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vii	

Summary	

	

The	project	sought	to	examine	the	effects	of	habitat	loss	and	fragmentation	

on	the	ecology	and	population	genetics	of	the	estuarine	crocodile	

(Crocodylus	porosus).	Additionally,	the	role	played	by	humans	in	this	

anthropogenically-altered	landscape	was	examined.	Through	the	utilisation	

of	a	host	of	technologies,	some	previously	established,	some	completely	

novel	in	crocodilian	research,	a	new	insight	into	how	the	landscape	is	

utilised	by	these	cryptic	predators	was	developed.	This	project	represents	a	

first	detailed	look	at	Sabah’s	crocodilian	population,	as	well	as	being	the	first	

active	crocodile	research	carried	out	in	Sabah’s	longest	river.			

	

Male	crocodiles	were	found	to	adhere	to	one	of	two	behavioural	strategies,	

territorial	and	nomadic,	mirroring	findings	of	Campbell	et	al.	(2013).	

Territory	sizes	were,	however,	found	to	be	smaller	than	those	described	in	

Australia,	this	was	attributed	to	increased	prey	availability	and	ecosystem	

productivity.	Only	two	females	were	tagged	and	appeared	to	also	display	

differences	in	behavioural	strategy.	However,	due	to	the	small	sample	size,	

further	work	is	required	to	confirm	this.	Both	males	and	females	were	found	

to	avoid	barriers	and	were	unwilling	to	pass	beyond	the	barrier,	despite	no	

physical	obstruction.	Nests	were	detectable	aerially	through	the	use	of	

drones	and	medium-large	scale	surveys	shown	to	be	feasible.	Nests	were	

found	to	all	display	a	number	of	similarities	in	terms	of	habitat	

characteristics,	allowing	for	refined	modelling	of	survey	locations.	This	

allows	for	a	larger	survey	area	to	be	completed	given	a	limited	number	of	

flights,	highlighting	its	cost	effectiveness	versus	traditional	methods	of	nest	

surveying.	Genetic	analysis	suggested	that	there	was	no	evidence	of	a	

genetic	bottleneck	following	the	population	recovery	that	has	occurred	over	

the	last	30	years.	Geographically	indistinct	haplogroups	were	discovered,	as	

well	as	limited	levels	of	inbreeding.	The	project	also	indicated	that	the	

population	studied	had	undergone	a	population	expansion	that	seems	to	

have	coincided	with	the	onset	of	the	last	ice	age	and	is	likely	attributable	to	

changes	in	climate.				
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1	

Chapter	1	–	General	Introduction		

	

1.1 Regional	Biogeography	

Tropical	rainforests	represent	expansive,	understudied	ecosystems,	with	those	

of	Sundaland,	comprising	the	islands	of	Borneo,	Sumatra	and	Java,	as	well	as	

peninsula	Malaysia,	being	among	the	most	biologically	diverse	(Myers	et	al.	

2000).	Borneo	is	the	third	largest	island	on	Earth,	covering	an	area	of	some	

743,000	km2;	it	is	bisected	by	the	Equator	and	typifies	many	people’s	

definitions	of	equatorial	tropical	rainforest.	Its	forests	are	estimated	to	be	

among	the	oldest	on	Earth	(Brühl	et	al.	2003),	dating	back	some	140	million	

years.	Large-scale	land	conversion	of	the	region	has,	however,	resulted	in	a	

projected	loss	of	three	quarters	of	Southeast	Asian	biodiversity	by	the	year	

2100	(Sala	et	al.	2000;	Sodhi	et	al.	2004).	Despite	this	loss,	the	area	has	retained	

a	high	proportion	of	its	endemic	biodiversity,	with	some	25,000	plant	species	

found	throughout	Sundaland	(Myers	et	al.	2000).	Contemporary	land-use	

conversion	in	the	region	has	been	focussed	almost	solely	on	large-scale	

cultivation	of	oil	palm	(Elaeis	guineensis),	with	Sundaland	being	one	of	the	most	

heavily	converted	regions	(Koh	&	Wilcove	2007).	This	trend	has	been	cited	as	a	

major	factor	in	a	projected	future	biodiversity	collapse	in	the	region	

(Fitzherbert	et	al.	2008;	Sodhi	et	al.	2004).		

	

Sabah	is	one	of	two	Malaysian	states	that	comprise	much	of	North	Borneo.	It	

formed	part	of	the	medieval	Bruneian	Empire	and	later	the	Sulu	Sultanate.	

Between	1761	and	1963	it	formed	part	of	British	North	Borneo,	gaining	

independence	and	subsequently	joining	Malaysia	in	1966.	The	state	of	Sabah	

has	itself	become	a	global	hub	for	oil	palm	production	with,	as	of	2011,	an	

estimated	19.3%	of	the	state’s	total	land	area	being	devoted	to	oil	palm	

agriculture	(Abram	et	al.	2014).	This	has	led	to	many	of	the	state’s	forests	

becoming	fragmented	(Fig.1.1).	
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Figure	1.1	Current	extent	of	forest	cover	in	Sabah	(inset)	and	the	lower	

Kinabatangan	floodplain.	The	Kinabatangan	region	is	clearly	shown	as	one	of	

the	most	heavily	fragmented	regions	in	Sabah.	

	

1.2 Lower	Kinabatangan	Wildlife	Sanctuary		

The	Lower	Kinabatangan	Wildlife	Sanctuary	(LKWS)	was	first	gazetted	in	2005	

and	comprises	10	forested	“lots”	(patches	of	protected	forest),	totalling	an	area	

of	some	27,000	ha	(Goossens	et	al.	2005).	These	lots	retain	varying	levels	of	

connectivity	with	some	completely	encompassed	by	active	agriculture.	The	
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LKWS	is	situated	in	the	expansive	floodplain	of	the	Kinabatangan	River,	an	area	

with	a	catchment	of	around	520,000	ha	(Abram	et	al.	2014).	At	a	length	of	560	

km,	the	river	is	the	second	longest	in	Borneo,	and	the	longest	in	Sabah	

(Boonratana	2000).	The	remaining	forest	is	not	only	highly	fragmented	(Figure	

1.1)	but	also	highly	logged	and	regenerating	in	terms	of	forest	regrowth	

(Goossens	et	al.	2005).	Despite	the	relatively	small	patches	of	remaining	habitat,	

a	large	proportion	of	the	original	biodiversity	remains,	with	records	of	10	

primate	species	(Lackman-Ancrenaz	et	al.	2001),	314	avian	species	and	101	

species	of	reptile	(Lackman-Ancrenaz	&	Manokaran	2008).		

	

As	with	many	other	areas	in	Sabah,	the	Kinabatangan	River	has	seen	an	

expansion	of	anthropogenic	presence	over	recent	decades	(Primack	&	Hall	

1992).	A	consequence	of	this	has	been	the	appearance	of	an	ever-increasing	

number	of	villages	along	the	riverbank,	with	an	associated	increase	in	fishing	

and	hunting	pressures.	This	is	despite	the	illegality	of	hunting	within	a	state-

gazetted	wildlife	sanctuary.	In	addition,	the	past	20	years	has	seen	further	

anthropogenic	expansions,	including	that	of	several	important	socio-economic	

villages	throughout	the	river,	fuelling	the	burgeoning	ecotourism	sector	(Hussin	

et	al.	2008).	These	increases	in	human	presence	have	inevitable	consequences	

for	rates	of	wildlife	conflict,	especially	in	circumstances	where	habitat	has	

become	increasingly	limited.			

	

1.3 Human-wildlife	conflict	in	Sabah	

Although	they	are	found	throughout	much	of	the	Sundaland,	large	terrestrial	

carnivores	such	as	tigers	(Panthera	tigris)	and	leopards	(Panthera	pardus)	are	

absent	from	the	island	of	Borneo.	Borneo’s	only	extant	member	of	the	large	felid	

group	is	the	Sunda	clouded	leopard	(Neofelis	diardi);	this	species	is	small	and	

poses	little	threat	to	humans	or	their	interests.	The	majority	of	human-wildlife	

conflict	in	Sabah	stems	from	the	Bornean	elephant	(Elephas	maximus	

borneensis)	and	the	estuarine	crocodile	(Crocodylus	porosus).		

	

Bornean	elephants	within	LKWS	number	approximately	200	individuals	

(English	et	al.	2015);	they	are	responsible	for	many	acts	of	property	destruction	
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and	the	occasional	confrontation	with	humans.	This	is	mostly	due	to	habitat-

based	constraints,	which	are	particularly	prevalent	in	the	LKWS.	Estuarine	

crocodiles	are	less	associated	with	property	destruction,	although	livestock	and	

pets	are	sometimes	at	risk,	but	are	more	associated	with	attacks	and	aggression	

towards	humans.	Official	figures	cite	the	number	of	deaths	in	Sabah	between	

2000	and	2011,	arising	from	crocodile	interactions	as	15	(Sabah	Wildlife	

Department	unpubl.	data).	This	is	likely	to	be	an	underestimation	arising	from	

under-reporting,	especially	from	within	plantations.						

	

Estuarine	crocodiles	were	heavily	hunted	in	the	20th	Century	and,	as	a	result,	

experienced	a	substantial	reduction	in	population	numbers	throughout	their	

habitat	range	(Thorbjarnarson	et	al.	1998).	Their	subsequent	recovery	(Fukuda	

et	al.	2011)	has	left	unanswered	questions	regarding	the	genetic	health	of	

populations.	Apex	predators,	of	which	the	estuarine	crocodile	is	an	obvious	

example,	are	often	those	most	greatly	affected	by	habitat	destruction;	this	is	

because	they	often	require	far	more	habitat	area	per	individual	than	many	of	

their	prey	species	(Crooks	et	al.	2011).	Crocodilians,	with	their	ability	to	

traverse	waterways	and	travel	long	distances,	are	not	confined	by	habitat	

fragmentation	to	the	same	extent	as	many	terrestrial	predators	(Kay	2004A;	

Read	et	al.	2007),	however,	they	do	require	large	prey	bases	and	increased	

habitat	patchiness	can	lead	to	serious	declines	in	prey	availability	through	a	

reduction	in	biodiversity	(Fitzherbert	et	al.	2008).	A	consequence	of	this	

reduction	can	be	an	increase	in	the	levels	of	human-crocodile	conflict,	either	

due	to	territorial	defence,	or	active	hunting	of	humans	by	crocodilians.	A	less	

abundant	prey	base	could	also	have	implications	for	how	crocodilians	behave	in	

fragmented	landscapes.	The	shared	resources	competed	for	as	prey	items,	such	

as	fish,	by	crocodilians	and	humans	is	a	major	driver	for	increased	conflict.	

Increasing	our	understanding	of	these	behaviours	have	potentially	important	

management	and	safety	implications	for	the	local	ecosystem,	and	also	have	

wider	applicability	to	a	host	of	ecosystems	across	the	world,	especially	in	areas	

where	rainforest	ecosystems	are	increasingly	under	threat	of	habitat	

fragmentation.					
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1.4 Thesis	Aims		

The	overall	aim	of	this	study	was	to	examine	how	the	estuarine	crocodile	is	

affected	by	fragmented	habitat;	this	was	attempted	by	investigating	its	spatial	

ecology,	nesting	distributions	and	population	genetics.	These	different	aspects	

were	explored	using	a	range	of	field-	and	laboratory-based	technologies	and	

approaches	that	included:	genetic	analyses,	the	use	of	existing	and	novel	forms	

of	satellite	tracking	technologies,	and	the	application,	for	the	first	time	in	

crocodilian	research,	of	an	Unmanned	Aerial	Vehicle	(UAV),	generally	referred	

to	as	a	“drone”.		

	

Chapter	2	provides	a	review	of	the	literature	relevant	to	the	current	study;	

crocodilian	biology,	nesting	ecology,	the	burgeoning	role	of	drones	as	a	

conservation	tool,	and	the	history	of	genetic	analysis	and	its	uses	in	crocodilian	

research	are	all	explored.	Through	this	literature	review	it	is	aimed	to	provide	

relevant	background	to	ensure	a	contextual	setting	for	each	of	the	following	

empirical	chapters.		

	

Chapter	3	investigates	the	home-ranging	and	spatial	ecology	of	C.	porosus.	

Three	different	satellite	tracking	technologies	were	employed	to	determine	the	

optimum	method	of	tracking	individuals	in	equatorial	rainforest	ecosystems.	

Continual	tracking	techniques	were	also	employed,	not	only	to	establish	home	

range	estimates,	but	to	look	at	activity	patterns	and	fine-scale	spatial	

distribution,	as	well	as	to	understand	how	individuals	are	utilising	the	

landscape	better.		

	

Chapter	4	provides	a	verification	of	the	applicability	of	one	methodological	

approach	to	crocodile	nest	identification.	A	novel	technique,	this	“proof	of	

concept”	sought	to	provide	a	cost-effective	and	repeatable	means	of	surveying	

large	areas	of	nesting	habitat,	whilst	ensuring	the	safety	of	field	personnel.	A	

version	of	this	study	has	been	published	in	Herpetological	Conservation	and	

Biology.	
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Chapter	5	seeks	to	build	on	the	aerial	nest	detection	methodologies	described	in	

Chapter	4,	employing	them	to	examine	the	spatial	nesting	ecology	of	crocodilian	

nesting	in	a	fragmented	rainforest	habitat.	The	main	aim	of	this	specific	

investigation	was	to	refine	the	identification	of	factors	key	to	nest	detection	and	

subsequently	model	the	most	likely	nest-harbouring	habitat	areas.	The	

possibilities	of	using	these	results	in	refining	aerial	mission	planning	and	in	the	

reduced	effort	of	equivalent	nest	detection	rates	are	discussed.			

	

In	Chapter	6	the	population	genetics	of	the	Kinabatangan	River’s	crocodiles	are	

explored,	with	an	attempt	to	place	them	within	the	genetic	context	of	the	

species.	Through	the	use	of	mitochondrial	and	microsatellite	analysis,	

demographic	history,	population	structure	and	their	effects	on	the	crocodile	

population	are	explored.		

	

Finally,	in	Chapter	7,	by	summarising	and	integrating	the	information	from	each	

chapter,	an	attempt	is	made	to	give	an	overview	of	crocodilian	ecology	and	

population	genetics	in	a	fragmented	landscape.	The	study	is	also	placed	in	the	

context	of	management,	conservation	and	conflict	implications	of	the	findings	in	

terms	of	the	crocodile	populations	of	the	Kinabatangan.	This	project	will	not	

only	have	applicability	in	Sabah	but	throughout	the	region	and	potentially	

worldwide.	Information	gaps	and	areas	demanding	further	research	attention	

are	also	highlighted.		
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Chapter	2	-	Literature	Review		

	

2.1	Crocodilians		

The	state	of	Sabah	is	home	to	a	thriving	population	of	estuarine	crocodiles	

(Crocodylus	porosus);	there	are	also	isolated	reports	of	a	second	species,	the	

tomistoma	(Tomistoma	schlegelii).	With	the	number	of	the	latter	species	

declining	across	their	range	in	recent	decades,	the	conservation	plight	of	

tomistomas	has	been	brought	into	sharp	focus	among	crocodilian	researchers;	

this	resulted	in	the	formation	of	the	Tomistoma	Task	Force	(Tomistoma.org)	

that	has	conducted	survey	work	to	obtain	population	estimates.	Whilst	Sabah	

has	no	confirmed	recorded	sightings	of	tomistoma,	there	are	reportedly	

unconfirmed	sightings	from	the	Klias	and	Padas	Rivers,	located	in	Western	

Sabah	(Whitaker	1984).	If	a	tomistoma	population	does	exist	within	Sabah	it	

would	be	most	likely	found	closest	to	other	extant	populations,	the	largest	of	

which	can	be	found	in	Sarawak	(Stuebing	et	al.	2006).	

	

Crocodilians	represent	part	of	an	ancient	clade	of	species,	known	as	the	

Diapsids,	within	Class	Reptilia	(Rieppel	&	deBraga	1996).	The	group	is	

distinguishable	from	other	reptilians	in	their	possession	of	two	holes	located	

behind	the	eyes,	known	as	temporal	fenestrae	(Brochu	2006).	Crocodilians,	

along	with	extinct	‘crocodile-like	reptile’	species	(Pseudosuchia),	several	

species	of	modern	day	bird	(Avemetatarsalia	–	‘bird-like	reptiles’),	as	well	as	

many	extinct	and	extant	species	of	early	birds	(Toljagic	&	Butler	2013),	form	

part	of	the	sub-clade	Archasaurs.	The	evolution	of	modern	crocodilians	can	be	

traced	back	to	the	Late	Triassic,	210-230	million	years	ago	(Bakker	1971).	

Following	the	mass	extinction	event	that	occurred	at	the	Triassic-Jurassic	

boundary,	early	crocodilians,	or	crocodylomorphs,	began	to	radiate	

evolutionarily,	filling	niches	vacated	by	organisms	that	had	become	extinct	

(Toljagic	&	Butler	2013).	During	the	Early	Jurassic,	a	range	of	insectivorous,	

piscatory	and	herbivorous	crocodylomorphs	evolved,	joining	the	carnivorous	

species	that	had	evolved	during	the	Late	Triassic	(Stubbs	et	al.	2013;	Toljagic	&	

Butler	2013).	Recognisable	species	of	crocodilian	began	to	appear	by	the	

Campanian	(approximately	80	million	years	ago),	with	both	alligator	and	garial	
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lineages	present	by	the	Maastrichtian	(approximately	70	million	years	ago)	

(Brochu	2003).						

	

There	are	24	extant	crocodilian	species;	this	number	has	recently	been	

elevated,	from	23,	as	a	result	of	genetic	findings	carried	out	on	a	sub-population	

of	Nile	crocodiles	(Crocodylus	niloticus)	(Hekkala	et	al.	2011).	First	discovered	

by	Saint-Hilaire	in	1807,	and	originally	assumed	to	be	a	sub-population,	more	

recent	genetic	research	has	found	that	the	individuals	were,	in	fact,	a	separate	

species	(Hekkala	et	al.	2009;	Hekkala	et	al.	2011).	The	species,	the	Western	

African	crocodile	(Crocodylus	suchus),	could	be	the	first	in	a	series	of	crocodilian	

species	split	in	response	to	genetic	findings.	Research	into	genetic	variation	of	

African	dwarf	crocodiles	(genus	Osteolaemus),	for	example,	suggests	that	

morphological	variation	displayed	by	geographically	separated	populations	

could,	in	fact,	comprise	three	separate	species	(Eaton	et	al.	2009).	The	relatively	

localised	speciation	that	appears	to	have	occurred	in	Africa	can,	potentially,	be	

attributed	to	the	temporal	persistence	of	the	species.		

	

Extant	crocodilian	species	are	divided	into	four	different	families;	namely	the	

Alligatoridae,	Crocodylinae,	Gavialidae	and	Tomistoma.		Alligatoridae	consist	of	

two	separate	sub-families,	the	‘true	alligators’	(Alligatorinae)	and	the	caiman	

(Caimaninae).	The	Crocodylinae	family,	or	the	‘true	crocodiles’,	consists	of	14	

extant	species,	including	the	newly	confirmed	Western	African	crocodile,	as	

well	as	the	estuarine	crocodile	(Crocodylus	porosus)	(Brochu	2000;	Hekkala	et	

al.	2011).	The	Gavialidae	family	is	represented	by	a	single	extant	species	of	

gharial	(Gavialis	gangeticus),	a	fish-eating	crocodile	with	a	slender	snout	and	a	

bulbous	growth	around	the	nostrils	(Lang	et	al.	2010).	The	Tomistoma	family,	

often	placed	within	the	family	Gavialidae,	also	contains	a	single	fish-eating	

extant	species	(Tomistoma	schlegellii)	(Bezuijen	et	al.	1997).		

	

The	estuarine,	or	‘salt	water’,	crocodile	(C.	porosus)	is	the	largest	extant	reptile	

in	the	world	and	can	reach	a	length	in	excess	of	6	m	in	the	wild	(Britton	et	al.	

2012).	Its	range	stretches	from	Northern	Australia,	throughout	Southeast	Asia,	

and	into	Eastern	India	and	Sri	Lanka	(Read	et	al.	2007;	Campbell	et	al.	2010).	
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Estuarine	crocodiles	are	semi-aquatic,	although	the	majority	of	their	time	is	

spent	in	water	(Campbell	et	al.	2010).	They	inhabit	both	fresh	and	salt	water,	as	

well	as	brackish	estuaries	(Lewis	et	al.	2013).	Their	euryhaline	nature	can	be	

attributed	to	the	possession	of	lingual	salt	glands,	as	well	as	possessing	skin	

that	is	capable	of	withstanding	a	high	osmotic	gradient,	providing	a	barrier	

when	in	highly	saline	conditions	(Taplin	&	Grigg	1989;	Kay	2004B).	This	

adaptability	has	allowed	them	to	hold	both	a	large	geographic	range	and	persist	

throughout	that	range	despite	widespread	hunting	and	persecution	(Ross	

1998).	All	crocodilians	exhibit	basking	behaviour,	the	process	of	absorbing	

energy	from	direct	sunlight,	usually	on	banks,	but	occasionally	on	fallen	trees	

and	on	logs	(Grigg	et	al.	1998;	Dinets	et	al.	2014).	A	crucial	behavioural	trait,	

basking	ensures	that	individuals	can	hunt	at	night	despite	their	ectothermic	

metabolism.	Peak	basking	times	are	shortly	before	and	after	midday	heat	

(Bourquin	2007).	

	

Estuarine	crocodiles	reach	sexual	maturity	at	approximately	3.5	m	(total	

length)	for	males	and	2.5	m	(total	length)	for	females	(Webb	&	Manolis	1989).	

Mating	occurs	in	shallow	water	after	an	often	elaborate	courtship	display	

(Garrick	1977).	Males	are	highly	territorial	and	will	defend	their	territory	

aggressively	against	rival	males	(Lewis	et	al.	2013).	Males	display	two	separate	

mating	tactics;	‘fighting’	(males	who	fight	for	a	territory	to	win	the	right	to	

mate)	and	‘sneaking’	(individuals	that	do	not	hold	strong	territories	but	mate	

opportunistically)	(Campbell	et	al.	2010).	Dominant	males	will	interrupt	

courtship	between	females	and	sub-dominant	males	(Lewis	et	al.	2013).		

	

Crocodilians	use	a	variety	of	vocalisations	and	signals	to	communicate	with	

conspecifics	(Campbell	1973).	Beginning	from	inside	the	egg	(see	Section	2.3	

below),	vocalisations	continue	after	hatching	to	indicate	distress	(Vergne	et	al.	

2007;	Vergne	&	Mathevon	2008),	while	adult	signals	range	from	territorial	to	

courtship	displays,	with	the	establishment	of	territories	preceding	courtship	

rituals	(Garrick	1977).	Territorial	disputes	result	in	a	wide	array	of	passive	and	

highly	aggressive	behaviours.	Inflated	posture	is	a	common	‘passive’	behaviour	

and	occurs	when	two	males	are	establishing	whether	an	encounter	will	end	in	
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aggression;	‘bellowing’	(subsonic	rumbling	from	the	vocal	cavity)	is	a	

commonly	used	behaviour	to	intimidate	or	taunt	the	opposing	male	(Garrick	

1977;	Senter	2008).	Escalation	of	an	encounter	can	lead	to	‘mock’	biting	of	

limbs	and	the	tail,	as	well	as	‘head	slaps’	(a	loud	sound	is	generated	when	the	

head	is	slapped	against	the	surface	of	the	water)	(Garrick	1977).	Should	

escalating	levels	of	aggression	not	prove	decisive,	physical	aggression	with	an	

attempt	to	harm	can	be	employed,	this	usually	manifests	as	biting	and	can	

result	in	serious	injury	or	death.		

	

Estuarine	crocodiles	prey	on	a	wide	range	of	taxa,	the	identity	of	which	shifts	

markedly	as	the	individual	matures	(Magnusson	et	al.	1987).	Crocodilians	are	

ambush	predators,	generally	waiting	for	their	prey	to	come	towards	them	

(Campbell	et	al.	2010);	they	may,	however,	also	scavenge	a	large	proportion	of	

their	diet	(Lindner	2004).	For	aquatic	hunting,	all	crocodilians	possess	

vibrational	sense	organs,	known	as	integumentary	sense	organs	(ISOs)	(Jackson	

et	al.	1996;	Leitch	&	Catania	2012).	Crocodylus	porosus,	along	with	all	members	

of	the	Crocodylus	genus,	are	covered	with	ISOs	throughout	their	body	enabling	

detection	of	prey	located	anywhere	in	the	surrounding	water	(Jackson	et	al.	

1996).	The	ISOs	of	members	of	the	genus	Alligator,	on	the	other	hand,	are	

restricted	to	the	cranium	(Leitch	&	Catania	2012).	The	high	number	of	ISOs	

found	in	C.	porosus	ensures	that	they	are	able	to	prey	on	a	vast	array	of	different	

species,	including	humans.	While	several	species	of	crocodilian	could,	

potentially,	prey	on	humans,	C.	porosus,	C.	niloticus	and	C.	palustris	(mugger	

crocodile)	are	those	most	commonly	responsible	and	responsible	for	over	90%	

of	crocodile	related	human	deaths	worldwide	(CrocBite	2014).		

	

The	legal	protection	of	estuarine	crocodiles	throughout	their	range	has	resulted	

in	an	increase	in	mean	size,	as	the	majority	of	individuals	hunted	being	large	

adults	(Caldicott	et	al.	2005).	This	size	increase,	as	well	as	an	increase	in	overall	

numbers,	has	led	to	mounting	number	of	attacks	on	humans.	Often	regarded	as	

the	most	territorial	and	potentially	most	dangerous	crocodilian,	estuarine	

crocodiles	inhabit	mainly	rural	areas.	This	does	somewhat	limit	the	level	of	

human-crocodile	conflict	(Caldicott	et	al.	2005).	Nile	crocodiles	are,	however,	



	

	

11	

the	species	with	the	highest	human	mortality	rates,	with	63%	of	attacks	proving	

fatal	(this	is	compared	to	the	50%	mortality	rate	inflicted	by	Malaysia’s	

estuarine	crocodiles)	(Sabah	Wildlife	Department	2010A).	The	vast	majority	of	

attacks	occur	during	the	wet	season,	with	most	attacks	(81%	in	C.	porosus)	

directed	towards	people	either	in	or	near	the	water	(Kar	&	Bustard	1983).	

Attack	data	worldwide	are	underestimated	as	many	attacks	go	unreported;	this	

is	a	particular	problem	in	developing	nations	and	in	areas	where	illegal	

immigration	is	high	(Aust	et	al.	2009).	Currently,	the	International	Union	for	

Conservation	of	Nature	(IUCN)	Crocodile	Specialist	Group	keeps	the	most	

complete	and	up-to-date	figures	regarding	human-crocodile	conflicts,	including	

the	number	of	fatalities.	Official	figures	within	the	state	of	Sabah	note,	within	

the	period	2000-2011,	19	fatalities	and	15	non-fatal	attacks	(Sabah	Wildlife	

Department	2012).		

	

The	past	70	years	have	been	uncertain	ones	for	the	estuarine	crocodiles	in	

Sabah,	experiencing	a	large	population	crash	during	the	mid-	to	late	20th	

Century	(Whitaker	1984).	Crocodiles	became	protected	by	law	in	Sabah	in	

1982,	as	well	as	being	listed	on	the	Convention	on	International	Trade	in	

Endangered	Species	of	Wild	Fauna	and	Flora	(CITES)	(Sabah	Wildlife	

Department	1997).	This	level	of	protection	ensured	that	the	unlawful	killing	of	

an	individual	would	result	in	up	to	5	years’	imprisonment	and	a	RM50,000	

(~£10,000)	financial	fine.	These	efforts	allowed	a	large	scale	rebound,	with	

crocodile	populations	recovering	to	stable	levels	across	the	state	(Sabah	

Wildlife	Department	2010A).	During	the	mid-	20th	Century,	the	species	was	

heavily	exploited	for	its	valuable	skin	deemed	at	the	time	to	be	the	‘height	of	

fashion’	(Thorbjarnarson	et	al.	1992).	The	decline	of	the	crocodile	skin	industry,	

coupled	with	the	development	of	sustainable	and	responsible	farming	

techniques,	have	allowed	for	a	worldwide	recovery	of	crocodilians	over	the	past	

30-40	years.	This	is	due,	in	no	small	part,	to	the	considerable	efforts	of	the	IUCN	

(International	Union	of	Conservation	of	Nature)	Crocodile	Specialist	Group,	

which	has	been	managing	populations	worldwide	since	1971.	
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2.2	Nesting	ecology		

Most	extant	reptiles	are	oviparous,	reproducing	by	laying	eggs,	which	develop	

independent	of	the	female	(Manson	2008;	Tosun	2013).	This	reproductive	

strategy,	widespread	throughout	the	fossil	record	(almost	all	dinosaurs	were	

oviparous	(Farlow	et	al.	1995;	Sander	et	al.	2011))	is	retained	not	only	by	

reptiles	but	also	by	all	extant	species	of	bird	(Shine	2005).	Reptiles	lay	a	range	

of	different	clutch	sizes,	usually	dependent	not	only	on	the	size	of	the	female,	

but	also	on	the	foraging	behaviour	of	the	species	(Das	2010).	All	extant	species	

of	crocodilian,	turtle,	terrapin	and	tortoise	are	oviparous.	In	contrast	to	birds,	

oviparous	reptiles	ovulate	and	shell	eggs	concurrently	in	batches	of	four	to	six.	

This	ensures	that	a	clutch	can	be	laid	as	a	unit	(Iverson	&	Ewert	1991).	A	wide	

range	of	clutch	sizes	are	found	even	within	taxonomic	groups.	For	example,	

within	the	order	Testudines	(turtles),	marine	turtles	lay	in	excess	of	150	eggs	

compared	to	the	spiny	turtle	(Heosemys	spinosa),	which	lays	only	one	or	two	

(Herman	1993;	Van	Buskirk	&	Crowder	1994).	Clutch	size	is	often	related	to	

juvenile	mortality,	with	species	prone	to	high	mortality	rates	compensating	

with	large	clutch	sizes	(Madsen	&	Shine	2006;	Sander	et	al.	2011).	Some	reptiles	

choose	to	split	their	reproductive	effort	over	several	locations	minimising	the	

risk	of	complete	loss	by	predation	(Van	Buskirk	&	Crowder	1994).	Breeding	

frequency	also	varies	between	species	and	depends	both	on	the	age	of	sexual	

maturity,	as	well	as	juvenile	survival	(Shine	2005).	The	file	snake	(Acrochordus	

arafurae),	for	example,	which	takes	four	years	to	mature,	then	proceeds	to	

produce	a	single	clutch	only	once	every	four	years	(Madsen	&	Shine	2001).		

	

For	oviparous	reptiles,	one	of	the	most	important	factors	that	influence	

hatchling	success	and	survival	is	nest-site	selection	by	adult	females	(Shine	

2005).	There	are	examples	of	optimal	nest	site	selection	within	snakes	(Brown	

&	Shine	2006),	turtles	(Wood	&	Bjorndal	2000;	Kolbe	&	Janzen	2002;	Wilson	

2005),	lizards	(Warner	&	Andrews	2002;	Doody	et	al.	2006)	and	crocodilians	

(Somaweera	&	Shine	2012;	Harvey	&	Hill	2003).	Nesting	of	estuarine	crocodiles	

usually	occurs	in	marsh	land,	although	this	does	vary	depending	on	the	

available	habitat	in	specific	river	systems	(Webb	et	al.	1977).	Nests	generally	

consist	of	a	central	mound,	usually	constructed	from	mud	or	sand,	with	a	
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central	excavation	to	hold	the	eggs	(Webb	&	Cooper-Preston	1989).	Egg-laying	

is	completed	within	one	hour	and	eggs	are	then	subsequently	covered	by	up	to	

30	cm	of	nesting	material	(Webb	et	al.	1977).	Females	are	at	their	most	

aggressive	during	the	nesting	season,	actively	guarding	the	nests	(Harvey	&	Hill	

2003).	Typically,	nests	are	placed	in	remote	locations,	minimising	the	potential	

for	human-crocodile	conflict.	Human	activities	such	as	egg	collection,	as	well	as	

female	crocodiles	being	pressurised	to	nest	closer	to	human-occupied	areas,	

due	to	habitat	loss	and	fragmentation,	create	increasing	potential	for	conflict.			

	

Meticulous	nest-site	selection	is	of	particular	importance	in	reptiles	that	exhibit	

temperature-dependent	sex	determination	(TSD)	(Janzen	1992;	Roosenburg	

1996;	Shine	1999).	By	this	process,	gender	ratios	of	a	given	clutch	are	

determined	by	the	internal	nest	temperature,	both	at	the	time	of	initial	

incubation	and	the	temperature	maintained	throughout	the	incubation	period	

(Valenzuela	&	Lance	2004).	Found	in	a	range	of	reptiles,	including	some	lizards	

and	turtles,	TSD	is	uniformly	present	throughout	all	crocodilian	species	

(Roosenburg	1996).	There	are	three	temperature-related	gender	patterns	

within	TSD	(Valenzuela	&	Lance	2004):	1)	species	exhibiting	TSDII,	include	

crocodilians,	turtles	and	lizards,	produce	females	at	both	high	and	low	

temperatures,	and	males	at	intermediate	temperatures;	2)	TSDIa	individuals,	

such	as	marine	turtles,	produce	males	at	low	temperatures	and	females	at	

higher	temperatures,	with	a	mid-range	temperature	producing	a	50:50	sex	

ratio;	and	3)	TSDIb	individuals	which	produce	females	at	low	temperatures	and	

males	at	high	temperatures,	common	to	some	lizards	and	crocodilians.	

Estuarine	crocodiles	exhibit	TSDII	(Webb	et	al.	1987;	Lang	&	Andrews	1994;	

Valenzuela	&	Janzen	2001);	low	temperatures,	between	28	°C	and	30	°C,	result	

in	100%	female	offspring,	while	temperatures	of		31	°C,	32	°C	and	33	°C		

produce	16%,	86%	and	17%,	respectively	(Lang	&	Andrews	1994).	Estuarine	

crocodiles	differ	from	some	other	crocodilians,	such	as	American	alligators	

(Alligator	mississippiensis),	in	that	no	single	temperature	can	result	in	a	sex	ratio	

of	100%	male	(Webb	&	Cooper-Preston	1989;	Lang	&	Andrews	1994).	
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While	maternal	protection	of	nests	is	relatively	rare	in	reptiles,	a	number	of	

crocodilian	species	do	exhibit	both	nest	defence	and	post-hatching	maternal	

care	(Harvey	&	Hill	2003;	Vergne	&	Mathevon	2008).	Evolution	of	parental	care	

is	likely	to	be	linked	to	the	need	for	female	reptiles	to	assess	and	control	the	

nest	temperature,	with	increased	presence	leading	to	higher	hatchling	viability	

(Aubret	et	al.	2005).	Some	crocodilian	species	will	stay	with	their	hatchlings	for	

a	period	spanning	a	number	of	months	(Lewis	et	al.	2013).	Predation	is	also	a	

factor	with	both	wild	boar	(Sus	barbatus)	and	water	monitor	lizards	(Varanus	

salvator)	documented	as	estuarine	crocodile	nest	predators	(Cott	1971).	The	

degree	of	maternal	protection	proffered	to	a	nest	depends	on	its	location.		Nests	

with	a	dense	overhead	cover,	for	example,	lead	to	females	guarding	at	close	

proximity	while	more	open	nests	result	in	females	guarding	the	nest	from	a	

distance.	

	

Crocodile	nests	consist	of	a	mound	of	mud	and	vegetation;	depending	on	the	

species,	these	mounds	average	1.5	-	2.8	m	in	width	at	the	base,	and	are	usually	

between	50	and	80	cm	in	height	(Joanen	1964;	Platt	et	al.	2006).	Surrounding	

the	nests	will	be	a	series	of	wallows	which	often	form	a	water-filled	moat	

around	the	nest	(Webb	et	al.	1977).	The	egg	cavity	is	usually	located	deep	

within	the	mound;	the	mean	(±s.e)	distance	from	the	top	of	the	nest	to	the	egg	

cavity	being	19.0	±	0.6	cm	(Webb	et	al.	1977).	Egg	shape	and	size	vary	between	

species	of	crocodilian	but	usually	consist	of	hard-shelled	ellipsoid	shaped	eggs	

approximately	8	-10	cm	in	length.	Clutch	sizes	are	species-dependent	and	vary	

between	30	and	70	eggs	(Webb	et	al.	1977).	Incubation	times	are	often	linked	to	

environmental	conditions,	but	typically	require	between	65	and	98	days	from	

laying	to	hatching	(Joanen	1964;	Manson	2008;	Hossain	et	al.	2012).		

