saliency. SDCD [35] works in
the compressed domain and adopts intensity, color, and texture
features for saliency detection.

Fig. 1 shows the saliency maps generated by the models
mentioned above for one of the source images in LIVE image
quality assessment database [28]. These models cover a wide
range of modeling approaches and application environments.
In [33] and [34], they may be generally classified into
two categories. One category of saliency models focuses on
mimicking the behavior and neuronal architecture of the early
primate visual system, aiming to predict human fixations as a
way to test its accuracy in saliency detection (e.g., ITTI, AIM,
and GBVS). The other category is driven by the practical
need of object detection for machine vision applications,
attempting to identify explicit salient regions/objects
(e.g., FTS, CBS, and SVO).

B. Image Quality Metrics

The 12 widely accepted IQMs, namely PSNR, universal
quality index (UQI), SSIM, MSSIM, VIF, feature similarity
index (FSIM), IWPSNR, IWSSIM, generalized block-edge
impairment metric (GBIM), NR blocking artifact mea-
sure (NBAM), NR perceptual blur metric (NPBM), and just
noticeable blur metric (JNBM), are applied in our evaluation.
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These IQMs include eight FR and four NR metrics, and range
from the purely pixel-based IQMs without the characteristics
of the HVS to IQMs that contain complex HVS modeling.
The FR metrics are as follows.

PSNR: The PSNR is based on the mean squared error
between the distorted image and its original on a pixel-by-
pixel basis.

UQI: The UQI [54] measures the image quality degradation
as a combination of the loss of pixel correlation, luminance,
and contrast.

SSIM: The structural similarity index [11] measures image
quality based on the degradation in the structural information.

MS-SSIM: The multiscale SSIM [30] represents a refined
and flexible version of the single-scale SSIM, incorporating
the variations of viewing conditions.

IWPSNR: PSNR is extended with a pooling strategy
(i.e., the information content weighting as described in [55])
of the locally calculated distortions.

IWSSIM: SSIM is extended with a pooling strategy
(i.e., the information content weighting as described in [55])
of the locally calculated distortions.

VIF: The VIF [12] quantifies how much of the information
present in the reference image can be extracted from the
distorted image.

FSIM: The FSIM [56] utilizes the phase congruency and
gradient to calculate the local distortions.

The NR metrics are as follows.
GBIM: The GBIM [57] measures a blocking artifact as an

interpixel difference across block boundaries, which is scaled
with a weighting function of HVS masking.

NPBM: The NPBM [58] is based on extracting sharp edges
in an image, and measuring the width of these edges.

JNBM: The JNBM [59] refines the measurement of the
spread of the edges by integrating the concept of just
noticeable blur.

NBAM: The NBAM [60] considers the visibility of a
blocking artifact by computing the local contrast in gradient.

The IQMs mentioned above are implemented in the spatial
domain. They estimate image quality locally, resulting in a
quantitative distortion map (DM) which represents a spatially
varying quality degradation profile. It is noted that other well-
known IQMs formulated in the transform domain, such as
VSNR [61], MAD [62], and NQM [63], are not included in
our study. Integrating a saliency map in a rather complex IQM
calculated in the frequency domain is not straightforward, and
is therefore, outside the scope of this paper.

C. Image Quality Assessment Databases

The evaluation of the performance of an IQM is conducted
on the LIVE database [28]. The reliability of the LIVE
database is widely recognized in the image quality community.
It consists of 779 images distorted with a variety of distortion
types, i.e., JPEG compression (i.e., JPEG), JPEG2000
compression (i.e., JP2K), white noise (WN), Gaussian
blur (GBLUR), and simulated fast-fading (FF) Rayleigh
occurring in (wireless) channels. Per image the database also
gives a difference in mean opinion score (DMOS) derived

from an extensive subjective quality assessment study. Indeed,
the image quality community is more and more accustomed
to the evaluation of IQMs with different databases that are
made publicly available. It may, e.g., account for the innate
limitations of a typical subjective experiment in terms of the
diversity in image content and distortion type, and therefore,
provide more implications on the robustness of an IQM.
With this in mind, a cross-database evaluation is carried out
by repeating our evaluation protocol on other two existing
image quality databases, i.e., IVC [64] and MICT [65], which
are customarily used in the literature. It should, however, be
noted that the meaningfulness of a cross-database validation
heavily depends on, e.g., the consistency between different
databases. The measured difference in the performance of an
IQM can be attributed to the difference between the designs
of different subjective experiments.

D. Evaluation Criteria

1) Predictability of Saliency Models: To quantify the
similarity between a ground-truth human saliency map (HSM)
(as described in detail in [19]) obtained from eye-tracking
and the modeled saliency map (MSM) (as described in detail
in [31]) derived from a saliency model, three measures are
often used in the literature. These measures are as follows.

