
1

Simultaneous Camera Path Optimization and
Distraction Removal for Improving Amateur Video

Fang-Lue Zhang, Member, IEEE, Jue Wang, Senior Member, IEEE,
Han Zhao, Ralph R. Martin, Member, IEEE, Shi-Min Hu, Member, IEEE

Abstract—A major difference between amateur and professional video lies in the quality of camera paths. Previous work on video stabilization has
considered how to improve amateur video by smoothing the camera path. In this paper, we show that additional changes to the camera path can
further improve video aesthetics. Our new optimization method achieves multiple simultaneous goals: (i) stabilizing video content over short time
scales, (ii) ensuring simple and consistent camera paths over longer time scales, and (iii) improving scene composition by automatically removing
distractions, a common occurrence in amateur video. Our approach uses an L

1 camera path optimization framework, extended to handle multiple
constraints. Two-passes of optimization are used to address both low-level and high-level constraints on the camera path. Experimental and user
study results show that our approach outputs video which is perceptually better than the input, or the results of using stabilization only.

Index Terms—Camera path, cinematography, distraction

F

1 INTRODUCTION

Consumer camera hardware has developed rapidly, and the built-
in cameras on recent mobile devices are capable of capturing high
resolution video with high frame rates; this previously required
high-end professional cameras. However, a significant gap remains
between many amateur videos and professional ones, in the quality
of the camera paths achieved (i.e. how the camera is moved and
zoomed to capture the scene). The camera path of a professional
video is usually carefully planned beforehand, and precisely ex-
ecuted with the support of hardware such as dollies and tracks.
In contrast, many amateur videos are taken spontaneously without
planning, and without hardware support. Most amateurs lack the
skills to carefully design a camera path for a specific scene.
Furthermore, even with planning, unexpected, unwanted events
can occur within the scene.

Such amateur camera paths can detract from the output video.
Firstly, hand shake can cause video content to jitter, making
it hard to watch, a problem that has been extensively studied:
various video stabilization approaches have been proposed [1],
[2], [3]. Secondly, the camera path may contain motions over
longer timescales that are undesirable these are often caused by
low-frequency body motions of the cameraman such as walking.
However, current stabilization techniques generally preserve low-
frequency motions, as these may correspond to actions such as
panning: see Gleicher and Liu [4]. Finally, amateur camera paths
often exhibit sub-optimal scene composition. For instance, the
main subject of the video may drift off-center as the camera
moves. It is also not uncommon for unwanted objects to enter
the scene unnoticed by the videographer, but causing a distraction

• Fang-Lue Zhang is with TNList, Dept. Computer Science, Tsinghua Uni-
versity, FIT 3-524, 100084.
http://cg.cs.tsinghua.edu.cn/people/ fanglue/

• Fang-Lue Zhang, Han Zhao and Shi-Min Hu are with Tsinghua University.
Jue Wang is with Adobe Research. Ralph R. Martin is with Cardiff
University. Shi-Min Hu is the corresponding author.

to the viewer, e.g. an irrelevant dog may run by in the background
when filming a child playing.

While video stabilization has been extensively studied, little work
has considered how to resolve a wider range of issues by re-
planning the camera path, especially in terms of improving scene
composition and removing distractions. Furthermore, such issues
have been considered in isolation. In this paper, we give an inte-
grated solution for resolving all these issues simultaneously, using
a novel camera path optimization approach which incorporates
multiple constraints. Our system automatically detects distractions
that draw the viewers’ attention from the main objects in the
video, allowing distractions to be eliminated. To improve motion
quality, we segment the camera path into coherent pieces and fit
a high quality motion element of the kind used in professional
video to each segment. We significantly extend the original L1

optimization framework in [2] to incorporate these additional
constraints as well as stabilization.

Performing this task requires consideration of the camera path
at different levels. Distraction removal and content stabilization
can be addressed locally by examining sequences of consecutive
frames. Optimizing the complete set of motion segments requires
a global analysis of all camera motions. We thus use a two-
pass optimization approach which handles constraints at different
levels. We first apply low-level optimization to perform content
stabilization, and distraction detection and removal, yielding a
modified camera path. We then further analyze this modified path,
dividing it into segments and fitting a motion model to each
segment. Finally, we incorporate all constraints and the fitted
models in a further optimization pass. This produces a final,
steady, high quality camera path which avoids distractions and
improves scene composition, at the same time as maximizing final
scene coverage.

We have conducted a user study to analyze the perceptual quality
of our results, by comparing them to (i) the input video, (ii) the
results of a stabilization approach, and (iii) the results of a reduced
version of our approach which omits the second optimization

2

Distraction Detection

Camera Motion Estimation

Remove unreliable
feature points

Add constraints to
avoid distractions

Path Optimization

Low-level Optimization

High-level Optimization

Original Video Result

Fig. 1. Algorithm overview.

pass. This study showed that our method significantly improves
the aesthetic quality of video, and produces better results with
higher quality camera paths than either stabilization or low-level
optimization alone.

2 RELATED WORK

We now briefly review related methods concerning appearance
enhancement and camera path improvement.

Appearance enhancement. Video enhancement methods mainly
focus on manipulating existing visual content in the video, without
paying attention to the camera motion. Algorithms have been
proposed for several tasks. Wexler et al. [5] and Stengel et
al. [6] give a video completion method to remove undesirable
objects in video by texture synthesis, but do not suggest how
to detect distracting objects to remove. Many low-level methods
exist, such as the one in [7] [8], which refines blurry frames of
input video using a patch-based method, but they cannot improve
video quality in terms of composition, unlike our method. Other
work on video stylization [9] and abstraction [10] also provide
enhanced appearance, but such methods just keep the structure of
the original video, and do not improve the planning of the video.

Video stabilization. A second category of techniques focuses
solely on camera path recovery and re-planning for visual quality
improvement; our work belongs to this category. Video stabiliza-
tion concerns removal of high-frequency motions typical of hand-
held cameras, and has been extensively studied. Early approaches
used temporal filters to smooth the 2D motion recovered from the
trajectories of feature points [11]; inpainting is often needed to fill
unrecorded content due to changes in the camera path [12]. Robust
feature tracking can improve stabilization results [13]. Recent ap-
proaches, such as subspace stabilization [1], L1-optimization [2],
and bundled camera path optimization [3] can handle complex
cases involving significant scene parallax and rolling shutter
effects. However, these methods solely smooth the camera path
to remove high-frequency camera jitter. They do not consider
removing undesirable lower-frequency motion components of the
original camera path such as up-and-down motions caused by the
cameraman walking.

Re-cinematography. To improve the camera path beyond low-
pass filtering, Gleicher et al. [4] fit camera motion models of
the kinds used in professional cinematography to camera paths
extracted from amateur video. Liu et al. explicitly reconstruct
and optimization the camera path in the 3D space. Our goals
are similar in terms of path optimization, but their approach is
not flexible enough to allow other additional constraints, such

as avoiding distracting objects. Grundmann et al. [2] use an
L1-optimization framework to compute a smoothed camera path
composed of steady segments with smooth in-between transitions.
Their focus is still on stabilization. They do not analyze the visual
content and quality of the resulting paths, which is our main
concern. Preserving visually salient content in the original video
has been given limited consideration in previous stabilization
methods [4], [14], and these approaches do not consider distraction
detection and removal, a further goal of our method.

