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Inspiraling compact binaries as standard sirens will become an invaluable tool for cosmology when
we enter the gravitational-wave detection era. However, a degeneracy in the information carried by
gravitational waves between the total rest-frame massM and the redshift z of the source implies that neither
can be directly extracted from the signal; only the combination Mð1þ zÞ, the redshifted mass, can be
directly extracted from the signal. Recent work has shown that for third-generation detectors, a tidal
correction to the gravitational-wave phase in the late-inspiral signal of binary neutron star systems can be
used to break the mass-redshift degeneracy. Here, we propose to use the signature encoded in the
postmerger signal allowing the accurate extraction of the intrinsic rest-frame mass of the source, in turn
permitting the determination of source redshift and luminosity distance. The entirety of this analysis
method and any subsequent cosmological inference derived from it would be obtained solely from
gravitational-wave observations and, hence, would be independent of the cosmological distance ladder.
Using numerical simulations of binary neutron star mergers of different mass, we model gravitational-wave
signals at different redshifts and use a Bayesian parameter estimation to determine the accuracy with which
the redshift and mass can be extracted. We find that for a known illustrative neutron star equation of
state and using the Einstein telescope, the median of the 1σ confidence regions in redshift corresponds to
∼10%–20% uncertainties at redshifts of z < 0.04.
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I. INTRODUCTION

The prospects for gravitational-wave (GW) astronomy in
the era of advanced detectors are promising, with several
detections expected before the end of the decade when
Advanced LIGO [1], Advanced Virgo [2], and KAGRA [3]
become fully operational. Among the sources of GWs
expected to be detected are the inspiral and coalescence
of binary neutron stars (BNSs), neutron star–black hole
binaries, and binary black holes. Population models suggest
that the detection rate of compact binary coalescences for
BNSwill be∼10 yr−1, when Advanced LIGO [4] reaches its
design sensitivity. The results presented in this paper concern
GW detections made with third-generation detectors such
as the Einstein telescope (ET) [5,6], which is expected to
have detection rates ∼3 orders of magnitude greater than
advanced detectors for compact binary systems.

The inspirals of compact binary systems are also known
as standard sirens [7], as their luminosity distance can be
extracted from GWobservations alone, without the need for
any detailed modeling of the source or of the properties of
the media (apart from strong or weak lensing) along the
GW path. This is because the observed amplitude of GWs
during the inspiral phase reaches the detector essentially
unaltered and depends on a small number of parameters,
which can all be measured using a network of GW
detectors. These parameters include the total gravitational
mass and mass ratio of the system, the spins of the compact
objects, the orientation of the binary’s orbital plane with
respect to the line of sight, the source’s position on the sky,
and the luminosity distance to the source. GWobservations
can very accurately measure the signal’s phase evolution,
which depends only on the total mass and mass ratio of a
binary. Simultaneously, a network of detectors can deter-
mine the sky position, GW polarization angle, orbital
inclination, and the distance to the binary. The observed
total mass, however, is not the system’s intrinsic mass M
(i.e., mass as measured in the rest frame of the source) but
the redshifted mass Mz ≡Mð1þ zÞ. This is known as the
mass-redshift degeneracy.
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The mass-redshift degeneracy is detrimental to the
application of GWobservations for cosmological inference.
The relationship of the source’s luminosity distance to its
redshift on cosmological scales is precisely that which
allows us to probe the parameters governing a cosmological
model. Breaking the mass-redshift degeneracy requires an
electromagnetic (EM) identification to tie the source to its
host galaxy and thereby extract the source’s redshift. It was
thought, until recently, that there is no way to infer the
source’s redshift from GW observations alone.
The use of GWobservations to extract information that is

necessary for cosmography [e.g., estimation of the Hubble
parameter and the dark energy equation of state (EOS)] and
astrophysics [e.g., measurement of the masses and radii of
neutron stars (NSs) and the EOS of matter at supranuclear
densities] requires precision measurements of both the
luminosity distance and the intrinsic mass of the source.
The mass-redshift degeneracy forces reliance on EM
identification of host galaxies [8–13], which may be
possible only very rarely. For example, using gamma-ray
bursts or the predicted EM afterglows of NS mergers [14]
for identification of the host galaxy greatly reduces the
available signal population for cosmography and could
potentially lead to observational bias. For gamma-ray
bursts this is because the emission is believed to be strongly
beamed along a jet [15–17], while GWemission is expected
to be approximately isotropic (quadrupolar), and hence,
only a small fraction (∼10−3) of all GW events will have
gamma-ray burst counterparts [10]. Determining the EM
counterparts to binary-black-hole mergers is also a very
active area of research and several simulations have already
been performed in this context [18–22] to provide first
estimates on the properties and energetics of these emissions.
Some authors have explored other approaches to measure

cosmological parameters without the aid of EM counterparts.
These methods fall into two categories. The first relies on the
measurement of the redshifted mass distribution of BNS
systems, which, combined with reasonable assumptions on
the form and width of the intrinsic mass distribution, would
yield an estimate of the Hubble constant [23–26]. A more
robust approach [27], originally proposed by Schutz [7],
uses error regions on the sky derived from multidetector GW
observations to limit the possible number of host galaxies.
The combination of multiple (≳10) GWevents then resolves
the apparent degeneracy between possible Hubble constant
values.
In this paper, we draw attention to an additional feature

of the BNS waveform caused by matter effects that can be
exploited for cosmological inference by third-generation
GW detectors. For BNS systems, there are two signatures
in the GW signal from the late-inspiral and postmerger
stages that depend on the rest-frame source mass and could
potentially provide a measure of the source’s intrinsic mass.
Such a measurement would break the mass-redshift degen-
eracy and help return both the source redshift and the