CC: Pearson linear correlation coefficient (CC)
(see [66], [67]) measures the strength of a linear relationship
between two variables, i.e., HSM and MSM in our case.
When CC is close to +1/−1 there is almost a perfect linear
relationship between the two maps.

NSS: Normalized scanpath saliency (NSS) (see [68], [69])
checks, per fixation point in the HSM, the value at its cor-
responding location in the MSM. This value is normalized to
have zero mean and unit standard deviation, and then averaged
over all fixation points. Thus, when NSS > 1, the MSM
exhibits significantly higher average saliency over the fixation
locations than the nonfixation locations, whereas NSS < 0
indicates that the probability that an MSM is able to predict
human fixations is likely due to chance.

SAUC: AUC refers to the area under the receiver operating
characteristic curve. Shuffled AUC (i.e., SAUC and defined
in [31]) is a refined version of the classical AUC for saliency
evaluation. In a conventional AUC measurement, the ground-
truth human fixations in an image constitute a positive set,
whereas a set of negative points is randomly selected. The
MSM is then treated as a binary classifier to separate the pos-
itives from the negatives. Because of the more or less centered
distribution of the human fixations (e.g., human eye tends to
look at the central area of an image and/or photographers often
place salient objects in the image center [38]) in a typical
image database, a saliency model could take advantage of
such the so-called center-bias by weighting its saliency map
with a central Gaussian blob. This usually yields a dramatic
increase in the AUC score. SAUC is proposed to normalize
the effect of center-bias and as a consequence, to ensure
a fair comparison of saliency models. Instead of selecting
negative points randomly, all fixations over other images in
the same database are used as the negative set. By doing so,
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Fig. 2. Illustration of the rankings of visual saliency models (the detail of the models can be found in Section II-A) in terms of CC, NSS, and SAUC,
respectively. CC, NSS, and SAUC are calculated based on the eye-tracking database in [19]. Error bars: 95% confidence interval.

SAUC gives more credit to the off center information and
favors true positives more. In this regard, SAUC is considered
a rigorous measure; the bad performance of a saliency model
cannot be masked by simply adding a central Gaussian filter.
A perfect prediction of human fixations corresponds to a score
of 1, whereas a score of 0.5 indicates a random guess.

2) Performance of IQMs: A saliency model is included in
an IQM to assess the quality of an image of size M × N
pixels via locally weighting (i.e., by multiplying) the DM by
the MSM, of which the process can be defined as

WIQ =
∑M

x=1
∑N

y=1 [DM(x, y) × MSM(x, y)]
∑M

x=1
∑N

y=1 MSM(x, y)
(1)

where DM is calculated by the IQM, MSM is generated from
the original image (note in the case of an NR framework, the
MSM is either assumed to be available, which is analogous
to RR in practice, or considered to be possibly calculated
from the distorted image from separating natural scene and
distortion), and WIQ denotes the resulting image quality
prediction. It should be noted that the DM and MSM are
linearly combined in our evaluation. This combination
strategy, as also conventionally used in [19]–[22], is simple
and parameter-free, and consequently, fulfills a generic
implementation. A more sophisticated combination strategy
may further improve IQM’s performance, e.g., in assessing
a specific type of distortion. In [70] and [71], by considering
the interaction between the scene saliency and the distraction
power of the JPEG compression artifacts, a dedicated
combination strategy has proven more effective than the
linear combination strategy. The increase in such effectiveness
is often achieved at the expense of the generality of the
combination strategy.

As prescribed by the video quality experts group [72], the
performance of an IQM is quantified by the Pearson linear
CC and the Spearman rank order CC (SROCC) between
the outputs of the IQM and the subjective quality ratings.
Seemingly, the image quality community is accustomed
to fitting the predictions of an IQM to the subjective
scores [72]. A nonlinear mapping may, e.g., account for a
possible saturation effect in the quality scores at high quality.
It usually yields higher CCs in absolute terms, while generally
keeping the relative differences between IQMs [73]. As also
explained in [19], without a sophisticated nonlinear fitting,
the CCs cannot mask a bad performance of the IQM itself.

To better visualize differences in performance, we avoid any
nonlinear fitting and directly calculate correlations between
the IQM’s predictions and the DMOS scores.

III. ADDING COMPUTATIONAL SALIENCY IN IQMs:
THE OVERALL EFFECT AND ITS STATISTICAL

MEANINGFULNESS

In this section, we evaluate the overall effect of including
computational saliency in IQMs. The evaluation protocol
breaks down into three coherent steps. First, we check the
difference in predictability between saliency models used.
Second, by applying these saliency models to individual
IQMs, we validate whether there is a meaningful gain in the
performance for the IQMs. Finally, we investigate the relation
between two trends being the predictability of saliency
models and the profitability of including different saliency
models in IQMs.