Video aesthetics. We aim not just to stabilize the video, but also to
improve its aesthetic qualities by removing distractions and unde-
sirable low-frequency motions. Salient object detection is a basic
step for many object-level aesthetics improvement approaches,
pioneered by the work of Itti et al. [15]. Image saliency methods
use either heuristic methods [16], [17] or learned models [18]
to predict the objects in an input image that can potentially draw
viewers’ attention. One of the representative methods is developed
by Cheng et al. [19]. These methods are extended to videos
by incorporating additional features such as motion, flickering,
optical flow and spatio-temporal interest points [20][21]. However
they only focus on detecting visually important regions, but do not
evaluate their aesthetics. In other work on aesthetic improvement
of video, Luo et al. [22] proposed an aesthetic quality measure
for images and video based on spatial composition. Yeh et
al. [23] proposed an evaluation method for temporal aesthetic
quality that considers the directions, magnitudes and positions of
object motions in video. These methods, however, only measure
visual quality, without providing methods for improving it. Xiang
and Kankanhalli [24] optimized visual quality by improving the
motion of the foreground object by re-projecting the good motions
to frames with low motion quality. This method just focuses
on foreground objects and does not give good camera paths for
dynamic scenes. Berthouzoz et al. [25] provided tools for placing
cuts and transitions at appropriate positions in interview videos.
These methods require stabilized videos, and aim to preserve as
much content possible. In contrast, our method selects content
to avoid distractions. More recently, Arev et al. [26] presented a
system to generate a single video of a scene from multiple videos
captured by different cameras. Our method aims to improve the
visual quality of a single input video.

3 OVERVIEW

The improvements to the output video should help to keep the
viewer’s attention on the main subject which the videographer
intended to capture. In addition to removing unwanted distrac-
tions, and stabilizing the video, the camera path should thus follow

3

some basic rules of cinematography—for example, camera motion
should generally be monotonic, and not oscillate unexpectedly.
Also, a simple camera motion should be used for each separate
segment of the video.

We use a sequence of transformation matrices to encode the
changes between each adjacent pair of frames in a video as a
proxy for the camera motion. The camera motion can then be
described by a sequence of parameters which are the elements
of these transformation matrices. Elementary cinematographic
camera operations such as pushing in and pulling out, panning,
tilting, and staying correspond to segments with zero, constant
or smoothly changing values of these parameters (see Fig. 1).
The overall objective is to optimize the path represented as a
matrix sequence so that it comprises simple segments of the above
kind while satisfying additional constraints, particularly to avoid
distractions.

As it is easier to analyze and segment a stabilized camera path
rather than the original unstable input video, we use a two-
pass optimization framework, as shown in Fig. 1. The aim of
the first pass is to find an initial camera path which avoids any
distractions, and at the same time is stabilized with respect to
high frequency jitter. The aim of the second pass is to then ensure
that each motion segment has a simple model, while respecting
any constraints generated during the first pass. In detail, we firstly
detect any objects which may distract users, and determine hard
constraints to ensure that the output frames avoid these objects,
while being contained entirely within the input frames. An L1-
optimization framework is then used to generate an initial path
in which the parameters representing the camera path are simple
functions of time. In the high-level pass, the zoom, rotation angle
and translation are then analysed to split the camera path into
segments, and a piecewise linear model is fitted to each of these
quantities, after eliminating any unnatural motions over short time
scales, such as the camera moving up immediately followed by
moving down. Finally, L1-optimization gives the output frames,
again using the same hard constraints.

4 DISTRACTION DETECTION

4.1 Principles

Distractions are objects that attract the viewer’s attention away
from the main subject. To remove them from the output, we
must first detect them. Distractions typically have the following
properties:

High saliency The visual saliency of distractions is usually
significantly higher than that of their surroundings (which is why
they are noticeable). Video saliency is related to both appearance
and motion. As in still images, regions with high color or texture
contrast to adjacent regions have high appearance saliency. More
importantly, objects whose motions differ significantly from those
of nearby regions have high motion saliency. Both kinds of
saliency are significant when determining if a region contains a
distraction: a moving object with low appearance saliency is less
noticeable.

Off-center location and short duration Amateurs typically try to
keep the main object near the center of each frame when shooting a
video, whereas distractions often appear near edges. Furthermore,

they often are only present for a short time. They may arise either
due to camera motion, or the distraction’s own motion.

We automatically detect distractions in an input video by using
these properties. To determine the presence of distractions by
tracking local regions in video, we use temporal super-pixels
(TSP) [27], which provide good spatial localisation and have good
temporal stability. For each TSP in each frame, we compute its
local appearance contrast and motion contrast relative to adjacent
regions to produce a time-dependent saliency value. Distractions
are identified by considering region saliency, spatial location, and
temporal duration, as we now explain.

4.2 Computing video saliency

A TSP is a set of contiguous video pixels with similar color and
motion parameters and can be found using the method in [27];
TSPs do not overlap. We define the set of all TSPs in the video as
�. The i-th TSP is denoted �

i

= �

s

i

,�s+1

i

, . . . ,�s+n�1

i

, where
s is the first frame in which this TSP appears, and n is the number
of frames for which it lasts. �j

i

comprises the pixels that the i-th
TSP covers in frame j.

For each TSP, we compute its saliency for each frame in which it
exists, as its saliency may change over its lifespan. For example,
a dog sitting near the main subject in a video can be static for a
while before starting to move around. The viewer’s attention may
not be distracted at first, but may be drawn away when the dog
starts moving.

Saliency is determined by local appearance contrast and motion
contrast. We use the RContrast [19] saliency detection method to
compute the appearance saliency value S

C

(�

j

k

) for �j

k

, the region
covered by TSP �

k

in frame j. We use this method as it is suited
to calculating saliency for small regions.

For motion saliency, we compare the mean optical flow in �

j

k

to
that of nearby regions:

S
M

(�

j

k

) = |F (�

j

k

)� 1

L

X

�

j
l2N

j
k

F (�

j

l

)|, (1)

where

F (�

j

k

) =

1

N

NX

p2�

j
k

f j

p

.

and f j

p

is the optical flow vector of pixel p in frame j, computed
using Sun et al.’s approach [28]. N

k

(t) is the neighborhood region
set which contains all TSP regions whose centroids are closer to
the centroid of �

k

(t)) than a threshold ⌧ (set to 0.3 in normalized
coordinates in our implementation).

Combining these two terms, the video saliency of a region is:

S(�
k

(j)) = S
C

(�

k

(j)) + ↵S
M

(�

k

(j)), (2)

where ↵ controls the relative importance of visual and motion
saliency. We consider the latter to be more important, so set
↵ = 0.75. Finally, saliency values are normalized to [0, 1] relative
to the maximum saliency for each frame. Various saliency maps
calculated by our method are shown in Fig. 2(b).

4

Frame 84

Frame 160

Frame 38

Frame 59

(a) Input frames (b) Saliency (c) Distractions

Fig. 2. Video saliency maps for selected frames: distractions are shown as
green masks.

4.3 Distraction labeling

After computing saliency values for each TSP in each frame, we
now label regions with high saliency values and which lie close to
the frame border as potential distractions D

P

:

D
P

(�

i

(j)) = (S(�
i

(j)) � T) \ (P (�

i

(j)) 2 ⌦) , (3)

where T is a threshold, and ⌦ is the border area of each frame out-
side the rectangle w�, h�, w+

, h
+

. In our implementation, we set
T = 0.4, and {w�, h�, w+

, h
+

} = {0.2w, 0.1h, 0.8w, 0.9h},
where w, h are the width and height of the frame.