intrinsic total mass from GW observations alone. The first
effect is concerned with the correction in the orbital phase
due to tidal effects that appear at order ðv=cÞ10 beyond the
leading order in the post-Newtonian approximation to
Einstein’s equations [28], where v and c are the orbital
and light velocities, respectively. This is a secular effect that
becomes important as the two bodies approach each other
and was first proposed as a cosmological tool in Ref. [29].
The second effect occurs in the postmerger stage and causes
a significant departure in the post-Newtonian evolution of
the system. Unless the two stars are not very massive,
the newly formed object is a hypermassive neutron star
(HMNS) [30], which develops a bar-mode deformation,
which can survive even for a fraction of a second
(cf. Fig. A1 of Ref. [31]), delaying the birth of the black
hole and emitting GWs in a narrow frequency range. The
importance of this effect has not yet been considered for
cosmological exploitation.
In this paper, we propose to use the GW signal including

the inspiral phase and the HMNS signature to extract the
intrinsic gravitational masses and the source redshift. The
power spectrum of the HMNS stage of the merger of BNS
systems has been shown to contain prominent spectral
features that vary smoothly in frequency with the total
gravitational mass of the system [32,33]. The inspiral stage
of the waveform can be used to obtain a highly accurate
measurement of the redshifted total mass of the systemMz.
This allows us to constrain the true values of the rest mass
and redshift to a relatively narrow band spanning the full
range of the ðz;MÞ plane (cf. Fig. 4). Independently, the
HMNS stage of the waveform allows us to measure the
redshifted fundamental frequencies of two prominent
spectral features to a reasonable accuracy. Using these
and an empirically determined relationship between the
total gravitational mass of the binary and the rest-frame
fundamental frequencies, we are then able to independently
constrain a second region of the ðz;MÞ plane (cf. Fig. 4).
The localized intersection of the two regions in the ðz;MÞ
plane allows us to break the mass-redshift degeneracy
present in both measurements and make an estimate of the
redshift and gravitational mass of the system. An illus-
tration of this idea is shown in Fig. 1, which can be directly
compared to an example of the results of this analysis
shown in Fig. 4.
The detectability of the HMNS part of the waveform is

not likely to be high for sources observed in advanced
detectors, as these features lie at frequencies significantly
higher than the sensitive bands of ground-based detectors.
We, therefore, explore how we might use the signature of
HMNS in the context of the ET, a third-generation ground-
based interferometric GW detector [5,6]. We also highlight
that the analysis we present here depends on the valid
assumption that the NS EOS will be known accurately via
various methods, including direct GW detection by
advanced GW detectors by the third-generation GW
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detector era. It was shown in Refs. [32,34] that the
determination of the peak frequency in the postmerger
GW signal from a single source will constrain the NS EOS
significantly. It has not been widely discussed in the
literature that in order to do this accurately a host galaxy
must be associated with the source and its redshift
measured so as to infer the unredshifted mass. It is likely
that at least a small number of BNS detections from
advanced detectors will be sufficient to constrain the
EOS, which will then be improved upon by third-
generation detectors. It is expected that a population of
BNS events observed by advanced GW detectors will be
able to measure the EOS quite accurately [35].
The statistical measurement uncertainties in redshift

quoted in this work neglect systematic uncertainties that
could arise due to poorly constrained EOS, in particular, the
dependence of the peak frequencies on the total mass of the
merged object. Such uncertainties could lead to a bias in
redshift measurement that might be comparable to the
statistical uncertainties if it is not possible to accurately

constrain the EOS on the time scale of the ET. We expect,
however, that these uncertainties will be sufficiently
resolved by the time of the ET: It should be possible to
establish an accurate relationship between the mass and
postmerger spectral frequencies both by observations of
nearby events by advanced detectors and the ET and by
more advanced numerical simulations. Finally, we note that
measurements by x-ray satellites, such as the large observa-
tory for x-ray timing (LOFT), could also provide stringent
constraints on the NS EOS by the measurement, using three
complementary types of pulsations, of mass and radius of at
least four NSs with an instrumental accuracy of 4% in mass
and 3% in radius [36].
The rest of the paper is organized as follows: In Sec. II,

we describe the numerical waveforms used for this
analysis. In Sec. III, we describe our robust, but ad hoc,
parametrization and modeling of the HMNS power spec-
trum. In Sec. IV, we describe the analysis methods used to
simulate and measure the HMNS spectral features. We then
describe the procedure with which these measurements are
combined to obtain the redshift and gravitational masses of
the source. Finally, in Sec. V, we conclude with discussions
of our results and future directions for this research.

II. NUMERICAL SIMULATIONS OF BNS SYSTEMS

All of our calculations were performed in full general
relativity. The evolution of the spacetime is obtained by
using the CCATIE code, a finite-differencing code providing
the solution of a conformal traceless formulation of the
Einstein equations [37], with a “1þ log” slicing condition
and a “Gamma-driver” shift condition. The general-
relativistic hydrodynamics equations are solved using the
WHISKY code [30,38], with the Marquina flux formula and
a piecewise parabolic method (PPM) reconstruction. For
the sake of simplicity, we model the NS matter as an ideal
fluid with a gamma-law EOS, p ¼ ðΓ − 1Þρϵ with Γ ¼ 2,
where p is the pressure, ρ the rest-mass density, and ϵ
specific internal energy (see Ref. [39] for details). The grid
hierarchy, with a reflection symmetry condition across the
z ¼ 0 plane and a π-symmetry condition across the x ¼ 0
plane, is handled by the CARPET mesh refinement driver
[40], where we use six refinement levels and the spacing of

FIG. 1. Illustration of how the mass-redshift degeneracy is
broken through the use of information from the inspiral and
HMNS stage of a BNS merger event. Information on the
redshifted mass as a function of the redshift (blue stripe) can
be correlated with complementary information from the spectral
properties of the HMNS phase. The overlap will provide a
localized range in mass and redshift, breaking the degeneracy.