	

Hatching	events	are	triggered	by	vocalisations	of	embryos;	these	calls	stimulate	

a	digging	response	in	the	female	(Vergne	et	al.	2007;	Vergne	&	Mathevon	2008).	

Pre-hatchlings	are	equipped	with	an	egg	tooth,	located	on	the	tip	of	the	snout,	to	

aid	the	cracking	of	both	the	inner-egg	membrane	and	the	hard	outer-shell	

(Manson	2008).	Hatchlings	unable	to	break	through	the	outer	shell	may	be	

assisted	by	the	female,	a	process	where	the	un-hatched	egg	is	taken	in	the	jaws	
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of	the	female	and	gently	cracked	between	the	teeth	(Pooley	1977).	Once	

hatched,	the	majority	of	juveniles	remain	in	the	vicinity	of	the	nest	for	an	

extended	period,	continuing	to	receive	protection	from	the	female.	This	phase	

of	parental	care	can	extend	for	a	period	of	months	(Lewis	et	al.	2013).	Some	

hatchlings,	however,	disperse	from	the	nest	location	soon	after	hatching,	

travelling	distances	of	up	to	1	km	(Webb	et	al.	1977).		

	

Post-hatching	mortality	is	high	(49%)	although	experimental	data	on	wild	

individuals	are	limited	(Brien	et	al.	2014).	In	areas	where	crocodilian	

populations	are	depleted,	mortality	rates	are	greatly	reduced,	with	Webb	et	al.	

(1977)	finding	mortality	rates	of	only	15.5%	over	the	first	two	months	

following	hatching.	This	is	possibly	due	to	reduced	rates	of	probable	infanticide	

by	other	adult	individuals.	Daily	growth	rates	of	newly	hatched	young	(<	0.5	m	

length)	vary	between	0.01	and	0.08	cm	per	day,	with	rates	increasing	to	0.11	cm	

per	day	for	individuals	between	0.5	and	1	m	(Anuar	et	al.	1996).	In	terms	of	

weight,	individuals	less	than	0.5	m	in	length	gain	0.3-1.5	g	per	day,	with	those	

individuals	between	0.5	and	1	m	gaining	2.7-2.8	g	per	day	(Magnusson	&	Taylor	

1981;	Webb	et	al.	1991).	The	diet	of	juvenile	individuals	is	diverse	and	is	

dependent	on	local	resource	availability	(Anuar	et	al.	1996);	individuals	less	

than	1	m	in	length	generally	feed	on	a	combination	of	invertebrates	(Crustacea,	

Hexapoda,	Natantia,	Reptantia)	and	small	vertebrates	(Anuar	et	al.	1996).		

Spatial	ecology	of	nesting	refers	to	the	spatial	organisation	of	nesting	grounds,	

dealing	specifically	with	random	versus	non-random	distributions	of	nest	sites,	

as	well	as,	determining	preferences	for	locations	with	specific	environmental	

and	habitat	variables.	Nesting	behaviours	throughout	the	Reptilia	are	highly	

diverse,	and	the	spatial	ecology	of	nest	sites	is	as	diverse	as	the	class	itself.	

Species	range	from	being	isolated,	solitary	nesters,	exhibiting	highly	aggressive	

intra-species	aggression,	to	females	that	aggregate	at	high	densities	and	may	

even	forgo	foraging	opportunities	to	achieve	an	ideal	nest	site	(Graves	&	Duvall	

1995;	Lewis	et	al.	2013).	Some	species	of	reptilians	build	communal	nesting	

systems;	V.	panoptes,	for	example,	builds	a	series	of	interconnected	burrows	in	

which	a	number	of	females	may	lay	eggs	(Doody	et	al.	2014).	This	form	of	

aggregate	nesting	behaviour	appears	to	have	ancient	evolutionary	links,	with	
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strong	evidence	of	some	dinosaur	species	laying	communally.	There	are	two	

main	hypotheses	(Doody	et	al.	2009)	as	to	why	communal	egg-laying	behaviour	

evolves	in	a	species.	First,	the	“by-product	hypothesis”	argues	that	a	lack	of	

suitable	nesting	habitat	can	force	conspecifics	to	nest	in	close	proximity	to	one	

another.	The	second,	the	“sexual-selection	hypothesis”,	implies	that	the	

locations	of	nests	are	a	direct	response	to	mating	strategies.	Especially	common	

in	highly	polygamous	species,	communal	egg-laying	and	nesting	behaviour	is	

believed	to	be	a	direct	result	of	aggregations	of	females	mating	with	a	single	or	

very	few	males.	The	spatially	aggregated	nature	of	females	when	conception	

takes	place	leads	to	the	more	“communal”	appearance	in	nest	spatial	

organisation;	females	tend	to	oviposit	close	to	the	site	of	conception.	Communal	

nesting	is	found	throughout	the	Crocodilia	and	has	been	identified	in	several	

species,	including	the	American	(C.	acutus),	the	Australian	freshwater	(C.	

johnstoni)	and	the	Nile	(C.	niloticus)	crocodiles	(Bourquin	2007;	Kushlan	&	

Mazzotti	1989;	Tucker	et	al.	1998).	

	

Solitary	nesters	exhibit	strong	nest	site	selection	preferences	and	the	fact	that	

egg-laying	is	spatially	isolated	from	other	nests	is	both	deliberate	and	

considered	(Escalona	et	al.	2009;	Radder	&	Shine	2007).	For	species	that	are	

facultative,	nesting	both	communally	and	solitarily,	no	differences	have	been	

identified	in	site	habitat	selection.	This	suggests	that,	for	these	species	at	least,	

habitat	preference	is	not	the	driving	force	behind	whether	nests	are	positioned	

communally	or	not	(Radder	&	Shine	2007).	The	benefits	of	communal-laying	

appear	to	be	associated	with	embryo	survival	(Harris	&	Gill	1980),	although	

survival	odds	do	not	seem	to	be	related	to	predation	rates.	Somaweera	et	al.	

(2011),	for	example,	suggested	that	there	were	equitable	levels	of	dingo	

predation	when	communal	versus	solitary	nesting	tendencies	were	explored	in	

the	Australian	freshwater	crocodile	(C.	johnstoni).	Solitary	nesters	may,	in	fact,	

be	at	an	advantage	when	it	comes	to	nest	predation	(Doody	et	al.	2009),	as	well	

as	avoiding	increased	rates	of	disease	transmission	and	competition	for	nest-

building	resources.		
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Crocodilia	species,	whilst	all	exhibiting	a	number	of	analogous	nesting	

behaviour	features,	exhibit	a	wide	range	of	behaviours	in	terms	of	nesting	

habitat	and	the	type	of	nest	constructed	(see	Table	2	in	Brazaitis	&	Watanabe	

(2011)	for	differences	between	extant	species).	Despite	differences	in	size,	life	

history	and	physiological	traits,	all	species	appear	to	prefer	nesting	in	

freshwater	environments,	usually	in	wetlands	or	grasslands	(Grigg	&	Kirshner	

2015).	Crocodilians,	as	a	group,	are	fastidious	in	their	nesting	habits;	desirable,	

and	previously	successful,	nesting	sites	may	be	used	annually	(Platt	&	

Thorbjarnarson	2010;	Webb	et	al.	1983).	Individuals,	however,	having	begun	

nest	construction,	will	often	abandon	the	site	mid-construction	if	one	or	more	

environmental	variables	do	not	meet	the	necessary	‘standards’;	these	

abandoned	nesting	attempts	are	referred	to	as	‘test	holes	or	mounds’	(Brazaitis	

&	Watanabe	2011;	Grigg	&	Kirshner	2015;	Somaweera	&	Shine	2012).	This	

attention	to	detail	suggests	a	definitive	and	considered	approach	to	nesting;	it	is	

a	cogitated	approach	to	nesting	common	throughout	the	Reptilia.		

	

The	nesting	of	crocodilians	is	often	remote;	although,	it	can	occasionally	occur	

in	close	proximity	to	human	settlement.	This	latter	overlap	increases	the	

likelihood	of	conflict	occurring	between	man	and	animal.	Female	crocodiles	are	

generally	thought	to	be	far	less	aggressive	towards	humans	than	their	male	

counterparts,	however,	during	the	incubation	period,	and	shortly	following	the	

hatching	of	young,	females	can	exhibit	increased	aggressive	behaviour	and	have	

been	responsible	for	numerous	human	injuries,	and	even	fatalities	(Brazaitis	&	

Watanabe	2011;	Caldicott	et	al.	2005).	Female	C.	porosus	generally	guard	nest	

sites	(see	Table	12.3	in	Grigg	&	Kirshner	(2015)	for	complete	list	of	species	

exhibiting	parental	care);	this	can	be	at	a	distance,	only	returning	to,	and	

appearing	at,	the	nest	if	a	predator	is	detected	(Webb	et	al.	1983).	Males	assist	

in	the	protection	of	nest	sites	in	the	spectacled	caiman	(Caiman	crocodilus);	in	

general,	however,	male	assistance	is	generally	rare	amongst	crocodilians	(Grigg	

&	Kirshner	2015).	The	level	of	protection	or,	in	some	cases,	whether	protective	

behaviour	is	displayed	at	all,	varies	between	individuals	(Grigg	&	Kirshner	

2015).	
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Mound-nesting	is	one	of	two	major	nesting	strategies	employed	by	crocodilians;	

eight	species	opt	for	the	somewhat	rarer,	and	evolutionarily	more	primitive,	

‘hole-nesting’	strategy	(Greer	1970;	Campbell	1972).	Mound-nesters	use	a	

variety	of	nest	substrates;	C.	porosus	nests,	for	example,	can	be	comprised	of	

only	sand,	soil,	leaf	litter	or	grass,	or	a	combination	of	these	substrates,	

depending	on	local	availability	(Grigg	&	Kirshner	2015).	As	well	as	in	substrate,	

crocodilian	nests	also	vary	in	diameter.	American	alligator	(A.	mississippiensis)	

nests	average	71.5	inches	(181.6	cm)	in	diameter	(Joanen	1964),	those	of	the	

smooth-fronted	caiman	(Paleosuchus	trigonatus)	and	the	Siamese	crocodile	(C.	

siamensis),	approximately	150	cm	in	diameter	(Magnusson	et	al.	1985;	Platt	et	

al.	2006),	and	that	of	the	estuarine	crocodile	(C.	porosus),	175	cm	in	diameter	

(Webb	et	al.	1977).	Species	size	does	not	appear	to	play	a	significant	role	in	the	

size	of	the	nest	mound.	The	requirement	of	all	species	for	ready	access	to	

permanent	water	sources	(Harvey	&	Hill	2003;	Somaweera	&	Shine	2012;	Webb	

et	al.	1983)	limits	nesting	habitat.	This	necessity	also	plays	a	key	role	as	one	of	

the	major	causes	of	embryonic	mortality,	nest	flooding	(see	below).		

	

Two	major	factors	are	responsible	for	the	majority	of	in-utero	and	neonatal	

fatalities	of	young	crocodiles.	Firstly,	nest-based	predators	such	as	birds,	

lizards,	snakes,	rodents	and	insects,	and	even	other	crocodilians,	have	been	

reported	to	be	nest-	or	crèche-	(see	Section	2.3)	raiders	(McNease	&	Joanen	

1977;	Somaweera	et	al.	2013).	Secondly,	as	mentioned	above,	nest	flooding	is	a	

major	cause	of	juvenile	mortality.	Webb	et	al.	(1977)’s	study	of	nesting	in	the	

Northern	Territory,	for	example,	saw	17	of	45	identified	nests	flood,	with	all	

embryos	inside	them	dying	as	a	result	of	asphyxia	caused	by	the	reduced	

gaseous	exchange	across	the	shell	surface	(Grigg	1987).	Females	often	return	to	

nests	and	provided	nest	protection	after	flooding	despite	hatchling	mortality	

(Webb	et	al.	1977).	Local	climate	variables,	such	as	precipitation	and	associated	

water	flow,	can,	therefore,	have	a	large	bearing	on	nesting	success	and	several	

crocodilian	species	(including	C.	porosus),	in	an	attempt	to	mitigate	such	risks,	

construct	floating	rafts	of	vegetation.	These,	however,	do	also	routinely	flood	

(Campos	1993;	Webb	et	al.	1983),	but	their	close	proximity	to	permanent	water	

sources	does	allow	the	safe	passage	of	the	hatchlings,	by	female	transport,	to	
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communal	crèche	sites	(Webb	&	Cooper-Preston	1989;	Webb	et	al.	1977).	The	

majority	of	hatchlings	subsequently	aggregate	in	such	locations	for	a	period	of	

up	to	2.5	months	(Magnusson	1980A;	Somaweera	et	al.	2013).	Whilst	nesting	

locations	differ	between	species,	C.	porosus	is	widely	reported	to	nest	both	in	

tidal	swamplands	and	inland	freshwater	environments	(Brazaitis	&	Watanabe	

2011),	these	areas	are	generally	flood-prone	and	flooding	acts	as	one	of	the	

major	factors	in	prenatal	juvenile	mortality.	

	

Crocodylus	porosus’s	nest	consist	of	a	mound	of	vegetation	housing	between	18-

68	eggs	(Grigg	&	Kirshner	2015;	Hossain	et	al.	2012;	Webb	et	al.	1977).	These	

are	incubated	within	the	nest	for	80-90	days	(Brazaitis	&	Watanabe	2011).		

Seemingly	obligative	mound-nesters,	C.	porosus	females	do	not	appear	to	nest	in	

any	form	of	community	structure,	even	when	nesting	habitat	is	scarce.	Females	

will	continue	to	exhibit	aggression	towards	conspecifics	throughout	the	

incubation	period	(Lang	1987).	Nests	are	usually	constructed	within	20	m	of	

permanent	water	(Webb	et	al.	1983),	and	are	most	often	found	in	areas	of	

swampland	and	riverine	habitats	(Magnusson	et	al.	1978).	Mangrove	and	sedge	

plains	are	considered	the	least	suitable	habitat	for	C.	porosus	nesting	(Harvey	&	

Hill	2003;	Magnusson	et	al.	1978).	Mangrove	habitat	lacks	sufficient	open	areas	

and	necessary	nest	building	vegetation,	whereas	sedge	plains	are	often	located	

too	far	from	permanent	water.	Swamplands	appear	to	be	the	most	universally	

utilised	areas	and	are	the	prevalent	habitats	within	much	of	the	estuarine	

crocodile’s	range.		

	

Spatial	ecology	of	nesting	refers	to	the	spatial	organisation	of	nesting	grounds,	

dealing	specifically	with	random	versus	non-random	distributions	of	nest	sites,	

as	well	as,	determining	preferences	for	locations	with	specific	environmental	

and	habitat	variables.	Nesting	behaviours	throughout	the	Reptilia	are	highly	

diverse,	and	the	spatial	ecology	of	nest	sites	is	as	diverse	as	the	class	itself.	

Species	range	from	being	isolated,	solitary	nesters,	exhibiting	highly	aggressive	

intra-species	aggression,	to	females	that	aggregate	at	high	densities	and	may	

even	forgo	foraging	opportunities	to	achieve	an	ideal	nest	site	(Graves	&	Duvall	

1995;	Lewis	et	al.	2013).	Some	species	of	reptilians	build	communal	nesting	
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systems;	V.	panoptes,	for	example,	builds	a	series	of	interconnected	burrows	in	

which	a	number	of	females	may	lay	eggs	(Doody	et	al.	2014).	This	form	of	

aggregate	nesting	behaviour	appears	to	have	ancient	evolutionary	links,	with	

strong	evidence	of	some	dinosaur	species	laying	communally.	There	are	two	

main	hypotheses	(Doody	et	al.	2009)	as	to	why	communal	egg-laying	behaviour	

evolves	in	a	species.	First,	the	“by-product	hypothesis”	argues	that	a	lack	of	

suitable	nesting	habitat	can	force	conspecifics	to	nest	in	close	proximity	to	one	

another.	The	second,	the	“sexual-selection	hypothesis”,	implies	that	the	

locations	of	nests	are	a	direct	response	to	mating	strategies.	Especially	common	

in	highly	polygamous	species,	communal	egg-laying	and	nesting	behaviour	is	

believed	to	be	a	direct	result	of	aggregations	of	females	mating	with	a	single	or	

very	few	males.	The	spatially	aggregated	nature	of	females	when	conception	

takes	place	leads	to	the	more	“communal”	appearance	in	nest	spatial	

organisation;	females	tend	to	oviposit	close	to	the	site	of	conception.	Communal	

nesting	is	found	throughout	the	Crocodilia	and	has	been	identified	in	several	

species,	including	the	American	(C.	acutus),	the	Australian	freshwater	(C.	

johnstoni)	and	the	Nile	(C.	niloticus)	crocodiles	(Bourquin	2007;	Kushlan	&	

Mazzotti	1989;	Tucker	et	al.	1998).	

	

Solitary	nesters	exhibit	strong	nest	site	selection	preferences	and	the	fact	that	

egg-laying	is	spatially	isolated	from	other	nests	is	both	deliberate	and	

considered	(Escalona	et	al.	2009;	Radder	&	Shine	2007).	For	species	that	are	

facultative,	nesting	both	communally	and	solitarily,	no	differences	have	been	

identified	in	site	habitat	selection.	This	suggests	that,	for	these	species	at	least,	

habitat	preference	is	not	the	driving	force	behind	whether	nests	are	positioned	

communally	or	not	(Radder	&	Shine	2007).	The	benefits	of	communal-laying	

appear	to	be	associated	with	embryo	survival	(Harris	&	Gill	1980),	although	

survival	odds	do	not	seem	to	be	related	to	predation	rates.	Somaweera	et	al.	

(2011),	for	example,	suggested	that	there	were	equitable	levels	of	dingo	(Canis	

lupus	dingo)	predation	when	communal	versus	solitary	nesting	tendencies	were	

explored	in	the	Australian	freshwater	crocodile	(C.	johnstoni).	Solitary	nesters	

may,	in	fact,	be	at	an	advantage	when	it	comes	to	nest	predation	(Doody	et	al.	
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2009),	as	well	as	avoiding	increased	rates	of	disease	transmission	and	

competition	for	nest-building	resources.		

	

Crocodilia	species,	whilst	all	exhibiting	a	number	of	analogous	nesting	

behaviour	features,	exhibit	a	wide	range	of	behaviours	in	terms	of	nesting	

habitat	and	the	type	of	nest	constructed	(see	Table	2	in	Brazaitis	&	Watanabe	

(2011)	for	differences	between	extant	species).	Despite	differences	in	size,	life	

history	and	physiological	traits,	all	species	appear	to	prefer	nesting	in	

freshwater	environments,	usually	in	wetlands	or	grasslands	(Grigg	&	Kirshner	

2015).	Crocodilians,	as	a	group,	are	fastidious	in	their	nesting	habits;	desirable,	

and	previously	successful,	nesting	sites	may	be	used	annually	(Platt	&	

Thorbjarnarson	2010;	Webb	et	al.	1983).	Individuals,	however,	having	begun	

nest	construction,	will	often	abandon	the	site	mid-construction	if	one	or	more	

environmental	variables	do	not	meet	the	necessary	‘standards’;	these	

abandoned	nesting	attempts	are	referred	to	as	‘test	holes	or	mounds’	(Brazaitis	

&	Watanabe	2011;	Grigg	&	Kirshner	2015;	Somaweera	&	Shine	2012).	This	

attention	to	detail	suggests	a	definitive	and	considered	approach	to	nesting;	it	is	

a	cogitated	approach	to	nesting	common	throughout	the	Reptilia.		

	

The	nesting	of	crocodilians	is	often	remote;	although,	it	can	occasionally	occur	

in	close	proximity	to	human	settlement.	This	latter	overlap	increases	the	

likelihood	of	conflict	occurring	between	man	and	animal.	Female	crocodiles	are	

generally	thought	to	be	far	less	aggressive	towards	humans	than	their	male	

counterparts,	however,	during	the	incubation	period,	and	shortly	following	the	

hatching	of	young,	females	can	exhibit	increased	aggressive	behaviour	and	have	

been	responsible	for	numerous	human	injuries,	and	even	fatalities	(Brazaitis	&	

Watanabe	2011;	Caldicott	et	al.	2005).	Female	C.	porosus	generally	guard	nest	

sites	(see	Table	12.3	in	Grigg	&	Kirshner	(2015)	for	complete	list	of	species	

exhibiting	parental	care);	this	can	be	at	a	distance,	only	returning	to,	and	

appearing	at,	the	nest	if	a	predator	is	detected	(Webb	et	al.	1983).	Males	assist	

in	the	protection	of	nest	sites	in	the	spectacled	caiman	(Caiman	crocodilus);	in	

general,	however,	male	assistance	is	generally	rare	amongst	crocodilians	(Grigg	

&	Kirshner	2015).	The	level	of	protection	or,	in	some	cases,	whether	protective	



	

	

22	

behaviour	is	displayed	at	all,	varies	between	individuals	(Grigg	&	Kirshner	

2015).	

	

Mound-nesting	is	one	of	two	major	nesting	strategies	employed	by	crocodilians;	

eight	species	opt	for	the	somewhat	rarer,	and	evolutionarily	more	primitive,	

‘hole-nesting’	strategy	(Greer	1970;	Campbell	1972).	Mound-nesters	use	a	

variety	of	nest	substrates;	C.	porosus	nests,	for	example,	can	be	comprised	of	

only	sand,	soil,	leaf	litter	or	grass,	or	a	combination	of	these	substrates,	

depending	on	local	availability	(Grigg	&	Kirshner	2015).	As	well	as	in	substrate,	

crocodilian	nests	also	vary	in	diameter.	American	alligator	(A.	mississippiensis)	

nests	average	71.5	inches	(181.6	cm)	in	diameter	(Joanen	1964),	those	of	the	

smooth-fronted	caiman	(Paleosuchus	trigonatus)	and	the	Siamese	crocodile	(C.	

siamensis),	approximately	150	cm	in	diameter	(Magnusson	et	al.	1985;	Platt	et	

al.	2006),	and	that	of	the	estuarine	crocodile	(C.	porosus),	175	cm	in	diameter	

(Webb	et	al.	1977).	Species	size	does	not	appear	to	play	a	significant	role	in	the	

size	of	the	nest	mound.	The	requirement	of	all	species	for	ready	access	to	

permanent	water	sources	(Harvey	&	Hill	2003;	Somaweera	&	Shine	2012;	Webb	

et	al.	1983)	limits	nesting	habitat.	This	necessity	also	plays	a	key	role	as	one	of	

the	major	causes	of	embryonic	mortality,	nest	flooding	(see	below).		

	

Two	major	factors	are	responsible	for	the	majority	of	in-utero	and	neonatal	

fatalities	of	young	crocodiles.	Firstly,	nest-based	predators	such	as	birds,	

lizards,	snakes,	rodents	and	insects,	and	even	other	crocodilians,	have	been	

reported	to	be	nest-	or	crèche-	(see	Section	2.3)	raiders	(McNease	&	Joanen	

1977;	Somaweera	et	al.	2013).	Secondly,	as	mentioned	above,	nest	flooding	is	a	

major	cause	of	juvenile	mortality.	Webb	et	al.	(1977)’s	study	of	nesting	in	the	

Northern	Territory,	for	example,	saw	17	of	45	identified	nests	flood,	with	all	

embryos	inside	them	dying	as	a	result	of	asphyxia	caused	by	the	reduced	

gaseous	exchange	across	the	shell	surface	(Grigg	1987).	Females	often	return	to	

nests	and	provided	nest	protection	after	flooding	despite	hatchling	mortality	

(Webb	et	al.	1977).	Local	climate	variables,	such	as	precipitation	and	associated	

water	flow,	can,	therefore,	have	a	large	bearing	on	nesting	success	and	several	

crocodilian	species	(including	C.	porosus),	in	an	attempt	to	mitigate	such	risks,	
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construct	floating	rafts	of	vegetation.	These,	however,	do	also	routinely	flood	

(Campos	1993;	Webb	et	al.	1983),	but	their	close	proximity	to	permanent	water	

sources	does	allow	the	safe	passage	of	the	hatchlings,	by	female	transport,	to	

communal	crèche	sites	(Webb	&	Cooper-Preston	1989;	Webb	et	al.	1977).	The	

majority	of	hatchlings	subsequently	aggregate	in	such	locations	for	a	period	of	

up	to	2.5	months	(Magnusson	1980A;	Somaweera	et	al.	2013).	Whilst	nesting	

locations	differ	between	species,	C.	porosus	is	widely	reported	to	nest	both	in	

tidal	swamplands	and	inland	freshwater	environments	(Brazaitis	&	Watanabe	

2011),	these	areas	are	generally	flood-prone	and	flooding	acts	as	one	of	the	

major	factors	in	prenatal	juvenile	mortality.	

	

Crocodylus	porosus’s	nest	consist	of	a	mound	of	vegetation	housing	between	18-

68	eggs	(Grigg	&	Kirshner	2015;	Hossain	et	al.	2012;	Webb	et	al.	1977).	These	

are	incubated	within	the	nest	for	80-90	days	(Brazaitis	&	Watanabe	2011).		

Seemingly	obligative	mound-nesters,	C.	porosus	females	do	not	appear	to	nest	in	

any	form	of	community	structure,	even	when	nesting	habitat	is	scarce.	Females	

will	continue	to	exhibit	aggression	towards	conspecifics	throughout	the	

incubation	period	(Lang	1987).	Nests	are	usually	constructed	within	20	m	of	

permanent	water	(Webb	et	al.	1983),	and	are	most	often	found	in	areas	of	

swampland	and	riverine	habitats	(Magnusson	et	al.	1978).	Mangrove	and	sedge	

plains	are	considered	the	least	suitable	habitat	for	C.	porosus	nesting	(Harvey	&	

Hill	2003;	Magnusson	et	al.	1978).	Mangrove	habitat	lacks	sufficient	open	areas	

and	necessary	nest	building	vegetation,	whereas	sedge	plains	are	often	located	

too	far	from	permanent	water.	Swamplands	appear	to	be	the	most	universally	

utilised	areas	and	are	the	prevalent	habitats	within	much	of	the	estuarine	

crocodile’s	range.		

	

2.3	Habitat	Fragmentation	

An	accurate	estimation	of	the	number	of	species	living	on	Earth	remains	

unknown;	however,	there	is	a	general	consensus	that	there	are	a	total	of	1	x	107	

–	1	x	108	separate	extant	species	(Pimm	et	al.	1995).	These	species	are	not	

uniformly	distributed	across	the	globe	(Brooks	et	al.	2002;	Myers	et	al.	2000);	

areas	identified	as	exhibiting	higher	than	average	species	densities	having	
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obvious	conservation	importance.	Globally,	in	2000,	25	areas	were	designated	

biodiversity	‘hotspot’	regions.	These	cover	a	range	of	environments	and	

habitats	and	were	defined	as	containing	at	least	0.5%	of	the	world’s	plant	

species;	their	designation	attempted	to	ensure	effective	partitioning	of	

conservation	funding	and	other	resources	(Myers	et	al.	2000).	Since	their	

designation	additional	hotspots	have	been	identified,	with	the	most	recent	

addition	of	the	forests	of	eastern	Australia,	the	35th	hotspot,	being	proposed	by	

Williams	et	al.	(2011).		

	

Southeast	Asia	is	home	to	four	separate	hotspots	and	is	a	‘true	reservoir’	of	

biodiversity.	It	is,	however,	also	an	area	whose	forests	are	undergoing	more	

rapid	conversion	than	any	other	part	of	the	planet	(Sodhi	et	al.	2004);	the	

region	is	currently	losing	its	forest	cover	at	twice	the	rate	of	Africa	and	almost	

thrice	that	of	Latin	America	(Achard	et	al.	2002).	Estimates	by	Sodhi	et	al.	

(2004)	suggest	that	75%	of	forests	within	Southeast	Asia	could	be	lost	by	the	

year	2100,	with	a	40%	reduction	in	biodiversity		(revised	to	be	between	13%	

and	85%	by	Sodhi	et	al.	(2009)).	Sundaland	is	one	of	Southeast	Asia’s	four	

biodiversity	hotspots	(Myers	et	al.	2000;	Sodhi	et	al.	2004).	It	is	currently	

experiencing	heavy	conversion	with	an	average	rate	of	1.75%	decrease	in	forest	

cover	per	annum	across	the	region	(Brooks	et	al.	2002).	Rich	in	endemic	flora	

and	fauna,	the	region	is	particularly	rich	in	herpetofauna,	with	an	estimated	

60%	of	reptiles	and	80%	of	amphibians	being	endemic	to	the	region	(Sodhi	et	

al.	2004).	Sundaland	has	the	second	highest	percentage	of	endemism	of	any	of	

the	global	hotspots,	with	5%	of	global	endemic	plants	(Myers	et	al.	2000).	This	

combination	of	rapid	deforestation,	land	conversion	and	high	endemism	has	the	

potential	to	lead	to	rapid	extinction	rates.	Currently,	43%	of	endemic	mammals	

found	throughout	Sundaland	are	classified	as	endangered	(Brooks	et	al.	2002).		

	

During	the	20th	Century,	the	large-scale	conversion	of	forest	into	agricultural	

use	has	been	widespread;	it	is	Southeast	Asia	that	has	experienced	the	fastest	

conversion	rates	(Sodhi	et	al.	2004).	This	conversion	has	continued	into	the	21st	

Century	and	in	the	period	2000	–	2012,	Malaysia,	along	with	Cambodia,	Côte	

d’Ivoire,	Tanzania,	Argentina	and	Paraguay,	has	experienced	one	of	the	highest	
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reductions	of	forest	cover	(Hansen	et	al.	2013).	The	main	driver	of	this	

conversion	over	this	period	has	been	oil	palm	(Elaeis	guineensis)	the	world’s	

most	rapidly	expanding	crop	(Fitzherbert	et	al.	2008).	Originating	from	western	

Africa,	oil	palm	is	now	grown	commercially	in	at	least	16	countries	(Wahid	et	al.	

2005)	and,	as	of	2012,	over	17	million	ha	of	oil	palm	are	being		cultivated	

worldwide,	an	increase	of	7.13	million	ha	(41.7%)	since	2000	(Abram	et	al.	

2014).		

	

Sabah	has	experienced	widespread	land	conversion	over	the	past	50	years,	

fuelled	by	both	the	timber	trade	and	the	expanding	palm	oil	industry	(Abram	et	

al.	2014;	Reynolds	et	al.	2011).	Timber	was	seen	as	a	quick	pay-off	from	the	

land	but,	with	no	repeat	pay-off	due	to	period	needed	for	regrowth	of	high	value	

trees,	along	with	limited	available	land,	this	type	of	land	conversion	was	only	

tenable	in	the	short-	to	medium-term.	In	1979,	Sabah’s	income	from	the	timber	

trade	was	estimated	at	US$1.1	billion	(~£725	million)	(Toh	&	Grace	2007).	In	

reality,	these	revenues	translated	into	a	reduction	in	the	overall	cover	of	

primary	forest	of	Class	II	(commercial	forest	reserves)	production	from	98%	to	

15%	between	1970	and	1996	(Toh	&	Grace	2007).	This	land	conversion	has	

resulted	in	large-scale	habitat	fragmentation,	including	the	limiting	of	the	

movement	and	dispersal	of	many	species,	as	well	as	increasing	the	potential	for	

human	habitation	of	areas	that	were	historically	remote.	This,	in	turn,	increases	

the	potential	for	human-wildlife	interactions.	As	of	2011,	Sabah	was	

permanently	cultivating	1.43	million	ha	(19.3%	of	the	total	land	area	of	the	

state)	of	oil	palm.	Expected	to	rise	to	2.1	million	ha	by	2025,	the	majority	of	

conversion	is	most	likely	to	happen	in	the	eastern	lowland	floodplains,	

including	that	of	the	Kinabatangan	(Abram	et	al.	2014).		

	

Malaysia	and	Indonesia	are	the	world’s	largest	producers	of	oil	palm;	Malaysia	

has	already	devoted	over	6	million	ha	of	land	to	its	production	(Koh	&	Wilcove	

2007).	This	is	projected	to	reach	15	million	ha	by	2020	(Hai	et	al.	2001).	By	

2003,	oil	palm	plantations	accounted	for	86%	of	all	cultivated	land	in	Sabah	

(Toh	&	Grace	2005).	Peninsula	Malaysia	was	the	first	to	experience	large-scale	

palm	oil	exploitation,	with	Sabah	experiencing	rapid	land	conversion	during	the	
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late	1990s	(Hai	et	al.	2001).	The	incentive	for	this	rapid	expansion	was	the	

increase	in	profitability	stemming	from	more	efficient	growth	of	oil	palm	

cultivars	producing	increased	yields.	In	comparison	with	other	highly	profitable	

“cash	crops”	such	as	soya	bean,	oil	palm	is	far	superior	in	terms	of	yield	per	

hectare	(Wahid	et	al.	2005).	Oil	palm	produces	3.30	tonnes	ha-1	year-1	of	oil,	

compared	to	soya	bean,	which	produces	0.46	tonnes	ha-1	year-1	(Wahid	et	al.	

2005).	A	major	drawback	with	oil	palm	production,	however,	is	that	the	early	

years	after	planting	generally	produce	negligible	or	no	yield	(Wahid	et	al.	2005).	

With	selective	breeding	and	good	plantation,	trees	can	begin	to	produce	large	

yields	in	as	little	as	2.5	years	(Wahid	et	al.	2005).	Worldwide	oil	palm	

production	is	rising	by	6.6	-	9%	per	annum,	making	it	the	largest	growing	

agricultural	sector	(Fitzherbert	et	al.	2008;	Wahid	et	al.	2005).	

	

The	agricultural	success	story	of	oil	palm	has	been	intrinsically	linked	to	the	

vanishing	habitat	of	much	of	Southeast	Asia’s	endemic	wildlife.	Koh	and	Wilcove	

(2007)	cited	oil	palm	as	the	premier	threat	to	biodiversity	across	the	region	and	

this	is	testament	to	the	scale	of	the	challenge	that	can	occur	when	highly	

profitable	business	comes	into	conflict	with	the	natural	world	(Fitzherbert	et	al.	

2008).	To	date,	most	agricultural	conversion	in	Southeast	Asia	has	occurred	in	

optimal-yielding	areas	but	future	expansion	will,	and	has	already	begun	to,	

explore	sub-optimal	land	in	terms	of	oil	palm	yield;	this	will	increase	pressure	

on	areas	of	agriculturally-ideal	lowland	forest	dedicated	as	wildlife	sanctuaries	

(Abram	et	al.,	2014).	Unfortunately,	these	agriculturally	valuable	areas	are	also	

the	most	important	areas	for	biodiversity	(Fitzherbert	et	al.	2008).		

	

The	effects	of	habitat	fragmentation	on	crocodilians	are,	at	a	glance,	less	

dramatic	than	other,	terrestrial,	predators.	Impacts	on	prey	abundance,	as	well	

as	the	secondary	effects	of	anthropogenic	expansion,	for	example,	over-fishing,	

have	resulted	in	declining	populations	of	many	higher	order	predators	(Hinlo	et	

al.	2014;	Mauger	et	al.	2012).	The	urbanisation	of	remote	areas	has	resulted	in	

far	more	ready	access	to	exploitable	resources,	resulting	in	the	harvesting	of	

millions	of	crocodilians	during	the	20th	Century	(de	Thoisy	et	al.	2006).		
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Persecution	of	large	carnivores	in	the	19th	and	20th	Centuries	coincided	with	

rapid	rates	of	anthro-expansion	worldwide	(Woodroffe	2000).	A	classic	

example	of	an	apex	predator	extirpated	during	that	period	is	the	thylacine	

(Thylacinus	cynophalus)	(Paddle	2002).	This	species	became	extinct	as	a	result	

of	persecution	relating	to	attacks	on	livestock,	with	a	bounty	scheme	offering	

rewards	for	dead	thylacine	(Paddle	2002).	Many	large	predators,	with	relatively	

isolated	populations,	did,	however	survive	the	20th	Century	(Grayson	2001).	

