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Abstract This paper presents the OPTGAME algorithm developed to itera-
tively approximate equilibrium solutions of ‘tracking games’, i.e. discrete-time
nonzero-sum dynamic games with a finite number of players who face quadratic
objective functions. Such a tracking game describes the behavior of decision
makers who act upon a nonlinear discrete-time dynamical system, and who
aim at minimizing the deviations from individually desirable paths of multiple
states over a joint finite planning horizon. Among the noncooperative solu-
tion concepts, the OPTGAME algorithm approximates feedback Nash and
Stackelberg equilibrium solutions, and the open-loop Nash solution, and the
cooperative Pareto-optimal solution.
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1 Introduction

Since the turn of the century, we have seen various applications of the theory
of dynamic games [1], which is appropriate for modeling policy coordination
problems in, e.g., business and management sciences (e.g. [2]), industrial or-
ganization (e.g. [3.4]), advertising (e.g. [5]), marketing (e.g. [6]), economic
policy design (e.g. [7,8,9,10,11,12]), the economics of natural resources (e.g.
[13]), and even for explaining undesirable social phenomena like the upsurge
of terrorism (e.g. [14,15,16]). Nonetheless, due to the complex nature of a
multi-decision-maker conflict situation, with the exception of some useful yet
narrow classes,! computational algorithms that provide numerical solutions
to game-theoretic problems are rare. Pioneering (and partially ongoing) work
does exist, but faces significant limitations with respect to the structure of
the problem that it can handle.? These restrictions pertain, in particular, to
the way nonlinearity is addressed, the degree to which the players’ payoffs are
perceived to be related, and the choice of the time structure.

In this paper, we present a computational algorithm which is designed
specifically for economic policy applications and allows for the approximation
of equilibrium solutions of discrete-time deterministic dynamic games whose
constraints are given by a system of nonlinear difference equations in a partic-
ular state space description. In particular, we consider the evolution of choices
made over time by a finite number of decision makers who aim at minimizing
deviations from individually desirable trajectories of the system, thus playing
a ‘tracking game’. Such a game is an extension of the linear regulator problem,
a single decision maker’s tracking problem that is well known from LQ opti-
mal control theory (e.g. [17,26,27]). For economic applications, especially the
Stackelberg game provides a microeconomic foundation for ad hoc macroeco-
nomic models with forward-looking behavior [28,7]. The latter is important,

ILinear quadratic dynamic games (LQDQ) are, for example, a model class that is very
well understood and extensively investigated, especially in continuous time [17]. For a recent
piece of work applying deterministic, finite-dimensional, zero-sum LQDGs formulated in
discrete time, see, e.g. Pachter and Pham [18].

2The computer program DYNGAME [19] is, for example, designed to solve rational
expectations models and related deterministic dynamic game problems for economic appli-
cations, but is not appropriate for approximating solutions for nonlinear problems because
the algorithm linearizes the nonlinear dynamic constraint prior to initializing the solution
procedure. The LQDG Toolbox [20] exclusively solves linear quadratic (LQ) open-loop deter-
ministic dynamic games (DG) in continuous time and does not provide feedback solutions.
Regarding dynamic stochastic games, the Pakes & McGuire computer algorithm [21,22,23],
which calculates Markov-perfect equilibrium solutions, is set up to investigate dynamic in-
dustries with heterogenous firms, i.e. the dynamic competition in an oligopolistic industry
with investment, entry, and exit [24]. Here, intensive work is ongoing with respect to both
theoretical and computational aspects (see, e.g. [3,4,25]), with potential future applicability
to (macro)economic problems such as those for which OPTGAME was developed.
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because it explicitly takes into account the reaction of decision makers (gov-
ernments, private sector agents, etc.) to deliberate changes in economic policy
measures by other decision makers, and, thereby, can ensure that policies de-
rived from a model of this class do not suffer from the Lucas [29] critique
(17))-

Going beyond our previous work? in terms of the dynamic representation
of the constraint, the solution procedure, and, particularly, the number of deci-
sion makers, the present version of the OPTGAME algorithm (OPTGAME 2.0)
constitutes a computational tool to approximate feedback and open-loop Nash
equilibrium solutions, feedback Stackelberg equilibrium solutions, and coop-
crative Pareto-optimal solutions for deterministic nonzero-sum discrete-time
nonlinear quadratic difference games, namely nonlinear tracking games with
a finite planning horizon and a finite number of players.

The paper is structured as follows: The class of game-theoretic problems
whose solutions can be approximated by the OPTGAME algorithm is defined
in Sect. 2.1, while Sect. 2.2 outlines the solution concepts and information
patterns. A presentation of how the solutions are approximated follows in
Sect. 3, which also contains a detailed description of the iterative procedure
for approximating a feedback Nash equilibrium solution (Sect. 3.1). The modi-
fications required for the computation of open-loop Nash, feedback Stackelberg
equilibrium, and Pareto-optimal solutions are discussed in Sect. 3.2. Section 4
demonstrates the application of the algorithm in an economic policy example.
Section 5 concludes.

2 Nonlinear Quadratic Tracking Games
2.1 The Class of Games Amenable to the OPTGAME Algorithm

The type of intertemporal nonzero-sum game to which our algorithm can be
successfully applied models a temporary interaction of a finite number of deci-
sion makers who face multiple objectives. With T'€N indicating the terminal
period of a finite planning horizon, we consider the following problem: Each de-
cision maker i (i = 1, ...,n) has to find a control path {u{*}]_, that minimizes
a quadratic payoff functional of the trajectories of the states and controls, i.e.,

T
T X)) = 3D X = X Q) [X, — X, (1)

t=1

subject to a constraint to be discussed below (see Eq. 4). For each time period
t(t=1,..,T), X;:=[x; uj .. u?]'€R™, where x, €R™= is the state vector
and uj e* CR™ (i=1,...,n) with m:=m, + >, m; is player i’s control
vector.