TABLE I. Properties of our initial data of equal-mass BNSs with the initial coordinate separation 45 km. Reported
in the various columns are the baryon mass Mb of each star, the Arnowitt-Deser-Misner (ADM) mass MADM of the
system at initial data, the gravitational mass M∞ of each star at infinite separation (M ¼ 2M∞), the circumferential
radius R∞ of each star at infinite separation, the compactness C≡M∞=R∞, and the orbital frequency forb at the
initial separation.

Mb ½M⊙� MADM ½M⊙� M∞ ½M⊙� R∞ ½GM⊙=c2� C forb [Hz]

1.4237 2.6578 1.3413 11.386 0.117 81 281.80
1.4662 2.7305 1.3784 11.276 0.122 24 284.62
1.5099 2.8049 1.4163 11.158 0.126 93 287.45
1.5549 2.8811 1.4550 11.031 0.131 90 290.29
1.5947 2.9478 1.4890 10.914 0.136 43 292.74
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the finest grid is 0.15GM⊙c−2 ∼ 0.221 km. We extract the
GWs, consisting of a plus and cross polarization and sampled
in time at a rate of Δt ¼ 1.68GM⊙c−3 ∼ 8.27 × 10−3 ms,
equivalent to a sampling rate of ∼121 kHz, at a distance
R0 ¼ 500GM⊙c−2 ∼ 738 km. We analyze only the l ¼
m ¼ 2 mode of GWs, which is the dominant one. As the
initial data, we use quasiequilibrium irrotational BNSs
generated by the multidomain spectral-method code
LORENE [41] under the assumption of a conformally flat
spacetime metric. We consider five equal-mass binaries with
an initial coordinate separation of the stellar centers of 45 km
and polytropic EOS, p ¼ KρΓ with an adiabatic exponent
Γ ¼ 2 and polytropic constant K ¼ 123.6 (in units c ¼
G ¼ M⊙ ¼ 1); details of the different binaries are shown
in Table I. A very important requirement of our sample of
BNSs is that they are only very finely separated in total
gravitationalmass,with differences that are of the order of 2%
only. Producing such a sample at a fixed separation is far
from trivial and has represented a major numerical difficulty,
stretching the capabilities of the LORENE libraries. Once
evolved, the stars perform approximately 3.5 orbits before
merger.

III. FREQUENCY DOMAIN MODELING
OF THE HMNS

In order to perform the parameter estimation described in
Sec. IV, we must first be able to parametrize and model the
HMNS stage of the waveform. Using our five waveforms as
a basis, the current state-of-the-art numerical simulations of
BNS systems do not yet give us the insight and accuracy
required to model the phase evolution of the HMNS
waveform as a function of the system’s mass. This, coupled
with the assumption that there exists a smooth relationship
between the total gravitational mass of the system M and
the frequencies of prominent spectral features, forces us to
model the signal power rather than the complex waveform.
Therefore, in our HMNS analysis, we are insensitive to
information encoded in the phasing of the waveform.
Unless a semianalytic description of the phase evolution
in the HMNS stage is possible; the one adopted here is
probably the only approach feasible.
For each numerical waveform, we perform the following

procedure in order to compute noise-free power-spectrum
reference templates.
The time series for both the plus and the cross

polarizations are preprocessed using a fifth-order high-
pass Butterworth filter with knee frequency at 1 kHz.
A symmetric time-domain Tukey window with α parameter
0.25 (affecting the first and last 4 ms of the time series) is
then applied. This is done to suppress the leakage of power
from the last few cycles of the inspiral and initial merger
stage of the waveform and to cut off the waveform before
the system collapses to a black hole. The discrete Fourier
transform is then computed for each polarization from
which we construct the reference template

T ðfÞ≡ j ~hþðfÞj2 þ j ~h×ðfÞj2
ShðfÞ

≅
2j ~hþðfÞj2
ShðfÞ

; ð1Þ

where ShðfÞ is the noise spectral density of the detector,
which we choose to be that of the ET-B [42] design [43].
Note that since we are taking the signal power, and the
preprocessing steps suppress frequency-domain artifacts
from the finite duration signals, the plus and cross power
contributions are approximately equal. We make no
assumptions regarding the polarization or source-detector
orientation of a potential signal in this construction. For the
ET colocated detectors, arbitrary values of these parameters
serve only to scale the overall amplitude of the waveform.
Visual inspection of these reference templates as a

function of frequency, shown in Fig. 2, allows us to clearly
identify the two primary spectral features of interest. The
first feature, at frequencies ≈1.2–1.6 kHz, is approximately
Gaussian in profile and moves to higher frequencies for
higher mass systems. In contrast, the second feature, at
frequencies ≈1.7–3 kHz, appears to be best described by a
sloping trapezoid with rounded shoulders and a central
frequency and bandwidth that also grows with increasing
system mass. In addition, there appears to be a third power
component at low frequencies, i.e., ≤ 2 kHz, that becomes
more dominant as the system mass increases. A reasonable
approximation to this third feature is a second Gaussian of
lower amplitude and greater variance than that used to
model the first feature. For the purposes of this work, this
third feature is included only to improve the quality of our
model fitting. Mathematically, our entire ad hoc model of
the waveform power spectrum can be expressed as

1.0 1.5 2.0 2.5 3.0 3.5
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FIG. 2. The normalized power-spectrum reference templates
[Eq. (1)] for each of the five system masses as a function of
frequency (black lines). Also plotted are the best-fit model
templates defined in Eq. (2) (red dashed lines).
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Sðf; λÞ ¼ S−1h ðfÞ½A1e−ðf−F1Þ2=W2
1 þ A3e−ðf−F3Þ2=W2

