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Abstract: 

Osteoarthritis (OA) is a chronic and highly prevalent degenerative disease of the 

synovial joint leading to cartilage destruction and bone remodelling.  The current 

management of end-stage OA is joint replacement, however, this procedure is not 

suitable for a subset of patients hence there is a growing need for alternative 

treatments and technologies to address this limitation.  One such approach to this 

problem is the application of cell-based therapies that regenerate areas of damaged 

cartilage. Recently discovered articular cartilage progenitor cells (CPC) have been 

hallmarked as a potential cell source for repair and/or regeneration of damaged 

articular cartilage.  

Initial focus was on the characterisation of human CPC isolated from healthy donors 

and compared with OA derived CPC and patient matched OA Bone Marrow 

Mesenchymal Stem Cells (BM-MSCs).  Comparison of all cell types showed similar 

morphology and proliferative capacity.  In addition, all cell types isolated showed 

positive expression of the putative mesenchymal stem cell makers; CD-90, CD-105 

and CD-166 while lacking expression of CD-34.  All cell types investigated showed 

successful osteogenic, chondrogenic and adipogenic differentiation, hence providing 

evidence of the mesenchymal stem cell properties of isolated CPC.  

A gene profiler array was used to identify the expression of Wnt pathway genes from 

RNA isolated from CPC cell lines originating from healthy and OA cartilage. 

Interestingly, the expression of Dkk-1 was observed to have the highest up-regulation 

in OA-derived CPC.  The role of Dkk-1 was further studied in a number of CPC and 

chondrocyte cell lines from healthy and OA cartilage.  It was found that normal CPC 

cell lines showed homogenously low expression and secretion of Dkk-1, however, OA-

derived CPC cell lines exhibited a heterogeneous expression and secretion of Dkk-1. 

In a pellet culture model of chondrogenic differentiation, CPC cell lines secreting high 

levels of Dkk-1 failed to undergo chondrogenic differentiation, measured by 

diminished expression of chondrogenic differentiation markers, Type II collagen, 

ACAN and Sox-9 at both molecular and protein levels. 

Immunolocalisation of Dkk-1 in OA osteochondral plugs showed peri-cellular 

expression in chondrocytes located in all zones and around migratory endothelial cells 
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invading articular cartilage where there was a quantifiable increase of blood vessel 

invasion.  This later observation was further studied through a series of experiments 

to investigate the role of Dkk-1 in relation to endothelial cell migration and 

angiogenesis using an in vitro model of angiogenesis and migration/invasion assays. A 

novel finding emerged from these studies, which provides evidence for a pro-

angiogenic and pro-migratory role of Dkk-1 and to a lesser extent Dkk-2 in human 

endothelial cell lines.  

A novel in vitro Transwell co-culture model was developed to study the interaction 

between chondrocytes and endothelial cells mimicking the osteochondral interface. A 

novel finding from these studies included the observation that normal or OA-derived 

chondrocytes appeared to induce an endothelial to mesenchymal transformation 

(EndMT) of the co-culture endothelial cells.  This was assessed by a loss of the 

endothelial cobble stone morphology and a down-regulation of key factors implicated 

in endothelial cell phenotype, including VE-cadherin, Tie-2, e-NOS, PDGF-AA and 

PECAM-1.  As endothelial cells lost their phenotype they adopted a spindle 

morphology and expressed mesenchymal cell markers including: Lumican, Snail, α-

SMA, Vimentin and MMPs. Interestingly, this was also associated with an increase in 

Dkk-1 expression. To confirm a role for Dkk-1 in this process endothelial cells were 

cultured in the presence of Dkk-1 and were found to undergo EndMT when compared 

to the control.  

 

In summary, this thesis has uncovered several interesting differences in CPC 

phenotype.  In addition, my results suggest that Dkk-1 has potential as a biomarker 

of OA pathology.  This thesis highlights further the complex role of the Wnt Pathway 

and in particular Dkk-1 may play a role in the pathogenesis of osteoarthritis. 
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CHAPTER 1: GENERAL INTRODUCTION. 
 

1.1 Synovial joint.  

The synovial joint (diarthrosis) is the most common joint in mammals, allowing 

movement at the point of contact of two bones. It differs from other joints in the 

body as the two articulating surfaces are not in distinct contact but surrounded by a 

dense fibrous capsule within which is located a synovial cavity containing synovial 

fluid (Archer et al. 2003). 

The synovial joint comprises several connective tissues including bone, ligament, 

synovium, and articular cartilage. The complex structural arrangement of these 

tissues allows the joint to provide frictionless motion and to transmit load to the 

underlying bone whilst allowing for free mobility of the joint (Aigner and Stove, 2003). 

The synovial joint is normally subjected to mechanical forces throughout the human 

life-span and for the majority of physiological activities the joint can withstand such 

forces without damage. However, during the human life-span the synovial joint is 

susceptible to degenerative disease states the most common of which is 

osteoarthritis. Osteoarthritis (OA) is a chronic degenerative disease affecting synovial 

joints leading to articular cartilage destruction and inappropriate bone remodelling. It 

is the most common form of polyarthritis and its prevalence is on the rise especially in 

the Western World (Luyten et al., 2009, Hollander et al., 2010). It has been described 

as one of the most common forms of musculoskeletal diseases across the globe, 

leading to pain, disability and eventual whole dysfunction of the joint (Hollander et al., 

2010). Over 8 million people in the UK are affected by osteoarthritis (ARUK, 2013). 

The aetiology of OA is believed to be multi-factorial (Noth et al., 2008). The disease 
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process involves pathological changes in many of the joint tissues but a major 

hallmark of the disease process is the destruction of the articular cartilage. 

1.1.1 Adult Articular Joint Anatomy. 

The central structural tissues of the adult diarthroidal joints comprise of bone and 

articular cartilage (meniscus in knees), ligaments, tendons and synovium and along 

with muscle facilitate the transmission of friction free joint articulation (Figure 1.1). 

Articular cartilage is maintained by the chondrocyte whilst bone is composed of three 

cell types, osteoblasts, osteoclasts and osteocytes. The composite of articular 

cartilage and bone (subchondral) is often referred to as an osteochondral plug and 

the study of this composite structure is key to our understanding of the structure and 

function of the articular joint in health and disease. 

 

Figure 1. 1: A Diagrammatic representation of a synovial joint. 
Adapted from www.mananatomy.com. 
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1.1.2 Articular cartilage: Structure and Morphology.  

 Articular cartilage comprises an extensive extracellular matrix in which a single cell 

type, the chondrocyte, is embedded. The tissue is described as avascular, aneural and 

alymphatic. These attributes have helped adapt the tissue to its purpose of 

transmitting and dissipating mechanical forces. Chondrocytes contribute less than 

10% of the volume of mature articular cartilage; and the remaining volume are 

occupied by collagens, proteoglycans, a variety of non-collagenous proteins and 

water. The majority of articular cartilage comprises water molecules (around 60-70% 

of the tissue’s wet weight), collagens (20%), proteoglycans (7%) and other proteins 

(around 1%).  Generally, the thickness of mature human articular cartilage is between 

1 and 7 mm and this variation is dependent upon the mechanical load experienced by 

the joint (Buckwalter, 1999).  

1.1.3 Chondrocytes. 

Chondrocytes are sparsely distributed within the extracellular matrix. Approximately 

10µm in diameter they are unique cells that account for only 2-5% of the total tissue 

volume  (Stockwell, 1978; Stockwell, 1979). Chondrocytes have many organelles (e.g. 

endoplasmic reticulum and Golgi apparatus) that are required to produce large 

quantities of essential matrix components. In addition, these cells have intracellular 

secretory vesicles, lysosomes and, intra-cytoplasmic filaments (Buckwalter, 1999). 

Cilia are present on the plasma membrane and may be responsible for detecting 

mechanical forces dissipated through the extracellular matrix (Poole et al. 1987; Poole 

et al. 1992). Chondrocytes also express cell surface integrin’s including α5β1, α1β1, 

α2β1, α11β1 and αVβ3 that recognise various molecules including fibronectin (α5β3), 
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type II and VI collagen (α1β1, α2β1, α11β1), laminin (α6β1), osteopontin and 

vitronectin (αVβ3) (Salter et al. 1992; van der Kraan et al., 2002). In addition, 

chondrocytes express the trans-membrane receptor molecule CD44 that interacts with 

HA and is implicated in the maintenance of pericellular matrix homeostasis (Salter et 

al. 1996; van der Kraan et al., 2002). Chondrocytes play a central role in the 

development and maturation of articular cartilage, as well as in the maintenance of 

the mature adult tissue. 

1.1.4 Zones of articular cartilage. 

Histological examination of articular cartilage shows the tissue to be divided into four 

distinct zones; the superficial zone, middle (transitional) zone, deep (radial) zone and 

the zone of calcified cartilage that anchors cartilage tissue to the 

underlying subchondral bone (Figure 1.2.A). Although there is no distinct boundary 

separating each zone, the four zones differ based on the distribution and shape of the 

chondrocytes and the composition of the extracellular matrix. Differences within these 

zones vary both between species and between joints of the same species (Buckwalter 

and Mankin, 1998; Buckwalter, 1999). 

The superficial zone is the layer adjacent to the joint cavity and is defined by the 

lamina splendens (a semi-translucent membrane). Directly beneath the lamina 

splendens is a cellular region where chondrocytes assume a flattened morphology. 

Chondrocytes, in the superficial zone, secrete a matrix rich in collagen type II fibrils 

that run parallel to the surface of articular cartilage. This structure is thought to 

facilitate the transmission of mechanical forces along the joint. Chondrocytes in this 

zone also synthesise and secrete a specialized proteoglycan molecule known as 
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surface zone proteoglycan (SZP), which functions to lubricate the surface of the 

cartilage (Schumacher et al., 1994, Flannery et al., 1999) thus reducing friction 

between the articulating surfaces. 

 

  

Figure 1. 2: Zones of human articular cartilage.  
Image A is a tissue section of articular cartilage where chondrocytes are visible 
(blue/purple stain) throughout the depth of the tissue. Image B is a diagram of the 
collagen fibre orientation within the cartilage zones known as Benninghoff’s arcades. 
Image 1.2.B is adapted from Landínez-Parra et al., 2012. 
 

Within the middle (transitional) zone, chondrocytes have a spherical morphology. 

Chondrocytes present in this zone are more metabolically active than those of other 

zones, as evidenced by their vast array of cellular organelles such as the Golgi 

apparatus and the endoplasmic reticulum. The transitional zone collagen fibres are 

wider in diameter but their arrangement is more disorganised than that seen in the 

superficial zone. There is also a higher proteoglycan concentration in comparison to 
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the superficial zone (Buckwalter, 1999). In addition, chondrocytes in this zone secrete 

a glycoprotein known as cartilage intermediate layer protein (CILP) which is unique to 

this zone and has been be implicated in the pathological processes of inflammatory 

arthritis (Lorenzo et al., 1999, Bernardo et al., 2011). The transitional zone accounts 

for up to 60% of the thickness of articular cartilage (Buckwalter, 1999).  

The deep zone of articular cartilage is defined by the presence of chondrocytes with a 

spherical morphology that are arranged into nearly vertical columns of 3-6 cells. This 

arrangement of chondrocytes is due to the perpendicular orientation of the collagen 

fibres within the zone (Figure 1.2.B) (Eyre, 2002). This zone contains the highest 

concentration of proteoglycan but contains the least amount of water of all the zones 

(Buckwalter, 1999).  

The calcified cartilage zone is above the subchondral bone and provides a site for 

attachment to the underlying bone (Oegema et al., 1997). Type X collagen is present 

within the calcified cartilage and surrounds the cells of this region (Gannon et al., 

1991; Eyre, 2002). A ‘tidemark’ defines the area between the non-calcified and the 

calcified cartilage regions. It is an acellular basophilic region with the occasional 

presence of ‘trapped’ chondrocytes. Collagen fibrils extend into the tidemark from the 

non-calcified zone above (Buckwalter, 1999). The chondrocytes of the calcified 

cartilage zone are metabolically inactive, and consequently, have a limited number of 

organelles in their cytoplasm, although they do express alkaline phosphatase and 

Runx-2 (Schmid and Linsenmayer, 1985; Buckwalter, 1999; Enomoto-Iwamoto et al., 

2002). 
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1.1.5 Regions of extracellular matrix within articular cartilage. 

The extracellular matrix comprises water, collagens, proteoglycans and non – 

collagenous proteins as well as glycoproteins. Interactions between these components 

of the extracellular matrix are responsible for the resilience and stiffness of articular 

cartilage (Buckwalter, 1999). The extracellular matrix can be divided into three 

regions depending on its distance from a chondrocyte and the components of the 

extracellular matrix. The matrix surrounding a chondrocyte is known as the 

pericellular region. The interterritorial region has been defined as the matrix furthest 

from the chondrocyte and, moreover, the territorial matrix has been defined as the 

matrix between the pericellular and interterritorial regions (van der Kraan et al., 

2002).  

1.2 Subchondral bone. 
 

1.2.1. Structure and Composition. 

 

Bone is one of the most extensively studied and vital areas of human anatomy. The 

human skeleton is made up of five different types of bone: long bone, short bone, flat 

bone, sesamoid bones and irregular bones (Clarke 2008). The human skeleton not 

only provides shape, but also physical support for the systems contained within. 

Essentially, all bones are composed of bone marrow, blood vessels endothelial cells 

and nerves. Bone is a specialised form of dense connective tissue that comprises of 

three cell types; osteoblasts, osteocytes and osteoclasts, essential to the physiology 

of the bone, embedded within a specialised matrix made up of organic and inorganic 

components (Clarke 2008). Living bone contains 10 – 20% water. The bone matrix is 

mainly composed of type I collagen (Kadler et al. 1996). In addition, it has been 
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documented that bone matrix contains small amounts of collagen type III and type V 

(Keene et al. 1991), non-collagenous proteins including osteocalcin (BGLAP) bone 

sialoprotein and osteopontin (OPN) (Marie et al. 1989; Owen et al. 1990; McKee and 

Nanci 1996). Furthermore, there are many different types of non-collagenous proteins 

found in bone including albumin in addition to hyaluronan and other proteoglycans 

including fibromodulin and decorin (Fedarko et al. 1992). These organic components, 

mainly collagen fibres, give the bone its tensile properties that allow it to twist, 

compress and stress without breaking. The minerals strengthen the collagen 

composite, increasing the mechanical resistance of the tissue, and provide a source of 

calcium, phosphate and magnesium for systemic mineral homeostasis (Clarke 2008). 

Long, short and sesamoid bones form part of the muscular skeletal system and aid in 

fulfilling the various roles of this system that includes support, protection, movement, 

production of blood cells and providing important endocrine roles and storage for a 

number of key minerals. The structure of long bone is optimised to provide a high 

tensile strength. Long bones (such as the femur) are made up of cortical bone and 

cancellous (trabecular) bone (Clarke 2008). Cortical bone (80% of the mass) forms a 

dense cylinder down the shaft of the bone (diaphysis) surrounding the central marrow 

cavity and gives the long bone its solid hard white exterior. Whereas, the cancellous 

or trabecular bone forms the end (epiphysis) of long bones (20% of the mass) and 

has an open honeycomb structure often termed the sponge-like area of the bone.  

Cortical bone is composed of osteons, these are densely packed concentric lamellae 

(made mainly of collagen and hydroxyapatite crystals) each with a central Harversian 

canal containing a blood vessel. Osteocytes are embedded in lacuna within the 

osteons and at the outer end of each osteon is the cement line. Canaliculi are tiny 
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fluid like passageways that enable osteocytes cells within the mineralised matrix to 

communicate with other cells. Blood vessels in the central Harversian canal facilitate 

the exchange of nutrients and gases between osteocytes and the blood. Smaller 

Volkmann canals connect osteons and supply nutrients to all cells. The interior surface 

of the osteons are known as the endosteum and the exterior surface is the 

periosteum. The endosteum is the partition separating the cortical bone and the 

cancellous bone. 

Trabecular bone, on the other hand, is present is some bones and resist compression. 

It has an open porous network with spaces that accommodate the bone marrow and 

hematopoietic stem cells. Osteocytes are particularly important in this area due to 

their local mechano-sensing properties (Bonewald and Johnson 2008). 

1.2.2 Bone turnover and metabolism 

In response to various physiological and mechanical (external) changes that occur in 

the human life cycle, the skeleton adjusts and accommodates to maintain its functions 

through the processes of bone modelling and remodelling. The process of bone 

remodelling occurs when the bone responds to factors that affect the bone density, 

structure and growth. This process involves the osteoclasts and osteoblasts that 

modulate the bone density, and resorb and rebuild, respectively. 

Remodelling is orchestrated by osteoclasts anchored at the bone surface they create 

the ‘sealed zone’, producing an acidic environment that dissolves the bone mineral 

content of the matrix. Once this occurs, enzymes are released by the resident 

osteoclasts and remove the remaining collagenous matrix to complete the process of 

bone resorption. Following resorption, osteoblasts move to the resorption space and 
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start to produce osteons. This begins to create a scaffold where minerals like calcium 

phosphate and hydroxyapatite crystallise. Osteoblasts trapped in the matrix that they 

secrete either differentiate to become osteocytes, go through apoptosis or revert back 

to lining cells, which cover the bone surface (Raggatt and Partridge 2010).  

1.2.3. Osteoblasts. 

Osteoblasts are mononuclear mesenchymal bone cells found, in cluster form, along 

the bone surface. It covers 95% of cortical and 75% of the trabecular bone. 

Osteoblast have an extensive endoplasmic reticulum and enlarged Golgi complex all 

equipping them for synthesis of bone matrix (Franz-Odendaal., 2006) components 

which is the main function of these cells. 

Key pathways crucial in osteoblastogenesis include the Wnt pathway and the 

TGF/BMP pathway. For example, Bone Morphogenetic Proteins (BMP) initiate the 

transformation process of MSCs undergoing osteoblastogenesis and this is marked by 

down-stream elevation of the osteoblast lineage transcriptional factor, Runt-related 

transcription factor x 2 (Runx-2) (Kern et al.,2001). Runx-2 expression in turn 

activates a variety of genes promoting osteoblast-lineage differentiation including 

Osterix (Osx) and collagen type I (Col1α1) (Harada et al., 1999). Mature osteoblasts 

can further transform into osteocytes by becoming buried within the bone matrix, or 

occasionally undergo apoptosis but can also lie dormant as bone lining cells (Franz-

Odendaal., 2006). 

Osteoblasts also play a role in osteoclastogenesis through stimulating the release of 

key proteins and factors such as MCSF, receptor RANKL and OPG. Activation of these 
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key factors implicated in osteoclastogenesis result in osteoclast precursor cells 

undergoing differentiation into mature osteoclasts (Boyle et al., 2003).  

1.2.4. Osteocytes. 

Osteocytes originate from mesenchymal stem cells and are star or dendritic shaped 

cells found in mature bone. Osteocytes reside in spaces called lacunae and canaliculi 

between the lamellae in bone and are responsible for maintaining homeostasis, 

oxygen and mineral levels. Osteocytes are mechano-sensor cells that control the 

production of osteoblasts and osteoclasts within the anatomic structure where bone 

remodelling occurs. Osteocytes support osteoclast formation for bone resorption by 

expressing the Receptor Activator of Nuclear factor Kappa-B Ligand (RANKL). In 

addition when clusters of osteocytes and osteoblasts bind, via their dendrites, it 

allows possible regulatory control of mineral homeostasis as well as control over both 

bone resorption and formation (Li et al., 2003).  

Osteocytes are an important regulator of bone mass as well as phosphate 

metabolism. SOST negatively regulates Wnt pathway signalling that is critical for 

osteoblast formation (Bonewald, 2008). Moreover, osteocytes are also able to 

remodel their own environment through the addition and removal of minerals within 

the lacunae and canaliculi. Through the expression of Dentin Matrix Protein 1 (DMP-

1), MEPE and FGF-23, osteocytes control and regulate phosphate and mineral 

homeostasis (Yang et al., 2005).  

Furthermore, in response to micro-damage of the bone, osteocyte apoptosis occurs 

where pro-apoptotic factors are released in proximity to the damaged site (Teti, 

2009). Osteocyte apoptosis is thought to occur due to lack of fluid flow or mechano-
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transduction (Bonewald et al., 2008; You et al., 2009). Apoptotic osteocytes release 

apoptotic bodies expressing RANKL to recruit osteoclasts that begin the process of 

bone resorption. 

1.2.5. Osteoclast. 

Osteoclasts are multinucleated cells that are substantial in size and are highly 

specialised cells originated from haematopoietic stem cells lineage. Osteoclast is a 

type of bone cell that resorbs bone tissue. This function is critical in the maintenance 

and repair, and remodelling of bones. It does this when the hydroxyapatite mineral 

component of the bone dissolves and results in degrading the organic bone matrix. 

Furthermore, osteoclasts facilitate the expression of various key factors that aid in 

bone destruction such as Tartrate-Resistant Acid Phosphatase (TRAP).  

In the early stages of bone resorption, osteoblasts release the transcription factor M-

CSF that, when attached to its receptor c-Fms, helps in stimulating pathways that 

facilitate the production and survival of osteoclasts and their precursors. As this 

process starts and cells undergo osteoclastogenesis, RANK is expressed and this 

initiates the transformation of mono-nuclear pre-osteoclasts to undergo 

osteoclastogenesis (Yasuda et al.,1998). RANK binding to its receptor RANKL that 

stimulates AP-1 and NF-kB pathways, and this triggers cellular change that allows 

mononuclear pre-osteoclasts to fuse together with macrophages thus forming multi-

nucleated mature osteoclasts (Franzoso et al., 1997; Takayanagi et al., 2002).  

Conversely, to inhibit and hinder osteoclast differentiation, osteoblasts produce the 

protein osteoprotegerin (OPG) that when attached to RANKL prevents interaction with 
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RANK (Nakashima et al., 2011). This occurs to stop bone resorption and allow bone to 

form or remodel naturally (Lacey et al., 1998). 

1.3 Extracellular Matrix Molecules of cartilage. 

1.3.1 Collagens. 

Collagens are a large family of triple helical proteins classified into a number of groups 

based upon function and domain homology (for review see Kadler et al. 2007). 

There are various forms of collagen within mature articular cartilage. These include 

types I, V, VI, IX, X, XI, XII & XIV. The most abundant collagen is the fibril-forming 

type II collagen. Type II collagen contributes to the majority of the dry weight of 

cartilage. Type II collagen constitutes around 90% of collagen constituents in adult 

articular cartilage. Type II collagen comprises three identical α-chains, collectively 

forming a heterotrimer fibril molecules that are interconnected via intermolecular 

cross-links involving pyridinoline (Eyre and Wu 1995; Riesle et al., 1998; Eyre 2002). 

The presence of these covalent intermolecular cross-links is much higher than in other 

connective tissues and provides the tensile strength of cartilage (Eyre and Wu 1995). 

Collagen type II is found as two splice variants (IIA, IIB) where IIA is expressed by 

immature chondrocytes while IIB is expressed in mature cartilage. Synthesis of type 

II collagen is similar to the majority of other collagen macromolecules as it is released 

from chondrocytes as pro-collagen and, ultimately, matures in the pericellular and 

inter-territorial matrix by protease cleaving of the C and N terminus pro-peptides.  