A. Variation in Predictability Between Saliency Models

The predictability of a saliency model is evaluated using the
eye-tracking data in [19], which contains 29 HSMs obtained
from 20 human observers looking freely to 29 source images
of the LIVE database. Per saliency model, CC, NSS, and
SAUC are calculated between the HSM and the MSM, and
averaged over the 29 stimuli. Fig. 2 shows the rankings of
saliency models in terms of CC, NSS, and SAUC, respectively.
It shows that the saliency models vary over a broad range
of predictability independent of the measure used. Notwith-
standing a slight variation in the ranking order across
three measures, there is a strong consistency between different
ranking results. Similar trends are reported in [20], in which
evidence also indicates that the SAUC accounts for center-bias
(as the process explained in Section II-D) and, therefore is
considered as a more rigorous measure for validating saliency
models [31]. Based on SAUC, hypothesis testing is performed
in order to check whether the numerical difference in pre-
dictability between saliency models is statistically significant.
Before being able to decide on an appropriate statistical test,
we evaluate the assumption of normality of the SAUC scores.
A simple kurtosis-based criterion (as used in [74]) is used for
normality; if the SAUC scores have a kurtosis between 2 and 4,
they are assumed to be normally distributed, and the difference
between saliency models could be tested with a parametric test,
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TABLE I

PERFORMANCE GAIN (AS EXPRESSED BY THE INCREASE IN CC, i.e., �CC) BETWEEN A METRIC AND ITS SALIENCY-BASED VERSION

OVER ALL DISTORTION TYPES FOR THE IMAGES OF THE LIVE DATABASE. EACH ENTRY IN THE LAST ROW REPRESENTS

THE �CC AVERAGED OVER ALL SALIENCY MODELS EXCLUDING THE HSM

otherwise a nonparametric alternative could be used. Since the
variable SAUC is tested to be normally distributed, an analysis
of variance (ANOVA) is conducted by selecting SAUC as
the dependent variable, and the categorical saliency model as
the independent variable. The ANOVA results show that the
categorical saliency model has a statistically significant effect
(F-value = 7.1, P < 0.001 at 95% level) on SAUC. Pairwise
comparisons are further performed with a t-test between
two consecutive models in the SAUC rankings. The results
indicate that the difference between any pair of consecutive
models is not significant. This, however, does not necessarily
mean that two models that are not immediately close to
each other are not significantly different. This can be easily
revealed by running all pairwise comparisons. For example,
AWS is tested to be better than SVO, and manifests itself
significantly better than all other models on the left-hand side
of SVO. In general, we may conclude that there is a significant
variation in predictability among saliency models, suggesting
that the ability of predicting the ground-truth human fixations
is different for different models. Based on this finding, we
set out to investigate whether adding these saliency models
to IQMs can produce a meaningful gain in their performance,
and whether the existence and/or status of such gain is affected
by the predictability of a saliency model.

B. Adding Saliency Models in IQMs: Evaluation
of the Overall Effect

Integrating saliency models into IQMs results in a set of
new saliency-based IQMs. FR metrics and their saliency-based
derivatives are intended to assess image quality independent of
distortion type, and therefore, are applied to the entire LIVE
database. The NR blockiness metrics (i.e., GBIM and NBAM)

and their derivatives are applied to the JPEG subsets of the
LIVE database. The NR blur metrics (i.e., NPBM and JNBM)
and their derivatives are applied to the GBLUR subset of
the LIVE database. CC and SROCC are calculated between
the subjective DMOS scores and the objective predictions
of an IQM. Table I summarizes the overall performance
gain (averaged over all distortion types where appropriate;
the original 880 data points before the average can be fully
accessed in [1]) of a saliency-based IQM over its original
version. It is noted that the performance gain in Table I
is expressed by the increase in CC (i.e., �CC). �SROCC
exhibits the same trend of changes as �CC, and therefore,
is not included in the table (�SROCC can be fully accessed
in [1]). The gain in performance that can be obtained by adding
HSM in IQMs is also included as a reference. In general, this
table demonstrates that there is indeed a gain in performance
when including computational saliency in IQMs, being most
of the �CC values are positive.