3

þ Aðf;A2a; A2b; F2;W2Þγðf;F2;W2; sÞ�; ð2Þ

where A1 and A3 are amplitude terms with F1; F3 and
W1;W3 as central frequencies and half-widths (standard
deviations), respectively, of the Gaussian features. The
template is whitened using the detector noise spectral
density as is done for the reference template. We also define

Aðf;A2a; A2b; F2;W2Þ≡ 1

2W2

½ðA2b − A2aÞðf − F2Þ

þW2ðA2b þ A2aÞ�; ð3Þ

which is a linear slope of amplitude A2a for f ¼ F2 −W2

and amplitude A2b for f ¼ F2 þW2. Finally, the function

γðx;F2;W2; sÞ≡ 1

1þ e−ðf−F2þW2Þ=s −
1

1þ e−ðf−F2−W2Þ=s

ð4Þ

is the difference between two simple sigmoid functions,
which serves to bound our model of the second spectral
feature component between the frequencies F2 �W2 with
a smooth transition from zero to unity over a fixed
frequency range controlled by the parameter s. This ad
hoc template is therefore described by the 11-dimensional
parameter vector λ≡ ðA1; A2a; A2b; A3; F1; F2; F3;W1;
W2;W3; sÞ.
We employ a simple least-squares fitting procedure to

obtain our best-fit parameters λ0ðMÞ for each system mass.
In all cases, there are restrictions on the allowed parameter
space ensuring that (a) A2a > A2b, such that the slope of the
second spectral feature is negative, (b) F3 < F2, such that
the third (Gaussian) spectral feature is restricted to the
lower frequencies, and (c) the smoothing length s < W2=5,
such that the smoothed transition regions of the second
feature account for less that 10% of the total feature
width. As can be seen from Fig. 2, our choice of model
and parameter restrictions provides a reasonable fit to the
numerical data across our range of masses. We note that the
quality of fit does begin to deteriorate at higher masses.
This is due to the fact that, as the mass of the binary
increases, the HMNS is further away from a stable
equilibrium and its dynamics is much more violent; in
particular, the bar-deformed object rapidly spins up via the
copious emission of GWs, leading to a very broad spectrum
for the F2 frequency.
The model fit depends on the parameter set λ, but we

are only truly interested in a measure of the characteristic
frequencies corresponding to the two dominant spectral
features. For the lower-frequency Gaussian feature, we
choose to use the central frequency of the corresponding
fit F1 as this measure. For the higher-frequency, less
symmetric, second feature, we choose to define its

characteristic frequency as the average frequency within
the bandwidth of the second feature weighted by our
best-fit power model. This choice is made in an attempt
to more robustly track the location of the power of the
second feature. Hence, the lower and upper characteristic
frequencies are defined as

f1 ≡ F1; ð5aÞ

f2 ≡
R
∞
0 Aðf;A0

2a; A
0
2b; F

0
2;W

0
2Þγðf;F0

2;W
0
2; s

0ÞfdfR∞
0 Aðf;A0

2a; A
0
2b; F

0
2;W

0
2Þγðf;F0

2;W
0
2; s

0Þdf : ð5bÞ

Taking the best-fit parameters for each system mass and
computing the corresponding f1 and f2 values, we indeed
validate the initial hypothesis that there is a smooth
relationship between these values and the total gravitational
mass of the system. This relationship is shown in Fig. 3,
where we plot total gravitational mass versus f1 and f2.
Also plotted are the following best-fit second and first-
order polynomials for f1 and f2, respectively, and whose
expressions in Hz are

f1ðMÞ ¼ 1331þ 992ΔM þ 2538ΔM2; ð6aÞ

f2ðMÞ ¼ 2087þ 2018ΔM; ð6bÞ

where ΔM=M⊙ ≡M=M⊙ − 2.8. In all cases, the residuals
from this polynomial fit are < 50 Hz. These functions
represent our empirically determined relationship between

1.0

1.5

2.0

2.5

3.0

2.70 2.80 2.90 3.00

f
(k

H
z)

M (M )

f1

f2

FIG. 3. Measured best-fit values of f1 and f2 versus the total
system mass (solid black circles). The vertical gray bars on the
lower-frequency spectral feature represent the standard deviation
of the Gaussian fit at each mass value (not the measurement
uncertainty). The corresponding bars on the higher-frequency data
represent the total frequency span of the feature. The blue curves
and the red curves show the least-squares fit to f1 and f2 for a
second- and first-order polynomial, respectively [given in Eq. (6)].
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the characteristic frequencies of the two spectral features
and the total gravitational mass. The phenomenological
frequencies so obtained essentially track the eigenfrequen-
cies of the HMNS, which has recently been shown to
behave as an isolated, self-gravitating system, whose
dynamics can be described as a superposition of different
oscillation modes (see Ref. [44] for details).
Some remarks are worth making. First, Eq. (6) is clearly

tuned to our choice of EOS, but equivalent expressions
can be derived for any EOS [33]. Second, the functional
dependence of the frequencies on the total mass of the
system is only weakly dependent on the mass ratio; as a
result, although our simulations refer to equal-mass systems,
we expect the functions (6) to also be a good approximation
for unequal-mass binaries (see also Ref. [32], where this
is discussed in detail). Finally, as anticipated in the
Introduction, the importance of the relations (6) is that they
can be employed to break the mass-redshift degeneracy.