Other fibril-forming collagens found in articular cartilage are types I, V, & XI. In 

addition, cartilage contains type X (a network-forming collagen) and type IX (FACIT 

collagen). Collagens function to elicit tensile and shear strength to the tissue. These 
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properties are increased by the formation of heterotypic collagen fibrils, in which type 

II collagen interacts with type IX and type XI collagen (see Figure 1.3).  

 

Figure 1. 3: Diagram showing collagen II: IX: XI heterofibril. 
Adapted from Eyre, (2002). 
 

Type IX collagen interacts predominantly with type II collagen and cross-linking 

studies have shown that there are at least six sites along the length of type II 

collagen that covalent bonds can form with corresponding type IX collagen (Svensson 

et al. 2001). Type (XI) collagen comprises three chains, α1 (XI), α2 (XI) and α3 (XI) 

and functions to restrict fibril diameter of type II collagen through retention of its N-

pro peptide (Eyre and Wu., 1995; Duance and Vaughan-Thomas., 1999). This 

meshwork of collagen fibres acts to entrap negatively charged proteoglycans, 

resulting in the collagen network being under continual tension even when cartilage is 

unloaded (Eyre and Wu, 1995; Riesle et al., 1998; Buckwalter and Mankin, 1998; 

Young et al., 2000).  
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The orientation and diameter of the collagen fibres varies between the different 

cartilage zones (section 1.2.3). Benninghoff, (1925) coined the term “arcades” 

following his observation on the arrangement of collagen fibres from the deep zone to 

the superficial zone as arches or arcades (Figure 1.2). These arcades are arched 

extensions of radial fibres that are distributed within the transitional zone, and 

interact with fibres of the deep zone below (Clark, 1990; Eyre, 2002). 

1.3.2 Proteoglycans. 

 

Proteoglycans are a major component of articular cartilage, and comprise a core 

protein to which one or more glycosaminoglycans (GAG) are covalently attached 

(Knudson and Knudson, 2001). Glycosaminoglycans are un-branched polysaccharides 

formed by disaccharide repeats of an amino sugar (N-acetyl glucosamine, 

glucosamine that is variously N-substituted, or N-acetyl galactosamine) and an uronic 

acid (glucuronic acid or iduronic acid) or galactose. Glycosaminoglycans are classified 

into: heparin and heparan sulphate (HS), hyaluronan (HA), keratan sulphate (KS), 

chondroitin sulphate (CS) and dermatan sulphate (DS). Hyaluronan is the only GAG 

that is not found covalently linked to proteoglycans (Dudhia, 2005). 

The major proteoglycan found in articular cartilage is the large aggregating 

proteoglycan, aggrecan, (Figure 1.4). Also present in lesser amounts are the non-

aggregating small leucine rich proteoglycans such as, decorin, biglycan, lumican and 

keratocan. Aggrecan, the major proteoglycan of articular cartilage, functions to 

provide elasticity and resilience to the tissue and accounts for 90% of the 

proteoglycan present within articular cartilage. The core protein is approximately 230-

250 kDa in size and comprises three globular domains, G1, G2 and G3. The inter-
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globular domain separates the G1 and G2 domains and the KS domain and CS 

domains of the proteoglycan core protein separate the G2 and G3 domains. There are 

approximately 50 KS GAG chains attached within the KS domain of the protein core 

and 100 CS GAG chains attached within the CS domain of the protein core (Knudson 

and Knudson, 2001). 

 

 

Figure 1. 4: A diagram showing the structure of aggrecan. 

Adapted from Ulrich-Vinther et al., 2003 (Ulrich-Vinther et al., 2003) 

 

The N terminal, G1 domain associates non-covalently with both link protein and 

hyaluronan and is also termed the hyaluronan binding region (HABR) (Knudson and 

Knudson, 2001). The functions of hyaluronan binding to aggrecan, is to allow the 

aggregation of aggrecan monomers into macromolecular complexes, which are 

stabilised by the non-covalent interaction with link protein (Spicer et al., 2003). The 

aggrecan G1 domain binds to hyaluronan via the proteoglycan tandem repeat (PTR) 
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units, which are present as sub-domains. There are three sub-domains within the G1 

PTR, which are A, B, and B’ that are essential for the non-covalent interactions with 

hyaluronan. 

At the C-terminal, there is a G3 domain comprising several different domains. These 

domains include a C-type lectin module, a complement regulatory protein (CRP) 

module, and an EGF module (Knudson and Knudson, 2001). The quantity of aggrecan 

monomers that possess the G3 domain decreases with age, resulting from 

extracellular proteolytic degradation (Knudson and Knudson, 2001; Dudhia, 2005). 

Along with the large aggregating proteoglycans within articular cartilage, small 

leucine-rich proteoglycans, basement membrane proteoglycans and, cell 

surface/membrane bound proteoglycans are also present (Figure 1.5). Small leucine-

rich proteoglycans include decorin, biglycan, fibromodulin and lumican. Each has a 

core protein with variable types and numbers of GAG side-chains of dermatan, 

chondroitin and keratan sulphate. Their distribution within the cartilage extracellular 

matrix also varies. Decorin (one chondroitin or dermatan side-chain) is located within 

the inter-territorial matrix whereas, biglycan (2 chondroitin or dermatan side chains) 

is present within the pericellular matrix (Knudson and Knudson, 2001). These smaller 

proteoglycans function to interact with specific collagen molecules and, alternatively, 

are involved in the regulation of collagen fibril diameter. The basement membrane 

proteoglycan, perlecan, has been located in the pericellular matrix of adult articular 

cartilage (Knudson and Knudson, 2001). Also present within articular cartilage are cell 

surface proteoglycans, such glypican and syndecan.  
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Figure 1. 5: A diagram depicting proteoglycans present in articular 
cartilage. Adapted from Knudson et al., 2000 (Knudson and Knudson, 2001). 

 

1.4. Maturation of articular cartilage and the skeletal system. 

The maturation of articular cartilage and growth of the skeletal elements is due to a 

combination of cell proliferation, cell hypertrophy and matrix secretions that have 

been shown to develop via an appositional growth mechanism (Hayes et al., 2001). 

This tightly regulated mechanism has been proven to be controlled by chondrocytes in 

the surface zone of articular cartilage (Ward et al., 1999; Hayes et al., 2001).  

Early studies by Hayes et al. (2003), using the proliferating cell marker 

bromodeoxyuridine (BrdU), identified a cohort of slow-cycle progenitor cells within the 

articular surface of Monodelphis Domestica. Using the cell-tracking agent 5-bromo-2-

deoxyuridine (BrdU), which is incorporated during the S-phase of the cell cycle as a 
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thymidine analogue, this study showed that transitional zone chondrocytes retained 

BrdU staining for up to four days and thereafter lost labelling. This result indicated a 

transient amplifying population of cells within this zone. However, surface zone 

chondrocytes retained BrdU labelling for the duration of the experiment indicating 

that newly-formed cells, produced at the articular surface, expanded within the 

transitional zone and then finally undergo terminal differentiation within deeper 

cartilage zones. As the cartilage develops there is alteration in the structure from 

immature tissue, which is isotropic and features as a disorganised cellular 

arrangement then develops into an anisotropic tissue, which has a highly organised 

cellular arrangement (Hayes et al., 2001; Archer et al., 2003).  

Further studies led to the identification of a population of chondrocytes that have 

stem-progenitor cell properties referred to as Cartilage Progenitor Cells (CPC). The 

first report of CPC was by Dowthwaite et al. (2003) in which immunohistochemical 

studies for Notch-1 localised a sub-population of chondrocytes staining positive in the 

superficial zone of immature bovine cartilage (Dowthwaite et al., 2004). Further 

studies by Williams et al. (2010) resulted in the isolation of these stem-progenitor 

cells from cartilage using a classical fibronectin adhesion assay. They confirmed that 

sub-populations of chondrocytes possess properties of mesenchymal stem cells and 

are able to differentiate into a number of different cell lineages. In addition fibronectin 

isolated CPC sorted by FACS, using Notch antibodies, further demonstrated that Notch 

positive CPC when compared with Notch negative CPC had a higher colony-forming 

ability. These data demonstrate the stem cell/progenitor nature of chondrocytes and 

the role Notch plays in controlling the growth and development of articular cartilage. 
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1.5 Pathophysiology of OA. 
 

Osteoarthritis is thought to be largely a degradative disease mainly affecting articular 

cartilage and subchondral bone. However, this somewhat simplistic concept of the 

pathophysiology of OA is constantly challenged, as there is a shifting paradigm where 

the disease is now considered to be a disease of an organ (the synovial joint). With 

this shifting paradigm, OA is now believed to be a disease of multiple tissues within 

the synovial joint including, the synovial lining, fat pads, cartilage and bone (Lewis et 

al., 2011). 

In normal adult articular cartilage there is an equilibrium between catabolism and 

anabolism, maintaining homeostasis and ensuring the extracellular matrix is 

maintained both structurally and functionally throughout the life-span of individual 

(Goldring and Goldring, 2004). In the development of OA, the balance is altered in 

favour of catabolism resulting in a net degradation of cartilage extracellular matrix 

that can progress to advance stages of the disease. The mechanisms of cartilage 

degradation are well understood: early osteoarthritis is characterised by aggrecanases 

(ADAMTS) induced proteoglycan loss, whereas late stage disease is characterised by 

subsequent degradation of the collagen network. This is induced by various matrix 

metalloproteinases (MMPs), which cause irreversible collagen depletion and, 

ultimately compromises the tissue’s functional ability of mechanical force dissipation 

(Maroudas et al., 1992; Maroudas et al., 1998).  

In addition to alterations of the extracellular constituents, OA is also accompanied by 

aberrant chondrocyte function, resulting in the formation of chondrocyte clusters that 

are thought to indicate attempted repair of the tissue. Further evidence for reparative 
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processes include:- increased expression of proliferative markers in these chondrocyte 

clusters such as Proliferating Cell Nuclear Antigen (PCNA) and Syndecan-3 (Pfander et 

al., 2001). In addition, over the last decade, convincing studies conducted by several 

research groups have linked the pathogenesis of osteoarthritis to activation of key 

developmental pathway implicated in regulation of cell proliferation, homeostasis and 

fate determination including Wnt signalling pathway (Goldring and Goldring 2004; 

Luyten et al., 2009; Shen et al., 2014).  

In addition to changes seen in the articular cartilage, there are alterations in the 

subchondral bone evident as subchondral sclerosis, as well as changes in the 

structure of the subchondral bone marked by osteophyte formation and appearance 

of subchondral cysts and tidemark duplication and breaching. Histologically, tidemark 

duplications and breaching are correlated with an increase in vascular invasion of the 

articular cartilage (Petersson et al., 1998; Lajeunesse et al., 2003; Martel-Pelletier and 

Pelletier 2010). This alteration in subchondral bone is often associated with reduced 

mineralisation and increase in stiffness of underlying bone therefore increasing joint 

stress (Grynpas et al., 1991). 

1.5.1 Mediators of Cartilage Degradation-Cytokines 

Cytokines are intracellular messenger molecules that are either pro-inflammatory 

mediators or anti-inflammatory mediators and, binding to specific cytokine receptors 

on the cell surface induces their actions. Pro-inflammatory cytokines include IL-1β and 

TNF-α (Fernandes et al., 2002). IL-1 cytokine receptors are IL-1 receptor type1 (IL-

1R1) and IL-1RII (Slack et al., 1993; Kobayashi et al., 2005). TNF-α receptors include 

p55 (TNFRI) and p75 (TNFRII) and are localised to the cell surface of chondrocytes 
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(Kobayashi 2005). These cytokines induce the synthesis and activation of proteolytic 

enzymes, e.g. MMPs and aggrecanases, which degrade extracellular matrix generating 

progressive cartilage damage and, via an autocrine mechanism, increase their own 

production and the production of other pro-inflammatory cytokines e.g. IL-6 and IL-8 

(Martel-Pelletier et al., 1999; Fernandes et al., 2002; Martel-Pelletier and Pelletier 

2010; Bonnet et al., 2013). 

There are elevated levels of IL-1 present within OA synovial fluid (Kobayashi et al., 

2005). TNFα has also been shown to have elevated protein expression in OA synovial 

fluid. Experimental evidence shows TNFRI receptor expression to be present on 

chondrocytes in OA tissue at locations of proteoglycan loss (Goldring, 2000; 

Kobayashi et al., 2005). 

1.5.2 Aggrecanases (ADAMTS Proteinases). 

Members of the ADAMTS family of proteinases (a disintegrin and metalloproteinase 

with thrombospondin type 1 motif), most notably ADAMTS4 and TS5 are responsible 

for the initial degradation of the large aggregating proteoglycan in articular cartilage 

(Arner et al., 1998; Patwari et al., 2005). Loss of this matrix molecule results in a loss 

of compressive resistance of articular cartilage that ultimately compromises the tissue 

(Arner et al., 1998; Patwari et al., 2005; Wieland et al., 2005). ADAMTS mediated 

degradation of aggrecan occurs at several sites within both the chondroitin-sulphate 

region and the inter-globular domain (Sandy et al., 1991; Aydelotte et al., 1992; 

Arner et al., 1998; Kobayashi et al., 2005). 
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1.5.3 MMPs. 

MMPs also play a role most notable in the later stages of the disease. There are 21 

human MMPs that cleave a variety of ECM molecules (Egeblad and Werb 2002). 

Under normal conditions these endo-proteases are expressed at relatively low 

concentrations and play a role in tissue development, reproduction, and tissue 

homeostasis. Altered levels of expression are implicated in several diseases 

contributing to heart disease, cancer metastasis and arthritis (Nagase and Woessner, 

1999; Egeblad and Werb, 2002; Mix et al., 2004).  

MMP1 and MMP13 have been shown to degrade type II collagen between residues 

775 (glycine) and 776 (leucine) (Kobayashi et al., 2005) in the late stages of OA. 

These MMPs cleave the triple helical of type II collagen enabling further degradation 

by the gelatinases MMP-2 and -9 (Seltzer et al., 1981; Duerr et al., 2004). Tight 

regulation of MMP activity occurs via endogenous inhibitors including thrombospondin 

-2, α2-macroglobulin and tissue inhibitors of matrix metalloproteinases (TIMPs) 1-4 

(Egeblad and Werb, 2002; Skiles et al., 2004). 

1.5.4 Angiogenesis in Osteoarthritis.  

Normal adult articular cartilage is an avascular tissue and healthy mature cartilage 

contains proteins and proteoglycans in addition to other factors that have been shown 

to be anti-angiogenic (thrombospondin-1) (Hsieh et al., 2010). Furthermore, factors 

that are believed to be pro-angiogenic including matrix metalloproteinases are 

carefully regulated in healthy cartilage by their tissue inhibitors (TIMPS) (Kim et al., 

2011). However, in OA, the degradation of the extracellular matrix of articular 

cartilage is thought to increase the susceptibility of the tissue to invading endothelial 
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cells from the underlying subchondral bone resulting in the formation of invading 

blood vessels. This process of angiogenesis is poorly understood and recently several 

regulatory pathways have been implicated such as the Notch and Wnt pathways in 

this process (Gao et al., 2013).  

1.6. The Wnt signalling pathway. 
 

The Wnt pathway is possibly the most studied pathway in mammalian systems and 

has been found to have wide biological roles in embryogenesis, cellular and tissue 

development and homeostasis in a healthy setting but also extend to playing a key 

role in the pathophysiology of several diseases including arthritis and cancer (Xu and 

Nusse, 1998; Niehrs, 2012; Clevers and Nusse, 2012). 

Wnt proteins constitute a family of secreted signalling proteins that bind to their 

respective receptors and activate two sub-groups of the Wnt signalling pathways: 

namely the canonical and non-canonical pathways. The difference between these two 

pathways is that the canonical pathway involves the protein β-catenin whilst the non-

canonical pathway is independent of it.  

1.6.1. The non-canonical Wnt signalling pathway. 

The non-canonical Wnt signalling pathway is regulated by several Wnt ligands via 

Frizzled receptors and co-receptors (Gao et al., 2011). In mammals, so far three non-

canonical Wnt pathways have been described in the literature; the Wnt/ Ca2+ 

pathway, the Wnt/PCP pathway and the Wnt/PKC pathway (Figure 1.6).   
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Figure 1. 6: The non-canonical Wnt signalling pathway. 

Wnt ligands bind to FZD receptors and co-receptors to initiate the non-canonical Wnt 

pathway. Adapted from Staal et al., 2015.  

 

In addition to functioning independently of the transcriptional factor β-catenin, the 

non-canonical Wnt pathway does not require LRP5/6 as a co-receptor but, instead, 

acts via two co-receptors ROR 1/2 and RYK tyrosine kinases. However, the non-

canonical pathway is still not completely understood and if the two sub-groups 

overlap (Hartmann, 2002; Niehrs, 2012). 

The Wnt/Planar Cell Polarity (PCP) pathway has been implicated in the cell’s 

cytoskeletal organisation by modulating actin through RhoA and c-Jun amino N- 

kinase (JNK). The Wnt/protein kinase C (PKC) pathway has been associated with 

muscle homeostasis through the activation of cyclic AMP (Staines et al., 2012). In 

addition, the Wnt/Ca2+ pathway is implicated in the regulation of intracellular calcium 
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levels through phospholipase C and phosphodiesterase. The Wnt/Ca2+ pathway can 

also modulate the Canonical Wnt pathway through activating GSK3β leading to β-

catenin phosphorylation and its ubiquitin-proteasome degradation (Niehrs, 2012; 

Nusse, 2012).  

1.6.2. The Canonical Wnt signalling pathway.  

Of the two Wnt pathways, the canonical Wnt pathway is the more understood sub-

group (Niehrs, 2012). The pathway causes the accumulation of β-catenin in the 

cytoplasm that eventually causes its translocation to the nucleus where it is able to 

act as a co-activator of the TCF/LEF family of transcription factors. 

In the absence of Wnt signalling, phosphorylation of β-catenin leads to its 

degradation and this process is regulated by the β-catenin-destruction complex that 

includes the proteins: Axin, glycogen synthase kinase-3β (GSK-3β), casein kinase-1 

(CK1) and adenomatosis polyposis coli (APC). The scaffold protein axin interacts with 

 

GSK3β and CK1a and this interaction results in the initial phosphorylation of β-catenin 

by CK1 at serine-45, followed by additional phosphorylation by GSK3β at serine-33, 

serine-37 and threonine-41. The phosphorylation of β-catenin results in its 

degradation by β-Trcp through ubiquitination and proteasome degradation 

mechanism (Figure 1.7) (MacDonald et al., 2009). 
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Figure 1. 7: Schematic diagram of the canonical Wnt signalling pathway. 
Wnt ligands bind to FZD receptors and LRP5/6 co-receptors to initiate the canonical 
Wnt pathway. (A) In the absence of appropriate Wnt ligand binding, because of 
inhibitors such as sFRP and Dkk-1, GSK3 becomes phosphorylated. This, in turn, 
phosphorylates β-catenin. Phosphorylated β-catenin is subsequently targeted for 
ubiquitination and proteasome degradation. (B) Upon binding, Dishevelled is activated 
which in turn, inhibits GSK3 activity. This inhibition allows translocation of β-catenin to 
the nucleus where it activates the transcription of Wnt-associated genes. Adapted 
from Moon et al., 2009. 
 

1.6.3. Frizzled receptors (FZD) and co-receptors. 

Wnt proteins are known to interact with FZD receptors and LRP 5/6 co-receptors to 

mediate the signalling cascades of the Canonical Wnt pathway. To date ten frizzled 

receptors have been discovered in humans (Nusse, 2012). Frizzled receptors are cell-

surface trans-membrane receptors that all share a similar structural uniformity. They 

are comprised of an extracellular domain (N-terminus) with a highly conserved 

cysteine-rich region, seven trans-membrane domains, and an intracellular carboxyl 
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domain (Figure 1.8) (Niehrs, 2012). Of the already discovered Wnt co-receptors, low 

density lipoprotein receptor-related protein receptors 5 and 6 (LRP5/6) are the most 

studied. LRP5/6 is a single-span trans-membrane protein that is a key regulator of the 

Canonical Wnt pathway. 

The interactions of LRP5/6 with FZD receptors in the presence of the ligand is thought 

to lead to LRP5/6 phosphorylation in the intracellular domain, which in turn, results in 

the internalisation of co-receptor-ligand complex (Xu and Nusse, 1998; Huang and 

Klein, 2004; Yamamoto et al., 2008; Niehrs, 2012; Tauriello et al., 2012).  

 

Figure 1. 8: A schematic diagram of the Frizzled receptor structure. 

Adapted from Huang and Klein (2004). 

 

Binding of the Wnt ligands to Frizzled (FZD) - LRP5/6 receptor complexes, at the cell 

surface, induces activation of the dishevelled scaffold proteins (Dsh) and subsequent 

phosphorylation-dependent recruitment of axin to LRP5/6 co-receptor. This leads to 

the disassembly of β-catenin from the axin complex. De-phosphorylation of axin 

subsequently leads to the activation of Dsh through phosphorylation of this protein 

(DIX and PDZ domains). This activation inhibits GSK3 activity resulting in the 
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accumulation of β-catenin in the cytoplasm and the translocation to the nucleus by a 

process yet to be elucidated (Figure 1.8B). This nuclear shuttling of β-catenin from 

the cytoplasm leads to the activation of the lymphoid enhancing factor (LEF) and T-

cell factor (TCF) transcription factors. This, in turn, results in a wide range of down-

stream target gene activations, such as the activation of c-Myc, Cyclin D1 and Axin2 

that regulate cell proliferation, differentiation, adhesion and migration (Tauriello et al., 

2012; Niehrs, 2012).  

1.6.4. Cytoskeletal role of the β-catenin family. 

In addition to this transcriptional role of β-catenin it is worth mentioning that β-

catenin and other members of the catenin family, such as P120-catenin, α-catenin 

and γ-catenin (plakoglobin) are also involved in the cytoskeleton in association with 

cadherin and actin. Recently two tyrosine kinases (Fyn and Fer kinase) were noted to 

be able to phosphorylate β-catenin at amino acids Y-486 and Y-654 resulting in a 

release of β-catenin from its association with adherent junction proteins such as 

cadherin, catenin and actin. Cytoskeletal β-catenin phosphorylation at Y-486 and Y-

654 is thought to result in free β-catenin accumulating in the cytoplasm. This results 

in the nuclear factor activation of TCF/LEF transcriptional activation hence by-passing 

the FZD-LRP-5/-6 surface receptors (Xu and Nusse, 1998; Tominaga et al., 2008; 

Fujimori et al., 2010). 

1.6.5. Modulators of the Wnt signalling pathways: Wnt ligands. 

Regulation of the Wnt signalling pathway is controlled by a group of secretory 

proteins (Wnt proteins) that can act in two distinctive and often opposing ways. One 

common feature associated with the two Wnt signalling pathway sub-groups is that 
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Wnt proteins directly interact with the cell-surface receptor frizzled proteins and 

associated co-receptors to propagate their cellular effect. The canonical and non-

canonical pathways differ in the co-receptors used. The canonical pathway is 

dependent on interaction with the LRP5/6 co-receptor whilst the non-canonical 

pathway is dependent on interactions with co-receptors, Receptor RORS and RYK 

tyrosine kinase. So far at least 19 Wnt ligands have been identified and 7 of these 

have been associated with activation of the canonical Wnt pathway. Activation of 

either pathway has a wide range of effects on different tissues from being agonist as 

well as antagonist to key homeostatic functions (DeLise et al., 2000; Niehrs, 2006; 

Niehrs, 2012).  