It is noticeable in Table I that some �CC values are
relatively marginal, but not necessarily meaningless. In order
to verify whether the performance gain, as obtained in Table I,
is statistically significant, hypothesis testing is conducted.
As suggested in [72], the test is based on the residuals between
the DMOS and the quality predicted by an IQM (hereafter,
referred to as M-DMOS residuals). Before being able to
run an appropriate statistical significance test, we evaluate
the assumption of normality of the M-DMOS residuals. The
results of the test for normality are summarized in Table II.
For the vast majority of cases, in which paired M-DMOS
residuals (i.e., two sets of residuals are being compared: one is
from the original IQM and the other is from its saliency-based
derivative) are both normally distributed, a paired samples
t-test is performed (as used in [19]). Otherwise, in the case of
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TABLE II

NORMALITY OF THE M-DMOS RESIDUALS. EACH ENTRY IN THE LAST

COLUMN IS A CODEWORD CONSISTING OF 21 DIGITS. THE POSITION OF

THE DIGIT IN THE CODEWORD REPRESENTS THE FOLLOWING SALIENCY

MODELS (FROM LEFT TO RIGHT): HSM, AIM, AWS, CBS, EDS, FTS,

Gazit, GBVS, CA, SR, DVA, SDCD, ITTI, SDFS, PQFT, salLiu,

SDSR, STB, SUN, SVO, AND Torralba. 1 REPRESENTS

THE NORMAL DISTRIBUTION AND 0 REPRESENTS

THE NONNORMAL DISTRIBUTION

TABLE III

RESULTS OF STATISTICAL SIGNIFICANCE TESTING BASED ON M-DMOS

RESIDUALS. EACH ENTRY IS A CODEWORD CONSISTING OF 21 SYMBOLS

REFERS TO THE SIGNIFICANCE TEST OF AN IQM VERSUS ITS

SALIENCY-BASED VERSION. THE POSITION OF THE SYMBOL

IN THE CODEWORD REPRESENTS THE FOLLOWING SALIENCY

MODELS (FROM LEFT TO RIGHT): HSM, AIM, AWS, CBS,

EDS, FTS, Gazit, GBVS, CA, SR, DVA, SDCD, ITTI, SDFS,

PQFT, salLiu, SDSR, STB, SUN, SVO, AND Torralba.

1 (PARAMETRIC TEST) AND ∗ (NONPARAMETRIC TEST)

MEANS THAT THE DIFFERENCE IN PERFORMANCE IS

STATISTICALLY SIGNIFICANT. 0 (PARAMETRIC TEST)

AND # (NONPARAMETRIC TEST) MEANS THAT THE

DIFFERENCE IS NOT STATISTICALLY SIGNIFICANT

nonnormality, a nonparametric version (i.e., Wilcoxon signed
rank sum [75]) analog to a paired samples t-test is conducted.
The test results are given in Table III for all combinations of
IQMs and saliency models. It illustrates that in most cases the
difference in performance between an IQM and its saliency-
based derivate is statistically significant. In general terms, this
suggests that the addition of computational saliency in IQMs
makes a meaningful impact on their prediction performance.

In accordance with custom, we also evaluate the potential
impact of different image quality databases on the performance
gain that can be obtained by adding computational saliency
to IQMs. We repeat the aforementioned evaluation protocol
once for the IVC database and once for the MICT database.
In terms of the performance gain for IQMs (expressed
by �CC), the Pearson CC is 0.84 between LIVE and IVC
and 0.82 between LIVE and MICT. The cross-database
validation indicates that the same trend of changes in the
performance gain is consistently found for the three image
quality databases.

C. Computational Saliency: Predictability
Versus Profitability

Having identified the overall benefits of including computa-
tional saliency in IQMs, one could intuitively hypothesize that
the better a saliency model can predict human fixations, the
more an IQM may profit from adding this saliency model in
the prediction of image quality. To check this hypothesis, we
calculate the correlation between the predictability of saliency
models (based on the SAUC scores, as shown in Fig. 2)
and the average performance gain achieved by using these
models (based on �CC averaged over all IQMs, as shown
in Table I (last column)]. The resulting Pearson CC is equal
to 0.44, suggesting that the relation between the predictability
of a saliency model and the actual added value of this model
for IQMs is rather weak. Saliency models that are ranked
relatively highly in terms of predictability do not necessarily
correspond to a larger amount of performance gain when
they are added to IQMs. For example, AWS ranks the first
(out of 20) in predictability; however, the rank of AWS in
terms of the added value for IQMs is the 17th (out of 20).
On the contrary, PQFT is ranked comparatively low in terms
of predictability, but it produces higher added value for IQMs
compared with other saliency models. In view of the statistical
power, which is grounded on all combinations of 20 saliency
models and 12 IQMs, this finding is fairly dependable but
indeed surprising, and it suggests that our common belief
in the selection of appropriate saliency models for inclusion
in IQMs is being challenged. However, it may be still far
from being conclusive whether or not the predictability has
direct relevance to the performance gain, e.g., it is arguable
that the measured predictability might be still limited in its
sophistication. But we may conclude that the measure of
predictability should not be used as the only criterion to
determine the extent to which a specific saliency model is
beneficial to its application in IQMs, at least, not with the
current soundness of visual saliency modeling.