31t is the number of decision makers involved that distinguishes OPTGAME 2.0 from its
predecessor OPTGAME 1.0, which is designed for only two players; see [30,31]. Moreover,
the MATLAB implementation of OPTGAME 2.0 offers a wider spectrum of numerical
equation solvers than its predecessor.
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Xi:= [%¢ a' .. a") with X € R™ and ul € R™ (i,j =1,...,n)
denotes the values of the states and the controls (of any player j) that player
1 considers as desirable for time period .

The matrices Qf € R™ with Qf = QI are player i’s weights of the
differences between the actual and the desired values of the target and control
variables embodied in the vector [X; —X{] € R™. Thus, for all t € {1,...,T},
player i’s penalty matrices,

Q 0 ...0

. 0 Rt~

= o | (2)
0 ... 0 R

are of a block-diagonal form, where the symmetric blocks Qi € R™«*"= and
RiteR™> ™ Rim e R™M»X™n contain player i’s penalties for deviating from
the desired states and from i’s desired levels of the controls of player 1, ..., n.43
We require for all i=1, ..., n the matrices Q¢, R, ..., Ri(ifl), Ri(iﬂ), .., Ri" to
be positive semi-definite and the matrices R € R™*™: to be positive definite.

In order to determine cooperative solutions, we define a collective payoff
function as a convex combination of all players’ individual objective functions,
Ji ({Xt }?:1) s i.e.,

TUXA) =D w I (X)), Youi=1, (3)
i=1 =1

where weight p?€[0,1] (i=1, ...,n) reflects player i’s ‘power’, i.e. i’s weight in
the joint objective value.

The constraints of the decision makers’ choices are given by a first-order®
system of nonlinear autonomous difference equations,

Xt = f(xtfl»xtvutla ...,U?,Zt) ) X = X, (4)

with initial state, X € R™=. The vector-valued function f consists of m, com-
!/ . .
ponents, f= [ e fml'] , and z; € R™= is a vector of exogenous variables

4De_c_ision makers may also care about what other decision makers do, i.e., it is possible
that R}’ # 0 for j # 4. In other words, deviations in the levels of someone else’s control
variables from what is desired (seen from one’s own perspective) can be punished in one’s
own objective function.

5Particularly in economic models, often one accounts for time preferences and assumes
the penalty matrices to be Qf:= (¥9)'~1Q% vV te{1,...,T}, where ¥ € (0,1) is each player
’s individual discount rate and £} € R" " is i’s nonnegative definite penalty matrix for
the intial time period.

8The assumption of a first-order system of difference equations is not restrictive as
higher-order difference equations can always be reduced to systems of first-order difference
equations by appropriately redefining variables. Lagged state variables can also be easily
removed by introducing additional state variables. In OPTGAME, this is done using the
procedure proposed in [28,29].
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that are not subject to control by any player. We require the first and second
derivatives of f with respect to x;_1,%;, and ul Vi€ {1, ...,n} to exist and to
be continuous.

The particular representation of the dynamic system given by Eq. 4 fre-
quently appears in economic models [32,33]. It suggests that at the beginning
of time period ¢, when the decision makers decide on their control activities
(the policy instruments uj, ..., u), only the state vector x; 1 is known, while
x; is still unknown. Not before the decisions about the policy instruments are
made and put into action will they affect the state of the system.

2.2 Solution Concepts and Information Patterns in the OPTGAME
Algorithm

Among the solution concepts of dynamic game theory, we consider noncooper-
ative and fully cooperative solution concepts, and ignore intermediate possibil-
ities with coalitions of subsets of players and the question of how cooperation
may evolve. For a noncooperative mode of play, we distinguish between Nash
equilibriums, where all players act simultaneously, and a Stackelberg equi-
librium, where the players act sequentially and assume asymmetric roles as
‘leaders’ and ‘followers’.

A strategy, denoted by ¢’, maps the information set, i.e., the extent of
information that is available to player i when making a decision, to the set
of i’s feasible controls. Based on the information structure, we distinguish
between open-loop and feedback (Markov) strategies.

Under an open-loop information pattern, each decision maker can be imag-
ined to commit himself/herself at the beginning of the game to all future ac-
tions he/she will take by selecting a time path strategy [34]; see also [17].
Modeling strategies in this way makes sense if none of the players can observe
the state variable(s) or deliberately chooses to ignore this information. On the
other hand, under a feedback information pattern, the players can be imagined
to observe the values of the state variables and react to them by choosing their
actions according to a ‘decision rule’, i.e., u} = ¢¥(x; 1) vV te{l,....,T}.

In an (open-loop or feedback) Nash game, the players have symmetric roles.
In the feedback Stackelberg game, there is an asymmetry between one leader
and one or more followers. At the beginning of time period ¢, the Stackelberg
leader (say, player 1) announces his/her decision rule, u} = ¢*(x;_1), to the
Stackelberg followers (all other players i =2,...,n), who, in turn, simultane-
ously respond to the leader’s announcement without any coordination among
them according to n—1 reaction functions, ui = ¢*(x;_1,u;). The leader then
incorporates the followers’ best rational responses to the leader’s anouncement
dul/0u} (i=2,...,n) into his/her decision.

In addition to the open-loop and feedback Nash equilibrium and feedback
Stackelberg equilibrium solutions, OPTGAME also determines the cooperative
Parcto-optimal solution.
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3 How the OPTGAME Algorithm Works

In addition to the parameters introduced in Sect. 2.1, i.e., n, T (and pos-
sibly wb ..., p™ 9%...,9™), and the dynamic system (f, x¢), the user of the
OPTGAME algorithm has to provide the entire time path of the exogenous
variables {z;}?_,. The necessary inputs include, moreover, the time paths for
the targets and the penalties for each player i, i.e., {x}_,, {Qi}L,, {ai}L,,
o fu RS {RIMT (i=1,...,n), the maximum number of it-
eration steps for the algorithm, i.e., k4 > 1 and a sufficiently small e-value
that will help to indicate whether or not the algorithm has converged, i.e., has
succeeded in approximating a solution of the problem under consideration.

