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Figure 1: Instant coffee and a soft candy dissolving in water.

Abstract was rst introduced into the graphics community byiiNer et al.
[2003] to simulate uid ow. The SPH method has also been
This work extends existing multiphase- uid SPH frameworks to used to simulate elastoplastic solids{j\&r et al. 2004; Gerszewski
cover solid phases, including deformable bodies and granular ma-et al. 2009], and granular materials like sand [Aduand Otaduy
terials. In our extended multiphase SPH framework, the distribution 2011]. Fluid-solid coupling has also been achieved within the SPH
and shapes of all phases, both uids and solids, are uniformly rep- framework, to simulate uid interacting with an elastoplastic solid
resented by their volume fraction functions. The dynamics of the [Solenthaler et al. 2007; Keiser et al. 2005], uid interacting with
multiphase system is governed by conservation of mass and mo-granular materials [Lenaerts and Dutr 2009], and porous materials
mentum within different phases. The behavior of individual phases [Lenaerts et al. 2008].
and the interactions between them are represented by correspondin
constitutive laws, which are functions of the volume fraction elds
and the velocity elds. Our generalized multiphase SPH frame-

fore recently, by introducing the concept of volume fraction, the
standard SPH method was extended to simulate multiphase ow

work does not require separate equations for speci ¢ phases or te-[R€n €t al. 2014; Yang et al. 2015], using a mixture model and
Helmholtz free energy. A wide range of multiphase ow phenom-

dious interface tracking. As the distribution, shape and motion of o : X ) g

each phase is represented and resolved in the same way, the proEn@ With rich visual effects were captured, including mixing, un-
posed approach is robust, ef cient and easy to implement. Various MXIN9 and extraction effects. Despite the impressive results, the
simulation results are presented to demonstrate the capabilities ofultiPhase- uid SPH framework can only model uid ows and

our new multiphase SPH framework, including deformable bodies, :Ee |nte|tr.a(r:]t|ons pﬁtvsvg?_'nfdlﬁerent ku'd.fh' 't.'st. posSsLbllie tﬂ.gogple
granular materials, interaction between multiple uids and deform- € multiphase- ul ramework with existing solid sim-

- ] - : : ulators [Miller et al. 2004; Gerszewski et al. 2009; Zhu and Brid-
g(t))lli%ssollds, ow in porous media, and dissolution of deformable son 2005; Aldan and Otaduy 2011]. However, as the multiphase-

uid SPH framework differs from the standard SPH method both

in the underlying variables and in the governing equations, a naive
coupling strategy requires major changes to be made to both uid
and solid simulators. Different coupling schemes are needed for

Keywords: smoothed particle hydrodynamics (SPH), uid-solid
interaction, multiphase ow, deformable bodies, granular materials

Concepts: Computing methodologies Physical simulation; speci ¢ multiphase uid-solid interactions, making the task both
messy and problem-speci c.
1 Introduction In this work we extend the multiphase- uid SPH framework pro-

posed by [Ren et al. 2014; Yang et al. 2015] to cover solid phases,
Animations involving uids and solids have recently become ever including both deformable bodies and granular materials. Speci c-
more popular in computer graphics, leading to the development of ally, the distributions of all phases (uids and solids) in the simu-
various physically based simulation methods, either grid-based or lation domain are represented by their volume fraction functions.
particle-based. The most popular particle-based approaches rely oriThe dynamics of the multiphase system are governed by the con-
smoothed particle hydrodynamics (SPH) [Monaghan 1992], which servation of mass and momentum within different phases. The con-
stitutive laws for different phases are all de ned in the same form as
Corresponding author. E-mail:shimin@tsinghua.edu.cn functions of the velocity elds. The interactions between different
Permission to make digital or hard copies of all or part of this work for phases are implicitly modelled in the constitutive laws which are
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form of governing equations, which greatly reduces the com- To simulate granular materials such as sand and grain, Zhu and
putational and implementation complexity. Bridson [2005] proposed a simpli ed method in which the spatial
) ) o ) ) domain is decomposed into a rigid body domain and a shear ow
3. A new way of modelling uid-solid interaction (FSI) is es-  domain. Bell et al. [2005] simulate granular material by consid-
tablished: the interactions between different phases are uni- ering the normal and shear forces on each particle. #idand
formly modelled via the multiphase constitutive laws, which  otaduy [2011] proposed an approach which constrains the strain
are functions of volume fraction elds. This new FSI model rate according to the friction force, and applied a cohesion model
readily scales as more phases are added to the multiphase syspased on the Drucker-Prager criterion in a PCISPH framework.
tem. Narain et al. [2010] combined grid and particle methods to couple
sand and a rigid body. Ihmsen et al. [2012] simulated granular

