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Abstract
Most of the genetic architecture of schizophrenia (SCZ) has not yet been identified. Here,

we apply a novel statistical algorithm called Covariate-Modulated Mixture Modeling (CM3),

which incorporates auxiliary information (heterozygosity, total linkage disequilibrium, geno-

mic annotations, pleiotropy) for each single nucleotide polymorphism (SNP) to enable more

accurate estimation of replication probabilities, conditional on the observed test statistic (“z-

score”) of the SNP. We use a multiple logistic regression on z-scores to combine informa-

tion from auxiliary information to derive a “relative enrichment score” for each SNP. For

each stratum of these relative enrichment scores, we obtain nonparametric estimates of

posterior expected test statistics and replication probabilities as a function of discovery z-

scores, using a resampling-based approach that repeatedly and randomly partitions meta-

analysis sub-studies into training and replication samples. We fit a scale mixture of two
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Gaussians model to each stratum, obtaining parameter estimates that minimize the sum of

squared differences of the scale-mixture model with the stratified nonparametric estimates.

We apply this approach to the recent genome-wide association study (GWAS) of SCZ (n =

82,315), obtaining a good fit between the model-based and observed effect sizes and repli-

cation probabilities. We observed that SNPs with low enrichment scores replicate with a

lower probability than SNPs with high enrichment scores even when both they are genome-

wide significant (p < 5x10-8). There were 693 and 219 independent loci with model-based

replication rates�80% and�90%, respectively. Compared to analyses not incorporating

relative enrichment scores, CM3 increased out-of-sample yield for SNPs that replicate at a

given rate. This demonstrates that replication probabilities can be more accurately esti-

mated using prior enrichment information with CM3.

Author Summary

Genome-wide association studies (GWAS) have thus far identified only a small fraction of
the heritability of common complex disorders, such as schizophrenia. Here, we demon-
strate that by using auxiliary information we can improve estimates of replication proba-
bilities from GWAS summary statistics. The proposed Covariate-Modulated Mixture
Model (CM3) incorporates auxiliary information to construct an “enrichment score” for
each single nucleotide polymorphism (SNP). We show that a scale mixture of two Gaus-
sians provides a good fit to the observed effect size distribution stratified by the predicted
enrichment score when applied the method to a recent genome-wide association study
(GWAS) of SCZ (n = 82,315). Compared to estimates performed not using auxiliary infor-
mation, the CM3 more accurately models the observed replication rates by stratifying on
covariate-modulated enrichment scores. We observed that SNPs with low enrichment
scores replicate with a lower probability compared to SNPs with high enrichment scores,
even when both are genome-wide significant (p< 5x10-8). At model-based replication
rates�80% and�90% there were 693 and 219 independent loci, respectively. Increased
out-of-sample yield for SNPs ranked according to CM3 demonstrate the utility of incorpo-
rating auxiliary information via CM3.

Introduction
Schizophrenia (SCZ) is one of the most heritable of human diseases, with estimates of the pro-
portion of disease risk due to genetic factors ranging from 0.6 to 0.8[1]. However, until
recently, GWAS have identified only a small number of associated genes or loci, accounting for
a miniscule fraction of the heritability[2]. The turning point has been the establishment of the
Psychiatric Genomic Consortium (PGC)[3], which has enabled the pooling of large numbers
of independent studies, thus greatly increasing the power for identification of genes affecting
disease risk, and confirming the polygenic nature of schizophrenia and other psychiatric disor-
ders[2].

In most highly polygenic traits and diseases, individual genetic loci account for a very small
portion of the phenotypic variance[4]. While increasing GWAS sample sizes is crucial, another
key to improving estimates of which loci will replicate in independent studies is the application
of statistical methods that incorporate auxiliary information. We have previously shown, using
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GWAS summary statistics from a smaller SCZ study (n = 21,856)[2], that genomic annotation
categories[5, 6] and association with bipolar disorder (BIP)[7] significantly enriches test statis-
tics for non-null associations. Pleiotropic enrichment was also observed between SCZ and
other psychiatric and somatic phenotypes [8, 9]. Together with the ENCODE findings[10],
these results provide a strong evidence against a priori equivalence, or statistical exchangeabil-
ity, of all SNPs. These results instead suggest that the probability of association should be
allowed to vary as a function of the relative enrichment of different SNP categories.

Here we present a novel algorithm, termed Covariate Modulated Mixture Modeling (CM3)
that combines multiple sources of enrichment information to estimate SNP posterior effect
sizes and to rank genetic loci based on covariate-modulated strength of association with a
given trait or disease, i.e., loci that have the highest model-based estimates of probability of rep-
lication. The proposed method models thresholded z-scores as a function of enrichment cate-
gories, via logistic regression, to estimate a relative enrichment score for each SNP. Enrichment
scores are then stratified into K bins: for a given enrichment stratum, we fit a scale-mixture of
two Gaussians model to summary statistics within the stratum. These stratified mixture models
allow for estimation of the expected z-scores and replication rates, given the observed z-scores
and the effective sample size of the discovery and replication datasets. We hypothesized that
sorting SNPs by the predicted replication probability from CM3 would improve out-of-sample
yield, for a given replication rate, relative to the standard approach of sorting SNPs by nominal
p-values alone. Here we compute the empirical replication rate as the proportion of SNPs hav-
ing p values� 0.05 in an independent sample within a set of SNPs.

We applied the CM3 method to the latest PGC SCZ sample, including n = 35,476 patients
with SCZ and n = 46,839 controls, across 52 separate sub-studies[11]. We incorporated the fol-
lowing four auxiliary information categories: 1) linkage disequilibrium (LD)-weighted genomic
annotations; 2) total LD (TLD); 3) heterozygosity (H); and 4) pleiotropy with bipolar disorder
(BIP) (see Materials and Methods). Our results show that a stratified scale-mixture of two
Gaussians model appears to fit the SCZ data well across different enrichment strata. After
incorporating auxiliary information via CM3, more SNPs replicate at a given rate (e.g., 90%)
compared to sorting SNPs by nominal p-values alone. Thus, enrichment methods such as CM3
may provide effective criteria for ranking SNPs in GWAS for further investigation, with poten-
tial implications for improved gene discovery and polygenic risk prediction for personalized
medicine.