The OPTGAME algorithm approximates the equilibrium solutions of the
nonlinear quadratic difference game by following an iterative procedure as
frequently used for solving a (one-player) tracking problem (see Fig. 1). For
the cooperative Pareto-optimal solution and the noncooperative feedback so-
lutions, this is accomplished by using the method of dynamic programming,
which leads to a system of matrix Riccati difference equations which can be
rapidly solved. For deriving the open-loop Nash equilibrium solution, Pontrya-
gin’s maximum principle is used (see Sect. 3.2).

3.1 The Feedback Nash Equilibrium Solution

The OPTGAME algorithm is initialized with an arbitrary set of tentative
paths for all players’ control variables,” denoted by {a}(k)}_,, ..., {a?(k)},
for k=0. Then, step by step (i.e., for k =1,..., kpmaz), the algorithm drives
this path towards an approximation of the respective equilibrium path. Us-
ing a Gauss-Seidel, a Newton-Raphson, a Levenberg-Marquardt, or a trust
region solver, the ‘initial’ tentative state path is computed by solving %40)—
£(x:-1(0), %(0), 0}(0), ..., w(0),z;) =0 with %x;_1(0) given V t€ {1,...,T}. The
resulting reference path for iteration k =1 is then given by {Xy(1)}Z_; with
Xi(1)i= [%40) uX0) .. up(0)]".

Step 1. At iteration step k, we follow [32,33,35] and replace the system of
autonomous nonlinear difference equations (Eq. 4) with a non-autonomous
linearization of Eq. 4 evaluated along the current reference path, {X(k)}7Z_,
with Xy(k):= [%{k) wp(k) ... a(k)] for k=1, ..., kmas.® The parameters of
the resulting non-autonomous linear system,

xdk) = Adk)x;—a(k) + Z Bi(k)u(k) + cdk), xo(k) =Xo, (5)

"For k=0, either zero-vectors may be assigned to {@i}(k)}7_,, ..., {%(k)}7_, or historical
data or other external information may be used.

8Note that we do not linearize the nonlinear system prior to executing the optimization
procedure but rather linearize the system repeatedly during the optimization process along
the current reference path {Xy(k)}. ; (for k=1, ..., kmac)-
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Fig. 1 Flow chart of the OPTGAME algorithm, with k indicating the number of iterations
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computed for iteration step k, are time-dependent functions of the reference
paths along which they are evaluated, i.e.,

Afk):= L= Fo, (%K) F (Rea(R)) (6)
Bi(k):= [[ - Fx, (xk))] ' Fy (0i(k)),  i=1,...n, (7)
k)= x(k) — Adk)xi(k) — Z Bj(k)tk), (8)

with I denoting an m, X m, identity matrix, and (for 7 = ¢, t—1) with

/

P (kim0 L2 g,
T 0%r [ k) _8XT %.(k) 0% |5 k) ’
B I
P (i) = 20| o |00 AT o,
t Ouilag [Pl 90U laj

In the remainder of this subsection, we confine ourselves to a discussion
of the feedback Nash equilibrium solution and add a description of what has
to be changed in order to arrive at the feedback Stackelberg, the open-loop
Nash, or the Pareto-optimal solutions in Sect. 3.2.

Step 2. To derive the iteration k values for state and control paths, {%;(k)}7L_,
and {@/*(k)}L, (i=1,...,n) respectively, the algorithm calculates the values
of the state and control paths that minimize Eq. 1 subject to Eq. 5 evaluated
along the current tentative paths, {«(k)}/_, and {@i(k)}/_, (i=1,...,n). (For
the derivation of the following procedure see Appendix A.1).

Starting with their terminal values, Pi{(k)= Q. and pi{k) = Qi %%, the al-
gorithm computes all players’ Riccati matrices, Pi(k) and pi(k) Vi€ {1,...,n},
which are the parameters of the quadratic value function and which are recur-
sively determined by

P, (k) = Qi + Ki(k)Py(k)K(k +ZG7 k)R Gi(k), (9)

pi_i(k) = Qi_ %, —K(k)[Pi(k)k(k)-pi(k) +Z G/ (k)R [a—g](k)], (10)
with
Ki(k):= Adk) + ) Bi(k)G{(k), (11)

n

ki(k):= ek) + 3 Bi(k)gi(k). (12)

j=1
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The feedback matrices G{k) and gi(k) Vi€ {1,...,n} are determined by solving
the following system of 2n linear matrix equations:

Di(k)Gi(k) + B (k)Pi(k)[A(k) + Z B/ (k)G (k)] =0, (13)

J#i

Di(k)gi(k) +aj(k) + B{(k)P|(k) Y Bi (k)] (k) = 0, (14)
7

with A(k), Bi(k), and c(k) defined by Egs. 6, 7, and 8, and with
Di(k):= B{ (k)P{(k)Bi(k) + R}, (15)
aj(k):= By (k)[Pi(k)c (k) —pi(k)] — Ry'af'. (16)
Using both Riccati matrices, Pi(k) and pi(k), and feedback matrices, G(k)
and gi(k), computed for all players and for all time periods, i.e. Vie{l,...,n}
and Vtc{1,...,T}, the k*" iteration of the feedback Nash equilibrium path for

the state variable, {X}(k)}Z_,, and the k' iteration of player i’s equilibrium
path for his/her own control variable, {@1¢*(k)}]_,, are determined by

%;(k) = Kyk)%;_1(k) + ki k), (17)
(k) = Gi(k)&;_y(k) + gi(k), (18)

starting with X{(k) = X0, where Ky(k) and kyk) are defined by Eq. 11 and
Eq. 12 respectively.

Step 3. As long as k < kjqz, the control paths obtained for iteration k in
the previous step (cf. Eq. 18) are used as reference control paths for itera-
tion k+1, i.e., Gfk+1) :=a%k) Vie {1,...,n} Vte{l,..,T}. Then the
reference state path for iteration k+1 is computed by numerically solving
xfk+1) — £ (X—1(k+1),%(k+1). (k+1), .., u(k+1),2,) = 0, with respect
to the variable X/k+1) (where Xo(k+1) =%0).? The tentative path along which
the (k+1)*" linearization procedure will be carried out is given by {Xy(k+1)}7L_,
with Xy(k+1):= [xdk+1) a}*(k) ... a(k)]’ (cf. Fig. 1, Step 3).