4. Amuch wider range of uid-solid phenomena can be captured materials using two size scales to achieve high resolution sand sim-

by this extended multiphase SPH framework, including mis-

cible and immiscible solids and uids, uid-solid interaction, ulations.
solid dissolution, porous media ow, etc. These particle-based simulation schemes are effective for the spe-
ci ¢ solid materials that are targeted, but they cannot be easily ex-
2 Related Work tended to cope with uid ow, especially multiphase uids.

. . ) ) ) . Fluid-solid Coupling and Interaction Keiser et al. [2005] sim-

The area of physically based simulation has considered uid, solid jated uid ow with deformable solids in a uni ed Naive-Stocks
and granular material simulation. Some work can handle the coup- equation framework, which supports phase transition. Solenthaler
lings and interactions between different kinds of materials. Our &; g1 [2007] extended previous SPH-based solid and uid frame-
work extends particle-based multiphase- uid simulation to con- \yorks to handle a wider range of phenomena such as solidi cation
sider both solids and granular materials as well as the interactions 5, melting. Lenaerts et al.[2008] proposed a coupling method for
between solids and uids. We thus summarise previous work on norous materials and uids, which was later extended by Lenaerts
these topics and to keep t_he review s_hort and most relevant to thegnq putr [2009] to simulate sand and water coupling. Akinci et
current work, we focus mainly on particle-based methods. al. [2012] proposed a novel method for coupling uids with rigid

Particle-based Fluid Simulation: Particle-based methods are of- 582I?;rc:ﬁgl-cags?gteﬁogggﬁgegailtrttlgl?e\églltj/??hgocr(r)im;%n %r;?v\fgg;]
ten used for uid simulation in computer graphics, among which id and I‘ " Y lid [AKinGi et al. 20131 Sh tal p20f5 _
SPH methods are the most popular approachillév et al. [2003] uid and elastic sofi L Inci et al. ]. Shao et al. | ] com
proposed a particle-based method based on the SPH framework t _|ned lattice sh_ape match_lng method and PCISPH to model coup-
simulate liquids. Becker and Teschner [2007] changed the equation ing between uids and solids.

of state used in SPH to achieve weakly compressible uid effects.
Solenthaler and Pajarola [2009] and Ihmsen et al. [2014a] used it-
eration to predict the density of particles at the next step to simulate
incompressible uids. In an alternative approach to Lagrangian-
based uid simulation, position based uids (PBF) Macklin et
al.[2013] use constrained particle positions; GPU implementations
provide real-time simulation. Such work has developed the capab- SPH based Multiphase FluidsRen et al. [2014] introduced the
ilities of Lagrangian-based uid simulation in computer graphics, concept of volume fraction into SPH uid simulation and developed
but does little to consider multiphase- uid simulation. a multiphase- uid SPH scheme using the mixture model. Their
method allows the simulation of a wide range of multiphase ow
phenomena, such as mixing and unmixing etc. This approach was
later extended [Yang et al. 2015] by using Helmholtz free energy
to enable extraction and phase control in a multiphase uid system.
However, the multiphase- uid SPH approach is designed for uid
simulation only, and does not handle solid phases. Also, as the
underlying variables and governing equations are different from the
standard SPH method, the multiphase uid SPH framework cannot
be easily coupled with existing SPH schemes for solids.

In all these research, the particles can only be determined as pure
uid or pure solid. Hence, they can only handle immiscible uid
and solid and cannot simulate continuous transition processes such
as dissolution. Also, none of these methods considered multiphase
uids in the simulation framework.