Results

Sources of Differential Enrichment
We show the results from 500 iterations of the resampling algorithm using split-halves (50% of
PGC SCZ sub-studies as discovery and the other 50% as replication samples), with inverse-var-
iance weighted meta-analysis z-scores computed for both “discovery” and “replication” sam-
ples[12]. Fig 1A shows the mean z-score across replications as a function of z-scores in the
discovery samples, for different LD-weighted genomic annotation categories. For a given z-
score in the discovery sample, tag SNPs in LD with enriched categories such as 5’UTR, exon,
and 3’UTR variants have a higher mean z-scores in the replication sample compared to less
enriched categories (e.g., intergenic; see S2 Fig for all categories studied). We also investigated
the relative ‘‘enrichment” due to heterozygosity (H). Fig 1B shows mean replication z-scores as
a function of z-scores in the discovery sample, for different ranges of H. For a given z-score in
the discovery sample, tag SNPs with higher H have a higher mean z-score in the replication
sample compared to SNPs with lower H. In addition, we calculated the mean replication sam-
ple z-scores as a function of z-scores in the discovery sample for different levels of association
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with BIP, after removing overlapping samples from the PGC BIP data[7]. For a given z-score
in the discovery sample, SNPs with more significant association with BIP have a higher mean
z-score in the replication sample compared to SNPs with less significant association with BIP
(less enriched, Fig 1C). We also observed that the mean replication sample z-scores increases
for a given discovery sample z-score as the total LD increases (Fig 1D). Taken together, this
shows that, after conditioning on auxiliary information, SNP z-scores are not exchangeable in
terms of association with SCZ. The properties of each SNP—LD with annotation categories
(Fig 1A and S2 Fig), heterozygosity (H, Fig 1B and S7 Fig), association level with other traits
(Fig 1C) and total LD (TLD, Fig 1D)—have implications regarding replicable associations with
SCZ.

Fig 1. Mean replication z-scores stratified by genomic annotation, pleiotropy and heterozygosity. The conditional mean z-scores in replication sample
(y axis) were plotted against the z-scores in the discovery sample (x axis). The shrinkage of replication z-score is differentiated by A.) genomic annotation
categories (All SNPs; Intergenic; 5’ untranslated region,5’ UTR; Intron; Exon; and 3’ untranslated region, 3’ UTR), B.) by heterozygosity (H) intervals, C.) by
associations with bipolar disorder (BIP; All SNPs; -log10 p� 1.0; -log10 p� 2.0; and log10 p� 3.0) and D.) by total LD (TLD) intervals. All plots were generated
by randomly assigning 26 of the PGC Schizophrenia sub-studies as discovery sample and 26 as replication sample (split half). The average value over 500
iterations is shown.

doi:10.1371/journal.pgen.1005803.g001
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Combined Differential Enrichment Score
We combined information from the different sources of auxiliary information (LD-weighted
annotation categories, TLD, BIP, and H) using a multiple logistic regression model, to compute
the predicted relative enrichment score for each SNP (see Materials and Methods). The relative
enrichment scores of all SNPs were stratified into ten equally spaced disjoint intervals. Fig 2
shows the conditional Q-Q plots displaying the distribution of summary statistics for the PGC
SCZ conditional on different levels of enrichment, from the least enriched stratum (Bin 1) to
the most enriched stratum (Bin 10). Q-Q curves are thresholded at–log10 p� 7.3 to focus on
SNPs below genome-wide significance. Comparing Fig 2A with Fig 2B shows that by including
pleiotropy with Bipolar Disorder (BIP) as extra source of auxiliary information the level of
enrichment increases. Fig 3A shows the stratified discovery and replication observed mean z-
scores of these strata (solid lines) with split half samples, using the resampling-based strategy
(see Materials and Methods). (The results for other re-sampling proportions are shown in S3
Fig). The shape of the posterior z-score functions (Fig 3A), monotonically increasing but with
a relatively flat region in the middle, is characteristic of mixture distributions, with non-linear
“shrinkage” towards zero (see Efron [13]). For a given z-score in the “discovery” sample, the z-
scores in the “replication” sample increases with increasing degree of predicted enrichment.
For example, in the case of a SNP with a z-score in the discovery sample of 2, the expected z-
score in the replication sample is approximately 0.10 for the least enriched category, and
approximately 1.30 for SNPs in the most enriched strata.

The solid lines in Fig 3B show the mean observed replication probabilities across random
split-half partitions as a function of nominal p-values in the discovery samples, for different
enrichment strata (see Materials and Methods). Results for other training/replication partition
proportions are shown in S4 Fig. As expected, Fig 3B shows an increase in observed replication
probability with increased relative enrichment factor levels for a given p-value. For examples,
for SNPs with a p-value of 0.001 (-log10(p) = 3.0) in the discovery sample, the observed replica-
tion rate is close to 0.09 in the least enriched stratum, and increased to an observed replication
rate of 0.68 for the most enriched stratum. Related to this, for a given observed replication rate,
the p-value varies dramatically across enrichment strata. The corresponding Figs illustrating
the observed relationships of z2 between discovery and replication samples are shown in S5 Fig.

Modeling Test Statistics and Replication Rate
To investigate if we can model the nonparametric estimates of replication test statistic means
and variances (solid lines in Fig 3A and 3B), we fit a scale-mixture of two Gaussians model to
each enrichment stratum (see Materials and Methods for details). The dotted lines in Fig 3A
indicate the posterior mean z-scores in replication sample as function of z-scores in discovery
sample for the different enrichment strata. The corresponding observed and predicted replica-
tion probability plots are shown in Fig 3B. Note that for SNPs satisfying the standard GWAS
significance threshold (p< 5 x 10−8), the predicted replication rate ranges from close to 0.28
for the least enriched stratum, to 0.94 in the most enriched stratum. In other words, SNPs
obtaining the commonly used p-value threshold in GWAS (p = 5x10-8) replicate more fre-
quently if associated with a high relative enrichment score compared to SNPs with the same p-
values but having a low enrichment score. The proposed mixture model appears to provide a
good fit to the observed data across different enrichment levels and discovery and replication
sample sizes. S3–S5 Figs show the model performance of other discovery/replication partition
proportions.

To investigate the effect of sorting SNPs based on predicted replication probability instead
of by nominal p-value, we computed the cumulative empirical replication rate using the
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Fig 2. Enrichment of SNP associations with schizophrenia conditioned on predicted enrichment
scores. The conditional Q-Q plot shows the enrichment of SNP association with schizophrenia stratified by
predicted relative enrichment scores A.) based on LD-weighted Annotation categories, heterozygosity and
total LD score and B.) based on LD-weight Annotation categories, heterozygosity, total LD score and SNP
association with bipolar disorder. The predicted enrichment scores are equally divided into 10 disjoint
intervals or bins (from the least enriched stratum, Bin1, to the most enriched stratum, Bin10). The dashed line
indicates the null distribution and dotted line indicates all SNPs, i.e., not stratified. Different colors indicate
different intervals of predicted enrichment scores. The leftward shift of the each curve compared to the null
line indicates the relative enrichment. SNPs in the MHC region were excluded and then pruned based on the
LD structure from the 1000 Genomes European subpopulation at r2 < 0.8.

doi:10.1371/journal.pgen.1005803.g002
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random partition approach (split-half). Fig 4 shows the comparison of the observed cumulative
replication rate with SNPs sorted by the predicted replication probability from CM3 (from
high to low) and nominal p-values (from low to high). Using the CM3 method, a larger num-
ber of loci are selected for a given cumulative observed replication rate than when ranking
SNPs by nominal p-values. For instance, for the CM3 method an average of 353 loci replicate
at a replication rate of 0.5, whereas an average of 238 replicate at the same rate when using
nominal p-values without auxiliary information (Fig 4A). Further, when sorted by p-values, no
SNPs replicate at a rate higher than 0.95, whereas when sorted by predicted replication proba-
bility, the highest-ranked SNPs replicate at a rate of 0.982 (Fig 4A). Fig 4B shows out-of sample
performance of CM3, i.e., only the split half discovery sample was used to fit model parameters,
compared to the nominal p-values based method. At a replication rate 0.5, 328 loci replicated
sorted by predicted replication probability from the CM3 methods. Taken together, this shows
that incorporating auxiliary information via CM3 can provide a larger yield of SNPs for a given
observed replication rate.