Then Steps I and 2 are repeated, and the reference control paths for
the (k-+2)" iteration are determined by the iteration k-1 control paths
minimizing Eq. 1 subject to Eq. 5. This yields @ii(k+2) :=0*(k+1) Vie {1,...,n}
Vte{l,..., T}, and so on.

Let 3 k* <kpas, for which the reference path {Xy(k*)}7; with X (k*):=
(k) k) e ) = [RAE) B —1) o ap(e 1)), and {Xi(k*—
1)}, computed according to Eqs. 17 and 18, fall into an e-tube around

9Again a Gauss-Seidel, a Newton-Raphson, a Levenberg-Marquardt, or a trust region
solver is applied for determining the state variable.
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{Xk*—1)}L_,. Then, for these consecutive paths, no variable differs by more
than a value of €. In other words, for each player i, wi(k*)+d; = ai(k* —1)
with 0! e R, §17 <e (j=1,...,m;), V t. We know, however, that the tentative
control paths of iteration k:* are identical to {@}*(k*—1)}7_,. Because of &j(k*—
1) = x(k*) £ 07 with 6F e R™=, 67 <e (j=1,....,mz) V t €{1,...,T}, we
can infer from this that the state path calculated from the nonlinear system
dynamics f (Eq. 4) using {@}(k*)}2,, ..., {u(k*)}{_, equals the optimized
(equilibrium) state path calculated according to Eq. 17 using the linearized
system representation (Eq. 5) evaluated along {X{k*—1)}X_;. In this case,
x; :=%j(k*—1) andu}* :==aj*(k*-1) Vie{l,...,n} Vte{l,..,T}. In other words,
the algorithm has converged,'® and the paths obtained do indeed minimize
Eq. 1 subject to Eq. 4. Then it is reasonable to compute the values of the
players’ objective functions (evaluated along their respective optimal path,
ie, {X;}E, with Xj:=[x} ul* ... u?]’) (cf. Fig. 1).11

3.2 Feedback Stackelberg Equilibrium, Open-Loop Nash Equilibrium, and
Pareto-Optimal Solutions

To derive the iteration k values of the state and control paths, {xj(k)}L,
and {@¥(k)}L, (for i = 1,....,n) respectively, for the feedback Stackelberg
solution concept, we utilize the procedure described in Sect. 3.1 for deriving
the feedback Nash equilibrium solution but replace Step 2 by the following
procedure.

Feedback Stackelberg Equilibrium Solution. Starting with the terminal condi-
tions, Pi{k)=Q% and piH{k)=Q%X}, we derive the matrices Pi(k) and pi(k)
Vie{l,...,n} by backward iteration in ¢ according to Egs. 9 and 10 respec-
tively, augmented with feedback matrices defined by

Gi(k):= — [Cik)] ' [Bi(k)Pj(k) +ZD (19)
gi(k):= —[Cik)] " [adk) + ay(k +Zﬁj ywi(k (20)
Gi(k):= W{k) + ®i(k)G}Ek), i=2,..,n, (21)
gi(k):= wi(k) + ®i(k)gi(k), 1=2,...,m, (22)

101f convergence has not been obtained before k reaches its maximum value, kinaz, the
iterative optimization procedure terminates without succeeding in finding an equilibrium
feedback solution. It can then be re-started with an alternative initial tentative control path
(to be specified by the user; see Fig. 1).

M Under our assumptions, for the linear time-varying dynamic system approximating the
nonlinear system, there always exists a (not necessarily unique) feedback Nash equilibrium
solution. For the nonlinear dynamic system, this is not always guaranteed, even if the algo-
rithm converges fairly quickly. In any case, alternative tentative initial control paths can be
used to provide more insight into the nature of the solution obtained.
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with
By(k):= Bi(k) + Y_ Bi(k)®(k), (23)
Cy(k):= Byk)P}(k)Byk) + R}* + Z @] (k)R}®](k), (24)
Dy(k):= Bik)PAk)Bik) + B (H)RY,  i=2,..,n, (25)
ak):= 3 @] (WB] (WPi(K)edk) —pi(k)] ~R/a,  (26)

and Ayk), Bi(k), ci(k) and aj(k) given by Eqgs. 6, 7, 8, and 16 (for i = 1)
respectively.1? The reaction coefficients, ®i(k) := dul(k)/du}(k) (i =2,...,n)
in Egs. 21—26, are determined as solutions of a system of n—1 linear matrix
equations,

Dj(k)®{(k) + Bj (k)P(k)[Bi(k) + Z Bj(k)®{(k)] = 0, (27)

where Bi(k) and Di(k) are defined by Egs. 7 and 15 respectively.

The matrices W4k), ..., W(k) and wX(k), ..., wi(k) required for computing
the feedback matrices given by Eqgs. 19—22 are determined as solutions of the
following system of 2(n—1) linear matrix equations:

Di(k)Wi(k) + B (k)Pi(k)[Ak) + Z B(k)Wi(k)], (28)

Di(k)wi(k) + aj(k) + Bj (k)P|(k) Y _ Bi(k)wi(k), (29)
P
with Ay(k), BYk), D{k), and al(k) determined by Egs. 6, 7, 15, and 16.
With the Riccati matrices computed for all players and all time periods
(cf. Egs. 9 and 10), and the feedback matrices, Gi(k) and gi(k) Vi€ {1,...,n}
(Egs. 19—22) for all time periods, the feedback Stackelberg equilibrium val-
ues for the state and the control variables can be determined by utilizing the
functional forms given by Egs. 17 and 18 respectively. If the algorithm has con-
verged (cf. Sect. 3.1), for i=1,...,n, the values of the objective functions are
calculated according to Eq. 1 (evaluated along their respective optimal path).
This allows, for example, the identification of the size of the ‘leader advantage’
of a dominant player by comparing the values of the objective function (Eq. 1)
evaluated along the Nash and Stackelberg equilibrium paths.