Increasing	habitat	fragmentation	brought	these	predators	into	more	frequent	

contact	with	humans,	creating	conflict	on	both	sides	(Distefano	2008).	The	

Sumatran	tiger	(Panthera	tigris	sumatrae)	is	one	such	predator,	responsible	for	

146	deaths	in	Sumatra	during	the	period	1978	-	1997	(Nyhus	&	Tilson	2004).	

Human	fatalities	represents	only	a	fraction	of	conflict	events	occurring	

worldwide,	for	example,	in	Alberta,	Canada	during	1982	–	1996,	grey	wolves	

(Canis	lupus)	were	responsible	for	a	reported	2,086	fatalities	among	livestock	

(Distefano	2008).	These	‘human	interest’	costs	represent	a	huge	barrier	to	

conservation	of	predators.		The	protection	and	management	of	apex	predators	

such	as	crocodilians	requires	the	support	of	local	people.	To	achieve	this,	people	

must	understand	more	about	the	species.	Understanding	more	about	

crocodilian	behaviour	and	ecology	can	help	educate	people	about	their	life	

history,	as	well	as	to	identify	areas	and	times	which	are	more	likely	to	result	in	

conflict.		

	

2.4	Remote	Tracking	

Remote	tracking	of	animals	has	revolutionised	the	way	in	which	much	of	

behavioural,	landscape	and	conservation	biology	is	conducted	in	the	field.	The	

ability	to	know	the	exact	location	of	an	animal	without	directly	observing	the	

individual	allows	for	minimised	bias	and	the	preservation	of	‘natural	behaviour’	

(Rodgers	2001).	This	‘observer-removed’	monitoring	style	allows	for	larger	

scale,	longer-lasting	studies	(Seegar	et	al.	1996).	As,	however,	with	most	new	

technology,	inception	costs	are	high;	equipment	units	are	usually	expensive	and	

may	be	a	limiting	factor	in	determining	sample	sizes	(Franklin	et	al.	2009).	In	

general,	however,	as	the	technology	develops	and	becomes	more	frequently	

used,	costs	tend	to	become	lower	and	the	technology	can	become	financially	
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viable	for	a	wider	range	of	users.	The	quantity	and	quality	of	data	that	can	be	

remotely	collected	enable	a	greater	understanding	of	home	ranging,	especially	

for	animals	with	larger	ranges.	Furthermore,	a	detailed,	fine-scale	

understanding	of	habitat	utilisation	can	result	in	more	effective	management	

strategies	(Hulbert	&	French	2001;	Franklin	et	al.	2009).		

	

Remote	monitoring	of	animals	began	in	the	late	1960s	with	Very	High	

Frequency	(VHF)	tracking.	Many	early	studies	were	focussed	on	American	

alligators	(A.	mississippiensis).	Early	tracking	units	were	bulky	and	heavy,	and	A.	

mississippiensis,	with	its	large	size	and	weight,	was	an	ideal	study	species.	

Joanen	and	McNease	(1970)	VHF-tagged	five	female	alligators	and	were	able	to	

determine	both	home	range	and	nesting	habits	during	tagging	periods	ranging	

between	15	and	115	days.	Two	years	later,	this	study	was	extended	to	look	at	

movements	of	adult	males;	units	were	attached	on	a	collar	consisting	of	

rubberised	fabric	(Joanen	&	McNease	1972).	Another	early	study	focussed	on	

VHF-tracked	adult	American	alligators,	assessing	seasonal	movements	between	

1976	-	1977	(Goodwin	&	Marion	1979).	Despite	high	levels	of	suitability	for	tag	

placement,	the	first	satellite	telemetry	on	crocodilians	was	still	another	25	

years	away.			

	

VHF-tracking	requires	constant	monitoring	of	the	animal,	albeit	at	a	distance,	

with	triangulation,	the	process	of	identifying	the	location	of	a	signal	from	three	

or	more	surrounding	points,	necessary	to	determine	an	individual’s	location	

reliably	(Tomkiewicz	et	al.	2010).	Whilst	revolutionary	in	terms	of	home	range	

estimations,	it	is	a	labour-intensive	method	of	assessing	home	range.	Animals	

can	be	‘lost’	after	collaring	due	to	misjudgements	of	home	range	size	or	collar	

failure	(Rodgers	2001;	Sandgren	2012).	The	technology	does,	however,	allow	

for	more	consistent	direct	behavioural	observations	(Baird	et	al.	2002;	Chilvers	

et	al.	2005)	and	allows	for	the	animal	to	be	tracked	irrespective	of	time.	Having	

established	itself	globally	as	the	main	method	of	individual	monitoring	for	more	

than	20	years,	VHF-tracking	remains	in	use	in	many	studies,	often	in	

conjunction	with	satellite	technologies	(Read	et	al.	2007;	Alfred	et	al.	2012).	
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Although	VHF-technology	revolutionised	the	field	at	the	time	of	introduction,	

the	inherent	limitations	of	the	methodology	catalysed	the	development	of	the	

next	generation	of	tracking	devices.	This	manifested	itself	as	satellite	tracking.	

Early	satellite	tracking	devices	were	large,	bulky,	units	that	worked	using	the	

Advanced	Research	and	Global	Observation	Satellite	(ARGOS)	system	of	

satellites	(Seegar	et	al.	1996).	This	system,	still	in	operation,	allows	for	

geographical	fixes	to	be	established	with	an	accuracy	in	the	region	of	±	1	km	

(Campbell	et	al.	2010).	In	addition,	bulky	electronics	and	inefficient	batteries	

meant	that	smaller	animals	were	not	suitable	candidates	for	satellite	tracking.	

The	system	requires	the	user	to	purchase	certain	time	frames	during	which	

satellite	points	are	to	be	collected.	One	early	study	examined	the	ranging	

behaviour	of	the	wandering	albatross	(Diomedia	exulans).	While	the	bird’s	large	

size	and	large	home	range	were	compatible	with	using	the	ARGOS	system	

(Walker	et	al.	1995),	units	had	to	be	retrieved	in	order	to	access	the	stored	data.	

Heavily	utilised	in	the	tracking	of	Australian	crocodilians	during	the	past	

decade,	the	ARGOS	system	has	been	chosen	for	its	reliability	and	coverage.	Most	

of	these	studies	have,	however,	focussed	on	large-scale	ranging	of	individuals	

and,	in	particular,	their	association	with	the	oceans	of	Northern	Australia	(Read	

et	al.	2007;	Campbell	et	al.	2010;	2013).	

	

During	the	1990s	and	2000s,	the	USA-owned,	Global	Positioning	System	(GPS)	

group	of	satellites	became	increasingly	more	heavily	used	for	satellite	tracking	

(McCallum	2000;	Augustine	et	al.	2011).	The	expensive	nature	of	ARGOS	

systems,	paired	with	the	relatively	high	inaccuracy	of	the	data	accrued,	led	to	

this	expansion	(Campbell	et	al.	2010).	GPS-satellite	tags	allow	for	inaccuracies	

measured	in	meters	rather	than	kilometres	(McCallum	2000),	making	them	

considerably	more	applicable	for	studying	animals	with	small	home	ranges,	as	

well	as	examining	aspects	such	as	habitat	use	and	reactions	to	both	landscape	

and	anthropogenic	influences.	The	Iridium	Satellite	Constellation,	a	group	of	66	

active	communication	satellites,	allow	for	two-way	transfer	of	data,	and	the	low	

orbiting	satellites	provide	a	high	level	of	coverage	with	very	high	accuracy.	

Iridium’s	satellites	perform	mostly	Northern	Polar	orbits	making	them	most	

effective	in	the	Northern	Hemisphere	(Tomkiewicz	et	al.	2010).		
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As	remote	tracking	technology	has	advanced,	tracking	units	have	became	both	

lighter	and	easier	to	fit,	with	many	different	attachment	mechanisms	devised	

for	working	with	a	wide	range	of	organisms	(Rodgers	2001).	Franklin	et	al.	

(2009)	examined	the	efficiency	of	these	different	attachment	techniques	within	

crocodilians.	The	inherent	problem	with	generating	a	satellite-validated	

location	‘fix’	is	the	large	draw	on	battery	voltage;	transmission	of	this	‘fix’	to	a	

base	station	or	monitoring	network	compounds	the	draw	on	the	energy	source	

further.	This	challenge	has	catalysed	a	range	of	different	solutions.	Most	

currently-used	satellite	devices	can	be	split	into	being	dependent	on	one	of	four	

main	data	transmission	methods	(Rodgers	2001):	in	the	first,	data	are	

transmitted	back	to	the	satellite	using	two-way	data	transfers.	These	data	can	

then	be	downloaded	to	a	central	server	and	uploaded	onto	the	Internet	to	be	

globally	accessible	(Rodgers	2001).	The	second	method	uses	a	locally-sourced	

cellular	phone	Subscriber	Identity	Module	(SIM)	card	and	transmits	the	data	as	

a	Short	Message	Service	(SMS)	message	(Tomkiewicz	et	al.	2010).	A	base	station	

picks	up	data	in	the	same	way	that	cellular	phones	pick	up	text	messages.	The	

drawback	for	this	method	is	that	the	animal	being	observed	must	inhabit	an	

area	with	widely	available	cellular	service.	Currently	being	trialled,	the	third	

approach	is	exploring	a	technique	of	satellite	tags	suitable	for	smaller	animals	

(Tomkiewicz	et	al.	2010).	This	method	requires	the	download	of	logged	data	

using	a	hand-held	base	station	directly	from	the	tag.	The	researcher	must	reach	

a	predefined	proximity	from	the	animal,	at	which	time	the	base	station	will	

download	the	points	from	the	collar.	This	process	requires	significantly	less	

(compared	to	the	first	method)	battery	power	for	transmission,	allowing	units	

to	be	much	smaller	in	size	whilst	still	providing	good	tag	longevity.	The	final	

method	is	referred	to	as	a	data	logger	which	stores	all	satellite	locations	and	the	

data	can	only	be	retrieved	once	the	animal	and	tag	is	recaptured	(Rodgers	

2001;	Tomkiewicz	et	al.	2010).	Each	of	these	systems	has	advantages	and	

disadvantages	associated	with	its	use;	the	researcher	has	to	determine	which	

method	proves	most	suitable	for	their	individual	research	questions	and	needs.	

This	diversity	of	available	options	does,	however,	allow	for	an	ever-increasing	

wide	range	of	organisms	to	be	classed	as	‘suitable	for	satellite	tagging’.		
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Various	additional	methods	have	been	formulated	to	deal	with	the	challenge	of	

battery	drainage	when	tracking	animals;	the	most	ingenious	is	probably	the	

inclusion	of	solar-powered	cells,	casing	the	upper	side	of	the	tag	(Monsarrat	et	

al.	2013;	Higuchi	&	Pierre	2005).	This	technique	is	reserved	for	animals	that	

have	access	to	direct	sunlight	for	extended	periods,	for	example,	sea	birds,	

travelling	long	distances	across	open	water	(Higuchi	&	Pierre	2005).	The	

introduction	of	solar-powered	satellite	tags	has	enabled	the	mapping	of	these	

migration	routes;	the	addition	of	the	solar	component	means	that	a	much	

lighter	and	smaller	unit	can	be	produced.	Another	benefit	of	solar	panels	is	to	

reduce	the	overall	weight	of	the	tag;	a	matter	of	paramount	importance	when	

considering	tagging	methods	on	species	that	conduct	long	flights.	This	

technology	also	has	potential	applications	in	marine	environments,	where	long-

term	movements	require	a	tag	that	is	capable	of	recharging	whilst	animals	

surface	(Rodgers	2001).	

	

Satellite	technology	was	not	reported	to	have	been	utilised	on	crocodilians	until	

2007	(Read	et	al.	2007),	with	VHF-technology	still	being	used	in	crocodilian	

research	as	recently	as	2004.	Kay	(2004B)	used	VHF	technology	to	track	the	

movements	of	16	crocodile	individuals	in	the	Northern	Territory,	Australia.	

Until	then,	most	home	range	estimations	in	Australia	had	been	approximated	

using	mark-recapture	techniques.	Whilst	successful,	Kay’s	study	required	

considerable	tracking	energy	expenditure	on	the	part	of	the	researchers;	it	also	

documented	the	now	widely	used	nuchal	plate	attachment	technique.	By	

attaching	the	unit	to	the	nuchal	plate	(situated	at	the	rear	of	the	skull),	the	

tracking	units	are	above	the	waterline	for	the	maximum	amount	of	time,	

enabling	the	greatest	number	of	data	fixes	and	transmission.	Other	attachment	

methods	have	also	been	explored	such	as	to	the	tail	scute	(Strauss	&	Botha	

2008).		

	

The	need	to	develop	satellite	technology	in	crocodilian	tracking	has	been	

argued	to	be	essential	for	crocodilian	management	and	conservation	(Kay	

2004A).	Read	et	al.	(2007)	reported	the	first	successful	satellite	tagging	of	
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crocodilians,	with	the	results	showing	the	ability	of	these	animals	to	travel	large	

distances	through	open	water.	Shortly	after	this	study,	other	techniques	were	

explored	including	the	attachment	of	time-triggered	release	of	data	loggers	to	

animals.	In	this	novel	technique,	on	being	jettisoned	the	unit	floats	using	an	

attached	balloon	inflated	by	a	small	gas	canister	(Franklin	et	al.	2009).	The	

monitoring	time	for	any	given	tag	using	this	technique	is,	however,	relatively	

low.	One	technique	that	has	not	yet	been	explored	in	the	satellite	tagging	of	

crocodilians	is	the	use	of	remote	download	tags.	This	technology	requires	being	

able	to	locate	the	individuals	at	least	once	every	few	weeks	to	download	data;	

not	always	feasible	for	long-ranging	and	sometimes	unpredictable	individuals,	

displaying	erratic	movement	patterns,	such	as	in	Northern	Australia.	Past	

studies	in	the	home	range	analysis	of	crocodilians	have	been	metaphorically	

one-dimensional,	mainly	because	of	limitations	in	ARGOS	technology.	The	

inability	to	resolve	the	location	of	a	fix	to	less	than	±	1	km	has	meant	that	

measurement	of	fine	scale	habitat	utilisation	has	hitherto	not	been	feasible.	By	

using	the	Iridium	satellite	system,	data	collected	allow	for	more	precise	

movement	analysis,	as	well	as	the	introduction	of	more	localised	activity	

patterns	and	time-budgets	(Tomkiewicz	et	al.	2010).	Given	that	Iridium	has	the	

capacity	for	multidirectional	data	transfer	it	has	been	heavily	used	for	mobile	

communications	and	is	the	main	satellite	system	used	by	MotorolaTM	(Maine	&	

Devieux	1999).	This	increased	level	of	accuracy	paves	the	way	for	more	in-

depth	home	range	analyses,	including	analysis	of	habitat	use	within	home	

ranges.	

	

Previously,	satellite-tracking	technology	has	been	effectively	used	to	establish	

baseline	crocodilian	movements	and	to	understand	certain	behavioural	traits,	

such	as	homing	in	translocated	crocodiles	(Read	et	al.	2007).	This	current	study	

seeks	to	explore	more	closely,	site-use	and	activity	patterns,	both	over	the	

short-	and	long-term,	in	Bornean	estuarine	crocodiles.	In	addition,	the	study	

also	explores	the	movements	of	crocodiles	in	a	very	different	habitat	compared	

to	where	previous	studies	have	examined.	The	need	for	research	in	this	region	

is	considerable	with	many	reported,	and	probably	many	more	unreported,	

attacks	occurring	in	Sabah	alone.	In	addition,	behavioural	differences	between	
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equatorial,	rainforest	dwelling	crocodiles,	and	those	of	Northern	Australia,	are	

unknown.	The	study	seeks	to	understand	movements	of	adult	crocodilians	

within	a	fragmented	ecosystem.		

	

2.5	Genetics		

Crocodilians	are	an	ancient	order	with	little	in	the	way	of	morphological	change	

having	occurred	since	their	appearance	some	140	m.y.a.	(Fig.	2.1)	(Janke	et	al.	

2005).	There	are	relatively	few	distinctions	to	be	made,	at	least	

morphologically,	between	the	Crocodilia	and	the	Pseudosuchia,	which	appeared	

some	235	m.y.a.	(Janke	&	Arnason	1997;	Nesbitt	2003).	The	genetic	reasoning	

behind	this	perceived	lack	of	evolutionary	development	suggests	that	within	

crocodilian	genomes,	mutation	rates	are	only	approximately	25%	those	of	birds	

and	far	slower	than	the	majority	of	vertebrates	(Green	et	al.	2014).	This	slow	

mutation	rate	could	be	responsible	for	the	low	number	of	differentiated	species	

despite	crocodilians’	global	distribution.		

	

Figure	2.1.	Phylogenetic	tree	displaying	upper	and	lower	boundary	divergence	

(years	±s.e)	times	between	species.	Adapted	from	Janke	et	al.	(2005).		

	

Currently,	there	are	24	recognised	extant	crocodilian	species	worldwide	(see	

Section	2.1)	but	as	mentioned,	genetic	analysis	of	crocodilian	populations	has	

the	potential	to	split	existing	species	further.	Evidence	from	Eaton	et	al.	(2009),	

following	the	identification	of	species	level	divergence,	suggests	the	presence	of	
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a	Congo	basin	dwarf	crocodile	(Osteolaemus	sp.)	and	a	separate	western	African	

species.	The	impact	of	genetics	on	crocodilian	taxonomy,	whilst	important,	

represents	only	a	tiny	fraction	of	the	potential	of	genetic	research	into	

crocodilians.	

	

As	well	as	being	of	direct	biological	and	conservation	relevance,	crocodilian	

genetics	are	of	serious	commercial	value	in	relation	to	the	scale	of	global	

crocodile	farming.	Crocodilian	farming	is	a	developing	industry,	with	an	

Australian	value	of	AUD$8.8	million	(~£4	million)	in	2004	(RIRDC	2005),	rising	

to	AUD$15	million	(~£7	million)	by	2014	(RIRDC	2014),	with	2011	worldwide	

trade	estimated	to	be	in	the	order	of	1.36	million	skins	(Caldwell,	2013).	Given	

the	obvious	financial	incentives,	work	on	the	‘genetic	improvement’	of	

crocodiles	has	been	relatively	prolific,	with	phenotypically-superior	crocodile	

individuals	being	selected	as	preferential	breeders	(Jaratlerdsiri	et	al.	2012).	

Phenotypes	that	are	more	disease	resistant,	together	with	other	phenotypic	

advantages	such	as	increased	growth	rates,	are	estimated	to	be	worth	AUD$324	

(~£154)	per	pair	per	annum	(RIRDC	2005).	Given	the	obvious	financial	

benefits,	a	focus	on	the	full	genome	sequencing	of	a	large	range	of	crocodilians	

has	become	a	priority	amongst	crocodilian	geneticists	and	has	led	to	the	

formation	of	the	International	Crocodilian	Genomes	Working	Group	(ICGWG).	

The	ICGWG	has	focussed	on	the	genome	sequencing	of	three	species	in	three	

families,	namely	the	American	alligator	(A.	mississippiensis),	the	estuarine	

crocodile	(C.	porosus)	and	the	gharial	(Gavialis	gangeticus)	(crocgenomes.org).	

Additionally,	crocodilians	have	also	become	the	focus	of	research	into	new,	

innovative	antibiotic	drugs.	For	example,	the	American	alligator																											

(A.	mississippiensis)	has	been	shown	to	harbour	a	range	of	broad-spectrum	

antibiotic	peptides,	largely	isolated	from	the	serum	(St	John	et	al.	2012).	This	

compounds	their	commercial	value.	Despite	the	importance	of	immunogenetics,	

understanding	genetics	of	wild	populations	is	of	equal	importance,	potentially	

allowing	for	better	management	strategies.			

	

Landscape	genetics	is	a	relatively	new	concept,	and	aims	to	collate	genetic,	

spatial	and	statistical	methodologies	to	understand	more	fully	how	the	ecology	
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of	a	particular	species	can	influence	the	species’s	population	genetics	(Storfer	et	

al.	2007).	A	number	of	crocodilian	species,	including	C.	porosus	and																								

C.	mindorensis,	are	able	to	live	sympatrically,	albeit	occupying	similar	niches	

(Platt	et	al.	2009;	Pomares	et	al.	2008;	Villamarin	et	al.	2011).	This	sympatric	

existence	can	potentially	lead	to	levels	of	hybridisation	between	distinct	

species,	such	as	has	happened	with	C.	moreletii	and	C.	acutus	in	Central	America	

(Ray	et	al.	2004;	Rodriguez	et	al.	2008).	Inter-species	hybridisations	are	most	

prevalent	in	the	Americas,	where	there	exists	the	greatest	number	of	sympatric	

species.	Repeated	introgressions	with	the	sympatric	C.	moreletii	have	resulted	

in	very	high	levels	of	hybridisation	with	the	already	endangered	C.	acutus;	the	

result	being	in	the	existence	of	very	few	populations	of	genetically	pure	

individuals	of	C.	acutus	(Machkour-M’Rabet	et	al.	2009).	There	is	however,	also	

evidence	of	hybridisation	between	genetically	distinct	populations	of	the	same	

species	(González-Trujillo	et	al.	2012).			

	

As	mentioned	in	Chapter	1,	the	vast	majority	of	crocodilian	populations	

experienced	a	severe	population	bottleneck	during	the	mid-late	20th	Century	

(Thorbjarnarson	1998).	To	date,	examination	of	C.	porosus	genetics	following	

this	perturbation	has	presented	little	or	no	evidence	of	an	associated	genetic	

bottleneck	(Gratten	2004;	Russello	et	al.	2007).	This	also	appears	to	have	been	

the	case	for	a	range	of	other	crocodilians	across	the	globe;	a	lack	of	a	recent	

bottleneck	has	also	been	demonstrated	in	C.	niloticus	(Flint	et	al.	2006)	and	C.	

acutus	(Rodriguez	et	al.	2008).	Glenn	et	al.	(2002)	did,	however,	find	evidence	of	

a	more	ancient	bottleneck	occurring	in	A.	mississippiensis	at	around	21,000	

years	before	present.		

	

One	of	the	largest	genetic	studies	on	C.	porosus	wild	populations	focussed	on	a	

small	isolated	population	of	individuals	on	the	island	nation	of	Palau	(Russello	

et	al.	2007).	A	single	haplotype	from	39	individuals	was	matched	in	samples	of	

individuals	in	Western	Kalimantan,	Southern	Borneo	(Russello	et	al.	2007).	

Along	with	various	studies	on	captive	populations	(Gratten	2004;	Luck	et	al.	

2012),	Russello	et	al.‘s	study	suggests	that	the	entirety	of	the	sampled	

demographic	of	C.	porosus	belong	to	a	single	Evolutionary	Significant	Unit	(ESU	
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-	Gratten	2004).	This	infers	that	the	conservation	of	the	species	should	be	

focussed	at	a	species	level	rather	than	widespread	efforts	to	preserve	small	

remnant	populations.	However,	these	findings	should	be	tempered	with	caution	

as	only	a	small	subset	of	regions	harbouring	surviving	populations	have	been	

sampled	genetically.	This	leaves	the	possibility	that	other	regions	may	contain	

individuals	belonging	to	a	separate	ESU.		

	

In	zoological	terms,	kinship	refers	to	a	direct	blood	relationship	that	can	be	the	

result	of	either	sexual	or	asexual	reproduction.	The	identification	of	relatedness	

or	parentage	between	individuals	has	many	applications	across	a	range	of	

species	and	is	of	particular	interest	to	the	crocodile	farming	industry	(Isberg	et	

al.	2004).	Parental	relations	in	crocodilians	are	complicated	by	the	fact	that	

many	clutches	of	eggs	consist	of	the	progeny	of	multiple	fathers.	Multiple	

paternity	has	been	documented	in	a	number	of	species	including	C.	porosus	

(Lewis	et	al.	2013),	A.	mississippiensis	(River	et	al.	2001)	and	Caiman	latirostris	

(Amavet	et	al.	2008).	The	presence	of	what	are	often	referred	to	as	‘sneaky	

males’,	those	usually	sub-dominant	males	that	mate	with	females	

surreptitiously	(Lewis	et	al.	2013).	This	shows	that	differing	behavioural	

strategies	can	have	an	overall	impact	on	the	population	genetics	of	a	population,	

with	the	inclusion	of	often	sub-dominant	males	whose	genetic	material	might	

otherwise	not	be	present	in	the	gene	pool.		

	

2.6	Conclusions		

Crocodilians	are	evolutionarily	ancient	apex	predators,	with	serious	human-

conflict	implications	in	an	ever-changing	world.	Large-scale	habitat	conversion	

and	anthropogenic	expansion	have	brought	people	into	closer	proximity	with	

these	predators.	Their	commercial	importance,	coupled	with	their	impressive	

body	forms,	does,	however,	mean	that	they	are	also	subjects	of	concern	in	a	

conservation	context.	Improving	our	ability	to	protect	these	populations	

demands	a	better	understanding	of	how	they	are	utilise	the	landscape,	both	in	

terms	of	aquatic	and	terrestrial	resources.	Technology	has	a	role	to	play	in	

unearthing	behaviours	of	this	otherwise	cryptic	guild.	A	combination	of	high-

resolution	data,	together	with	increased	knowledge	of	the	species	demographic	
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history,	is	essential	in	initiating	and	developing	an	effective	and	achievable	

management	plan.	
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Chapter	3	–	Home	Ranging	and	Anthropogenic	Influences	of	the	Estuarine	

Crocodile	(Crocodylus	porous)	in	Sabah,	Malaysia.		

	

3.1	Introduction		

	

Crocodilians	represent	a	family	of	aquatic	predators	unrivalled	in	their	

evolutionary	longevity	(see	Section	2.2),	as	well	as	their	adaptability	to	

changing	environmental	conditions.	Crocodilians	have,	by-and-large,	persisted;	

there	has	only	been	one	known	species	extinction,	that	of	Voay	robustus,	

directly	linked	to	anthropogenic	intervention	(Bickelmann	&	Klein	2009).	That	

the	remainder	of	extant	species	have	survived	to	the	present	day	is	testament	to	

crocodile	adaptability	to	rapidly	changing	environmental	circumstances,	both	in	

terms	of	climate	as	well	as	anthropogenic	alteration.	Despite	this	versatility,	the	

rate	of	habitat	alteration,	coupled	with	hunting	pressures	throughout	the	20th	

Century,	has	brought	many	crocodilian	species	to	the	brink	of	extinction	

(Thorbjarnarson	et	al.	1998).	Careful	management	has	ensured	the	recovery	of	

a	number	of	these	species,	however,	this	recovery	presents	a	new	range	of	

population	management	challenges	in	a	world	where	anthropogenic	expansion	

is	redefining	the	word	“remote”.			

	

Human-wildlife	conflict	is	both	a	serious	and	an	escalating	issue	(Distefano	

2008).	In	its	most	fundamental	sense,	human-wildlife	conflict	can	be	described	

as	an	action	of	an	animal	that	harms	the	general	interests	of	humans.	Madden	

(2004),	however,	recognised	that	the	problem	is	far	more	complex	than	the	

issue	of	attacks	on	people	and	livestock.	Human-wildlife	conflict	affects	a	wide	

variety	of	people	from	differing	geographic	and	socio-economic	situations;	it	is	

this	fact	that	makes	the	issue	a	truly	global	one.	Globally,	six	species	of	

crocodilians	are	deemed	to	pose	a	direct	threat	to	human	life;	the	estuarine	

crocodile	(C.	porosus),	the	Nile	crocodile	(C.	niloticus),	the	mugger	crocodile	(C.	

palustris),	the	American	crocodile	(C.	acutus),	the	black	caiman	(Melanosuchus	

niger)	and	the	American	alligator	(Alligator	mississippiensis).	Other	crocodilian	

species	are	also	credited	with	attacks,	but	generally,	within	these	species,	

conflict	with	humans	is	extremely	rare	(Sideleau	&	Britton	2012).	The	reality	of	



	

	

39	

conflict	with	species	that	have	the	potential	to	cause	harm,	both	to	people	and	

their	livestock,	creates	complex	management	practice	issues;	these	are	further	

complicated	when	the	species	in	question	is	threatened	with	extinction	

(Woodroffe	et	al.	2005).	Crocodilians	pose	a	credible	threat	to	human	life	and,	

with	the	species	listed	above	credited	with	multiple	human	attacks.	The	fact	

that,	as	of	2014,	seven	crocodilian	species	are	considered	critically	endangered	

on	the	International	Union	for	Conservation	of	Nature	(IUCN)	Red	List,	and	a	

further	four	vulnerable,	means	that	management	practice	is	rarely	simple	and	

must	take	a	range	of	factors	into	account	(IUCN	Red	List	2015).	Conservation	

practice	is	further	complicated	by	the	fact	that	many	species	are	considered	

commercially	viable	and	provide	income	through	both	skin	and,	to	a	lesser	

extent,	meat	industries.	While	commercial	crocodile	farms	harbour	many	

critically	endangered	species,	in	multiple	cases	these	genetic	refugia	have	been	

compromised	through	both	intentional	and	non-intentional	hybridisation	

(Fitzsimmons	et	al.	2002).	Commercial	exploitation	throughout	the	20th	Century	

was	a	leading	cause	of	population	decline	in	many	crocodilian	species	(Fukuda	

et	al.	2011;	Hinlo	et	al.	2014;	Stuebing	et	al.	2006;	Russello	et	al.	2007).	This	

commercially-mediated	decline	was	particularly	stark	within	estuarine	

crocodiles	whose	previously	populous	wide	distribution	was	decimated	

resulting	in	a	‘endangered’	IUCN	listing	in	1982	(Fukuda	et	al.	2013).	Rapid	

population	declines	have	the	potential	to	cause	long-term	deleterious	effects,	

including	the	well-established	genetic	implications	of	inbreeding	(Kay	2004B;	

Keller	&	Waller	2002).	Impacts	on	the	ecology	and	behaviour	both	during	and	

after	population	recovery	are,	however,	ill-understood.		

	

The	estuarine	crocodile	is	the	largest	of	the	extant	crocodilians,	reaching	in	

excess	of	6	m	in	the	wild	(Britton	et	al.	2012).	Its	secretive	nature	means	that	

despite	an	overlap	in	habitat	use,	the	majority	of	large	individuals	seem	to	avoid	

conflict	with	humans	(Kar	&	Bustard	1983).	It	is,	however,	still	responsible,	

annually,	for	multiple	deaths	throughout	its	range	and	is	thought	to	have	been	

responsible	for	461	recorded	deaths	worldwide	since	2000	(CrocBite	2014).	

Understanding	the	relationship	between	what	is,	undoubtedly,	a	dangerous	

predator	and	human	beings	is	of	increased	importance	following	expanding	
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crocodile	numbers	and	human	populations	throughout	the	estuarine	crocodile’s	

range	(Fukuda	et	al.	2011)	(see	Chapter	2).	Mitigation	of	attack	risk	requires	

not	only	education	and	vigilance	on	the	part	of	the	local	people,	but	also	an	

understanding	of	how	large,	potentially	dangerous,	individuals	utilise	their	

habitats.		

	

Territorial	behaviour	is	often	cited	as	a	cause	of	human-crocodile	conflict,	as	

attacks	with	no,	or	only	partial,	consumption	of	victims	are	commonplace	

(Caldicott	et	al.	2005;	Sideleau	&	Britton	2012).	Territoriality	is	a	dominance	

behaviour	designed	to	acquire	and/or	maintain	an	evolutionarily	beneficial	

spatial	location.	It	remains	unclear	as	to	whether	territorial	aggression	is	

primarily	responsible	for	human	attacks;	Caldicott	et	al.	(2005)	suggested	89%	

of	attacks	have	been	reported	as	being	perpetrated	for	nutritional	gain	although	

territoriality	could	also	have	played	a	role	in	some	of	them.	Although	male	

crocodilians	are,	in	general,	considered	to	be	highly	territorial,	with	species-

specific	degrees	of	individual	territoriality	suggested	for	different	species	(Lang	

1987),	very	limited	research	exists	on	this	aspect	of	crocodile	behaviour.	Given	

the	lack	of	congruency	within	the	literature,	understanding	if	and	how	‘active’	

territoriality	is	occurring	within	a	given	habitat	has	the	potential	to	increase	

understanding	of	habitat	utilisation,	predictions	on	prey	availability,	access	to	

females,	as	well	as	enable	development	of	management	practice	with	a	

particular	focus	on	anthropogenic	attack	avoidance.		

	

Satellite-informed	data	analysis	has	the	potential	to	provide	unparalleled	clarity	

regarding	home	ranging	as	well	as	increased	understanding	of	important	

behavioural	traits,	such	as	the	role	of	territoriality	and	how	dominance	

hierarchies	can	influence	crocodiles’	aggression	levels.	Essential	resources	

required	for	individual	crocodilians	vary	between	species	but	are	diverse	

depending	on	habitat	and	individual	requirements;	resources	are	often	

associated	with	nesting	and	reproductive	requirements.	Crocodylus	porosus	is	

cited	as	being	among	the	least	tolerant	towards	rivals,	defending	territories	

perennially	(Lang	1987).	However,	in	Australia,	male	estuarine	crocodiles	have	

not	appeared	to	exhibit	specific	spatial	exclusion	indicative	of	territoriality	
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(Brien	et	al.	2008;	Kay	2004B),	with	males	moving	large	distances	to	enhance	

female	encounter	rates	(Kay	2004B).	More	recent	findings,	also	in	Australia,	

suggest	that	acoustically	tagged	individuals	were,	by	and	large,	restricted	to	

distinct	stretches	of	river	(Campbell	et	al.	2010).		

	

There	is	a	paucity	of	studies	examining	the	fine	scale	movements	and	

territoriality	of	crocodilians;	only	by	increasing	our	knowledge,	and	

understanding	of	movement	patterns	and	home	range	utilisation	can	the	

complex	issues	surrounding	population	control	and	trophic	ecosystem	stability	

be	addressed.	Managing	populations	effectively	to	ensure	not	only	the	safety	of	

local	people	but	also	avoiding	large	scale	population	instability	is	of	paramount	

importance,	not	only	within	crocodilians	but	when	dealing	with	potential	

human	predators	worldwide	(Woodroffe	et	al.	2005).		

	

The	use	of	satellite	monitoring	for	crocodilians	is	relatively	novel,	with	the	first	

recorded	tracking	taking	place	in	2003,	displaying	homing	behaviour	and	

oceanic	travel	(Read	et	al.	2007).	Further	analysis	of	these	data	suggested	the	

utilisation	of	favourable	ocean	currents	to	expedite	long	range	travel	(Campbell	

et	al.	2010A).	Examination	of	home	range	strategy	became	possible	with	the	

new	levels	of	accuracy	available	from	satellite	units.	Campbell	et	al.	(2013)	

reported	a	mean	(±s.e)	accuracy	of	12.1	±	1.1	m	in	location	points	used	for	

analysis,	allowing	a	level	of	fine	scale	analysis	previous	units	were	unable	to	

provide.	While	analysis	of	home	range	utilisation	has	previously	entailed	the	

use	of	minimum	convex	polygons	(MCPs)	and	kernel	utilisation	densities	

(KUDs)	(Campbell	et	al.	2013;	Kay	2004B;	Tucker	et	al.	1997),	to	understand	

the	inter-	and	intra-territory	mechanics	of	adult	crocodilians,	more	

comprehensive	analyses	on	a	finer	spatial	scale	are	still	required.		