To assign posterior effect size estimates and predicted replication probability to each SNP
for the whole PGC SCZ sample, we computed a fine grid “lookup table” as a function of the
observed z-scores in the discovery sample and the enrichment score (see Materials and Meth-
ods). S8 Fig compares sorting of SNPs based on the predicted replication probability vs. on
nominal p-value. The change due to sorting by CM3 is most pronounced for SNPs having
smaller effect sizes, i.e., larger p-values (upper right corner of S8 Fig) and less so for SNPs hav-
ing smaller p-values (lower left corner of S8 Fig). We found 693 independent non-MHC loci
(LD r2 < 0.1, clumped by distance 250kbp) having predicted replication probability� 0.8, and
219 having predicted replication rate� 0.9 (S1 Table). The predicted replication rate corre-
sponding to the GWAS p-value threshold of 5x10-8 was 0.8571 in the split-half discovery/repli-
cation analysis, without stratification by relative enrichment scores (S9 Fig). At this estimated

Fig 3. Mean replication z-score and replication rate stratified by enrichment scores. A.) The observed (solid lines) and predicted (dotted lines) mean z-
scores in the replication sample (y axis) were plotted against the z-scores in the discovery sample (x axis). The shrinkage of replication z-scores is
differentiated by disjoint intervals of relative enrichment scores. B.) The observed (solid lines) and predicted (dotted lines) replication probabilities were
plotted against the negative common logarithm of nominal p values of schizophrenia SNPs in discovery sample (x axis). Colors indicate the 10 disjoint
intervals of relative enrichment scores, ranging from the least enriched (Bin1) to the most enriched (Bin10). All data were generated by randomly assigning 26
of the PGC schizophrenia sub-studies as discovery sample and 26 as replication sample (split half). The averaged value over 500 iterations was shown.

doi:10.1371/journal.pgen.1005803.g003
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Fig 4. CM3 improves power of identifying gene loci. The average empirical cumulative replication rates (y
axis) are plotted against the number of SNPs replicating at that rate > 0.5 (x axis), after removing MHC region
SNPs and pruning at LD r2 < 0.1. A.) The full PGC sample was used to estimate predicted replication
probability (pred repl prob). For each iteration, 26 PGC schizophrenia sub-studies were randomly assigned to
the discovery sample, and the rest to the replication sample (split half). The average values over 500
iterations are shown, and B.) Half of the PGC sample (26 sub-studies) was used to estimate the predicted
replication probability. For each iteration, 26 PGC schizophrenia sub-studies were randomly assigned to the
discovery sample, and the rest to the replication sample (split half). Then, the predicted replication probability
was estimated by applying the CM3method on the discovery sample with 50 iterations. The p values
(computed by meta-analysis) of the discovery sample and the predicted replication probabilities (computed
by CM3) were used to sort SNPs in replication sample, consist of rest of the sub-studies. The average
replication rates across 50 iterations were shown. Colors indicate different sorting criteria (green: sorted by
prediction replication probability and blue sorted by nominal p values).

doi:10.1371/journal.pgen.1005803.g004
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replication threshold, CM3 identified 9 more regions than p-value based method (Fig 4). CM3
performs better when the size of discovery sample is smaller than replication sample, given
that overall sample size is fixed (S6 Fig). We also repeated the analysis without including BIP as
enrichment sources. The number of clumped independent non-MHC loci with predicted repli-
cation probability> 0.8 (0.9) becomes 428 and 201. We display the predicted replication prob-
ability in the sixth column of S1 Table.

Relative Importance of Auxiliary Information Categories Using Logistic
Regression
We next evaluated the relative importance of the different categories of auxiliary information
using the same thresholded logistic regression framework that we employed for constructing
relative enrichment strata. The models without LD-weighted annotation scores (Annot), TLD,
H, and BIP were each in turn compared with the full model, i.e., including all four categories
(Materials and Methods). Fig 5 shows the relative importance of each source measured by
change in Nagelkerke’s R2 (see S15 Fig, measured by the area under the receiver operating
characteristic curve (AUC)). Annot, H, and BIP make major contributions to the enrichment
of SNP association with SCZ (all having p< 10−16, likelihood ratio test). We find that the con-
tribution of TLD is reduced when including other sources of differential enrichment. We also
observe the same qualitative results when varying the pthresh used in dichotomizing the nomi-
nal p-values (S10A Fig). The contribution of TLD increases when we instead regress on the
unthresholded z2 on enrichment sources and using change in adjusted R2 (S10B Fig), though it
still remains smaller than the change in variance from excluding Annot or H categories, and is
similar in size to the change in R2 excluding BIP. Of note, the proportion of explained variance
in the unthresholded z2 regression is much smaller compared to that of the thresholded logistic
regression (S10B Fig).

Fig 5. Relative importance of sources for enrichment. The relative importance of different sources of
enrichment (x axis) for explaining SNP association with schizophrenia was measured by the Nagelkerke’s
R2. The enrichment sources were: total linkage disequilibrium (TLD); the squared z-scores of SNP
association with bipolar disorder (BIP); the LD weighted genomic annotation scores (Annot); and the
heterozygosity (H).

doi:10.1371/journal.pgen.1005803.g005
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Effect of Genetic Architecture Application to Other Phenotypes
To investigate the effect of different genetic architectures on the performance of CM3 we also
analyzed the data for the brain structure Putamen volume[14] (26 sub-studies, N = 12,596)
and Crohn’s diseases[15] (8 sub-studies, effective sample size N = 10,050). We identified 11
independent regions with predicted replication probability> 0.8 (S2 Table). Similarly, the
number for Crohn’s disease is 81 (S3 Table). S12–S14 Figs show the performance of CM3 on
these two additional datasets.