IV. ANALYSIS OF THE DATA

We now describe how we simulate the occurrence
and subsequent measurement of BNS signals in third-
generation GW detectors. We separate this process into two
parts. The first is the simulation and measurement of the
redshifted characteristic frequencies of the HMNS spectral
features in the presence of Gaussian detector noise. The
second is the independent measurement of redshifted mass
parameters using the inspiral stage of a BNS waveform.
We then show how these measurements can be combined to
infer the gravitational mass and redshift of a source using
the results of the previous section.

A. Measurement of the HMNS phase

The numerical waveforms comprise time series of the
plus and cross polarizations of the GW signal at a distance

of R0 ¼ 500M⊙, which we label hð0Þþ ðtÞ and hð0Þ× ðtÞ,
respectively. Using these data, we are able to simulate
waveforms from BNS systems with arbitrary orientations,
sky position, GW polarization, phase, and redshift.
We first compute the relarizations

~hþðf; zÞ≡ R0

DLðzÞ
~hð0Þþ ½fð1þ zÞ�; ð7aÞ

~h×ðf; zÞ≡ R0

DLðzÞ
~hð0Þ× ½fð1þ zÞ�; ð7bÞ

where DL is the luminosity distance and is a function of
the redshift z and a choice of cosmological parameters.
We use a standard cosmological model described by the
parameters h0 ¼ 0.71,Ωm ¼ 0.27, andΩΛ ¼ 0.73. In order
to evaluate these waveforms at arbitrary redshifted frequen-
cies we use a cubic spline interpolation scheme on the

overresolved discrete Fourier transform of the original time
series data.
To simulate GWs with arbitrary sky positions, inclina-

tion, and polarization parameters, we take the numerically
generated plus and cross waveforms and apply antenna
response and inclination-dependent functions such that the
signal at the detector is

~hiðfÞ ¼
�
1

2
FðþÞ
i ðϕ; θ;ψÞð1þ μ2Þ ~hþðfÞ

þ Fð×Þ
i ðϕ; θ;ψÞμ ~h×ðfÞ

�
e−iφ; ð8Þ

where ϕ; θ;ψ are the source right ascension, declination,
and polarization angles, respectively. The cosine of the
inclination angle is given by μ and we apply an arbitrary
constant phase factor φ. Explicit definitions of the antenna

patterns Fðþ=×Þ
i , for the ET detector (where i indexes the

three ET interferometers) can be found in Ref. [12].
Independent Gaussian noise ~niðfÞ of spectral amplitude
matching the ET-B noise curve is then added to the
frequency-domain waveforms corresponding to each ET
interferometer. The simulated data are then

~diðfkÞ ¼ ~hiðfkÞ þ ~niðfkÞ; ð9Þ
where i indexes the ET interferometers and k the discrete
frequency grid on which the waveform has been evaluated.
This grid is defined by the length and sampling time of the
original numerical waveforms such that the frequency
resolution Δf ¼ ðNΔtÞ−1 ¼ 31.2118 Hz and only the 86
frequencies between 800 and 3.5 kHz are included.
At this point, we apply a fifth-order high-pass Butterworth

filter to the data with knee frequency 1 kHz and a time-
domain Tukey window with α parameter 0.25. We therefore
treat the data in exactly the same way as is done in the
template generation procedure and for the same reasons,
namely, to minimize contributions to the signal power from
the last few cycles of the inspiral and merger. It is also
important to perform this filtering after the waveform has
been redshifted and noise has been added, since in this way,
any spectral features resulting from this preprocessing will
not show any artificial cosmological dependence.
We define the detector noise weighted power as

PðfkÞ≡ 4
X3
i¼1

j ~diðfkÞj2
SðiÞh ðfkÞ

Δf: ð10Þ

At any given frequency, this power is governed by a
noncentral χ2 distribution with 6 degrees of freedom.
The noncentrality parameter of this distribution is given
by the squared optimal SNR in that frequency bin,

ρ2ðfkÞ≡ 4
X3
i¼1

j ~hiðfkÞj2
SðiÞh ðfkÞ

Δf ≅ Sðfk; λÞ; ð11Þ
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which is approximately equal to our power-spectrum
template defined by Eq. (2). We note that the freedom in
our choice of amplitude parameters in the template allows
us to use an equality rather than a proportionality in the
above relationship. It then follows that the likelihood can
be written as

pðfPgjλÞ ¼
YL
k¼1

�
PðfkÞ

2Sðfk; λÞ
e−½Sðfk;λÞþPðfkÞ�=2

× I2½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðfkÞSðfk; λÞ

p
�
�
; ð12Þ

where I2 is the second-order modified Bessel function of
the first kind and L is the total number of frequency bins.
We note that our template is now sensitive to the redshifted
frequencies present in the data and not the intrinsic
frequencies. Therefore, we define a redshifted parameter
vector λz containing the same amplitude parameters as λ,
but with the frequencies Fj;z ≡ Fj=ð1þ zÞ, Wj;z ≡Wj=
ð1þ zÞ, and sz ≡ s=ð1þ zÞ. Consequently, our parameters
of interest become the redshifted characteristic frequen-
cies fj;z ≡ fj=ð1þ zÞ.
Next, we apply a nested-sampling algorithm [45] to the

data to provide samples from the posterior distributions
of the λz parameter set. We assume uniform priors on all
parameters and use output posterior samples to generate
posterior samples of the redshifted frequencies f1;z and
f2;z. These samples represent the posterior probability
distribution function (PDF) pðfj;zjfPgÞ. We keep the prior
parameter ranges of λz constant for all simulations and,
therefore, treat each simulation identically, independent
of system mass and redshift. The range of our priors are
given in Table II, where we also define the additional
constraints that the amplitude of the first feature must be
greater than that of the third feature, the slope of the
second feature must be negative, and, finally, the smooth-
ing length sz must be less than 10% of the total width of
the second feature.
The resultant typical measurement uncertainties in f1

and f2 for each simulated system as a function of redshift
are given in Table III. These intermediate results show, as
expected, that the accuracy of measurement (reported in
brackets) is Oðfew%Þ and decreases with increasing dis-
tance. It is also clear that there is a mild trend toward higher

percentage uncertainties in higher-mass systems and that
the percentage errors in frequency are comparable between
the two spectral features.

