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ABSTRACT

In this paper, we show that the paraunitary (PU) matrices that

arise from the polynomial eigenvalue decomposition (PEVD)

of a parahermitian matrix are not unique. In particular, arbi-

trary shifts (delays) of polynomials in one row of a PU matrix

yield another PU matrix that admits the same PEVD. To keep

the order of such a PU matrix as low as possible, we pro-

pose a row-shift correction. Using the example of an iterative

PEVD algorithm with previously proposed truncation of the

PU matrix, we demonstrate that a considerable shortening of

the PU order can be accomplished when using row-corrected

truncation.

1. INTRODUCTION

For broadband array processing problems, delay and mul-

tipath propagation cannot be sufficiently captured by phase

shifts of the data as done in the narrowband case. Instead, ex-

plicit lag elements must be included when e.g. formulating a

space-time covariance matrix in the time domain. This covari-

ance matrix R[τ ] therefore contains both spatial and tempo-

ral dimensions, and its z-transform, R(z) •—◦ R[τ ], yields

a polynomial cross-spectral density (CSD) matrix, which can

either be viewed as a matrix containing polynomial entries, or

as a polynomial with matrix-valued coefficients.

In the narrowband case, the eigenvalue decomposition

(EVD) of a covariance matrix provides a factorisation that

forms the basis of numerous optimal signal processing tech-

niques. To extend the utility of the EVD to the polynomial

matrix case, a polynomial EVD (PEVD) has been proposed

in [8]. A parahermitian matrix, R(z), has the property

R(z) = R̃(z), whereby the parahermitian operator {̃·}
consists of a Hermitian transposition {·}H and time rever-

sal i.e. R̃(z) = RH(z−1). This permits an approaximate

factorisation

R(z) ≈ Q̃(z)D(z)Q(z) . (1)
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The factor Q(z) is paraunitary, i.e. Q(z)Q̃(z) = I, and D(z)
is diagonal,

D(z) = diag{D0(z) D1(z) . . . DM−1(z)} . (2)

As an extension of an ordered EVD [5], the polynomial eigen-

values in D(z) are spectrally majorised, such that the power

spectral densities Dm(ejΩ) = Dm(z)|z=ejΩ satisfy

Dm+1(e
jΩ) ≥ Dm(ejΩ), ∀ Ω, m = 0 . . .M − 1 . (3)

Equality in (1) for FIR paraunitary matrices is not guaran-

teed [8], but is likely to be valid in close approximation for

high orders of Q(z) [6].

The PEVD can be used in various applications including

filter bank-based channel coding [16], design of broadband

precoding and equalisation of MIMO systems [11], subband

coding [9], broadband angle of arrival estimation [1], and oth-

ers. Some of these methods rely on polynomial subspace

decomposition techniques [1, 11, 16], where the order of the

extracted paraunitary matrices directly impacts on the imple-

mentation complexity for these applications.

To approximate (1), a number of iterative algorithms have

been developed. An approximate PEVD (APEVD) algorithm

with fixed order has been reported in [13], but has not been

proved to converge. Other algorithms have been proven to

converge towards a diagonalised D(z) and can achieve better

diagonalisation than APEVD, including the family of second

order sequential best rotation (SBR2) algorithms [8, 9] and

the family of sequential matrix diagonalisation (SMD) algo-

rithms [2, 10]. However, although guaranteed to diagonalise

R(z), the latter algorithms [2, 8–10] are unconstrained in or-

der and therefore the polynomial degrees of both D(z) and

Q(z) grow with the number of iterations.

The order growth in the parahermitian matrix is problem-

atic, as such an increase will lead to a significant increase

in computational complexity of the schemes [2, 8–10] as it-

erations go on. Therefore, trimming small coefficients at the

ends of this matrix has been suggested in [4,8] in order to curb

the complexity of iterative PEVD algorithms such as SBR2.

The paraunitary matrix also grows with the number of iter-

ations; while this does not impact on the complexity during



iterations, the application of the final paraunitary matrix can

be costly for polynomial subspace-based applications as men-

tioned above. Therefore, trimming of the paraunitary matrix

has been performed in [12], whereby similarly to [4, 8] small

outer matrix coefficients are truncated.

Sec. 2, reviews the SBR2 algorithm which will be used

here to produce the paraunitary matrices. The manifold of

paraunitary matrices that can admit an otherwise identical

PEVD is demonstrated in Sec. 2. Based on the ambiguity

identified in Sec. 2, we propose a new truncation method in

Sec. 4, that finds a paraunitary matrix with a lower order.

The approach is simulated and benchmarked in Sec. 5, with

conclusions drawn in Sec. 6.