Discussion
We have presented a novel algorithm, called CM3, which provides more accurate estimates of
predicted replication probabilities for each SNP in a GWAS. Sorting SNPs based on predicted
finite-sample replication probabilities incorporating auxiliary information, rather than by
nominal p-values, yields a larger number of SNPs for a given replication threshold. The
improved performance was demonstrated by comparing the average number of independent
loci for a given observed cumulative replication rate in a split-half random partitioning analysis
(Fig 4). Sorting SNPs based on the predicted replication probability was found to dramatically
increase the yield of GWAS consistently across observed cumulative replication rates, relative
to nominal p-values alone. We observed a broad range of replication probabilities across
enrichment strata, for a given nominal p-value. Taken together, these results further demon-
strate that “all SNPs are not created equal” [5], and that by leveraging differential enrichment
across SNPs, it may be possible to improve on standard GWAS methods.

We have previously shown that LD-weighted genomic annotations and pleiotropy can be
used to enrich the association of SNPs with SCZ in GWAS [5, 8, 9, 16], and we here demon-
strate additional increase in power due to heterozygosity. Further enrichment was observed by
adding association with another psychiatric phenotype, bipolar disorder, in line with previous
findings of overlapping gene loci (pleiotropy)[8]. SNPs with higher heterozygosity replicate at
higher rates, which is in accordance with the concept that common variants explain a large
portion of the variance in complex human phenotypes[17] (S7 Fig). We used a multiple logistic
regression model to investigate the relative contribution to the association with SCZ by the dif-
ferent sources of auxiliary information. By accounting for the overlap of contributions from
different sources in this model, we found that total LD, LD-weighted genomic annotations,
pleiotropy and heterozygosity contribute substantially to the association. We find that the con-
tribution of total LD is substantially reduced when including these other sources of differential
enrichment. The current analyses suggest that total LD partially acts as a proxy for other pre-
dictors of differential power and enrichment for non-null effects.

The current work is motivated by a previous paper from our group on LD-weighted enrich-
ment annotation factors that appear to be related to very many complex traits and diseases [5].
The CM3 algorithm is based on a novel random partitioning approach to non-parametrically
estimate replication effect size means and variances of GWAS summary statistics [18], along
with a scale-mixture of two Gaussians modeling framework, similar to that proposed by Zhou
et al.[19]. Unlike other partition-based approaches [20], the stratified CM3 model enables pre-
diction of the posterior effect size and replication probability for each SNP, incorporating rela-
tive enrichment scores. Scale mixture models have been widely employed in genetic analyses,
such as in animal genetic, GWAS, and QTL analysis[21]. The model used here differs from oth-
ers in that: 1) it uses only summary statistics from GWAS sub-studies; 2) the estimation algo-
rithm fits the model to the mean replication effect sizes and variances[18], allowing for
estimation of the effects of changing effective sample sizes on the model fit; 3) the incorpo-
ration of enrichment scores obtained from SNP-level auxiliary information.
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Several other methods which incorporating enrichment factors into GWAS have lately been
developed [22–25]. The CM3 method differs from these previous methods in that: 1) none of
the previously published methods directly model the proportion of null (the small-effect com-
ponent) vs. non-null (large-effect component) effect sizes as a function of annotations; 2) none
of the previously reported methods directly model the apparent inflation of the null distribu-
tion, which we do through allowing the null component to consist of very small replicating
effects; 3) unlike previous methods, the current methodology produces estimates of replication
effect sizes and replication probabilities from the random partitioning algorithm; 4) finally, we
use the empirical predicted replication probabilities of SNPs as evidence of association since we
can directly compute the empirical replication rate from the resampling experiment and
directly compare this with the prediction performance of the corresponding CM3 covariate-
stratified mixture of scale normal models.

It is of note that over-fitting could be a serious issue if the logistic regression was fitted
selecting from a large number of annotation factors, especially trait/disease specific enrichment
factors. This could be prevented by applying model selection procedures that guard against
including too many predictors in the regression model. It is also possible that over-fitting can
be an issue due to computing relative enrichment scores from a logistic regression model fitted
using the entire dataset, though we validated the results by increased out-of-sample yield in
SNPs for a given predicted replication rate (Fig 4B). Choice of number of strata to use for
enrichment analyses and constructing smoothed “lookup tables” from the resulting fits is also
an issue, which could potentially also be addressed by measures of model fit vs. model com-
plexity trade-off. Note, though including auxiliary information (such as pleiotropic enrich-
ment) in the CM3 will change the relative ranking of SNPs, the replication effect size estimates
will not be affected negatively, e.g., SNPs related to BIP may have larger effect size estimates
but SNPs unrelated to BIP will have unchanged effect size estimates.

The proposed method requires the summary statistics from multiple independent studies.
The performance not only depends on the overall sample sizes and on the sizes of discovery
and replication samples but also on the genetic architecture of the complex diseases/traits. In
general, it performs better when the discovery sample is smaller comparing to the replication
sample given the overall sample size is fixed (S6 and S14 Figs). This also suggests that CM3
may be more powerful for under-power studies. The results of applying CM3 to the data for
the brain structure Putamen volume (putamen) and Crohn’s disease (CD) show that even with
8 independent sub-studies (CD) the improvement can be large. However, with 26 sub-studies
available for Putamen volume the improvement is minimal (S12–S14 Figs).

An important utility of the CM3 method may be selection of a greater proportion of relevant
SNPs for gene set enrichment and biological pathway analyses, which often use a less stringent
p-value threshold than the established GWAS standard for discovery. Further, the proposed
method may improve the efficiency of the two-stage GWAS meta-analysis by better predicting
which regions will reach significance in the combined sample, relative to the standard method
of picking all SNPs that reach a significance of p<1x10-6 in Stage I [26, 27].

In conclusion, we have presented a novel statistical method, the covariate modulated mix-
ture model (CM3), which incorporates multiple sources of auxiliary information, such as total
LD, heterozygosity, genomic annotations, and pleiotropy, for estimating effect sizes and pre-
dicting replication rates for SNPs in independent samples. The CM3 method first creates
enrichment strata via multiple logistic regression, subsequently implementing a novel resam-
pling-based algorithm to estimate replication effect sizes and probabilities non-parametrically.
We then fit parametric models (scale mixtures of two normals) that minimize the sum of
squared differences with the stratified nonparametric estimates; we show that these scale mix-
tures of normal provide good fits the stratified nonparametric estimates of effect size and
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replication probabilities for SCZ. The CM3 method does not depend on strong prior assump-
tions about the distribution of effect sizes, and the assumption of a scale mixture of two normal
could be generalized to scale mixtures of three or more, to capture excess variation in the tails.
By incorporating annotations, we show that the CM3 method results in larger numbers of
identified SNPs (sensitivity) relative to the standard approach, when keeping replication rate
(specificity) constant. The CM3 model may be further improved by incorporating more rele-
vant prior information, such as gene expression, methylation, transcription regulation[10],
chromatin marker annotation[28] and data about shared gene loci with other complex dis-
eases, such as neurological disorders[8], cardiovascular disease factors[9] and immune-related
diseases[29].