B. Measurement of the inspiral phase

We treat the measurement of the inspiral stage of the
waveform separately from the numerical simulations of the
HMNS stage. At the redshifts relevant for the ET detector,
the SNR from a BNS inspiral signal is

hρi ≈ 80z−1; for z < 1; ð13Þ

after averaging over sky position, polarization, and incli-
nation angles. We ignore the use of tidal information in
the inspiral stage for redshift inference (we discuss this
in Sec. V). Measurement of just the inspiral phase of the
signal allows us to infer the redshifted total mass Mz, but
not the gravitational mass or redshift separately. Given
that the SNR is going to be very high, the redshifted-mass
parameters will be very well constrained from the inspiral
phase alone. To quantify the accuracy of this measure-
ment, we use a Fisher-matrix approach, which is a good
approximation when the SNR is large and identical to
that used in previous work on GW parameter estimation
[46,47]. We consider as our signal model the frequency-
domain stationary phase approximation of a nonspinning
BNS inspiral signal, correct to 3.5 post-Newtonian order.
It follows that the redshifted chirp massMz ≡Mzν

3=5 and
symmetric mass ratio ν≡m1m2=M2, wherem1 andm2 are
the component masses, have fractional measurement
uncertainties of ΔMz=Mz ≈ 5 × 10−6ðz=0.1Þ and Δν=ν ≈
10−3ðz=0.1Þ for z < 1. This corresponds to a fractional
uncertainty in the redshifted total mass of

ΔMz

Mz
≈ α10−3

�
z
0.1

�
; ð14Þ

which is dominated by the uncertainty in the symmetric
mass ratio of the system. In subsequent use of this
expression, we do not assume that the system consists
of equal component masses. We also include a constant
scale factor α and take a conservative approach by setting
it equal to 10, therefore overestimating the measurement
uncertainty of the redshifted total mass.
In contrast to the HMNS stage, our analysis of the

inspiral stage is quite simplistic. Given one of our original
set of five numerically evolved binary systems and a choice
of redshift, we assume a Gaussian uncertainty in the
measurement of Mz based on our Fisher-matrix result.
We then draw a random Gaussian variable M0

z, with mean
equal to the original redshifted total mass and a standard
deviation governed by Eq. (14) with α ¼ 10, where a prime
stands for the measured mass, which includes the meas-
urement uncertainty, as opposed to the true redshifted total
mass Mz. The corresponding likelihood function is then a

TABLE II. The range of priors of the model parameters used in
the calculation of the posterior distributions on λz. Additional
prior constraints defined by A1;z > A3;z, A2a > A2b, and sz <
W2;z=5 are also applied.

A1 A2a A2b A3 F1;z F2;z F3;z W1;z W2;z W3;z

Min 0 0 0 0 1100 1700 800 30 150 30
Max 100 100 100 100 1600 2700 1500 150 500 500
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Gaussian with the same standard deviation and mean equal
to the randomly drawn Mz value.

C. Inference in the ðz;MÞ plane
Starting with the measurement of the inspiral phase

described in the previous section, we write the joint
posterior PDF of the total gravitational mass and redshift as

pðz;MjM0
zÞ ∝ exp

�
− ðM0

z −Mð1þ zÞÞ
2ðΔMzÞ2

�
: ð15Þ

In the ðz;MÞ plane, this defines a narrow “stripe” of
probability spanning a region that extends from high
masses at low redshift to low masses at high redshift
(see the negatively sloped blue curve in Fig. 1). We assume
flat prior distributions for M and z.
For the HMNS measurement, the following procedure is

applied to each spectral feature indexed using j. We note
that any given redshift and total gravitational mass of a
BNS system defines a specific point in the ðz;MÞ plane.
From Eq. (6), we can determine the intrinsic characteristic
frequency of the spectral feature in question at this value
of M. We can also calculate the corresponding redshifted
characteristic frequency using the relation fj;z ¼ fj=
ð1þ zÞ. The probability density associated with obtaining
any particular value of fj;z, hence, that particular ðz;MÞ
pair, is given by the marginalized posterior PDF,
pðf1;zjfPgÞ, obtained from our analysis of the HMNS
data described in Sec. IVA. We can, therefore, write

pjðz;MjfPgÞ ∝ p

�
fj;z ¼

fjðMÞ
ð1þ zÞ

				fPg
�
: ð16Þ

This function describes an arc of probability in the ðz;MÞ
plane that sweeps almost orthogonally to that obtained
from the measurement of the inspiral phase. An increase

in the observed redshifted frequency can be obtained via
either an increase in the total mass of the binary or a
decrease in redshift of the source. Consequently, a high-
redshift high-mass system will generally have similar
redshifted characteristic frequencies to a low-redshift
low-mass system.
Combining the information from both spectral features

and the inspiral phase of the signal and assuming
statistical independence, the final joint posterior distribu-
tion of z and M is simply the product of all three
distributions:

pðz;MjM0
z; fPgÞ ∝ pðz;MjM0

zÞ
Y2
j¼1

pjðz;MjfPgÞ: ð17Þ

We show examples of joint posterior probabilities of z and
M for all five systems studied, and for multiple redshift
values, in Fig. 4. These examples mirror the original
conceptual sketch in Fig. 1, where we can see how, in
practice, the mass-redshift degeneracy is broken through
the use of the spectral properties of the HMNS GW
signal. For sources at redshifts z ¼ 0.01–0.04, the uncer-
tainty in the measurement of the redshift is Δz∼
10%–20%, over the full range of simulated system
masses. In addition, the gravitational mass can be mea-
sured with fractional errors of <1% in all cases. It can be
seen that the choice of overestimating the total mass
uncertainty by using a scale factor α ¼ 10 does not
strongly influence our results. The joint posteriors shown
in Fig. 4 indicate that, due to the correlation between
redshift and chirp mass, had the inspiral measurement
been more accurate, the marginalized results on total
gravitational mass and redshift would be only slightly
improved.
In Tables IV and V, we give representative values for the

fractional uncertainty on the measured redshift and total

TABLE III. The absolute measurement uncertainties in the redshifted characteristic frequencies of the dominant
HMNS spectral features. The corresponding percentage uncertainties are given in brackets. We show pairs of results
in units of Hz for f1 (upper rows) and f2 (lower rows) for each redshift and for each of the five total gravitational
masses. Each value represents half of the span of the 68% confidence region on the frequency measurement
averaged over 100 different noise realizations, source, and sky orientations.

Total gravitational mass MðM⊙Þ
z 2.6827 2.7567 2.8325 2.9101 2.9781

0.01
6.86 (0.6) 7.74 (0.6) 5.82 (0.4) 5.03 (0.3) 6.03 (0.4)
4.80 (0.3) 7.11 (0.4) 8.10 (0.4) 10.22 (0.4) 17.61 (0.7)

0.02
11.84 (1.0) 14.59 (1.1) 13.87 (1.0) 11.74 (0.8) 16.26 (1.0)
12.87 (0.7) 18.66 (1.0) 25.37 (1.2) 30.87 (1.4) 52.54 (2.2)

0.03
19.91 (1.6) 22.50 (1.8) 22.91 (1.7) 22.72 (1.6) 47.93 (3.1)
26.48 (1.5) 33.60 (1.7) 51.82 (2.5) 55.87 (2.5) 101.56 (4.3)

0.04
35.09 (2.9) 38.77 (3.1) 34.47 (2.6) 37.21 (2.6) 67.41 (4.4)
44.37 (2.5) 54.92 (2.9) 86.99 (4.2) 84.77 (3.8) 120.85 (5.1)
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gravitational mass, as a function of their true simulated
values. These uncertainty estimates are obtained by mar-
ginalizing the joint distribution pðz;MjM0

z; fPgÞ over the
total mass to obtain pðzjMz; fPgÞ and over the redshift to
get pðMjMz; fPgÞ. From these marginalized distributions,
we compute our representative uncertainties as half of
the minimum interval to contain 68% of the total proba-
bility (analogous to the 1σ uncertainty for a Gaussian
distribution).
We observe in Table IV that the general trend in the

accuracy of redshift estimation is relatively insensitive
to total system mass, but as we would expect, we see a
deterioration in accuracy for more distant sources. The
same can be seen in Table V for the estimation of the
total gravitational mass. A notable feature of our results
is that the redshift and mass accuracies are clearly

dominated by the measurement of the second feature at
low masses and by the first feature at higher masses.
One might expect the more localized first feature to
always dominate. However, the ability to infer a mass
from a redshifted frequency measurement using the
relationship between the gravitational mass and the
spectral feature frequency [Eq. (6)] is sensitive to
the gradient of that relation in addition to the SNR
of each feature. For lower masses, it is clear from Fig. 3
that mass measurements inferred from uncertain fre-
quency measurements will have correspondingly larger
uncertainties when the gradient of fjðMÞ is lower.
This is the case for the first spectral feature at lower
masses and the reason why this analysis requires
numerical waveform simulations with such closely
spaced mass values.

FIG. 4. The joint posterior distributions on the redshift and total gravitational mass of the BNS system for single representative
realizations of noise and system parameters. Each row of plots represents a simulated signal of one of the five system masses (see
Table I) ranging from low (bottom row) to high (top row) mass. Columns represent different simulated redshifts ranging from 0.01
(left) to 0.04 (right) in steps of 0.01. The green, blue, and red contours represent the posterior contributions from the inspiral
measurement, the first HMNS spectral feature, and the second HMNS spectral feature, respectively. The black contours represent the
final posterior distribution combining all measurements, and the black dots indicate the true simulated redshift and total mass values.
In all cases, the contours enclose 68% of the probability. Overlapping regions have been filled according to the additive color system
with the exception that regions outside all contours and the full interior of the final posterior contour have been left blank for clarity.
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V. CONCLUSIONS

A well-known problem of the detection of GW from
compact-object binaries at cosmological distances is the
so-called mass-redshift degeneracy, namely, that GW mea-
surements allow the determination of the redshifted mass
Mz ¼ Mð1þ zÞ, but not the gravitational mass M or the
redshift z separately. GW observations allow the measure-
ment of the luminosity distance, but this degeneracy restricts
the cosmological application of GWobservations, since it is
the relation between the source’s luminosity distance and
its redshift that allows us to probe cosmological models.
Until recently, it was thought that coincident EM and GW
observations would be required to break the mass-redshift
degeneracy, as EM observations would allow the host galaxy
to be identified and the source’s redshift measured. In this
paper, we describe a novel approach to this problem that
does not require an EM counterpart but does anticipate
knowledge of the NS EOS and exploits instead the infor-
mation encoded in the HMNS stage of a BNS waveform to
break the mass-redshift degeneracy.
We describe how, with the use of five numerically

generated BNS waveforms of very slightly differing mass,
we are able to construct frequency-domain power-spectrum
reference templates. The templates are designed to capture
the evolution of two primary spectral features in the HMNS
stage of the waveforms, as a function of the total gravi-
tational mass. The characteristic frequencies of these
spectral features are then fitted to polynomial functions