	

Home	range	analysis	has	found	that	male	C.	porosus	exhibit	one	of	two	

behavioural	strategies:	site-fidelic	(those	individuals	confined	to	a	small	

discrete	stretch	of	river)	or	nomadic	(further	ranging	with	a	lack	of	apparent	

territory).	The	presence	of	these	two	strategies	appears	to	be	linked	to	

individual	size,	with	site-fidelic	and	nomadic	males	averaging	4.1	m	and	3.6	m	
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in	length,	respectively	(Campbell	et	al.	2013).		Home	range	sizes	of	these	

individuals	were	measured	using	KUDs	and	found	to	range	from	7.1	to	72.5	

km2,	with	nomadic	males	straying	much	further	from	their	core	range	than	

would	be	expected	for	smaller-sized	individuals.	Females,	often	caught	less	

frequently	in	trapping	studies,	exhibited	similar	variation,	but	on	a	smaller	scale	

than	males.	These	observations	provided	base-line	data	for	C.	porosus	home	

ranges	and,	for	the	first	time,	examined	intra-sexual	variation	in	behavioural	

traits,	and	fine-scale	home	range	utilisation.	

	

Sabah,	the	eastern-most	state	of	Malaysia,	located	in	the	North	East	of	the	island	

of	Borneo,	provides	excellent	habitat	for	estuarine	crocodiles,	with	large	rivers,	

an	equatorial	climate,	and	a	diverse	prey	base	(Turner	&	Foster	2008).	

Crocodiles	in	Sabah	have	endured	a	tumultuous	half-century.	Following	their	

listing,	in	1982,	as	a	Schedule	I	species	(killing	of	crocodile	punishable	by	fine	

and	up	to	five	years	imprisonment,	unless	in	self-defence	or	for	licensed	

scientific	research),	initial	surveys	were	carried	out	in	association	with	the	

World	Wildlife	Fund	(WWF)	(Whitaker	1984).	These	surveys	yielded	very	low	

crocodilian	densities	of	just	0.21	km-1.	In	the	intervening	30	years,	there	has	

been	an	undoubted	recovery	although	with	the	most	recent	survey	carried	out	

some	14	years	ago	survey	data	require	updating	(Sabah	Wildlife	Department	

2010A).	Carried	out	across	seven	of	Sabah’s	major	rivers,	the	2002	survey	

yielded	a	density	of	2.27	km-2,	a	more	than	ten-fold	increase	over	a	20-year	

period	(Sabah	Wildlife	Department	2002).	A	management	plan	was	designed	

for	the	Sabah	crocodilian	population	in	2010.	At	this	time,	it	was	estimated	that,	

throughout	the	state,	some	13,000-15,000	individuals	were	living,	including	a	

viable	percentage	of	breeding	adults,	indicating	the	potential	for	further	

population	expansion.	Furthermore,	the	prospect	of	the	ever-expanding	eco-

tourism	sector	in	Sabah	places	enhanced	value	of	wild	individuals.	The	2010	

Management	Plan	cited	the	state’s	potential	annual	revenue	from	crocodile-

based	tourism	streams	as	RM	(Ringgit	Malaysia)	27	million	per	annum	(~£4	

million).		
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Whilst	there	is	undoubtedly	under-reporting	of	both	fatal	and	non-fatal	attacks	

in	Sabah	owing	to	delicate	socio-political	factors	involving	immigration,	there	

have	still	been	a	total	of	25	attacks	reported	between	2000-2012,	with	17	

resulting	in	fatalities	(Sabah	Wildlife	Department	2010A).	Despite	this,	there	

has	been	a	severe	paucity	of	research	carried	out	on	crocodiles	in	recent	

decades.	Crocodile	research	in	Sabah	has	been	mostly	restricted	to	the	west	

coast,	predominantly	the	Klias	River,	and	has	focussed	on	development	of	

juveniles	(Anuar	et	al.	1996).		

	

Oil	palm	has	become	a	prolific	‘cash-crop’	characterised	by	high	yields	and	fruit	

value.	As	of	2012	it	was	cultivated	over	17.1	million	ha,	mostly	in	tropical	

regions.	In	Sabah,	as	of	2011,	19.3%	of	total	land	area	was	devoted	to	the	

permanent	cultivation	of	oil	palm	(Abram	et	al.	2014).	Aquatic	predators’	

interactions	with	oil	palm	are	hitherto	unknown;	in	a	time	of	agricultural	and	

anthropogenic	expansion,	understanding	this	interplay	could	be	key	to	

mediating	human-crocodile	conflict.	The	fragmented	forest-oil	palm	matrix	

found	in	Sabah	represents	an	unexamined	habitat	to	that	examined	in	previous	

studies.	With	estuarine	crocodiles	experiencing	large	scale	recovery	in	multiple	

locations	throughout	their	range,	this	current	study	has	applicability	

throughout	Asia,	Australasia,	as	well	as	on	other	large	crocodilians	throughout	

the	world	(Fukuda	et	al.	2011).		

	

While	previous	satellite	tracking	has	been	centred	around	establishing	base-line	

patterns	of	crocodilian	movements	and	ascertaining	behavioural	traits	such	as	

homing	in	translocated	crocodiles	(Read	et	al.	2007),	the	present	study	utilised,	

for	the	first	time	in	crocodilians,	remote	download	technology.	In	particular,	

this	approach	presented	the	opportunity	for	increased	tracking	duration	by	

reducing	battery	drain	as	a	limiting	factor.	The	system	does,	however,	require	

the	locating	of	individuals	periodically	(weekly	or	fortnightly)	to	download	the	

data.	This	represented	a	challenge	for	a	far-ranging	species	such	as	the	

estuarine	crocodile.	The	study	sought	to	explore,	in	more	detail,	site	use	and	

activity	patterns,	both	over	the	short-	and	long-term,	in	estuarine	crocodiles.		
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It	is	predicted	that:	

1. High	levels	of	territoriality	result	in	very	distinct	home	ranges,	as	found	

in	previous	studies	(Campbell	et	al.	2013),	manifesting	as	spatial	

exclusion	with	individuals	holding	territories	in	discrete	sections	of	

river.	

2. Large	males	possess	the	largest	territories	and	these	are	preferentially	

found	along	the	main	river,	allowing	greater	access	to	females	during	the	

mating	season.		

3. Individuals	are	most	active	at	night	but	remain	active	during	dawn	and	

dusk,	providing	the	greatest	risks	of	human-crocodile	conflict	with	these	

times	coinciding	with	increased	human	presence	at	waterways.		

	

3.2	Methods		

	

3.2.1	Study	Site	

Located	on	the	Kinabatangan	River,	on	the	east	coast	of	Sabah,	Malaysian	

Borneo,	the	Lower	Kinabatangan	Wildlife	Sanctuary	(LKWS)	(N5.415787;	

E118.034383)	consists	of	heavily	fragmented	riparian	and	semi-inundated	

forest,	dominated	by	oil	palm	monocultures	with	an	expanding	human	presence	

(Ancrenaz	et	al.	2004).		The	lowland	semi-inundated	forest	provides	ideal	

growing	conditions	for	oil	palm;	it	is	one	of	the	most	heavily	converted	areas	of	

Sabah	in	terms	of	land-use	change	(Goossens	et	al.	2005).	The	region	averages	

3,000	mm	of	rainfall	per	annum,	with	slight	seasonal	variation;	the	wetter	

months	occur	from	November	to	May,	the	drier	months	from	May	until	October.	

The	general	climate	is	consistent	with	other	tropical	regions	in	that	

temperature	remains	fairly	constant	throughout	the	year,	with	close	to	100	%	

humidity	(Röper	et	al.	2013).		

	

As	previously	described,	the	Kinabatangan	River	is	the	second	longest	river	in	

Borneo,	measuring	some	560	km	in	length;	it	is	also	the	longest	river	in	Sabah	

(Boonratana	2000).	The	study	site	was	positioned	more	than	150	km	from	the	

mouth	of	the	river,	outside	tidal	activity	range	and	ocean	salinity.	The	river	

harbours	a	resilient	population	of	estuarine	crocodiles	(C.	porosus)	that	has	
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seen	a	significant	recovery	from	an	endangered	status	at	the	time	of	its	

protection	in	1982.	Capture	locations	of	individuals	were	spread	across	

approximately	35	km	of	river	length	and	one	oxbow	lake	(see	Fig.	3.1).	As	well	

as	being	geographically	convenient,	this	river	stretch	was	chosen	for	trapping	

because	of	its	high	abundance	of	crocodiles	compared	with	other	sections	of	the	

river	(pers.	obs.).	

	

3.2.2	Satellite	Tag	Placement	and	Tracking	

Satellite	tags	were	placed	on	crocodiles	over	the	course	of	four	years	(2011-

2015),	all	within	the	LKWS.	Satellite	tags	for	placing	on	adult	crocodiles	were	

obtained	from	two	companies:	African	Wildlife	Tracking	(AWT	–	Rietondale,	

Pretoria,	South	Africa)	and	E-obs	GmbH	(Gruenwald,	Germany).		African	

Wildlife	Tracking	units	operated	using	the	Iridium	constellation,	providing	

location	fixes	and	allowing	for	two-way	data	communication.	This	enables	the	

researcher	to	send	commands	to	the	tag	even	when	it	is	already	deployed	on	

the	individual	being	monitored.	By	using	geostationary	satellites	that	orbit	the	

Earth	at	the	same	rate	as	the	planet	rotates	on	its	axis,	a	spatially-stable	system	

is	created	that	provides	24-hour	coverage	of	an	area	(Beste	1978).	Data	are	

uploaded	directly	onto	a	central	server,	and	made	secure	and	accessible	to	the	

researcher	in	both	.xls	(Excel)	and	.kml	(Google	Earth)	formats.	E-obs	tags	

operate	under	the	Global	Positioning	System	(GPS)	constellation.	In	an	attempt	

to	reduce	battery	consumption,	transmission	of	GPS	location	data	is	not	

possible	so	the	tags	must	be	located	and	the	data	retrieved	manually	using	a	

UHF	“yagi”	(named	after	co-inventor	Hidetsugu	Yagi)	directional	antenna.	Data	

are	transferred	in	binary	format	and	require	the	use	of	a	decoder	to	provide	a	

comma	delimited	text	file,	which	provides	the	time-stamped	location	data.		

	

All	tags	conformed	to	scientifically-approved	tag:total	body	weight	standards,	

with	tags	weighing	400-850	g	(<1	%	total	body	weight)	(Tuyttens	et	al.	2002;	

Theuerkauf	et	al.	2007).	To	minimise	impact	on	the	crocodile,	the	tag	consisted	

of	reinforced	moulded	plastic	crafted	in	a	streamline	shape	to	reduce	drag	

through	the	water.	The	two	unit	brands	were	fitted	with	both	satellite	

transmission	hardware	and	radio	transmission	capabilities	(VHF	and	UHF).	The	



	

	

46	

VHF	component	ensured	that	radio	tracking	would	remain	a	possibility	should	

there	be	a	loss	of	satellite	signal.	As	signal	detection	is	unobtainable	under	more	

than	a	few	centimetres	of	water,	both	VHF	and	UHF	frequencies	were	

transmitted	through	a	5	cm	vertical	antenna.	This	extra	elevation	enabled	data	

transmission	despite	shallow	submersion	of	the	tag.	Each	tag	was	powered	by	

13,000	mAh	of	battery	power;	separating	the	satellite	and	VHF	hardware	power	

supplies	protected	against	partial	tag	malfunction.	Uniform	holes,	7	mm	in	

diameter,	ran	across	the	width	of	the	tag	for	attachment.		

		

Animals	were	captured	using	a	large	steel	mesh	trap,	12	feet	(3.66	m)	in	length.	

Comprising	of	lightweight	meshing	and	a	steel	frame,	the	trap	was	portable	and	

could	be	moved	between	different	capture	locations	with	a	minimal	(four	

person)	team.	The	trigger	mechanism,	a	simple,	rope-based	system	whereby	the	

bait	was	tied	at	the	back	of	the	trap,	used	bite	tension	to	release	a	door	latch.	

Various	bait	variations	were	trialled.	Chicken	intestines	were	by	far	the	most	

effective,	although	pork	lungs,	hearts	and	muscle	were	also	used.	Successful	

trapping	relied	on	a	combination	of	bait	presentation,	scent,	quantity	and	

consistency.	In	general,	the	most	successful	baiting	preparations	were	those	

that	had	the	greatest	scent,	and	were	placed	just	above	or	barely	touching	the	

water’s	surface.	

			

Once	successfully	trapped,	the	captured	crocodile	was	moved	to	a	suitable	

location	where	it	could	with	relative	ease	–	and	safety	–	be	worked	on.	At	least	

two	jaw	ropes	were	secured	before	the	trap-door	was	opened;	a	noose	was	

threaded	over	the	jaws	with	a	stick	and	a	rag	placed	over	the	eyes	of	the	animal	

to	reduce	both	stress	and	the	possibility	of	aggressive	movements	from	the	

animal.	The	two	top	jaw	ropes	were	held	without	slack	as	the	door	was	opened;	

this	maintained	an	element	of	control	over	the	animal’s	movements.	At	this	

stage	there	is	a	possibility	that	the	captured	animal	may	‘death	roll’	(a	360°	

lateral	spin	that	helps	when	ripping	into	prey	items);	this	does	tire	the	animal,	

making	subsequent	work	far	easier.	Once	calmed,	the	jaws	were	secured	using	

either	rope	or	strong	tape.	A	capture	team	(minimum	of	three	persons,	with	an	

extra	person	added	for	every	meter	of	crocodile	over	3	m)	was	then	used	to	
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restrain	the	crocodile	while	the	jaws	were	secured;	at	this	stage	the	blindfold	

was	also	repositioned	correctly.	Larger	individuals	had	their	legs	tied	to	prevent	

further	death	rolling	and	other	violent	movements;	morphometric	

measurements	were	taken	and	the	animal	sexed.	

	

As	mentioned	(Chapter	2),	the	tag	was	placed	on	the	nuchal	plate,	an	area	

surrounded	by	six	scutes	(osteodermal	ridges	found	along	the	back	of	

crocodilians).	The	scutes	location,	as	well	as	the	smooth	attachment	surface	

provided	ideal	places	for	securing	the	tag.	Holes	were	drilled	through	the	four	

centrally	located	scutes	and	plastic-coated	steel	wire	threaded	through	the	

holes	and	the	tag	(Kay	2004C).	These	were	then	secured	at	the	top	of	the	tag	

using	clamps.	Wire	was	also	threaded	sub-dermally	underneath	the	nuchal	

plate	(where	possible);	this	secondary	attachment	is	critical	to	ensure	long-

term	attachment.	Each	attachment	was	executed	individually	ensuring	that	the	

integrity	of	other	wires	was	not	compromised	in	the	event	of	a	breakage.	In	

addition	to	wire–based	attachment,	the	base	of	the	tag	was	covered	with	an	

epoxy	resin,	providing	extra	secure	attachment.	Quick	drying	resin	(5	minute)	

ensured	that	by	crocodile	release	the	tag	was	secure.		

	

Prior	to	release,	the	captured	crocodile	was	re-positioned	to	face	the	river.	The	

legs	were	untied,	ensuring	that	they	remained	unable	to	touch	the	ground,	

before	the	mouth	constraint	was	cut	(jaws	held	tightly	shut	by	hand).	Finally,	

the	blindfold	was	removed	triggering	instinctive	behaviour	to	enter	the	water.	

Once	released,	tag	transmission	began	immediately.	All	animals	were	released	

without	harm	and	the	project	had	a	0%	fatality	rate	amongst	all	captured	

individuals.		

	

3.2.3	Statistical	Analysis	

Home	range	analyses	were	conducted	in	‘R’	version	3.0.2.	Both	minimum	

convex	polygons	(MCP)	and	Kernel	utilisation	densities	(KUD)	were	

constructed	to	enable	comparisons	with	previous	home	ranging	work.	Both	

analyses	were	carried-out	using	packages	‘adehabitatHR’	and	‘PBSmapping’.	
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Home	ranges	were	constructed	using	each	method	providing	both	total	(90%)	

and	core	(50%)	home	ranges.		

	

Local	Convex	Hull	(LoCoH)	analyses	utilised	the	packages	‘adehabitat’,	‘rgeos’,	

‘sp’,	‘gpclib’,	and	‘shapefiles’.	Variations	of	fixed	K,	fixed	R	and	adaptive	(α)	

LoCoH	algorithms	were	trialled	to	establish	which	best	represented	the	data,	as	

well	as	respect	true	landscape	barriers.	Starting	values	for	K,	R,	and	adaptive	

LoCoHs	were	estimated	following	Getz	et	al.	(2007),	whereby	k1=√n,	r1=	half	

the	nearest	neighbour	distance,	and	α1=	maximum	distance	between	any	two	

points	in	a	data	set.	From	this	starting	point,	biological	factors	were	taken	into	

account	to	give	a	‘best	estimate’.	Hulls	were	created	by	R	as	shapefiles	and	

imported	into	ArcGIS	10.0.	Isopleth	(defining	boundaries	of	a	specific	area)	

levels	were	examined	to	determine	both	total	(90%)	and	core	(50%)	home	

ranges.	In	addition,	a	99%	LoCoH	analysis	was	run	to	determine	range	limits.	

Adaptive	(α)	LoCoH	was	deemed	the	most	suitable	analysis	method	based	on	

biological	accuracy	and	boundary	plasticity.	Values	for	α	were	calculated	based	

on	straight	line	distances	between	the	two	most	outlying	points,	as	well	as	

landscape	feasibility	of	those	maps	subsequently	produced	(Getz	et	al.	2007).	

LoCoH	analyses	provided	an	insight	into	home	range	size	whilst	allowing	for	

spatial	exclusion	of	certain	regions	that	would	be	automatically	included	in	

other	analyses	(i.e.	MCP	and	kernel	analyses).	Spatial	utilisation	does,	however,	

provide	a	metaphorical	one-dimensional	picture	of	how	these	areas	are	being	

occupied;	the	inclusion	of	temporal	data	allows	for	the	identification	of	key	

areas	of	habitat	that	might	otherwise	have	been	overlooked	if	only	spatial	data	

were	considered.		

	

t-LoCoH	(Time)	analyses	provided	a	method	of	examining	the	interaction	

between	spatial	and	temporal	variations	in	home	ranges.	‘R’	packages	(‘tlocoh’,	

‘sp’,	‘rgdal’,	‘rgeos’	and	‘gpclib’)	enabled	the	examination	of	the	impact	of	time	

on	habitat	use;	it	was	possible	to	examine	visitation	rates	and	duration	of	visits	

to	certain	locations.	This	method	introduces	the	‘S’	(Time)	variable,	which	

allows	for	temporal	data	to	be	taken	into	consideration;	the	value	of	S	indicates	

the	weighting	of	spatial	and	temporal	factors	when	creating	each	individual	
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hull.	Adaptive	(α)	analysis	methods	were	again	employed,	giving	the	isopleths	

the	highest	degree	of	plasticity,	observing	physical	barriers	such	as	riverbanks.	

α-values	were	selected	by	comparing	a	number	of	different	factors	such	as	

barrier	observation,	GPS	location	density	and	“true-hole”	observation	(where	

habitat	variables	ensured	that	points	should	not	have	occurred	in	an	area).	S-

values	were	also	modified	by	defining	an	Inter-Visit	Gap	(IVG)	duration.	This	

length	of	time	ensured	that	each	visit	to	an	isopleth	was	in	fact	a	discrete	

occurrence.	Using	the	IVG	as	the	definition	of	a	separate	occurrence,	the	

number	of	visits	to	a	discrete	hull	(mnlv)	and	the	time	spent	at	the	hull	during	

these	visits	(nsv)	were	calculated.			

	

3.3	Results		

	

3.3.1	Crocodile	Tagging	and	Home	Range	Analysis	

	

To	date,	of	the	21	crocodiles	that	have	been	captured	(Table	3.1),	19	have	been	

sampled	(morphometrically	and	genetically);	two	were	released	on	capture	

because	of	their	small	size.	The	individuals	captured	had	a	mean	(±s.e)	length	of	

338.84	(±	90.03)	cm	(Table	3.1).	Of	those	19	individuals	sampled,	14	were	male	

and	five	female.	Throughout	the	course	of	three	years	of	trapping,	not	a	single	

individual	was	recaptured	despite	continued	trapping	within	known	

individuals’	ranges.	This	indicates	a	high	degree	of	post-capture	trap	avoidance.	

The	21	individuals	were	captured	in	18	discrete	locations,	along	a	35	km	stretch	

of	river	(Fig.	3.1).	Morphometric	measurements	and	tissue	samples	for	genetic	

analysis	were	collected	from	each	individual.	In	addition,	each	animal	was	

assessed	for	tagging	suitability	(with	distance	between	the	nuchal	scutes	being	

the	major	factor),	10	individuals	were	deemed	suitable	and	subsequently	

tagged	(Table	3.2).		
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Figure.	3.1	–	Discrete	capture	locations	covering	a	35	km	stretch	of	the	

Kinabatangan	River.	Capture	locations	denoted	in	green;	locations	where	

individuals	tagged	indicated	by	a	red	point.		

	
Table	3.1.	Morphometric	measurements	(cm)	collected	for	each	of	the	19	
crocodile	individual	sampled.	*	denotes	individuals	(n	=	10)	that	were	fitted	

with	a	satellite	tag.	NA	denotes	information	not	collected.		
	

ID	
Length	
(cm)	

Snout-
>Vent	(cm)	

Head	
(cm)	

Tail	
(cm)	

Hind	
Limb	
(cm)	

Fore	
Limb	
(cm)	

Head/length	
ratio	 Sex	

1*	 403	 NA	 NA	 NA	 NA	 NA	 NA	 M	

2*	 356	 NA	 NA	 NA	 NA	 NA	 NA	 M	

8	 272	 100	 40	 50	 57	 44	 6.8	 M	

9	 300	 152	 42	 156	 NA	 NA	 7.14	 F	

23*	 518	 234	 114	 284	 119	 103	 4.54	 M	

69	 332	 157	 68	 181	 63	 47	 4.88	 M	

70	 290	 134	 61	 157	 59	 44	 4.75	 M	

72*	 224	 101	 42	 122	 42	 31	 5.34	 F	

73*	 466	 226	 85	 260	 65	 84	 5.48	 M	

75	 191	 91.3	 40	 100	 36	 29	 4.74	 F	

76	 274	 134	 57	 142	 51	 39	 4.82	 M	

77	 300	 151	 64	 154	 56	 46	 4.66	 F	

78*	 389	 177	 78	 211	 69	 58	 4.98	 M	

83	 375	 177	 74	 203	 70	 57	 5.01	 M	

92*	 396	 1823	 76	 217	 76	 55	 5.19	 F	

124	 278	 140	 54	 140	 50	 43	 5.16	 M	

142*	 313	 156	 63	 160	 59	 51	 4.94	 F	

143	 298	 144	 60	 154	 58	 48	 5.01	 F	

168*	 377	 174	 75	 196	 58	 57	 5.06	 M	

169*	 422	 198	 80	 228	 77	 63	 5.31	 M	
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Satellite	units	had	a	mean	life	span	of	71.50	(±53.48)	days	(Table	3.2);	however,	

two	units	that	failed	within	several	days	following	release	heavily	skewed	this	

value.	Daily	rates	of	movement	(ROMs),	or	the	total	average	distance	moved	by	

an	individuals	per	day,	ranged	from	1,839.8	m	to	6,122.8	m	for	males,	and	from	

595.8	m	to	2,988.5	m	for	females	(Table	3.2).		

	

	

Table	3.2.	Tag	performance	summary.	Tag	ID	indicates	the	unique	ID	used	in	
subsequent	analysis.	Total	length	(TL)	was	measured	in	cm.	Tag	longevity	was	

the	total	life-span	of	the	unit	recorded	in	number	of	days	when	there	was	

successful	GPS	data	transmission.	Daily	rate	of	movement	(ROM	md-1)	displays	

the	mean	daily	distance	moved	by	each	individual.	NA	data	not	retrieved.	

	

Individual	
ID	

Tag	
ID	 TL	(cm)	 Sex	

Tag	
Longevity	
(days)	

	
Total	Distance	
Travelled	
(km)	

Daily	ROM	
(md-1)	

1	 M1	 403.0	 M	 53	 97.5	 1,839.79	

2	 M2	 356.0	 M	 43	 85.4	 1,986.60	

23	 M3	 518.0	 M	 74	 236.8	 3,200.92	

72	 F3	 224.3	 F	 5	 3.0	 595.80	

73	 M7	 466.0	 M	 2	 3.7	 1,848.5	

78	 M4	 389.6	 M	 105	 106.3	 1,932.49	

92	 F1	 396.0	 F	 213	 636.5	 2,988.45	

142	 F2	 313.0	 F	 26	 21.6	 829.65	

168	 M5	 377.0	 M	 33*	 194.0	 6,122.75	

169	 M6	 422.0	 M	 20*	 NA	 NA	

	

	

Table	3.3.	Estimates	of	home	range	size	using	two	Local	Convex	Hull	analysis	
(LoCoH)	variations,	fixed	K	and	adaptive	(α)	producing	differences	in	total	

(90%)	and	core	(50%)	home	ranges.	%	core	range	ratio	indicates	the	

percentage	of	the	total	home	range	made	up	of	core	areas.		
	

Tag	ID	
Fixed	K	–	core	
50%	(km2)	

Adaptive	α	–	
core	50%	
(km2)	

Fixed	K	–	total		
90%		(km2)	

Adaptive	α	–	
total	90%	
(km2)	

Ratio	of	
core	to	
total	

M1	 0.016	 0.037	 0.163	 0.150	 24.67	

M2	 0.090	 0.077	 0.831	 0.416	 18.51	

M3	 0.010	 0.041	 0.370	 0.383	 10.70	

M4	 0.017	 0.054	 0.303	 0.310	 17.42	

M5	 0.080	 0.120	 0.860	 0.880	 13.64	

F1	 0.133	 0.140	 1.666	 2.060	 6.80	

F2	 0.010	 0.002	 0.050	 0.019	 10.53	
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Individuals	displayed	variations	in	home	range	size	for	each	of	the	LoCoH	

methods	utilised.	Adaptive	LoCoH	analyses	produced	generally	larger	core	

home	ranges	(Table	3.3).	Total	home	ranges	(90%)	ranged	from	0.019	to	2.06	

km2	(Table	3.3);	the	level	of	overlap	between	the	core	and	total	home	ranges	

ranged	from	6.8%	to	24.67%.	Males	had	a	larger	ratio	of	core	to	total	home	

range	with	a	mean	(±s.e)	of	16.99%	(±	5.30%),	compared	to	just	8.66%	(±	

2.64%)	in	females	(Table	3.3).	This	indicates	that,	in	general,	males	were	far	

more	site-fidelic	and	territorial.	

	

Tagged	individuals	varied	in	activity	levels,	with	mean	weekly	movements	

ranging	from	5,392	to	27,710	m,	although	there	were	high	levels	of	variability	in	

movement	from	week	to	week	(Fig.	3.2).	Crocodile	F1,	which	had	the	longest	tag	

longevity	of	any	individual,	travelled	the	longest	distance	of	any	tagged	

individual,	cumulating	a	total	distance	of	636.5	km	over	the	entire	tagging	

period,	however,	its	daily	ROM	was	only	the	third	highest	amongst	all	seven	

individuals.	Mean	(±s.e)	daily	ROM	ranged	from	830	m	d-1	(±	1077	md-1)	with	

F2	and	in	excess	of	6	km	travelled	by	M5.	Males	had	a	mean	daily	ROM	of	2,666		

m	d-1	(±	935	md-1)	and	females	1,909	m	d-1	(±1,526	md-1).		

	

	

Figure.	3.2	–	Mean	weekly	movement	across	the	total	tagged	period	for	each	

individual	(mean	values	with	standard	error	bars).		

	

Each	individual	crocodile	had	higher	nocturnal	ROMs	(Fig.	3.3).	The	reasoning	

behind	increased	rate	of	movement	at	night	is	two-fold,	firstly	a	lack	of	basking	

(where	an	individuals	is	almost	exclusively	stationary)	and	secondly,	hunting	
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behaviours	are	often	associated	with	increased	movements.	Decreased	

movement	patterns	found	throughout	diurnal	hours	found,	irrespective	of	

basking	suitability,	suggests	that	both	factors	are	contributing	to	this	difference.	

The	mean	(±s.e)	diurnal	(0600-1800	local	time	(GMT+8))	and	nocturnal	(1900-

0500	local	time	(GMT+8))	hourly	ROMs	across	all	individuals	were	121	m	h-1	(±	

20.35	m	h-1)	and	163	m	h-1	(±	45.67	m	h-1),	respectively.	A	General	Linear	Model	

(GLM)	to	explain	distance	moved	(Gamma	GLM	with	a	log-link	function)	

showed	that	the	distance	moved	was	significantly	lower	by	day	than	by	night	

(F1,5754	=	142.9,	P	<	0.0001),	when	the	significant	differences	between	

individuals	in	overall	hourly	ROMs	were	controlled	for	statistically	(F6,5754	=	

90.6,	P	<	0.0001).	

	

	

Figure	3.3	–	Movements	of	seven	individuals,	separating	movement	rates	(mh-1)	

between	diurnal		(0600-1800)	and	nocturnal	(1900-0500)	hours.	Blue	bars	

indicate	diurnal	movement,	and	red	bars	nocturnal	movement.	Error	bars	

indicate	standard	error.		

	

	

Most	individuals	demonstrated	a	significant	peak	in	activity	at	dawn	(0600-

0700),	dusk	(1700-1900),	or	both.	A	noticeable	exception	to	this	pattern	was	

M2	which	exhibited	a	peak	in	activity	between	0900	and	1000	(Fig.	3.4).	This	

peak	in	activity	coincides	with	increased	primate	congregations,	especially	in	

forested	areas	(Matsuda	et	al.	2008).	Crocodile	M5	had	the	most	erratic	
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movement	patterns;	but	this	may	be	a	consequence	of	the	relatively	small	

amount	of	data	(~6	weeks)	collected.		

	

	
Figure	3.4	–	Hourly	movement	rates	(mh-1)	for	seven	crocodiles.	This	displays	

different	temporal	peaks	in	activity	for	each	of	the	individuals.	Rings	display	

100	m	increments.		

	

Activity	budgets	across	longer	time	frames	also	indicate	different	strategies	

between	individuals.	Despite	differences	in	terms	of	both	movement	levels	and	

scales	in	female	crocodiles	(Fig.	3.4),	their	spatial	behavioural	strategies	appear	

to	follow	similar	trends	(Fig.	3.5B).	Both	F1	and	F2	spent	large	periods	of	time	

residing	within	their	core	(50%)	home	range	with	only	brief	excursions	to	areas	

farther	afield.	The	scale	of	these	excursions	was,	however,	markedly	different	

between	the	two	individuals,	with	F1	moving	more	than	an	order	of	magnitude	

further	from	the	core	home	range	than	F2.	

		

Males,	on	the	other	hand,	displayed	markedly	different	strategies,	even	when	

comparing	individuals	of	similar	size	classes	(Fig.	3.5B).	Both	M1	and	M3	

appeared	to	follow	a	similar	strategy,	exhibiting	very	regular	movements	

throughout	their	home	ranges;	with	core	home	ranges	being	found	close	to	the	
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centre	of	their	territories,	the	frequency	and	scale	of	movements	are	consistent	

with	territorial	patrol.	Crocodiles	M2	and	M4	exhibited	different	strategies,	

residing	on	the	edges	of	their	territories,	each	made	one	noticeable	excursion	

into	areas	well	outside	their	usual	ranges.	Exhibiting	a	third	unique	strategy	

type,	M5	did	not	appear	to	have	a	true	core	home	range	and	areas	of	intense	

residence	were	geographically	disjunct.	This	suggests	the	possible	existence	of	

at	least	two	differing	strategies	within	estuarine	crocodiles,	site-fidelic	and	

nomadic,	as	described	in	Campbell	et	al.	(2013).	

	

Both	crocodile	M2	and	M4	made	significant	excursions	upriver	to	areas	well	

outside	of	their	usual	home	ranges.	Both	individuals	did,	however,	halt	below	a	

major,	busy	highway	bridge,	the	only	bridge	to	cross	the	Kinabatangan,	before	

returning	back	to	their	usual	home	range	(Fig.	3.6A).	One	female,	F1,	spent	the	

vast	majority	of	her	time	in	the	10	km	stretch	downriver	of	this	bridge	and	

despite	heavy	point	clustering	in	the	area	immediately	after	the	bridge,	never	

passed	underneath	it	despite	being	less	than	20	m	from	it	on	multiple	occasions	

(Fig.	3.6B).	The	other	female,	F2,	was	the	only	individual	caught	on	the	other	

side	of	the	bridge	and	also	made	no	attempt	to	pass	under	the	bridge	(Fig.	3.6C).	

The	unwillingness	to	pass	this	apparent	barrier	could	have	both	short-	and	

long-term	implications	for	the	Kinabatangan	population.		
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A)	

	
B)	

	
	

Figure	3.5	–	A.)	Distance	to	centroid	(m)	for	females	throughout	their	tagging	

duration,	displaying	similar	patterns	of	movement,	albeit	over	different	scales	

and	B)	Distance	to	centroid	(m)	for	males	throughout	their	tagging	duration,	

showing	a	range	of	movement	strategies,	varying	scales	and	levels	of	fidelity	to	

core	home	ranges.		

F1	 F2	

M1	 M2	

M3	 M4	

M5nomadic	

Site-fidelic		

Site-fidelic,	

subdominant	

Site-fidelic		
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Figure	3.6.	Unwillingness	by	four	separate	individuals	to	pass	under	bridge	with	

heavy	traffic.	Circles	indicate	discrete	locations	of	an	individual.	A)	Appears	to	

show	bridge	restricting	attempted	dispersal	of	subordinate	males.	B)	End	of	

range	of	F1,	unclear	as	to	whether	this	range	would	have	been	extended	

without	the	presence	of	the	bridge.	C)	F2’s	range	surrounded	by	human	

inhabitants	(multiple	houses	and	oil	palm)	displayed	a	very	restricted	range.		

	

Within	each	individual’s	home	range	there	were	areas	that	were	heavily	

utilised,	as	well	as	areas	that	were	never	occupied	(Fig	3.7	A-G).	Individuals	that	

occupied	overlapping	territories,	for	example	M1	and	M2,	exhibited	intra-

territory	avoidance	strategies;	M2	only	rested	in	areas	that	were	not	part	of	

M1’s	core	or	total	home	range	when	moving	between	disjointed,	geographically	

isolated	sub-portions	belonging	to	its	own,	non-main	river,	territory.	This	

appears	to	show	clear	territorial	behaviour,	as	well	as	an	established	

dominance	hierarchy.	Two	males	and	one	female	held	exclusively	main	river	

territories;	the	two	males,	measuring	4.03	m	and	3.89	m,	were,	respectively,	the	

third	and	fourth	largest	males	tagged	(Fig.	3.7	A-E).	The	smallest	male,	M2		

(3.56	m),	held	an	almost	exclusively	non-main	river	territory.	Two	males,	M3	

(5.18	m)	and	M5	(3.77	m),	held	territories	including	significant	areas	of	both	

main-river	and	tributaries.	These	behaviours	suggest	that	size	does	play	a	role	

in	territoriality	but	that	there	are	other,	less	obvious	factors	at	work,	such	as	

nomadic	versus	site-fidelic	behaviour.	Females,	by	contrast	displayed	a	very	

different	spatial	dispersal,	with	F2	appearing	to	be	constrained	by	a	large	

anthropogenic	presence	surrounding	the	crocodile’s	home	range.	No	direct	

correlation	between	surrounding	habitat	and	home	range	size	was	found,	with	

the	exception	of	the	formation	of	barriers	presented	by	human	presence	(Fig.	

3.6).	
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Figure	3.7	-	A-E	Core	(50%)	and	total	(90%)	home	ranges	for	crocodiles	M1-5.	

Home	ranges	computed	using	Local	Convex	Hull	(LoCoH)	analysis.	F	and	G	Core	

(50%)	and	total	(90%)	home	ranges	for	F1	and	F2.	Home	ranges	computed	

using	Local	Convex	Hull	(LoCoH)	analysis.	Core	home	ranges	indicated	by	black	

isopleths	and	total	home	ranges	shown	in	grey.	

	

Analyses	of	temporal-spatial	relationships	(t-LoCoH)	for	each	of	the	individuals	

displayed	marked	differences	in	home	range	utilisation.		Areas	deemed	to	be	of	
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high	biological	importance	were	those	that	included	both	medium-high	levels	of	

visitation	and	medium-high	durations	spent	in	those	locations.	These	locations	

were	indicated	by	yellow	and	orange	locations	throughout	(Fig	3.8A).	