Materials and Methods

Data and Quality Control
The PGC SCZ data includes 35,476 cases and 46,839 controls[11]. Briefly, genotypes were fil-
tered according to standard quality control parameters including: SNP missingness< 0.05,
subject missingness< 0.02, and a test for deviation from Hardy-Weinberg equilibrium (P< 1x
10−6 in controls and 1x10-10 in cases). Related individuals were detected by using PLINK[30]
with p̂ > 0:2 with one individual from each pair removed. Principal components (PCs) were
estimated using 39,239 SNPs with the program EIGENSOFT[31]. Genotype data were imputed
using IMPUTE2[32] and SHAPEIT[33] based on the 1000 Genomes Project dataset. Associa-
tion tests were performed on allele dosage data using the functions in PLINK with 11 PCs and
study site indicators as covariates. Summary statistic p-values were generated by meta-analysis
using an inverse-weighted fixed-effects model[34]. For detailed information, see the primary
paper[11].

The bipolar disorder (BIP) sample consisting of the “BOMA-Bipolar”, the “Trinity College
Dublin”, the “University of Edinburgh”, the “GlaxoSmithKline”, the “Systematic Treatment
Enhancement Program for Bipolar Disorder”, the “University College London”, the “Themati-
cally Organized Psychoses”, the “Wellcome Trust Case Control Consortium, WTCCC” and the
“Research Program, Washington University at St. Louis, University of Pennsylvania, University
of Chicago, Rush Medical School, University of Iowa, University of California, San Diego, Uni-
versity of California, San Francisco, and University of Michigan” studies from Sklar, et al.[7]
were used in the current study. Genotype data were processed using the same QC parameters
as for SCZ. Individuals related to or duplicated with the PGC SCZ sample were detected by
PLINK with p̂ > 0:2 and were removed. In total, 6,969 cases and 7,424 controls were ana-
lyzed. After QC procedures, sub-study data were combined and a mega-analysis was performed
using PLINK, including the first 6 PCs and study site indicators as covariates.

LD-informed Annotation Scores
A set of eight real-valued annotation scores, for each of the 9,266,541 SNPs analyzed here, were
calculated based on the degree of correlation of the SNP with the eight different annotation cat-
egories that gave the highest genomic enrichment, as described in Schork et al[5]. These cate-
gories are: exon, intron, 5’ untranslated region (5’UTR), 3’ untranslated region (3’UTR), 1 and
10 kilo-basepairs upstream of the gene transcription start positions, and 1 and 10 kilo-basepairs
downstream of gene transcription end positions in the UCSC database. Specifically, each score
was computed as the sum of LD r2 for the given SNP with, respectively, SNPs in each of the
eight positional categories, with these latter SNPs comprising the full set of SNPs in the 1000
Genomes Project (approximately 39 million, the European reference sample of the November
2012 release). SNPs were assigned to non-mutually exclusive annotation categories by
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thresholding the continuous category scores with an inclusive lower bound of 1.0; SNPs with
scores below 1 on all functional categories were deemed intergenic[5]. In addition to annotation
scores, the total LD (TLD) score for each SNP, given by the sum of all LD r2 for the SNP, was
calculated. The correlation structure between pairs of categories is show in S1 Fig.

Stratified Empirical Replication Effect Sizes
The 52 PGC SCZ sub-studies[11] were randomly partitioned 500 times. For each random par-
tition, 26 of the PGC SCZ sub-studies were randomly assigned to the “discovery” sample and
the complement to the “replication” sample. Inverse-variance based meta-analyses were then
performed to calculate independent discovery and replication z-scores. Discovery z-scores
were binned into 1,001 equally spaced intervals, and the average replication z-scores across all
500 iterations was computed for each bin. A cubic regression spline was fit to the ordinate axis
(average replication z-scores) using the discovery z-score bin midpoints for the abscissa axis.
This procedure was performed for all SNPs and also separately performed for strata defined by
LD-weighted annotation categories (Fig 1A and S2 Fig), heterozygosity (Fig 1B), association
levels with bipolar disorder (Fig 1C), and overall relative enrichment scores (described below;
Fig 3A and S3 Fig).

Relative Enrichment Score
Let pi denote the p-value of the ith SNP from the full PGC sample. We define Ythresh,i = 1 if
pi�pthresh for a pre-set threshold pthresh and Ythresh,i = 0 otherwise. In the current study pthresh =
10−3 was used (other choices of pthresh lead to similar results, see S1 Text). A multiple logistic
regression model was fit:logit[pr(pi�pthresh|X = xi)] = βxi, where xi are the values of the predic-
tive variables for the ith SNP, i.e., annotation scores, total LD score, heterozygosityH = 2k(1-k)
where k is the SNP minor allele frequency from the 1000 Genomes Project European subpopu-
lation, and the squared z-score of the SNP association with bipolar disorder. The relative
enrichment score for the ith SNP is defined as the estimated value of Pr(pi�pthresh|X = xi)from
this model. Note, before computing the relative enrichment scores, SNPs located in the
extended Major Histocompatibility Complex region (xMHC, chr6: 25652429–33368333, in
total 6,467 SNPs) were removed and the remainder pruned at LD r2 < 0.8, i.e., keeping the
SNP with the smallest p value in each LD block, so that in total 2,863,099 SNPs were analyzed.

Gaussian Mixture Model
P-values from the GWAS studies were transformed into z-scores by the inverse standard nor-
mal cumulative distribution function, taking the same sign from the original study. The z-score
of ith SNP can be modeled as zi ¼

ffiffiffi
n

p
di þ εi, where n is the study effective sample size and δ1

is the effect size, independent of the zero-mean Gaussian residual error term εi � Nð0; s2
0Þ. In

a commonly employed mixture model framework[13], it is assumed that some proportion π0
of SNP are null (δ1 = 0), and the proportion π1 = 1-π0 are non-null (δ1 6¼ 0) [13]. More gener-
ally, we make the assumption that an effect is “small” with prior probability π0 and “large” with
prior probability π1. The class of “small effects” includes the possibility of null effects as a spe-
cial case. The small effect component is modeled by the Gaussian density �ð0; nHis

2
1Þ, and

the large effect component is modeled by �ð0; nHiðs2
1 þ s2

2ÞÞ, where Hi = 2ki(1-ki) is the het-
erozygosity and ki is the minor allele frequency of the ith SNP. The two component densities
for z-scores are thus

f0ðziÞ ¼ �ðzij0; s2
0 þ nHis

2
1Þ
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and

f1ðziÞ ¼ �ðzij0; s2
0 þ nHiðs2

1 þ s2
2ÞÞ:

The unconditional marginal mixture density for z-scores is then given by

f ðziÞ ¼ p0f0ðziÞ þ p1f1ðziÞ

Note, when s2
1 ¼ 0, this reduces to the standard mixture of null (point mass at zero) and

non-null (normally-distributed) z-scores.