1.6.6. Alternate activators (ligands) of the Wnt Canonical pathway. 

There are now several new activators of the canonical Wnt/β-catenin pathway, which 

include Norrin and Roof plate-specific Spondin (R-Spo) (de Lau et al., 2012). The R-

Spo family of proteins are members of a superfamily of thrombospondin type 1 repeat 

(TSR-1) proteins that are characterised by a TSR-1 domain in addition to the presence 

of two adjacent furin-like cysteine-rich repeats near the amino terminus of the mature 

protein. To date, there are four members of the R-Spo protein family (R-Spo 1-4) that 

have been described in literature (de Lau et al., 2012). Despite R-Spo proteins being 

structurally dissimilar to the Wnt ligands they are able to activate the Wnt/ β-catenin 

pathway by either enhancing the activity of Wnt ligands or directly activating the Wnt/ 

β-catenin pathway. They achieve this by binding to leucine-rich repeat-containing G-

protein coupled receptors (LGR 4-6) (Wen et al., 2009; Carmon et al., 2012; de Lau et 

al., 2014).  
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1.6.7. Mechanism of inactivating the canonical Wnt pathway. 

Inactivation of the canonical Wnt pathway can occur through the internalisation of the 

Wnt receptors (FZD) and co-receptor complex by Caveolin and Clathrin dependent 

endocytosis (Niehrs, 2012). In addition, interactions of the co-receptors Kremen-1 & -

2 with the co-receptor LRP5/6 was shown to favour inhibition of the Wnt canonical 

pathway by increased endosome acidification leading to endocytosis of co-receptors. 

This interaction prevents the formation of the Wnt protein-Fzd-LRP5/6 complex 

required for β-catenin de-phosphorylation and accumulation in the cytoplasm and 

translocation to the nucleus (Mao et al., 2001; Yamamoto et al., 2008). 

1.6.7. Wnt antagonist proteins. 

Several classes of proteins have been noted to be involved in the modulation of the 

Wnt pathway. These Wnt modulators act either by directly binding to the frizzled 

receptors or co-receptors or binding to Wnt ligands, thereby inhibiting their mode of 

action. These known inhibitors include: secreted frizzled-related proteins (sFRPs), Wnt 

inhibitory factors (Wif), Wnt inhibitory secreted proteins (WISP), Sclerostin (SOST), 

and the Dickkopf proteins (Dkks) (Bafico et al., 2001; Surmann-Schmitt et al., 2009). 

The Dkk family of secreted glycoproteins have protein cores ranging from 250-350 

amino acids and molecular weights of 25-40 kDa (Niehrs, 2006). They consist of four 

members (1-4) that antagonise the Wnt signalling pathway by binding to the co-

receptors LRP5/6, Wnt or Kremen-1/2. It is believed that the Dickkopf proteins only 

act on the canonical Wnt pathway. Studies have demonstrated that Dkk-1 forms a 

ternary complex with co-receptors LRP-6 and Kremen-1. This induces rapid 

endocytosis of the complex leading to β-catenin inhibition. Inactivation by Dkk results 
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in LRP-5/-6 receptor regulation via internalisation to the lysosomes. Once in the 

lysosome compartment the receptors are degraded. Alternatively, Dkk signalling can 

be modulated by ubiquitination of its frizzled receptors through ubiquitin ligase 

(Niehrs, 2006; Yamamoto et al., 2008).  

In the musculoskeletal system, SOST is mainly secreted by osteocytes. It interacts 

with LRP-5/6 co-receptors and is believed to be a key negative regulator of bone 

formation. This role is mediated by opposing the osteogenic role of growth factors 

such as BMP that is known to activate osteoblasts while favouring bone turnover by 

activating osteoclasts. Similar to Dkk proteins, SOST have preferential specificities to 

bind to the LRP5/6 co-receptors. More recently LRP-4, another member of the low-

density lipoprotein family, was also noted to be a co-receptor for SOST in the bone 

tissue (Chan et al., 2011; Staines et al., 2012). 

1.7. The role of Wnt pathways in OA. 
 

Accumulating evidence is emerging, that the Wnt pathway plays a pivotal role in the 

homeostasis of many tissues including that of the skeletal system. Genome wide 

association studies of the genetics of OA have shown that several Wnt inhibitor genes 

have single nucleotide polymorphism mutations that predispose to OA (Hartmann, 

2006; Luyten et al., 2009). Recently, a number of human genome analyses studies on 

patients with osteoarthritis have identified a single nucleotide polymorphism mutation 

in the FRZB allele on chromosome 12. This mutation leads to the substitution of the 

amino acid Arg-200 in the FRZB to tryptophan and the amino acid Arg-324 to glycine. 

This substitution indicates that these changes may be a marker for predisposition to 

knee or hip osteoarthritis, respectively (Loughlin et al., 2004; Lories et al., 2007b ; 
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Rodriguez-Lopez et al., 2007). Interestingly, knockout of the FRZB gene in mice did 

not exhibit degenerative joint changes (Lories et al., 2007b). However, upon cytokine 

or surgical induction of joint damage, FRZB -/- mice showed accelerated joint damage 

compared to their normal wild-type littermates. In addition to FRZB, other members 

of the secreted frizzled related proteins have been associated with development of 

osteoarthritis in in vitro and in vivo models. For example, sFRP-1, -2 and -4 have all 

been reported to be over-expressed in synovial tissue from osteoarthritic patients 

(Imai et al., 2006; Luyten et al., 2009; Staines et al., 2012).  

Polymorphisms of LRP-5 and LRP-6 have also been associated with increased risk of 

OA development in the spine (Luyten et al., 2009). Up-regulation of LRP-5 in mice 

increased the expression of β-catenin and resulted in a down-stream activation of 

cartilage matrix degradation enzymes (i.e. ADAMTS & MMPs). Blocking of LRP-5 in 

human articular cartilage chondrocytes using siRNA resulted in a reduction of matrix 

metalloproteinase-13 levels and, therefore, might have a protective role against 

cartilage degradation (Papathanasiou et al., 2010). In addition, the role of LRP-5 was 

found to be crucial in the development of the eye and skeletal system and mutational 

loss of function of LRP-5 in humans was found to cause osteoporosis pseudoglioma 

(Gong et al. 2001; Riancho et al. 2011). In mouse models of LRP-5 knockout, it was 

found that LRP-5 had a crucial role in the bone mineral density of the mouse (Cui et 

al. 2011) 

The role of SOST, an inhibitor of the canonical Wnt signalling pathway, has been 

implicated in the homoeostasis of bone tissue. Its role in the pathogenesis of OA has 

been investigated by Chan et al. (2011). This study has found there was a decreased 

number of SOST-positive osteocytes in human OA patients. 
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Elevated biochemical serum levels of FRZB were associated with a reduction in 

radiographic hip osteoarthritis, while elevated levels of Dkk-1 were noted to be 

protective in radiographic hip osteoarthritis (RHOA) in humans (Lane et al., 2007). 

Wnt-1 induced secreted protein 1, a member of CCN family closely associated with 

Wnt-1, has been found to be present where osteoarthritis is diagnosed. WISP-1 is up-

regulated in OA and using in vitro and in vivo models of WISP-1 over-expression, has 

revealed that WISP-1 cartilage degradation is mediated by down-stream activation of 

aggrecanase and matrix metalloproteases (Blom et al., 2009). 

1.8 Surgical treatment modalities for osteoarthritis. 
 

Treatment modality of end-stage OA involves a surgical procedure known as joint 

arthroplasty. This procedure requires surgical resection of the damaged cartilage and 

underlying bone, as well as other associated soft tissues before a metallic prosthetic 

joint is implanted. Joint arthroplasty, despite being successful for end-stage OA, can 

have a number of drawbacks. These range from the technical complexity associated 

with the surgical procedure and the aftercare, to the limited life-span of the prosthetic 

device and ultimately, the need for surgical revisions thus requiring multiple 

operations during the patient’s life–time which is necessitated by mechanical failure. 

Therefore, younger patients suffering from end-stage OA and requiring joint 

arthroplasty are discouraged from having joint replacement before their 6th decade. 

This is to avoid technical difficulties associated with multiple “surgical revisions” 

(Luyten et al., 2009; Hollander et al., 2010). In addition, joint replacement is contra-

indicated in patients with other medical co-morbidities including cardiovascular 

diseases and obesity. These issues demonstrate why finding alternative and effective 
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treatment for a large number of excluded patients are paramount. The impact of this 

disease is felt throughout society and can be measured, for example, by the 36 million 

working days lost per-year which equates to a £3.2 billion loss for the UK economy 

(National Collaborating Centre for Chronic Conditions, 2008, Arthritis and 

Musculoskeletal Alliance, 2004). 

1.9 Overview of ACI and MSCs repair of cartilage defects. 
 

The current “gold” standard for repair of small cartilage defects is a cell-based 

therapy named autologous chondrocyte implantation (ACI). This involves invasive 

harvesting of chondrocytes from un-damaged areas, followed by in vitro expansion of 

the chondrocytes for several weeks. The cells are then seeded back into the 

symptomatic area beneath a periosteal flap covering the defect area or, alternatively, 

are embedded in a synthetic matrix plug to fill the defect (Brittberg et al., 1994). 

Despite the success of this technique in alleviating symptoms, the resultant tissue is 

fibro-cartilaginous, which is inferior to the hyaline cartilage found in synovial joints 

(Diaz-Romero et al., 2005; Khan et al., 2009). Several studies, mainly using animal 

models, have been carried out to explore the potential use of autologous 

mesenchymal stem cells (MSC) as an alternative cell source for cartilage repair (Tuan 

et al., 2003; Yan and Yu, 2007). Due to their inherent regenerative potential, 

chondroprogenitor cells and mesenchymal stem cells of multiple origins are of a 

significant interest in the field of orthopaedic medicine as they can be used for 

cartilage regeneration. In addition, MSCs have been noted to have an immune-

modulatory response which enhances their regenerative potential (Petrie Aronin and 

Tuan, 2010) 
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Mesenchymal stem cells (MSC’s) are multipotent cells that are capable of 

differentiating into the mesenchymal lineages; bone, cartilage and adipose tissue 

(Giordano et al., 2007; Yang et al., 2011). The classic source of adult MSCs, first 

described by Friedenstein, has been from bone marrow (Bianco et al., 2001). 

However, in recent years adult mesenchymal stem cells have been isolated from 

numerous tissue sources including peripheral blood and adipose tissue. Several 

approaches were adopted in cartilage tissue engineering including injection of MSCs 

directly into the defect and placement of periosteal flap or lately embedding MSCs in a 

synthetic matrix plug to fill the defect. Despite the success of this technique in 

alleviating symptoms, the resultant tissue is cartilaginous tissue that is unstable and 

undergoes hypertrophic differentiation (McCarthy et al., 2012). In 2001 Hayes et al. 

(2001) demonstrated that hyaline cartilage grew by apposition i.e. from the surface 

zone migrating downwards (Archer et al., 1994; Hayes et al., 2001). Building on this 

knowledge, Dowthwaite et al. (2004) isolated a rare cohorts of chondrocytes form 

immature articular cartilage which had higher expression of integrin expression and 

stem cells marker Notch-1, termed cartilage progenitor cells (CPC). These cells when 

further characterised were noted to have plasticity by being able to differentiate into 

cartilage, bone and adipose tissues as well as being able to retain their phenotype 

while undergoing extensive proliferation (Khan et al., 2009; Williams et al., 2010). 

These studies supported the notion that stem/progenitor cells, that are isolated from 

articular cartilage, could be suitable source for tissue regeneration of articular 

cartilage.  
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1.10. The role of the Wnt pathway in Chondrogenesis.  
 

The most studied Wnt pathway ligand is thought to be Wnt3a. It has been shown to 

affect chondrogenesis by inhibiting the potential of mesenchymal precursor cells in 

chondrogenic differentiation. It is believed that Wnt-3a acts on the Wnt pathway via 

activating the canonical β-catenin. This activation leads to β-catenin nuclear 

translocation with widespread down-stream cellular activities, which affect cell fate, 

such as, cell proliferation, differentiation and activation of catabolic pathways. The 

inhibitory role of Wnt-3a on chondrogenesis of mesenchymal stem cells has been 

documented to favour osteogenic differentiation, in an in vitro setting (Hartmann; 

2002; Goldring et al., 2006; Hartmann, 2006). 

The role of Wnt-3a has also been associated with BMP and Ihh as well as PTHrP-

inducing chondrocyte hypertrophy and endochondral ossification. Similar to the role of 

Wnt-3a in chondrogenesis, other Wnt ligands were also shown to elicit a negative 

effect on chondrogenesis in in vivo experiments. For example, conditional over-

expression of Wnt7a, which is localised to the developing limb bud and regulates 

dorsal-ventral patterning led to inhibition of chondrogenesis by affecting 

mesenchymal precursor cell condensation (Hartmann and Tabin, 2001; Goldring et al., 

2006; Spater et al., 2006; Staines et al., 2012). In addition, Wnt-1, Wnt-4, and Wnt-

9a have a similar inhibitory role on chondrogenesis (Spater et al., 2006; Hidaka and 

Goldring, 2008). 

In addition to investigating the role of Wnt proteins, the role of Wnt antagonist 

proteins on chondrogenesis and limb development have also been investigated. For 

example, the effects of Wnt inhibitory factor-1 (Wif-1) and Wnt antagonist proteins on 



38 

 

chondrogenesis were investigated using chick embryos (Surmann-Schmitt et al., 

2009). They found that Wif-1 expression occurred during early chondrogenesis of the 

synovial joint of the chick. Levels of Wif-1 were sustained throughout chondrogenesis 

and in association with the chondrogenic transcriptional factor Sox-9. However, 

spatial expression of Wif-1 was confined to the superficial zone of the articular 

cartilage, hence preventing chondrocytes from undergoing terminal differentiation and 

hypertrophic maturation. This early expression of Wif-1 was thought to be 

counteracting Wnt-3a that is a potent canonical Wnt pathway agonist (Surmann-

Schmitt et al., 2009). 

An in vitro chondrogenic model of a murine chondrocyte cell line demonstrated Wif-1 

to promote cartilage nodule formation by blocking the inhibitory role of Wnt-3a. This 

inhibition was found to be dose dependent and, in the absence of the exogenous 

Wnt3a, Wif-1 still showed stimulation of cartilage nodule formation. This result might 

be explained by Wif-1 inhibiting endogenous Wnt3a levels (Surmann-Schmitt et al., 

2009; Luyten et al., 2009; Staines et al., 2012). 

The role of the Wnt pathway also extends to hypertrophic differentiation and 

endochondral ossification of chondrocytes. Constitutive over-expression of the Wnt 

pathway components during in vivo experiments, involving mature chondrocytes from 

the chick sternum, has shown that over-expression of β-catenin leads to hypertrophic 

differentiation, evidenced by up-regulation of Runx-2 and collagen type X with 

concomitant reduction of collagen type II (Tamamura et al., 2005; Dong et al., 2006). 
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1.11 PhD hypothesis. 

Articular cartilage contains a cohort of cells named chondrocyte progenitor cells (CPC) 

that have the selective advantage of long-term proliferation whilst maintaining their 

phenotype (Dowthwaite et al., 2004; Khan et al., 2009; Williams et al., 2010). In 

immature bovine cartilage, CPC have been localised to the surface zone (Dowthwaite 

et al., 2004; Hayes et al., 2008). Recently, CPC’s were also found in mature articular 

cartilage of several species including that of humans (Alsalameh et al., 2004a; Fickert 

et al., 2004; Koelling et al., 2009; Williams et al., 2010; McCarthy et al., 2012).  

Current literature indicates that the Wnt signalling pathway plays a vital role in the 

homeostasis and pathological changes affecting articular cartilage, subchondral bone, 

and surrounding soft tissues during osteoarthritis. These data convincingly suggests 

that the Wnt pathway may form a potential therapeutic target for OA. This approach 

might reduce synovial joint tissue degradation and, therefore, delay the need for 

more drastic surgical intervention. Both ligands and receptors of the Wnt signalling 

pathway have been localised within articular cartilage during development, hence, 

suggesting a role in controlling proliferation of articular cartilage chondrocytes. 

The aim of this thesis is to further our understanding of the role that the Wnt 

pathway plays in the pathogenesis of OA. We hypothesise that in adult human 

cartilage, the Wnt signalling pathway may play a role in the pathogenesis of 

osteoarthritis through the regulation of the cartilage progenitor cell’s fate and at the 

interface of articular cartilage and subchondral bone in mechanisms of a repair 

response. The experimental work in this thesis firstly, focuses on the unique 

population of mesenchymal progenitor cells isolated from normal and osteoarthritic 

human articular cartilage, herein named chondrocyte progenitor cells (CPC). Secondly, 
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the experimental work focuses on the interaction of cells within the cartilage-bone 

interface with a view to understanding the role of Wnt proteins in the breakdown and 

attempted repair of the tissue. 

In order to achieve these aims, the objectives of this study are to: 

1. Isolate and characterise human CPC and BM-MSCs from the knee joint of 

subjects undergoing knee arthroplasty. 

2. Investigate the expression of Wnt proteins in CPC from normal and 

osteoarthritic articular cartilage.   

3. Study the tissue distribution of the Wnt antagonists Dkk-1 in osteoarthritic 

tissue.  

4. Examine the chondrogenic differentiation potential of CPC from normal and 

osteoarthritic articular cartilage and whether differences in the Wnt antagonist 

protein Dkk-1 expression has an effect on the 3D-pellet generated cultures. 

5. Characterise the angiogenic properties of Wnt pathway proteins possibly 

thought to be involved in osteoarthritis. 

6. Design a co-culture model system in order to investigate the possible 

interaction of chondrocytes and endothelial cells which might provide further 

insight in to cross-talk that occur during osteoarthritis.  
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CHAPTER 2: GENERAL MATERIALS AND METHODS. 
 

2.1 Materials 
 

The general reagents and materials used in this thesis are listed in table 2.1 below.  

 

Table 2. 1: Commercial source of reagents and materials used. 

Material Source 

Agarose  Fisher Scientific, Loughborough, UK. 

Amersham ECL Western Blotting 
Detection Reagent 

Amersham GE Healthcare, 
Buckinghamshire, UK. 

Amersham Hyperfilm ECL  Amersham GE Healthcare, 
Buckinghamshire, UK. 

Ammonium persulfate (APS)  Fisher Scientific, Loughborough, UK. 

Anti-mouse horseradish-peroxidase-
linked IgG (source: sheep)  

Amersham GE healthcare, 
Buckinghamshire, UK. 

Anti-rabbit horseradish-peroxidase-
linked IgG (source: donkey)  

Amersham GE Healthcare, 
Buckinghamshire, UK. 

Aprotinin  Sigma-Aldrich, Dorset, UK. 

Arcrylamide/bis-acrylamide (30% 
solution (v/v), 29:1 ratio)  

Sigma-Aldrich, Dorset, UK. 

Bovine Serum Albumin  R&D bio systems, Abingdon, UK. 

Bromophenol blue  Sigma-Aldrich, Dorset, UK. 

Cell culture medium Sigma-Aldrich, Dorset, UK.  

Cell Proliferation Reagent WST-1  Roche Diagnostics, Burgess Hill, UK 

Chondroitinase ABC from Proteus 
vulgaris  

Sigma-Aldrich, Dorset, UK. 

Cloning rings (6mm)  Sigma-Aldrich, Dorset, UK. 

Cocktail of proteoase and phosphatase 
inhibitors 

Sigma-Aldrich, Dorset, UK. 

collagenase type II Clostridium 
Histolyticum 

Worthington Biomedical, distributed 
by Lorne Laboratories Ltd, Reading, 
UK. 

CryotubeTM vials (1.8ml, starfoot, 
round)  

Nalgene, Nunc Int, Roskilde, Denmark 

Dimethyl sulphoxide  Sigma-Aldrich, Dorset, UK. 

Di-thiothreitol (DTT)  Promega, Southampton, UK. 
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dNTPs (dAPT, dCTP, dTTP, dGTP; 100 
mM)  

Promega, Southampton, UK. 

Endothelial Cell Growth Medium (Basal 
medium + Growth supplements)  

Promocell, Heidelberg, Germany. 

Ethidium Bromide (EtBr)  Sigma-Aldrich, Dorset, UK.  

Ethylene diamine tetraacetic acid  Sigma-Aldrich, Dorset, UK.  

Foetal bovine Serum (FBS)  Sigma-Aldrich, Dorset, UK. 

Glacial acetic acid  Fisher Scientific, Loughborough, UK. 

Glycerol  Fisher Scientific, Loughborough, UK. 

Glutaraldehyde (25%)  Agar Scientific, Stansted, UK.  

GoTaq® Flexi DNA Polymerase kit Promega, Southampton, UK. 

Hydrochloric acid (HCL; 5M)  Fisher Scientific, Loughborough, UK. 

Hyaluronidase from Streptomyces  Sigma-Aldrich, Dorset, UK 

Indomethacin  Sigma-Aldrich, Dorset, UK 

Low base DNA ladder  New England Biolabs, UK. 

N,N,N’,N’-tetramethylene-diamine 
(TEMED)  

Sigma-Aldrich, Dorset, UK. 

Notch-1 (M-20) antibody  Santa Cruz Biotech, USA distributed by 
Insight Biotechnology, Wembley, UK. 

Novex® 12% Tris-Glycine Protein Gels Life technologies, Paisley, UK. 

pH calibration buffers tablets (pH 4, 7 
and 10)  

Fisher Scientific, Loughborough, UK.  

Pierce™ BCA Protein Assay Kit Thermofisher Scientific, 
Loughborough, UK. 

Precision Plus ProteinTM All Blue 
Standards (10-250kDa)  

Bio-Rad Laboratories, Herts, UK 

Pronase from Streptomyces griseus  Roche Diagnostics, Burgess Hill, UK 

Random hexamers  Promega, Southampton, UK. 

Recombinant RNase inhibitor Promega, Southampton, UK. 

RNase-free molecular water Sigma-Aldrich, Dorset, UK. 

SafeView Nucleic Acid Stain  NBS Biologicals, Huntingdon, UK. 

Sodium dodecyl sulphate (SDS)  Sigma-Aldrich, Dorset, UK. 

Sodium hydroxide (NaOH; 5M)  Fisher Scientific, Loughborough, UK. 

Solvents (acetone, chloroform, 
ethanol, formaldehyde, isopropanol 
and methanol)  

Fisher Scientific, Loughborough, UK. 

Sterile bijou tubes  Bibby Sterlin Ltd, Staffordshire, UK. 

Sterile Falcon tubes (15 mL and 50 Corning Inc., NY, USA 
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ml)  

Sterile phosphate buffered saline with 
ACE  

Sigma-Aldrich, Dorset, UK. 