2. SECOND ORDER SEQUENTIAL BEST ROTATION

The second order sequential best rotation (SBR2) algorithm

approximates the PEVD using a series of elementary parau-

nitary operations to iteratively diagonalise the parahermitian

matrix, R(z). Each elementary paraunitary operation is made

up of two steps: first a delay step is used to bring the maxi-

mum off diagonal element onto the zero lag, then a Jacobi

step transfers its energy onto the diagonal.

The SBR2 algorithm is initialised with S(0)(z) = R(z),
and the ith iteration begins by locating the maximum off-

diagonal element using

{k(i), τ (i)} = argmax
k,τ

‖ŝ
(i−1)
k [τ ]‖∞ , i = 1 . . . I , (4)

where ŝ
(i−1)
k [τ ] is the modified k(i)th column vector of

S(i−1)[τ ], with S(i−1)[τ ] ◦—• S(i−1)(z) a transform pair,

containing all the elements apart from the one on the diago-

nal. The parameters k(i) and τ (i) are then used to bring the

maximum element onto the zero lag with the delay step,

S(i)′(z) = Λ(i)(z)S(i−1)(z)Λ̃
(i)
(z) , (5)

where the delay matrix, Λ(i)(z) is set to

Λ(i)(z) = diag{1 . . . 1
︸ ︷︷ ︸

k(i)
−1

z−τ (i)

1 . . . 1
︸ ︷︷ ︸

M−k(i)

} . (6)

To conclude the ith iteration of SBR2, the maximum off-

diagonal element is eliminated by a Jacobi rotation Q(i) [8],

S(i)(z) = Q(i)S(i)′(z)Q(i)H . (7)

The SBR2 algorithm stops after I iterations when either

a predefined number of steps have elapsed or the maximum

off-diagonal element in (4) falls below a predefined threshold

ρ. The approximate decomposition R(z) =
˜̂
Q(z)D̂(z)Q̂ is

obtained with D̂(z) = S(I)(z) and

Q̂(z) =

I∏

i=1

Q(i)Λ(i)(z) . (8)

Curtailing the growing order of S(i)(z) during the execu-

tion of SBR2 according to [4, 8] will benefit the complexities

of the parameter search in (4) and the matrix multiplications

in (5) and (7). Trimming the paraunitary matrix could also be

performed on a step-by-step basis. However, since this has

little impact on the execution cost of SBR2, and if memory is

not considered, a single truncation of Q̂(z) after convergence

suffices and will be discussed below.

3. PEVD AMBIGUITY

We shall investigate the uniqueness of a PEVD. For this pur-

pose, we assume that for a parahermitianR(z), (1) holds with

equality, and ask whether a second decomposition

R(z) = Q̃(z)D(z)Q(z) = ˜̄Q(z)D̄(z)Q̄(z) (9)

can be found.

With diagonalisation and spectral majorisation of D(z)
providing uniqueness [14], it follows that D̄(z) = D(z).
Hence, writing Q̄(z) = Γ(z)Q(z), the modifying matrix

Γ(z) must be paraunitary, diagonal and contain allpass filters

in order to not affect D(z). While for general allpass filters

either Γ(z) or Γ̃(z) can be unstable, a simple selection

Γ(z) = diag
{
z−τ1 z−τ2 . . . z−τM

}
(10)

is possible. This shifts the mth row of Q(z) by τm samples,

where m = 1 . . .M and M is the spatial dimension of R(z).
A similar paraunitary ambiguity has been stated in [7].

Therefore, even if the diagonal D(z) is unique, a parau-

nitary matrix is ambiguous as a Q(z) of minimum order can

be modified by row-shifts to Q(z) applied by Γ(z) to yield

a factorisation with identical {R(z),D(z)}. Below, we will

exploit this ambiguity in the paraunitary matrix to find a Γ(z)
which reduces order of Q(z) from the factorisation returned

by an iterative PEVD algorithm, which here exemplary uses

SBR2.

4. SHIFT-CORRECTED TRUNCATION OF

PARAUNITARY MATRICES

The truncation of paraunitary matrices in [12] follows the idea

for trimming parahermitian matrices expressed in [4, 8]. Be-

low, we briefly review the approach in [12], before the pro-

posed approach is outlined, followed by a numerical example.

Any truncation of paraunitary matrices results in a loss of the

paraunitary property, which will be discussed further in the

results section.