Additional	points	of	interest	are	those	areas	with	high	levels	of	either	visitation	

(nsv	–	number	of	separate	visitations	to	an	area)	or	duration	(mnlv	–	duration	

spent	in	a	particular	area).	Across	all	individuals,	areas	of	high	duration	

(characterised	as	green	hulls	(Fig	3.8A	and	B))	tended	to	be	located	either	on	

the	outskirts	of	an	individual’s	(M1,	M4,	M5,	F1	and	F2)	home	range	or	in	areas	

(M3)	that	were	seldom	visited.	Areas	of	concentrated	high	visitation	often	

represented	the	core	of	that	individual’s	home	range.		The	levels	of	re-visitation	

between	individuals	was	highly	variable,	indicating	that	even	within	small	

home	ranges	certain	individuals	were	far	more	site-fidelic	than	others.	

Crocodile	M2,	for	example,	despite	occupying	a	small	location,	only	visited	one	

discrete	location	more	than	three	times	throughout	the	entirety	of	his	tagging	

period.	This	is	in	stark	contrast	to	M4,	who	had	a	similar-sized	home	range,	but	

up	to	19	re-visitations	to	discrete	locations.	When	examined	in	terms	of	re-

visitations	per	day	throughout	the	tagging	period,	M2	had	a	revisitation	

frequency	of	0.09	at	his	most	‘favoured’	location,	compared	to	0.18	for	M4.	With	

this	rate	of	re-visitation,	M4	used	seven	discrete	locations	compared	to	just	one	

for	M2.		

	

Durations	spent	at	these	discrete	locations	were	also	highly	variable	and	

seemed	to	be	characteristic	of	behavioural	differences	displayed	by	individuals.	

F2,	whose	home	range	was	constrained	to	a	very	small	stretch	of	main	river	

spent	in	excess	of	90	hours	in	a	single	location.	This	figure	is	nine-fold	times	

greater	than	both	M3	and	M4,	both	of	whom	held	substantial	main	river	

territories.	
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Figure	3.8	A(M1-M3)-	Each	row	of	figures	display	t-LoCoH	(fine-scale	spatial-temporal	analysis)	for	an	individual	crocodile.	Upper	row	
displays	histogram	of	model	results,	bottom	row	the	spatial	representation	of	the	model.	Number	of	unique	visitations	to	a	hull	plotted	
against	the	amount	of	time	spent	(mnlv	–	hours)	in	the	same	hull	on	the	same	visit.	Visitation	was	described	by	any	discrete	occurrence	
separated	by	at	least	48	hours.	Hulls	with	high	visitation	rates	and	long	durations	are	deemed	those	with	the	highest	level	of	biological	
relevance,	providing	either	biological	resources	or	important	territorial	landmarks.	Points	with	identical	or	very	similar	duration	and	
visitation	were	“jiggled”	to	display	point	density	more	clearly.	Colour	ramps	are	intended	to	more	clearly	indicate	areas	of	interest,	i.e.	
locations	indicated	often	for	long	periods.		

M1	 M2	 M3	
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Figure	3.8	B(M4-F2)-	Each	row	of	figures	display	t-LoCoH	(fine-scale	spatial-temporal	analysis)	for	an	individual	crocodile.	Top	row	
displays	histogram	of	model	results,	bottom	row	to	the	spatial	representation	of	the	model.	Number	of	unique	visitations	to	a	hull	
plotted	against	the	amount	of	time	spent	(mnlv	–	hours)	in	the	same	hull	on	the	same	visit.	Visitation	was	described	by	any	discrete	
occurrence	separated	by	at	least	48	hours.	Hulls	with	high	visitation	rates	and	long	durations	are	deemed	those	with	the	highest	level	of	
biological	relevance,	providing	either	biological	resources	or	important	territorial	landmarks.	Points	with	identical	or	very	similar	
duration	and	visitation	were	“jiggled”	to	display	point	density	more	clearly.	Colour	ramps	are	intended	to	more	clearly	indicate	areas	of	
interest,	i.e.	locations	indicated	often	for	long	periods.	
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3.4	Discussion		

	

This	study	represents	an	initial	insight	into	the	movement	patterns	of	

crocodilians	in	Borneo.	The	rapidly	changing	environment	in	Sabah,	and	the	

fragmented	habitat	found	in	the	LKWS,	potentially	provides	an	applicable	

model	for	forest	ecosystems	worldwide,	shedding	light	on	behavioural	

responses	of	crocodiles	to	human-modified	landscapes.		

	

The	LKWS’s	strong	and	stable	crocodile	population	consists	of	a	large	

density	of	breeding	sized	adults;	this	is	evident	from	the	number	of	

individuals	captured	along	a	relatively	short	stretch	of	the	river.	Crocodiles	

were	only	ever	captured	on	one	occasion,	with	not	a	single	recapture	of	any	

trap-caught	individual	throughout	the	study	period	(2011-2015).	This	was	

despite	multiple	trapping	events	in	the	same	locations,	and	within	the	

known	home	ranges	of	several	previously	caught	crocodiles.	This	suggests	

that	crocodile	individuals	in	the	Kinabatangan	become	extremely	trap-shy	

once	captured.	This	wariness	of	humans	could	be	one	of	the	reasons	that	the	

river	still	harbours	relatively	large	numbers	of	adults,	with	body	length	in	

excess	of	5	m,	despite	the	heavy	hunting	activity	that	occurred	prior	to	the	

1980s.	Several	of	the	crocodiles	that	were	captured	in	the	current	study	

exhibited	potential	human-conflict	wounds;	these	ranged	from	potential	

gunshot	wounds	to	propeller	injuries.		

	

Individuals’	movements	varied	greatly,	displaying	similar	male	behavioural	

strategies	to	those	described	by	Campbell	et	al.	(2013),	with	males	being	of	

either	a	site-fidelic	(M1-4)	or	nomadic	(M5)	‘type’.	These	authors,	however,	

reported	far	lower	ROMs	for	females	than	found	in	the	current	study	which	

suggests	that	females	do	employ	differing	behavioural	strategies,	with	one	

female	(F2)	behaving	in	a	similar	fashion	to	previous	studies,	but	F1	

employing	a	distinctive	nomadic	strategy.	The	daily	ROMs	of	males	had	a	

mean	(±s.e)	of	2.66	kmd-1	(±	1.01	kmd-1)	per	day,	this	movement	being	

larger	than	the	mean	territory	size	of	the	individuals	studied.	This	level	of	

movement	within	a	territory	suggests	that	there	is	significant	patrolling	of	
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territorial	borders,	and	this	is	likely	to	be	as	a	deterrent	to	encroachment	by	

other	males.	This	supports	the	hypothesis	that	individuals	are	defending	

discrete	sections	of	river,	however,	there	is	inconclusive	evidence	with	

regards	to	the	differences	in	ROM	between	males	and	females.	The	

limitations	of	sample	size	mean	that	these	data	should	be	treated	as	a	

preliminary	look	at	crocodilian	behaviour	in	the	Kinabatangan,	however	

with	large	frequencies	of	data	points	collected	for	each	individual	the	study	

provides	a	step	forward	in	behavioural	understanding.			

	

All	individuals	were	more	active	at	night	than	during	the	day,	and	most	

exhibited	peak	activity	at	dawn,	dusk,	or	both,	this	supports	Hypothesis	4.	

This	movement	pattern	could	be	explained	by	the	initiation	and	cessation	of	

hunting	or	scavenging	behaviours	most	associated	with	nocturnal	predators	

(Martin,	2007).	Times	of	increased	activity	could	bring	the	crocodiles	into	

more	frequent	human	contact;	given	the	motive	behind	this	increased	

activity,	the	initiation	of	hunting	behaviour,	coupled	with	the	large	number	

of	people	who	congregate	at	the	water	in	the	early	evening,	the	period	1700-

1900	represents	the	time	with	the	greatest	risk	of	human	attack.				

	

Examining	the	distance	to	centroids	of	each	of	the	individual’s	compounds	

the	concept	that	different	behavioural	strategies	are	found	within	

crocodilian	populations,	and	that	those	behavioural	traits	are	not	

necessarily	linked	to	the	overall	length	of	an	individual.	Crocodile	M5,	the	

only	nomadic	male	monitored	during	the	study,	was	the	fourth	largest	of	the	

seven	males	tagged	in	the	study.	This	suggests	that	the	trigger	for	nomadic	

behaviour	may	be	more	closely	linked	to	an	individual’s	“neighbours”,	and	

how	large	and	aggressive	the	surrounding	males	are.	Crocodile	M5,	for	

example,	bordered	the	territory	of	M3,	the	largest	of	all	of	the	individuals,	

and	seemed	to	share	a	spatial	overlap	in	home	range	with	M7,	the	most	

aggressive	individual	in	the	area.	This	crocodile	is	known	to	have	challenged	

and	even	attempted	to	flip	fishing	boats	(pers.	comm).	Despite	the	presence	

of	nomadic	behaviour,	this	present	study	highlights	the	frequency	of	highly	

territorial	behaviour	that	not	only	formed	spatially	exclusive	sections	of	
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main	river,	as	predicted,	but	also	resulted	in	isolation	to	flooded	forest	and	

oxbow	lakes	(M2).	This	suggests	that,	in	line	with	Hypothesis	3,	larger	males	

are	preferentially	selecting	stretches	of	main	river	as	territories.		

	

Four	of	the	five	males	occupied	distinct	home	ranges.	Of	these,	the	largest	

three	all	held	main	river	territories	that	were	both	spatially-	and	

temporally-exclusive.	The	indication	that	main	river	territories	provide	an	

evolutionary	advantage	is	compounded	by	the	fact	that	one	(F1)	of	the	two	

females	tagged	passed	through	each	of	the	territories	of	those	males	holding	

a	main	river	territory.	This	appears	to	contradict	the	findings	of	Kay	

(2004A)	who	showed	males	occupying	ranges	for	a	period	of	days	or	weeks,	

before	moving	on	to	find	a	new	home	range.	This	could	be	a	result	of	

barriers	preventing	movements	and	dispersal	of	individuals.	Whilst	it	was	

found	that	the	main	river	clearly	represented	desirable	territories,	the	size	

of	these	territories	seemed	not	to	be	affected	by	the	presence	of	either	forest	

or	oil	palm	plantation	bank	habitat.	Instead	it	seemed	that	the	presence	of	

human	activity	itself	was	the	driving	factor	behind	territory	size,	location	

and	allocation.		

	

Despite	not	providing	a	physical	barrier,	the	large	bridge	located	at	the	local	

village	(Fig.	3.6)	appeared	to	provide	an	impassable	barrier	to	four	

individuals,	three	tagged	downriver	and	one	upriver.	There	are	two	

potential	causes	of	this	reluctance	to	cross:	firstly,	as	the	only	bridge	

crossing	the	entire	Kinabatangan	River,	there	is	a	heavy	continuous	traffic	

load	with	a	large	number	of	trucks.	This	activity	produces	considerable	

volumes	of	noise,	possibly	passed	through	concrete	columns	underneath	the	

water.	Secondly,	the	bridge	is	situated	at	a	local	village	with	more	than	20	

boats	moored	under	the	bridge	itself.	While	human	activity	is	mostly	

diurnal,	the	presence	of	lights	and	village-associated	noise	are	perennial.	

Most	likely,	combinations	of	these	two	factors	are	preventing	any	individual	

from	dispersing	either	up-	or	downriver	(depending	on	tagging	site)	from	

their	current	home	ranges.	It	is	also	worth	noting	that	the	only	individuals	

found	on	the	‘up-river’	side	of	the	bridge	had	a	highly	restricted	home	range	
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surrounded	by	houses	and	high	levels	of	boat	traffic.	This	type	of	

anthropogenic	barrier	has	the	potential	to	increase	conflict	situations	as	

growing	populations	are	prevented	from	dispersing,	causing	overcrowding	

and	forcing	individuals	into	sub-optimal	territories.	The	majority	of	barriers	

identified	in	other	crocodilian	studies,	for	example	bars	and	rapids,	are	

those	that	cause	a	physical	impediment	to	movement	and	dispersal	activity	

(Kay	2004;	Letnic	&	Connors	2006;	Nair	et	al.	2012).	The	discovery	of	non-

physical	barriers	has	important	implications	for	crocodile	management,	not	

only	in	terms	of	the	genetic	health	of	a	population,	but	also	when	planning	

and	implementing	crocodile	exclusion	zones.		

	

The	Kinabatangan	River,	and	in	particular	the	study	region,	is	heavily	

utilised	by	fishermen	who	regularly	net	across	the	entire	river	(pers.	obs.);	

this	activity	does	not	appear	to	limit	crocodile	movement.	Crocodile	killings	

perpetrated	by	humans	appear	to	be	rare	in	the	area	with	only	one	death	

directly	linked	to	fishing	activities	noted	during	the	study	period.	In	this	

instance,	a	breeding	age	female	was	found	drowned	after	becoming	

entangled	in	a	fishing	net	(pers.	obs.).		During	2015,	however,	at	least	three	

crocodile	carcasses	have	been	found	with	potential	‘bullet	wounds’	(pers.	

comm	Sabah	Wildlife	Department);	this	suggests	that	with	rising	attack	

numbers	that	conflict	is	becoming	a	far	more	decisive	issue.		

	

t-LoCoH	analyses	provided	a	new	perspective	on	crocodilian	movement	

patterns.	The	indication	of	temporal	home	range	utilisation	is	a	novel	

finding.	With	each	of	the	individuals	assessed,	areas	of	high	biological	

importance	consisted	of	core	home	ranges.	This	shows	that	only	a	fraction	of	

any	given	home	range	is	heavily	utilised	and	that	individuals	tend	to	select	

areas	preferentially.	Individuals	spent	considerable	time	in	these	areas,	and	

also	returned	to	the	area	many	times	during	the	tagging	period.	When	

looking	at	visitation	and	duration	of	stays	individually,	areas	of	high	

visitation	were	generally	found	throughout	the	home	range,	however,	the	

levels	of	re-visitation	were	indicative	of	differing	behavioural	strategies	

displayed	in	both	males	and	females.	The	fact	that	many	of	the	crocodiles	re-
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visited	a	large	number	of	discrete	locations	throughout	their	entire	home	

range	is	indicative	of	home	range	patrolling	and	territoriality.	Areas	of	high	

duration	were	often	found	in	areas	spatially	separated	from	the	majority	of	

an	individual’s	home	range,	providing	the	animal	with	time	to	recover	from	

swimming	distances	they	were	not	accustomed	to.		

	

This	study	represents	a	‘first	look’	at	how	fragmented	habitats	are	affecting	

movement	and	home	ranging	strategies	of	adult	crocodilians.	The	fact	that	

direct	human	disturbance	appears	to	be	having	the	greatest	impact	on	

ranging	and	dispersal	behaviours	implies	active	avoidance	on	the	part	of	the	

crocodiles.	This	has	wide	reaching	repercussions	when	considering	human-

crocodile	conflict	and	suggests	that	there	is	the	potential	for	an	escalation	of	

the	situation	should	further	anthropogenic	expansion	further	divide	and	

restrict	growing	crocodile	populations.	It	is	worth	noting	that	the	

Kinabatangan	still	retains	relatively	large	quantities	of	forest	compared	to	

other	oil	palm	dominated	rivers	such	as	those	found	in	northern	Sabah.	A	

lack	of	attack	reporting,	especially	in	oil	palm	dominated	regions,	may	be	

masking	a	situation	far	wore	than	is	currently	recognised.	Crocodiles	are	

hugely	resilient	organisms	having	survived	may	changes	in	both	climate	and	

landscape,	however,	the	rate	of	anthropogenic	expansion	currently	

happening	worldwide	has	thrust	species	into	a	conflict	that	can	potentially	

be	highly	deleterious	for	this	important	aquatic	predator.			
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Chapter	4	–	Use	of	Drone	Technology	as	a	Tool	for	Behavioural	
Research:	a	case	study	of	crocodilian	nesting	
Adaptation	of	an	article	published	in	Herpetological	Conservation	and	Biology*.		

	

4.1	Introduction	

Accurate	behavioural	monitoring	of	any	species	is	crucial	in	the	drafting	of	

conservation	and	management	plans	(Kleiman	et	al.	1986).	To	obtain	such	

data,	a	wide	array	of	methodologies	have	been	conceived	and	implemented,	

each	associated	with	its	own	set	of	intrinsic	limitations.	Direct	observations,	

while	effective,	may	only	capture	a	fraction	of	behaviours	with	an	associated	

ongoing	risk	of	behavioural	modification	through	human	presence	(Bejder	

et	al.	2009).	The	use	of	remote,	non-invasive,	behavioural	monitoring	

provides	the	key	to	observing	natural	behaviours.	Technologies,	such	as	

camera	trapping,	can	provide	insights	into	some	natural	behaviour,	but	are	

restricted	to	discrete	locations.	The	ability	to	track	animals	remotely	and	

continuously	with	Global	Positioning	System	(GPS)	technologies	has	led	to	

major	advances	in	studies	of	wildlife	behaviour	and	habitat	usage,	while	also	

providing	more	accurate	home	range	estimates	(Seegar	et	al.	1996;	

Hebblewhite	&	Haydon	2010).	Despite	these	advances,	the	monitoring	of	

more	cryptic,	fine	scale	behaviours	remains	a	challenge.		

	

The	use	of	unmanned	aerial	vehicles	(UAVs),	or	“drones”,	is	a	burgeoning	

facet	of	conservation	biology	with	the	potential	to	revolutionize	the	way	in	

which	animals	and	habitats	are	monitored.	Drone	technology	in	itself	is	not	

a	new	development,	with	military	applications	having	expanded	rapidly	

over	the	past	decade	(Vogel	2010).	These	tools	have,	however,	always	been	

too	expensive	for	scientific	application.	The	development	of	low-cost,	open-

sourced	alternatives	has	brought	the	technology	within	financial	reach	of	

researchers	and	conservationists;	low-cost	aircraft	can	be	purchased	and		

	

	
*Evans,	L.	J.,	Jones,	T.	H.,	Pang,	K.,	Evans,	M.	N.,	Saimin,	S.,	&	Goossens,	B.	(2015).	Use	of	drone	technology	as	a	tool	

for	behavioral	research:	a	case	study	of	crocodilian	nesting.	Herpetological	Conservation	and	Biology,	10(1),	90–98.	
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equipped	for	as	little	as	£1,500	(~$2,000	US)	(Koh	&	Wich	2012).	The	open-

sourced	nature	of	the	technology,	coupled	with	the	large	online	community	

of	hobbyists,	as	well	as	professionals,	could	lead	to	drone	use	being	a	viable	

staple	of	conservation	biology.	

	

One	example	of	a	taxon	whose	biology	and	ecology	can	be	much	better	

investigated	and	understood	by	applying	drone	technology	is	crocodilians.	

This	is	particularly	so	in	the	detection	and	mapping	of	crocodile	nesting	

behaviour.	Until	recently,	crocodilian	nest	studies	focusing	on	location	and	

distribution	have	used	helicopter	and	airboat	surveys	both	for	identification	

and	validation	of	nest	sites	(Magnusson	et	al.	1978;	Rice	et	al.	2000;	Harvey	

&	Hill	2003).	These	techniques	are	financially	costly,	despite	being	more	

feasible	for	more	remote	regions.	Walked	surveys	have,	until	now,	often	

been	used	in	conjunction	with	helicopter	surveys	to	find	and	validate	

crocodile	nesting	habits	(Harvey	&	Hill	2003).			

	

Estuarine	crocodiles,	Crocodylus	porosus,	are	the	largest	extant	crocodilians,	

with	individuals	reaching	in	excess	of	6	m	in	length	(Britton	et	al.	2012).	

Nesting	behaviour	in	C.	porosus	involves	females	building	mounds	of	both	

vegetation	and	mud	(Webb	et	al.	1977).	Nests	are	usually	built	within	5–10	

m	of	permanent	water	sources,	however,	they	can	be	as	much	as	100	m	from	

deep	water	(Webb	et	al.	1977;	Harvey	&	Hill	2003).	Work	on	C.	porosus	

nesting	has	been	largely	confined	to	Australia,	with	a	paucity	of	studies	in	

South	East	Asia.		

	

As	well	as	being	highly	labour-intensive,	there	are	numerous	challenges	

involved	in	the	surveying	of	C.	porosus	nests	in	mixed	tropical	habitats.	

Semi-inundated	and	swamp	forests,	with	tall	grass,	pose	logistical	

challenges	to	nest	detection	efforts,	as	well	as	being	potentially	dangerous	

obstacles	for	surveyors.	Drone	technology	provides	a	logical	next	step	in	

nesting	monitoring	methodology,	due	to	relatively	low	initial	cost,	

repeatability,	and	flexibility.	In	this	study,	the	potential	use	of	such	
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applications	is	described	on	C.	porosus	in	the	Lower	Kinabatangan	Wildlife	

Sanctuary	(LKWS),	Sabah,	Malaysia.			

	

4.2		Materials	and	Methods	

Flights	were	carried	out	using	a	fixed-wing	drone	(Bormatec-MAJA:	

Bormatec,	Mooswiesen,	Ravensburg,	Germany),	with	a	wingspan	of	1.8	m	

and	a	weight	of	3	kg,	comprised	largely	of	expanded	polypropylene.	The	

aircraft	was	capable	of	bearing	a	payload	of	about	500	g.	This	allowed	the	

addition	of	camera	equipment	(250	g),	as	well	as	maximizing	the	flight	time	

on	a	single	battery	(3S	4000	mAh).	The	aircraft	was	able	to	make	single	

flights	of	23–25	km,	or	approximately	250	ha,	if	flown	in	grid	formation,	

with	flights	of	this	distance	taking	between	30	and	40	min	to	complete	(Fig.	

4.1).	This	range	could	have	been	extended	to	a	maximum	of	50-70	km	with	

the	use	of	larger	3S	10000	mAh	batteries,	but	this	would	have	resulted	in	a	

reduction	in	payload	capability.			

	

Camera	choice	(Model	S100,	Canon,	Ota,	Tokyo,	Japan)	for	use	during	flights	

was	based	on	both	cost	and	performance	capabilities,	the	unit	was	

customised	with	a	firmware	(a	set	of	instructions	stored	in	ROM	Read	Only	

Memory)	enhancement	created	using	a	Canon	Hack	Development	Kit	

(CHDK),	which	is	stored	in	a	camera	memory	card.	A	special	inter-volameter	

script	was	developed	by	Conservation	Drones	

(www.conservationdrones.org)	allowing	the	camera	to	take	pictures	at	

regular	intervals.	To	provide	sufficient	picture	overlap	of	about	50%,	shutter	

intervals	were	calculated	by	evaluating	drone	airspeed	and	altitude	(Koh	

and	Wich	2012).		

	

Flights	were	planned	and	uploaded	through	the	Auto	Pilot	Module	APM	

mission	planner,	an	open	sourced	ground	control	station	software,	in	

concordance	with	methods	described	by	Koh	and	Wich	(Fig.	4.1).	The	

transects	flown	were	170	m	apart,	this	distance	was	based	on	the	altitude	

and	the	resolution	of	the	camera.	As	the	flights	were	flown	at	300	m,	the	
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firmware	was	instructed	to	take	a	single	picture	every	3	sec.		This	resulted	

in	a	picture	overlap	in	excess	of	60%.	

	

	
Figure	4.1.	Planning	missions	using	Auto	Pilot	Module	(APM)	planning	
software.	Flights	were	flown	in	a	grid	formation	with	transects	separated	by	
a	predetermined	distance	to	allow	sufficient	overlap	for	stitching	(joining	of	
images	together	into	composite).	Transect	separation	was	170	m.	The	image	
displays	the	actual	route	taken	by	the	unmanned	aerial	vehicle	(UAV)	during	
a	single	flight	covering	around	300	ha.			
	

The	drone	was	launched	manually	and	it	flew	via	remote	control	until	

reaching	an	altitude	of	about	100	m.	Once	this	height	was	reached,	auto-

pilot	was	engaged	and	controlled	via	the	mission	planner,	which	ordered	the	

drone	to	follow	predefined	coordinates	at	the	cruising	altitude.	Average	

drone	airspeeds	in	a	range	between		40–50	kmph	were	recorded,	but	this	

was	heavily	influenced	by	wind	speed	and	direction.		

	

Flying	at	300	m	allowed	maximum	landscape	coverage,	as	well	as	ensuring	

good	clearance	above	all	tree	lines.	Also,	at	this	altitude,	picture	resolution	

averaged	8–9	cm	per	pixel.	This	allowed	easy	detection	of	any	potential	

crocodile	nests,	which	measure	1–2	m	in	diameter	(Webb	et	al.	1977).	

Greater	resolutions	of	pictures	could	be	achieved,	but	to	attain	this	would	

require	flying	at	a	lower	altitude.	When	flown	at	200	m,	flights	yielded	a	

resolution	of	around	5–6	cm	per	pixel.	This	resulted	in	a	reduction	in	aerial	
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coverage	per	flight	of	around	26%,	given	the	same	payload	and	battery	

capabilities.	This	method	can	be	used,	however,	when	images	are	not	

sufficiently	clear	to	identify	nesting	mounds	effectively.		

	

Missions	were	piloted	between	14	and	18	October	2013,	Sabah’s	wet	season,	

and	during	the	nesting	season	for	the	region’s	crocodiles.	Flights	were	flown	

in	four	key,	predetermined	areas	based	on	direct	observations	of	both	

crocodile	juvenile	prevalence	and	suitable	habitat.	The	survey	areas	covered	

two	of	the	largest	tributaries	along	the	Kinabatangan.	Both	tributaries	are	

sites	of	human	fatalities	from	crocodile	attacks	within	the	last	two	years	and	

are	subject	to	direct	encroachment	from	agriculture.	Two	additional	areas	

were	selected	as	they	were	characterized	by	large	areas	of	swamp-land	and	

drying,	old	oxbow	lakes,	both	excellent	crocodile	nesting	habitat.	Flight	

missions	were	timed	to	occur	at	different	times	to	establish	which	daylight	

conditions	resulted	in	the	best	nest	detection	and	image	stitching	capability.	

Flights	were	conducted	in	early	morning	(0700–0900),	late	morning	(0900–

1100),	or	afternoon	(1400–1600).	Once	retrieved,	images	were	stitched	

together	using	program	Pix4D	(1015	Lausanne,	Switzerland).	The	minimum	

system	requirements	for	this	program	include	an	i7	quad	core	processor	

along	with	32	GB	RAM	Random	Access	Memory	and	an	SSD	Solid	State	hard	

drive.				

	

The	study	site	consisted	of	a	stretch	of	the	LKWS	encompassing	Lots	5	

(N5.423742°,	E118.055597°),	6	(N	5.397137°,	E	118.073509°)	and	7	(N	

5.414195°,	E	117.972°;	Fig.	4.2).	This	region	is	comprised	of	a	forest-oil	

palm	matrix,	located	some	150	km	from	the	Sulu	Sea	in	an	area	with	a	large	

and	growing	crocodile	population	(Luke	Evans,	unpub.	data).	The	nesting	of	

crocodiles	in	the	area	has	not	been	studied	in	detail,	although	several	

unsuccessful	helicopter	surveys	have	been	conducted	within	the	

Kinabatangan	(Jibius	Dausip,	pers.		comm).	The	use	of	drone	technology	

allowed	for	the	specific	targeting	of	areas	deemed	suitable	for	assessment	

without	the	need	to	fly	over	vast	tracks	of	unsuitable	habitat.			
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Figure	4.2.	The	study	site	situated	in	the	Lower	Kinabatangan	Wildlife	
Sanctuary	(LKWS),	located	within	the	Malaysian	state	of	Sabah.	The	survey	
area	comprised	parts	of	Lots	5,	6,	and	7	
	

4.3	Results	

Five	preliminary	flights	were	conducted,	assessing	areas	ranging	between	

200	and	390	ha	in	area,	resulting	in	a	total	survey	area	of	1,550	ha.	Three	

missions	were	flown	at	either	0700–0900	or	0900–1100,	and	an	additional	

two	at	1400–1600.	Images	captured	while	flying	in	the	0700–0900	period	

provided	the	clearest	stitched	collages	(Fig.	4.3A),	whereas	images	flown	

1000–1500	were	more	fragmented	during	the	stitching	process	(Fig.	4.3B).			
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Figure	4.3.	A)	Stitched	image	of	280	ha	fight	flown	at	0700	local	time	
GMT+8,	where	the	stitching	quality	was	of	high.	B)	Stitched	image	of	390	ha	
flight	flown	at	1400	local	time	GMT	+8,	where	the	stitching	quality	was	of	
low.			
	

Nests	were	identified	by	searching	stitched	images	and	zooming	in	on	

specific	areas	of	interest	identified	from	the	original	images	(Figs.	4.4A	and	

4.4B).	Following	the	flight	missions,	three	potential	nests	were	identified.		

All	potential	nests	were	located	in	the	drying	remnants	of	old	oxbow	lakes.		

Following	detection,	we	sought	to	validate	the	nest	site	on	foot,	with	care	

taken	to	ensure	no	female	presence	(Fig.	4.4C).	Of	these	three,	two	were	

confirmed	as	active	nest	sites.	Both	were	situated	in	seasonally	flooded	

areas	and	were	within	150	m	of	a	permanent	waterway.	One	confirmed	nest	

was	located	just	150	m	from	a	large	plantation,	within	audible	range	of	the	

A	

B	
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plantation.	The	third,	potential,	nest	was	located	but	found	to	be	an	area	of	

dead	grass.		

	
Figure	4.4		A)	The	raw	aerial	image	of	a	potential	nest	(red	outline)	located	
in	Koyah	tributary,	one	of	the	largest	tributaries	of	the	Kinabatangan	River.	
B)	Zoomed	image	displaying	potential	nest.	C)	Confirmed	nest	found	in	
Koyah	tributary.	The	central	mound	is	surrounded	by	marshy	wallows	used	
by	a	female.		The	mound	measured	60	cm	in	height	and	1.5	m	in	diameter.			
	

4.4	Discussion	

	

The	study	confirms	that	drone	technology	can	be	applied	to	surveys	of	

crocodile	nesting.	Given	this,	drone	surveys	have	the	potential	to	become	

the	standard	mechanism	for	crocodile	nest	detection.	The	presence	of	

crocodile	nests	in	areas	of	low	to	medium	levels	of	human	disturbance	were	
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confirmed,	with	one	of	the	two	confirmed	nests	being	identified	in	close	

proximity	to	an	oil	palm	plantation.	The	study	did	not	set	out	to	assess	

detection	rates.	The	financial	benefits	associated	with	this	approach	coupled	

with	the	ease	of	repeatability	can	ensure	enhanced	understanding	of	

crocodile	nesting	ecology	and	lead	to	long-term	monitoring	efforts,	even	in	

remote	locations.	Beyond	this,	the	technology	could	also	have	considerable	

impact	within	the	field	of	behavioural	ecology.	It	must,	however,	be	

emphasized	that	scientific	applications	of	drone	technology	are	still	in	their	

infancy.	Further	improvements	in	flight	time	and	duration	over	the	coming	

decade	will	ensure	that	many	other	applications	become	feasible.	During	

this	study,	for	example,	it	was	possible	to	detect	a	recent	(about	one	month	

old)	5.51	ha	forest	clearance	situated	directly	adjacent	to	the	LKWS	

boundary.	While	legal,	such	encroaching	conversions	need	monitoring	to	

ensure	wildlife	sanctuary	boundaries	are	not	breached	and	to	maintain	

remaining	forest	cover	in	an	already	highly	fragmented	region.	This	type	of	

monitoring	has	the	potential	to	alter	completely	the	way	in	which	protected	

areas	are	managed,	with	real-time	boundary	security	a	true	barrier	to	illegal	

logging.	Close	monitoring	such	as	this	can	also	aid	in	the	understanding	of	

habitat	requirements	of	many	species,	thus	enabling	better	resource	

management	to	sustain	the	remaining	fauna	of	the	region.			

	

One	confirmed	nest,	located	roughly	150	m	from	the	edge	of	a	large	

plantation,	was	found	in	a	strip	of	forest	currently	outside	the	LKWS	

boundaries.	This,	coupled	with	its	close	proximity	to	an	existing	plantation,	

makes	the	area	highly	susceptible	to	habitat	conversion.	The	discovery	of	its	

use	as	active	crocodile	nesting	grounds	could	lead	to	its	subsequent	

protection.	Gaining	a	change	in	land	protection	status	can	be	incredibly	

challenging;	however,	the	presence	of	important	nesting	grounds	of	any	

protected	species	can	provide	the	impetus	needed	to	convince	authorities	

that	the	status	change	is	warranted.			

	

Increases	in	drone	reliability,	flight	speed,	and	duration	have	diversified	the	

applicability	of	UAVs.	The	creation	of	real-time	landscape	maps,	the	
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detection	of	encroachment	and	breaching	of	protected	areas,	as	well	as	

aerial	anti-poaching	patrols	have	all	become	possible	as	a	direct	

consequence	of	recent	advances	in	battery	capabilities	and	motor	

performance.	With	developing	anti-poaching	approaches	a	topic	of	major	

conservation	importance,	the	potential	of	drone	technology	to	contribute	to	

both	the	monitoring	and	protection	of	both	highly	endangered	animals	and	

their	habitat	is	a	major	possibility.		

	

The	ability	of	drone	technology	to	aid	in	multiple	aspects	of	both	applied	

conservation	and	active	research	have	led	to	its	burgeoning	prominence	in	

21st	Century	science	(Estrada	&	Butler	2012;	Koh	&	Wich	2012).	This	trend	

is	likely	to	continue	with	rapidly	improving	hardware	and	firmware.		

Despite	this	rapid	improvement,	many	applications	do,	however,	remain	

unfeasible	given	current	technological	limitations.	Factors	such	as	

component	weight	versus	output	is	one	area	that	could	increase	both	flight	

duration	and	airspeed.	Additionally,	overall	reliability	of	the	major	

components	needs	to	be	improved	to	give	the	operator	confidence	when	

flying	long-range	missions.	Finally,	these	improvements	must	not	result	in	

price	increases	that	take	the	system	beyond	the	financial	reach	of	research	

and	conservation	organizations.	Future	research	should	focus	on	

quantifying	nest	detection	probability	during	drone	surveys,	this	will	

enhance	its	use	both	for	research	and	management	purposes.	This	is	one	of	

the	aims	of	Chapter	5	and	is	addressed	therein.			
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Chapter	5	–	Spatial	Ecology	of	Crocodylus	porosus	Nesting	in	a	

Fragmented	Habitat.	

	

5.1	Introduction		

	

Crocodiles	are	a	cryptic	guild	of	animals;	it	is	probably	this,	their	historic	

association	with	human	settlements	(e.g.	cave	paintings,	Mayan	drawings	

(Werness	2006)),	as	well	as	their	secretive	and	poorly-understood	life	

histories	that	has	made	them	the	‘stuff’	of	many	myths	and	legends	

(Brazaitis	et	al.	2009;	Caldicott	et	al.	2005).	Many	tribal	people	hold	them	in	

high	esteem;	belief	in	the	spiritual,	and	even	supernatural,	powers	of	

crocodiles	are	particularly	prevalent	with	the	Iban	people	of	northern	

Borneo.	They	hold	that	no	crocodile	should	be	killed	unless	human	attacks	

have	occurred	(Stuebing	1983).	As	a	consequence	of	these	self-imposed	

guidelines,	there	remain	a	large	number	of	‘exceptionally’-sized	crocodilian	

(greater	than	6	m	in	length)	individuals	throughout	Sabah	and	Sarawak	

(pers.	obs.).		