Sterile syringe filters (0.2μm)   VWR, Soulbury, UK. 

Sterile tissue culture plasticware     
(flasks, dishes and plates)  

Corning life sciences distributed by 
Fisher Scientific, Loughborough, UK. 

SuperScript™ III Reverse 

Transcriptase 

Life technologies, Paisley, UK. 

SYBR Green KicqStart Taq ReadyMix Sigma-Aldrich, Dorset, UK. 

TGFβ-2, FGF-basic, VEGF-A, Dkks 
recombinant proteins 

PeproTech Ltd, London, UK. 

Transwell filter insert (8 um, 0.2um) Millipore distributed Fisher Scientific, 
Loughborough, UK. 

TRI Reagent  Sigma-Aldrich, Dorset, UK.  

Tris HCL  Sigma-Aldrich, Dorset, UK.  

Triton X-100  Sigma-Aldrich, Dorset, UK.  

Trizma (Tris) base  Sigma-Aldrich, Dorset, UK.  

Trypsin/EDTA 10x solution  Sigma-Aldrich, Dorset, UK.  

TRyPLE Life technologies, Paisley, UK. 

 Tween-20  Sigma-Aldrich, Dorset, UK. 

Ultra-low attachment spheroid 
Microplate 

Corning life sciences distributed by 
Fisher Scientific, Loughborough, UK. 
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2.2 Methods. 

2.2.1 Human Tissue material. 

Tibial plateaux and matched bone marrow aspirate (tibial plateaux), used in this study 

were obtained from clinically diagnosed OA patients undergoing total knee 

arthroplasty at the University Hospital Llandough, (n=10 mean age 56 yrs.; range 53-

70). South East Wales Research Ethics Committee safety and ethical guidelines were 

followed in this study (Ethical codes 10/MRE09/28 and 09/WSE04/35). Written 

informed consents were obtained from each patient involved prior to sample 

acquisition. Tibial plateaux were obtained from healthy donors through Dr. Paul 

Rooney at the National Health Service Blood and Tissue Service, Liverpool (n=6, 

mean age=43, range=29-55).  

2.2.2 Isolation of human cartilage chondrocytes and cartilage progenitor 

cells (CPC). 

Cartilage was dissected from the tibial plateau of normal and OA donors (normal n=5, 

OA n=6), diced and digested with pronase (70 U /mL) in DMEM containing 5% (v/v) 

Foetal Bovine Serum (FBS) and penicillin/streptomycin (100 μg/mL) herein named 

DMEM-FBS-PS for 1hr at 37ºC with constant agitation. Following removal of the 

pronase solution the tissue was further incubated overnight with collagenase (300 U 

/mL) in DMEM-FBS-PS for 3hrs at 37ºC with constant agitation (Williams et al., 2010). 

The cells were then filtered through a 40µm Nylon filter and the chondrocytes 

pelleted by centrifugation at 400 x g and re-suspended in 10 ml of DMEM containing 

penicillin/streptomycin herein named DMEM-PS. A cell count was taken using a bright 

light haemocytometer and isolated chondrocytes were either seeded into T75cm2 
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flasks at 0.5 x 106 cells/flask in DMEM containing 10% FBS and penicillin/streptomycin 

(100 μg/mL), herein named Basal Medium, or further subjected to the differential 

fibronectin adhesion assay to isolate cartilage progenitor cells (CPC) as described by 

Dowthwaite et al. (2004). Briefly, isolated chondrocytes were re-suspended at 1000 

cells /mL in DMEM-PS and 1 ml of the cell suspension was seeded into each well (35 

mm) of a 6 well cell culture plate pre-coated with fibronectin (10 µg/mL in PBS 

containing 1mM MgCl2 and 1mM CaCl2 for 24 hours at 4˚C). Seeded 6 well plates 

were incubated for 20 minutes at 37 ºC after which the medium containing the non-

adherent cells was gently removed and discarded. The remaining adherent cells were 

then cultured in 2ml Basal medium overnight at 37ºC in a humidified atmosphere of 

5% CO2. After one day post-plating, medium was changed facilitating further removal 

of dead and non-adherent cells, and the number of adherent cells were counted and 

recorded as the initial cell adherence. Medium was changed every 4 days and at 10 

days post-plating, the number of colonies (≥ 32 cells) formed were counted. The 

percentages of colony forming efficiency was calculated using the following formula: 

𝑪𝑭𝑬 = (
𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐜𝐨𝐥𝐨𝐧𝐢𝐞𝐬 𝐚𝐭 𝐝𝐚𝐲 𝟏𝟎(>32 𝑐𝑒𝑙𝑙𝑠)

𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐭𝐡𝐞 𝐢𝐧𝐢𝐭𝐢𝐚𝐥 𝐜𝐞𝐥𝐥𝐬 𝐬𝐞𝐞𝐝𝐞𝐝 
) X 100 

Between 10 and 14 days of culture incubation on fibronectin coated plates, single 

colonies of cells (>32) were encircled using a sterile cloning ring (8mm, C7983, 

Sigma-Aldrich) to facilitate harvest of a population of cells derived from the 

descendants of one cell. These monoclonal CPC lines were transferred into individual 

wells of a 24 well plate and expanded as a population of cells from a single cell origin. 

In addition, colonies formed two weeks after initial plating were expanded without 

selection to generate a number of heterogeneous polyclonal CPC lines. Both cartilage 

progenitor cell lines (i.e. monoclonal and polyclonal) were maintained in Basal 
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medium containing 1 ng/mL transforming growth factor -β2 (TGF-β2; PeproTech, UK) 

and 5 ng/mL fibroblast growth factor-2 (basic FGF2; peproTech, UK), herein named 

CPC maintenance medium (Williams et al., 2010). Medium was changed thrice weekly 

and passaged at approximately 70% confluence (2.2.4).  Figure 2.1 presents an 

overview of the cell populations used in further studies. 

 

Figure 2.1: Schematic diagram illustrating the isolation procedure for  
chondroprogenitor cells (CPC) from articular cartilage. 
 

2.2.3. Isolation of human Bone marrow mesenchymal stem cells. 

For the isolation of bone marrow derived stem cells, bone marrow fluid aspirates (2–

10 mls) were obtained from the medullary cavity of the tibial plateaux (n=5) and 

immediately mixed with 10 ml Basal medium. The resultant mix was layered gently on 

Ficoll-Paque PLUS (GE Healthcare Life Sciences, UK), 2 x 10 ml aliquots in 50 ml 

conical tubes. Tubes were centrifuged at 900 x g for 30 minutes at 18˚C after which 
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the upper layer was removed leaving the mononuclear cell layer (buffy coat) 

undisturbed at the interface. This “buffy coat” containing the mononuclear cells was 

carefully harvested with a 19-gauge needle attached to a 5 mL syringe and 

transferred to a sterile 50 ml falcon-tube. The cells were washed by centrifugation (10 

minutes at 750 x g) in Basal medium. A cell count was taken using a bright light 

haemocytometer and cells were re-suspended in an appropriate volume of Basal 

medium containing 5ng /mL fibroblast growth factor-2 (basic-FGF2) for plating at a 

seeding density of 2 x 106 per well (35 mm) in 6 well culture plates and incubated at 

37oC in a humidified atmosphere containing 5% CO2 (Murdoch et al., 2007). Medium 

was replaced on day 1. On day 4 medium was removed and wells rinsed using DMEM-

PS to remove non-adherent cells. The adherent cells were cultured using Basal 

medium containing 5ng /mL FGF2. Medium was changed thrice weekly and at cells 

passaged at approximately 70% confluence (2.2.4).  

2.2.4. Passage of cell lines. 

All cell lines (monoclonal CPC’s, polyclonal CPC and BMSC’s) were passaged at 70-

80% confluence. Spent medium was transferred to a sterile tube and centrifuged for 

5 minutes at 400 x g to remove any debris or dead cells. This conditioned medium 

was stored at -20 °C until required. Cells were then washed twice using DMEM-PS to 

remove any remaining serum prior to addition of 5 mL of 0.05% Trypsin-EDTA 

solution. Flasks were returned to the incubator for 5-10 minutes at 37ºC after which, 

cell detachment was assessed using an inverted microscope. The activity of the 

trypsin was inactivated by the addition of an equal volume (5 ml) of Basal medium. 

Dissociated cells were transferred to a sterile Falcon-tube and cells were centrifuged 

for 5 minutes at 400 x g. Pelleted cells were gently re-suspended in 1 ml Basal 
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medium and a cell count was taken using a bright light haemocytometer. Cells were 

split 1 in 4 and re-plated, or processed for long-term storage in Liquid Nitrogen 

(section 2.2.5) 

The Growth kinetics of all CPC and BM-MSC cell lines were calculated at each passage 

as population doublings (PDs), from the following equation:  

PD = [log (N1) – log (N0)] / 0.301 

 

Where N1 is the number of cells recovered at the end of the passage and N0 is the 

number of cells initially plated (Williams et al., 2010). For cumulative population 

doubling, see Appendix 4. 

 

2.2.5. Long-term storage and retrieval of cell lines. 

At passage, cell counts were calculated and cell suspensions were then pelleted by 

centrifugation at 400 x g for 5 minutes after which medium was aspirated and cell 

pellets re-suspended in freeze medium [90% (v/v) FBS and 10% (v/v) dimethyl 

sulphoxide (DMSO)] at 1 x 106 cells/ ml. Cells were transferred to cryovials and 1x 106 

cells were frozen at a rate of 1°C per minutes down to -80°C in a ‘Mr Frosty Freezing 

Container’ (Nalgene, USA). Two days later, cryovials were transferred to a liquid 

nitrogen cylinder for long-term storage.  

When required, cell lines were recovered from liquid nitrogen storage by removing the 

cryovials from the container and rapidly thawing the cells in a 37ºC water-bath for 1-

2minutes. Once thawed, cells were removed to a sterile tube containing with 10 mls 
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Basal medium, cells were pelleted by centrifugation (400 x g for 5 minutes) and re-

suspended in an appropriate volume of basal medium and conditioned medium (1:1 

ratio) and transferred to a T75 tissue culture flask. Cells were placed overnight in an 

incubator at 37º C with 5% CO2 and medium was changed 24 hrs later by decanting 

spent medium and replacing with 10 mls of appropriate medium (section 2.1). Cells 

were fed thrice weekly. 

2.2.3 Multipotency of derived CPC cell lines. 

Monolayer cultures of polyclonal CPC cell lines from normal donors (n=3), OA donors 

(n=3) and matched BM-MSCs (n=3) were trypsinized, washed and counted. Cells 

were either processed to assess their differentiation potential toward a chondrogenic, 

osteogenic and adipogenic lineage. 

2.2.3.1 Chondrogenic differentiation. 

Cell pellets were re-suspended in DMEM + Glutamax with, 100 mg/mL Gentamicin, 50 

μg/mL ascorbic acid, 1% HEPES buffer, and supplemented with 1% insulin, 

transferrin, selenium (ITS), 0.1 μM dexamethasone and 10 ng/mL TGF-β2 

(chondrogenic medium) at 1.2 x 106 cells / ml. Cells were seeded into Corning® 96 

well Ultra low attachment spheroid Microplate at 100,000 cells per well (Yamashita et 

al., 2010, Ball et al., 2014) and incubated at 37˚C in a humidified atmosphere 

containing 5% CO2. CPC formed aggregates within the first 24 hrs and medium was 

changed thrice weekly for 3 weeks after which pellets were collected for mRNA 

isolation (section 2.12) for analysis of chondrogenic differentiation gene expression 

using RT-PCR (section 2.12.3) or fixed in 70 % (v/v) ethanol for Toluidine blue 

staining and Safranin-O staining. 



50 

 

2.2.3.2 Osteogenic differentiation.  

Cell pellets were re-suspended at 0.2 x 106 cells/ml in medium consisting of DMEM 

containing 100 mg/mL Gentamicin, 10% (v/v) FBS, 50 µM ascorbic acid 2-phosphate, 

10 mM β-glycerol phosphate, 10 nM dexamethasone and 1% (v/v) HEPES buffer 

(osteogenic medium) and plated into 24 well tissue culture dishes at 50,000 cells per 

well (Williams et al., 2010). Cells were cultured over a period of 21 days at 37˚C in a 

humidified atmosphere containing 5% CO2 and medium was changed three times a 

week. After 21 days of culture in osteogenic medium cell layers were washed briefly 

with PBS and either fixed using 4% (w/v) paraformaldehyde fixative solution (4˚C for 

20 minutes.) or mRNA was extracted as described in section 2.12 for analysis of 

osteogenic differentiation gene expression using RT-PCR (section 2.12.3). 

Fixed cell layers were washed with PBS and then stained using Alizarin Red Stain 

solution (2 mg /mL, alizarin red in 0.5 M acetic acid pH 4.2 adjusted using 1 % (v/v) 

ammonium hydroxide) for 20 minutes at room temperature to detect for the presence 

of calcium deposits. Cells were washed five times with PBS to remove any unbound 

stain, and visualised and photographed using a Nikon TE-DH100w camera attached to 

a Nikon Eclipse TE300 microscope (Nikon, UK).  

 

 2.2.3.3 Adipogenic Differentiation. 

Cell pellets were re-suspended at 0.2 x 106 cells/ml in an adipogenic differentiation 

medium consisting of DMEM containing 100 mg/mL Gentamicin, 10% (v/v) FBS, 0.5 

mM isobutylmethyl xanthine (IBMX), 100 µM indomethacin, 1 µM dexamethasone, 10 

µg/ml insulin. Cells (50,000 cells per well) were maintained in adipogenic 
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differentiation medium for 1 week and medium was changed three times per week. 

After the experimental duration, cells were washed with PBS and either fixed with 4% 

(v/v) paraformaldehyde for 15 minutes at room temperature or mRNA was extracted 

as described in 2.15 for analysis of adipogenic differentiation gene expression using 

RT-PCR (section 2.12.3).  

Freshly fixed cells were stained with Oil Red O (0.3% (v/v) Oil red-O in 60% 

isopropanol made from a freshly prepared stock solution of 0.5% (w/v) Oil red-O in 

100% isopropanol) to detect the lipid droplets in the differentiated cells as per 

published protocol (Williams et al., 2009). The stain was added to the plates for 1 

hour at room temperature before being washed thoroughly in distilled water.  Staining 

was visualised and photographed using a Nikon TE-DH100w camera attached to a 

Nikon Eclipse TE300 microscope (Nikon, UK). 

2.2.4 Cell Viability assay. 

Assessment of cell viability was measured by quantifying the amount of lactate 

dehydrogenase (LDH) released into the medium of cultured cells using the LDH based 

in vitro toxicology assay kit (Pierce,Thermo, UK). Briefly, 50 µl of cell supernatant was 

transferred to 96-well microplates and 50 µl of LDH assay reaction mix was added. 

The plate was covered with foil paper and incubated for 30 minutes. in the dark at 37 

°C. The reaction was terminated by addition of 50 µl of stop solution and the 

absorbance was measured at a wavelength of 490 nm. Data are shown as mean ± 

SEM.  
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2.2.5 Endothelial cell culture 

Human umbilical cord endothelial cells (HUVEC) were purchased from GIBCO (Life 

technologies, UK). Cells were routinely cultured using endothelial cell growth medium 

(EGM-2, Promocell, Germany). Culture medium was changed three times a week and 

when the cells reached 70-80% confluency, they were passaged as described in 

2.2.4. Cells were routinely frozen at each passage as described in 2.2.5. Cells were 

not maintained beyond passage 6. After passage 3, endothelial cells were 

characterised for endothelial markers (Table 2.2) using flow cytometry as described in 

section 2.11. In addition, isolated endothelial cells were seeded at 30,000 cells per 

well in chamber slides and the expression of PECAM-1 was studied using 

immunofluorescence (section 2.8.1). In addition, human umbilical cord derived 

endothelial cell lines were used for some of the analysis in chapter 5 only. These cells 

were a kind gift from Drs. Gareth Willis and Philip James (Institute of Molecular & 

Experimental Medicine, Cardiff School of Medicine).  HECV cell lines were maintained 

in basal medium and without any additional growth factors.   

2.2.5.1 Wound healing assay. 

Endothelial cells were seeded into a 24-well plate at 1x105 cells/well in basal medium 

and after 24 hrs each confluent monolayer was scratched using a 200-μL plastic 

pipette tip to create a wounded cell-free area and then washed twice with DMEM-PS 

while taking care not to dislodge cells. Cells were incubated at 37 °C with DMEM-PS 

containing the vehicle control of 0.01% BSA, or experimental treatments of 

recombinant Dkk-1(100  ng/mL), Dkk-2 (100  ng/mL), Wnt-3a (100  ng/mL), lithium 

chloride 10 µM, or Dkk-1 (100  ng/mL). Cells were photographed at time 0 and after 
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24hr using an inverted microscope, (Nikon, Japan), equipped with a digital camera. 

The distance between the edges of the cell-free areas was measured using the 

imaging program (Wimasis, Germany). 

2.2.5.2 Transwell-Invasion assay. 

The Transwell migration assay was performed as per published protocol described in 

Mandelboimet et al. (2006) with a few modifications. Monolayer cultures of 

endothelial cells were serum starved for 24 hours, trypsinized (as described in section 

2.2.4) and re-suspended in serum-free DMEM-PS at a concentration of 1×105 cells per 

ml. 100 µl of the cell suspension was seeded onto the top of the Transwell insert (8 

µm pore size) previously coated with Matrigel™ (Becton Dickinson, UK) in serum-free 

DMEM-PS. 1 ml of medium comprising of DMEM-PS +/- Dkk-1 (100 ng/mL), or Dkk-

1+ the Dkk-1 inhibitor WAY-262611 (1µM) was added to the outer chamber and the 

plate was maintained at 37°C in a humidified atmosphere with 5% CO2 for 24 hrs. 

Medium was aspirated from the Transwell insert and outer chamber and fixative 

reagent (4% PFA) added to the Transwell insert and the outer chamber for 15 

minutes at room temperature. 1 ml of 100% methanol was distributed to the insert 

and outer chamber and incubated for 15 minutes at room temperature. Methanol was 

removed and then PBS added to the insert and outer chamber. Following this the 1 ml 

of Giemsa solution (Sigma, UK) was distributed to the insert and outer chamber and 

incubated for 15 minutes at room temperature. The insert was removed and excess 

staining solution removed by submerging in 2 x PBS. Cells remaining in the insert 

were removed using cotton buds and cells that had invaded the Matrigel™ were 

imaged using an inverted microscope (Nikon Eclipse TS100, Japan). Images were 
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taken from each insert (n=3) using a Nikon E4500 camera with x10 objective 

magnification and the number of cells per view manually counted.  

2.2.5.3 Tube formation assay. 

The Tube formation assay was performed as published in the protocol by Arnaoutova 

and Kleinman, (2010). Briefly, 96-well plates were coated with ‘Matrigel’ (50 µl/well) 

and coated plate were allowed to polymerize at 37 °C under 5% CO2 for 1hr. 

Endothelial cells were seeded at 2 × 104 cells/well in basal medium and incubated at 

37 °C in 5% CO2 for 1hr. Medium was removed carefully from each well ensuring not 

to pierce through the gel and replaced with DMEM+ 0.1% (w/v) BSA; DMEM + 0.1% 

(w/v) BSA + Dkk-1 (100 ng/mL); DMEM + 0.1% (w/v) BSA + Dkk-2 (100 ng/mL) 

DMEM + 0.1% (w/v) BSA + VEGF-C (10 ng/mL) to designated wells and incubated for 

24 h. To assess tube formation, cells were imaged at 0 hr and 24 hrs and cell 

morphology and tube structures visualised using an inverted microscope (Nikon 

Eclipse TS100, Japan). Images were taken from each well (n=3 per group) using a 

Nikon E4500 camera (Nikon, Japan). Images were analysed using Wimasis imaging 

software (Wimasis, Germany) for tube formation. The circular images of the wells 

were divided into segments and the stimulation quantified by counting the number of 

branching points formed within each segment. Experiments were independently 

repeated twice. 

2.2.6 Endothelial cells and chondrocytes co-culture assay. 

Transwell co-culture experiments, to study the paracrine effect of culturing 

chondrocytes on endothelial cells, were conducted in a 24 well setup with a 0.4 µm 

PTFE membrane partitioning the chambers (Millipore, UK). Briefly, 5 × 104 
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chondrocytes were seeded in the upper chamber and 5 × 104 endothelial cells on the 

bottom of the lower chamber were maintained in maintenance medium containing 5% 

FBS and lacking any additional growth factors. For the control experiment both upper 

and lower chambers contained endothelial cells. Medium from the upper and lower 

compartments was changed three times a week and cells were cultured for 7 days 

before protein (section 2.13) and RNA was extracted (section 2.12) or cells were fixed 

for immunocytochemistry analysis (section 2.8). 

For endothelial to mesenchymal (EnMT) induction using conditioned chondrocyte 

culture medium, seeded cells were grown on endothelial growth medium until 70% 

confluency. Cells were washed twice using serum free DMEM and incubated for 8hrs 

with serum free DMEM. Cells were incubated with control medium consisting of DMEM 

+ 10% (v/v) FBS or conditioned chondrocyte medium (2 days culture period). Cells 

were incubated for 7 days at 37 ºC in a humidified incubator with 5% CO2 and 

medium was changed three times a week. 

2.2.7 Histological analysis:  

2.2.7.1 Collection and preparation of tissue. 

Cartilage and osteochondral biopsies were dissected from the tibial plateaux of 

patients that had undergone total knee replacement surgery for OA (n= 10) and from 

normal donors (n=6). Tissues were fixed overnight in 10% neutral buffer formalin 

saline (NBFS). The following day the fixative agent was removed from cartilage 

samples and replaced with 70% (v/v) ethanol to minimize tissue hardening. 

Osteochondral biopsies were washed with phosphate buffer saline (PBS) before 

decalcification in 10% (w/v) EDTA, pH 7.5 at 4°C replaced twice a week for up to 6 
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weeks. Decalcification was checked by radiography at the Central Biotechnology 

Services, Cardiff University. Following decalcification, samples were washed in PBS, 

dehydrated using graded ethanol for 30 minutes at room temperature (70%, 95%, x2 

100%). All samples were wax-embedded by the Histology Unit, Cardiff School of 

Biosciences, Cardiff University. Wax embedded tissue was sectioned at 10µm using a 

microtome (LKB BROMA 2218 microtome Historange) and mounted onto poly-L-lysine 

coated-slides. 

Prior to processing sections were dewaxed using xylene (2 x 2 minutes) and 

rehydrated using a descending gradient of ethanol (100%, 90%, 70%, 1 x 2 minutes) 

with a final immersion in H2O. Slides were circled using a hydrophobic pen (Dako, UK) 

and washed in PBS for 5 minutes.  

2.2.7.2 Histological grading of cartilage tissue. 

Cartilage sections were de-waxed and rehydrated prior to staining with Safranin-O, 

Fast Green and the nuclei counter-stain, Mayer's haematoxylin. This staining 

procedure enables the assessment of structural changes to the articular cartilage and 

the proteoglycan content in the extracellular matrix. First sections were stained with 

Mayer haematoxylin for 5 minutes, washed in running tap-water for 5 minutes and 

then transferred to a vessel containing 0.02% fast green solution for 5 minutes. 