IV. APPLYING COMPUTATIONAL SALIENCY IN IQMs:
DEPENDENCE OF THE PERFORMANCE GAIN

Section III provides a thorough grounding in the general
view of the added value of including computational saliency
in IQMs. Granted that a meaningful impact on the performance
gain is in evidence, the actual amount of gain, however,
tends to be different for different IQMs, saliency models, and
distortion types. Such dependence of the performance gain has
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TABLE IV

RESULTS OF THE ANOVA TO EVALUATE THE IMPACT OF THE IQM,

SALIENCY MODEL, AND IMAGE DISTORTION TYPE ON THE

ADDED VALUE OF COMPUTATIONAL SALIENCY IN IQMs

Fig. 3. Illustration of the rankings of IQMs in terms of the overall
performance gain (expressed by �CC, averaged over all distortion types
and over all saliency models where appropriate) between an IQM and its
saliency-based version. Error bars: 95% confidence interval.

highly practical relevance to the application of computational
saliency in IQMs, e.g., in a circumstance where a tradeoff
between the increase in performance and the expense needed
for saliency modeling is in active demand. To this effect, the
observed tendencies in the changes of the performance gain
are further statistically analyzed in order to comprehend the
impact of individual categorical variables being the kind of
IQM, saliency model, and the distortion type. The statistical
test is based on the original 880 data points of performance
gain (i.e., �CC in a breakdown version of Table I, including
individual distortion types) resulted from the entire LIVE
database. The test for the assumption of normality indicates
that the variable performance gain is normally distributed,
and consequently, a factorial ANOVA is conducted with the
performance gain as the dependent variable and the kind
of IQM, saliency model, and distortion type as independent
variables. The results are summarized in Table IV, and show
that all main effects are highly statistically significant. The
significant interaction between IQM and distortion (excluding
NR cases due to data points being incomplete for irrelevant
combinations) is caused by the fact that the way the perfor-
mance gain changes among IQMs depends on the distortion
type. The interaction between saliency model and IQM is
significant since the impact the different saliency models have
on the performance gain also depends on the IQM.

A. Effect of IQM Dependence

Obviously, the kind of IQM has a statistically significant
effect on the performance gain. Fig. 3 shows the order of IQMs
in terms of the overall performance gain. It shows that adding
computational saliency results in a marginal gain for IWSSIM,
FSIM, VIF, and IWPSNR; the performance gain is either

Fig. 4. Illustration of the comparison of ICM extracted from IWSSIM, VIF,
or IWPSNR and the PCM extracted from FSIM and a representative saliency
map (i.e., Torralba) for one of the source images in the LIVE database.
(a) Original image. (b) Saliency map. (c) ICM. (d) PCM.

nonexistent or even negative (i.e., the averaged �CC is −1.1%
for IWSSIM, −0.1% for FSIM, 0.1% for VIF, and 0.2% for
IWPSNR). Compared with such a marginal gain, adding com-
putational saliency to other IQMs, such as UQI, yields a larger
amount of performance gain (e.g., the averaged �CC is 3.6%
for UQI). The difference in the performance gain between
IQMs may be attributed to the fact that some IQMs already
contain saliency aspects in their metric design but others do
not. For example, IWSSIM, VIF, and IWPSNR incorporate
the estimate of local information content, which is often
applied as a relevant cue in saliency modeling [37]. Phase
congruency, which is implemented in FSIM, manifests itself
as a meaningful feature of visual saliency [76]. Fig. 4 shows
the so-called information content map (ICM) (i.e., extracted
from IWSSIM, VIF, or IWPSNR) and the phase congruency
map (PCM) (i.e., extracted from FSIM) to a representative
saliency map (i.e., Torralba). It clearly visualizes the similarity
between ICM/PCM and the real saliency map; the Pearson CC
is 0.72 between ICM and Torralba and 0.79 between
PCM and Torralba. Similarly, JNBM and NBAM intrinsically
bear saliency characteristics (e.g., contrast). As such, the
relatively small gain obtained for the aforementioned IQMs
is probably caused by the saturation effect in saliency-based
optimization (i.e., the double inclusion of saliency).