	

Exposing	cryptic	animal	behaviours	has	long	been	a	challenge	for	zoologists,	

particularly	for	those	species	that	reside	in	remote	areas.	Cryptic	nesting	

behaviours	are	not	found	exclusively	in	crocodilians;	they	are	exhibited	by	a	

wide	array	of	large	reptiles	including,	for	example,	the	yellow-spotted	

monitor	(Varanus	panoptes)	and	the	striped	mud	turtle	(Kinosternon	baurii)	

(Doody	et	al.	2014).	These	animals	cryptically	nest	using	a	wide	variety	of	

media	and	a	broad	range	of	strategies.	Surveys	of	reptile	nesting	have	

historically	aided	in	the	production	of	baseline	population	figures,	as	well	as	

facilitating	the	detection	of	population	declines	(Hilderbrand	(1982)	in	

Gibbon	et	al.	(2000)).	In	fact,	such	assessments	have	provided	“early	

warnings”	of	catastrophic	population	crashes	allowing	the	formulation	of	

effective	management	schemes	both	to	prevent	future	crashes	and	to	map	

population	recoveries	(e.g.	Balazs	&	Chaloupka	2004;	Schroeder	&	Murphy	

1999).	The	effectiveness	of	such	monitoring	studies	is,	however,	reliant	on	

the	observer’s	ability	to	detect	a	high	proportion	of	the	total	number	of	nests	



	
	

78	

located	in	a	given	area.	This	is	one	of	many	weaknesses	associated	with	the	

approach	and	has	resulted	in	numerous	inaccurate	reptile	population	

estimates.	Typically,	the	consequence	of	this	is	an	underestimation	of	the	

challenges	facing	global	reptile	populations	(Gibbon	et	al.	2000).	It	is	

undeniable	that	the	development	of	more	suitable	and	stringent	nesting	

surveys	is	a	high-priority	conservation	tool	requirement	for	the	entire	class	

of	Reptilia.		

	

The	history	of	crocodilian	nesting	studies	began	in	the	1960s	(Joanen	1964;	

Pooley	1969);	detailed	work	on	nesting	behaviour	across		species	did	not,	

however,	commence	until	the	1970s.	Crocodylus	porosus	nesting	was	first	

examined	in	detail	by	Webb	et	al.	(1977).	This	early	work	focussed	on	the	

mechanics	of	nesting	behaviour	(for	example,	what	building	materials	were	

used),	and	recording	nest	characteristics	such	as	temperature	as	well	as	the	

number	of	eggs	oviposited.	Spatial	analyses,	or	assessments	of	the	

distribution	of	nests	in	a	given	area,	have	not	been	the	focus	of	many	studies	

to	date.	Possibly	the	best	example	is	work	carried	out	by	Harvey	and	Hill	

(2003).	Using	Landsat™	image	analysis	(see	below)	to	classify	areas	by	

vegetation	types,	these	workers	used	a	Boolean	overlay	approach	to	

determine	potentially	suitable	habitat.	Historically,	there	have	been	a	

number	of	issues	that	limit	the	effectiveness	of	nesting	studies,	particularly	

when	attempting	to	calculate	figures	of	nest	density	in	a	given	area.	Firstly,	

it	is	very	difficult	to	determine	that	all	nests	in	a	region	have	been	

discovered;	this	means	that	nest	density	calculations	are	always	rough	

approximations	and	usually	under-estimated.	Secondly,	studies	of	this	

nature	are	often	prohibitively	expensive,	relying	on	the	use	of	either	

helicopters	and	airboats,	or	time-costly	walked	surveys.	

	

In	Chapter	4,	the	feasibility	and	potential	applicability	of	drone	technology	

as	a	tool	for	crocodilian	nesting	research	was	explored.	In	its	commercial	

infancy,	and	although	becoming	more	affordable,	the	costs	are	still	beyond	

the	means	of	many	small	monitoring	programmes.	The	traditional	form	of	

aerial	photography	that	has	been	utilised	in	active	research,	especially	
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focussing	on	land-use	change,	is	Landsat™	imagery	(Seto	et	al.	2002;	Shalaby	

&	Tateishi	2007).	The	medium-level	resolution	photography	provided	by	

this	approach	is	sufficient	to	identify	broad	habitat	features	(for	example,	to	

differentiate	forest	from	oil	palm	plantation),	but	lacks	the	resolution	

necessary	for	detection	of	features	measuring	less	than	some	30	m	in	

diameter	(Yang	et	al.	2003).	Drone	technology	does	provide	a	means	to	

increase	the	resolution	of	aerial	photography,	without	wildly	spiralling	

costs.		

	

The	use	of	drone	technology	in	conservation	and	biological	management	

programmes	is	a	relatively	recent	development	(Everaerts	2008;	Koh	&	

Wich	2012).	Over	the	past	decade,	drones	have	been	employed	to	service	a	

host	of	ecological	needs.	Applications	such	as	the	monitoring	of	Eurasian	

beaver	reintroductions	(Puttock	et	al.	2015),	surveying	tree	falls	(Inoue	et	

al.	2014),	determination	of	forest	gaps	(Getzin	et	al.	2014),	mosquito	pest	

management		(Amenyo	et	al.	2014)	and	nesting	of	canopy	birds	

(Weissensteiner	et	al.	2015)	are	just	a	few	of	the	research	fields	in	which	the	

technology	has	been	applied.	As	well	as	for	research,	drones	are	also	used	in	

active	conservation	practise;	for	example,	in	the	monitoring	of	poaching	

activities	perpetrated	against	both	the	black	(Diceros	bicornis)	and	white	

(Ceratotherium	simum)	rhinoceroses	(Mulero-Pázmány	et	al.	2014).	The	

flexibility	of	the	technology	to	perform	in	remote	and	urban	locations	alike	

means	that,	as	long	as	weather	conditions	allow,	drones	can	be	a	financially	

accessible	method	of	surveying	most	areas	on	Earth.	One	challenge	

encountered	when	using	traditional	aerial	photography	is	that	some	areas	

are	obscured	from	view;	this	is	particularly	problematic	in	forested	areas.	

Infra-red	cameras	have	been	employed	to	circumvent	this	issue,	particularly	

when	performing	counts	of	individuals	of	a	species	(Mulero-Pázmány	et	al.	

2014).	These	thermal	cameras	are,	however,	more	than	tenfold	the	price	of	

traditionally-used	visible-spectrum	stills	cameras.	The	use	of	drones	in	

crocodile	nesting	could	demonstrate	the	feasibility	and	applicability	of	the	

technology	to	other	facets	of	crocodilian	research.	Martin	et	al.	(2012)	

demonstrated	that	adult	alligators	could	be	easily	identified	aerially	using	
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drone	technology,	suggesting	that	count	surveys	and	future	population	

density	estimates	could,	at	least	in	part,	be	calculated	by	such	surveys.	

	

Selective	land	conversion	for	agricultural	purposes	raises	a	number	of	

potential	issues	for	crocodile	nesting.	Oil	palm	(Elaeis	guineensis)	

plantations	are	prevalent	throughout	tropical	regions	and	are	expanding	

rapidly	into	previously	remote	areas	(Abram	et	al.	2014;	Fitzherbert	et	al.	

2008;	Wilcove	&	Koh	2010).	The	implications	of	this	for	crocodile	nesting	

are	unknown,	although	crocodiles	are	frequently	seen	in	plantations	(pers.	

obs.).	Preliminary	data	presented	in	Chapter	4	indicate	that	crocodiles	still	

do	nest	in	areas	of	medium	to	high	anthropogenic	disturbance,	and	within	

close	proximity	to	oil	palm	plantation.	This	could	be	indicative	of	either	

insufficient	nesting	habitat	being	available	or	individuals	continuing	to	

utilise	successful	nest	sites	even	after	their	surrounding	environment	has	

been	altered	anthropogenically.	There	are	numerous	other	less-well	

examined	effects	that	could	influence	both	the	likelihood	of	successful	

nesting,	as	well	as	post-natal	survival	of	the	estuarine	crocodile.	Oil	palm	

plantations	require	a	non-natural,	irrigation	system	to	ensure	sufficient	

water	for	crop	development;	they	are,	however,	unable	to	withstand	long	

periods	of	flooding	(Abram	et	al.	2014).	These	artificial	hydrological	systems	

are	unlikely	to	benefit	hatchling	dispersal	and	are	likely	to	bring	them	into	

closer	proximity	to	potential	predators	such	as	monitor	lizards	(Somaweera	

et	al.	2013).	Large	quantities	of	herbicides	and	pesticides	(including	

Paraquat™	(N,N′-dimethyl-4,4′-bipyridinium	dichloride) which	has	been	

linked	to	Parkinson’s	disease	(Dinis-Oliveira	et	al.	2006;	Howard	et	al.	

1981))	are	also	used	in	oil	palm	plantations.	These	chemicals	are	highly	

toxic	to	all	forms	of	life	and	have	the	potential	to	result	in	reduced	egg	and	

embryo	survival.		 

	

It	is	known	that	utilisation	of	drone	surveys	enables	the	high-resolution	

identification	of	crocodile	nests;	this	allows	more	accurate	mapping	of	their	

spatial	distribution	(Chapter	4).		This	present	study	aimed	to	identify	all	

possible	estuarine	crocodile	nests	within	a	specific	region	of	the	
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Kinabatangan	River.	In	doing	this,	the	hope	was	to	establish	baseline	data	

for	crocodile	nesting	in	a	typical	tropical,	freshwater	ecosystem.	Information	

on	the	general	habitat	utilised	in	nesting	sites	and	how	close	to	

anthropogenic	activity	nesting	is	occurring	was	also	gathered.	Using	these	

data	it	was	hoped	to	be	able	to	predict	whether	increased	human	

involvement	and	association	could	lead	to	increased	levels	of	human-

crocodile	conflict.	Nest	sites	can,	as	previously	discussed,	be	found	in	semi-

predictable	locations	owing	to	their	proximity	to	permanent	water	sources,	

as	well	as	their	prevalence	in	certain	types	of	habitat	(Harvey	&	Hill	2003;	

Magnusson	et	al.	1978;	Webb	et	al.	1983).	Given	both	the	largely	closed	

high-level	canopy	found	throughout	tropical	rainforest,	and	the	

aforementioned	predilection	for	swampland,	particular	targeting	of	

‘suitable’	nesting	habitat	was	possible.	Given	this	directed	approach	to	

survey	planning,	it	was	hoped	that	the	highest	proportion	of	aerially-visible	

nests	could	be	located	with	the	minimal	survey	effort.		

	

The	study	set	out	to	test	a	series	of	hypotheses.	Firstly,	that	estuarine	

crocodiles	actively	select	non-random	nest	sites	(Hypothesis	1).	It	was	also	

believed	that	nest	site	selection	by	the	female	is	predictable	and	can	be	

selectively	surveyed	through	the	use	of	predictive	modelling	and	aerial	

drone	technology	(Hypothesis	2).	Nest	sites	are	solitary	in	nature,	with	

individuals	actively	choosing	nest	sites	spatially	independent	of	other	

nesting	females	(Hypothesis	3).	Nest	site	density	was	higher	in	exposed,	

open-canopy	areas	than	under	dense	forest	cover	with	walked	“closed-

canopy”	surveys	justifying	the	use	of	aerial	reconnaissance	(Hypothesis	4),	

validated	the	use	of	drones	as	a	tool	for	nesting	surveys.	Finally,	nesting	can	

occur	in	the	presence	of	medium	to	high	levels	of	human	disturbance,	this	

implies	that	the	presence	of	oil	palm	plantations	is	not	a	barrier	to	

successful	nesting	(Hypothesis	5).		
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5.2	Methods		

	

The	study	was	carried	out	over	a	35	km	stretch	of	the	Kinabatangan	River	

(see	Section	3.2.1	for	detailed	description).	In	brief,	the	second	longest	river	

in	Borneo,	and,	at	560	km,	the	longest	in	Sabah,	the	Kinabatangan	River	has	

a	catchment	of	around	16,800	km2,	an	area	encompassing	around	23%	of	

the	total	land	area	of	Sabah	(Scott	1989;	WWF	2003).	Within	this	catchment	

area	lies	the	Lower	Kinabatangan	Wildlife	Sanctuary	(LKWS),	consisting	of	

ten	distinct	forest	‘lots’	covering	an	area	of	27,960	ha	(Abram	et	al.	2014).	

The	landscape	consists	of	a	highly	fragmented	forest-oil	palm	matrix,	with	

forested	areas	being	largely	degraded	secondary	forest.	This	type	of	forest	

results	in	patchy	areas	of	closed	canopy	forest,	open	grassland	and	areas	

with	very	sparse	partial	tree	coverage.	Forest	conversion	is	still	happening	

across	the	floodplain	although	this	is	largely	confined	to	privately	owned	

land,	outside	of	the	LKWS.	The	river	has	retained	a	large	proportion	of	its	

original	fauna	despite	widespread	conversion	to	oil	palm	(Abram	et	al.	

2014).	This	abundance	of	wildlife	located	in	close	proximity	to	the	river	has	

led	to	the	LKWS	becoming	a	hub	for	the	region’s	ecotourism.	The	

Kinabatangan	region	also	supports	a	substantial	population	of	estuarine	

crocodiles	(C.	porosus);	the	population	has	undergone	rapid	recovery	since	

state-wide	protection	of	the	species	in	1982	(Sabah	Wildlife	Department	

2010A).				

	

5.2.1	Walked	Surveys	

Walked	surveys	were	carried	out	initially,	throughout	the	35	km	study	

region,	to	determine	whether	crocodiles	were	likely	to	be	utilising	areas	of	

closed	canopy	cover	for	nesting.	The	lack	of	substantial	evidence	of	closed	

canopy	nesting	would	provide	sufficient	evidence	that	aerial	nesting	surveys	

had	the	potential	to	identify	the	vast	majority	of	nesting	occurrences.	These	

detailed	walked	surveys,	of	10	km	in	length,	were	conducted	over	an	area	

totalling	120	km	of	riverbank,	oxbow	lake	and	swampland	habitat.	Each	

survey	was	conducted	by	two	observers,	each	of	whom	walked	parallel	to	
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the	water	source	at	a	distance	of	5	m	from	the	water,	whilst	maintaining				

15	m	between	observers,	creating	coverage	of	approximately	20	m	(Fig	5.1).			

	

	
Figure	5.1	–	Search	methodology	employed	by	two	observers	carrying	out	
crocodile	nesting	surveys.	Illustrated	is	the	unidirectional	approach	and	
how	a	20	m	search	area	was	covered	along	the	entirety	of	transects.		
	
	

Of	the	120	km	of	walked	surveys	that	were	conducted,	50.83%	of	the	habitat	

surveyed	was	riverbank,	27.08%	oxbow	lake	and	22.08%	swampland,	

across	14	separate	transects	(Fig.	5.2).	Nesting	transects	(4.5-10	km)	(Fig.	

5.2)	were	searched,	in	detail,	for	any	indication	of	crocodile	nesting	or	

crocodilian	presence;	for	example,	footprints	or	slide	marks	caused	by	the	

dragging	of	the	body	through	mud,	sand	or	vegetation.	Marks	found	were	

carefully	examined	to	distinguish	them	from	other	animals	such	as	monitor	

lizards,	snakes,	bearded	pigs	or	any	other	ground-dwelling	animals	found	in	

the	region.	Transect	locations	were	chosen	as	being	potentially	suitable	for	

nesting	primarily	based	on	their	proximity	to	permanent	water	sources	

(Harvey	&	Hill	2003;	Somaweera	&	Shine	2012;	Webb	et	al.	1977).	Each	

transect	was	selected	to	incorporate	the	highest	percentage	of	closed	

canopy	possible;	this	allowed	exploration	of	whether	regions	with	open	
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access	to	direct	sunlight	were	more	likely	to	be	selected	for	nesting	

(Hypothesis	4).	If	so,	such	preferential	selection	also	validates	the	use	of	

aerial	detection	techniques.	The	walking	of	large	tracts	of	the	landscape	also	

provided	an	indication	of	the	different	habitats	present	within	the	region,	

and	which	areas	would	be	most	suitable	for	aerial	analysis.		

	

Figure	5.2	–	Paths	taken	during	walked	crocodile	nesting	surveys.	Transects	
were	searched	in	a	detailed	manner	by	two	observers	covering	a	20	m	wide	
search	area	(see	Figure	5.1).	Transect	lengths	totalled	~120	km,	each	
individual	colour	represents	an	individual	transect	carried	out	at	a	different	
time.			
	
5.2.2	Drone	surveys	

Aerial	surveys	were	conducted	on	the	basis	that	nesting	under	closed	

canopy	was	occurring	at	such	low	occurrence	that	there	was	no	meaningful	

impact	on	estimated	nest	densities.	Aerial	surveys	were	conducted	with	the	

use	of	two	different	drone	systems	(during	2013	and	2014	season,	

respectively).		

	

In	2013,	an	exploratory	series	of	surveys	were	carried	out	using	a	Bormatec	

Maja™	drone	(see	Chapter	4	for	description	and	detailed	reporting	of	

equipment	setup).	As	this	was	successful,	a	second,	more	expansive,	series	

of	surveys	was	conducted	in	2014,	this	time	utilising	the	Skywalker™	drone.	

This	equipment	provides	a	more	stable	and	efficient	flight.	Both	drone	
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systems	were	fixed	wing	aircraft,	able	to	provide	a	high	degree	of	stability,	

whilst	ensuring	desirable	range	capabilities.		Under	normal	weather	

conditions	(low	wind	and	no	rain),	the	Skywalker™	was	able	to	conduct	

flights	totalling	one	hour,	whilst	carrying	a	payload	of	up	to	1	kg.	In	real	

terms,	this	equates	to	flight	distances	of	up	to	35	km	and	search	grids	(see	

Chapter	4	for	explanation	of	flight	planning)	of	around	550	ha.		

	

Other	than	during	take-off	or	landing,	or	during	emergencies,	drone	flights	

were	conducted	using	an	Auto	Pilot	Module	(APM)	(see	Chapter	4	for	more	

details).		Manual	flight	of	the	drone	required	intensive	training,	first	through	

the	use	of	a	flight	simulator,	and	subsequently	with	a	real	aircraft	in	a	

controlled	setting.	This	preparatory	work	required	around	50	flight	hours	of	

training.	Simulator	training	consisted	of	10-20	hours	to	ensure	a	basic	grasp	

of	aerial	manoeuvrability.	Practical	flight	training	consisted	of	40	hours	of	

take-off,	landing	and	free	flight	practise.	Drones	were	flown	in	two	different	

modes.	Firstly,	flights	were	conducted	in	manual	mode,	without	computer	

assistance.	Once	mastered,	flights	were	also	carried	out	in	“fly	by	wire”	

mode;	this	is	a	setting	that	allows	the	on-board	autopilot	to	make	

corrections	and	ensure	a	smoother	flight.	This	assisted	flight	mode	was	used	

in	the	field	at	all	times	above	an	altitude	of	50	m	to	reduce	the	likelihood	of	

crashes.		

	

Flights	were	conducted	as	close	to	the	planned	flight	grid	as	possible,	whilst	

allowing	for	an	open	landing	and	take-off	site.	These	“ground	stations”	were	

located	in	a	variety	of	habitats,	including	riverbanks,	grasslands	and	oil	palm	

plantations.		Ensuring	that	ground	stations	were	located	close	to	search	

grids	allowed	for	larger	areas	to	be	covered	within	any	particular	grid,	as	

battery	power	was	not	wasted	traveling	to	and	from	the	study	site.	Post-hoc	

analysis	of	aerial	photographs	taken	involved	stitching,	as	described	in	

Chapter	4.		

	

Selection	of	drone	mapping	grids	was	based	on	ensuring	an	array	of	

riverine,	swamp	and	oxbow	habitat,	as	well	as	covering	all	of	the	major	



	
	

86	

tributaries	across	the	study	site.	A	predictive	theoretical	model	of	suitable	

nesting	sites	was	also	produced	to	aid	in	the	selection	of	these	sites										

(Fig.	5.3).	This	model	was	produced	using	“fuzzy	membership”	and	“fuzzy	

overlay”	functions	in	ArcGIS	10;	these	functions	allowed	for	the	designation	

of	certain	required	prerequisites	(such	as	distance	to	permanent	water	

sources)	for	nesting	to	be	feasible,	whilst	discounting	other	areas	based	on	

presumed	undesirable	geographic	traits	(for	example	proximity	to	oil	palm	

plantations).	These	traits	were	derived	from	the	existing	literature	(Harvey	

&	Hill	2003).		

	

	
Figure	5.3.	Nesting	suitability	model	for	the	LKWS.	Defined	using	a	“fuzzy	
overlay”	model	in	ArcGIS.	Areas	of	suitability	are	defined	by	the	presence	of	
a	coloured	pixel	with	increasing	suitability	defined	on	a	green	(high)	to	red	
(low)	scale.	Suitable	nesting	locations	are	largely	confined	to	major	
waterways.	
	
Once	identified,	nests	sites	were	ground-validated,	where	possible,	and	

general	ground	habitat	assessed.	Both	validated	and	non-validated	nests	

were	subsequently	assessed	for	a	series	of	geographical	traits,	such	as	

distance	to	permanent	water,	distance	to	canopy	and	distance	to	plantation.	

These	criteria	were	used	to	create	a	generalised	linear	mixed	model	(GLMM)	
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using	R	(3.1.3).	The	“lme4”	package	was	used	to	determine	which	factors	

were	of	the	greatest	importance	in	the	confirmed	nesting	locations	of	

estuarine	crocodiles.	The	model	was	refined	through	the	use	of	a	“dredge”	

model-comparison	function	carried	out	with	the	use	of	the	package	

“MuMIn”.	Conditional	and	marginal	R2	values	were	then	subsequently	used	

to	assess	the	level	of	variance	explained	by	both	fixed	and	random	model	

terms.	Finally,	model	predictions	were	made	to	evaluate	the	role	proximity	

to	plantations	plays	in	successful	nesting	efforts.		

	
Table	5.1.	“Fixed”	and	“random”	model	terms	included	in	the	binomial	
GLMM	used	to	identify	the	most	important	factors	in	the	presence	or	
absence	of	crocodile	nests.	A	logit	link	function	was	used	for	the	model.		
Dependent	Variable		 Fixed	Model	Terms	 Random	Model	Terms	
Presence	of	Nest	(1/0)	 Ground	solidity	 Year	of	detection	
	 Distance	to	water	 	
	 Distance	to	canopy	

cover	
	

	 Distance	to	plantation	 	
	
	
	
5.3	Results		

	

Walked	surveys	failed	to	identify	any	nests,	providing	evidence	that	the	vast	

majority	of	nesting	is	occurring	in	areas	of	open,	canopy	devoid,	areas.	

During	the	2013	field	season,	a	total	of	1,550	ha	were	surveyed	using	drones	

and	three	potential	nests	identified.	Two	of	these	were	confirmed	as	true	

nesting	locations	(Chapter	4).	A	further	5,160	ha	was	surveyed	during	2014;	

this	gave	a	total	area	surveyed	over	two	field	seasons	of	6,710	ha.		

	

Flooding	of	a	large	part	of	the	study	site	during	the	field	season	resulted	in	

not	being	able	to	verify	10	of	the	26	potential	nests	identified	during	2014.	

Of	these	ten,	nine	were	excluded	from	analysis.	The	additional	nest	was	

included	as	a	confirmed	nest	despite	a	lack	of	ground	verification	based	on	

similarities	between	its	aerial	image	and	those	of	previously	ground	verified	

nests.	Those	nests	that	were	flooded	were	not	verified	either	because	of	

safety	concerns	or	lack	of	accessibility.	Of	the	drone-facilitated	nesting	
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surveys	carried	out	over	two	field	seasons,	2013	and	2014,	29	potential	

nests	were	identified.	Of	these,	four	were	confirmed	as	actual	crocodile	

nests	with	the	addition	of	one	unverified	nest	included	for	the	analysis	(Fig.	

5.4).		

	
	

	
Figure	5.4.	Potential	nest	sites	in	relation	to	habitat	suitability	model;	the	
majority	of	nests	sites	fell	inside	of,	or	close	to,	identified	suitable	areas	
within	the	study	site.	Suitability	defined	as	areas	of	coloured	pixels	as	in	
Figure	5.3,	with	potential	nest	sites	overlaid	as	blue	dots.			
	
Of	the	five	confirmed	nests,	all	were	located	in	close	proximity	(13.9	m	

(±12.9	m))	to	permanent	water	sources.	The	nests	were	also	found	within	

forest	habitat	(Fig.	5.5),	in	small	open	areas	and	within	close	proximity	

(mean	(±s.e)	22.2	m	(±14.3	m))	of	closed	canopy	cover.	Plantations	were	

generally	not	surveyed	but	one	nest	was	found	close	to	a	plantation	border;	

across	all	nests	identified,	the	nests	were	a	mean	(±s.e)	distance	of	374	m	

(±139.7	m)	from	such	boundaries.	Four	of	the	confirmed	nests	were	located	

within	the	protected	habitat	lots	of	LKWS.	One	nest	was	located	outside	

these	lots,	in	privately-owned	land	that	could	be	open	to	conversion.		

	

Neither	of	the	nest	sites	located	during	2013	were	reutilised	during	2014.	

All	confirmed	nests	were	spatially	independent,	although	potential	nest	
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aggregations	were	located	and	later	discounted	during	2014	surveys							

(Fig.	5.5).	Three	nests	were	located	in	“drying”	or	“old”	oxbow	lakes;	each	of	

these	had	a	permanent	aquatic	connection	to	a	main	water	body,	such	as	a	

large	tributary.	The	other	two	nests’	locations	were	directly	adjacent	to	a	

major	water	body.		

	

	
Figure	5.5.	Locations	of	confirmed	nest	sites	showing	close	proximity	to	
water,	as	well	as,	on	three	occasions,	close	proximity	to	oil	palm	plantations.	
Includes	identified	nest	sites	from	Figure	5.4.		
	
Nest	sites	could	not	be	attributed	to	specific	females	and	no	instances	were	

recorded	of	females	guarding	their	nests.	There	was,	however,	evidence	of	

females	spending	time	at	the	nest	site	and	of	excavation	of	eggs	during	

hatching,	as	well	as	wallows	around	one	of	the	nest	sites.	One	nest	located	

during	2013	surveys	was	visited	the	day	after	hatching	and	visual	

confirmation	of	19	hatchlings	was	recorded	(Fig.	5.6).	Egg	membranes	and	

shells	were	collected,	and	evidence	of	at	least	24	successful	hatchings	were	

found.	There	was	no	evidence	of	pre-	or	post-natal	mortality.		
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Figure	5.6	a)	Day	old	hatchling	from	nest	located	aerially	through	the	use	of	
a	drone.	b)	Evidence	of	one	of	24	egg	membranes	recovered	from	the	nest	
site.		
	
	
Two	of	the	confirmed	nests	fell	within	the	territory	of	a	female	that	was	

satellite-tagged	(Female	1	(F1),	see	Chapter	3).	Although	it	is	unlikely	that	

both	nests	belonged	to	F1,	there	did	appear	to	be	some	spatial	overlap	

between	one	of	the	nests	(Fig.	5.7	gives	spatial	data	for	F1);	the	aggregation	

of	points	is	far	less	than	one	would	expect	of	a	guarding	female.	The	fact	that	

two	nests	exist	within	the	range	of	one	female	suggests	that	females	are	not	

spatially-exclusive	or	territorial.		

	

a)	
	

b)	
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Figure	5.7.	Presence	of	two	aerially	confirmed	nests	found	within	the	
territory	of	a	single	satellite	tagged	female	(F1).	Green	points	refer	to	spatial	
locations	of	F1	and	red	points	the	locations	of	confirmed	nest	sites.	
	
The	most	parsimonious	GLMM	model	structure	to	explain	the	

presence/absence	of	crocodile	nests	(lowest	AIC	–	Akaike	Information	

Criterion	identified	using	the	“dredge”	function)	included	the	variables	

“distance	to	water”	and	“ground	water	presence”.	This	model	also	yielded	

the	greatest	model	weight	(W	=	0.195),	indicating	that	this	model	structure	

best	explains	the	included	model	variables.	Distance	to	water	was	found	to	

be	significantly	negatively	correlated	with	the	likelihood	of	finding	a	nesting	

site	(F1,29	=	5.59,	p	=	0.018).	Additionally,	the	presence	of	ground	water	was	

also	found	to	be	close	to	significance	(F3,29	=	7.36,	p	=	0.061),	with	the	

presence	of	less	than	1	m	of	standing	ground	water	resulting	in	a	higher	

likelihood	of	nesting.	The	addition	of	further	data	would	possibly	result	in	

this	variable	becoming	significant.	Marginal	(R2m)	and	conditional	(R2c)	r-

squared	values	showed	that	the	vast	majority	of	the	variance	being	

described	by	the	model	was	derived	from	the	fixed	terms	(distance	to	water	

and	standing	ground	water),	with	negligible	variation	explained	by	the	

random	term,	year	(R2m	=	0.571,	R2c	=	0.571).			
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Predictions	based	on	this	model	resulted	in	an	indication	that	whilst	

locations	of	nests	in	standing	water	could	not	be	easily	predicted,	nests	on	

solid	ground	were	very	likely	to	be	less	than	100	m	away	from	permanent	

water	sources	(Fig.	5.8).	In	reality,	these	predictions	are	in	line	with	those	

used	during	the	original	“fuzzy	overlay”	modelling	(Fig.	5.4).	An	increase	in	

sample	size	could	lead	to	a	refinement	of	solid-ground	predictions	and	lead	

to	more	stringent	standing	water	predictive	sampling.		

	

	
Figure	5.8.	Plotting	predictions	from	binomial	GLM.	Model	provides	a	
Binomial	predictive	distribution,	indicating	that	nesting	is	less	likely	further	
away	from	permanent	water	sources.	The	model	does	not	provide	
predictive	information	for	instances	of	water-covered	areas.	Data	included	
both	confirmed	nest	sites	as	well	as	those	that	were	“potential”	and	later	
discounted	nest	sites.	Despite	trajectory	of	confidence	intervals,	prediction	
could	not	be	less	than	zero.			
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Figure	5.9.	The	difference	in	resolution	between	2013	surveys	(a)	and	2014	
surveys	(b	and	c).	Images	show	the	same	ox-bow	lake;	both	images	were	
zoomed	to	the	same	extent.	Both	(a)	and	(c)	show	the	difference	in	image	
clarity	between	confirmed	nests.	Flights	were	carried	out	using	different	
cameras	of	the	same	make	and	model.		
	
There	was	a	marked	difference	in	image	quality	between	the	2013	(higher	

quality)	and	2014	(lower	quality)	surveys.	This	was	despite	the	use	of	a	

camera	of	the	same	make	and	model,	albeit	a	different	camera.	This	could	

also	have	been	a	result	of	different	lighting	conditions	(see	Chapter	4),	or	the	

speed	of	travel	of	the	drone.	

a)	
	

b)	
	

c)	
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5.4	Discussion	

	

In	Chapter	4,	the	feasibility	of	using	drones	to	detect	crocodile	nests	was	

demonstrated.	In	the	present	chapter,	where	use	of	the	technology	to	carry	

out	a	survey	of	a	section	of	the	Kinabatangan	River	is	reported,	verification	

was	of	only	five	nests	of	a	total	29	potential	locations.	The	approach,	albeit	

in	need	of	improvement,	is	clearly	a	major	improvement	on	the	traditional	

techniques	of,	for	example,	helicopter	surveys	entailing	flying	over	large	

tracts	of	unsuitable	habitat	and	still	requiring	post-event	ground	validation.		

That	five	nests	were	identified	from	the	sampling	of	a	relatively	small	(6,710	

ha)	selected	area	of	the	study	site	suggests	that	females	are	actively	

selecting	areas	identified	from	the	habitat	suitability	model	(Hypothesis	1).	

The	use	of	a	habitat	suitability	model,	as	well	as	selection	of	areas	with	open	

or	semi-open	canopy	coverage,	allowed	for	both	highly-selective	and	highly	

predictive	mission	planning	(Hypothesis	3).	The	walked	surveys	provided	

important	justification	of	the	use	of	drones	in	identifying	potential	nesting	

sites	and	crocodilian	habitat	(Hypothesis	2),	and	although	the	distance	

walked	was	relatively	short	(120	km),	the	transects’	placement	to	

encompass	tributaries,	ox-bow	lakes	and	other	areas	of	permanent	water	

sources	(essential	to	successful	nesting),	provided	a	clear	indicator	that	

dense	forest	canopy	does	not	provide	an	important	nesting	habitat.	This	is	

due	to	the	fact	they	were	largely	conducted	beneath	closed	canopy	

(Hypothesis	4).	The	identification	of	nests	in	close	proximity	to	oil	palm	

plantations,	as	well	as	the	confirmation	of	two	nests	within	plantations	

outside	of	the	study	area,	demonstrates	that	females	are	capable	of	nesting	

in	medium	to	high	levels	of	human	disturbance	(Hypothesis	5).	

	

While	the	identification	of	five	nests	over	the	two	field	seasons	provides	a	

degree	of	validation	of	the	methodology,	the	limited	35	km	river	stretch	

study	site	probably	represented	too	small	of	an	area	to	provide	a	clear	

picture	of	the	nesting	habits	of	the	crocodiles	found	throughout	the	LKWS.	

Nesting	appears	to	be	occurring	at	low	densities,	and	whilst	this	nesting	is,	

at	least	to	some	extent,	predictable,	the	presence	of	degraded,	patchy	
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secondary	forest	represented	a	challenge	to	successful	and	encompassing	

nesting	surveys.	Secondary	forest	results	in	far	larger	expanses	of	open	

areas	than	would	likely	be	present	were	the	region	to	still	retain	its	original	

primary	forest	landscape.	As	a	result,	refining	search	grids	is	more	

challenging	in	secondary	forest	ecosystems	than	in	pristine	primary	forest	

habitats.	Despite	this	reduction	in	canopy	coverage,	it	is	unlikely	that	all	

nests	will	be	built	in	open	areas	and	crocodilians	can	use	alternate	heat	

sources	such	as	termite	mounds	to	keep	their	nests	at	the	optimal	

temperatures	(Magnusson	et	al.	1985).	The	effect	of	this	on	the	number	of	

nests	detected	should,	however,	be	negligible.		

	

Flooding,	as	also	determined	by	Webb	et	al.	(1977),	is	the	primary	threat	to	

C.	porosus	nests	in	the	Kinabatangan.	Ten	potential	nests	were	completely	

submerged	during	the	period	of	ground-verification	after	the	river	rose	in	

excess	of	1	m	over	one	night.	This	flooding	did,	however,	lead	to	the	

identification	of	one	“floating”	nest	that	had	been	built	to	reduce	the	

possibility	of	mortality	due	to	flooding.	Floating	nests	are	widely	reported	

across	many	crocodilian	species,	including	C.	porosus	(Campos	1993;	

Somaweera	et	al.	2013);	the	nests	generally	consist	of	floating	mats	of	

vegetation	(Campos	1993).	In	the	current	observation,	the	floating	nest	did	

not	perform	as	expected.	All	eggs	were	recorded	as	being	under	water	(pers.	

obs.).		

	

Application	of	a	GLMM	was	intended	to	inform	what	a	model	habitat	would	

be	for	crocodile	nesting	in	the	LKWS.	The	model	predictions	provided	less	

stringent	buffers	around	major	water	sources	than	used	in	the	original	

habitat	suitability	model	and,	as	a	result,	the	original	cut	off	of	150	m	

(derived	from	the	literature)	used	during	the	original	“fuzzy	overlay”	model	

remained	the	best	predictor	of	nesting	habitat	presence	or	absence.	That	

only	five	nests	were	positively	confirmed	provided	a	too	limited	framework	

to	generate	statistically	rigorous	data	for	generic	habitat	features.	

Similarities	between	nest	site	choices	and	their	spatial	separation	

determined	using	the	GLMM	and	from	observations,	suggests	that	the	
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crocodiles	of	the	LKWS	are	choosing	sites	preferentially	and	making	active	

selections	for	nest	locations	(Hypotheses	1	and	3).	That	the	nests	of	the	

2013	survey	were	not	reused,	despite	being	successful	(Fig.	5.6),	suggests	

either	that	females	are	not	nesting	annually	or	are	not	nest	site-fidelic.	

There	appeared	to	be	a	general	preference	for	smaller	open	areas,	rather	

than	large	expanses	of	open	grassland	or	swamp.	

	

Outside	the	study	area,	one	nest	was	located	within	a	long-standing	

plantation,	in	an	area	that	had	been	converted	from	forest	at	least	25	years	

previously.	This	area	was	visited	and	nest	presence	confirmed	(Fig.	5.10).	