of mass providing us with an ad hoc approximation to the
characteristic frequencies for any mass. A Bayesian infer-
ence method is used to test the ability of the ET to measure
the characteristic frequencies in the HMNS stage of the
signal. These frequency measurements are coupled with
our precomputed, empirical, frequency-mass relation and a
measurement of the redshifted mass from the inspiral phase
of the signal, allowing us to determine both the redshift
and gravitational mass separately.
We have shown that in an analysis based on the signal’s

power spectrum, and ignoring all phase information within
the HMNS stage, the measurement uncertainties in the
redshift of sources at z ¼ 0.01–0.04 are ∼10–20%, over the
full range of simulated system masses. In addition, we find
that the gravitational mass can be measured with fractional
accuracies of<1% in all cases. The SNR of the signals used
in our simulation (after high-pass filtering and windowing)
have mean (maximum) values ranging from 5.5 (12) for
z ¼ 0.04 to 23 (50) for z ¼ 0.01 [48].
We stated earlier that the use of GW observations

for astrophysical measurements such as the masses and
radii of NSs requires precision measurements of both the
luminosity distance and the intrinsic mass of the source.
For the former, it has been correctly approximated that for
BNS sources seen as coincident with gamma-ray bursts,
the fractional uncertainty in luminosity distance is
approximately equal to the inverse of the SNR [10,12].
However, in general, as shown in Ref. [11], strong
correlations with the inclination angle of the binary can

TABLE V. The percentage measurement uncertainties on the total gravitational mass of a BNS source. We show results for each of
our five different mass systems and for each of four different redshifts. The details are identical to those given in Table IV.

Total gravitational mass MðM⊙Þ
z 2.6827 2.7567 2.8325 2.9101 2.9781

0.01 0.38 0.07 0.06 0.24 0.10 0.09 0.13 0.10 0.07 0.09 0.13 0.07 0.08 0.20 0.07
0.02 0.78 0.18 0.17 0.50 0.26 0.22 0.33 0.32 0.22 0.21 0.39 0.18 0.24 0.63 0.22
0.03 1.06 0.38 0.33 0.80 0.48 0.40 0.53 0.62 0.41 0.42 0.73 0.36 0.79 1.04 0.55
0.04 1.24 0.61 0.58 1.03 0.72 0.60 0.80 0.93 0.60 0.68 0.98 0.55 0.87 1.11 0.71

TABLE IV. The percentage measurement uncertainties on the redshift of a BNS source. We show results for each of our five different
mass systems and for each of four different redshifts. We give three fractional redshift uncertainties for each combination. The first and
second entries correspond to results using the inspiral measurement plus the first and second spectral features, respectively. The third
result (in bold face) is from a combination of the inspiral measurement and both spectral features. We have performed analyses of 100
different noise realizations, source, and sky orientations for each redshift and mass combination. For each realization, we compute a
quantity equal to half of the span of the 68% confidence region on the redshift measurement. The quoted value is the median of this
quantity over the 100 realizations.

Total gravitational mass MðM⊙Þ
z 2.6827 2.7567 2.8325 2.9101 2.9781

0.01 39.1 7.8 7.5 24.6 10.6 9.7 13.5 11.2 8.5 9.6 13.8 7.9 9.4 20.7 8.7
0.02 40.4 10.0 9.2 25.7 13.9 11.6 17.5 16.5 11.9 11.6 20.6 10.1 13.4 32.8 12.0
0.03 37.5 13.6 11.6 28.1 17.1 14.2 18.8 21.3 14.7 15.0 25.0 13.0 29.1 36.4 19.6
0.04 31.8 15.3 14.9 26.8 19.1 15.8 21.2 23.5 15.7 18.6 26.4 15.1 23.7 30.5 19.4
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lead to luminosity distance uncertainties of ∼10%–60%.
Concerning the measurement of the intrinsic mass of the
binary, the breaking of the redshift-mass degeneracy in our
results highlights the problem of accurate gravitational mass
measurements for the advanced detectors. Without the
potentially rare EM identification of a host galaxy, advanced
detectors have access to only the redshifted mass, which if
used uncorrected will result in a systematic bias in the
measurement of total mass of up to 5% for advanced and
>100% for proposed third-generation detectors.
We have specifically ignored the tidal effects in the late

inspiral phase that have been previously shown to be useful
in redshift measurements. This choice was made to simplify
our analysis and clearly identify the potential of this new
technique. It is encouraging to find that both approaches
have comparable redshift sensitivities of ∼Oð10%Þ, imply-
ing that a combination of their results will improve the
overall redshift estimate.
Under the expectation that there is a single universal NS

EOS, it is highly likely that by the time of the ET the NS
EOS will be tightly constrained via various observations,
including direct GW detections from the advanced GW
detectors. We limit our study to a single EOS, but based on
previous studies [32,49], we expect that the general result
holds well for all realistic possibilities. Of primary interest
here is the general concept that there exists an additional
“matter effect” found in the HMNS stage of the waveform
that can provide frequency markers from which redshift
information can be obtained.
We stress that this analysis is one of the first attempts

to perform parameter estimation on the HMNS stage of
BNS signals. While the numerically generated waveforms
and Bayesian parameter estimation techniques used here
represent current levels of sophistication in both fields, our
analytic signal model approximation and mass-frequency
fitting are necessarily simplistic. We expect that prior to the
era of third-generation GW detectors, the understanding of
BNS mergers through numerical relativity and direct GW
detections will enable us to significantly enhance our ad
hoc models. In the future, a significant improvement in the
accuracies of redshift measurements using the HMNS stage
could become possible if a realistic model of the phase
evolution were constructed. In such a scenario, an analysis
of the type presented here may be applicable to signals
found in the advanced GW detectors.
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