Solids and Granular Material: To simulate deformable solids,
Miller et al. [2004] proposed a particle based method using Green-
Saint-Venant strain to determine the stress tensor. The method
stores positions of the original neighbouring particles in order to
calculate strain in deformable solids. Gerszewski et al. [2009]
proposed a new method for calculating the deformation gradient
based on approximating the af ne transformation between the ori-
ginal structure and the current structure. Becker et al. [2009] gave
a corotational approach based on calculating nodal rotations. Zhou

et al. [2013] extended Gerszewski's work to use implicit integra- This work aims to extend the existing multiphase- uid SPH frame-
tion. Muller et al. [2005a] used shape matching methods to simu- work to cover solid phases, and build a truly multiphase SPH
late deformable objects, and the work was later extended by usingscheme, handling both uids and solids. The main challenges
oriented particles to simulate various 2D and 3D objectsil[éf are: 1) how to efciently represent the distribution and shape
and Chentanez 2011]. Jones et al. [2014] presented a point-base@f all phases with the least computational and implementation
approach for animating elastoplastic materials, where an “embed-complexity; 2) how to resolve the behaviour of different phases
ded space” was used to achieve more accurate estimation of largeyithout adding separate equations for each speci ¢ phase; 3) how to

plastic deformation. In the past two decades, the material point take into account the interactions between multiple uid and solid
method (MPM) archived advanced development for various mater- phases.

ials simulations. As a particle-in-cell method, the MPM can handle

history-dependent materials which are dif cult to model using pure . . .

Eulerian methods, and it can also prevent the distortion that often 3 Multiphase SPH simulation

arise in Lagrangian approaches [Sulsky et al. 1994]. In the area of

computer graphics, Stomakin et al.[2013] used MPM for simulat- Our method is based on SPH methods which are often used in
ing snow, and then combined the framework of FLIP to simulate uid simulation since they are simple and effective. By introdu-
heat transport, melting and solidifying materials [Stomakhin et al. cing the mixture deviatoric stress tensor into the mixture model mo-
2014]. mentum equation, we extend the multiphase- uid SPH framework



[Ren et al. 2014] for simulating the interaction between uids and
solids. We now brie y introduce the foundations of our approach.

SPH Fluid Simulation

Smoothed particle hydrodynamics, or SPH, is a Lagrangian based

simulation method which discretizes and samples the spatial do-
main containing uid by means of particles having positign
rest density o, massm, and other properties. Continuous prop-
erties can be estimated by interpolation between the property val-
ues at particles surrounding a point [Monaghan 1992; Ihmsen et al.
2014b] using the following formula:
X A

A(X) - mJ AJ

i

—Wj (xi  xj;h);

J

whereA(x) is some continuous variable such as density or inertial
force, A is its value at particl¢, m; is the mass of particlg,

j is particle densityWV;; is a symmetric kernel functior is the
smoothing radius ang; is the position of particlg; j runs over
the nearby particles.

Spatial derivatives at a particle can be approximated using:

X ) i
rAj = m; Af2|+A% r Wi (X Xj;h);
j i i
1 X
r Aj= m,—(A,- Ai) rWij (Xi Xj;h)i

i
J

The pressure at a particle is calculated from the state equation:
pi=ks(i o) 1)
whereks is the stiffness coef cient related to the bulk modulus.

An alternative state equation for weakly compressible uids is
Becker et al. [2007]:

p=ks (i=0) (2)
To compute the pressure force on an SPH patrticle, the following
equation is typically used:

X
mi
j

1:

FP=

P, B .
i mp S+ 5 Wi,
i i

©)

whereF P is the pressure force on parti¢ldue to the the surround-
ing particles.

Multiphase- uid SPH Simulation By introducing the concept of
volume fraction into the standard SPH scheme, a multiphase- uid
SPH framework was proposed in [Ren et al. 2014; Yang et al. 2015]
to simulate various multiphase ow phenomena, where the mixing
and unmixing effects are handled via a mixture model and Helm-
holtz free energy. We use the mixture model presented in [Ren et al.
2014] and extend it to also allow simulation of solids and their inter-
action with uids. The formulation of the mixture model is brie y
introduced here, and the reader is referred to the original paper for
details.