4.1. State-of-the-Art Truncation

The truncation method in [12] can remove up to a predefined

proportion of energy µ from Q̂(z) •—◦ Q̂[n]. If truncation is



written as a non-linear operation ftrim(·), then the proportion

of removed energy is given by

γtrim = 1−

∑

n ‖ftrim(Q̂[n])‖2F
∑

n ‖Q̂[n]‖2F

= 1−
1

M

∑

n

‖ftrim(Q̂[n])‖2F ,

where ‖ ·‖F is the Frobenius norm. The energy is removed by

omitting the leading N1 and trailing N2 matrices from Q̂[n]
of length N , such that

ftrim(Q̂[n]) =

{

Q̂[n+N1] 0 ≤ n < N −N2 −N1

0 otherwise
.

This leads to the following constrained optimisation problem

to perform the truncation:

maximise (N1 +N2) (11)

s.t. γtrim ≤ µ . (12)

In practise, this approach can be implemented by sequentially

removing leading or trailing matrices of Q̂[n] — which ever

has the smallest Frobenius norm — as long as the constraint

(12) remains satisfied.

4.2. Proposed Row-Corrected Truncation

Defining Q̂(z) with its constituent row vectors q̂m(z), m =
1 . . .M ,

˜̂
Q(z) = [q̂1(z) . . . q̂M (z)] , (13)

note that ˜̂qi(z)q̂j(z) = δ(i−j). Therefore each vector q̂m(z)
has unit energy, and it appears sensible to truncate the same

proportion of energy from every vector. With a vector-valued

truncation fshift(q̂m[n]), the proportion of removed energy is

γshift,m = 1−
∑

n

‖fshift(q̂m[n])‖22 . (14)

Based on the truncation definition

fshift(q̂m[n]) =

{
q̂m[n+N1,m] 0 ≤ n < Tm

0 otherwise
, (15)

with Tm = N −N2,m−N1,m, the optimum truncation based

on row-correction is given by the constrained problem

maximise min
m

(N1,m +N2,m) (16)

s.t. γshift,m ≤
µ′

M
∀ m = 1 . . .M , (17)

where µ′ is the threshold of energy shed. With this, the row-

shifts τm = N1,m, m = 1 . . .M , correcting the truncation are

identified and can be applied via Γ(z) in (10) . The truncated

matrix after row correction will have length maxm Tm.

In practise, every row vector of Q̂(z) is treated individ-

ually like the matrix in the previous approach of [12] and

Sec. 4.1. Note that the main complexity of both truncation

approaches lies in the calculation of norms; therefore, the pro-

posed approach has only little overhead compared to [12].
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Fig. 1. Power spectral densities of the source model D(z) and

of the extracted matrix D̂(z) using SBR2.
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Fig. 2. Paraunitary matrix truncated with µ = 10−4 using the

state-of-the-art approach in [12].

4.3. Truncation Example

To demonstrate the potential benefit of the proposed trunca-

tion, a simple example is considered here. By generating

a CSD matrix R(z) ∈ C
4×4 through a source model de-

tailed in [10], we know that an exact decomposition R(z) =
Q̃(z)D(z)Q(z) exists. The matrix D(z) is diagonal and of

order 8; it is also spectrally majorised as shown by the shaded

curves in Fig. 1. The paraunitary matrix Q(z) is of order 4.

Running SBR2 for 100 iterations yields a well-diagonalised

matrix D̂(z), whose power spectral densities very closely

match those of D(z), as demonstrated in Fig. 1. This accu-

racy is not met by the paraunitary matrix Q̂(z), which, when

left untrimmed, has an order of 181. Even though this matrix

has many very small trailing coefficients, its polynomial de-

gree is almost two orders of magnitude larger than that of the

ground truth matrix Q(z).

Using a standard truncation as introduced in [12] with

µ = 10−4 removes 0.1‰ of the total energy of Q̂(z). The

resulting ftrim(Q̂[n]) is shown in Fig. 2, and now only has

order 33. Removing small trailing coefficients therefore has

significantly reduced the order of ftrim(Q̂[n]), and therefore

the computational complexity that is required to implement

such a system.

In Fig. 2, it is noticeable that the rows of ftrim(Q̂[n]) are

shifted with respect to each other: particularly the first row

exhibits an advance compared to the remaining three, which

is an indication of the manifold w.r.t. row shifts established
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Fig. 3. Paraunitary matrix truncated with µ = 10−4 using the

proposed approach.

during the analysis in Sec. 3. Therefore, with the proposed

row-corrected truncation algorithm and the same shedding of

0.1‰ energy from Q̂[n], the resulting fshift(Q̂[n]) of only

order 11 is shown in Fig. 3. Here the modifying matrix, Γ(z),
is diag

{
z−25 z−2 1 z−2

}
.