Sections were washed with 1% v/v acetic acid solution for 15 seconds and transferred 

to a vessel containing 0.1% Safranin-O solution for 5 minutes after which they were 

washed in tap-water for 5 minutes. Sections were then dehydrated through an 

ethanol gradient (70%, 90%, 100%, 100% 1 x 2 minutes) and cleared using xylene 

(2 x 2 minutes) before mounting with coverslips using DPX mounting medium. 
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Stained slides were used to grade OA severity using the modified Mankin score; 

studying: zonal structure, cell density and Safranin-O staining, where the minimal 

score was 0 and the maximal score was 14, see Appendix 1.  

2.2.7.3 Detection of Tartrate-resistant acid phosphatase (TRAP). 

Tartrate-resistant acid phosphatase (TRAP) is an enzyme that is highly expressed by 

bone resorbing osteoclasts. Histochemical staining to visualize TRAP expression was 

performed on 10 μm osteochondral tissue sections from normal (n=5) and 

osteoarthritic donors (n=10) using the Acid Phosphatase, Leukocyte (TRAP) kit as per 

manufacturers protocol (Sigma). Briefly, dewaxed sections (2.10.1) were incubated in 

a solution of naphthol AS-BI phosphate (12.5 mg/mL naphthol AS-BI) at 37 °C for 1 

hr, rinsed in distilled water for 5 minutes (room temperature) and counterstained with 

Mayer’s haematoxylin (5 minutes) prior to rinsing in tap water, dehydrating through a 

gradient of ethanol and mounting with coverslips using DPX. TRAP-positive 

multinucleated cells containing three or more nuclei were imaged using Leitz DMRB 

light microscope (Leica, Germany). 

2.2.8 Immunohistochemistry. 

Cartilage sections were de-waxed and rehydrated (2.2.7.2) and for primary antibodies 

requiring epitope retrieval, (see Table 2.1) sections were either incubated with 

hyaluronidase (2U /mL in PBS) for 1 hr at 37 °C; citrate-buffer (Dako) for 3 minutes 

at 95 °C (DAKO, UK) or hyaluronidase (2U /mL) + C’ase ABC (0.1U /ml) in Tris 

acetate, pH 8.0 for 1 hr at 37 °C. Primary antibody was omitted and replaced with 

either relevant negative Ig sera or PBS to act as a negative control. 
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2.2.8.1 Immunofluorescence labelling. 

Sections or fixed cells were blocked using goat serum (50 µg /mL) for 30 minutes at 

room temperature. The blocking serum was removed and primary antibody diluted in 

PBS containing 1 % BSA (Table 2.1) was added and sections were incubated 

overnight at 4°C. Sections were washed twice (5 minutes) in PBS-Tween and 

incubated with the appropriate secondary antibody (for mouse IgG primary antibody; 

goat anti mouse IgG Alexa Fluor 488, Alexa Fluor 594 or Alexa Fluor 647 was used. 

For polyclonal rabbit primary antibody; goat anti rabbit Alexa Fluor 633 was used and 

for mouse IgM primary antibody; goat anti mouse IgM Alexa Fluor 594 was used.  All 

secondary antibodies were diluted to a final concentration of 10 µg/mL) for 1 hr at 

room temperature. Processed sections were mounted in Vectashield (Vector Labs, 

USA) containing 4, 6-diamidino-2-phenylindole (DAPI) or propidium iodide as a 

counterstain for cell nuclei and viewed using a Leica DM2500 confocal microscope or 

Leica DM6000 up-right confocal microscope (Leica, Germany). 

2.2.8.2 Peroxidase labelling. 

Sections or fixed cells were submerged in hydrogen peroxide (0.3% (v/v) in H2O) for 

30 minutes at room temperature to quench endogenous peroxidase activity. Sections 

were rinsed x 3 in PBS-Tween for 5 minutes and blocked using the R.T.U Vectastain 

Universal Quick Kit blocking serum (horse serum) for 30 minutes, excess serum was 

discarded and primary antibody diluted in PBS-T (Table 2.1) was directly applied to 

the sections and incubated at 4°C overnight.  
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Table 2. 1: Primary antibodies and dilution used for immunohistochemistry 

and Western blot. 

 

 

Antibody Host species Supplier 
Optimum 
dilution 

anti-BrdU Mouse (IgG) 
G3G4, 
DSHB 

1:40 

anti-CD105 Mouse (IgG) R&D 1:100 

anti-CD166 Mouse (IgG) R&D 1:100 

anti-DKK-1 Mouse (IgG) 
MAB10962, 

R&D 
1:500 

Anti- β-catenin Mouse (IgG) 610153, BD bioscience 1:1000 

Anti- VE-cadherin Mouse (IgG) 
Clone BV9, 

Biolegend 
1:100 

Anti- CD-34 Mouse (IgG) QBEND-10, Abcam 1:50 

Anti- SNAI1 Rabbit (IgG) 
H-130, Santa Cruz 

Kind gift of Dr. Rhian French 
1:200 

Anti-Vimentin Mouse (IgG) 
Clone V9, 

Sigma 
1:500 

Anti-SMA Mouse (IgG) 
Clone 1A4, 

Sigma 
1:500 

Anti-Aggrecan Mouse (IgG) 
6B4 epitope, 

In-house antibody 
Generated by Prof. Caterson 

1:100 

Anti-collagen type 
II 

Mouse (IgG) 
CIICI, DHSB 

Kind gift of Prof. Duance 
1:50 

Anti-Sox9 Rabbit (IgG) H-90,Santa Cruz 1:100 

Anti- MMP13 Rabbit (IgG) 
H-230, 

Santa Cruz 
1:500 

Anti- γ-catenin Mouse (IgG) 610253, BD bioscience 1:1000 

Anti- β-actin Mouse (IgG) ab6276, Abcam 1:10000 

Anti-Erk1/2 Rabbit (IgG) 
ADI-KAP-MA001-D, Enzo Life 

Sciences 
1:1000 

Anti-PECAM1 
goat polyclonal 

(IgG) 
M-20, Santa Cruz 1:1000 

Anti- CD-29 
Mouse  
(IgG) 

Clone TS2/16, ebioscience 1:100 

Anti-Stro1 Mouse IgG MAB1038, R&D 1:100 

Anti-Notch1 Mouse IgG SC-6015, Santa Cruz 1:100 

Anti- CD-44 Mouse IgG Clone BJ18, Biolegend 1:100 
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Sections were subsequently washed thrice in PBS-Tween for 5 minutes prior to the 

addition of the pre-diluted pan-specific biotinylated universal secondary antibody 

(Vector) and incubation for 15 minutes at room temperature. Sections were washed 

twice in PBS-Tween, a few drops of the streptavidin/peroxidase complex (Vector) 

added and incubated at room temperature for 5 minutes. Sections were washed twice 

in PBS-Tween and developed using the 3, 3’diaminobenzidine (DAB) substrate kit 

(Vector), for 4 minutes or until strong staining was seen. Slides were rinsed in distilled 

H2O to stop the DAB reaction. Nuclei were counter-stained using haematoxylin. The 

slides were then dehydrated in a series of ascending graded alcohols, cleared in 

xylene and mounted in DPX. Slides were allowed to air-dry and were subsequently 

imaged using a Leica Leitz DMRB light microscope (Leica, Germany). 

2.2.9 Bromodeoxyuridine (BrdU) Assay. 

Cells, in Basal medium, were seeded at 104 cells per well in 12 well cell culture plates 

and incubated for 24 h at 37˚C in a humidified atmosphere of 5% CO2. Triplicate 

wells were established for each cell line. Medium was removed, replaced with basal 

medium containing 10 µM BrdU and cells incubated for 24 hrs. Cells were washed 

twice with PBS, fixed in ice-cold 70% (v/v) ethanol for 30 minutes at room 

temperature and washed again with PBS before storage at 4 ºC for later analysis. 

Incorporated BrdU was detected using an anti BrdU monoclonal antibody (Table 2.1) 

using the peroxidase method described in section 2.8.2 with the modification that all 

antibody incubation steps were carried out at room temperature for 1 h. Cell layers 

were pre-treated with 1M HCl to denature the DNA. On completion of the protocol, 

plates were dried and glycerol added to each well as mounting medium and cells were 

viewed using a Nikon Eclipse TS100 light microscope. Images were taken from each 
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well (n=3) using a Nikon E4500 camera with x 20 objective. The total number of cells 

and the stained cells were counted. The percentage of stained cells was calculated by 

dividing positively stained cells by the total cell count using image J software.  

2.2.10 Senescence associated β-galactosidase (SA β-Gal) staining.  

Cells (in Basal medium) were seeded at 104 cells per well in 12 well cell culture plates 

and incubated for 24 h at 37˚C in a humidified atmosphere of 5% CO2. Triplicate 

wells were established for each cell line. Cells were washed twice in PBS-Tween prior 

to fixation in 2% formaldehyde and 0.2% glutaraldehyde in PBS for 5 minutes at 

room temperature. Following fixation, cells were washed in PBS, and then submerged 

in β-Gal solution (40 mM citric acid/phosphate, 1 mg/mL X-Gal, 150 mM NaCl, 2 mM 

MgCl2, 5mM K4(FeCN6), 5mM K3(FeCN6), pH 6) and incubated for 16 hours at 37˚C. 

Cells were washed twice with PBS (5 minutes) and twice with methanol before plates 

were air-dried. Plates were viewed using an inverted Nikon Eclipse TS100 light 

microscope and images were taken from each well (n=3) using a Nikon E4500 camera 

with x 20 objective magnification. There is a blue depositon of β-galactosidase at the 

cytoplasm of senesced cells (Debacq-Chainiaux et al., 2009). The total number of cells 

and the stained cells were counted and the percentage of stained cells was calculated 

by dividing positively stained cells by the total cell count using image J software.  

2.2.11 Flow cytometry. 

Confluent cell layers were lifted using 5 ml of TryPLE solution (Life Technology, UK), 

washed in DMEM-PS and counted using a haemocytometer. Routinely 1 x 106 cells 

were re-suspended in 1 ml ice cold PBS containing 0.1% (w/v) bovine serum albumin 

(PBS/BSA). 105 cells (100 µl) were transferred to 1.5 ml sterile microcentrifuge tubes 
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and cells were pelleted at 400 x g for 5 minutes. The supernatant was removed, the 

cell pellets re-suspended in 100 µl of PBS/BSA containing 10 µg/mL of the appropriate 

primary conjugated antibody (Table 2.2) and incubated in the dark at 4 ºC for 30 

minutes. An appropriate mouse IgG was used as a negative control. Cells were 

centrifuged, washed twice using 1 ml PBS/BSA to remove non-bound antibodies and 

then re-suspended in 500 µl of PBS/BSA. Each cell suspension was transferred to a 

12mm FACS tubes (BD Biosciences, UK) for analysis using the FACS Canto flow-

cytometer. Data were processed using the FACS Diva software (BD Biosciences).  

Cells were analysed according to size and granularity to differentiate viable cells using 

forward and side scatter, respectively. Data were displayed in a series of density plots 

and IgG isotype data were displayed as a histogram overlay to show the overlap. The 

data were analysed using Flowing Software (v2.5, University of Turku, Finland). The 

level of antibody expression was calculated as the ratio between geometric mean 

fluorescence intensity (MFI) of positive stained cells against that of the isotype 

control.  
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Table 2. 2: Conjugated primary antibodies used for flow cytometry. 

Antibody name Clone name Conjugated type Source Species 

Anti-CD90 (Thy-1) 5E10 PerCP-eFluor® 710 ebioscience Mouse (IgG1, κ) 

Anti-CD105 SN6 APC ebioscience Mouse (IgG1, κ) 

Anti-CD166 3A6 PE ebioscience Mouse (IgG1, κ) 

Anti-CD-34 QBEND FITC Abcam Mouse (IgG1) 

Anti-CD144 BV9 APC Biolegend Mouse (IgG1, κ) 

Anti-CD31 M-20 PE Biolegend Mouse (IgG1, κ) 

Anti-VEGFR2 7D4-6 PE Biolegend Mouse (IgG1, κ) 

Anti-CD11b ICRF44 PE-Cyanine5 ebioscience Mouse (IgG1, κ) 

Isotype Control P3.6.2.8.1 APC ebioscience Mouse IgG1 K 

Isotype Control P3.6.2.8.1 PerCP-eFluor® 710 ebioscience Mouse IgG1 K 

Isotype Control P3.6.2.8.1 PE ebioscience Mouse IgG1 K 

Isotype Control P3.6.2.8.1 FITC ebioscience Mouse IgG1 K 

2.2.12 Molecular analysis: 

2.2.12.1 RNA extraction from cells. 

Total RNA was isolated routinely from cell cultures using Trizol® (Invitrogen, UK) at 1 

ml per 0.5-1 x 106 cells following the manufacturer’s protocol. Trizol was added to 

cells which were lifted by repetitive pipetting and transferred to a 1.5 ml RNase-free 

microcentrifuge tube, after which 200 µl of molecular grade-chloroform was added 

and the samples mixed by inversion before allowing to stand for 15 minutes at room 

temperature. Samples were centrifuged for 15 minutes at 13,000 x g at 4°C. The top 
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aqueous-phase, containing the RNA was carefully removed without disturbing the 

DNA interface layer and transferred to a fresh 1.5 mL microcentrifuge tube. An equal 

volume of 70% ethanol was added to the aqueous phase and the sample carefully 

mixed by inversion.  

RNA was isolated using the RNeasy mini-kit as per manufacturer’s protocol. Briefly, 

the sample was transferred into an RNeasy spin column placed in a 2ml collection 

tube and centrifuged at 8000 x g for 30 sec. 350 µl of RW1 buffer was added to the 

spin column and centrifuged at 8000 x g for 30sec. To eliminate genomic DNA 

contamination, an on-column DNase digestion steps was carried out by adding 80 µl 

of DNase solution (10 µl of DNase I + 70 µl RDD buffer) onto the centre of the 

RNeasy spin column membrane and left for 15 minutes at room temperature. 

Subsequently, 350 µl of RW1 Buffer was added to the spin column and centrifuged at 

8000 x g for 30 sec. RPE buffer (500 µl) was then placed onto the RNeasy column 

and centrifuged at 8000 x g for 30 sec. Another 500 µl of RPE buffer was added to 

the RNeasy column and centrifuged for a further 30 sec at 8000 x g. RNeasy spin 

column was then centrifuged at 8000 x g for 2 minutes to remove any left-over 

buffer. The spin column was transferred to a new 0.5 ml RNAase free microcentrifuge 

tube and the RNA eluted with 30 µl of RNase free water using a final spin of 8000 x g 

for 1 minute. RNA was quantified using a Nanodrop 2000c spectrophotometer using 

260/280 nm and RNA was stored at -80°C until required. 

2.2.12.2 Analysis of RNA using the Agilent 2100 Bioanalyzer. 

The integrity of RNA (5 µl per sample) used in the Wnt-PCR array analysis of cell lines 

and custom-array (section 2.12.3) were subjected to detailed analysis using the 
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Agilent 2100 Bioanalyzer (Dr Claudia Consoli, Central Biotechnology Services, Cardiff 

University). The Agilent Bioanalyzer is an electrophoresis-based analysis system for 

the detection of RNA as well as proteins. It measures the integrity and presence of 

degraded material that might affect the purity of isolated total RNA. An accepted RIN 

value is >8 and representative figure of analysed material is shown in figure 2.1.  

 

Figure 2. 2: Representative image of bioanalyzer® gel electrophoresis of 
total RNA.  
Twelve samples were subjected to assessment of RNA integrity and RNA was 
visualised on a gel, with sharp bands depicting ribosomal 28S and 18S (top and 
bottom band are clearly demarcated respectively). There was no evidence of RNA 
degradation. 

2.2.12.3 Gene expression analysis utilizing the RT² Profiler™ PCR Array. 

Each 96-well plate contained primer assays for genes of interest (Table 2.3), 

housekeeping genes, a genomic DNA control, 3 reverse transcription controls and 3 

positive PCR controls. cDNA was synthesised from 500 ng of RNA using the ‘RT² First 
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Strand Kit’ as per manufacturer’s protocol. RNA was added to 2 µl of the genomic 

DNA elimination buffer and RNase-free water was added to a volume of 10 µl. The 

reaction mix was incubated at 42 °C for 5 minutes using the thermocycler. The 

samples were immediately removed and incubated on ice for 2 minutes. 10 µl of RT 

cocktail buffer was added to the reaction mix and returned to the thermocycler 

programmed for 42 °C for 15 minutes, followed by 95 °C for 5 minutes (to stop the 

reaction). Finally, 91 µl of H2O was added to the cDNA reaction mix and stored at -20 

°C until required. cDNA samples were thawed and 102 µl was mixed with 1350 μl of 

RT2 SybrGreenMastermix and 1248 μl RNase-free water. Twenty five μl of the 

reaction mix was added to each well of the RT² Profiler™ PCR plate. The plate was 

sealed with adhesive film and centrifuged for 2 minutes at 800 x g to remove air 

bubbles. The plate was placed in an Mx3000P q-PCR thermocycler (Stratagene, UK) 

and amplification was carried out using the following conditions: incubated for 10 

minutes at 95°C to activate Hot Start DNA Taq polymerase; 95°C for 15 seconds, 

60°C for 1minute (annealing), 72 °C, 30 sec for 40 cycles and then the machine stood 

at 4˚C. To confirm the absence of non-specific amplification, a dissociation curve was 

generated. The CT values for all genes were exported to an Excel spreadsheet 

template and analysed using the Super Array Biosciences PCR Array analysis web-

based software. Five housekeeping genes, ACTB, HPRT1, B2M, GAPDH and RPLP0, in 

all array experiments and the most stable housekeeping gene were identified using 

the in-built Qiagen software. Two housekeeping genes, β-2-microglobulin and GAPDH, 

were used as internal control for calculating ΔCT. Gene expression was calculated 

using the 2-ΔΔCT method. All genes that were ±3-fold different than the controls 

were considered for further target validation.  
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Table 2. 3: Wnt PCR-array plate layout. 

 

2.12.4 Reverse Transcription of isolated RNA. 

cDNA was synthesised by reverse transcription of total RNA (500 ng) using 

SuperScript™ III Reverse Transcriptase as per manufacturer protocol (Invitrogen, 

UK). RNA (500 ng) was added to 1µl random hexamers (250 ng final concentration), 

and 1µl of dNTP’s (500 μM) and the final volume made up to 10 µl using molecular 

biology grade water. Samples were incubated at 65°C for 5 minutes in a thermocycler 

followed by incubation on ice for at least 1 minute, after which 0.5µl SuperScript III 

Reverse Transcriptase (100U final concentration), 4 µl 5X first strand buffer, 2 µl DTT 

(100 mM) and 1 μl of recombinant RNase inhibitor (125U) and 2.5 µl of molecular 

grade water were added. Samples were placed in a thermocycler programmed for 10 

minutes at 25°C followed by 50 minutes at 42°C. Finally, the reaction was deactivated 
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by heating the sample to 70°C for 15 minutes. cDNA reaction sample (20 µl) was 

immediately used or stored at -20°C until required. 

2.2.12.5 Quantitative Real-Time PCR (qPCR). 

PCR primers for each gene of interest (Table 2.4) were designed using the NCBI 

software to span exon-exon boundaries selected primers were run through the NCBI 

BLAST database to ensure no homology to other genes. Primers were purchased 

(Sigma, UK) and were optimised prior to use in qPCR using the GoTaq Flexi DNA 

Polymerase (Promega, UK) kit as per manufacturers protocol and PCR reaction 

products were analysed on 1 % (w/v) agarose gels containing Safeview (10 µl per 40 

ml) by electrophoresis in 0.5X TBE buffer at 75V for 40-50 minutes and visualise 

under UV. A molecular weight marker (100-1000 bp) was used to identify product 

sizes. 

Quantification of mRNA levels for genes of interest were measured using qPCR with 

SYBR® Green kicqStart™ q-PCR ReadyMix™ (Sigma, UK). 20 µl reaction volumes 

were set up in a 96-well plate (Applied Biosystems), as follows: 7µl RNAase free H2O; 

1µl each of forward and reverse primers (0.3 µM); 10 µl kicqStart™ TaqReadyMix™ 

and 2 µl cDNA (from 500 ng RNA). qPCR reactions were carried out using an 

Mx3000P q-PCR system (Stratagene, UK) and amplified using the following conditions: 

95 °C, 10 minutes for 1 cycle, 95 °C, 30 sec, 30 sec at the annealing temperature 

(see Table 2.4), 72 °C, 30 sec for 40 cycles a final extension cycle at 72°C 5 minutes 

and then 4˚C. Relative quantification was analysed using the 2-ΔΔCT method (Livak 

and Schmittgen 2001). Briefly, normal and full depth chondrocytes and CPC were 

used as a control group to measure relative changes in the target gene of 
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osteoarthritic full depth chondrocytes and CPC samples. The relative change in gene 

expression was presented as a fold change normalised to GAPDH.  

Table 2. 4: Polymerase chain reaction primer sequence. All primers are 
shown in the 5’-3’ with annealing temperature and size. 

Gene ID 

 
Sequence 

Annealing 
temp & 

size 

Accession Number 

PPAR-γ F 

PPAR-γ-R 

AAAGAAGCCAACACTAAACC 

TGGTCATTTCGTTAAAGGC 

61 ºC 

78bp 
|NM_138711.3 

ACAN-F 

ACAN-R 

TGAGTTTCCTGGTGTGAG 

AGACCTCACCCTCCATC 

61 ºC 

100bp 
NM_001135.3 

Runx-2 F 

Runx-2 R 

AAGCTTGATGACTCTAAACC 

TCTGTAATCTGACTCTGTCC 

62 ºC 

164bp 
NM_001278478.1 

LPL- F 

LPL- R 

ACACAGAGGTAGATATTGGAG 

CTTTTTCTGAGTCTCTCCTG 

60 ºC 

105bp 
NM_000237.2 

Osteonectin- F 

Osteonectin- R 

AGTATGTGTAACAGGAGGAC 

AATGTTGCTAGTGTGATTGG 

60 ºC 

143bp 
NM_003118.3 

CDH5- F 

CDH5- R 

CGCAATAGACAAGGACATAAC 

TATCGTGATTATCCGTGAGG 

61 ºC 

51bp 
NM_001795.3 

Hif1α- F 

Hif1α- R 

AAAATCTCATCCAAGAAGCC 

AATGTTCCAATTCCTACTGC 

60 ºC 

181bp 
NM_001243084.1 

VEGFA- F 

VEGFA- R 

AATGTGAATGCAGACCAAAG 

GACTTATACCGGGATTTCTTG 

60 ºC 

65bp 
NM_001204385.1 

Col2α1- F 

Col2α1- R 

GAAGAGTGGAGACTACTGG 

CAGATGTGTTTCTTCTCCTTG 

60 ºC 

165bp 
NM_001844.4 

MMP-13 F 

MMP-13 R 

AGGCTACAACTTGTTTCTTG 

AGGTGTAGATAGGAAACATGAG 

60 ºC 

101bp 
NM_002427.3 

PECAM1- F 

PECAM1- R 

AGATACTCTAGAACGGAAGG 

CAGAGGTCTTGAAATACAGG 

62 ºC 

120bp 
NM_000442.4 

α-SMA-F 

α-SMA-R 

AGATCAAGATCATTGCCCC 

TTCATCGTATTCCTGTTTGC 

57 ºC 

116bp 
NM_001613.2 

DKK1 –F GAATAAGTACCAGACCATTGAC 58 ºC NM_012242.2 
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2.2.13 Protein analysis: 

2.2.13.1 Cell lysis. 

Cells were washed twice with ice-cold PBS before the addition of ice-cold RIPA lysis 

buffer (150 mM sodium chloride, 1.0% v/v NP-40, 0.5% w/v sodium deoxycholate, 

0.1% w/v SDS and 50 mM Tris, pH 8.0) solution (1 ml per 0.5-1 x 106 cells) 

containing a cocktail of protease and phosphatase inhibitors (Sigma, UK). The cell 

layer suspension was pipetted several times and transferred to a 1.5 ml 

microcentrifuge tube, centrifuged at 4°C for 15 minutes at 12000 x g. The 

supernatant was removed and stored at -20°C until required. 