There	was	evidence	that	the	site	had	been	used	for	nesting	on	more	than	

one	occasion,	and	conversations	with	local	plantation	workers	suggested	

that	nests	were	constructed	on	this	site	on	a	biennial	basis.	Older	plantation	

workers	claimed	that	this	nest	site	had	been	used	since	the	construction	of	

the	plantation.	Such	behaviour	suggests	that	females	may	revisit	successful	

nest	sites	regardless	of	a	change	in	localised	habitat	and	this	would	explain	

why	areas	along	the	Kinabatangan	River,	devoid	of	forest	fragments,	still	

harbour	significant	numbers	of	hatchlings.	Individual	crocodiles	appear	able	

to	nest	within	areas	of	high	human	disturbance	across	multiple	nesting	

seasons	(Hypothesis	5).	The	lake	within	which	the	nest	was	located	was	also	

observed	to	contain	hatchlings	of	different	age	classes;	this	suggests	that	

nesting	events	were	successful	on	multiple	occasions.	The	resilience	of	

individuals	to	nest	in	suboptimal	areas,	as	long	as	these	locations	meet	basic	

nesting	requirements,	could	be	a	key	factor	in	ensuring	species	

perseverance.	Nesting	in	plantations	does,	however,	raise	the	likelihood	of	

human-crocodile	conflict;	this	was	evidenced	by	the	nest	under	discussion	

(Figure	5.10),	which,	according	to	local	inhabitants,	has	been	a	site	of	

human-crocodile	conflict	within	the	last	10	years,	although,	at	least	to	date,	

no	injuries	have	been	sustained.		

	

The	‘identification’	of	plantation	nest	sites	some	distance	away	from	the	

Kinabatangan	River	provides	an	important	challenge	to	the	use	of	drone	

technology.		Plantations	are	not	only	difficult	to	survey	aerially	due	to	their	



	
	

97	

semi-open	nature,	but	also,	human	presence	and	activity	can	give	rise	to	

“non-natural”	formations,	usually	created	by	plantation	workers,	that	are	

identified,	incorrectly,	as	potential	nests.	While	drone	technology	has	

undoubted	applicability	in	highlighting	key	areas	of	nesting	habitat,	density	

estimates	garnered	in	this	way	should	be	tempered	with	extreme	caution.		

	

	
Figure	5.10	a)	Nest	located	in	shallow	lake	showing	central	mound	of	
vegetation	surrounded	by	water	of	1	m	depth.	b)	Claw	and	slide	marks	
indicating	female	willingness	to	cross	plantation	roads	to	get	to	the	nest	site.	
Arrow	indicates	claw	sliding	as	the	hill	is	scaled	by	the	female.		
	
	
The	increase	in	human-crocodile	conflict	incidences	in	the	surrounding	

region	(Sideleau	&	Britton	2012)	has	the	potential	to	undermine	

conservation	efforts	for	a	species	that	has	undergone	a	dramatic	recovery	in	

the	33	year	period	since	given	protection	status	in	Sabah.	Growth	in	both	

human	and	crocodile	populations	require	the	animals	to	be	of	intrinsic	value	

to	local	people.	One	way	of	achieving	this	is	through	eco-tourism.	Crocodile-

based	eco-tourism	has	become	widely	successful	in	Northern	Australia	and	

could	provide	a	model	for	how	Sabah	could	utilise	its	crocodiles,	in	

conjunction	with	the	plethora	of	other	species	found	in	the	state,	to	create	

an	eco-tourism	hub.	

	

In	carrying	out	this	study,	numerous	UAV	(Unmanned	Aerial	Vehicle)-

related	challenges	were	faced;	as	a	burgeoning	technology	there	are	still	

some	aspects	of	its	use	that	need	further	development.	While	repeatability	

of	transect	observations	is	one	of	the	major	benefits	of	the	technology	over	

traditional	techniques	such	as	helicopter	or	airboat	surveys,	the	huge	

a)	
	

b)	
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disparity	in	the	resolution	of	the	images	produced	in	the	two	survey	years	

(Fig.	5.9),	although	the	same	make	and	model	camera	(Canon	S100)	was	

used,	is	of	concern.	This	variation	could	have	resulted	in	the	omission	of	

potential	nest	sites	during	the	2014	surveys.	Conversely,	low-resolution	

images	meant	that	a	much	larger	number	of	“potential”	nest	sites	needed	to	

be	ground-verified,	as	they	could	not	be	excluded	due	to	poor	image	quality.	

A	similar	image	resolution	of	5-6	cm	per	pixel	to	that	which	was	achieved	

during	the	2013	surveys	would	have	allowed	for	the	exclusion	of	a	number	

of	the	2014	‘potential’	nests.	Drone	flight	capabilities	are	constantly	being	

developed	and	improved,	and	with	aerodynamic	technology	advances	and,	

more	importantly,	improved	battery	efficiencies,	flights	of	up	to	70	km	are	

already	possible.			

	

The	crocodile	population	of	the	LKWS	has	endured	fluctuations	in	both	

extent	and	stability;	the	current	size	of	the	population	has,	however,	raised	

human-conflict	concerns,	with	six	known	fatalities	having	occurred	within	

the	study	area	since	2010.	The	mapping	of	nesting	habitats	has	a	role	in	the	

mediation	of	conflict	zones,	especially	if	a	further	reduction	in	habitat	

results	in	a	closer	nesting	proximity	to	human	settlement.	The	identification	

of	nests	on	an	annual	basis	can	also	aid	in	the	mapping	of	population	trends.	

This,	coupled	with	spotlighting	surveys,	could	give	a	better	indication	of	

how	the	population	is	adapting	to	anthropogenic	expansion.	Nesting	surveys	

of	this	nature	could	also	provide	an	idea	as	to	the	carrying	capacity	of	both	

the	study	site	and	the	LKWS	as	a	whole,	and	how	crocodile	number	could	

alter	as	forest	conversion	continues.	An	increase	in	sample	size	provided	by	

annual	nesting	surveys	would	allow	not	only	for	a	more	in-depth	modelling	

of	nesting	areas	but	also	a	more	stringent	predictive	modelling.	In	this	way,	

areas	deemed	most	important	to	successful	nesting	could	be	protected,	and	

this,	in	turn,	providing	mediation	of	human-conflict	issues.			

	

Whilst	in	terms	of	cost,	drone	technology	is	far	cheaper	than	many	

traditional	survey	methodologies,	the	main	barrier	to	its	use	by	small-

independent	research	projects	is	the	cost	of	image	stitching.	Whilst	the	
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financial	implications	of	each	individual	flight	is	relatively	low,	the	stitching	

costs	are	beyond	the	budgets	of	some	small	organisations	(a	cost	of	around	

GBP1	per	hectare	(total	area	surveyed	6,710	ha)).	These	data	can	be	

collected	without	the	use	of	image	stitching	but	detailed	analysis	of	each	

specific	image	would	require	a	far	longer	time-period.	Not	only	would	the	

identification	of	nests	prove	more	difficult	but	placing	the	location	within	

the	broader	context	of	the	landscape,	and	assessing	the	hydrological	

relations	would	be	far	more	challenging	and	would	require	a	highly	

specified	knowledge	of	the	study	region.		

	

In	summary,	the	nests	identified	were	spatially	exclusive,	showing	that	C.	

porosus	individuals	in	the	LKWS	are	not	aggregate	nesters.	There	was	also	

no	evidence	of	annual	reuse	of	nesting	sites.	There	was,	however,	an	

element	of	predictability	to	nesting	site	location,	in	relation	to	distance	from	

water	bodies,	that	could	be	modelled,	thus	allowing	search	area	refinement.	

Nests	were	located	at	least	several	hundred	meters	from	each	other	and	

from	any	previously-used	nesting	sites.	Nesting	sites	were	found	at	medium-

disturbance	level	sites,	although	the	presence	of	nest	sites	inside	plantations	

from	outside	the	study	site	indicated	that	even	daily	human	disturbance	is	

not	necessarily	a	barrier	to	nesting.	This	does	suggest	that	stable	

populations	could	endure,	even	in	areas	of	extreme	land-use	conversion.	

The	presence	of	floating	nests	suggests	an	adaptation	to	local	climactic	

conditions	with	areas	less	suitable	for	nesting	being	utilised,	a	crucial	

adaptation	in	areas	of	lessening	habitat	availability.		
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Chapter	6	-	Population	Genetics	of	the	Estuarine	Crocodile,	Crocodylus	

porosus,	in	Sabah,	Malaysia.		

	

6.1	Introduction	

	

Understanding	the	role	that	genetics	play	in	the	management	of	a	species	

has	become	a	crucial	component	of	conservation	strategy.	As	well	as	playing	

a	vital	role	in	the	identification	of	important	population	structures,	or	

Evolutionary	Significant	Units	(ESU),	in	many	organisms	(Ciofi	&	Bruford	

1999;	Ciofi	et	al.	2002;	Moritz	1994;	Segelbacher	et	al.	2014;	Shamili	et	al.	

2012),	genetics	and,	in	particular,	population	genetics	dealing	with	the	

variation	in	allelic	frequency	changes	(Manel	et	al.	2003;	Sugg	et	al.	1996)	

has	become	an	essential	facet	of	conservation	planning.	The	understanding	

of	the	genetic	implications	of	population	recovery	has	led	to	both	the	

successful	management	and	on-going	rehabilitation	of	many	crocodilian	

populations	following	the	huge	declines	recorded	throughout	the	20th	

Century	(Fitzsimmons	et	al.	2000;	Thorbjarnarson	et	al.	1998).	Globally,	

with	six	species	remaining	listed	as	critically	endangered,	understanding	the	

genetic	health	of	these	species	is	of	paramount	concern	to	their	continued	

survival	and	management.		

	

As	previously	mentioned	(Chapter	2),	the	estuarine	crocodile	(Crocodylus	

porosus)	is	the	largest	extant	crocodile	in	the	world,	reaching,	length-wise,	in	

excess	of	6	m	(Britton	et	al.	2012).	It	also	has	the	broadest	habitat	range	

(Australia	to	eastern	India)	of	any	extant	crocodilian	(Russello	et	al.	2007).	

Estuarine	crocodiles	can	be	found	throughout	the	south-east	Asian	region,	

from	India	in	the	north,	to	Australia	in	the	south	(Anuar	et	al.	1996;	Hanson	

et	al.	2015;	Lewis	et	al.	2013).	There	are,	however,	areas	throughout	this	

range	where	populations	have	been	either	severely	depleted	or	completely	

extirpated	(Brazaitis	et	al.	2009).	The	estuarine	crocodile	was,	some	40	

years	ago,	considered	to	be	endangered	and	at	risk	of	extinction	(Bustard	

1970).	Legislative	protection	and	active	conservation	have	led	to	the	

downgrading	of	C.	porosus	on	the	IUCN	Red	List	to	“least	concern”.	Genetic	
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analysis	has	the	ability	to	quantify	the	effects	of	population	fluctuations	

which	occurred	across	the	Crocodylia	in	the	20th	Century.	The	

understanding	of	the	implication	of	genetics	in	the	survival	of	a	species	has	

become	increasingly	apparent	over	the	last	few	decades,	and	the	field	of	

conservation	genetics	has	resulted	in	the	successful	management	and	

rehabilitation	of	many	species	(Frankham	1995;	Rubinoff	2006).	

Fitzsimmons	et	al.	(2000)	discussed	the	possibility	that	estuarine	species,	

such	as	C.	porosus,	might	have	increased	gene	flow	(transfer	of	alleles	

between	adjacent	populations)	when	compared	with	freshwater	species;	

this	is	thought	to	be	due	to	the	former’s	ability	to	transverse	oceanic	waters.	

High	levels	of	gene	flow	could	be	partially	responsible	for	the	recovery	of				

C.	porosus	that	was	experienced	following	the	cessation	of	hunting	activities	

(Fukuda	et	al.	2011).		

	

Crocodylus	porosus	is	one	of	several	species	of	crocodilians	with	multiple	

microsatellite	loci	having	been	identified.	Others	include	the	American	

alligator	(A.	mississippiensis),	the	broad	snouted	caiman	(Caiman	latirostris),	

the	Morelet’s	crocodile	(C.	morletti)	and	the	Australian	freshwater	crocodile	

(C.	johnstoni)(Miles	et	al.	2008).	Loci	have	been	identified	that	measure	

multiple	traits,	including	population	diversity	and	mating	behaviour	(Isberg	

et	al.	2004;	Miles	et	al.	2008).	The	latter	authors,	for	example,	identified	253	

new	microsatellites	for	the	estuarine	crocodile,	and	these,	because	of	the	

high	levels	of	genetic	diversity	exhibited	in	many	microsatellite	loci	(Bruford	

et	al.	1996;	Wright	&	Bentzen	1994),	can	be	utilised	to	identify	not	only	the	

genetic	diversity	present	in	a	given	population,	but	also	to	model	the	history	

of	the	population	and	to	estimate	effective	population	size.		

	

Most	population	genetics	studies	of	the	estuarine	crocodile,	both	on	captive	

and	wild	populations	(for	example;	Isberg	et	al.	2004;	Jaratlerdsiri	et	al.	

2012;	Miles	et	al.	2010;	Miles	et	al.	2008;	Miles	et	al.	2009),	have	been	

carried	out	in	Australia.	There	have	been	numerous	studies	examining	the	

population	genetics	of	various	species	of	crocodilian,	such	as	Morlet’s	

crocodile	(C.	moreletii)	(Dever	et	al.	2002;	González-Trujillo	et	al.	2012),	
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American	alligator	(A.	mississippiensis)	(Glenn	et	al.	2002)	and	American	

crocodile	(C.	acutus)	(Cotroneo,	2010),	broad-snouted	caiman	(Caiman	

latirostris)	(Saidman	et	al.	2012)	and	the	Nile	crocodile	(C.	niloticus)	

(Hekkala	et	al.	2009;	Schmitz	et	al.	2003).	A	number	of	population	genetic	

studies	that	have	focussed	on	C.	porosus	have	been	restricted	to	farmed,	

captive	bred	populations	(Isberg	et	al.	2004).	One	major	study	carried	out	

on	the	population	genetics	of	wild	populations	of	C.	porosus	occurred	in	

Palau,	a	small	island	chain	forming	part	of	the	larger	Caroline	Islands	in	

Micronesia	(Russello	et	al.	2007).	The	authors	used	samples	taken	from	

Kalimantan	(Indonesian	Borneo)	as	well	as	other	regions	throughout	C.	

porosus’	range.	A	single	haplotype,	also	present	in	Borneo,	was	found	in	

Palau	as	well	as	other	locations.	This	suggests	that	despite	the	large	species-

level	range	of	the	estuarine	crocodile,	there	is	little	in	the	way	of	

geograpically	mediated	genetic	variation	between	populations.		

	

Analysis	of	parentage	of	wild	populations	allows	for	the	assessment,	and	to	

increase	the	understanding,	of	many	behavioural	and	ecological	systems.	A	

number	of	parentage	studies	have	been	carried	out	on	C.	porosus,	

particularly	on	captive	populations	(Isberg	et	al.	2004).	These	studies	have	

been	routinely	used	to	determine	which	one,	of	a	series	of	candidate	fathers,	

has	sired	a	particular	offspring.	Evidence	of	mutiple	parternity	has	been	

demonstrated	in	a	number	of	crocodilians	(Amavet	et	al	2008;	McVay	et	al.	

2008;	River	et	al.	2001),	including	C.	porosus	(Lewis	et	al.	2013).	To	date,	

however,	there	remains	a	dearth	of	studies	using	parentage	to	examine	the	

social	ecology	and	juvenile	dispersal	techniques	within	Crocodylia.		

	

Over	the	past	50	years,	C.	porosus	numbers	in	Sabah	have	fluctuated,	falling	

to	a	level	that	was	of	sufficient	concern	to	be	given	a	range-wide	IUCN	Red	

List	listing	of	“endangered”	in	1982	(Crocodile	Specialist	Group	1996).	In	the	

same	year,	Sabah	gave	its	C.	porosus	populations	state-wide	government	

protection	and,	to	the	present,	they	remain	on	Sabah’s	Appendix	II	of	

threatened	species	(Sabah	Wildlife	Department	2010B).	To	date,	there	has	

been	no	examination	of	neither	C.	porosus	genetics	in	Sabah	nor	the	impact	
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of	the	recent	population	bottleneck.	The	present	study	is	a	first	attempt	at	

answering	some	of	these	questions.		

		

The	level	and	rate	of	habitat	alteration	and	logging	occurring	throughout	

Borneo	is	far	more	severe	than	in	other	tropical	regions	(Gaveau	et	al.	

2014).	The	role	that	habitat	fragmentation	plays	in	the	behaviour	and	

ecology	of	an	aquatic,	mobile	predator	such	as	the	estuarine	crocodile	has	

been	little	examined	and	the	genetic	implications	of	restricted	movements	

remain	un-quantified.	The	detection	of	apparent	human-mediated	barriers	

to	movement,	as	found	in	the	Kinabatangan	(see	Chapter	3),	raises	

important	considerations	for	future	management	strategies.	A	detailed	

understanding	of	the	genetic	health	of	the	extant	population	can	provide	an	

essential	baseline	for	future	studies.		

	

The	work	reported	in	this	chapter	seeks	to	provide	this	baseline	knowledge	

of	the	genetic	health	of	the	Kinabatangan	crocodiles	following	the	

population	bottleneck	that	occurred	during	the	20th	Century.	In	doing	this	

work	it	is	hoped	that	the	population	structure	and	overall	diversity	of	what	

is	believed	to	be	the	largest	population	of	estuarine	crocodiles	in	Sabah,	can	

be	explored	to	aid	in	the	future	management	of	crocodiles	in	the	region.	By	

assessing	the	genetic	differentiation	of	a	major	population	of	estuarine	

crocodiles	in	Borneo	it	is	also	an	intention	to	establish	whether	the	region	is	

one	of	special	conservation	importance	for	the	species.	Using	relatedness	

and	parentage	analyses	it	is	also	hoped	to	increase	understanding	of	mating	

relationships	and	juvenile	dispersal	patterns	of	this	crocodile	species.		

		

6.2	Methodology	

	

6.2.1	Field	Sampling	

Tissue	samples	were	collected	from	122	unique	crocodile	individuals	

between	March	2012	and	December	2014	across	an	approximately	200	km	

length	of	the	Lower	Kinabatangan	Wildlife	Sanctuary	(LKWS)	(Fig.	6.1).	

Samples	were	mostly	collected	from	the	Kinabatangan	River	(n=111)	and	
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from	a	crocodile	farm	located	between	Kinabatangan	and	Labuk	Rivers	

(n=11)	(~N5.546456,	E118.013712).	Individuals	sampled	in	the	

Kinabatangan	River	ranged	in	size	from	30.2	cm	to	518	cm;	this	included	30	

adults	and	64	first-year	hatchlings,	with	the	remainder	being	sub-adults.	

Although	no	reliable	information	on	capture	locations	was	available,	the	

majority	of	the	farmed	individuals	were	presumed	to	have	originated	in	the	

Kinabatangan	River.	They	ranged	in	size	from	2.54	to	3.81	m.	Adult	

individuals	were	captured	using	steel	mesh	traps	(see	Section	3.2.2),	

whereas	juveniles	(shorter	than	1.5	m	in	length)	were	hand-captured	from	a	

boat.	These	smaller	crocodiles	are	easier	to	handle	and	carry	a	much-

reduced	risk	during	capture	(for	both	animal	and	handler).			

	

	
Figure	6.1.	Capture	locations	of	all	111	wild-caught	individuals	sampled	
(each	red	point	indicates	a	single	unique	individual	sampled).	A	further	11	
individuals,	from	a	crocodile	farm,	were	sampled	upon	seizure.	Showing	the	
~200	km	extent	of	river	habitat	surveyed	during	the	course	of	the	study.		
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Table	6.1.	Summary	of	selected	morphometric	measurements	across	all	
individuals	(n=122)	sampled.	Morphometric	measurements	included	total	
length	(length),	snout	to	vent	(SV)	and	head	length	(Head).		
	

 

Mean (cm) SE (cm) (+/-) 

Length 115.63 120.17 

SV 46.43 52.13 

Head 19.85 21.68 

Head to TL ratio 4.87 0.38 

	

Sub-adult	individual	captures	were	carried	out	at	night;	eye	shine	was	used	

to	identify	a	crocodile’s	presence.	Hand	capturing	involved	grasping	the	

animal	at	the	base	of	the	skull	with	a	firm	but	not	constricting	grip.	Handling	

of	hatchlings	had	to	be	carried	out	with	care	so	as	not	to	damage	the	fragile	

limbs.	Upon	capture,	individuals	had	their	mouths	secured	and	

morphometric	measurements	taken	(Table	6.1).	Tissue	samples	were	taken	

by	removing	the	tip	of	a	scute	(osteodermal	ridge)	from	the	mid-section	of	

the	right	hand	side	of	the	tail	(Fig	6.2).	Adult	samples	were	collected	in	a	

similar	manner,	although	just	a	scute	tip	was	removed	(see	Chapter	3	for	a	

detailed	explanation	of	adult	capture	and	restraint).	Tissue	samples	were	

stored	in	95%	ethanol	and	later	frozen	at	-86°C.			
	

	
Figure	6.2.	Scute	removed	from	the	right	hand	side	of	the	tail	for	genetic	
analysis	(red	arrow).	The	scute	does	not	grow	back	and	allows	for	
identification	of	previously	caught	individuals.		
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6.2.2	Laboratory	Methodology	

DNA	extraction	was	carried	out	in	using	a	Qiagen	DNeasy	blood	and	tissue	

kit	(Qiagen,	Venlo,	Netherlands).	A	section	of	the	mitochondrial	genome’s	

control	region	(Domain	I	and	II)	(~760bp)	was	amplified	through	

polymerase	chain	reaction	(PCR)	using	primers	L15463	(5’	CGCTGGCCT-

GTAAGACAGA	3’)	and	H16260	(5’	CACTAAAATTACAGAAAAGCCGAC	3’)	

(Fitzsimmons	et	al.	2002).	A	total	of	30	strategically	selected	samples	were	

sequenced,	selected	to	cover	a	range	of	size	and	sex	demographics	from	the	

total	sampled	populations.	The	protocol	for	PCR	reactions	was	as	follows:	

reactions	of						15	μl	were	performed	using	2	ng	DNA,	1.5	mM	MgCl2,	0.2	mM	

dNTPs,	0.2	mM	of	each	primer	(L15463	and	H16260),	1X	GoTaq®	buffer	and	

0.02	U/μl	GoTaq®	DNA	polymerase	(Promega).	The	PCR	thermal	cycle	

conditions	were:	initial	denaturation	at	95°C	for	2	minutes,	followed	by	32	
cycles	of	94°C	for	25	seconds,	48°C	for	45	seconds	and	72°C	for	45	seconds.	
A	final	extension	temperature	of	72°C	for	5	minutes	concluded	the	
amplification.	Sequencing	was	performed	by	First	BASE	Laboratories	Sdn	

Bhd	(Malaysia).		

	

In	addition	to	the	122	samples	collected	during	this	study,	genotypes	of	C.	

porosus	individuals	from	across	the	species	range,	previously	uploaded	onto	

Genbank,	were	also	used	for	comparative	purposes.	These	included	

individuals	from	Queensland	(AF542533),	the	Northern	Territory	

(JQ237683,	AF542543,	JQ237684	and	JQ237685),	Australia,	and	Southeast	

Asia	(AF542535,	AF542536,	AF542537,	AF542538	and	AF460213),	

	

The	total	sample	set	of	122	individuals	were	genotyped	using	18	published	

microsatellite	primers	from	Miles	et	al.	(2009)	and	Fitzsimmons	et	al.	

(2000)	(Table	6.2).	Highly	polymorphic	loci	were	selected	with	the	aim	of	

enabling	the	identification	of	individuals	with	high	probability	(mean	(±s.e)	

k	=	10.4	±5.2).	The	PCR	protocol	yielded	reaction	volumes	of	10	μl	and	

included	5	μl	of	Master	Mix	(Multiplex	PCR	Kit,	QIAGEN)	0.2	μl	of	each	

primer,	as	well	as	2	ng	of	DNA.	Gradient	PCR	was	carried	out	on	each	primer	

using	two	samples	to	establish	the	most	efficient	annealing	temperature,	
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ranging	from	54°C	to	64°C	in	2°C	increments	using	the	following	conditions:	
initial	denaturation	at	95°C	for	15	minutes,	followed	by	35	cycles	of	94°C	for	
30	seconds,	various	annealing	temperatures	(54°C-64°C)	for	1	minute,	and	
72°C	for	90	seconds.	A	final	extension	was	carried	out	at	72°C	for	a	period	of	
10	minutes.	Once	optimum	annealing	temperatures	were	established,	

microsatellite	primers	were	multiplexed	using	Qiagen	multiplex	PCR	kit	

(QIAGEN,	Venlo,	Netherlands).	Microsatellites	were	labelled	with	one	of	

three	fluorescent	labels	and	the	18	primers	separated	into	four	different	

multiplexes	and	one	uniplex.	Multiplexes	were	assessed	with	Auto-Dimer	

(Vallone	&	Butler	2004)	to	ensure	no	primer	dimer	formation	during	the	

PCR.	Fragment	analysis	was	carried	out	by	First	BASE	Laboratories	Sdn	Bhd	

(Malaysia).		

	

	
Figure	6.3.	Allele	size	ranges	and	multiplex	assignment.	Fluorescent	dyes	
assigned	to	each	primer	indicated	by	coloured	arrow:	FAM	(Blue),	HEX	
(Green)	and	TAM	(Yellow).		
	
	
	
	
	
	
	
	
	
	
	
	

Uniplex1	

Mutiplex1	 Mutiplex2

Mutiplex3
Mutiplex4
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Table	6.2.		Microsatellite	loci	utilised	across	the	122	Crocodylus	porosus	
individuals	captured	and	sampled.	Included	are:	primer	sequences,	repeat	
motifs,	number	of	alleles	(k),	allelic	range	and	gradient	PCR	determined	
annealing	temperatures.1-Miles	et	al.	2009;	2-Fitsimmons	et	al.	2002.	

Locus	 Primer	Sequence		 Repeat	Motif	 k	

Allele	Range	(bp)	

(published)	

Annealing	

Temp.	(°C)	

CpP13081	 F	CAGTCGGGCGTCATCAACCTGAAAATGGATACTG	 (AAAC)25	 8	 153–271	 54	

	

R	GTTTACGCTTGTTAACTTCACT	

	 	 	 	CpP30081	 F	CAGTCGGGCGTCATCAACAACTGGCACATCTCA	 (ACAG)17	 9	 370–432	 62	

	

R	GTTTCCCGTAGCCTCCTACTG	

	 	 	 	

CpP3091	 F	GTTTAATACCTGGCATGTGTTCTTC	 (AAAC)28	

2

3	 225–306	 62	

	

R	CAGTCGGGCGTCATCACATCAGGTTGGCATTTCA	

	 	 	 	CpP9141	 F	CAGTCGGGCGTCATCAACATGGCAACTTCAGAG	 (AGAT)9	 8	 257–299	 62	

	

R	GTTTCGAATAAATGCAGCATAA	

	 	 	 	CpP3021	 F	GTTTGGAACCCAAGAACTTACAAC	 (AC)17	 9	 188–217	 62	

	

R	CAGTCGGGCGTCATCATTGGGTTTAGTCAGCACATA	

	 	 	 	

CpP2081	 F	CAGTCGGGCGTCATCACACATGGCTTTTGTTCTGAG	 (AGAT)11	

1

1	 211–295	 62	

	

R	GTTTCCTGCAAAATGTTCTCCTA	

	 	 	 	CpP10011	 F	CAGTCGGGCGTCATCAGCAGAAACGAAAGATGTAGT	 (AGAT)7	 3	 260–277	 62	

	

R	GTTTGGTTCCGTTGGTTTATT	

	 	 	 	CpP25041	 F	CAGTCGGGCGTCATCACTCATATTTCCCAACTATCAC	 (AGAT)9	 8	 306–367	 64	

	

R	GTTTCATTCCCACAATACACATAA	

	 	 	 	

CpP32201	 F	CAGTCGGGCGTCATCAGGAATTGGAGGAATCAGT	 (AAAC)25	

1

8	 146–262	 64	

	

R	GTTTGGCCAATGCTCTTTTA	

	 	 	 	

CpP2031	 F	CAGTCGGGCGTCATCAGTCCATTGCCAGTTGTAA	 (ACAG)21	

1

0	 205–283	 64	

	

R	GTTTCTGAGGGTGAACTTTAGAA	

	 	 	 	

CpP5011	 F	CAGTCGGGCGTCATCACCTGATAGACTGCCTACAA	 (ACAG)15	

1

5	 290–375	 64	

	

R	GTTTGTTAGTTCCCACTGAAGAAG	

	 	 	 	

CpP3111	 F	GTTTGCGCACACACTATATCA	 (AAAC)28	

1

7	 277–363	 64	

	

R	CAGTCGGGCGTCATCATAACATGGCAACACATTT	

	 	 	 	CpP4051	 F	CAGTCGGGCGTCATCAAGTTTCAGCCAGCTCTAGAA	 (AAAG)15	 8	 195–245	 64	

	

R	GTTTCCAGAAGCCACCTAAAGTTA	

	 	 	 	Cj182	 F	ATCCAAATCCCATGAACCTGAGAG		 (CA)21	 5	 190-192	 64	

	

R	CCGAGTGCTTACAAGAGGCTGG	

	 	 	 	Cj1312	 F	GTTTGTCTTCTTCCTCCTGTCCCTC		 (CA)14	 9	 210-218	 64	

	

R	AAATGCTGACTCCTACGGATGG	

	 	 	 	CUD682	 F	GCTTCAGCAGGGGCTACC		 (CA)15	 7	 137-147	 64	

	

R	TGGGGAAACTGCACTTTAGG	

	 	 	 	

Cj1272	 F	CCCATAGTTTCCTGTTACCTG		

(CT)7TT(CT)12(

CA)16	

1

0	 336-353	 64	

	

R	GTTTCCCTCTCTGACTTCAGTGTTG	

	 	 	 	Cj162	 F	CATGCAGATTGTTATTCCTGATG	 (CA)20	 7	 132-152	 64	
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6.2.3	Statistical	analysis		

	

6.2.3.1	Microsatellites	

Presence	of	null	alleles	and	scoring	errors	were	assessed	using	

Microchecker	(V.2.2.3)	(Van	Oosterhout	et	al.	2004);	each	locus	was	tested	

to	determine	whether	or	not	it	was	exhibiting	Hardy-Weinberg	Equilibrium	

(HWE).	GENEPOP	(V.4.2)	(Raymond	&	Rousset	1995)	was	utilised	to	

perform	HWE	tests	with	a	presumed	excess	of	heterozygosity,	and	with	a	

deficiency	of	heterozygosity	as	alternative	hypotheses	explaining	the	lack	of	

HWE.	GENEPOP	was	also	used	to	estimate	the	frequency	of	null	alleles	that	

could	explain	the	lack	of	HWE.	Additionally,	GENEPOP	was	also	used	to	test	

for	linkage	disequilibrium,	through	the	use	of	Fisher’s	Exact	Probability	

Test,	as	well	as	to	test	for	the	presence	of	private	alleles.	The	remaining	loci	

were	analysed	using	Microsatellite	Analyser	(MSA)	(V.4.05)	(Dieringer & 

Schlotterer 2003)	to	determine	observed	and	expected	heterozygosities.		

	

The	number	of	sub-populations	found	within	the	122	individuals	sampled	

was	determined	using	STRUCTURE	(V.2.3.2)	(Pritchard	&	Donnelly	2000).	

This	programme	was	used	to	run	1.0	x	107	iterations,	with	a	burn-in	of							

1.0	x	106.	The	number	of	populations	(K)	was	estimated	by	simulating	

values	of	k	between	1	and	15,	each	Markov	chain	Monte	Carlo	(MCMC)	

simulation	being	repeated	three	times.	Results	from	these	45	MCMC	

simulations	were	collated	using	Structure	Harvester	(Earl	2012).	

Populations	were	subsequently	mapped	using	ArcGIS	(V.9.0).		

	

The	different	populations	were	assessed	to	determine	whether	a	genetic	

bottleneck	had	occurred	using	BOTTLENECK	(V.1.2.02)	(Cornuet	&	Luikart	

1996).	The	populations	were	assessed	using	the	Stepwise	Mutation	Model	

(SMM),	as	well	as	the	Two	Phase	Model	(TPM)	using	default	parameters.	By	

doing	this,	both	types	of	mutation	could	be	assessed.	To	determine	if	a	

population	expansion	had	occurred,	both	k	(Reich	&	Goldstein	1998)	and	g	

tests	(Reich	et	al.	1999)	were	performed	using	the	“Kgtests”	Excel	macro	

(Bilgin	2007).		Further	bottleneck	analysis	could	have	been	carried	out	with	
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the	use	of	Msvar	(Girod	et	al.	2011),	however	this	was	not	possible	due	to	

time	constraints.		

	

6.2.3.2	Mitochondrial	DNA(mtDNA)	

The	mtDNA	sequences	were	analysed	as	an	entire	population,	as	well	as,	by	

population,	as	assigned	by	STRUCTURE	(see	above	Section	6.2.3.1).	

Analysed	in	DNAsp	(V.5.10.01)	(Librado	&	Rozas	2009)	and	Arlequin	

(V.3.5.2.2)	(Excoffier	&	Lischer	2010),	the	nucleotide	diversity	(π),	analyses	

of	molecular	variance	(AMOVA),	Tajima’s	D	and	mismatch	distributions	of	

the	mtDNA	sequences	were	determined.	Analyses	of	molecular	variance	

were	used	to	assess	the	variance	both	among	and	within	the	populations.	

Mismatch	distributions	and	Tajima’s	D	were	computed	as	these	are	

informative	about	the	populations’	demographic	history.	Haplotype	

diversity	was	examined	in	NETWORK	(V.4.613)	(Bandelt et al. 1999) and	a	

median-joining	network	was	constructed.	Haplotypes	identified	from	the	

current	study	were	plotted	along	with	the	additional	haplotypes	from	

Genbank	(see	above	Section	6.2.3.1).	 

	

BEAST	(V.1.8.2)	(Drummond	and	Rambaut	2007)	was	used	to	create	a	

temporally	calibrated	phylogenetic	tree;	mutation	rates	were	estimated	

using	time	since	divergence	between	C.	porosus	and	C.	niloticus,	as	given	in	

Oaks	(2011)	and	Genbank	sequences	of	C.	niloticus	(JF502245.1)	of	the	

sequenced	region.	Three	runs	were	conducted	in	BEAST,	with	1.0	x	105	burn	

in	steps	and	1.0	x	106	steps	of	the	MCMC	algorithm.	These	results	were	

combined	using	Log	Combiner	(V.1.8.2)	prior	to	using	Tree	Annotator	

(V.1.8.2)	to	create	a	summary	tree	from	the	30,000	phylogenetic	

simulations.	Finally,	TRACER	(V.1.6.0)	was	utilised	to	construct	Bayesian	

Skyline	Plots	(BSP)	and	lineages,	analyses	were	carried	out	with	a	10%	

burn-in	(Rambaut	&	Drummond	2007).		
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6.3	Results		

	

A	total	of	122	tissue	samples	were	collected	from	both	the	Kinabatangan	

River	(n=111)	and	a	crocodile	farm	(n=11).	All	samples	provided	sufficient	

DNA	of	high	quality	for	subsequent	analysis.		

	

6.3.1	Genetic	variation		

Microchecker	indicated	the	potential	presence	of	population	structure	when	

analysing	the	complete	dataset	simultaneously	with	a	large	proportion	of	

loci	seemingly	presenting	null	alleles.	Six	of	the	microsatellite	loci	

multiplexed	failed	to	produce	reliable	results	during	fragment	analysis	

across	the	122	samples	and	were	therefore	removed	from	subsequent	

analyses.	Forty	samples	were	rerun	to	reinforce	the	impact	of	the	remaining	

loci.	Two	additional	loci,	CpP302	and	CUD68,	were	deemed	to	possess	null	

alleles;	this	was	established	after	suggested	populations	were	subsequently	

assessed	for	excess	zygosity.	This	resulted	in	far	fewer	loci	exhibiting	null	

alleles	supporting	the	hypothesis	that	population	structure	was	present.	