Posterior Effect Sizes and Predicted Replication Probabilities
Given the two component mixture model of effect sizes, the expected posterior effect size δi
given Z = zi is given by[13], p. 223,

Ef ffiffiffi
n

p
dijZ ¼ zig ¼ zi þ s0

2
d
dzi

logff ðziÞg ¼ zi½AfdrðziÞ þ BtdrðziÞ�

A ¼ nHis
2
1

s2
0 þ nHis2

1

;B ¼ nHiðs2
1 þ s2

2Þ
s2
0 þ nHiðs2

1 þ s2
2Þ

;

ð1Þ

where fdr(zi) is the local false discovery rate, i.e., the posterior probability of a SNP being in the
small effect component,

fdrðziÞ ¼ p0f0ðziÞ=f ðziÞ: ð2Þ

and tdr(zi) = 1-fdr(zi) is the true discovery rate, i.e., the posterior probability that a given SNP
belongs to the large effect component.

The finite-sample predicted replication probability for a SNP i given the observed z-score Z
= zi, is defined as the probability that the SNP in a de novo replication sample, with effective
sample size nr, will have a z-score having the same sign and a magnitude equal or above certain

threshold,zα. Formally, replðziÞi ¼ Fð�zajmr;0; s2
r;0ÞfdrðziÞ þ Fð�zajmr;1; s2

r;1ÞtdrðziÞ;
where ϕ is the Gaussian cumulative distribution function, and

mr;0 ¼ �
ffiffiffiffiffiffiffi
nnr

p
His

2
1

s2
0 þ nHis2

1

� �
jzij

s2
r;0 ¼ s2

0 þ nriHis
2
1 �

nnrðHis
2
1Þ2

s2
0 þ nHis2

1

mr;1 ¼ �
ffiffiffiffiffiffiffi
nnr

p
Hiðs2

1 þ s2
2Þ

s2
0 þ nHiðs2

1 þ s2
2Þ

� �
jzij

s2
r;2 ¼ s2

0 þ nrHiðs2
1 þ s2

2Þ �
nnrðHiðs2

1 þ s2
2ÞÞ2

s2
0 þ nHiðs2

1 þ s2
2Þ
:

ð3Þ

Parameter Estimation
To estimate the model parameters, empirical replication effect sizes were calculated as
described above, but in addition to the split-half discovery/replication breakdown of the 52
PGC sub-studies the procedure was repeated for discovery samples equal to 20%, 30%, and
40% of the total, with the complement being the replication sample. The four unknown param-
eters, p1; s2

0; s2
1 and s

2
2 from the scale-mixture of Gaussians model are then estimated by
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minimizing the squared differences between the model-based and empirical (nonparametric)
estimates for the posterior mean effect size and the mean of the square of the effect size.

Note, each iteration of the procedure produces an unbiased estimate of the posterior effect
size means and variances, conditional on the discovery z-scores. The purpose of averaging
across 500 random iterations is to smooth out the random differences present in each arbitrary
partition of the sample into discovery and replication samples. Since each iteration of the sam-
ple is unbiased, the average across all iterations is again unbiased for the conditional posterior
means and variances. Details of the random partitioning procedure to produce the nonpara-
metric estimates and the quadratic estimating equations used to estimate the mixture model
parameters are detailed in the S1 Text.

To incorporate relative enrichment scores, SNPs are first stratified by predicted enrichment
score computed from the logistic regression as described above. Nonparametric replication
means and variances are computed for each stratum using the random partitioning procedure.
Then, quadratic estimating equations are used to produce mixture model parameter estimates
for each enrichment stratum separately. The predicted a posteriori effect sizes and replication
probabilities are computed by Eqs (1) and (3), using the stratified parameter estimates from
the quadratic estimating equations.

SNPs in the xMHC region were excluded, and the remaining 9,202,374 SNPs were ran-
domly pruned using the LD structure from 1000 Genomes Project European subpopulation at
r2 <0.8 (see S1 Text).

Stratified Empirical Replication Probability
Discovery and replication z-scores were computed as described above from 500 random parti-
tions. The–log10 p-values computed from the discovery z-scores were binned into 1001 equally
spaced bins, and the proportion of SNPs in each bin with replication p-value< 0.05 was
recoded as the empirical replication rate. The same procedure was performed on each stratum
defined by predicted relative enrichment score (Fig 3B and S4 Fig). SNPs located in the xMHC
region were removed and the remainder randomly pruned at LD r2 < 0.8 before performing
the analysis (see S1 Text for random-pruning procedure).

Relative Importance of Enrichment Sources
The sources of enrichment were grouped into four categories: LD-weighted genomic annota-
tions, heterozygosity, pleiotropy with bipolar disorder (“pleiotropy” in this context is that the
distribution of the summary statistics for one trait depends on those of another (“pleiotropic”)
trait. No assumptions are made regarding the specific molecular, biological, or etiological fac-
tors underlying this relationship), and total LD score. Note, Then, four reduced logistic regres-
sion models were fitted. For each reduced model, one of the enrichment categories was
excluded from the model, and the contribution of the deleted category was assessed by the dif-
ference in Nagelkerke’s R2 between the reduced model and the full model including all four cat-
egories. To investigate the effect of the threshold pthresh used in dichotomizing the nominal p-
values, this procedure was repeated with pthresh = 10−2,10−4,10−5. As before, SNPs located in the
xMHC region were removed and then pruned at LD r2 < 0.8, keeping the SNP with the small-
est p-value in each LD block.

Numerical Computation
See S1 Text for detailed numeric estimation of model parameters. Data QC and GWAS analysis
were performed on the Genetic Cluster Computer hosted by the Dutch National Computing
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and Networking Services (http://www.geneticcluster.org/). And the polygenic analysis was per-
formed using PLINK[30].