12As by assumption (cf. Sect. 2.1) the leader’s penalty matrix Rt11 is required to be of
full rank, the mj xm matrix Cy(k) (see Eq. 24) exists and is invertible.
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A brief outline of what has to be changed in Step 2 to utilize the procedure
described in Sect. 3.1 for obtaining approximations of the state and control
paths in the open-loop Nash equilibrium is given next.'3 Again, at iteration
step k, we linearize the nonlinear autonomous system f given by Eq. 4, along
the tentative paths for state and controls, jointly embodied in {Xy(k)}/_, with
Xy(k):= [%(k) u}(k) ... ap(k)].

Open-Loop Nash Equilibrium Solution. Let the matrix
)i=I+ Z Bi(k)[R) B! (k) Pi(k) (30)

exist and be invertible, with I denoting an m, xm, identity matrix. Starting
with the conditions, Pi(k) = Q% and p'{k) = —Q%x%., all players’ Riccati
matrices are computed backwards in time according to a system of recursive
matrix equations,

P, (k) = Qi_y + AR)PYk)[Cyk)]~'Alk), (31)

pi_i(k) = —Qi_1X,_1 + AY(k)[Pyk)[Cyk)] 'bik) + pi(k)],  (32)
with A4, BY, and c; given by Egs. 6, 7, and 8, and with
bk +ZB7 — [RI]7'B] (k)pl(k)]. (33)

With these matrices P}(k), ..., P{(k), pi(k), ..., p{(k) computed for all play-
ers and for all time periods, i.e. Vi=1,....,nand V=1, ..., T, the state variable
is determined by

i(k) = [C{R)]~ [ALk)R;_1(k) + by(k)], (34)

starting with X{(k) =%o. At the beginning of the open-loop Nash game, each
of the n simultaneously acting players makes a binding commitment to stick,
for the entire planning horizon, to the policy rule

(k)= ay’ — [R{]7'BY (k)[Pi(k)%;(k) + pi(k)], (35)

starting with %j(k) = [C1(k)] '[A1(k)Xo + bi(k)]. These control variables ob-
tained for the k' iteration are used to define the tentative control variables
for the (k+1)*" iteration, i.e., {Qi(k+1)}/_; = {a*(k)}L_,, while {x/(k+1)}1_,
is computed by solving the nonhncar system (cf. Eq. 4). Thus, the tentative
path along which the (k+1)*" linearization procedure is carried out is given by
{X (k1) with Xy(k+1) = [Rf(k+1) @f(k+1) ... @¥(k+1)])’ (cf. Fig. 1). When

13Note that the open-loop Nash equilibrium solution of the linearized quadratic game is
determined using Pontryagin’s maximum principle, while the feedback Nash and feedback
Stackelberg solutions of the linearized quadratic game are approximated using the dynamic
programming technique.
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the algorithm has converged (see Sect. 3.1), the resulting open-loop Nash equi-
librium solution has the property that none of the players can reduce his/her
individual loss by one-sided deviations from that path. A comparison of the
objective function values (Eq. 1) for the open-loop and the feedback Nash
equilibrium solutions can yield information about gains and losses associated
with the commitment to a certain strategy over several periods of time. Such
calculations for different scenarios may also help to shed light on a particular
player’s incentive for reneging.

The last solution concept for which Step 2 is discussed here is the coop-
erative Pareto-optimal solution, which is actually an optimal control rather
than a game-theoretic problem. We have, however, decided to include it since
it provides valuable information when used as a benchmark.

Again we follow the procedure described in Sect. 3.1 but replace Step 2 by
the following routine where the approximate solution of the Pareto-optimal
game (with n cooperating players) is determined by solving a classical optimal
control problem using dynamic programming;:

Pareto-Optimal Solution. Starting with Pr(k) = > | p'Q% and pr(k) =
2?21 ' Qi.x%. respectively, the Riccati matrices of the tracking problem (for-
mulated in terms of Eq. 3 subject to Eq. 4) are computed for all players by
iterating backwards in time according to the following system of 2n recursive
matrix equations,

Poi(k) =Y 1'Qi_, + K(R)PRK (k) + > G (B)R{Gi(k),  (36)
1=1 1=1

pei(k) = S WQ) X + KIR)PAR)kik)—pd k)] + 3 G ()[ri — Rigi(k)],
i=1 i=1
’ . (37)
with Ri:= 37 p/R{", rj:= 3", p/Ry"@)", and Ky(k) and kyk) defined by
Egs. 11 and 12 respectively. For all € {1, ..., T}, the feedback matrices Gi(k)
and gi(k) Vi€{1,...,n} in Eqs. 36—37 are determined as solutions of a system
of 2n linear matrix equations,

DUKGIk) + B (WPARAK) + 3 Bl WG (k)] =0, (38)
D(k)gi(k) + (k) + B{(PK) Y B (el () =0, (39)

with

—

Di(k) = B (K[P(WBi(k) + > R (40)
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a(k) = B (k)[Py(k)edk) —pik)] = > /R a]" (41)

and Ay(k), B{k), c{k) given by Egs. 6, 7, and 8 respectively.

With both Riccati matrices Pi(k) and p{(k) and feedback matrices G{k)
and gi(k) computed for all players and for all time periods, i.e. Vic{l,...,n}
and V ¢t € {1,...,T}, the k*" iteration of the Pareto-optimal path of the state
variable, {X}(k)}~_,, and the k'" iteration of player i’s Pareto-optimal path
of the control variables, {ii*(k)}._;, are determined using Eqs. 17 and 18
respectively.

The possibilities and the limitations of the OPTGAME algorithm are sim-
ilar to the ones observed for the tracking problem in regulator theory. Only if
the algorithm converges is the result obtained an approximation of the solu-
tion of the original problem [33], and, as Stephen Boyd remarks in his course
on Linear Dynamical Systems, the algorithm ‘sometimes converges, sometimes
to globally optimal control’ ([36], p. 31). We have used the OPTGAME2 al-
gorithm in various experiments with small numerical economic models and
obtained convergence in nearly all cases. The results are generally reasonable
and can be well interpreted in terms of economic policy, so we are confident

that it can also deliver useful insights into more sophisticated policy problems.