We next count how many times a TSP is labeled as a potential
distraction during its lifespan, and determine the length of its
lifetime. If the following conditions are all met, we treat its whole
lifespan as a distraction:

• the proportion of its frames in which it is labelled as a
distraction is greater than ⌧ ,

• its first or last frame lies within the border region ⌦

t

,
• its duration is shorter than a threshold D.

Our implementation sets ⌧ = 0.5 and D = 3 seconds. To avoid
missing neighboring TSPs which belong to the same distracting
objects, we propagate distraction labels to neighboring TSPs
with similar motion vector and mean color. Examples are shown
in Fig. 2(c). To exclude these distractions in the output video, we
add constraints controlling cropping to the motion path.

Implementation details We use publicly available source code1

for TSP extraction, using the default parameters, while optical
flows are calculated using the method in [28]. We downsample
the video to 320 ⇥ 240 when finding distractions, to accelerate
computation. After finding the locations of the distractions, they
are up-sampled and used to process the full-resolution video.

1. http://people.csail.mit.edu/jchang7/

Frames

h11

h12

h13

h23

h21

h22

Frames

h11

h12

h13

h23

h21

h22

Frame 42

Frame 66

Frames

h11

h12

h13

h23

h21

h22

Frames

h11

h12

h13

h23

h21

h22

Frame 15

Frame 183

Fig. 3. Feature selection for motion estimation. Successfully tracked feature
points are shown on the frames. Feature points with higher saliency values
are shown in red, and are not used in motion estimation. Estimated motion
transformation parameters using the method in [2] are shown beside the
frames: (top) using all feature points, (bottom) without the blue feature points.

5 CAMERA PATH OPTIMIZATION

Given the constraints to remove the distractions, we can now
generate a desired camera path in terms of the transformation
matrix sequence relating adjacent frames. The overall objective
is to find a set of update matrices relating pairs of adjacent
frames. By finding suitable smoothly varying parameters for these
matrices, the output video will have a smooth path made of
elementary segments, like one used in cinematography.

Our computations are performed in the 2D image plane. The
output window has fixed dimensions W

c

= {0, 0, w, h} in each
frame; pixels from the original frames are used to fill this window.
We optimize the transformation matrices relating each original
frame in this plane, so that after transformation, the content shown
in W

c

varies smoothly and monotonically over the medium term,
and satisfies the constraints needed to avoid distractions.

5.1 Original path estimation

Before optimizing the camera path, we must first recover the origi-
nal scene’s motion parameters. We adopt the discretized piecewise
linear camera motion representation that has been extensively used
in previous approaches [2], [4]. Specifically, an input video is
a sequence of images {I

0

, . . . , I
n

}. An affine transform matrix
Ht+1 relates each successive pair of frames via It+1

= Ht+1It.
A proxy for the camera path can thus be represented by the
sequence of matrices H1, . . . , Hn. These transformations can be
concatenated so that:

It = Ht . . . H1I0. (4)

To efficiently estimate Ht for each frame pair, we detect sparse
Harris corner feature points and track them using an implementa-
tion2 of the Kanade-Lucas-Tomasi feature tracker [29].

A common approach to estimating Ht uses RANSAC to exclude
unreliable feature points: see for example [2]. This approach works
well for static scenes, but often fails when large moving objects
present in the scene. In such cases, a large number of feature
points may belong to dynamic foreground objects and cannot
be completely removed by RANSAC. The remaining foreground
feature points may cause serious problems when estimating the

2. http://www.ces.clemson.edu/stb/klt/

5

camera motion model, as shown in Fig. 3 and the supplementary
material.

Our approach uses the saliency detection results already computed
to avoid this problem. Feature points whose motion saliency values
are higher than a threshold belong to dynamic objects, and so
are directly excluded before applying the RANSAC process. This
improves the robustness and accuracy of Ht estimation. As Fig. 3
shows, using all tracked feature points including ones from the
moving foreground person results in noisy motion parameters.
Using the restricted set of features provides a much more stable
result with better parameter estimates.

Note that this method is not limited to videos captured by static
cameras: it also works for some dynamic scenes captured by
moving cameras such as the example shown on the right in Fig. 3.
In this case, the TSPs belonging to the moving object have larger
motion saliency according to Eqn. (1). This is because they have
a different motion direction and speed relative to the background
TSPs nearby, while the background TSPs have a relatively co-
herent motion with respect to their neighbors. Unfortunately, this
simple strategy does not always work. When the foreground object
is very large nd its parts have similar motion (e.g. a large bus drives
past in front of the camera), the saliency of the TSPs belonging to
the moving foreground will be lower. The method will then fail to
estimate the correct camera motion, as the background feature
points will be excluded due to their high saliency. High-level
semantic scene understanding is probably necessary to correctly
handle cases of this kind.

5.2 Two-pass optimization

Our expectations for the improved camera path are twofold. At
a low level, we expect the new path to be smooth and stable;
it should also avoid distractions while keeping the main objects
in the frame. At a high level, we expect the camera motion to
comprise a series of smooth, monotonic movements like those
performed by a professional videographer, such as pull out, push
in, panning, etc. [30], [31]. We use a two-pass optimization
framework to meet these expectations at both levels.

We first apply L1 optimization to achieve our low-level goals, in-
cluding stabilization and scene recomposition. A similar approach
has already been used for stabilization [2], and we extend it to
include multiple objectives.

Without imposing higher level constraints, the new camera path
generated by this pass often contains visually contradictory ele-
ments. Consider Fig. 4. To avoid the distracting white pole on
the right, the optimized path includes a counterclockwise rotation
followed immediately by a clockwise rotation (Fig. 4(b)), which
looks poor. Our second optimization pass produces a final camera
path that avoids such oscillations, giving a path composed of more
natural and professional-looking motion segments.

5.2.1 Low-level optimization

For the low-level pass, from the original video, we want to
produce a camera path composed of a series segments that avoid
distractions while keeping as much significant content as possible.
The objective of this stage is thus a smooth path with the hard
constraints that the distractions should lie outside the output

window W
c

, and soft constraints that as much original content
should be retained as possible. Given the original camera path
{Ht} based on a full affine transformation model, we seek to
find an update transformation sequence {P t}. In the result, each
original video frame is now transformed by the updated proxy
camera path {H 0t} = {P tHt} and cropped to the cropping
window. The video content remaining satisfies various constraints,
as illustrated in Fig. 5.

Following the approach in [2], to achieve a smooth and stable path,
we aim to minimize the first, second and third order derivatives
of the resulting sequence {H 0t}, which can be measured using
residual motion 4t:

4t

1

= P t+1Ht+1 �Ht,

4t

2

= 4t+1

1

�4t

1

,

4t

3

= 4t+1

2

�4t

2

.

(5)

We also wish to completely avoid TSPs that are marked as
distractions. We treat these as hard constraints: in frame t, after
applying the update transform P t, the position of a distracting
TSP should lie outside the cropping window W

c

. For speed, we
enforce this using the bounding box of each TSP rather than the
TSP itself. Because distracting TSPs are usually located near the
frame border, if the corners of the bounding box are all outside
W

c

after transformation, we may assume the whole box will be
outside W

c

. We thus only need to record these points as C
k

for
the k-th distracting TSP.