 

2.2.13.2 Protein assay (BCA). 

The concentration of total soluble protein was determined using the Pierce BCA 

Protein Assay Kit as per manufacturer’s protocol (Thermo Fisher Scientific, UK). 

Standard curves were constructed using increasing concentrations of BSA solution 

from 0 to 2000 µg/mL in dH2O. 25 µl of standard and unknown samples were pipetted 

into 96-wells plates in duplicate and to each well, 200 µl of working reagent was 

added (containing cupric acid and BCA at 1:8 working ratio). Plates were left in the 

dark for 30 min at 37°C for full colour development and absorbance at 560 nm was 

measured using a plate reader (Fluostar Optima BMG labtech, Germany). 

DKK1-R CCATTTTTGCAGTAATTCCC 153bp 

GAPDH- F 

GAPDH- R 

ACAGTTGCCATGTAGACC 

TTTTTGGTTGAGCACAGG 

60 ºC 

95bp 
NM_001256799.2 
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Concentration of unknown samples were calculated from the linear regression line 

generated from the BSA standards.  

2.2.13.3 Western blotting. 

Samples (typically 20 µg protein) were reconstituted in Laemmli sample buffer (62.5 

mM tris HCl, pH 6.8 containing 4% (w/v) SDS, 20% (v/v) glycerol and 0.01% (w/v) 

bromophenol blue) containing 10% (v/v) β-mercaptoethanol and electrophoresed 

under reducing conditions on 10% slab gels poured using acrylagel and bisacrylagel 

from National Diagnostics (see Table 2.5). Samples were heated to 100˚C for 5 

minutes, to denature and reduce the proteins. 10 µl of Precision Plus Protein™ 

Molecular weight standards (Bio-Rad, UK) were carefully loaded into the wells of the 

stacking gel. Electrophoresis was then performed in running buffer (25mM trizma 

pH8.1-8.4 containing 192mM glycine and 0.1% (w/v) SDS) at 150V for 45-60 

minutes. The gels were then transferred onto nitrocellulose membranes utilising the 7 

minutes transfer protocol for the iBlot® Gel Transfer System (Life technologies, UK).  

Table 2. 5: Reagents used to make up resolving and stacking gels. 

Resolving Gel  Stacking Gel 

Reagents Volume Reagents Volume 

40% Acrylamide bis 
acrylamide combo 

7.66ml 40% Acrylamide bis 
acrylamide combo 

0.575 mL 

1 M Tris Buffer pH 8.8 7.26ml 1 M Tris Buffer pH 6.8 1.3ml 

10% SDS 200 µl 10% SDS 50 µl 

dH2O 14.1 ml dH2O 4.075 mL 

10% APS 150 µl 10% APS 37.5µl 

TEMED (added last) 30 µl TEMED (added last) 7.5µl 

 

Following electrophoretic transfer the membranes were subjected to Western blot 

analysis. Membranes were blocked in 5% (w/v) non-fat milk solution (Marvel milk, 
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UK) in TBS-T for 30 minutes at room temperature with rocking. Membranes were 

rinsed in TBS-T and incubated with the appropriate primary antibody diluted in 1% 

(w/v) non-fat milk solution in TBS-T overnight at 4˚C (Table 2.1). The membranes 

were washed with TBS-T (3 x 10 minutes) and incubated for 1 hour at room 

temperature with the appropriate secondary antibody conjugated to HRP (Goat anti-

mouse or Goat anti-rabbit ) diluted in 1% (w/v) non-fat milk solution in TBS-T. The 

membranes were washed in TBS-T (4 x 10 minutes.) and developed using the 

enhanced chemiluminescence (ECL) reagents as described in the manufacturer’s 

protocol (GE Healthcare, UK). Membranes were exposed to X-ray film from 1 to 60 

minutes, the film was developed manually and stopped by immersing in a fixative 

solution (Agfa, UK). X-ray film was then transferred to a container filled with tap 

water to remove any excess fixative solution before it was air-dried. 

2.2.13.4 Proteome Profiler Human XL Oncology Array. 

For the samples processed for this array, total protein concentration was determined 

using BCA assay (section 2.13.2). 50 µg protein from each sample was added to 1 ml 

of buffer 4 and the volume made to 2 ml using buffer 6. This was then added to an 

appropriate vessel containing the array membrane and incubated overnight at 4°C. 

The array membrane was washed several times in the supplied wash buffer after 

which the membrane was incubated with a biotinylated secondary antibody for 1 hr at 

room temperature on a rocking platform shaker. After several washes, the membrane 

was incubated in the streptavidin-HRP substrate. The membrane was extensively 

washed prior to incubation in the chemi-luminescent detection reagents and exposed 

to X-ray film (GE Healthcare, UK). The intensity of the capture spot reactions was 

quantified using Image J software (NIH) and dot density was measured using protein 
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array analyser plug-in software. Data are presented as mean of two wells per protein 

± standard deviation. 

2.2.13.5 DKK-1 ELISA. 

A kit based sandwich assay (human Dkk-1, R & D Systems DY 1906) was used to 

determine the concentration of Dkk-1 in culture media from a variety of cell lines 

following the manufacturer’s protocol. Monoclonal mouse anti-human Dkk-1 capture 

antibody was diluted in PBS at a final concentration of 4.0 µg/ml and used to coat 96-

well microtiter plates (100 µl per well) which were then incubated overnight at room 

temperature. Plates were washed x 3 with PBS-Tween before blocking with 1% (w/v) 

BSA in PBS for 1 hr at room temperature. Plates were washed x 3 with PBS-Tween 

and standards added in triplicate (Dkk-1 recombinant protein in the range of 0 – 4000 

pg/ml into designated wells along with unknown samples (in duplicate) at 100 µl /well 

and incubated at room temperature for 2hrs. The plate was washed x 3 in PBS-Tween 

and a secondary biotinylated detection Dkk-1 antibody (100 µl/ well at a 

concentration of 50 ng/mL) was added to each well and incubated for 1hr at room 

temperature. The plate was washed x 3 in PBS-Tween, streptavidin-horseradish 

peroxidase solution added and then incubated for 20 minutes at room temperature. 

The plates were washed x 3 in PBS-Tween (5 minutes) after which substrate was 

added (100 µl per well) and the reaction stopped after 20 minutes by the addition of 

2 N sulphuric acid. The optical density of each well was determined using a 

spectrophotometer at 450nm and 570nm. A standard curve was plotted using a four 

parameter logistic (4-PL) curve-fit and the concentration of unknown samples 

determined from this plot. Data were presented as mean and standard deviation after 

normalising the concentration total cell number.  
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2.2.14 T-Cell Factor (TCF) reporter assay. 

The TCF assay as described by Ewan et al (2010) was used as a measure of activation 

of the canonical Wnt pathway through β-catenin. Briefly the assay utilizes a reporter 

plasmid (Figure 2.2) that has been stably transfected in HEK293 cells (7df-3 cell line) 

and can indirectly measure the activation of β-catenin. Briefly, 7df-3 cells were seeded 

into a 96 well plate (30,000 cell per well) and maintained for 24 hours in Basal 

medium (100 µl per well) in an incubator at 37 °C and 5% CO2. Following this period 

80 µl of the medium was removed from each well and replaced with 30 µl of the Wnt 

inducing ligands (Wnt-3a and R-spo1 at a final concentration of 50 ng/mL and 24 

ng/mL, respectively) combined with either 50 µl of Basal medium (positive control); 

50 µl of doxycycline (final concentration of 50 µg /mL) as a negative control, or 50 µl 

of test medium and incubated for 24 h. After 24 h, 10 µl of Water Soluble Tetrazolium 

salts (WST-1, Roche, UK) was added to each well and the plate was returned to the 

incubator for 1hr at 37 °C and 5% CO2 after which absorbance was measured at 450 

nm and 590 nm using the BMG Fluostar plate reader. These readings were used to 

calculate cell viability. Culture medium was then removed and 25µl of GloLysis buffer 

was added to each well following a 15 min incubation, 25µl of Bright Glo luciferase 

(Promgea, UK) and added to each well and luciferase activity was immediately 

measured using a FluoStar Optima plate reader (BMG Labtech). Data are presented as 

mean and ± SD. 
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Figure 2. 3: Schematic description of the reporter construct stably 
transfected in epithelial HEK293-cell line (7df-3). 
The TCF-luciferase-IRES-GFP reporter plasmid contained the Wnt response element 
under Xnr3 promoter and 4 multimerised TCF binding sites driving the transcription of 
luciferase and GFP reporter genes. 

 

2.2.15 Statistical analysis. 

All quantitative data are expressed as mean ± SEM using the ‘R’ statistical software 

analysis programme (v2.15.0). The data were analysed by Student’s t-test when 

comparing two groups. The distribution of the data was analysed using the Shapiro-

Wilks test to confirm the normality of the data (occasionally after log-transformation) 

and homoskedasticity of variance using Flinger test (F test). After assuming 

homogeneity of data, to study differences in variances between groups, first we 

performed an ANOVA test followed by Tucky post-hoc test, and a P-value <0.05 was 

considered statistically significant. All experiments were repeated a minimum of three 

times unless otherwise stated. In addition, correlation analysis was carried out using 

the in-built Pearson’s correlation plugged-in software to compare parametric 

variables.  
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CHAPTER 3: CHARACTERISATION OF CARTILAGE 
CHONDROPROGENITOR CELLS.  
 

3.1 Introduction. 

Articular Cartilage arises from mesenchymal stem cell differentiation that occurs 

during the process of chondrogenesis. It is a specialized tissue comprising of a single 

cell type, the chondrocyte, which is embedded in an extracellular matrix. 

Mesenchymal stem cells (MSCs) are multipotent cells that can undergo tri-lineage 

differentiation into bone, cartilage or adipose tissue. In addition, it has been recently 

proposed that MSCs possess higher plasticity than that was formerly known. It is 

believed that they are able to undergo a pluripotent lineage differentiation into 

myoblasts and several neural differentiations (Giordano et al., 2006; Yang et al., 

2011). Pluripotent stem cells are crucial for giving rise to all cell types apart from 

germ cells. As these cells differentiate, a subset of their progeny lose some of their 

pluripotent characteristics. Thus in doing so they become adult stem cells that can 

retain self-renewal and multipotency.  

Adult stem cells, unlike embryonic stem cells, have less self-renewal capacity and are 

not pluripotent. Recent studies have identified that adult stem cells, in many tissues, 

play a crucial regulatory role in tissue homeostasis. This process maintains a constant 

balance between undifferentiated (naïve) and specialised cells that are undergoing 

proliferation and differentiation (Huang et al., 2014; Ware et al., 2014). 

According to the International Society for Cellular Therapy (ISCT), MSCs are 

characterised by their adhesion capacity in monolayer culture. And their differentiation 

potential into chondrocytes, osteocytes and adipocytes, in an in vitro settings 
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(Dominici et al., 2006). The ISCT has also listed several cell surface markers that are 

common to MSCs but lack the expression markers of hematopoietic and leukocytes. 

Due of their inherent regenerative potential, MSCs are of a significant interest in the 

field of orthopaedic medicine mainly for cartilage regeneration. In addition, MSCs 

were noted to have an immune-modulatory response that enhances their regenerative 

potential (Petrie Aronin and Tuan, 2010). 

Stem cells possess unique markers that differentiate them from other resident cells. 

This knowledge was utilised by Watts and colleagues to isolate epidermal stem cells 

found in skin tissues based on a tendency to have higher integrin receptor expression 

(Jones and Watt, 1993). Dowthwaite et al. (2004) following on from Jones and Watt’s 

(1993) discovered a cohort of progenitor cells residing within articular cartilage 

exhibiting an increased expression of α5β1 integrin in chondrocytes from the 

superficial zone of immature bovine cartilage. In addition, further studies deciphering 

these cells have also found the exclusive expression of the putative stem cell marker 

Notch-1. From this discovery, it was proposed that the spatial expression of α5β1 

integrin receptor expression and Notch-1 was down-regulated during terminal 

differentiation of the chondroprogenitor cells. This occurs as chondroprogenitor cells 

move from the un-differentiated state in the superficial zone to more differentiated 

chondrocytes in the middle and deep zones of articular cartilage (Hayes et al., 2001; 

Hayes et al., 2003; Archer et al., 2003; Dowthwaite et al., 2004). 

From a developmental point of view, this finding, in part, suggests a possible 

hypothesis for the development of the synovial joint. It aids the notion that hyaline 

cartilage grows by apposition (Hayes et al., 2001) and this has given rise to similar 



78 

 

observations noticed in tissues from adult normal cartilage and osteoarthritis 

(Alsalameh et al., 2004; Williams et al., 2010).  

The objective of this section was firstly to characterise and compare polyclonal CPC 

populations isolated using the fibronectin adhesion assay from full-depth 

chondrocytes sourced from the articular cartilage of patients with osteoarthritis or 

from patients with normal joint tissue.  

The second objective of this section was to establish the mesenchymal stem cell 

characteristics of polyclonal CPC from normal donors and patients with osteoarthritis 

and compare these with matched-bone marrow derived mesenchymal stem cells (BM-

MSCs) from the OA patients. For the first objective polyclonal CPC lines from normal 

(herein termed N-CPC) and OA donors (herein termed OA-CPC) were characterised as 

follows: 

a) Initial adhesion 

b) Colony forming potential  

For the second objective polyclonal N-CPC lines, polyclonal OA-CPC lines and 

matched BM-MSCs derived from the OA donors (herein termed OA-BM-MSCs) were 

characterised as stated below: 

c) Morphology on tissue culture plastic 

d) Cell proliferation  

e) Cell senescence 

f) Mesenchymal stem cell markers, CD105, CD166 and CD90. CD34 was selected 

as a negative marker  
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g) Differentiation to chondrocytes, osteoblasts and adipocytes 

These characterised cell lines were then used in the studies described in this thesis. 

3.2 Experimental Methods. 

Articular cartilage was removed from the knee joint of normal donors (n=5) herein 

denoted as N-1 to N-5 and patients undergoing total knee arthroplasty (n=6) herein 

denoted as OA-1 to OA-2 etc. (see Appendix 1 for age and Mankin Score) as 

described in section 2.2.1 and subjected to enzymatic digestion in order to release 

chondrocytes and further subjected to the fibronectin adhesion assay (section 2.2.2) 

to isolate chondroprogenitor cells (CPC). For each donor full-depth chondrocytes were 

seeded onto one fibronectin coated 6 well tissue culture plate as described in section 

2.2.2 and analysis for initial adhesion and subsequently colony forming efficiency was 

calculated from the data obtained from initial seeding of these 6 x 35 mm wells. After 

isolation of CPC from normal and OA donors, cell lines were either expanded as 

monoclonal or polyclonal cell lines (section 2.2.2) and each line was passaged as 

described in section 2.2.4. For analysis in this chapter only polyclonal cell lines were 

used. 

Bone marrow mesenchymal stem cells were isolated from 6 OA donors as described in 

section 2.2.3 and passaged as described in section 2.2.4. 
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3.3. Results. 

3.3.1. Analysis of the initial adhesion to fibronectin of isolated full-depth 

chondrocytes from OA and normal human articular cartilage.  

Articular cartilage was dissected from the tibial plateau of five normal donors (mean 

age=43, range=29-55) and six OA patients (mean age 66 yrs.; range 53-80) (Figure 

3.1). Chondrocytes were isolated from digested cartilage and the initial adhesion of 

cells isolated after seeding onto fibronectin coated tissue culture wells (n=6 wells per 

donor) were assessed by microscopy seven days after plating (Figure 3.3 A & B, 

respectively). The percentage of cells adhering to fibronectin from the five normal 

donors ranged from 7.2 -16% and those from the six OA donors ranged from 8 – 

29%. Data from both donor groups fell into a normal distribution and 1-way ANOVA 

showed there was no statistical difference in the percentage of cells initially adhering 

to fibronectin from normal and OA cartilage (Figure 3.2 E, P>0.05). These adherent 

cells were defined as CPC. 

3.3.2. Analysis of the Colony Forming Potential of CPC isolated from OA and 

normal human articular cartilage. 

10 days post plating the normal (n=6 wells per donor) and OA (n=6 wells per donor) 

donor CPC were analysed using microscopy and Colony Forming efficiency was 

calculated as:  

𝑪𝑭𝑬 =  (𝑵𝒖𝒎𝒃𝒆𝒓𝒐𝒇 𝒄𝒐𝒍𝒐𝒏𝒊𝒆𝒔 𝒂𝒕 𝒅𝒂𝒚 𝟏𝟎 (> 32 𝑐𝑒𝑙𝑙𝑠) ÷  𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒕𝒉𝒆 𝒊𝒏𝒊𝒕𝒂𝒍 𝒄𝒆𝒍𝒍𝒔)

∗  𝟏𝟎𝟎 
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Figure 3. 1: Image of tibial plateaux isolated from normal (post-mortem) 
and osteoarthritic (arthroplasty) donors. 
Tibial plateau from healthy donor has a smooth and intact articular cartilage surface 
with no evidence of abnormalities (A). However, in osteoarthritic plateau 
characteristics markers of osteoarthritis are evident marked by cartilage fibrillation 
and erosion and subchondral bone exposure (B). 

 

CFE in CPC isolated from OA donor cartilage ranged from 0.1 to 0.73% whilst CFE 

from CPC isolated from normal donor cartilage ranged from 0.06 to 0.53% (Figure 3.2 

C and D, respectively). Both group fell within a normal distribution and there was no 

statistically significant difference in the percentage CFE from normal versus OA CPC 

(Figure 3.2 F: p= 0.34). At 10 days of culture colonies of CPC in each of the 6 x 

35mm wells were either isolated and expanded as monoclonal cell lines or further 

cultured as polyclonal cell lines. Table 8.1 summarises the number of monoclonal and 

polyclonal cell lines established for each of the normal and OA donors (Appendix 1). 
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Figure 3.2: Initial adhesion to fibronectin and colony forming efficiency. 
Panel A & B shows the initial percentage adhesion of chondrocytes to fibronectin 24hr 
after plating from normal (n=5) and OA donors (n=6), respectively. Panel C and D 
shows the colony forming efficiency (CFE) at day 10 (C-D) of isolated cartilage 
progenitor cells from normal (n=5) and osteoarthritic (OA) donors (n=6). Data was 
generated from seeding of 6 wells (1000 cells per 35mm well) of chondrocytes 
isolated from each donor onto fibronectin coated plates. Statistical analysis 
demonstrated a normal distribution for both normal and OA donors and 1-way ANOVA 
showed no statistically significance differences between initial cell adhesion (p>0.05) 
and the percentage of CFE between normal versus OA CPC Panel E and F (p=0.34).  
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3.3.3 Comparison of the cell morphology of polyclonal CPC lines (from 

cartilage of normal and OA donors) and matched-Bone-marrow derived 

MSCs (from OA donors). 

Within four days post-plating, polyclonal CPC from normal or OA origin appeared as 

small colonies of a few cells and by day 10 several colonies consisting of more than 

32 cells were evident. Ficoll® gradient isolated BM-MSCs of OA origin, attached to 

tissue culture plastic within 24 hours of plating and colonies appeared 4-10 days post 

seeding. On culture expansion both cell types showed a spindle-like morphology and 

no obvious morphological difference could be detected between polyclonal N-CPC (Fig 

3.3D), OA-CPC (Fig 3.3E) and OA-BM-MSCs (Fig 3.3F). By three weeks, patient 

matched bone marrow mesenchymal stem cells and chondroprogenitor had similar 

population-doubling profiles (see Appendix 4). 

3.3.4. Analysis of proliferating cells in CPC lines originating from cartilage 

of normal and OA donors and matched BM-MSCs from OA donors. 

Proliferation of polyclonal OA-CPC lines, with matched OA-BM-MSCs and polyclonal N-

CPC cell lines (n=1 per donor) were measured at a population doubling of 25± 2.5 

using the BrdU assay as described in section 2.9 (Figure 3.4 & Figure 3.6). Three 

repeats were run for each cell line. There were variations in the percentage of positive 

BrdU cells from each donor (Figure 3.4) with the mean percentage BrdU positively 

labelled cells from each of the OA-CPC and matched OA-BM-MSCs donors calculated 

as 69.18± 5.07% and 65.69 ± 4.23%, respectively, whilst 78.8% ±1 labelled positive 

for BrdU from N-CPC donors. All data sets showed a normal distribution and one-way 
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ANOVA showed no significant differences in cell proliferation between the selected cell 

lines (p>0.05).  

 

Figure 3. 3: Phase contrast images of cartilage progenitor cells and bone 
marrow MSC. 
Image (A) colony formed chondroprogenitor cells from normal subject (N-CPC). 
Image (B) is from osteoarthritic cartilage progenitor cells (OA-CPC) while image C is 
from patient matched BM-MSCs. Image (D) is of isolated N-CPC after culture 
expansion and (E) from OA-CPC. Image (F) shows culture expanded bone marrow 
MSC. Scale bar: A-C = 100µm. Scale bar: D-F = 200 µm. 
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Figure 3. 4: Percentage incorporation of BrdU (5-bromo-2-deoxyuridine). 
Cells were cultured in the presence of BrdU and incorporation was assessed by 
immunohistochemistry using an anti-BrdU antibody. The percentage of positive 
stained cells was calculated (n=3) for each cell line and data are presented as mean 
± SEM. Blue bars represent CPC lines from OA donors, Red bars represent cell lines 
from matched-MSC lines and Green bars represent CPC lines from normal donors.  
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3.3.5. Analysis of senescent cells in CPC lines originating from cartilage of 

normal and OA donors and matched BM-MSCs from OA donors. 