Supporting Information
S1 Text. Supporting Methods and author lists of PGC and ENIGMA.
(PDF)

S1 Table. Gene loci implicated by SNPs with predicted replication probability> 0.8 for
Schizophrenia. The SNPs identified by CM3 at predicted replication probabilities> 0.8 were
pruned at LD r2 < 0.1 (after removing SNPs in the xMHC region), keeping SNP having largest
predicted replication probability in each LD block, and, clumped by 250kbp. Shaded rows indi-
cate the genomic regions having SNP above genome wide significant threshold (5 x10-8). The
locus number (Loci), leading SNPs (LeadingSNP), reference allele(A1), chromosome numbers
(Chrnum), genomic position (Pos), predicted replication probability (Pred_Repl), p-values
from the primary study (P), predicted replication probability excluding Bipolar disorder from
the enrichment sources (Pred_Repl_noBIP) and closest genes in the region (Genes) are listed
from left to right.
(XLS)

S2 Table. Gene loci implicated by SNPs with predicted replication probability> 0.8
Crohn’s disease. The SNPs identified by CM3 at predicted replication probabilities> 0.8 were
pruned at LD r2 < 0.1, keeping SNP having largest predicted replication probability in each LD
block, and, clumped by 250kbp. Shaded rows indicate the genomic regions having SNP above
genome wide significant threshold (5 x10-8). The locus number (Loci), leading SNPs (Lea-
dingSNP), reference allele(A1), chromosome numbers (Chrnum), genomic position (Pos), pre-
dicted replication probability (Pred_Repl), p-values from the primary study (P), predicted
replication probability excluding Bipolar disorder from the enrichment sources (Pred_Repl_-
noBIP) and closest genes in the region (Genes) are listed from left to right.
(XLS)

S3 Table. Gene loci implicated by SNPs with predicted replication probability> 0.8 for
Putamen volume. The SNPs identified by CM3 at predicted replication probabilities> 0.8
were pruned at LD r2 < 0.1 keeping SNP having largest predicted replication probability in
each LD block, and, clumped by 250kbp. Shaded rows indicate the genomic regions having
SNP above genome wide significant threshold (5 x10-8). The locus number (Loci), leading
SNPs (LeadingSNP), reference allele(A1), chromosome numbers (Chrnum), genomic position
(Pos), predicted replication probability (Pred_Repl), p-values from the primary study (P), pre-
dicted replication probability excluding Bipolar disorder from the enrichment sources (Pre-
d_Repl_noBIP) and closest genes in the region (Genes) are listed from left to right.
(XLS)

S1 Fig. Correlation between enrichment factors. Correlations between enrichment factors.
The lower triangle shows Pearson’s correlation coefficient and upper triangle shows the Spear-
man’s rank correlation. The saturation of colour encodes the magnitude. The ellipses indicate
the direction and magnitude. SNPs in the extended MHC region were removed and pruned
based on the 1000 Genomes Project European population at r2 < 0.8, i.e. retain SNP having the
smallest p-value from the full PGC SCZ sample in each LD block.
(EPS)

S2 Fig. Stratified mean replication z-scores by all genomic categories studied.Mean replica-
tion z-scores for PGC SCZ SNPs from non-parametric estimates for categories stratified by
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LD-weighted annotation categories. The categories include exon, intron, 5’ un-translated
region (5UTR), 3’ un-translated region (3UTR), 10 and 1 kilo-basepair upstream of the gene
transcription start positions (10kup, 1kup), 10 and 1 kilo-basepair downstream of gene tran-
scription end positions (10kdown, 1kdown) in the UCSC database, and, SNPs with scores
below 1 on all functional categories (intergenic). 26 PGC SCZ sub-studies were randomly
assigned as discovery sample and the remaining sub-studies as replication samples. All data
were based on the average of 500 random draws.
(EPS)

S3 Fig. Mean replication z-scores stratified by enrichment scores across different re-sam-
pling proportions. The observed (solid lines) and predicted (dotted lines) mean z-scores in
replication sample (y axis) were plotted against the z-scores in the discovery sample (x axis).
The shrinkage of replication z-scores is differentiated by disjoint intervals of relative enrich-
ment scores. A) 10, B) 17 and C) 20 PGC SCZ sub-studies were randomly assigned as discovery
sample and the remaining sub-studies as replication samples. Colors indicate the 10 disjoint
intervals or bins of relative enrichment scores, ranging from the least enriched stratum (Bin1)
to the most enriched stratum (Bin10). All data were based on the average of 500 random
draws. At each iteration the SNPs in the extended MHC region were removed and randomly
pruned based on the 1000 Genomes Project European population at r2 < 0.8.
(EPS)

S4 Fig. Mean replication probability stratified by enrichment scores across different re-
sampling proportions. The observed (solid lines) and predicted (dotted lines) replication
probabilities were plotted against the negative common logarithm of nominal p-values of
Schizophrenia SNPs in discovery sample (x axis). A) 10, B) 17 and C) 20 PGC SCZ sub-studies
were randomly assigned as discovery sample and the remaining sub-studies as replication sam-
ples. Colors indicate the 10 disjoint intervals or bins of relative enrichment scores, ranging
from the least enriched (Bin1) to the most enriched stratum (Bin10). All data were based on
the average of 500 random draws. At each iteration the SNPs in the extended MHC region
were removed and randomly pruned based on the 1000 Genomes Project European population
at r2 < 0.8.
(EPS)

S5 Fig. Mean replication squared z-scores stratified by enrichment scores across different
re-sampling proportions. The observed (solid lines) and predicted (dotted lines) squared
mean z-scores in replication sample (y axis) were plotted against the z-scores in the discovery
sample (x axis). A) 10, B) 17, C) 20 andD) 26 PGC sub-studies were randomly assigned as dis-
covery sample and the remaining sub-studies as replication samples. Colors indicate the 10 dis-
joint intervals or bins of relative enrichment scores, ranging from the least enriched (Bin1) to
the most enriched stratum (Bin10). All data were based on the average of 500 random draws.
At each iteration the SNPs in the extended MHC region were removed and randomly pruned
based on the 1000 Genomes Project European population at r2 < 0.8.
(EPS)

S6 Fig. CM3 improves power of identifying gene loci by different splits. The average empiri-
cal cumulative replication rates (y axis) are plotted against the number of SNPs replicating at
that rate> 0.5 (x axis), after removing MHC region SNPs and pruning at LD r2 < 0.1. Colors
indicate different sorting criteria (green: sorted by prediction replication probability and blue
sorted by nominal p values). A. For each iteration, 11 PGC schizophrenia sub-studies were ran-
domly assigned to the discovery sample, and the rest to the replication sample. B. For each iter-
ation, 16 PGC schizophrenia sub-studies were randomly assigned to the discovery sample, and
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the rest to the replication sample. C. For each iteration, 21 PGC schizophrenia sub-studies
were randomly assigned to the discovery sample, and the rest to the replication sample. The
average values over 500 iterations are shown.
(EPS)

S7 Fig. Squared z-score as function of Heterozygosity. Linear relationship between Heterozy-
gosity (H) and z2 statistic. A) uncorrected; B) corrected for imputation R2. The heterozygosity
computed from the 1000 Genomes Project European population is divided into 500 equally
spaced bins (x axis). Then, the mean z2 corresponding to each bin is plotted on the y-axis. The
z2 and the imputation R2 for SNPs are obtained from the full PGC SCZ sample. SNPs in the
extended MHC region were removed and pruned based on the 1000 Genomes Project Euro-
pean population at r2 < 0.8. Dotted line indicates the predicted confidence interval.
(EPS)