The L1 optimization framework expresses all constraints concern-
ing inclusion and exclusion of points pt as inequalities of the form:

(x
min

, y
min

)

T P tpt (x
max

, y
max

)

T .

If a constraint is one-sided, bounds may be infinite: e.g. if the x-
value should be smaller than zero, then x min is set to negative
infinity. Consider the distracting TSPs in the left-bottom region of
Fig. 5 as an example. To ensure those located closer to the vertical
boundary of the cropped frame (shown in orange), are removed,
we must ensure that the x coordinates of all 4 corners of their
bounding boxes satisfy C 0

k

(x) = (P tC
k

)(x) < 0. Similarly,
those that are closer to the horizontal boundary (shown in green)
must satisfy C 0

k

(y) < 0. The constraints for other distracting
TSPs in other regions can be set in a similar way. Compared to
restricting both C 0

k

(x) < 0 and C 0
k

(y) < 0 in this case, our one-
variable constraint is looser, thus allowing more original content
to be preserved in the final video.

The other constraint is inclusion of the main target object in the
final video. Following [2], to make sure the cropping window lives
inside the original video frames, we constrain the transformed
corners of the original frames to lie outside the cropping window.
For instance, the top-left corner ct

tl

of frame t must satisfy P tct
tl

(0, 0)T .

Assuming that the most salient non-distraction region is likely to
be the main subject of the video, we wish to ensure that it appears
in the cropping window. We thus add inequality constraints for the
corners of its bounding box bt

i

:

(0, 0)T P tbt
i

 (w, h)T .

Given that the cropping window W
c

is fixed, the content coverage
of the final video is controlled largely by the scaling terms in P ts.

6

(a) Original sequence (c) High-level optimized(b) Low-level optimized

Fig. 4. Two-pass optimization. The pink curves show rotation of the scene relative to the first frame, in the original sequence, after low-level optimization, and
after high-level optimization.

w

h

Cropped frame

Original frame

Fig. 5. Removing distracting TSPs by setting constraints in the L

1 optimization
framework. For orange TSPs, x coordinates are constrained; for green TSPs,
the y coordinates are constrained.

To maximize coverage in the output video, extra terms are added
to the optimization objective based on the distances between the
updated frame corners and the original ones. For each corner ct

i

,
we introduce two slack variables to be minimized, �t

ix

,�t

iy

via the
inequalities:

P tct
i

� ct
i

 (�t

ix

,�t

iy

)

T

or, depending on the location of the corner,

P tct
i

� ct
i

� (�t

ix

,�t

iy

)

T .

Finally, slack variables are introduced as the bounds of the residual
motion values in Eqn. (5):

� St

i

< 4t

i

< St

i

, (6)

where St

i

and 4t

i

are both matrices containing the same number
of entries as the transformation matrix Ht.

The overall optimization objective is to minimize a weighted sum
of the slack variables contained in {St

i

,�t

i

}, constrained by the
above inequalities:

E = argmin

s

WT s subject to P 0, . . . , P t, (7)

where s represents the vector formed by the slack variables in
{St

i

,�t

i

}, and W contains the weights for each slack variable. As
in [2], we set the weights for slack variables of parameters related
to scaling and rotation to 50 times those of translation parameters
because an equal amount of change to the former parameters will
cause much larger variations than changes to the latter. The default
weights for �t

i

are equal to those of the translation parameters.
This problem can be effectively solved using linear programming.
Finding the minimum value for the weighted sum of the slack
variables gives the optimal P t.

5.2.2 High-level path refinement

Low-level optimization is performed directly in the space of
transformation parameters when determining P t. Since the mo-
tion components are not determined by a single parameter, the
camera path produced by the initial optimization can only satisfy
low-level constraints on the original path, but cannot guarantee
high perceptual quality. The second pass of optimization further
refines the camera path so that it is composed of commonly
used cinematographic camera motions such as panning, zooming,
push-in and pull-out. At the same time, we remove unreasonable
combinations of motion segments, such as panning one way and
then immediately panning the opposite way. To do this, we first
analyse the initially optimized camera transformation matrix se-
quence by decomposing it into its motion components of scaling,
rotation and translation. In the motion component space (see e.g.
Fig. 6), we can clearly see any undesirable motion segments such

7

0
0

0

0
0

0
0

0

0
0

Rotation Scale-X/Y Transition-X/YFinal key pointsKey points to removeKey points on each curve

0
0

0

0
0

(a) Original path (b) Step-1 optimized path (d) Step-2 optimized path(c) Path for the primal motion model

0
0

0

0
0

Connecting undesirable motion pairs

Fig. 6. Camera paths shown as motion parameter functions. Low-level optimization of the original path (a) yields the modified path (b). Key points in this path
are detected and filtered. The remaining key points divide the path into segments. A simple motion model is fitted to each segment (c), and used as a reference
in the high-level optimization pass, together with constraints, to produce the final result (d).

as moving left then immediately right. We detect segments (as
explained later) and fitting a new motion curve representing a
simple motion to each, combining contradictory adjacent segments
where necessary, to give an output based on simple smooth
movements. Unfortunately, doing so does not always satisfy the
constraints previously determined, concerning inclusion of the
cropping window in the source, and avoiding distractions. We
overcome this problem by using the desired path to guide another
optimization pass to provide the final camera path.

A full affine transform H :

H =

0

@
h
11

h
12

h
13

h
21

h
22

h
23

0 0 1

1

A , (8)

may be decomposed into scaling, rotation, translation and skew-
ing. Although skewing will be very small after low-level opti-
mization between frames, we still model it for accuracy. The
components are:

M
x

=

q
h2

11

+ h2

12

, M
y

=

h
11

h
22

� h
12

h
21

M
x

,

T
x

= h
13

, T
y

= h
23

,

✓ = atan(h
12

/h
11

),

S =

h
11

h
21

+ h
12

h
22

h
11

h
22

� h
12

h
21

,

where M
x

and M
y

are scaling coefficients in x and y directions,
(T

x

, T
y

) is the translation, ✓ is the rotation angle, and S is
the skew. Using Eqn. (4), we can compute the accumulated
transform H 00t from frame 0 to frame t as follows. Firstly
we apply the update matrix P t from Eqn. (7) to all tracked
feature points, then estimate H 00t between frame 0 and frame t
using the method in Section 5.1. We then decompose H 00t into
rotation, translation and scaling components. These component
values M

x

(t), M
y

(t), ✓(t), T
x

(t), T
y

(t), S(t), are varying
functions of time, as shown in the example in Fig. 6. After the
first optimization pass, shearing is close to zero, so we do not
consider it further.

We now explain certain steps in further detail:

Resolving motion conflict The low-level optimization produces
high quality motion segments, but can produce aesthetically unde-
sirable results: consecutive segments can have opposing motions,
e.g. zoom-in immediately followed by zoom-out, or panning left
immediately followed by panning right. To eliminate such cases,
for each motion component function f , we first remove noise
using a low-pass filter. We then find the key points where the

first order derivatives change sign, or become zero, or stop being
zero, which indicate the changes of the motion status. We merge
the neighboring key points in all motion component function if
they are too close in time (set to 6 frames in our experiments), see
the top row of Fig. 6(b). We record all key points extracted from
different motion descriptors in a single chronological sequence.