4 An Example

In this section we present an application of the OPTGAME algorithm to a
monetary union macroeconomic model. Dynamic games have been used by
several authors (e.g. [11,31]) to model conflicts between monetary and fiscal
policies. There is also a large body of literature on dynamic conflicts between
policy makers from different countries on issues of international stabilization
(e.g. [12,10,37]). Both types of conflict are present in a monetary union, be-
cause a supranational central bank interacts strategically with sovereign gov-
ernments as national fiscal policy makers in the member states. We use a small
stylized nonlinear two-country macroeconomic model of a monetary union
(called MUMOD1) to analyse the interactions between fiscal (governments)
and monetary (common central bank) policy makers, assuming different ob-
jective functions of these decision makers. Using the OPTGAME algorithm
we calculate approximate solutions for the four game strategies available in
OPTGAME, viz. the cooperative Pareto optimal solution, the open-loop and
feedback Nash equilibrium solution and the feedback Stackelberg equilibrium
solution. Applying the OPTGAME algorithm to the MUMOD1 model we can
show how the policy makers react optimally to demand and supply shocks.
For details and additional policy experiments, see [38].
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4.1 The MUMOD1 model

In the following brief model description, capital letters indicate nominal values,
while lower case letters correspond to real values. Variables are denoted by
Roman letters and model parameters are denoted by Greek letters. Three
active policy makers are considered: the governments of the two countries
responsible for decisions about fiscal policy and the common central bank of
the monetary union controlling monetary policy. The two countries are labeled
1 and 2 or core and periphery respectively. Thus MUMODLI is a stylized model
of a monetary union consisting of two homogeneous blocs of countries, which
in the current European context might be identified with a stability-oriented
bloc (core) and a bloc of countries with problems due to high public debt.

Real output (or the deviation of short-run output from a long-run growth
path) in country ¢ (i = 1,2) at time ¢ (¢t = 1,...,T) is determined by a reduced
form demand-side equation

Yir = 0i(mje — Ta) — 7i(rie — 0) + pa¥ie — BiTit + Kilie—1) — MiGat + 2dsz, (42)

for 4,5 = 1,2; i # j. The variable m;; denotes the rate of inflation in country
i, T3 represents country ¢’s real rate of interest and g;; denotes country i’s
real fiscal surplus (or, if negative, its fiscal deficit) measured in relation to
real GDP. g;; is assumed to be country 4’s fiscal policy instrument or control
variable. The natural real rate of output growth, 6 € [0, 1], is assumed to be
equal to the natural real rate of interest. The parameters d&;,v:, pi, Bi, Ki, T
are assumed to be positive. The variables zdy; and zds; are non-controlled
exogenous variables and represent demand-side shocks in the goods market.
The current real rate of interest for country ¢ (i = 1,2) is given by

rit = Iy — Wft» (43)

where 7§, denotes the expected rate of inflation in country ¢ and I;; denotes
the nominal interest rate for country ¢, which is given by

Iiy = REt — Nigit + XiDie, (44)

where Rp; denotes the prime rate determined by the central bank of the
monetary union (its control variable); —A; and x; (A; and y; are assumed to
be positive) are risk premiums for country ¢’s fiscal deficit and public debt
level.

The inflation rates for each country ¢ = 1,2 and t = 1, ..., T are determined
according to an expectations-augmented Phillips curve

it = Wiy + &ilit, (45)

where & and & are positive parameters, 7§, denotes the rate of inflation in
country i expected to prevail during time period ¢, which is formed at (the
end of) time period ¢ — 1. Inflationary expectations are formed according to
the hypothesis of adaptive expectations:

T = &imig—1) + (1 — &)mi_1y. (46)
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where g; € [0, 1] are positive parameters determining the speed of adjustment
of expected to actual inflation.
The average values of output and inflation in the monetary union are given
by
Yy = wyrr + (1 —w)yze, w €[0,1], (47)

g = wi + (L — w)ma, w € [0,1]. (48)

The parameter w expresses the weight of country 1 in the economy of the
whole monetary union as defined by its output level.
The government budget constraint of country 4 (i = 1,2) is given as

Dy = (1 + 1)) Digt—1) — git (49)

where D; denotes real public debt of country i measured in relation to (real)
GDP.

Both national fiscal authorities are assumed to care about stabilizing in-
flation (7), output (y), debt (D) and fiscal deficits in their own countries (g)
at each time t. The common central bank is interested in stabilizing inflation
and output in the entire monetary union, also taking into account a goal of
low and stable interest rates in the union.

Equations (42)-(49) constitute a dynamic game with three players, each of
them having one control variable. The model contains 14 endogenous variables
and four exogenous variables and is assumed to be played over a finite time
horizon.

The parameters of the model are specified for a slightly asymmetric mone-
tary union, see Table 1. Here an attempt has been made to calibrate the model
parameters so as to fit the EMU.

Table 1 Parameter values for an asymmetric monetary union, i = 1,2

T 0 w  0,Bi,m8 Vi PisRi i N Xi
30 3 06 0.5 0.25 0.0125

The initial values of the macroeconomic variables, which are the state vari-
ables of the dynamic game model, are presented in Table 2. The desired or
ideal values assumed for the objective variables of the players are given in
Table 3. Country 1 (the core bloc) has an initial debt level of 60% of GDP and
aims to decrease this level in a linear way over time to arrive at a public debt
of 50% at the end of the planning horizon. Country 2 (the periphery bloc)
has an initial debt level of 80% of GDP and aims to decrease its level to 60%
at the end of the planning horizon. The ideal rate of inflation is calibrated at
1.8%, which corresponds to the Eurosystem’s aim of keeping inflation below,
but close to, 2%. The initial values of the two blocs’ government debts corre-
spond to those at the beginning of the Great Recession, the recent financial
and economic crisis. Otherwise, the initial situation is assumed to be close to
equilibrium, with parameter values calibrated accordingly.
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Table 2 Initial values of the two-country monetary union

vyi,o Tio T5o Dio Da2po
0 2 2 60 80

Table 3 Target values for an asymmetric monetary union

Jit D1 Doy Tit  TEt Ypt Jit  REt
0 60N\50 80\,60 1.8 1.8 0 0 3

4.2 Effects of a negative demand-side shock

The MUMOD1 model can be used to simulate the effects of different shocks
acting on the monetary union and the effects of policy reactions towards these
shocks. Here we investigate a symmetric shock which occurs on the demand
side (zd;) as given in Table 4. The numbers can best be interpreted as per-
centage points of real GDP.