The continuity equation in the mixture model is:

D m - @ m

Dt @t

whereun, is the mass-averaged mixture velocity, averaged over all
phases:

+r (mum)=0

X
CkUg:
k=1

Here, ¢« is the mass fractioncy Kk k= m Where | is the
volume fraction for phask andn is the number of different phases;
m is the rest density of the mixture:

where  is the rest density of a single phase.

The momentum equation for the mixture can be expressed as:

D( mUm) -

Dt r-p+rr (m+ om)+* mg 4)

where , is the viscous stress tensopm is the diffusion tensor
andg is the overall external body force, e.g. due to gravity.

At each time step, the model calculates the drift velocityk
which is de ned as the relative velocity of phakeo the mixture,

i.e.Umk = Ux Um. Infull, the drift velocity is given by:
!
X
Umk = «k k Co ko A
KOy L (5)
X . r k X r kO.
kT P Cyol Pyo k Cko
KO k KO ko
wherea=g (Um r )um @ m=@1The rstterm on the right

hand side represents the slip velocity due to body forces (e.g. grav-
ity and centrifugal force). The second term represents the pressure
effect that causes the uid phases to move from high pressure re-
gions to low pressure regions. The third term represents Brownian
diffusion, i.e. the uid phases drifting from high concentration re-
gions to low concentration regions. The parametés the coef -

cient of diffusion due to the slip and pressure gradient, aiglthe
Brownian diffusion coef cient.

The drift velocityu mx is used to calculate the diffusion tensor and
advect the volume fraction as below:
X

Dm = k kUmk U mk (6)

K
D «

Dt kI Um ' ( kUmk)

()

where denotes the tensor product.

The implementation of the mixture model is summarized in Al-
gorithm 1.

Algorithm 1 Implementation of the multiple- uid mixture model

repeat
for each particlé do
compute the density and the pressure for each particle using
standard SPH.
end for
for each particlé do
compute the drift velocity using Eqgn. (5), then compute the
diffusion tensor and correct using Eqn. (6) and Eqn. (7).
end for
for each particlé do
compute the total force acting on the particle and advance
the particle.
end for
t t+ ot
until end of simulation




Extensions to Handle Solidsin order to extend the original
multiphase- uid approach to solids, we need to change the mo-
mentum equation of multiphase ow. Multiphase ow simula-
tion needs the pressure to be continuous at the interface between
phases to ensure consistent pressure forces [Solenthaler and Pa-
jarola 2008]. We thus retain and solve the pressure tegrfor

both uid and solid phases and treat the shear stress in deformable
solids in a similar way to the viscosity tensor term. Speci cally, elastic stress-st
an extra internal deviatoric stress tensor is added to the right hand
side of Eqn.(4) to handle solids in the multiphase simulation. The
momentum equation Eqn.(4) now becomes: €

oA

Y

Dmm
%:r p+r (sm+* m* bpm)* mg 8)

Figure 2: Yield. When the stress does not reach the yield stress, the
material behaves elastically and recovers its original shape when

where gm is the mixture deviatoric stress tensor, which depends
on the deviatoric stress tensor of the solid phase, i.e. the constitutiv
law of the solid. Two types of constitutive laws are considered in

the external force is removed (green). After the stress reaches the

yield stress, it changes shape permanently and does not recover (red

this work for the solid phase: the elastoplastic law for modelling 'n€)- We treat yield in an idealised manner (blue).

deformable bodies and the hypoplastic law for modelling granular

materials, which are explained in Section 4. We use strain rate to . ) ) . )
calculate the stress in elastoplastic materials via a simpli ed model; Of €ach particle or calculating the deformation gradient tensor dif-
as it only depends on the velocity gradient, it is easy to incorpor- fers from how uids are handled in a multiphase framework. As a
ate into our multiphase framework. A hypoplastic model is often Particle may contain both uid and solid phases, the principal com-

used to simulate granular materials, and again only depends on thePonent (i.e. pressure) of particle cannot be calculated uniformly if
velocity gradient. the solid phase is described by the deformation gradient tensor.