To eliminate consecutive opposing motions, we first identify key
points that connect such pairs of motions. As shown in Fig. 6(b),
since two opposing motions tend to cancel out each other, the
overall motion change after such a pair of motion segments is
close to zero. Thus, on the derivative curve 4f(x), the sum of the
values should be zero for such segments. We thus use a box filter
on the derivative curve to detect them:

F (x) = B(x) ⇤ 4f(x),

where
B(x) =

⇢
1 �r x r,

0 otherwise;

(9)

r controls the temporal span of the filter (r = 15 frames by
default). If F (x

0

) = 0 and the values of f(x) are not all
zero, any key points closer than r are removed. We replace the
function between the neighboring key points on either side by a
linear segment connecting them on each curve. We then iteratively
perform this filtering process until no further key points can be
removed. Fig. 6(b) shows examples of key points removed due
to opposing motions. The remaining key point set is denoted
Q = {q

k

}, k = 1, . . . ,m.

Fitting the motion model We wish to represent the output
video using a set of standard camera motions commonly used in
cinematography: (i) zoom-in and zoom-out, simultaneous scaling
in x and y, (ii) push-in and pull-out, combinations of scaling
and translation in one direction, (iii) panning and tilting, which
can be approximated as horizontal and vertical translations, but
if the main scene is not parallel to the picture plane, there will
also be scaling. To achieve smooth motion between each pair of
adjacent key points, we fit a piecewise linear model to the motion
component functions taking q

k

as the split points. Formally, taking
the curve ✓(t) as an example, denoting the segment between q

k

and q
k+1

(q
k

2 Q) as L
k

, we fit a linear function aLkx
k

+ bLk

when x
k

2 L
k

, which is continuous with the adjacent function at
the intersection point q

k

.

Our overall objective is to solve the following minimisation
problem:

min

P
m

k=1

k aLkx
k

+ bLk � ✓(x
k

) k

such that aLkq
k

+ bLk
= aLk+1q

k

+ bLk+1 .

(10)

8

High-level optimized

Low-level optimized

Keep

Transition-Y

Fig. 7. A video in which the camera follows the main object. Main object
position detection ensures we retain all important key points.

We must further constrain the fitting problem to ensure that M
x

(t)
and M

y

(t) are identical, to avoid distortion. To do so, we just
replace the objective of each frame by:

k aLkx
k

+ bLk �M
x

(x
k

) k + k aLkx
k

+ bLk �M
y

(x
k

) k .

The resulting model is denoted f 0 and an example is illustrated in
Fig. 6(c).

Final optimization This model now contains high quality motion
segments, but cannot be directly used as the final camera path
for two reasons. Firstly, as the camera path has been modified,
it may no longer exclude distractions from all frames, nor can
it guarantee that the cropping frame remains within the original
video. Secondly, only first order continuity is enforced between
motion segments, but higher order continuity is desirable. To
address these issues, using the above model as a reference, we
perform L1 optimization again. We again include all the hard
constraints from the initial optimization pass, but change the
optimization objective to be that the final camera path is close
to the desired smoothed path.

Specifically, the transformation matrix H 0t from frame 0 to frame
t is calculated from the fitted parameter curves in Eqn. (10). Let
the final camera motion from frame 0 to frame t be H 00t. To make
H 00t similar to H 0t, we introduce a new set of slack variables
St

R

which bounds the differences of the matrix elements relating
them:

�St

R

< H 00t
R

�H 0t < St

R

,

where
H 00t

R

= P t

R

H 00t � P 0

R

,

and P t

R

is the update matrix to be computed for each frame.
We add the new slack variables in SR

t

to the slack variable set
in Eqn. (7) to form a new vector sh, and use it in the new
optimization objective:

E = argmin

sh

WT

h

s
h

subject to P 0, . . . , P t, (11)

where W
h

includes the weights W in Eqn. (5) and the weights
for the new slack variables. The weights for parameters related to
scaling, rotation and translation for the new slack variables are set
in the same way as the corresponding original slack variables in
the low-level optimization pass. Linear programming is again used
to produce the parameters of the final update transform PRs, as
shown in Fig. 6(d). This lead to a new frame update transformation

matrix sequence used to transform all frames to the cropping
window W

c

, giving the final output video.

Special case—subject tracking The high-level optimization is
designed to remove oscillatory motion segments. However, not all
such motions are undesirable, especially if the camera is trying
to follow the main subject. Consider the example in Fig. 7. The
camera moves down and then immediately up to follow the fast
moving biker, which is an appropriate camera path in this case.
To ensure that such cases are handled properly in videos with fast
moving backgrounds, we further check whether the most salient
objects stay near the frame center. If the average background
optical flow magnitude over a 20-frame window is larger than
10 pixels for some frames, we keep any key points belonging to
such frames to avoid the background motion being smoothed out.
Results for this example can be seen in the supplementary video.

6 RESULTS

Our method transforms video inputs captured by amateur videog-
raphers into video outputs with high-quality camera paths and
fewer distractions, as we now show.

In our experiments, we tested the ability of the method to detect
various commonplace distractions and remove them from the final
video. We also considered how well our two-level optimization
avoids unnatural camera paths which might otherwise be caused
by avoiding distractions or low-level stabilization. We further
carried out a user study to assess whether our method can improve
the visual quality of amateur video, and whether its results are
better than those provided by stabilization alone.

6.1 Performance

We implemented our method in C in a single thread on a PC
with a 2.5 GHz 8-core Xeon CPU and 16 GB memory. On
average, distraction detection takes 3.5 s per frame, including 3.1
s for TSP extraction and 0.025 s for optical flow computation.
Each optimization pass takes 0.1–0.2 s per frame, depending on
the number of constraints. The speed of the algorithm could be
readily improved in various straightforward ways. Firstly, as the
TSP implementation is the bottleneck, a parallelized version could
make the whole algorithm significantly faster. Secondly, temporal
downsampling could be applied without significantly affecting the
output quality too—the locations of distractions do not have to
be accurately determined to exclude them from the video, and a
conservative bounding box could be used.

6.2 Experiments

Distraction detection We conducted an experiment to determine
how well our distraction detection method works. We downloaded
10 amateur videos from the Internet which were associated with
comments that they contained distracting or annoying objects or
people. To provide ground truth, we then manually labeled the
distractions, by sampling the video every 10 frames and manually
marking the distraction regions. After dividing the video into
TSPs, any in these marked regions were taken as ground truth
distractions. We then carried out distraction detection as described
in Section 4, using the default settings to automatically label the

9

Input Distractions Results Input Distractions Results

(a) (b)

(c) (d)

Fig. 8. Automatically detected distractions (shown as green masks), and final output frames avoiding them. In (c) the orange regions are undetected distractions.
In (d) the red regions are incorrectly detected as distractions.

Precision Recall

Duration
Saliency

Duration
Saliency

Fig. 9. Variation of precision and recall with different parameter settings.

distractions. The number of false positive and false negative labels
on the TSPs gave a recall rate of 87% and precision rate of 75%.
Increasing the saliency threshold T and threshold time ⌧ gave
a higher precision and a lower recall; variations in recall and
precision with different parameter settings are shown in Fig. 9.