The percentage of senescent cells in cultures of polyclonal OA-CPC lines with matched 

bone marrow derived OA-BM-MSCs and polyclonal N-CPC cell lines (n=1 per donor), 

were measured at a population doubling of 25± 2.5 using the senescence-associated 

β-galactosidase assay as described in section 2.10 (Figure 3.5 & Figure 3.6). Three 

repeats were run for each cell line. The percentage of senescent cells in cell line 

derived from OA-CPC and their matched-OA-BM-MSCs, were 0.59-6.7% and 0.7-

9.8%, respectively, whilst a range of 0.8-2.4% was recorded for cell lines derived 

from N-CPC. All data sets showed a normal distribution and the mean values for 

senescent cells were 3.41 ±1.11% OA-BM-MSCs, 2.58 ±1.05%, OA-CPC and 1.6 

±0.58 N-CPC. One-way ANOVA showed no significant differences in cell senescence 

between the selected cell lines.   
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3.3.6. Interpatient variation of proliferation and senescence in CPC Vs 

MSCs. 

The proliferative potential of OA donor polyclonal CPC (n=5) and matched BM-MSCs 

(n=5) were measured at a population doubling of 25 ± 2.5 using a BrdU assay 

(Figure 3.7). By examining the interpatient BrdU incorporation, there were variations 

in the percentage of positive BrdU cells for each donor (Figure 3.7). Student t-test 

analysis examining the interpatient variation revealed that in patient 1 there were no 

statistically significant differences between the mean of the CPC and MSCs but in the 

remaining 4 patients there were statistical significant variation marked by p 

value<0.05. Interestingly, in the remaining four patients with statistical interpatient 

variations, in two patients MSCs had higher BrdU incorporation (Patient-3 and -5) 

while in two patients CPC had higher BrdU incorporation (Patient -2&-4).  
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Figure 3. 7: Percentage BrdU uptake between matched CPC and MSCs. 
Percentage incorporation of BrdU (5-bromo-2-deoxyuridine) into matched CPC cell 

lines isolated from osteoarthritic cartilage (circle) and BM-MSC (triangle) from five 

donor. Each cell line was analysed in triplicate. Data are presented as mean and 

analysed using a student t-test for statistical differences (P < 0.05, NS=not 

significant). 

 

The senescence activity of polyclonal CPC with their matched BM-MSCs was analysed 

at a population doubling of 25 ± 2.5 using the associated β-galactosidase staining 

assay. By examining the interpatient β-galactosidase incorporation, there were 

variations in the percentage of positive senescent cells for each donor (Figure 3.8). 

Student t-test analysis examining the interpatient variation has revealed that three 

out of five patients were noted to have no statistical significant differences between 

the percentage β-galactosidase incorporation of CPC and MSCs respectively 

(p>0.05). However, in the remaining two patients with statistical interpatient 

variations, patient-4 MSCs had higher BrdU incorporation (p<0.05) while patient-5 
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had higher β-galactosidase incorporation in CPC cell line when compared to matched 

MSCs respectively (p<0.05).  

 
Figure 3. 8: Percentage B-galactosidase incorporation in matched CPC and 
MSCs. 
Percentage incorporation of β-galactosidase into matched CPC cell lines isolated 

from osteoarthritic cartilage (circle) and BM-MSC (triangle) from five donors. Each 

cell line was analysed in triplicate. Data are presented as mean and analysed using a 

student t-test for statistical differences (P < 0.05, NS=not significant). 

 

3.3.7. Analysis of the expression of MSC cell surface markers in polyclonal 

CPC isolated from normal and OA donor cartilage with matched BM-MSCs 

from the OA donors. 

Cell surface epitopes for the MSC cell surface biomarkers (CD-90, CD105, CD-166) 

were analysed in N-CPC, OA-CPC and matched OA-BM-MSC cell lines using FACS 

(section 2.11). Analysis of the cell surface marker CD-34 was used as a negative 
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control for MSCs. CPC and OA-BM-MSCs cell lines were selected at a similar 

population doubling and analysis was carried out on one cell line per donor. Figure 

3.9 shows a representative of the histograms generated from the analysis of OA-BM-

MSCs, N-CPC and OA-CPC from one donor. Cell lines from all donors analysed 

showed positive expression of CD-90, CD-105 and CD-166 with a mean value of over 

95% in the gated cells (i.e. live individual cells) with a unimodal expression 

indicative of a homogeneous cell population. There was however one exception as 

FACS analysis for polyclonal N-CPC with CD-166 showed a mean expression of 

92.6% in gated cells that were positive for this stem cell marker. The mean 

expression of CD-34 (negative MSC marker) was 0.02% in N-CPC; 0.25% in OA-CPC 

and 0.53% in OA-BM-MSCs, (P<0.05). Whilst the expression of CD-34 was 

somewhat higher in OA-BM-MSCs when compared to their matched OA-CPC and N-

CPC lines, it was still within the accepted definition of a pure population of MSCs 

(Boxall and Jones, 2012, Kuhn and Tuan, 2010), [Table 3.1] as defined by the 

International Society for Cellular Therapy (ISC). This data suggests that CPC have 

similar cell surface marker profiles to bone marrow MSCs. 
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Figure 3. 9: Flow cytometry analysis of mesenchymal stem cells markers. 
FACS analysis of the mesenchymal stem cell marker CD-90, CD-105 & CD-166 and 
the negative marker CD-34 was performed on CPC cell lines isolated from normal 
and osteoarthritic cartilage progenitor (CPC) and OA-matched bone marrow 
mesenchymal stem cell (OA-BM-MSCs). Representative histograms from an OA-BM-
MSC cell line (Panel A-D), an OA-CPC cell line (E-H) and N-CPC cell line (I-L) are 
shown. The haematopoietic stem cells marker CD-34 was selected as a negative 
marker for MSCs and is shown in Panel D, H & L for each cell line. The Red filled 
histogram represents positively labelled cells and the un-filled histogram the 
matched isotype control.  
 

 



 

 

94 
 

 

Table 3. 1: Flow cytometry analysis of mesenchymal stem cells markers in 
isolated CPC and BM-MSCs. 

Cell line CD-90 CD-105 CD-166 CD-34 

N-1 96.33% 94.65% 91.95% 0% 

N-2 97.82% 93.56% 90.86% 0.01% 

N-3 99.46% 91.37% 94.89% 0.04% 

     

OA-1 99.27% 99.01% 99.82% 0.01% 

OA-2 99.39% 99.81% 95.64% 0.73% 

OA-3 98.72% 96.24% 99.37% 0.02% 

     

MSC-1 99.36% 98.14% 97.87% 0.33% 

MSC-2 99.65 97.77% 99.72% 1.18 5 % 

MSC-3 99.14% 99.50% 94.92% 0.72% 

 
 

3.3.8. Characterisation of multi-lineage differentiation of CPC and BM-

MSCs. 

Chondrogenic differentiation was initiated using 3D pellet cultures as described in 

section 2.2 using polyclonal N-CPC, polyclonal OA-CPC and matched OA-BM-MSCs 

from three donors, and cultures were terminated at 21 days. 3D pellet cultures were 

set up in 24 wells of a 96 well plate per donor per cell line and 12 wells were pooled 

for RNA analysis whilst 12 wells were processed for histochemistry.  

Following 21 days in culture there was positive staining for Toluidine blue indicative 

of glycosaminoglycan synthesis during the culture period (Figure 3.10. A-C) in all cell 

lines tested. Visual analysis of N-CPC and OA-CPC pellets appeared to be slightly 

smaller and compact compared to OA-BM-MSCs. RT-PCR of isolated mRNA for 

expression of aggrecan (ACAN) and collagen II (col2a1) following chondrogenic 

differentiation showed all cell lines expressed message for these genes (Figure 

3.10.D).  
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Figure 3. 10: Chondrogenic Differentiation of isolated CPC and MSCs. 
Image A-C: Representative images of Toluidine blue stained pellets of N-CPC (A), 
OA-CPC (B) and matched OA-BM-MSC (C) lines after 21 days in culture. Image D-E: 
Representative images of PCR analysis for aggrecan (ACAN, 100bp), type II collagen 
(Col2a1, 165bp) and GAPDH (positive control, 95bp) mRNA expression. Cell lines 
stained positive with Toluidine blue indicating the synthesis of a glycosaminoglycan-
rich matrix. Lane1=N-CPC, Lane 2=OA-CPC, Lane 3= BM-MSCs and Lane 4=NTC. 
Scale bars = 50 μm. 
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Osteogenic differentiation was initiated in monolayer cultures as described in section 

2.2 using polyclonal N-CPC, polyclonal OA-CPC and matched OA-BM-MSCs from 

three donors, for 14 days and differentiation was assessed by staining for mineral 

deposition using Alizarin Red stain (Section 2.3.2) and isolation of mRNA for PCR 

analysis (Section 2.12.5) of the osteogenic markers, Runx-2 (Cbfa1) and Osteonectin 

(also known as SPARC). Staining with Alizarin Red showed a similar pattern of 

staining intensity in both N-CPC and OA-BM-MSC lines where both showed the 

presence of mineralized deposition. While in OA-CPC lines, despite the presence of 

calcium deposition, there were regions of no staining in the wells imaged (Figure 

3.11).  

RT-PCR analysis of the osteogenic differentiation markers Runx-2 and Osteonectin 

further supported the observed Alizarin Red staining as N-CPC, OA-CPC and OA-BM-

MSC lines expressed mRNA for Osteonectin and Runx-2 (Figure 3.11.D).  
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Figure 3. 11: Osteogenic differentiation of isolated CPC and MSCs. 
Image A-C: Representative images of Alizarin Red staining in monolayer cultures of 
N-CPC, OA-CPC and OA-BM-MSC lines after 14 days of culture in osteogenic 
medium. Monolayers were stained using alizarin red to assess for calcium deposition 
a marker of osteogenic differentiation. Image D-E: Representative images from PCR 
analysis of mRNA expression of Runx-2 (164bp), Osteoncetin (143bp) and GAPDH 
(control, 95bp) in N-CPC, OA-CPC and matched OA-BM-MSCs. Positive staining for 
Alizarin red was seen in all cell lines. Lane1=N-CPC, Lane 2=OA-CPC, Lane 3= BM-
MSCs and Lane 4=NTC. Scale bars = 50 μm. 
 

 

 



 

 

98 
 

 

Adipogenic differentiation was initiated in monolayer cultures as described in section 

2.2 on N-CPC, OA-CPC and matched OA-BM-MSCs from three donors, for 1 week 

and differentiation was assessed by lipid deposition using Oil Red O stain as 

described in section 2.3.3 and isolation of mRNA for PCR analysis (Section 2.12.5) of 

the adipogenic markers, peroxisome proliferator-activated receptor gamma (PPAR-γ) 

(Figure 3.12.D) and lipoprotein lipase (LPL) (Figure 3.12.E). Staining for lipid was 

observed in CPC cell lines originating from cartilage obtained from normal donors 

and donors with OA and their matched BM-MSCs, confirming the adipogenic 

potential of these cell lines (Figure 3.12.A-C). 
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Figure 3. 12: Adipogenic Differentiation of isolated CPC and MSCs. 
Images A-C: Representative images of Oil-red-O staining in monolayer cultures of N-

CPC, OA-CPC and OA-BM-MSC lines after 1 week of culture in adipogenic medium. 

Deposition of lipid droplets can be seen in all cell lines as red staining with Oil-red O. 

Images D-E: Representative examples of RT-PCR adipogenic differentiation genes 

peroxisome proliferator-activated receptor-γ (D), PPAR-γ (78bp), and lipoprotein 

lipase (E), LPL (105bp), induction in monolayer cultures showing positive 

differentiation. GAPDH (95bp) was used as a housekeeping gene (E). Lane1=N-CPC, 

Lane 2=OA-CPC, Lane 3= BM-MSCs and Lane 4=NTC. Scale bars = 50 μm. 
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3.4 Discussion. 

The aim of this chapter was firstly to compare CPC lines isolated from normal and 

osteoarthritic cartilage and secondly to conduct a characterisation and comparative 

analysis of polyclonal CPC lines isolated from normal and osteoarthritic articular 

cartilage with isolated matched OA-BM-MSCs donors. BM-MSCs have been 

extensively studied as multipotent stem cells for use in a variety of tissue 

regenerative processes and most recently their use has been studied alongside 

autologous chondrocytes in the ASCOT trial for the repair of focal lesions in articular 

cartilage of young individuals (OsCell, 2013).  

The isolation of CPC cells situated in mature human articular cartilage was 

accomplished by the use of the fibronectin adhesion assay, originally developed by 

Jones and Watt (1993) and later adopted by Dowthwaite et al. (2004). Based on the 

initial investigation of morphology, adherence to fibronectin and colony forming 

efficiency both normal and osteoarthritic CPC lines were shown to have similar 

morphological characteristics and statistically there were no difference in initial 

adhesion to fibronectin or colony forming efficiency between the two cell groups. 

Dowthwaite et al. (2004) showed that the mean percentage of CPC in a population 

of full-depth chondrocytes isolated from immature bovine articular cartilage following 

adhesion to fibronectin was 9%. Our findings from human articular cartilage were 

comparatively similar with an initial adhesion of 11.3% and 15.8% for normal and 

osteoarthritic CPC, respectively. In addition, Williams et al. (2010) and Nelson et al. 

(2014) reported an initial adhesion of OA-CPC ranging from 10.7-15.4%.  
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The colony forming efficiency of polyclonal N-CPC and polyclonal OA-CPC from the 

initially adhered cells was higher in OA-CPC (range from 6 donors; 0.1-0.73%) 

compared to N-CPC (range from 5 donors; 0.06-0.53%) but statistical analysis 

showed no significant difference (p>0.05). This data compare well with the 

published data from Nelson et al. (2014), Williams et al. (2010) and Dowthaite et al. 

(2004) reporting CFE all at less than 1% isolated using the fibronectin adhesion 

assay. Interestingly, Grogan et al. (2009) reported a similar percentage of 

mesenchymal progenitor cells isolated from OA and healthy articular chondrocytes 

using FACS sorting of Hoechst 33342 labelled cells. Conversely, several other groups 

have reported a higher proportion of stem progenitor cells (10 -15%) isolated from 

articular cartilage chondrocytes by FACs sorting using a panel of MSC markers 

(Fickert et al., 2004; Alsalameh et al., 2004; Pretzel et al., 2011). These percentages 

are similar to the initial adhesion to fibronectin and possibly reflect the combined 

population of stem progenitor cells and transient amplifying cell populations. Transit 

amplifying cells have a higher expression of α5β1 integrin receptor compared to 

mature chondrocytes and so bind to fibronectin but subsequently these cells fail to 

proliferate upon clonal expansion (Dowthwaite et al., 2004). 

Isolation of OA-BM-MSCs were carried out using Ficoll™ density gradient 

centrifugation of the mononuclear cell fraction from the bone marrow aspirate from 

the tibial plateau of the knee joint of patients diagnosed with OA (Bajada et al., 

2009). Bone-marrow derived MSCs are generally a heterogeneous mixture of cells 

which are often difficult to isolate and separate based on clonal selection (Russell et 

al., 2010; Papadimitropoulos et al., 2014). Therefore these heterogeneous OA-BM-
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MSCs were compared with polyclonal (i.e. heterogeneous) matched OA-CPC and N-

CPC cell lines isolated from tibial plateau cartilage. 

A characteristic feature of stem and progenitor cells is the ability to divide and 

renew for long periods in culture. Cumulative population doubling of all cell lines 

increased over a period of 80 days in culture (Appendix 2) and this was consistent 

with the published literature (Williams et al., 2010; Nelson et al., 2014). The 

proliferative capacity of all cell lines was further investigated using the BrdU assay. 

BrdU analysis of N- and OA-CPC and their matched OA-BM-MSCs revealed that all 

three cell types investigated showed strong proliferation potential with 78.8% ±1, 

69.18± 5.07% and 65.69 ± 4.23%, of cells recorded as positive for BrdU staining, 

respectively. This data suggests that OA-BM-MSC and their matched CPC, as well as 

N-CPC, have a similar proliferative capacity.  

It has been reported that prolonged in vitro expansion of MSCs leads to an increase 

in cell senescence (Banfi et al., 2000). In this study the cell senescence for each cell 

type was assessed using the senescence associated β-galactosidase assay first 

reported by Dimri et al., (1995). The assay measures the activity of the alternative 

isoform of β-galactosides, known as senescence associated β-galactosidase, unlike 

the lysosomal β-galactosidase (Kurz et al., 2000), this enzyme functions at neutral 

pH and was noted to be highly associate with cells found in permanent replicative 

arrest (Debacq-Chainiaux et al. 2009). Analysis showed that the percentage of 

senescent cells were 3.41 ±1.11% OA-BM-MSCs, 2.58 ±1.05%, OA-CPC and 1.6 

±0.58 N-CPC with no significant difference between the cell types analysed. Yu et 

al. (2011) have reported an increase in SA β-galactosidase activity with age, 
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however, in this study there was no statistical difference in cell senescence from 

mean age donors of 43yrs. from normal and 66 yrs. from OA derived cell lines. A 

lower percentage of cells were senescent in polyclonal N-CPC than in polyclonal OA-

CPC and OA-BM-MSCs that could suggest that statistical significance was not 

reached due to the relatively low sample number. By examining the interpatient 

observation of matched OA derived CPC and MSCs, four donors showed variations in 

BrdU uptake between matched CPC and MSCs but only two out of 5 patient donors 

showed variation in percentage senescence rate. Interestingly, there were 

correlations in BrdU and β-galactosidase uptake in two donors only. For example, 

patient 4 showed higher proliferation marked by BrdU uptake in CPC when 

compared to matched MSCs while the MSC cell line had higher β-galactosidase 

expression. However, in patient 5 this pattern was reversed as there were more 

MSCs cell line with increased BrdU expression and less β-galactosidase expression 

when compared to the patient matched CPC cell line, respectively. Therefore, due to 

the limited ‘n’ number further work is needed before any conclusion can be made.  

In 2006 the International Society for Cellular Therapy released guidelines for the 

minimal criteria for defining MSCs which included the expression of the cell surface 

markers CD105, CD73, CD90 and lack of expression of CD45, CD34, CD14 or CD11b 

or CD19 and HLA-DR surface molecules; plastic adherent when maintained in 

standard culture conditions and able to differentiate to osteoblasts, adipocytes and 

chondrocyte in an in vitro settings. Despite these criteria, there are notable 

differences in the cell surface marker expression profiles among MSCs isolated from 
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several tissues (Kern et al., 2006; Miao et al., 2006; Jin et al., 2013) and also the 

ability to undergo tri-lineage differentiation (Grogan et al., 2009). 

All cell types investigated were able to adhere to tissue culture plastic and had the 

classical feature of spindle like morphology commonly seen in MSCs (Prokop, 1997). 

A novel finding in this study is the similar expression of putative mesenchymal stem 

cells markers found in CPC and BM-MSCs. Analysis of the mesenchymal stem cell 

markers, CD-90, CD-105 and CD-166 showed that both N-CPC as well as OA-CPC 

and matched OA-BM-MSCs cell lines (n=5, normal donors; OA=6 donors) had 

positive expression for all of the three cell surface markers. The expression profile of 

CD-90, also known as Thymocyte differentiation antigen 1(Thy-1), and that of CD-

166, also known as Activated leukocyte cell adhesion molecule (ALCAM), was 

comparable between CPC and BM-MSCs providing further support of the similarities 

between these cell types and defining these cells as mesenchymal stromal cells. In 

contrast, there were differences in the expression of CD-105, also known as 

Endoglin, between N-CPC and OA derived cell lines, with 99% of OA derived cells 

positive for CD-105 but 95% of N-CPC positive for the mesenchymal stem cell 

marker. In addition, we found all cell types (i.e. CPC and BM-MSCs) to have almost 

no expression of the endothelial cell marker CD-34, hence confirming lack of 

contamination of cultures with other cell types. 

Analysis of tri-lineage showed that all cell types were capable of differentiation to 

chondrocytes, osteoblasts and adipocytes. This data confirms that published by 

others investigating the tri-lineage potential of CPC cell lines (Williams et al., 2010). 
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In summary, data collected in this study demonstrated that polyclonal N-CPC, 

polyclonal OA-CPC and patient derived matched OA-BM-MSCs show the classical 

defined characteristics that would define these cell types as multipotent 

mesenchymal stromal cells. This data further supports the notion that adult articular 

cartilage contains a cohort of stem/progenitor cells which could have a promising 

role in the regenerative process of articular cartilage.  
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CHAPTER 4: INVESTIGATING THE WNT SIGNALLING PATHWAY 
IN CLONAL PROGENITOR CELLS DERIVED FROM NORMAL AND 
OSTEOARTHRITIC DONORS. 
 

4.1 Introduction. 

Adult articular cartilage was, until recently, thought to have limited regenerative 

capacity. This was thought to be mainly due to a lack of blood supply that hinders 

stem cell migration to sites of injury. Dowthwaite et al. (2004) showed that a cohort 

of progenitor cells reside within the superficial zone of the articular cartilage and 

since this discovery, other groups have reported similar cohorts of progenitor cells in 

normal and osteoarthritic cartilage (Alsalameh et al., 2004; Williams et al. 2010; 

Nelson et al., 2014). The implication that these progenitor cells could have some 

inherent regenerative capacity to elicit self-repair has been proposed by several 

groups (Alsalameh et al., 2004; Fickert et al., 2004; Grogan et al., 2009; Williams et 

al., 2010; Pretzel et al., 2011). The notion that this could provide a suitable cell-

based source to the currently adopted approach of autologous chondrocytes 

implantation is pioneering (Hollander et al., 2010).  

A growing amount of evidence is emerging, which shows that the Wnt pathway 

plays a pivotal role in stem cell fate determination in many tissues including skeletal, 

skin, hematopoietic and gastrointestinal tissues (Hartmann, 2006; Sato et al., 2009; 

Lander et al., 2012; Staines et al., 2012). Previous developmental work conducted 

on chicks and rodents have uncovered the important role the Wnt pathway plays in 

the process of chondrogenesis and chondrocyte homeostasis during postnatal 

development (Bafico et al., 2001; Surmann-Schmitt et al., 2009).  
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Genome Wide Association Studies (GWAS) have discovered several Wnt inhibitor 

genes with single nucleotide polymorphism mutations that may predispose 

individuals to OA (Loughlin et al., 2004; Rodriguez-Lopez et al., 2007; Blom et al., 

2009). Recently, several groups have observed that there is a reactivation of key 

skeletal developmental pathways (including the Wnt pathway) in models of OA (Zhu 

et al., 2009a; Saito et al., 2010; Yang et al., 2010; Weng et al., 2010; Zhen et al., 

2013). Current literature suggests that the Wnt pathway regulates the process of 

chondrogenesis and this pathway and its antagonists may also affect chondrocyte 

homeostasis leading to the development of OA (Staines et al., 2012).  

The aim of this study was to further our understanding of the Wnt pathway and the 

Dkk-1 antagonist of this pathway in CPC cells isolated from normal and osteoarthritic 

human articular cartilage to provide a more detailed characterisation of CPC with a 

view to optimising their use in tissue repair of cartilage defects.  

The objective of this chapter was to examine the expression of Wnt pathway genes 

in CPC isolated from normal donors with healthy articular cartilage and from donors 

with evidence of osteoarthritis.  

Identifying key regulators of CPC in the cartilage tissue would aid us in designing 

strategies for selecting CPC with optimum potential that could be used to produce 

large numbers of cells for clinical application.  
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4.2 Experimental Methods. 