There	was	evidence	of	linkage	disequilibrium	in	two	loci,	Cj131	and	Cj18,	

but	these	were	included	in	analyses	as	it	was	not	found	to	be	the	case	for	all	

populations,	or	for	the	total	dataset.	There	was	no	evidence	of	private	alleles	

being	present	within	the	sample	range.	Overall	microsatellite	heterozygosity	

across	the	10	loci	was	lower	than	expected,	ranging	from	0.22	and	0.85	

(Table	6.3).		
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Table	6.3	Summary	statistics	table	for	each	microsatellite	locus,	excluding	
those	loci	that	displayed	null	alleles:	1)	number	of	alleles	2)	observed	
heterozygosity	3)	expected	heterozygosity.	

Locus	 A1	 Ho
2	 He

3	

CpP1308	 17	 0.49	 0.51	

CpP309	 19	 0.74	 0.87	

CpP914	 4	 0.44	 0.50	

CpP208	 18	 0.77	 0.84	

CpP1001	 4	 0.22	 0.41	

CpP501	 15	 0.85	 0.85	

CpP311	 21	 0.77	 0.89	

CpP405	 3	 0.54	 0.35	

Cj18	 9	 0.68	 0.73	

Cj131	 14	 0.62	 0.80	

	

6.3.2	Population	Structure		

Three	sub-populations	were	determined	across	the	sample	range;	indicated	

by	the	large	peak	at	K=3	(Fig.	6.4).	Samples	obtained	from	the	crocodile	

farm	were	spread	evenly	throughout	the	populations	indicating	that	

individuals	were	likely	sourced	from	the	Kinabatangan	River.				

	
Figure	6.4.	ΔK	values	against	K	indicating	levels	of	population	structure.	
Large	peak	at	K=3	indicating	that	the	Kinabatangan	population	is	comprised	
of	three	distinct	populations,	where	K	equals	the	number	of	populations.		
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Individuals	were	sampled	along	a	200	km	stretch	of	the	Kinabatangan	River;	

although	a	stretch	of	river	without	visible	geographic	boundaries,	there	

remains	the	potential	presence	of	human-mediated	boundaries		(see	

Chapter	3).	Occurrence	of	populations	appeared	to	be	evenly	distributed	

throughout	the	sampling	range	(Fig.	6.5)	and	suggests	that	spatial	exclusion	

does	not	play	a	role	in	the	maintenance	of	these	three	distinct	populations.					

	

	
Figure.	6.5.	Geographic	distribution	of	the	three	populations	as	defined	by	
STRUCTURE.		
	

There	appears	to	be	little	hybridisation	between	the	populations,	especially	

in	Population	1	(Fig.	6.6).	The	presence	of	11	farmed	individuals	of	

unknown	capture	locations	were	equally	distributed	throughout	the	three	

populations.		
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Figure 6.6. Clustering analyses indicating the mean population allocation of each 
individual. Plot shows low levels of hybridization between populations despite 
the lack of geographic separation. Yellow represents Population 1, red 
Population 2 and blue Population 3; several individuals are shown to exhibit true 
hybridisation between these clusters. Plot was created using STRUCTURE 
PLOT (Ramasamy et al. 2014). 
 

Inbreeding	coefficients	(FIS)	were	found	to	be	not	significant	(p	=	0.15)	

between	populations,	despite	a	high	level	of	inbreeding	found	in	Population	

1	(FIS	=	0.171)	and	a	very	low	level	of	inbreeding	in	Population	2	(FIS	=	

0.001).	Across	the	entire	sampled	population,	inbreeding	was	relatively	low	

throughout	the	Kinabatangan	River	(FIS	=	0.063).	Population	1,	with	its	high	

levels	of	inbreeding,	was	represented	by	fewer	individuals	than	the	other	

populations	and,	with	a	larger	sample	size,	could	have	exhibited	significantly	

higher	levels	of	inbreeding	than	the	other	populations.	Additionally,	

Population	1	also	had	the	lowest	levels	of	hybridisation	with	the	other	two	

populations	(Fig.	6.6),	which	would	be	consistent	with	higher	inbreeding	

levels.		

	

6.3.3	Mitochondrial	DNA	(mtDNA)	

MtDNA	analysis	resulted	in	the	identification	of	four	distinct	haplotypes,	

with	a	low	pairwise	genetic	distance	of	0.8%	and	an	average	nucleotide	

diversity	of	0.0019.	These	four	haplotypes	were	coupled	with	the	eight	

additional	haplotypes	taken	from	Genbank	in	a	median-joining	network	

(MJN)	(Fig.	6.7).	The	MJN	displays	each	of	the	haplotypes	identified	during	

the	current	study	as	unique	(Fig.	6.7).	There	was	a	significant	genetic	

differentiation	between	the	populations	(FST	=	0.183,	p=	0.019).			
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Figure	6.7	Median-joining	network	(MJN)	haplotypes	from	different	
locations	are	denoted	by	differing	colours:	Kinabatangan	(green),	Southeast	
Asia	(yellow),	Queensland	(Australia)	(blue)	and	Northern	Territory	
(Australia)	(red).	Haplotype	8	originates	from	western	Kalimantan	
(Indonesian	Borneo).	Haplotype	6	is	the	only	haplotype	present	in	more	
than	one	location.		
	

Analyses	using	BOTTLENECK	suggested	that	neither	the	SMM	(p	=	0.403)	

nor	the	TPM	(p	=	0.090)	detected	a	significant	excess	of	heterozygosity	

through	the	use	of	two-tailed	t-tests.	This	suggests	a	lack	of	evidence	for	a	

recent	genetic	bottleneck	in	any	of	the	sub-populations,	or	for	the	

population	as	a	whole.		

	

Mismatch	distributions	carried	out	in	DNAsp	suggest	a	population	

expansion	with	very	few	pairwise	differences	both	in	the	entire	sampled	

population	(Fig.	6.8	a),	and	each	of	the	sub-populations	(Fig.	6.8	b-d).	The	

green	line	indicated	the	expected	number	of	pairwise	differences	under	a	

demographic	expansion,	with	the	red	line	reflecting	the	observed	

frequencies.	Observed	frequencies	closely	reflect	expected	frequencies	

under	the	demographic	expansion	hypothesis.	In	addition,	tests	of	Tajima’s	
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D	produced	negative	figures	for	each	of	the	three	populations	(-0.8165,	-

1.31009,	and	-1.63982,	respectively),	and	a	mean	negative	Tajima’s	D	value	

of	-1.26,	consistent	with	the	suggestion	of	a	population	expansion	in	the	past	

of	these	populations.		

	

	
Figure	6.8	Mismatch	distributions	displaying	the	number	of	pairwise	
polymorphisms.	Mismatch	distributions	across	the	entire	sampled	
population	(a),	and	for	only	Population	1(b),	Population	2	(c)	and	
Population	3	(d).		
	

A	Bayesian	Skyline	Plot	(BSP)	mapped	and	quantified	the	detected	

population	expansion	(Fig.	6.9).	The	BSP	indicated	a	small	three-fold	

population	expansion	that	occurred	somewhere	around	25,000	years	ago,	

however,	the	BSP	had	large	confidence	intervals.		

	

a	 b	

c	 d	
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Figure	6.10.	Bayesian	Skyline	Plot	(BSP)	showing	the	effective	population	
size	over	the	last	110k	years.	Note	the	small	population	expansion	over	the	
last	25k	years.	Green	and	red	lines	indicate	confidence	intervals,	with	the	
blue	line	showing	the	mean	population	expansion.		
	

A	neighbour-joining	tree	illustrates	the	low	levels	of	divergence	both	

between	the	individuals	from	the	Kinabatangan,	but	also	with	many	of	the	

regional	samples	that	were	used	from	other	studies	(Fig.	6.10).	The	tree	

indicates	that	the	majority	of	the	Kinabatangan	samples	as	well	as	

individuals	from	Kalimantan,	Southeast	Asia,	and	three	locations	in	Australia	

all	form	part	of	a	single	haplogroup.	Individuals	NT1	and	Southeast	Asia	3	

appear	to	be	highly	genetically	distinct	from	the	reminder	of	the	samples	

(Fig	6.10).		
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Figure	6.10	Evolutionary	relationships	between	both	the	Kinabatangan	
samples	and	individuals	sampled	from	across	the	region	using	the	
neighbour-joining	construction	method.	Divergence	times	were	based	on	
mutation	rate	calculated	from	C.	niloticus	sequences	given	a	known	
divergence	time	(Oaks	2011).	Percentage	confidence	of	each	clade	is	
denoted	by	bracketed	figures.			
	

6.4	Discussion	

	

In	many	ways,	estuarine	crocodiles	are	unique,	both	among	crocodilians	and	

non-oceanic	dwelling	predators,	in	their	ability	to	traverse	oceans;	they	are	

rarely	restricted	by	geographical	barriers	(Campbell	et	al.	2010).	This	has	

led	to	their	expansive	range	and	widespread	distribution.	As	an	ancient	

species,	dating	to	approximately	between	9	and	39	million	years	old	(Oaks	

2011),	C.	porosus	has	dealt	with	shifts	in	both	climate	and	habitat	suitability.	

The	Bornean	population	of	estuarine	crocodiles	has	endured	recent	

population	fluctuations	(Whitaker	1984)	but	this	present	study	suggests	

that	this	has	had	limited	impact	on	the	population’s	genetic	health.	Whether	
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this	is	the	result	of	more	individuals	than	expected	surviving	the	population	

decline,	or	that	the	decline	was	not	over	a	sufficiently	long	enough	period,	in	

terms	of	number	of	generations,	to	cause	a	significant	loss	in	heterozygosity,	

remains	unclear.	This	is	despite	the	fact	that	during	the	1984	surveys,	only	

56	individuals	were	spotted	over	the	course	of	1,146	km	of	river	surveyed	

(Whitaker	1984).	This	represented	an	average	detection	rate	of	just	0.05	

individuals	per	km,	far	less	than	the	3.98	and	2.09	individual	per	km	

detected	in	two	of	Australia’s	major	rivers	during	the	same	period.	

	

The	lack	of	a	genetic	bottleneck	in	the	Kinabatangan	population	is	consistent	

with	the	findings	of	other	studies	(Gratten	2004;	Russello	et	al.	2007),	and	

can	probably	be	explained	by	the	free	movement	of	surviving	(remaining)	

individuals,	and	the	willingness	and	ability	of	transient	females	(see	Chapter	

3)	to	travel	larger	distances	to	find	potential	mates.	This	coupled	with	the	

brief	nature	of	the	population	bottleneck	(4-6	generations)	ensured	that	

high	levels	of	heterozygosity	were	maintained.	Such	observations	underline	

the	importance	of	ensuring	free	passage	for	individuals	up-	and	down-river,	

and	raises	questions	regarding	the	consequences	of	the	erection	of	non-

intentional	barriers,	such	as	bridges	(see	Chapter	3),	on	the	genetic	health	of	

the	population	should	numbers	fluctuate	in	the	future.	This	is	also	an	

important	consideration	when	individuals	are	culled	(a	management	

strategy	under	consideration	in	the	area).		

	

The	finding	of	a	population	expansion	in	the	Bornean	population	is	

corroborated	by	the	findings	of	other	C.	porosus	studies	in	other	regions	

(Gratten	2004;	Luck	et	al.	2012;	Russello	et	al.	2007).	Gratten	(2004),	for	

example,	found	an	expansion	dating	back	to	the	Pleistocene	Epoch	across	

maternal	lineages.	This	author	also	described	the	entirety	of	the	C.	porosus	

population	as	belonging	to	just	one	evolutionary	significant	unit	(ESU,	

Moritz	1994).	The	results	of	this	present	study	suggest	that	the	Sabah	

population	also	falls	within	this	same	ESU,	with	no	significant	differentiation	

from	other	sampled	populations	(Fig.	6.10).	The	population	expansion	found	

was	small,	with	just	a	three-fold	increase	over	the	course	of	around	40,000	
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years.	This	could	be	attributable	to	changes	in	climate	associated	with	the	

last	Ice	Age.	

	

A	relatively	low	level	of	mtDNA	divergence	was	found	(0.8%).	This,	

however,	was	higher	than	both	divergences	found	by	Luck	et	al.	(2012)	and	

Russello	et	al.	(2007).	Such	an	overall	low	level	of	mtDNA	genetic	divergence	

is	characteristic	of	individuals	found	throughout	Southeast	Asia	(Luck	et	al.	

2012)	and	appears	to	be	characteristic	across	a	range	of	crocodilians	(Glenn	

et	al.	2002;	Ray	et	al.	2004;	Schmitz	et	al.	2003).	It	has	been	suggested	that	

Crocodylia	exhibit	such	low	levels	of	mtDNA	divergence	due	to	population	

bottlenecks	during	the	20th	Century	(Luck	et	al.	2012;	Glenn	et	al.	2002).		

The	lack	of	a	bottleneck	identified	in	the	current	study	would,	however,	

indicate	that	any	genetic	bottlenecks	that	did	occur	did	not	have	a	significant	

effect	on	the	overall	genetic	health	of	the	population.	Any	heterozygosity	

lost	during	such	an	event	would	take	longer	to	be	regained	in	the	

mitochondrial	genome	than	the	rapidly	mutating	microsatellites	(Haavie	et	

al.	2000).	This	could	potentially	be	indicative	of	a	bottleneck	that	occurred	

further	in	the	past,	at	the	species-level,	from	which	the	mitochondrial	

genome	is	still	recovering.		

	

The	present	study	identified	the	presence	of	four	distinct	haplotypes,	all	of	

which	were	distinct	from	the	eight,	previously	published,	haplotypes	used	

for	comparison	in	this	study.	The	new	haplotypes	were	also	distinct	from	

the	haplotype	identified	from	East	Kalimantan,	Indonesian	Borneo	(Russello	

et	al.	2007).	This	suggests	a	broader	number	of	haplotypes	could	be	present	

throughout	Borneo.		

	

The	equal	spatial	distribution	of	individuals	from	each	of	the	three	identified	

populations	indicate	that	the	movement	of	females	and	transient	males	(see	

Chapter	3)	are	key	in	mate-selection	and	in	ensuring	that	populations	are	

retained.	The	equal	inclusion	of	individuals	from	the	crocodile	farm	located	

between	the	Kinabatangan	and	Labuk	Rivers	suggest	that	all	specimens	

were	collected	from	the	Kinabatangan.	Furthermore,	with	the	collection	
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location	of	the	individuals	unknown	and,	potentially,	from	different	

positions	along	the	river,	this	view	supports	the	assumption	that	sampling	

of	111	individuals	along	a	200	km	stretch	of	river	was	sufficient	to	provide	a	

true	representative	of	the	overall	population	demographic.	The	lack	of	

spatial	segregation	of	sub-populations	could	possibly	be	a	result	of	source-

sink	dynamics.	Source-sink	dynamics	can	produce	non-spatially	exclusive	

populations	due	to	influxes	of	new	individuals	into	an	area	during	times	of	

severe	population	depletion	(Ferreira	da	Silva		et	al.	2014).		

	

There	are	isolated	reports	of	the	existence	of	a	Bornean	crocodile,	C.	rainus	

(Ross	1990).	These	claims,	however,	are	based	solely	on	morphology	of	

museum	specimens	and	lack	credibility,	with	suggestions	that	C.	rainus	

specimens	are	in	fact	the	Philippine	crocodile	(C.	novaguineae)	(Gratten	

2004).	The	present	study	found	no	evidence	of	anything	approaching	

species-level	divergence	between	any	of	the	122	individuals	sampled,	

suggesting	that	only	one	species	is	present	in	the	Kinabatangan	River.	

Reports	(Stuebing	et	al.	2006)	record	the	historic	presence	of	the	tomistoma	

(Tomistoma	schlegelii)	in	the	Kinabatangan,	however	there	was	no	

morphometric	or	genetic	evidence	found	in	the	present	study	of	any	

surviving	population.		

	

Future	work	should	focus	on	establishing	the	genetic	relationships	between	

populations	from	different	rivers	in	Sabah;	this	would	not	only	help	provide	

an	increased	understanding	of	the	health	of	the	state’s	crocodiles.	This	

would	also	allow	for	estimates	of	inter-river	migration	and	the	

establishment	of	whether	individual	rivers	harbour	“at	risk”	populations	

following	population	bottlenecks.	An	increased	understanding	of	the	

implications	of	different	management	strategies	must,	however,	be	

understood	before	those	strategies	are	implemented.	This	is	also	true	for	

any	future	plans	for	crocodile	culls.	Whilst	evidence	from	this	present	study	

suggests	that	a	carefully	managed	cull	would	have	few	detrimental	effects	

on	the	genetic	stability	of	the	population,	this	is	not	necessarily	the	case	for	

all	populations	in	Sabah.		
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The	identification	of	non-spatially	exclusive	populations	reinforces	the	

viewpoint	that	barrier	erection	should	be	avoided	along	the	Kinabatangan	

River.	The	presence	of	a	large	bridge	(see	Chapter	3)	has	the	potential	to	

interrupt	gene	flow	between	individuals.	For	crocodiles,	these	bridges	

represent	non-conventional	habitat	fragmentation.	Proposed	future	bridges	

would	intensify	this	issue,	not	just	for	crocodiles	but	also	for	many	

terrestrial	species	such	as	elephants,	felids	and	primates.		
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Chapter	7	General	Discussion	and	Conclusions			

	

The	Kinabatangan	River	basin	has	witnessed	a	large	increase	in	crocodile	

numbers	over	the	past	30	years,	increasing	from	0.21	km-2	in	1984	

(Whitaker	1984)	to	0.53	km-2	in	2011	(Luke	Evans,	unpubl.	data).	Increases	

in	population	numbers	have	resulted	in	an	increase	in	human-crocodile	

attack	figures.	Potential	shifts	in	the	distribution	of	prey,	and	thus	its	

availability,	as	a	consequence	of	habitat	fragmentation	mainly	attributable	

to	oil	palm	conversion,	are	likely	playing	a	key	role	in	these	increased	levels	

of	conflict.	The	highly	fragmented	landscape	found	in	the	Lower	

Kinabatangan	Wildlife	Sanctuary	(LKWS)	makes	it	an	important	model	for	

studying	lowland	tropical	rainforest	ecosystems;	these	are	areas	that	are	

globally	most	at	risk	from	conversion,	but	particularly	so,	throughout	South	

East	Asia	(Achard	et	al.	2002).		

	

An	understanding	of	population	structure	and	behavioural	relationships	are	

important	steps	in	mitigating	conflict,	and	ensuring	that	crocodilians	and	

humans	can	co-exist.	Developing	such	a	knowledge-base	is	an	essential	part	

of	creating	an	effective	management	plan	for	the	region’s	crocodiles;	this	

provided	an	important	focal	area	and	objective	for	the	current	study.	In	

doing	so,	the	study	additionally	provides	an	insight	into	the	ecology	of	the	

estuarine	crocodile	that	has	not	previously	been	examined.	As	well	as	

corroborating	some	recent	spatial	findings	on	the	distribution	and	dispersal	

of	estuarine	crocodiles	in	Australia	(Campbell	et	al.	2013),	the	study	also	

provided	an	opportunity	for	numerous	novel	explorations.	The	genetic	work	

on	the	crocodiles	of	the	LKWS	(Chapter	6),	for	example,	provided	an	insight	

into	both	the	genetic	effects	of	the	population	bottleneck	that	occurred	

during	the	20th	Century,	as	well	as	commenting	on	the	history	of	the	

population	over	recent	millennia.	The	genetic	resilience	of	a	population	that	

is	seriously	depleted	has	important	implications	for	management	of	

population	recovery	for	a	whole	range	of	organisms.		
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The	experimental	chapters	in	this	thesis	sought	to	test	a	number	of	

hypotheses.	Chapter	3	considered	the	levels	of	territoriality	shown	by	the	

estuarine	crocodile	and	attempted	to	determine	whether	individuals	of	

either	sex	were	holding	permanent	home	ranges.	The	determination	of	the	

presence	of	both	territorial	and	nomadic	males	is	consistent	with	the	

findings	of	Campbell	et	al.	(2013).	Females	were	found	to	observe	similar	

ranging	patterns,	however	due	to	the	small	sample	size	further	work	to	

confirm	this	is	required.	Territory	sizes	were	much	smaller	than	those	

reported	in	previous	studies	on	Australian	crocodiles	(Campbell	et	al.	2013);	

this	is	probably	attributable	to	increased	prey	availability	in	the	LKWS	

locale	permitting	a	higher	carrying	capacity	for	the	habitat,	with	

subsequently	more	individuals	housed	per	km2.	By	assessing	temporal	

movements	of	individuals	it	was	possible	to	ascertain	crepuscular	peaks	in	

movement	rates	at	both	dawn	and	dusk.	The	information	gathered	on	

movement	rates	and	patterns,	along	with	a	better	understanding	of	

territoriality,	has	important	management	and	conflict	avoidance	

implications.	For	example,	the	findings	from	this	project	could	be	used	when	

disseminating	information	and	advice	to	highlight	times	and	areas	of	high	

crocodile	attack	risk	to	local	people.			

	

The	use	of	Unmanned	Aerial	Vehicles	(UAVs),	or	drones,	is	tending	to	

become	commonplace	within	conservation	biology,	as	indeed	in	many	other	

scientific	disciplines.	This	is	mainly	the	result	of	developing	technologies	

proving	cheaper	and	studies	becoming	more	repeatable.	The	successful	

identification	of	crocodile	nests	using	drones	(Chapter	4)	is	a	novel	use	and	

has	enabled	the	first	identification	of	a	crocodile	nest	in	the	LKWS.	The	

ability	to	identify	nests	using	drone	flights	enabled	a	first	attempt	at	

assessing	their	spatial	distribution	(Chapter	5).	By	detecting	a	total	of	five	

nests,	through	surveying	a	relatively	small	area	of	habitat,	nesting	appears,	

as	had	been	hypothesised,	to	be	predictable;	such	a	finding	can	be	used	to	

refine,	and	make	more	efficient,	future	nesting	surveys.	Using	“fuzzy	

overlay”	functions	as	a	predictive	modelling	approach	to	nest	location	and	

distribution	is	an	obvious	way	forward	in	this	venture.	Nesting	was	found	to	
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occur	in	medium-high	levels	of	disturbance.	This	has	major	conservation	

and	management	implications	as	it	suggests	that	crocodiles	are	very	likely	

to	be	able	to	persevere	in	highly	fragmented	habitats,	with	nests	in	oil	palm	

even	possible.	The	location	of	nests	in	close	proximity	to	human	activity	

must	be	considered	when	writing	management	plans	and	also	when	

considering	what	the	carrying	capacity	of	a	river	might	be.		

	

Chapter	6	dealt	with	a	study	exploring	the	population	genetics	of	the	

estuarine	crocodiles	of	the	LKWS.	In	particular,	the	study	examined	both	

how	individuals	were	segregated	within	the	river	and	how	the	genetic	

health	of	the	population	had	been	affected	by	population	instability	

potentially	derived	from	human	hunting	activities	on	crocodiles.	The	

findings	that	the	crocodile	population	had	not	undergone	a	recent	

bottleneck	proved	the	resilience	potential	of	even	relatively	small	

populations,	as	well	as	their	ability	to	rebound.	The	existence	of	three	

geographically	aggregated	populations,	or	haplogroups,	provided	strong	

evidence	that	individuals	are	able	to	move	freely	throughout	the	river.	This	

supports	the	hypothesis	that	females	are	largely	transient	and	will	travel	in	

order	to	mate	preferentially	(Chapter	3).	Medium-high	levels	of	inbreeding	

found	within	the	rarest	of	the	three	haplogroups	did,	however,	provide	

cause	for	concern	should,	for	example,	barriers	such	as	bridges	prevent	

females	from	reaching	desired	mates	in	the	future.	The	historical	population	

genetics	examined	in	this	project	suggests	that	a	population	expansion	did	

occur	within	the	LKWS	population	some	25,000	years	ago.	This	could	have	

been	as	a	consequence	of	changes	in	climate	arising	during	the	last	Ice	Age	

(26,000	–	13,000	years	before	present)	(Richmond	&	Fullerton	1986).		

	

These	key	findings	provide	useful	signposts	for	future	management	

strategies,	not	only	in	terms	of	human	safety,	but	also	with	regard	to	

estuarine	crocodile	population	stability.	Males	provide	the	majority	of	

human	conflict	concerns	and	are	thought	most	likely	to	be	responsible	for	

the	majority	of	injuries	and	fatalities	(Caldicott	et	al.	2005).	Females	can,	

however,	become	increasingly	aggressive	during	the	nesting	season;	this	
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elevates	nesting	in	areas	within,	and	directly	around,	oil	palm	plantations	to	

a	level	of	major	safety	concern.	The	identification	of	important	nesting	

areas,	containing	characteristic	habitat	features	common	to	all	identified	

nests	(Chapter	4	and	5),	ensures	that	people	can	be	informed	that	areas	

containing	these	traits	are	treated	as	“high	risk”	locations	and	are	avoided.		

	

To	maintain	a	level	of	stasis	between	human	and	crocodilian	populations,	

the	overall	health	of	crocodilian	populations	is	of	fundamental	relevance.	

Assessment	of	the	consequences	of	anthropogenic	activities	on	crocodilian	

welfare	must,	therefore,	become	a	priority	research	activity.	The	

identification	of	human-erected	barriers	(Chapter	3),	with	their	associated	

consequences	in	terms	of	crocodile	movement	and	distribution,	has	

important	management	considerations	and	provides	further	emphasis	to	

the	notion	that	animal	ranges	must	be	considered	when	“essential”	habitat	

fragmentation	must	occur.	The	genetic	implications	of	such	barrier	

formation	are	yet	to	be	felt	(Chapter	6);	they	will	have	important,	and	

probably	far-reaching,	inbreeding	implications	over	future	generations.	The	

identification	of	non-geographically	isolated	haplogroups	or	populations	

reinforces	the	importance	of	free	movement	throughout	the	habitat.		

	

7.1	Management		

The	management	of	crocodilian	populations	has	seen	varying	levels	of	

success	over	the	last	40-50	years.	Populations	in	more	developed	countries,	

such	as	Australia	and	the	United	States,	have	seen	the	establishment	of	

highly	successful	management	strategies	along	with,	in	some	cases,	

harvesting	schemes	with	up	to	and	including	tens	of	thousands	of	adult	

crocodiles	being	removed	from	the	ecosystem	annually	(Moyle	2013;	

Saalfeld	&	Fukuda	2013).	In	general,	attack	numbers	in	these	countries	tend	

to	be	lower	than	in	developing	nations,	however,	the	species	that	are	

present	in	any	particular	geographical	region	does	have	a	role	to	play	in	

determining	attack	numbers	(Caldicott	et	al.	2005;	Langley	2005).	In	some	

developing	nations	where	carefully	identified	management	plans	have	not	
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been	implemented,	a	rise	in	crocodilian	numbers	has	resulted	in	spiralling	

attack	numbers	and	revenge	killings.		

	

Ecotourism	is	a	burgeoning	market	and	has	led	to	general	widespread	

interest	in	conservation	issues	from	the	public	(Stronza	2007).	This	is	true	

of	the	crocodile	and	despite	its	dangerous	nature,	the	increasing	popularity	

of	“jumping	crocodile”	tours	in	Northern	Australia	has	resulted	in	a	

conservation	success	story	(Ryan	&	Harvey	2000)	and	the	generation	of	at	

least	$2	million	AUD	(~£1	million)	of	annual	income	(Tisdell	et	al.	2004).	As	

of	2001,	tourism	receipts	across	the	state	of	Sabah	were	estimated	to	total	

RM900	million	(Ringgit	Malaysia)	(~£142	million);	approximately	60%	of	

this	revenue	(RM540	million)	(~£85	million)	was	assessed	to	have	been	

sourced	from	ecotourism	expenditure	(Sabah	Wildlife	Department	2010A).	

Large	crocodilians	can	be	found	throughout	the	LKWS,	as	well	as	the	rest	of	

Sabah,	and	their	presence	contributes	an	estimated	RM27	million	(~£4.2	

million)	to	the	annual	ecotourism	industry	(Sabah	Wildlife	Department	

2010A).	This	highlights	the	economic	value	of	sustained	or	growing	

crocodilian	populations.	As	noted	throughout	this	thesis,	the	Kinabatangan	

River	harbours	a	thriving	population	of	estuarine	crocodiles	that	has	

recovered	rapidly	following	significant	declines	during	the	20th	Century.	The	

specific	study	site,	directly	down-river	from	Batu	Puteh	village,	was	selected	

by	the	government	as	an	ideal	location	for	crocodile-based	ecotourism	in	

response	to	the	high	numbers	of	large	individuals	readily	visible	by	boat	in	

the	region	(Sabah	Wildlife	Department	1997).	The	scheme,	however,	was	

never	fully	implemented	due	to	a	lack	of	funding.	The	potential	of	

ecotourism	to	provide	a	financial	incentive	to	crocodile	conservation	and	

management	should	not	be	underestimated;	it	also	has	the	potential	to	

change	negative	opinions	towards	this	important	apex	predator.		

	

In	terms	of	future	management	strategies,	areas	identified	as	having	high	

levels	of	territorial	male	activity	during	this	project	(Chapter	3)	were	

deemed	as	being	areas	of	higher	risk	of	human	attack.	In	an	attempt	to	

reduce	likely	escalation	of	human-crocodile	conflict,	signs	(Figure	7.1)	are	
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being	placed	at	strategic	locations	throughout	the	LKWS	to	provide	ample	

warning	to	local	people	operating	in	those	areas.		

	

Based	on	the	findings	of	this	current	study	specific	management	strategies	

for	the	LKWS	should	include	protection	of	the	remaining	habitat	in	an	

attempt	to	ensure	that	high	levels	of	prey	remain	available	for	the	expanding	

crocodile	population.	The	erection	of	bridges	should	be	carefully	considered	

so	that	individual	crocodiles	do	not	become	isolated,	leaving	them	unable	to	

access	much	of	their	prey.	Prey	defence	(often	against	fishermen)	and	

hunger	could	be	a	major	factor	in	future	human-crocodile	conflict.		To	

prevent,	or	at	least	lessen,	conflict	with	female	crocodiles,	areas	that	meet	all	

requirements	for	nesting	(as	determined	in	Chapter	5)	should	be	protected,	

ensuring	that	egg-laying	female	crocodiles	are	not	forced	to	nest	within	oil	

palm	plantations.	If	these	recommendations	are	not	taken	under	

advisement,	a	major	concern	will	be	that	the	only	tangible	recourse	will	be	

the	culling	of	the	LKWS	population.	This	will	hamper	any	efforts	to	construct	

an	ecotourism	industry	around	centred	on	what	are	some	of	the	largest	

crocodilians	in	the	world.		

	

	
Figure	7.1	Sign	board	advising	people	that	the	area	has	high	levels	of	
crocodile	activity	and	not	to	enter	the	water.		
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7.2	Future	Research		

This	study	was	restricted	to	one,	albeit	the	largest,	of	Sabah’s	rivers.	Future	

research	should	undoubtedly	investigate	the	state	on	a	more	widespread	

scale,	especially	in	areas	surrounding	rivers	where	oil	palm	completely	

dominates	the	landscape.	Such	an	exercise	would	allow	wide-scale	

population	estimates	to	be	made;	this	could	provide	the	data	evidence	

needed	to	downgrade	the	conservation	status	of	the	estuarine	crocodile	in	

accordance	with	CITES.	To	do	this	would	require	demonstration	of	“non-

detriment	findings”,	essentially	the	displaying	of	a	stable,	or	increasing,	

widespread	population.	Downgrading	the	species	would	provide	greater	

avenues	for	increased	revenue	from	the	crocodile	meat	and	skin	industries;	

it	would	also	ensure	that	local	people	place	a	value	on	the	presence	of	

crocodiles.	As	previously	discussed,	management	and	large	predator	

conservation	is	far	more	effective	when	there	are	financial	advantages	to	be	

had	by	their	thriving	in	an	ecosystem.		

	

In	terms	of	building	on	specific	findings	from	this	study,	a	number	of	areas	

of	limited	knowledge	and	understanding	remain.	For	example,	further	

examination	of	the	effect	of	human-constructed	barriers,	such	as	the	bridge	

identified	in	Chapter	3,	on	crocodilian	movements,	is	essential	as	continued	

worldwide	fragmentation	of	ecosystems	catalyses	a	spiralling	number	and	

density	of	such	barriers.	Verifying	the	extent	of	the	effects	of	such	structures	

requires	prioritisation,	as	indeed	does	the	exploration	of	whether	any	other	

form	of	human	disturbance	could	produce	such	barrier	effects.	Expansion	of	

nesting	surveys	using	drones	is	a	virtual	necessity,	and	certainty,	as	rapid	

technological	advances	and	reductions	in	cost	will	ensure	that	single	flights	

can	cover	far	greater	areas	of	potential	nesting	habitat	(Chapters	4	and	5).	

This	would	enable	detailed	habitat	utilisation	maps	to	be	produced	allowing	

the	protection	of	“key”	areas	for	crocodilian	nesting.	In	terms	of	population	

genetics,	as	previously	mentioned,	state-wide	surveys	are	already	planned	

(Chapter	6);	these	will	allow	detection	of	not	only	inter-river	travel	but	

assessments	of	genetic	health	of	smaller	populations,	in	particular	those	that	

are	even	more	adversely	affected	than	the	LKWS.	In	these	rivers,	numbers	of	
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individuals	is	likely	to	have	fallen	far	lower	than	in	the	LKWS,	these	

populations	may	have	been	more	adversely	affected	by	previous	population	

bottlenecks.		

	

7.3	Project	limitations		

	

Working	on	the	largest	extant	reptile	represents	a	huge	challenge	and	

ensuring	that	adequate	training	experiences,	and	appropriate,	standardised	

and	sufficient	data	were	obtained	over	a	limited	period	of	four	years	had	its	

challenges!	Through	trial-	and-error-based	trapping	and	baiting	approaches	

and	attempts,	an	efficient	capture	technique	was	achieved,	but	only	by	Year	

3	of	the	project.	This	clearly	limited	the	total	number	of	crocodiles	captured.	

Regardless	of	manufacturers’	descriptors,	satellite	tags,	as	with	many	new	

technologies,	were	not	always	reliable	and	despite	the	use	of	three	different	

tag	systems	a	truly	successful	setup	was	found	for	use	in	the	LKWS.	

Unfortunately,	the	limited	sample	size	of	seven	tagged	individuals	does	

mean	that	the	findings,	while	accurate	and	convincing,	must	be	tempered	

with	a	degree	of	caution.	Note	should	also	be	made	that,	along	with	the	

trapping	challenge,	cost	limitations	on	satellite	units	can	be	restrictive.	

	

The	use	of	drones	proved	an	exciting	and	alternative	means	of	assessing	

nest	distributions.		Being	reliant	of	developing	technology	does,	however,	

bring	with	it	an	associated		“high-risk”,	particularly	when	usage	is	of	a	novel	

kind.	It	was	not,	however,	the	technology	itself	that	provided	the	greatest	

challenge,	but	the	environmental	and	climatic	conditions	during	the	

sampling	and	surveying	period.	Complete	submergence	of	the	area	following	

heavy	precipitation	led	to	the	majority	of	potential	nests	detected	not	being	

visible	and	available	for	study.			

	

A	project	of	this	nature,	were	it	to	be	carried	out	in	the	future	would	ideally	

need	more	than	the	three	field	seasons	that	were	feasible	during	this	

project.	Only	by	doing	this	can	a	sufficiently	large	enough	data	set	be	

collated	in	what	are	very	difficult	field	conditions.		
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7.4	Conclusions	

	

The	study	finishes	with	a	plea!	The	completion	of	any	future	work	of	this	

nature	is	gravely	threatened	by	the	difficulties	experienced	in	acquiring	

funding	for	research	providing	a	better	biological,	ecological,	economic	and	

survival	understanding	of	these	most	ancient	of	predators.	Crocodiles	play	a	

crucial	role	in	ecosystems	throughout	the	world	and	their	perseverance	is	

key	in	trophic	dynamics	and	has	potential	pharmaceutical	importance.	

Human-crocodile	conflict	mitigation	relies	on	education	of	local	people	and	

maintenance	of	habitat	to	ensure	a	suitable	prey	base.	Understanding	both	

in	terms	of	wild	and	captive	populations	is	fundamental	to	a	harmonious	

relationship	between	both	‘man	and	beast’.	
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