In examples like Fig. 8(a), moving people are highly salient, but
are irrelevant to the main video content. Our method can success-
fully label them as distractions and avoid them in the final results.
False positives—regions incorrectly marked as distractions—are
mostly TSPs on the background, adjacent to real distractions (see
Fig. 8(d)). If the background is fairly constant, one interpretation
of the video is that parts of the background are moving along
with the foreground: this is indistinguishable from a smaller
foreground object moving against a static background. False
negatives—distractions which are not detected—are usually TSPs
which belong to objects moving slowly relative to the background
(seeFig. 8(c). False positives are reltively harmless, as they simply
cause a little overcropping. False negatives are more problematic
as they result in failure to remove some distractions. Thus, we set
default parameters to prefer high recall performance, ensuring that
we can effectively detect and avoid most distractions.

Two-pass path optimization To test whether the high-level re-
finement pass improves the path as intended, we performed two-
pass optimization on the same 10 videos, including the constraints
to avoid distractions, and considered whether we effectively de-
creased the number of contradictory motions (see Section 5.2.2).

In the 10 videos, our method detected 34 contradictory motions
in various motion components. After optimization, only 5 con-
tradictory motions remained, and most were removed, as shown
in Fig. 10(a). The main reason that the others were not removed
is that, on the one hand there is a goal to keep as much content
as possible, and on the other, those motions are the only way
to satisfy the constraints determining distraction removal and
inclusion of the cropping window in the original frame. Such
cases typically have the frame edges close to the cropping window
edges. An example is shown in Fig. 10(b), where the successive
rotation up-and-down is detected, but the final optimization failed
to remove it because, for the middle frame, the upper edge of the
cropping window is already close to the original frame edge. In
the left frame, a salient object is also close to to the right edge of
the cropping window.

6.3 User study

To verify whether our algorithm has the desired effect of subjec-
tively improving the aesthetic quality of a video, we designed a
user study. Its objectives were to determine:

• whether our method can generate video result with better
aesthetic quality than simpler alternatives, such as stabi-
lization only and stabilization followed by cropping;

• whether distraction detection and removal can improve
visual quality;

• how the low-level and high-level path optimization steps
affect visual quality.

As a basis for comparison with stabilization alone, we chose two
widely-used commercial stabilization solutions: (1) the stabilizer
currently used in YouTube3, a refined version of the method
introduced in [2]; (2) the subspace stabilizer in Adobe After
Effects, which is based on Liu et al.’s work [1]. We also compare
with a straightforward sequential approach for achieving both

3. https://www.youtube.com/editor

10

Low-level optimized High-level optimized

Remove

Transition-X

(a) High-level optimized

Low-level optimized

Rotation angle

Remove
Still conflict(b)

Fig. 10. Two-level optimization. (a) An undesirable path resulting from low-level optimization is successfully corrected in the final result. (b) Consecutive rotation
anticlockwise then clockwise is only partially corrected by high-level optimization.

Frame 32 Frame 32

Frame 36 Frame 36

(a)YouTube Stabilizer (c)Our result

Frame 32

Frame 36

(b)Subspace Stabilizer

Fig. 11. Comparing our method with video stabilization methods. (a)(b) The
results of the YouTube stabilizer and Subspace stabilizer in Adobe After Effects
[1] both contain a distraction object (highlighted by yellow arrows) that is
visually jittering. (c) Our approach naturally avoids this problem by removing
the distraction.

stable camera path and distraction removal: we first apply video
stabilization to smooth the camera path, then apply our distraction
detection and removal method to produce the final video.

For the study, we prepared six versions of each video considered:
a) the original video, b) stabilized video by YouTube, c) stabilized
video by Adobe After Effects stabilizer (AE), d) stabilization
followed by cropping for distraction removal, e) our intermediate
result just using low-level optimization, f) our final result after
high-level optimization. For each example and each participate,
we showed the five derived videos in a randomized order, and
asked the participant to compare each video to the original one
according to the following criteria:

1) stability of the video content,
2) if there are distracting objects in the result video,
3) quality of the camera motion,
4) the severeness of content loss due to cropping.

Subjects gave an integer score between �4 and +4 for each
question, �4 meaning much worse, and +4 meaning much better,
than the original. The only exception is for the last question on
severeness of content loss, we only allow negative scores since the
original videos contain the most amount of content.

Our study used 16 amateur videos downloaded from the Internet,
all of them contain some amount of distractions. They were shown
to 25 participants, 15 male and 10 female, age from 20 to 30.

TABLE 1
Average quality scores in the user study. For details about t-test applied to

the scores pairwise, please refer to the supplementary materials.

Low-level
only

Both
passes

YouTube
stabilizer

AE
stabilizer

Crop after
stabilized

Stability 2.06 2.94 2.13 1.89 2.43

Distraction 2.94 2.98 0.70 0.82 2.95

Camera action 1.64 2.39 1.93 1.90 1.92

Content �0.30 �0.33 �0.10 �0.26 �1.26

They included university students, engineers and designers. The
statistics of the study are shown in Table 1.

The quantitative results indicate that our method generates results
with higher aesthetic quality than stabilization alone: distraction
removal also improves the visual quality of the videos. We now
consider each criterion in detail.

Stability The stability results are consistent with the observation
that, to avoid distractions, our low-level optimization pass intro-
duces a little jitter: the results are not as stable as the YouTube’s
and After Affects stabilizer’s results. However, after the high-level
pass, the results become well stabilized, while also having the
benefits addressed in the other criteria. For example, consider
Fig. 11. Distractions remain after stabilization, and their unsteady
motion causes participants to rate this as an unsatisfactory stabi-
lization result. In contrast, our method avoids this distraction and
so produces a smoother-looking video.

Distraction removal Because the stabilizers do not perform
distraction detection, it can only avoid distractions serendipitously
when cropping the transformed frame. It is clear that our second
pass preserves the distraction removal performed by the first pass,
and its results are presumably considered less distracting because
of smoother overall motion—for example, there will be fewer
changes in content at the edges of the frame. A t-test shows that
the scores of low-level optimization and two-pass optimization do
not significantly differ. This is because they both remove the same
distractions.

Camera action The Low-level optimization and the two stabi-
lization methods receive relatively lower scores than our complete
system, because they do not focus on how to refine the camera

11

[Gleicher et al. 2008]

Our result

Fig. 12. Comparison with Gleicher and Liu’s method [2008]. (Top) Three
frames from their result video, where the camera zooms out immediately after
zooming in, and does not remove distractions near the frame border (indicated
by the yellow arrow). (Bottom) Our result has a more natural camera path with
the distractions removed.

actions and just stabilize it. Furthermore, the score for low-
level optimization is slightly lower than that of both stabilizers
because it introduces complex motions to avoid distractions. In
comparison, our high-level optimization method produces simpler
motion and avoids contradictory motions, thus achieves the highest
score.

Content retention and quality In terms of the severeness of
content loss, the results from cropping after stabilization received
the lowest score, indicating that more important content has
been cropped out by this method than others. This is because
both steps apply cropping independently. We will provide more
detailed comparison between our method and this simple strategy
in the next section. The scores for other four methods are close,
indicating no significant difference according to this criterion. We
have found that in extreme cases where distractions are too large,
our method could remove some other important content of the
video and make video frames to be blurry by excessive zooming
in. Such an example is shown in Fig. 14(b), where our final result
only achieved a low average score of �1.75. We will discuss how
to avoid excessive cropping in the next section.

Frames

Cropping (%)

80 160 240 320 420

20

30

10

Frame 371

Cropping after Stabilization Our Method

Fig. 13. Comparing our approach with a simple cropping after stabilization
strategy, in terms of the percentage of cropped content on each frame. The
top row shows one frame with a large cropping difference.