Based on the observed trend, one may hypothesize that
adding computational saliency produces a larger improvement
for IQMs without built-in saliency than for IQMs that intrin-
sically include saliency aspects. To validate this hypothesis,
we perform a straightforward statistical test. On account
of a normally distributed-dependent variable performance
gain, a t-test is performed with two levels of the variable
being the IQMs with built-in saliency (i.e., IWSSIM, VIF,
FSIM, IWPSNR, NBAM, and JNBM) and the IQMs without
(i.e., PSNR, UQI, SSIM, MSSIM, NPBM, and GBIM). The
t-test results (T -value = 5.37, P < 0.01 at 95% level) show
that IQMs without built-in saliency (〈gain〉 = 2.3%) receive
on average statistically significantly higher performance gain
than the IQMs with built-in saliency (〈gain〉 = 0.18%).

Since IQMs can also be characterized at a different
aggregation level, using FR/NR as the classification variable,
a practical question arises whether FR/NR has an impact on
the performance gain, and if so, to what extent. To check
such effect with a statistical analysis, a t-test is performed
again in a similar way as described above, but with two new
independent variables to substitute the variable with/without
built-in saliency: 1) FR and 2) NR. The t-test results
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Fig. 5. Illustration of the rankings of the saliency models in terms of the
overall performance gain (expressed by �CC, averaged over all distortion
types and over all IQMs where appropriate) between an IQM and its
saliency-based version. Error bars: 95% confidence interval.

(T -value = 2.11, P < 0.05 at 95% level) show that
overall NR IQMs (〈gain〉 = 2.5%) obtain a statistically
significantly larger amount of performance gain than FR IQMs
(〈gain〉 = 0.9%). This implies that applying computational
saliency to an NR IQM has potential to significantly boost
its reliability in an effective way.

B. Effect of Saliency Model Dependence

There is a significant difference in the performance gain
between saliency models. Fig. 5 shows the order of saliency
models in terms of the average performance gain that can be
obtained by adding individual models to IQMs. A promising
gain is found when adding SR (〈gain〉 = 2.5%),
SDSR (〈gain〉 = 2.2%), PQFT (〈gain〉 = 2.1%),
GBVS (〈gain〉 = 2.1%), CA (〈gain〉 = 2.1%), and SDCD
(〈gain〉 = 2.1%) to IQMs. The gain achieved for these models
is fairly comparable with (but not necessarily statistically
significantly better than) the gain of adding ground-truth
HSM (〈gain〉 = 2%) to IQMs. At the other extreme, STB
(〈gain〉 = − 0.9%) tends to deteriorate the performance of
IQMs, and saliency models, such as FTS (〈gain〉 = 0.6%),
do not yield an evident profit for IQMs. Fig. 6 shows the
saliency models sitting at the two extremes of performance
gain: the most profitable models (i.e., SR, SDSR, PQFT, and
GBVS) versus the least profitable models (i.e., STB and FTS).
The comparison indicates that SR, SDSR, PQFT, and GBVS
make a sufficiently clear distinction between the salient and
nonsalient regions, which aligns with the appearance of
HSM, as shown in Fig. 6. STB, which predicts the order in
which the eyes move, often highlights the fixation locations
(e.g., a certain portion of a cap) rather than salient regions
(e.g., the entire cap). Adding such saliency to IQMs may
result in an overestimation of localized distortions. The
relatively lower performance gain obtained with FTS is
possibly caused by the fact that it segments objects, which
are sequentially labeled in a random order. As such, adding
saliency in an IQM could randomly give more weight to
artifacts in one object (e.g., the yellow cap) than that in
another object (e.g., the red cap).

Since it is customary to classify saliency models into
two categories, which are referred to as SOD and fixation
prediction (FP), we check whether and to what extent this
categorical variable affects the performance gain. Based on

the classification criteria defined in [33] and [34], CBS, FTS,
salLiu, SVO, and CA are categorized as SOD and the rest mod-
els belong to FP. A t-test is conducted with the performance
gain as the dependent variable (note that it is tested to be
normally distributed); SOD and FP as independent variables.
The results (T -value = −0.82, P > 0.05 at 95% level)
reveal that there is no significant difference in performance
gain between these two categories. This suggests that the
classification of saliency models to SOD and FP does not have
direct implications for the trend of changes in performance
gain of IQMs.

C. Effect of Distortion Type Dependence

On average, the distortion type has a statistically significant
effect on the performance gain, with the order, as shown
in Fig. 7. It shows that GBLUR (〈gain〉 = 2.4%) profits
most from adding computational saliency in IQMs, followed
by FF (〈gain〉 = 1.4%), JPEG (〈gain〉 = 1.3%), JP2K
(〈gain〉 = 0.7%), and finally WN (〈gain〉 = 0%). Such
variation in performance gain may be attributed to the intrinsic
differences in perceptual characteristics between individual
distortion types. In the case of an image degraded with WN,
as shown in Fig. 8(a), artifacts tend to be uniformly distributed
over the entire image. At low quality, the distraction power
of the (uniformly distributed) annoying artifacts is so strong
that it may mask the effect of the natural scene saliency.
As such, directly weighting the DM with saliency intrinsically
underestimates the annoyance of the artifacts in the back-
ground, and their impact on the quality judgement. This case
may eventually offset any possible increase in performance
and, as a consequence, may explain the overall nonexisting
performance gain.