Table 4 Negative symmetric shock on the demand side

t 1 2 3 4 5 6 - 30
zdp |2 4 -2 0 0 0O .- 0
zdo | -2 -4 -2 0 0 0 - 0

Using the OPTGAME algorithm, we calculate five different solutions: a
baseline solution with the shock but with policy instruments held at pre-shock
levels (zero for the fiscal balance, 3 for the central bank’s interest rate), three
noncooperative game solutions and one cooperative game solution. Figures 2-6
show the simulation and optimization results of this experiment. Figures 2-3
show the results for the control variables of the players and Figures 4-6 show
the results of selected state variables: output, inflation, and public debt.

Without policy intervention (baseline scenario, denoted by ’simulation’),
both countries suffer from the economic downturn modeled by the demand-side
shock in the first periods. The output of both countries drops by more than 6%,
which is a fairly good approximation of what happened in reality for several
European countries. Even more dramatic is the development of public debt.
Without policy intervention it increases during the whole planning horizon
and arrives at levels of 240% of GDP for country 1 (or the core bloc) and
390% for country 2 (or the periphery bloc), which shows a need for policy
actions to preserve the solvency of the governments in the monetary union.

The reactions of the players (the central bank and the governments of
the countries) to the demand-side shocks and their intensity depend on the
presence or absence of cooperation. Optimal monetary policy has to be ex-
pansionary (lowering the prime rate) in all solution concepts considered, but
in the cooperative Pareto solution it is more expansionary during the first 15
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Fig. 2 Prime rate Rg; controlled by the central bank

periods. The Nash open-loop equilibrium solution, in contrast, is more or less
constant during the whole optimization period, which causes the central bank
to be less active at the beginning and relatively more active at the end of the
optimization horizon.

With respect to fiscal policy, both countries are required to set expansion-
ary actions and to create deficits in the first three periods in order to absorb
the demand-side shock. After that a trade-off between output and public debt
occurs and the governments have to take care of the financial situation and
produce primary surpluses. The only exception is the cooperative Pareto so-
lution: cooperation between the countries and the central bank (which in this
strategy runs a more active expansionary monetary policy) and the resulting
moderate inflation means that the balance of public finances can be held close
to zero. For country 2 it is even optimal to run a slightly expansionary fiscal
policy again during the last 15 periods in the Pareto solution. In spite of this
the countries are able to stabilize and bring down their public debts close to
the targeted values under cooperation.

In the open-loop Nash equilibrium solution, as the central bank is less active
than in all the other solutions, the governments are forced to run restrictive
fiscal policies. Here the trade-off between output and the public debt target is
dominated by the latter. The lack of cooperation between the players and the
open-loop information pattern make the policy makers less flexible and as a
result produce large drops in output and an unsustainable deflation. An eco-
nomic reason for this result is the lack of strong time consistency of strategies
in this solution concept, which implies very restrictive fiscal policies.

The noncooperative Nash feedback and Stackelberg feedback solutions give
very similar results. In comparison to the Pareto optimal solution, the central
bank is less active and the countries run more active fiscal policies (except
during the negative demand shock). As a result, output and inflation are
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(periphery; bottom)

slightly below the values achieved in the cooperative solution, and public debt
is slightly higher.

Several other policy experiments were run with this model, including sup-
ply side shocks and policy reactions to them [38] or various solutions to the
emerging public debt crisis such as debt reliefs. As for the OPTGAME algo-
rithm, it can be concluded that it runs smoothly and converged for all policy
experiments run. The results concur with economic intuition and although we
can, of course, not be sure sure how close the approximate solutions are to
the true equilibrium solutions, the conjecture that they are so seems to be
justified.
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5 Concluding Remarks

In this paper we gave a description of a numerical algorithm which was de-
veloped to investigate dynamic game problems for economic policy questions.
OPTGAME approximates the solutions of multi player ‘tracking games’ by
iteratively applying a local numerical linearization procedure. The noncoop-
erative solution concepts considered here include Stackelberg and Nash equi-
librium solutions, the latter for both open-loop and feedback information pat-
terns. These types of noncooperative games can be used to model the inter-
action of a finite number of decision makers who share a joint ‘environment’
but aim at unilaterally minimizing deviations from an individually desirable
(multi objective) state or situation over a finite planning horizon. To deter-
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mine who wins and who loses at whose expense, the Pareto-optimal solution
is also included, where the mathematical model that serves as the basis for
the iterative numerical procedure for approximating equilibrium solutions is
equivalent to the tracking problem in linear quadratic regulator theory.