(a) Distractions (b) No completion (c) Partial completed

Fig. 14. Using video completion can potentially avoid too much cropping.

7 DISCUSSION

7.1 Comparisons

Comparison to Gleicher and Liu’s Method Gleicher and Liu [4]
proposed a method to break a video into shorter segments with
static scenes and directed motions following the rules of cine-
matography. Their method is based on finding the four corners for
cropping windows in detected keyframes and controlling the path
between them. This makes it hard to satisfy per-frame constraints
(as needed to avoid distractions) except at the keyframes: see
Fig. 12. Compared to this work and other video stabilization
methods such as [2], [32], our output has improved aesthetic
quality for several reasons. Firstly, our results avoid distractions,
significantly improving visual quality in ways not considered by
simple stabilization. Secondly, our camera paths avoid contradic-
tory movements like zooming out immediately after zooming in:
see Fig. 12. We also ensure that simple camera paths are used.

Comparison to cropping after stabilization Applying video
stabilization and distraction cropping sequentially is a straightfor-
ward strategy to achieve both goals. However, the main issue of
this approach is excessive cropping, as cropping has been done in
both steps independently. In Fig. 13, we compare this strategy and
our approach by plotting the amount of content cropping for each
frame of the same input video, which suggests that our method can
keep more original video content by simultaneously addressing
both stabilization and distraction removal. In our experiments, we
have found that the removed regions by cropping after stabilization
strategy are usually 20%-50% larger using that of our method.

7.2 Avoiding Excessive Cropping

If a distracting object covers a large portion of a video frame, our
method can lead to excessive cropping, which is unacceptable to
most users when compared with the original video (an example
is shown in Fig. 14(b)). Furthermore, too much cropping will
also introduce blurry video frames that have low visual quality,
especially when the input video is already low-res. To avoid this
problem, our system can optionally apply hole filling techniques
to remove distractions. Specifically, if the system detects strong
zooming-in in the optimized camera path, i.e. the perimeter of the
final video is smaller than 60% of the perimeter of the original
video, it then applies the hole filling method proposed in [33] to
remove those distractions for which corresponding background
regions can be found in other frames. We then only need to
exclude remaining pixels classified as distractions that cannot be
completed. As shown in Fig. 14(c), by using partial background

12

Fig. 15. Our system cannot produce good results in the case where the
distraction overlaps with the main object. (left) Original videos. (Right) Our
results. The distracting object is marked in green. The guitar and the distracting
pedestrian overlap for several frames, causing part of the guitar to be removed
by our method.

reconstruction inside the occlusion region, our system can keep
more video content and avoid excessive cropping.

In more extreme cases where hole filling also fails, we can relax
the hard constraints on distraction removal to allow distractions to
partially remain in the video, in order to avoid excessive cropping.
Further work is needed to determine a suitable user interface.

7.3 Other Discussions and Limitations

Our approach is based on the same camera path model and
optimization framework proposed in [2]. While this framework
is seemingly simpler and more restrictive than more recent ap-
proaches such as the mesh homography model [3], it has several
advantages over more complicated models in practice. First, it
is robust and can be applied on a wide variety of examples,
while more recent 3D or 2.5D approaches typically have more
assumptions on the scene structure, such as the applicability of
3D reconstruction or long-range feature tracking. Secondly, this
framework is computationally very efficient, while more compli-
cated models often come with much higher computational cost.
Finally, this framework is flexible enough to incorporate additional
constraints, which is much harder to do with more complicated
models. For all these reasons we choose this camera path repre-
sentation model as a basis of our algorithm. Our evaluation results
in Table 1 also show that based on this framework, our system
achieves similar, if not better quality of video stabilization than
more recent approaches that use more complex camera motion
models.

Our method has several other limitations. Firstly, we can only
avoid distractions which do not overlap the main objects. If we
cannot find a cropping window which can separate the main object
from distractions, our method will fail as the various constraints
will conflict, as shown in Fig. 15. Secondly, our method is also
limited by the global linear motion model it uses. As a recent
study has shown [3], a single global motion matrix is insufficient
for stabilizing certain types of video. In some cases, distractions
cannot be detected automatically or reliably; user assistance may
be needed to correctly identify the distractions. Fig. 8(c) shows
such an example, where the orange region was added by the user.

8 CONCLUSIONS

We have presented a method to improve the visual quality of
amateur video. We use a video distraction detection method and a
two-pass optimization framework to provide a camera path which

avoids distractions, and gives smooth and reasonable camera
actions. Experiments and a user study have shown that distractions
can be effectively detected, and removing them improves the
aesthetic quality of video. We also significantly improve the visual
quality by refining the output camera motion path. We hope
in future to improve the computational efficiency as discussed
in Section 6.1, and improve upon these results by using scene
reconstruction methods to allow us to perform high-level path
optimization and distraction avoidance in 3D space.

ACKNOWLEDGMENTS

This work was supported by the National High Technology
Research and Development Program of China (Project Number
2013AA013903), the National Basic Research Project of China
(Project Number 2011CB302205), the Natural Science Foundation
of China (Project Number 61272226, 61120106007), Research
Grant of Beijing Higher Institution Engineering Research Center,
Tsinghua University Initiative Scientific Research Program, and
an EPSRC travel grant.

REFERENCES

[1] F. Liu, M. Gleicher, J. Wang, H. Jin, and A. Agarwala, “Subspace video
stabilization,” ACM Trans. Graph., vol. 30, no. 1, pp. 70:1–70:10, 2011.

[2] M. Grundmann, V. Kwatra, and I. Essa, “Auto-directed video stabilization
with robust l1 optimal camera paths,” in IEEE CVPR, 2011, pp. 225–232.

[3] S. Liu, L. Yuan, P. Tan, and J. Sun, “Bundled camera paths for video
stabilization,” ACM Trans. Graphics, vol. 32, no. 4, pp. 78:1–78:10, 2013.

[4] M. L. Gleicher and F. Liu, “Re-cinematography: Improving the camer-
awork of casual video,” ACM Trans. Multimedia Computing, Communi-
cations, and Applications, vol. 5, no. 1, pp. 2–11, 2008.

[5] Y. Wexler, E. Shechtman, and M. Irani, “Space-time completion of
video,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 29,
no. 3, pp. 463–476, 2007.

[6] J. Herling and W. Broll, “High-quality real-time video inpainting with
pixmix,” IEEE TVCG, vol. 20, no. 6, pp. 866–879, June 2014.

[7] S. Cho, J. Wang, and S. Lee, “Video deblurring for hand-held cameras
using patch-based synthesis,” ACM Trans. Graphics, vol. 31, no. 4, pp.
64:1–64:12, 2012.

[8] M. Stengel, P. Bauszat, M. Eisemann, E. Eisemann, and M. Magnor,
“Temporal video filtering and exposure control for perceptual motion
blur,” IEEE TVCG, vol. 21, no. 5, pp. 663–671, May 2015.

[9] G. Ye, E. Garces, Y. Liu, Q. Dai, and D. Gutierrez, “Intrinsic video and
applications,” ACM Trans. Graphics, vol. 33, no. 4, pp. 80:1–80:11, 2014.

[10] W. Qu, Y. Zhang, D. Wang, S. Feng, and G. Yu, “Semantic movie
summarization based on string of ie-rolenets,” Computational Visual
Media, vol. 1, no. 2, 2015.