Even though the diagonalised matrices D(z) and D̂(z)

are similar, the paraunitary matrix Q̂(z) differs substantially

fromQ(z), and fshift(Q̂[n]) only approachesQ[n] ◦—• Q(z)
in order but not appearance. Similar effects are known from

the EVD, where small disturbances result in similar energies

being extracted by eigenvalues, but much larger differences

can emerge in the eigenvectors [3]. Irrespective of this, the

proposed truncation approach appears very worthwhile in

reducing the order of Q(z), which will be more exhaustively

demonstrated in the following section.

5. RESULTS

To benchmark the proposed truncation approach, this section

first defines performance metrics before setting out a simula-

tion scenario, over which then simulations will be performed.

5.1. Performance Metrics

Reconstruction Error. By truncating Q̂(z), its paraunitarity

is lost. If interpreting Q̂(z) as a filter bank, the loss mani-

fests itself as reconstruction error [15], and the difference to a

paraunitary system can be assessed as

E(z) = IM×M − Q̂T(z)
˜̂
QT(z) . (18)

where Q̂T(z) is the truncated matrix, and with E[τ ] ◦—• E(z)
the reconstruction error is given by

ξ =
1

M

∑

τ

‖E[τ ]‖2F . (19)

Diagonalisation. Since SBR2 iteratively minimises off-

diagonal energy, a suitable normalised metric from [10] is

E(i)
norm =

∑

τ

∑M

k=1 ‖ŝ
(i)
k [τ ]‖22

∑

τ ‖R[τ ]‖2F
(20)
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Fig. 4. Ensemble reconstruction error E{ξ} vs. SBR2 itera-

tions for the different truncation approaches and varying µ.

based on the definition of ŝ
(i)
k [τ ] in (4).

5.2. Simulation Scenario

The simulations below have been performed over an ensem-

ble of 103 instantiations of R(z) ∈ C6×6 based on the ran-

domised source model in [10]. In this source model, the order

of D(z) is 24 and the order to Q(z) 12, such that the total

order of R(z) is 47. The dynamic range of the source model

is constrained to ensure that in the ensemble the average is

around 25 dB. SBR2 is run with 100 iterations, and at every

iteration step the metrics defined in Sec. 5.1 are recorded, to-

gether with the order of the paraunitary matrices.

5.3. Reconstruction Error

The experiments were repeated for 3 different truncation pa-

rametersµ = {10−6, 10−5, 10−4} for ftrim(·) with the result-

ing reconstruction error ξ shown in Fig. 4. With low iteration

numbers, Q̂(z) is still of low order and there is limited choice

for trimming, but with increased i, the truncation performs

asymptotically to trim Q̂(z) by exactly µ.

With the proposed approach, it was found that µ can be

scaled up by a factor of 5 to reach the same error metric as the

standard truncation, as also shown in Fig. 4. This more ag-

gressive trimming for the same error metrics can be justified

since in the standard truncation to remove whole matrix coef-

ficients at the ends of Q̂(z) leads to larger errors ξ. In con-

trast, the proposed approach will truncate small coefficients

evenly across rows and balance the overall in ξ.

5.4. Truncated Order and Diagonalisation

Using the different truncations µ = {10−6, 10−5, 10−4}
for the standard ftrim(·) and µ′ = 5µ for the proposed

fshift(·), the order of the truncated matrices ftrim(Q̂[n]) and

fshift(Q̂[n]) are shown in Fig. 5. As indicated in the example

in Figs. 2 and 3, the proposed approach achieves a signifi-

cant reduction in the order of the paraunitary matrices after

truncation.
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truncation.

For an application rather than the calculation of the

PEVD, the number of iterations required for SBR2 do not

matter, the performance criteria are the achieved diagonalisa-

tion and the computation cost to implement ftrim(Q̂[n]) and

fshift(Q̂[n]). Fig. 6 shows the achievable average diagonal-

isation from (20) vs. the order of the truncated paraunitary

matrix showing a significant performance advantage for the

proposed truncation over the current approach [12].

6. CONCLUSION

The ambiguity in the paraunitary matrix of a polynomial EVD

w.r.t arbitrary row shifts has been exploited to reduce the or-

der of the factorisation returned by iterative PEVD algorithms

such as SBR2. We have proposed a shift-corrected truncation

that can find a lower order decomposition than state-of-the-

art. The results show that we can achieve the same perfor-

mance metrics as an existing method with a more aggressive

truncation since the overall error is better balanced across all

rows. In the examples the the source model dynamic range is

carefully constrained but when it is greater the performance

gap is larger. When designing PEVD implementations for

real applications on finite wordlength processors, a loss in pa-

raunitarity is inevitable and can be carefully controlled with

the proposed method.

Code for our method, simulations and figures is available

at pevd-toolbox.eee.strath.ac.uk.
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