The promising performance gain obtained for GBLUR
may be attributed to two possible causes. First, in the par-
ticular case of images distorted with both unintended blur
(e.g., on a high-quality foreground object) and intended blur
(e.g., in the intentionally blurred background to increase the
field of depth) [77], IQMs often confuse these two types of
blur and process them in the same way. Adding saliency hap-
pens to circumvent such confusion by reducing the importance
of blur in the background, and as such might improve the over-
all prediction performance of an IQM. Second, blur is predom-
inantly perceived around strong edges in an image [58]; the
addition of saliency effectively accounts for this perception by
eliminating regions (e.g., the background) that are perceptually
irrelevant to blur, and consequently may enhance the reliability
of an IQM for blur assessment. To further confirm whether
adding saliency indeed preserves the perceptually relevant
regions for blur, we first rigorously partition an image into
blur-relevant (i.e., strong-edge positions) and blur-irrelevant
(i.e., nonstrong-edge positions) regions, and then compare
the saliency residing in the relevant regions to that in the
irrelevant regions. Fig. 9 shows the comparison of the average
saliency in the blur-relevant and blur-irrelevant regions, for
the 29 source images of the LIVE database. It demonstrates
that including saliency intrinsically retains the regions that are
perceptually more relevant to perceived blur, and this explains
the improvement of an IQM in assessing GBLUR.
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Fig. 6. Illustration of the saliency maps as the output of the least profitable saliency models and the most profitable saliency models for IQMs. The original
image is taken from the LIVE database.

Fig. 7. Illustration of the ranking in terms of the overall performance gain
(expressed by �CC, averaged over all IQMs and over all saliency models
where appropriate) between an IQM and its saliency based version, when
assessing WN, JP2K, JPEG, FF, and GBLUR. Error bars: 95% confidence
interval.

Fig. 8. Illustration of an image distorted with WN and its measured natural
scene saliency and local distortions. (a) WN distorted image extracted from
LIVE database. (b) Saliency map (i.e., Torralba) based on the original image
of (a) in the LIVE database. (c) DM of (a) calculated by an IQM (i.e., SSIM).

Fig. 9. Illustration of the comparison of the averaged saliency residing in the
blur-relevant regions (i.e., positions of the strong edges based on the Sobel
edge detection) and blur-irrelevant regions (i.e., positions of the rest of the
image) for the 29 source images of the LIVE database. The vertical axis
indicates the averaged saliency value (based on the saliency map Torralba),
and the horizontal axis indicates the 29 test images (the content and ordering
of the images can be found in [28]).

In JPEG, JP2K, and FF, the perceived artifacts tend to
be randomly distributed over the entire image due to the
luminance and texture masking of the HVS [2]. This could
further confuse the issue of assessing artifacts with the
addition of saliency, despite the general effectiveness, as
shown in Fig. 7. Fig. 10 shows a JPEG compressed image
(bit rate = 0.4 b/pixel), and its corresponding saliency

Fig. 10. Illustration of a JPEG compressed image at a bit rate of 0.4 b/pixel,
and its corresponding natural scene saliency as the output of a saliency model
(i.e., Torralba). (a) JPEG compressed image (b) Saliency map (i.e., Torralba)
based on the original image of (a).

(i.e., generated by Torralba [43]). Due to HVS masking,
this image exhibits imperceptible artifacts in the salient
regions (e.g., the lighthouse and rocks in the foreground),
but relatively annoying artifacts in the nonsalient regions
(e.g., the sky in the background). In such a demanding
condition, directly combining the measured distortions
with saliency to a large extent overlooks the impact of the
background artifacts on the overall quality. In view of this, we
may speculate such type of images may not profit from adding
saliency in IQMs, which also implies that the performance
gain obtained so far for JPEG, JP2K, and FF may not be
optimal amount. The overall positive gain, as shown in Fig. 7,
however, can be explained by the fact that most of the images
in the LIVE database exist of one of the following types:
1) images having visible artifacts uniformly distributed over
the entire image and 2) images having the artifacts masked
by the content in the less salient regions, but showing visible
artifacts in the more salient regions. Obviously, for these
two types of images, adding saliency is reasonably safe.