In Section 5, we describe how to discretize Eqn. (8) for both mis- Instead, we use the simple method already used in linear elastic
cible phases and immiscible phases in a uni ed framework follow- SPH simulation [Libersky and Petschek 1991; Gray et al. 2001], in
ing previous multiphase- uid framework, allowing us to simulate which the constitutive equation only depends on the velocity gradi-

various phenomena such as interactions of miscible and immiscible €Nt

phases, and dissolution effects. The velocity gradient u can be decomposed into a symmetric

tensor_and an antisymmetric tensbr.

4 Constitutive Laws of Solid Materials :

1 T
ru=Z ru+ru + u

{z }

} 9)

Section 3 discussed use of a deviatoric stress tensor which depends
on the constitutive law of a solid material. Here, we describe the _
constitutive laws for two types of solids: elastoplastic materials, where! is the rotation rate tensor. An elastoplastic material fol-
such as chewing gum, and hypoplastic materials, such as a pile Oflows al_eneralized Hooke's law. so.' P

sand or granules. 9 e

1 rur
i
|

0
To simplify the following, we de ne a functio operating on any °=2G e (10)

tensor to give its deviatoric part: . . . . . .
9 P where £%is the deviatoric elastic strain ratg, is the shear modu-

lus and Cis the Jaumann derivative of deviatoric stress de ned as

0 1 | 0

D():= %Tr( )

0— 0,
When the material exceeds the yield limit, irreversible plastic de-

Thus, the deviatoric parts of the stress tenserthe stress rate h . : .
P 0 formation occurs. The relationship between straiand stress

tensor _ and the strain rate tensorcan be expressed respectively ;
can be expressed as a curve (see Fig. 2). In our approach, we

. 0 0_— 0_
ast "=D( ), =D(J)and_=D(). treat the plastic material as an ideal plastic material in which plastic
Since our approach computes pressures in a similar way to standardtrain does not change the stress. The total strain rate tensor can
SPH uid simulation, we only need to calculate the deviatoric stress thus be expressed as:
rate tensor_’and update the deviatoric stress tensbat each time
step. The mixture deviatoric stress tensew is determined by the _= 2+
deviatoric stress tensor® and volume fraction of each phase.

L} (11)
where P is the plastic strain rate tensor. If we substitute Eqn.(11)
We now explain how to compute® for each of these two material  into Eqn.(10), we obtain:

types separately. o o
=1

BO):

The formulation of P is based on the yield criterioh( ) = 0
When simulating deformable objects in a particle-based method, of the material in which the functiof () determines the point
Milller et al. [2004] used the original position of each particle to at which yield begins, and the tern? ceases to be zero. For
calculate the strain tensor. Gerszewski et al. [2009] calculated the elastoplastic material, we simply use the von Mises criterion to de-
deformation gradient tensor to determine the elastic force. Zhou ettermine yield, sd ( ) can be expressed as:
al. [2013] implemented the elastoplastic framework into an impli-
cit method to achieve stability. However, using the original position

o1 +26(° (12)

4.1 Elastoplastic Materials

f()=3" v



whereY is a parameter determining the yield stress, laxgenak- whereL () is a tensor function which is linear in strain ratesim-

ing the material more resistant to plastic deformation,ia&do) is ilar to that used for an"elfo}stop&pstic materlals a linear function

the second principal invariant of deviatoric stress tensbrgiven of the stress tensor andjj = = _: . The rst term makes the

by: 3¢ % _ 1 0. o0 granular material move rigidly, while the second term is similar to
. 2 - E . .

friction in a granular material, controlling how easily the particle
We make use of the von Mises criterion in a similar way to glides past each other.
[Solenthaler et al. 2007]: we calculate the deviatoric stress rate o ]
tensor using ° = 2G _°and use Eto update the deviatoric stress Ve use the simpli ed hypoplastic model from [Gudehus 1996; Wu

) ) ) 0 and Bauer 1994], which can be expressed as:
tensor. If the latter satisey < J; ’, we simply update

according to: Tr(

= aT( )+ clczﬁ ace( + 9 (15)