S8 Fig. Ranks of SNP association with schizophrenia by CM3. The common logarithm of the
rank of SNPs based on the predicted replication probability from CM3 (y axis), using the full
PGC SCZ sample, is plotted against the ranks based on p-values (x axis). The change due to
sorting by CM3 is most pronounced for SNPs having smaller effect sizes. The SNPs along the
red dashed line indicate no change in the ranks. The full PGC SCZ sample was used and SNPs
in the extended MHC region were removed and then pruned based on the 1000 Genomes Proj-
ect European population at r2 < 0.8.
(EPS)

S9 Fig. Mean replication z-score and replication rate for un-stratified data. A.) The
observed (solid lines) and predicted (dotted lines) mean z-scores in replication sample (y axis)
were plotted against the z-scores in the discovery sample (x axis). B.) The observed (solid lines)
and predicted (dotted lines) replication probabilities were plotted against the negative common
logarithm of nominal p values of SNPs in discovery sample (x axis). All data were generated by
randomly assigning 26 of the PGC SCZ sub-studies as discovery sample and 26 as replication
sample. The averaged value over 500 iterations was shown. At each iteration the SNPs in the
extended MHC region were removed and randomly pruned based on the 1000 Genomes Proj-
ect European population at r2 < 0.8. The GWAS significant threshold p = 5x10-8 (-log10(p) =
7.3) corresponding to a predicted replication rate 0.8571.
(EPS)

S10 Fig. Relative contribution of enrichment sources. Explained variance by different enrich-
ment sources. A) The–log10p SCZ is transformed to binary variable by different threshold
(coded by colors) and the Nagelkerke’s R2 is computer by subtracting from the R2 of the full
model the R2 of the reduced model, namely, excluding the corresponding source. B) The z2

SCZ is regressed on different enrichment sources. The adjusted R2 is computed by subtracting
from the R2 of the full model the R2 of the reduced model. The full PGC SCZ sample was used
and SNPs in the extended MHC region were removed and pruned based on the 1000 Genomes
Project European population at r2 < 0.8.
(EPS)

S11 Fig. Comparison between the CM3 and fGWAS methods by empirical replication
rates. The average empirical cumulative replication rates (y axis) are plotted against the num-
ber of SNPs replicating at that rate> 0.5 (x axis), after removing MHC region SNPs and prun-
ing at LD r2 < 0.1. The 52 PGC schizophrenia sub-studies were randomly split into discovery
and replication groups 10 times, each with 26 sub-studies. The CM3 and fGWAS methods
were applied to the discovery sample, including 10k up, 1kup, 5’UTR, exon, intron, 3’UTR, 1k
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down and 10k down as enrichment factors. In addition, the z-squared of the bipolar sample,
heterozygosity and total LD were also included for CM3. The SNPs in the replication sample
were sorted by the predicted replication probability (pred repl prob, green) and by posterior
probability of association (PPA, blue) from fGWAS. The average empirical cumulative replica-
tion rates for the top 10,000 SNPs were plotted.
(EPS)

S12 Fig. Mean replication z-scores stratified by enrichment scores across different re-sam-
pling proportions for Crohn’s disease and Putamen volume. The observed (solid lines) and
predicted (dotted lines) mean z-scores in replication sample (y axis) were plotted against the z-
scores in the discovery sample (x axis). The shrinkage of replication z-scores is differentiated
by disjoint intervals of relative enrichment scores. For Crohn’s disease: A) 2, B) 3 and C) 4 sub-
studies out of 8 sub-studies were randomly assigned as discovery sample and the remaining
sub-studies as replication samples. Colors indicate the 6 disjoint intervals or bins of relative
enrichment scores, ranging from the least enriched stratum (Bin1) to the most enriched stra-
tum (Bin6). All data were based on the average of all possible combination of random draws.
Data was genomic inflation corrected before analysis. For Putamen volume, A) 8, B) 10 and C)
13 sub-studies out of 26 sub-studies were randomly assigned as discovery sample and the
remaining sub-studies as replication samples. Colors indicate the 6 disjoint intervals or bins of
relative enrichment scores, ranging from the least enriched stratum (Bin1) to the most enriched
stratum (Bin6). All data were based on the average of 100 random draws. At each iteration, the
SNPs were randomly pruned based on the 1000 Genomes Project European population at r2 <
0.8.
(EPS)

S13 Fig. Mean replication probability stratified by enrichment scores across different re-
sampling proportions for Crohn’s disease and Putamen volume. The observed (solid lines)
and predicted (dotted lines) replication probabilities were plotted against the negative common
logarithm of nominal p-values of SNPs in discovery sample (x axis). For Crohn’s disease: A) 2,
B) 3 and C) 4 sub-studies out of 8 sub-studies were randomly assigned as discovery sample and
the remaining sub-studies as replication samples. Colors indicate the 6 disjoint intervals or
bins of relative enrichment scores, ranging from the least enriched stratum (Bin1) to the most
enriched stratum (Bin6). All data were based on the average of all possible combination of ran-
dom draws. Data was genomic inflation corrected before analysis. For Putamen volume, A) 8,
B) 10 and C) 13 sub-studies out of 26 sub-studies were randomly assigned as discovery sample
and the remaining sub-studies as replication samples. Colors indicate the 6 disjoint intervals or
bins of relative enrichment scores, ranging from the least enriched stratum (Bin1) to the most
enriched stratum (Bin6). All data were based on the average of 100 random draws. At each iter-
ation the SNPs were randomly pruned based on the 1000 Genomes Project European popula-
tion at r2 < 0.8.
(EPS)

S14 Fig. CM3 improves power of identifying gene loci by different splits for Crohn’s disease
and Putamen volume. The average empirical cumulative replication rates (y axis) are plotted
against the number of SNPs replicating at that rate> 0.5 (x axis), after pruning at LD r2 < 0.1.
Colors indicate different sorting criteria (green: sorted by prediction replication probability
and blue sorted by nominal p values). For Crohn’s disease, at each iteration A. 2, B. 3 and C. 4
sub-studies out of 8 sub-studies were randomly assigned to the discovery sample, and the rest
to the replication sample. The averaged values of all possible combination were shown. For
Putamen volume, at each iteration, A. 8, B. 10 C.13 sub-studies out of 26 sub-studies were
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randomly assigned to the discovery sample, and the rest to the replication sample. The average
values over 100 iterations are shown.
(EPS)

S15 Fig. Relative importance of sources for enrichment measured by AUC. The relative
importance of different sources of enrichment (x axis) for explaining SNP association with
schizophrenia was measured by the improvement in the areas under the receiver operating
characteristic curve (improvement in AUC). The enrichment sources were: total linkage dis-
equilibrium (TLD); the squared z-scores of SNP association with bipolar disorder (BIP); the
LD weighted genomic annotation scores (Annot); and the heterozygosity (H).
(EPS)
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