Also, as the speculation mentioned in [19] and [78], the
observed trend that the amount of performance gain varies
depending on the type of distortion may be associated with
the performance of IQMs without saliency. For example, it
may be more difficult to obtain a significant increase in
performance by adding saliency when IQMs (without saliency)
already achieve a high prediction performance for a given type
of distortion. This phenomenon can be further revealed by
checking the correlation between the performance (without
saliency) and the performance gain (with the addition of
saliency) of IQMs for WN, JP2G, JPEG, FF, and GBLUR.
The Pearson CC is −0.71 and indicates that the higher the
performance without saliency, the more the gain is limited by
adding saliency.

V. INTEGRATING COMPUTATIONAL SALIENCY

IN IQMs: RECIPE FOR SUCCESS

This section summarizes the above-mentioned exhaustive
evaluation, and provides guidance on good practices in the
application of computational saliency in IQMs.
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1) The current soundness of visual saliency modeling
is sufficient for IQMs to yield a statistically
meaningful gain in their performance. On average, such
improvement is fairly comparable with the gain that can
be obtained by adding ground-truth eye-tracking data
into IQMs. However, the actual amount of performance
gain varies among individual combinations of the
two variables: a) saliency models and b) IQMs. This
variation directs the real-world applications of saliency-
based IQMs, in which implementation choices are often
confronted with a tradeoff between performance and
computational efficiency. The measured gain for a given
combination can be used as a reference to assist in
making decisions about how to balance the performance
gain of a saliency-based IQM against the additional
costs needed for the saliency modeling and inclusion.

2) To decide upon whether a saliency model is in a
position to deliver an optimized performance gain for
IQMs, it is essential to check the overall gain that can
be actually obtained by adding this saliency model in
the state-of-the-art IQMs. We found a threshold value in
the overall gain, i.e., 2%, above which the effectiveness
of a saliency model, such as SR, SDSR, PQFT, GBVS,
CA, and SDCD, is comparable with that of the eye-
tracking data and thus is considered to be an optimized
amount. Such profit achieved by a saliency model,
surprisingly, has no direct relevance to its measured
prediction accuracy of human fixations. Moreover, the
customary classification of saliency models (i.e., SOD
and FP) is not informative on the trend of changes in
performance gain; the most profitable models and the
least profitable models can be found in both classes.

3) When it comes to the issues relating to the IQM
dependence of the performance improvement, care
should be taken to make a distinction between the
IQMs with and without built-in saliency aspects.
Adding computational saliency to the former category
intrinsically confuses the workings of saliency inclusion,
and often produces a smattering of profit. The
performance of the latter category of IQMs, however,
can be boosted to a large degree with the addition
of computational saliency. In terms of a different
aggregation level, NR IQMs significantly profit more
from including computational saliency than FR IQMs.

4) The effectiveness of applying saliency-based IQMs in
the assessment of different distortion types is subject
to the perceptual characteristics of the distortions.
The appearance of the perceived artifacts, such as
their spatial distribution due to HVS masking, tends
to influence the extent to which a certain image may
profit from adding saliency to IQMs. Overall, we
found that images degraded with GBLUR respond
positively to the addition of saliency in IQMs, whereas
saliency inclusion does not deliver added value when
assessing the quality of images degraded with WN.
In practice, it should, however, be mindful of the images
distorted with localized artifacts, which may further
confuse the operations of adding saliency in IQMs.

A better understanding of the interactions between visual
attention and artifact perception can be found in [78].

5) Finally, it should be noted that the aforementioned
conclusions hold with the precondition that saliency
and an IQM are linearly combined. The calculated
local distortions are simply multiplied by the measured
local saliency. This combination strategy is parameter
free and therefore is universally applicable. More
sophisticated combination strategies may further
improve the added value of saliency inclusion in IQMs
in more demanding conditions, but probably at the
expense of their generality.

VI. CONCLUSION

In this paper, an exhaustive statistical evaluation is
conducted to investigate the added value of including com-
putational saliency in objective image quality assessment.
The testbed comprises 20 best-known saliency models,
12 state-of-the-art FR and NR IQMs, and five image distortion
types. It results in 880 possible combinations; each represents
a case of performance gain of a saliency-based IQM over its
original version when assessing the quality of images degraded
with a given distortion type. Knowledge as the outcome of this
paper is highly beneficial to the image quality community to
have a better understanding of saliency modeling and inclusion
in IQMs. Our findings are valuable to guide developers or
users of IQMs to select or decide on appropriate saliency
model for their specific application environments. The statis-
tical evaluation also provides a thorough grounding for the
quest of a more reliable saliency modeling in the context of
image quality assessment.
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