Several promising extensions of the algorithm are topics for further re-
search, including stochastic dynamic systems and systems with forward-looking
(rational) expectations. Moreover, any increase in the number of players in-
creases the number and the possible structure of their interactions, allow-
ing, among others, the formation of hierarchies and coalitions. Extending the
OPTGAME algorithm to implement the possibility of a multi-level hierarchi-
cal structure and a model of coalition formation constitutes a challenging and
important task for future research.
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A Appendix

A.1 Derivation of the Feedback Nash Equilibirum Solution for a LQDG

All players have access to the complete state information and seek control rules that respond
to the currently observed state. Here we will describe the corresponding feedback Nash
equilibrium solution for iteration step k, {%;(k)}7_, and {@i*(k)}_, Vi€ {1,...,n}, that
minimizes Eq. 1 subject to Eq. 5 by applying the method of dynamic programming. We set
up player ¢’s (i=1...,n) individual cost-to-go function for the terminal period, T,

Ti(k) = 5+ (%) — %) Qp [%3(k) — %] + §-D_[uflk) — af] RY [wh(k) — 0] (50)
j=1
For P%(k) ::QiT and pLT(k) ::Qi;,wfcéw, Eq. 50 is equivalent to

THk)= %5 (k)PLR&3(k) — %y (k)pik) + Ex(k), (51)

where the scalar &7(k) is the sum of all terms that do not depend on ®’(k) and uf(k) and
is, thus, without any relevance for our further calculations. From Eq. 5 we know that the
optimal state vector for the terminal period can be derived by the use of the state vector
optimized for the previous time period, X% _(k), and the optimal control variables, Q% (k)
Vi€ {l,..,n}. To derive the latter, in Eq. 51 we replace X7(k) by the right-hand side of
Eq. 5, and compute the optimal values of J(k) V i € {1,...,n} by minimizing J%(k) with
respect to u'T(k)7 ie.,

8J§"(k) _ R i &* = I (ke c
Jui () — BIEPHE)A7(k) T_1<k>+jzzleT<k> 5(k) + er(k)] )

~Bi(k)pi(k) + RE[a7(k) — 0F] = 0.

Note that, since Ji(k) is strictly convex with respect to ui(k) V i€ {1, ...,n}, the first-order
conditions (Eq. 52) are necessary and sufficient.
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Under the assumption that all players act simultaneously, we can derive optimal con-
trol variables of the form a%(k) = Gi(k)%%_ (k) + gi(k).!* Plugging these into Eq. 52
we arrive at Eq. 13 and Eq. 14 for t = T respectively, from which we can compute
the feedback matrices, G%{(k) and g/{(k). The optimal state can then be determined by
&3(k)=Kp(k)&% (k) +kp(k) (cf. Eq. 17 for t = T') with Kp(k) and k7(k) given by Eq. 11
and Eq. 12 for t = T respectively.

For the derivation of period-(7'—1) parameter matrices of the value function, Le., the
Riccati matrices for time period T'—1, we set up the cost-to-go function J¥ (k) + J&4_,(k)
and replace %;(k) and 0%%(k) by Eq. 17 and Eq. 18 for t = T'—1 respectively.

JF(R) + I (k) = [Kr(k)&T_1(k) + kr(k)]' [5 - PLKr(k)Rp_1(k) + kr(k)] — pi(k)]
+ > IGHR)Zr (k) + H R RY [ [GHR)ZE_1(k) + gl (k)] — 57|
j=1
R () Qi [5-%p (k) — %y (k)]

+ > wh G WRE [5euh (6) = 40| + (k)
j=1

where the scalar ¥ _1(k) is without any relevance for further calculations since it is the sum
of all terms that do not depend on %% _ (k) and u’._,(k). Collecting all terms containing
&% _ (k) we get

TE(K) + To_y(k)= L %5 (R)PY_ R _y(k) — % _y(RK)pi_y(k) + Er—1(k),  (53)

and can identify the Riccati matrices for T'—1 by comparing coefficients with Eq. 53. The
Riccati matrices are then determined by Eq. 9 and Eq. 10 for ¢ = T'—1 respectively. Then,
we minimize the objective function of player ¢ (¢ = 1,...,n), i.e.,

J(k) + J7_y(k) = min {JF(k) + Jp_y(k)} (54)

ur_1

analogously to what was done for period T: In Eq. 53 we replace ’A‘*Tq(k) by the lin-
earized system dynamics, Ap_(k)%%_,(k) + 31 BE_ (k)ub._ (k) + cr_1(k). compute
the expression’s first derivative with respect to u%_l(k) Vie{l,...,n}, and set the deriva-
tive equal to zero. A little algebra yields optimal control variables of the form ﬁ%il (k) =
Gi (k)x% (k) + gk (k) with Gi._ (k) and g% (k) being derived by solving 2n lin-
car matrix equations consisting of Eq. 13 and Eq. 14 V ¢ € {1,...,n} (for t =T —1) re-
spectively. The optimal state variable for period ¢t = T'—1 can, then, be determined by
iT—l(k): KTfl(k))A(,}_2(k) + kal(k) (Cf EqA 17 for t:T—l) with KTfl(k) and kal(k)
given by Eq. 11 and Eq. 12 for ¢ = T —1 respectively, with the Riccati matrices being
determined by Eq. 9 and Eq. 10 (determined again by comparing coefficients).

The procedure sketched for t =T and ¢t =T —1 can be extended to period t =T —2
and generalized to any other period t=7 (7 > 1) by induction. The existence of uniquely
determined Riccati matrices for all periods ¢ € {1,...,T} of the LQDG, i.e., each player i
seeking to minimize Eq. 1 subject to Eq. 5, can readily be verified according to, e.g. [1], if
the penalty matrices for the states are nonnegative definite (which is what we assumed).

To conclude, the LQDG at iteration step k is solved by starting with the terminal
conditions P;7{(k) and p;r(k), and integrating the Riccati equations (Egs. 9 and 10) back-
ward in time. Utilizing both Riccati matrices, Pi(k) and p"é(k), and feedback matrices,
GY(k) and gi(k), computed for all players and for all time periods, i.e., V ¢ € {1,...,n}

14 The linear functional form of the optimal control vectors, for i = 1, ...,n, results from
the quadratic structure of the cost (or payoff) functions (Eq. 1) and the linearity of the
system equation (Eq. 5).
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and V t € {1,...,T}, the k*" iteration of the feedback Nash equilibrium path for the state
variable, {%#(k)}Z_,, and the k'" iteration of player i’s equilibrium path for their own control
variable, {01*(k)}L_,, are determined by Eq. 17 and Eq. 18 respectively, both being initiated
with Xj(k) =%o (where Kyk) and k¢ k) are defined by Eq. 11 and Eq. 12 respectively).

Given the values of optimal states and controls, the scalar values of the loss functions
can be determined.