0:= Ozv: (13)
c1, ¢ andcs are complicated combinations of physical parameters
including the tangent modulus, the Poisson ratio, the void ratio,
Overall, calculation of the deviatoric stress tensor for an the frictional angle, etc.; see [Gudehus 1996; Wu and Bauer 1994]
elastoplastic material is summarised in Algorithm 2. for more details. Brie y, we may summarise that the factoris
similar to the shear modulus for an elastoplastic material: smaller

Algorithm 2 Elastoplastic constitutive law for deformable bodies ¢t makes the granular material more like a shear ow. The fagfor
is associated with the friction angle: a larger friction angle results

Further details are given in the Appendix.

for each particle do from largerc,. The factorcs controls the stiffness: its is smaller,
compute the velocity gradient and strain rate tensor for each the internal body of granular material is stiffer.
particle
compute the deviatoric stress rate tensor for each particle us- Simplifying the formulation and substituting = pl + Cinto
ing °=2G2 Eqn. (15) and rearranging, we get:

end for

for each particlé do Tr( % )+T( Jp o

°=3¢p °+ ac

update the deviatoric stress tensor for each particle p2 (16)
if the von Mises yield condition is satis ethen 5 O il

use Eqn.(13) to correct the deviatoric tensor CiCs U
end if

end for Since the deviatoric stress and pressure are independent, the second

term above may vanish at the surface of a granular material if the
computed pressure is zero, causing computational problems. We
avoid them by changing the second termTrg =(p? + ")
where" is a constant set to aboli%o of the square of the average

While this approach is not the only one which could be used in
our framework, other methods would need to handle the deform-
ation gradient, a tensor whose calculation requires information of

the displacement eld, and would need to handle interaction with pressure.

more involved treatment for the volume fraction eld. For materials like rock or sands, the pressure is critical in determin-
ing yield, and the Drucker-Prager criterion is often used. Following

4.2 Hypoplastic Materials [Narain et al. 2010; Aldan and Otaduy 2011], in this case we make

corrections if the deviatoric stress satis es
To simulate granular materials in computer graphics, Bell et al.
[2005] used a molecular dynamics model. Zhu and Bridson [2005]
treated the spatial domain of sand by decomposing it into two parts.
The behaviour of the part near the surface was modelled as sheatl_he correction is
ows, while the interior was treated as a rigid body. They imple-
mented their approach using a FLIP/PIC framework. However the q —
rigid part of the sand needs to be determined and must move rigidly. O=( pt+ky) = 37 a7
This idea is not generally useful in a multiphase framework since
the rigid part is treated as a single unit. In SPH simulation, Atdu s explained in the Appendix; andk. are coef cients controlling
and Otaduy [2011] used a friction and cohesion model for granular the material's cohesion and internal friction.
materials based on PCISPH, where shear forces constrain the strain
rate. However, PCISPH assumes that the mass and the rest dengverall, the calculation of the deviatoric stress tensor for hypo-
ity between particles are uniform which is not valid for multiphase plastic materials is given by Algorithm. 3.
framework [Ren et al. 2014].

Instead, we treat granular materials as hypoplastic materials. TheS SPH-based Multiphase Interaction

hypoplastic model is well established in engineering as a versat-

ile model for granular materials, and it is based on a strain rate In this section we describe the method used to combine the solid

formulation. In this approach, the stress rateof a material is constitutive equation with the multiphase- ow mixture model. We

determined by the current stress tensoand strain rate. Such describe how to calculate the terngm in Egn. (8) using the solid

models are often used to simulate sands, soils, and clays. In ma-deviatoric stress tensor given by Eqn. (10) for an elastoplastic ma-

terial mechanics, Kolymbas [1991] proposed a simple hypoplastic terial or Eqn. (16) for a hypoplastic material. We also explain how

material constitutive equation which can be expressed as: we modify the SPH interpolation method for the mixture model, al-
o lowing us to simply incorporate the solid phases and the multiphase

=L( ;0+b()jjd (14) uid-solid interactions (FS).

p+ ke < Jé 9



Algorithm 3 Hypoplastic constitutive law for granular materials Substitutingumk = Uk Um into Egn. (20), we nd that:

for each particlé do X m 20 )i W)
J ! J

compute the velocity gradient and strain rate tensor for each r (ug)i = b Bl WL, /A WLV B

particle. o G+ (k)i (21)

compute the deviatoric stress rate tensor for each particle us- .