[11] A. Litvin, J. Konrad, and W. C. Karl, “Probabilistic video stabilization
using kalman filtering and mosaicing,” in Electronic Imaging 2003, 2003,
pp. 663–674.

[12] Y. Matsushita, E. Ofek, W. Ge, X. Tang, and H.-Y. Shum, “Full-frame
video stabilization with motion inpainting,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 28, no. 7, pp. 1150–1163, 2006.

[13] S. Battiato, G. Gallo, G. Puglisi, and S. Scellato, “Sift features tracking
for video stabilization,” in 14th Int. Conf. Image Analysis and Processing,
ICIAP 2007, 2007, pp. 825–830.

[14] B.-Y. Chen, K.-Y. Lee, W.-T. Huang, and J.-S. Lin, “Capturing intention-
based full-frame video stabilization,” Computer Graphics Forum, vol. 27,
no. 7, pp. 1805–1814, 2008.

13

[15] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual
attention for rapid scene analysis,” IEEE TPAMI, no. 11, pp. 1254–1259,
1998.

[16] A. Borji, “What is a salient object? a dataset and a baseline model for
salient object detection,” IEEE TIP, vol. 24, no. 2, pp. 742–756, 2015.

[17] H. Li and K. N. Ngan, “A co-saliency model of image pairs,” IEEE TIP,
vol. 20, no. 12, pp. 3365–3375, 2011.

[18] P. Siva, C. Russell, T. Xiang, and L. Agapito, “Looking beyond the
image: Unsupervised learning for object saliency and detection,” in Com-
puter Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on.
IEEE, 2013, pp. 3238–3245.

[19] M.-M. Cheng, G.-X. Zhang, N. J. Mitra, X. Huang, and S.-M. Hu,
“Global contrast based salient region detection,” in IEEE CVPR 2011,
2011, pp. 409–416.

[20] S. Marat, T. H. Phuoc, L. Granjon, N. Guyader, D. Pellerin, and
A. Guérin-Dugué, “Modelling spatio-temporal saliency to predict gaze
direction for short videos,” International journal of computer vision,
vol. 82, no. 3, pp. 231–243, 2009.

[21] E. Vig, M. Dorr, T. Martinetz, and E. Barth, “Intrinsic dimensionality
predicts the saliency of natural dynamic scenes,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 34, no. 6, pp. 1080–
1091, 2012.

[22] Y. Luo and X. Tang, “Photo and video quality evaluation: Focusing on
the subject,” in Proc. ECCV 2008. Springer, 2008, pp. 386–399.

[23] H.-H. Yeh, C.-Y. Yang, M.-S. Lee, and C.-S. Chen, “Video aesthetic
quality assessment by temporal integration of photo-and motion-based
features,” IEEE Trans. Multimedia, vol. 15, no. 8, pp. 1944–1953, 2013.

[24] Y. Y. Xiang and M. S. Kankanhalli, “Automated aesthetic enhancement
of videos,” in Proc. Int. Conf. Multimedia. ACM, 2010, pp. 281–290.

[25] F. Berthouzoz, W. Li, and M. Agrawala, “Tools for placing cuts and
transitions in interview video,” ACM Trans. Graphics, vol. 31, no. 4, pp.
67:1–67:10, 2012.

[26] I. Arev, H. S. Park, Y. Sheikh, J. Hodgins, and A. Shamir, “Automatic
editing of footage from multiple social cameras,” ACM Trans. Graphics,
vol. 33, no. 4, pp. 81:1–81:10, 2014.

[27] J. Chang, D. Wei, and J. W. Fisher III, “A video representation using
temporal superpixels,” in Proc. IEEE CVPR 2013, 2013, pp. 2051–2058.

[28] D. Sun, S. Roth, and M. J. Black, “Secrets of optical flow estimation and
their principles,” in Proc. IEEE CVPR 2010. IEEE, 2010, pp. 2432–
2439.

[29] S. Baker and I. Matthews, “Lucas-Kanade 20 years on: A unifying
framework,” Int. J. Computer Vision, vol. 56, no. 3, pp. 221–255, 2004.

[30] B. Brown, Cinematography: Theory and Practice. Focal Press, Elsevier,
2012.

[31] R. Bresson, Notes on Cinematography. Urizen Books, New York, 1958.

[32] F. Liu, M. Gleicher, H. Jin, and A. Agarwala, “Content-preserving warps
for 3D video stabilization,” ACM Trans. Graphics, vol. 28, no. 3, pp.
44:1–44:12, 2009.

[33] A. Newson, A. Almansa, M. Fradet, Y. Gousseau, and P. Prez, “Video
inpainting of complex scenes,” SIAM Journal on Imaging Sciences,
Society for Industrial and Applied Mathematics, vol. 7, no. 4, pp. 1993–
2019, 2014.

Fang-Lue Zhang is a post doctor in in Tsinghua Uni-
versity. He received his BS degree from the Zhejiang
University in 2009 and Ph.D degree from Tsinghua
University in 2015. His research interests include
computer graphics, image processing and enhance-
ment, image and video analysis and computer vision.

Jue Wang is a Principle Research Scientist at Adobe
Research. He received his B.E. (2000) and M.Sc.
(2003) from Department of Automation, Tsinghua
University, Beijing, China, and his Ph.D (2007) in
Electrical Engineering from the University of Wash-
ington, Seattle, WA, USA. He received Microsoft Re-
search Fellowship and Yang Research Award from
University of Washington in 2006. He joined Adobe
Research in 2007 as a research scientist. His re-
search interests include image and video process-
ing, computational photography, computer graphics

and vision. He is a senior member of IEEE and a member of ACM.

Han Zhao is an undergraduate student at the Ts-
inghua University. He is currently interested in com-
puter graphics, including image/video processing
and animation.

Ralph R. Martin is currently a Professor at Cardiff
University. He obtained his PhD degree in 1983 from
Cambridge University. He has published more than
200 papers and 12 books, covering such topics as
solid and surface modeling, intelligent sketch input,
geometric reasoning, reverse engineering, and var-
ious aspects of computer graphics. He is a Fellow
of: the Learned Society of Wales, the Institute of
Mathematics and its Applications, and the British
Computer Society. He is on the editorial boards of
Computer Aided Design, Computer Aided Geometric

Design, Geometric Models, the International Journal of Shape Modeling, CAD
and Applications, and the International Journal of CADCAM.

Shi-Min Hu is currently a professor in the depart-
ment of Computer Science and Technology, Ts-
inghua University, Beijing. He received the PhD
degree from Zhejiang University in 1996. His re-
search interests include digital geometry processing,
video processing, rendering, computer animation,
and computer-aided geometric design. He has pub-
lished more than 100 papers in journals and refereed
conference. He is Editor-in-Chief of Computational
Visual media, and on editorial board of several jour-
nals, including IEEE Transactions on Visualization

and Computer Graphics, Computer Aided Design and Computer & Graphics.

	Introduction
	Related Work
	Overview
	Distraction Detection
	Principles
	Computing video saliency
	Distraction labeling

	Camera Path Optimization
	Original path estimation
	Two-pass optimization
	Low-level optimization
	High-level path refinement

	Results
	Performance
	Experiments
	User study

	Discussion
	Comparisons
	Avoiding Excessive Cropping
	Other Discussions and Limitations

	Conclusions
	References
	Biographies
	Fang-Lue Zhang
	Jue Wang
	Han Zhao
	Ralph R. Martin
	Shi-Min Hu