ing Eqn. (16). P ((umi)i (Um )i+ (Um)i (Um)i)T W
end for
for each particlé do Similarly, the mixture deviatoric tensor termy, in Eqn. (8) can

update the deviatoric stress tensor for each particle. be expressed as:

if the Drucker-Prager yield condition is satis ¢uen s

use Eqn. (17) to correct the deviatoric tensor Fsm o=

end if X X 20 )i ) ( k)_O ( k)'o (22)

end for m; ! L+ Lo wg
' ( i+ ) f ? !

ko]

whereF; *" is the shear force the surround particles exerting on

5.1 Discretization particlei.

Each particle in a multiphase framework is considered to be a mix-
ture of solids and uids. We must consider the volume fractign

for each phase to calculate the shear tensqr for each particle,
and changes in shear forces between particles.

5.2 Dissolution

Our model can easily handle dissolution effects, including soft bod-
ies or granular materials dissolving in a liquid. In our approach,
We treat each particle in our method in the same way as standardwe only consider ideal solutions in which the enthalpy does not
multiphase- uid SPH particles, with an additional deviatoric stress change, and the total volume of solvent and solute is unchanged
tensor for each phase. during dissolution. In this case, the volume fraction is the same as

. I L the concentration.
Since the constitutive equation in our method only depends on the

velocity gradient, we only need to consider how the volume frac- The Noyes-Whitney equation can be expressed as:
tion in uences the velocity gradient. Ren et al.[2014] took volume
fractions into account when discretizing the gradient of an arbitrary Dm = A(Cs ©) (23)

tensor termA by simply using an arithmetic average, or average Dt

weighted by volume fraction: whereCs is the saturation concentratidd,is the concentration (i.e.

volume fraction in our model) A is the surface area between the

dissolving substance and the solvent, ard the dissolution coef-

cient (which depends on temperature). The Noyes-Whitney equa-

tion means that the dissolution rate of undissolved solids phases

X changes is directly proportional to the difference between satura-

ﬁAi r Wy =0; tion concentration and the concentration of surrounding dissolved
i solids phases.

X e X
¢ A= M
i

(C WiA; (iA) W (18)
This assumes that:

j

but this formulation does not work well in our fgmework since the To handle this situation, we replace the third term of Eqn. (5) by the

sampling approach of SPH does not always satisf)(mj = j)ui following: X !
r Wiy = 0. As( «)i plays an important role in calculating the K r « L 0
velocity gradient and the mixture's deviatoric stress tensor force, k o m

and since each particle can be a mixture of uid and solid, Eqn. (18) ) ] )
does not adequately consider the contributiof qf); . Instead, we ~ Where = min( ; s) and s is the volume saturation con-

replace the average in Eqn. (18) by the following expression: centration corresponding ©s in Eqn. (23). Note that the volume
fraction of an undissolved solid phase is greater tharand the

mj X C O )1A AD T Wy (19) volume fraction of a dissolved solid phase is lower than If the
- volume fraction of an originally solid particle reaches the solid
component is replaced by uid. In order to handle this, we change

where ( ;) is an averaging function of its two parameters. We ( ;) in Eqn. (19) for the dissolving solid phaketo:

(r A)i:
ik

use the harmonic average for two reasons. Firstly, for a particle 8 .

with a low solids volume fraction, this reduces shear force between <0 FC i< sor( k)< s
particles more effectively. Arithmetic averaging makes the shear (( «)i;( k)j)= . 2(( «)i S )i s) .
force too strong, leading to an unnatural viscosity force between O 9+ (0 9 otherwise
particles even if there are few solid particles nearby. Secondly, (24)

the harmonic average also works well for immiscible phases, since

averaging ignores those neighbouring particles which have com-|n this way, the solid dissolves when the volume fraction reaches
pletely different phases from the current particle. s, and the deviatoric stress tensor vanishes automatically. Since
the mixture model we use from [Ren et al. 2014] needs volume frac-

Thus the velocity gradient can be expressed as: tion correction, the volume fracti