Monoclonal cell lines from N-CPC (n=3 donors) and OA-CPC (n=3 donors) were 

culture expanded as described in section 2.2.3 and total RNA was isolated (section 

2.14). The expression pattern of the 84 Wnt pathway genes present in RNA isolated 

from these cell lines was assessed using the Wnt signalling pathway RT² Profiler PCR 

array (section 2.12.3). 

Following analysis of the array data cultures of full-depth chondrocytes (OA n=6 

donors; n=5 normal donors), monoclonal N-CPC (n=9 cell line) and monoclonal OA-

CPC (n=20 cell lines), Table 4.2, were set up. Culture medium was collected and 

stored and cell layers were processed for RNA analysis. The expression levels of 

Dkk-1 from RNA isolated from the cell layers were analysed using qPCR and the 

culture media were analysed for Dkk-1 protein using the ELISA as described in 

section 2.12.5.  

Following analysis of this data three clonal cell lines were selected per patient from 

osteoarthritic donors (n=5) and normal donors (n=4) and were plated into T75 

flasks (1 x106 cells) and cultured in basal medium consisting of DMEM+10% FBS+PS 

for 48hrs. Medium was collected and centrifuged to remove debris and dead cells 

and filtered using 0.2µm. Medium was then assessed for regulatory effects on the 

activity of the Wnt pathway, using the TCF-luciferase reporter assay as described in 

section 2.14.  

From the results generated, CPC lines were characterised as Dkk-1high or Dkk-1low 

and selected to evaluate their chondrogenic differentiation potential. 
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Experiments were set up to evaluate the effect on chondrogenic differentiation of 

CPC cell lines secreting high concentrations of Dkk-1 (Dkk-1high) with those secreting 

undetectable or low levels of Dkk-1 (Dkk-1low). Three OA-CPC cell lines were selected 

that were shown to have high concentrations of Dkk-1 in the conditioned medium 

from three different donors and three N-CPC lines were selected that had 

undetectable levels of Dkk-1 from 3 different donors. RNA was extracted from 1 x105 

cells per cell line prior to initiating chondrogenic differentiation experiments and this 

served as the baseline for mRNA analysis. Cells were seeded to form 3D pellets as 

described in section 2.3.1. Hence, CPC were cultured under chondrogenic conditions 

as 12 replicates per CPC cell line/per patient/per time point in 96 well plates. For 

each time point (7, 14, 21 days) three wells were processed for 

histochemical/immunohistochemical analysis and the remaining 9 wells were 

processed for molecular analysis. For molecular analysis the RNA from three wells 

were pooled together (n=1) and the three triplicates generated were assayed using 

a custom-made RT² Profiler™ PCR Array to study expression levels of several genes 

implicated in chondrogenic differentiation (ACAN, Sox-9, Col2a1), hypertrophic 

chondrocyte differentiation (ColXa1 and MMP-13), multi-potency morphology marker 

(ALCAM), degradation and inflammatory markers (ADAMTS-4 and IL-1β) and the 

canonical Wnt target genes (Dkk-1, Dkk-2, CTNNB1). In addition, medium was 

harvested and pooled weekly and analysed for cell viability using the LDH assay 

(Section 2.4) and Dkk-1 concentration using ELISA (Section 2.13.5). Histochemical 

and immunohistochemical analysis was carried out on cell pellets harvested after 21 

days of culture from 3 wells (section 2.8.1). Finally, topographical 
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immunolocalisation of Dkk-1 was studied in osteochondral tissues isolated from 

normal and OA donors. 

4.3 Results: 

4.3.1 Wnt signalling expression in human monoclonal CPC lines isolated 

from normal and osteoarthritic articular cartilage. 

The differential expression pattern of Wnt pathway genes, using mRNA from 

monoclonal N- and OA-CPC were investigated using the Wnt signalling pathway RT² 

Profiler PCR array. Scatter plot analysis (Figure 4.1) of the processed data using the 

N-CPC as the control showed that of the 84 genes analysed 57 genes showed no 

significant difference in expression between the N-CPC lines and OA-CPC lines 

(Figure 4.1, black circles. p≥0.05). In addition, there was a down-regulation of MMP-

7 and NKD-2 in OA-CPC cell lines (Table 4.1 and Figure 4.1 blue circles) and an up-

regulation of 25 genes shown in Table 4.1 and Figure 4.1 (red circles; p < 0.05).  

Interestingly, gene expression profiling showed that there was increased expression 

of genes involved in cell fate (Dkk-1 and Wnt3a); cell polarity (Axin2, Dvl2, MAPK8 & 

NKD1); growth and proliferation (CTBP1, DAB2, FOSL1, LRP5, PPARD, WISP1, WNT3 

& MMP7) cell migration (Dkk-1 & LRP5) and cell cycle (CCND2, EP300, RHOU & 

TCF7L1). Several non-canonical Wnt pathway genes were also up-regulated in OA-

CPC lines including (NFATC1, WNT2B, WNT4, WNT5A and WNT5B). However, a 

substantial number of Wnt inhibitors genes were also significantly up-regulated in 

the OA-CPC lines tested (AXIN2, CTBP1, DKK-1, DKK3, FBXW4, LRP5, TLE1 & NKD1) 

(Table 4.1). 
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Of the 25 up-regulated genes, Dkk-1 was over-expressed in OA-CPC lines with a 

fold-increase of 48.25 (Table 4.1). This gene was selected for further analysis by 

qPCR using cDNA isolated from full-depth chondrocytes (normal and OA), 

monoclonal N-CPC and monoclonal OA-CPC (see section 4.2). Using 2-way ANOVA 

comparing full-depth and CPC from normal and OA, q-PCR analysis of Dkk-1 showed 

that there was no significant difference in the expression of Dkk-1 between full-

depth chondrocytes from normal and osteoarthritic donors and N-CPC isolated from 

macroscopically normal cartilage (p>0.05). However, there was a significant increase 

in the expression of Dkk-1 in isolated monoclonal OA-CPC (Figure 4.2). Statistical 

analysis showed that there was a significant difference in the level of Dkk-1 between 

CPC isolated from normal articular cartilage versus CPC isolated from OA cartilage 

donors (Figure 4.2 N-CPC black triangle, OA-CPC red squares; p< 0.05).  
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Figure 4. 1: Scatter plot of PCR array analyse of 84 genes involved in the 
Wnt signalling pathway.  
PCR array analysis was performed using cDNA from RNA isolated from culture 
expanded monoclonal N-CPC and OA-CPC. N-CPC isolated from macroscopically 
normal articular cartilage served as the control. Scatter plots were generated using 
the SA Bioscience software package (version 5.2) to visualize up or down- regulated 
genes in OA-CPC. Red dots indicate genes up-regulated 3-fold or more from analysis 
using cDNA from RNA isolated from OA-CPC lines. The black arrows shows the 
location of Dkk-1 gene expression.  
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Table 4. 1: Table showing Wnt pathway genes up or down-regulated in 
OA-CPC cell lines. 

The fold-change in Wnt gene expression was calculated for 3 OA-CPC cell lines taken 

from 3 donors relative to the gene expression in 3 N-CPC cell lines from 3 normal 

donors. To calculate the ∆Ct data for each gene, Ct values were normalised to the 

geometric mean of 2 housekeeping genes (ACTB, HPRT1, B2M, GAPDH and RPLP0). 

Genes up-regulated in OA CPC are depicted in red with fold change and genes 

down-regulated in OA-CPC lines are in blue. 

Genes differentially expressed between OA and Normal CPC 

Position Gene Symbol Fold Regulation 95% CI 

A01 AES 4.5815 ( 0.00001, 18.12 ) 

A04 AXIN2 3.9336 ( 0.00001, 8.46 ) 

A08 CCND2 13.6028 ( 0.00001, 67.74 ) 

A11 CTBP1 3.5206 ( 0.00001, 9.08 ) 

B04 DAB2 8.4513 ( 0.00001, 27.01 ) 

B05 DIXDC1 3.5206 ( 0.00001, 10.11 ) 

B06 DKK-1 48.2514 ( 0.00001, 123.99 ) 

B07 DKK3 4.3244 ( 0.00001, 16.64 ) 

B09 DVL2 4.0069 ( 0.00001, 14.53 ) 

B10 EP300 5.3858 ( 0.00001, 17.79 ) 

B12 FBXW4 3.4323 ( 0.00001, 10.25 ) 

C02 FOSL1 4.6241 ( 0.00001, 16.78 ) 

D08 LRP5 5.3117 ( 0.00001, 19.50 ) 

D10 MAPK8 3.0508 ( 0.00001, 4.45 ) 

E01 NFATC1 4.5921 ( 0.00001, 10.93 ) 

E06 PPARD 3.9609 ( 0.00001, 10.87 ) 

E10 RHOU 13.6658 ( 0.00001, 48.88 ) 

F04 TCF7L1 3.4482 ( 0.00001, 9.24 ) 

F05 TLE1 7.7767 ( 0.00001, 21.95 ) 
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F08 WISP1 5.499 ( 0.00001, 15.73 ) 

G02 WNT2B 4.1482 ( 0.00001, 12.39 ) 

G03 WNT3 3.0088 ( 0.04, 5.98 ) 

G05 WNT4 4.9445 ( 0.08, 9.81 ) 

G06 WNT5A 5.55 ( 0.00001, 15.82 ) 

G07 WNT5B 4.571 ( 0.00001, 10.66 ) 

D11 MMP7 -3.0826 ( 0.03, 0.62 ) 

E02 NKD1 -5.4547 ( 0.02, 0.35 ) 
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Figure 4. 2: Real-time quantitative PCR of DKK-1 mRNA expression in full-
depth chondrocytes and CPC. 
Dkk-1 mRNA expression in selected monoclonal CPC lines and full-depth (FD) 
chondrocytes from normal and OA donors were analysis by qPCR and the fold 
change calculated as described in section 2.12.5. (N-FD, n=5; OA-FD, n=6; N-CPC, 
n=9; OA-CPC, n=20). Horizontal lines in each sub-group show the mean value. Data 
are presented as mean and analysed using a 2-way ANOVA for statistical differences 
(* P < 0.05, NS=not significant). 
 

 

4.3.2. Dkk-1 ELISA of conditioned media harvested from cultures of 

monoclonal N-CPC and OA-CPC lines. 

Dkk-1 was measured using ELISA in a total of 10 OA-CPC cell lines across a selection 

of cell lines that had either a high or a low mRNA expression (Table 4.2) along with 

11 N-CPC cell lines, the concentration of Dkk-1 in each cell line is presented in Table 

4.2. The concentration of secreted Dkk-1 from the 10 OA-CPC lines (n=6 donors) 
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ranged from 1578.8 – 56605 pg/106 cells and those from the 11 normal CPC (n=5 

donors) ranged from undetected –1459.1 pg/106 cells. Statistical analysis of this 

data (Figure 4.3) using one-way ANOVA showed a significant difference (p=0.01) 

between the concentrations of Dkk-1 in N-CPC lines to OA-CPC lines tested.  

 
Figure 4. 3: Concentration of Dkk-1 in media from N-CPC and OA-CPC 
lines. 
Concentration of Dkk-1 was measured in culture media using the Dkk-1 ELISA (R & 
D Systems). Concentration of Dkk-1 in N-CPC lines (n=11 from 5 donors) are seen 
as black triangles and in OA-CPC (n=10 from 6 donors) lines as red triangles. 
Concentrations were normalised to cell number. Horizontal lines in each sub-group 
show the mean value and analysed using a 1-way ANOVA for statistical differences 
(P < 0.01). 

4.3.4 The effect of CPC conditioned media on the modulation of β-catenin 

using the TCF-luciferase reporter assay. 

The TCF luciferase reporter assay (Ewan et al. 2010) utilizes a plasmid containing 

TCF that has been stably transfected into HEK293 cells. Addition of the Wnt ligand 

(Wnt3a) plus R-spo1 to culture media of the stably transfected HEK293 cells results 
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in the activation of β-catenin resulting in the downstream activation of TCF-

luciferase and subsequently the activation of the LEF transcription factor. This 

activation results in the emission of light that can be measured and quantified as a 

measure of the activation of the canonical Wnt pathway. The activation of this 

pathway can be inhibited by a number of Wnt ligand antagonists and this results in a 

decreased light emission in this assay system. This assay was used to test the Wnt 

modulatory activity of conditioned media in the presence of Wnt 3a and R-spo1 from 

the culture of N-CPC or OA-CPC cell lines from a number of donors. 

In the presence of Wnt3a and R-spo1 ligands there was an activation of the 

luciferase reporter plasmid in the HEK292-7df3 and this was taken as 100% activity 

and was used to calculate the percentage of Wnt activation in all experimental 

samples (Figure 4.4). In the presence of Dkk-1 at 50 ng there was a 40% reduction 

in Wnt activation and concentrations of Dkk-1 at 250 ng and 500 ng resulted in 85% 

and 90% reduction, respectively (Figure 4.4).  
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Figure 4. 4: Effects of CPC conditioned media on Wnt TCF-luciferase 
reporter assay. 
The effect of recombinant Dkk-1 and secretome of CPC cell lines from normal and 
OA donors were examined using the 7df3 TCF-luciferase reporter cell assay. Forty 
eight hours prior to initiating the experiments, CPC of normal (n=4 donors) and 
osteoarthritic donors (n=5 donors) were cultured in basal media at 1 x 106 cells. 
Collected media were centrifuged and filtered before incubating with 7df3 TCF- 
luciferase reporter cells treated with a positive inducer of TCF activity (Wnt-3a (150  
ng/mL) and R-Spo1 (24  ng/mL) and incubated for 24 hrs ± exogenous Dkk-1 at 
(50, 250 and 500 ng/mL). In addition, a negative control of Doxycycline which 
inhibits β-catenin expression in reporter cells was included. After incubation period, 
cells were lysed using Glo lysis buffer and incubated with luciferase substrate 
(Promega Bright Glo) before measuring luciferase activity using a plate reader. Data 
are presented as percentage mean activation of TCF of 4 replicates per condition 
±SD. Data were analysed using 1-way ANOVA for statistical significance (* = P < 
0.05, ** = P < 0.01).  
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Overall the TCF luciferase activity was not reduced by culturing reporter cells with 

the recombinant Wnt3a and R-spo1 proteins diluted in conditioned media derived 

from normal clonal CPC (Figure 4.5). However, osteoarthritic conditioned media 

showed greater variation in the presence of Wnt-3a/R-Spo-1 (Figure 4.5). The 

majority of clonal CPC from normal donors had a percentage activation of TCF 

ranging from 80-125% with the exception of 2 clonal cell lines that had 71.8 and 

71.93% TCF activation (Figure 4.5). While clonal cell lines isolated from 

osteoarthritic donors showed a more heterogeneous inhibition on TCF reporter 

activity. The percentage activation of osteoarthritic clonal CPC ranged from TCF 

activation of 25.9- 86.4%. In addition, no adverse effect on reporter cell viability was 

observed when treated with conditioned media or recombinant Dkk-1 proteins 

(Figure 4.6). 
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A linear regression line was plotted in order to establish whether or not there was a 

relationship between Dkk-1 concentration, Dkk-1 mRNA fold-change and or % TCF-

luciferase activation. Pearson’s correlation test showed significant correlation 

between the Dkk-1 secretion and mRNA fold expression (Figure 4.7; p<0.05), Dkk-1 

secretion and % TCF-luciferase activation (Figure 4.8; p<0.05) and between % TCF-

luciferase activation and Dkk-1 mRNA fold change (Figure 4.9; p<0.05).  

Interestingly, cell lines with higher expression of Dkk-1 at molecular and protein 

levels had lower percentage of TCF-activation and the R2 regression ranged from of 

0.6-0.65.  
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Figure 4.7: A scatter-plot figure of Dkk-1 concentration and mRNA fold-
change. 
A scatter-plot showing the correlation between the Dkk-1 secreted by CPC and the 
mRNA fold-change of Dkk-1 after normalisation to housekeeping gene (n=24 CPC 
cell lines). Blue line is indicative of the trend-line. Pearson’s correlation coefficient 
test demonstrated a significant difference between the parameters (p<0.01). 
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Figure 4.8: A scatter-plot figure of TCF-luciferase activation and Dkk-1 
secretion.  
A scatter-plot showing the correlation between the % TCF-luciferase activation and 
concentration of Dkk-1 secreted by CPC (n=27 CPC cell lines). Blue line is indicative 
of the trend-line. Pearson’s correlation coefficient test demonstrates a significant 
difference between the parameters (p= 0.002). 
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Figure 4.9: A scatter-plot figure of TCF-luciferase activation and Dkk-1 
mRNA fold-change.  
A scatter-plot showing the correlation between the % TCF-luciferase activation and 
the mRNA fold-change of Dkk-1 after normalisation to housekeeping gene (n=24 
CPC cell lines). Blue line is indicative of the trend-line. Pearson’s correlation 
coefficient test demonstrates a significant difference between the parameters (p= 
0.001). 
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Table 4. 2: Table showing Dkk-1 mRNA and protein expression and % 
activation of TCF-luciferase reporter assay of N-CPC and OA-CPC cell lines. 

Cell line Dkk-1 ELISA 
concentration (pg/mL) 

Dkk-1 mRNA 
fold change 

TCF-luciferase activation 
(relative to % control) 

N1.1 ND NT 125.91 

N1.2 1170.83 1.51 71.84 

N2.1 ND 2.58 79.51 

N2.2 1459.16 1.23 107.61 

N3.1 ND 0.60 102.92 

N3.2 ND 2.90 83.57 

N4.1 ND 0.71 94.74 

N4.2 410.16 0.27 101.74 

N4.3 40.16 0.41 85.93 

N5.1 211.33 1.48 117.87 

N5.2 ND NT 105.27 

OA1.1 20326.25 17.67 45.59 

OA1.2 31075 10.84 69.71 

OA2.1 7938.75 10.43 50.76 

OA2.2 1885 3.52 51.08 

OA3.1 17107.5 35.97 69.56 

OA.3.2 19905 40.05 44.69 

OA4.1 56605 43.37 25.88 

OA4.2 5030 3.20 55.64 

OA4.3 667.5 3.55 55.16 

OA5.1 11408.75 63.07 36.66 

OA5.2 5317.5 10.58 54.95 

OA5.3 4625 1.88 80.78 

OA6.1 1578.75 2.77 86.42 

OA6.2 375 8.53 58.07 

OA6.3 6045 4.51 68.53 
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4.3.5 Chondrogenic differentiation of high and low expressing Dkk-1 CPC 

cell lines isolated and culture expanded from normal and osteoarthritic 

articular cartilage. 

4.3.5.1. Analysis of cell viability using the LDH assay.  

Assessment of cell viability during the differentiation process was measured by 

quantifying the amount of lactate dehydrogenase (LDH) released into the medium 

using the LDH based in vitro toxicology assay kit (Pierce, Thermo, UK). Absorbance 

values obtained for all cell cultures over the 21 days were below 0.3 OD units and 

were within the non-toxic range, confirming no adverse effect on cell viability in 

these culture conditions (Figure 4.9). 

 

Figure 4.10: Assessment of secreted lactate dehydrogenase in the 
conditioned media of CPC.  
Chondroprogenitor cells were cultured in chondrogenic differentiation media and 
LDH was measured in pooled media samples collected from day 0-7, 7-14 and 14-
21). Blue bars represent N-CPC lines and red bars represent OA-CPC lines. Data are 
presented as the mean of the raw absorbance ±SEM. Cell lines did not show a 
significant increase in LDH release during the duration of differentiation. 
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4.3.5.2. Analysis of Dkk-1 secretion post-differentiation.  

Analysis of Dkk-1 from pooled culture media collected over day 0-7; 7-14 and 14-21 

days is shown in Table 4.3 for all cell lines. Over the 21 day period of culture all of 

the Dkk-1high OA-CPC lines maintained secretion of Dkk-1 protein. Interestingly, 2 of 

the 3 N-CPC lines had no detectable Dkk-1 over the 21 days in culture, however, in 

the N3-CPC line, Dkk-1 was detected in media collected from day 7-14 and day 14-

21, 111 pg /mL to 218 pg/mL, respectively. To assess if the presence of Dkk-1 in the 

media had affected the chondrogenic differentiation of these CPC lines analysis was 

carried out to assess gene expression profiles of key markers of chondrogenic 

differentiation and the matrix deposition of pellets at 21 days of culture. 

Table 4. 3: Quantitative levels of Dkk-1 secreted during chondrogenesis. 
Clonal CPC from normal (n=3) and osteoarthritic donors (n=3) were cultured in 
chondrogenic differentiation settings at define time points (day 7, 14 and 21). At the 
selected time points, conditioned media were isolated and secreted levels of Dkk-1 
protein was quantified using Dkk-1 ELISA kit. Data are presented as mean ±SEM. 
Paired T-test was performed for each cell line and p value calculated. ND= not 
detected, NS= not significant. 

Chondrogenic 
differentiation duration 

period 
Cell line ID 

Dkk-1 Concentration 
(pg/mL)/105 cells 

Week-1 

N1-CPC ND (p=NS) 

N2-CPC ND (p=NS) 

N3-CPC ND (p=NS) 

OA1-CPC 1674.875 (±209.8) 

OA2-CPC 3958.625 (±131) 

OA3-CPC 310.125 (±47.5) 

Week-2 N1-CPC ND (p=NS) 
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N2-CPC ND (p=NS) 

N3-CPC 111.875 (±1.6) (p=0.03) 

OA1-CPC 1526.875 (±85.4) (p=0.17) 

OA2-CPC 3057.5 (±20.9) (p=0.02) 

OA3-CPC 203.125 (±6.5) (p=0.1) 

Week-3 

N1-CPC ND (p=NS) 

N2-CPC ND (p=NS) 

N3-CPC 218.5 (±108.2) (p=0.11) 

OA1-CPC 1008.875 (±36.6) (p=0.08) 

OA2-CPC 2794.5 (±146) (p=0.002) 

OA3-CPC 97.25 (±9.5) (p=0.05) 

4.3.5.3 Analysis of mRNA expression of chondrogenic differentiated CPC. 

4.3.5.3.1. Analysis at time point zero. 

The molecular profile of all CPC lines used in the chondrogenic differentiation 

experiment were analysed at time point 0, day 7, day 14 and day 21 using the 

custom PCR array (Table 4.4) and the relative expression was normalised to the 

house-keeping genes as recommended by the manufacturer. Figure 4.10 shows the 

calculated relative gene expression for all 11 genes analysed at day 0, where the 

data from patients OA-1.1, OA-2.3 and OA-4.3 were combined and named Dkk-1high 

CPC and from patients N-3.1, N-4.1, N-5.1 were combined and named Dkk-1low CPC. 

There was no significant difference in the expression levels of Dkk-2, COL2A1, 

COL10A1, MMP-13, ADAMTS4 and IL-1β in the two categories analysed (i.e. Dkk-
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1high and Dkk-1low). Expression levels for Dkk-1 in the Dkk-1high CPC were 11.5-fold 

greater than those of the Dkk-1low CPC (p<0.001) analysed, consistent with data 

shown in previous sections, for these cell lines. Interestingly, Dkk-1low CPC had 

higher expression of β-catenin (CTNNB1; 2-fold change; p=0.01) and Sox-9 (1.5-

fold; p=0.01) when compared to Dkk-1high CPC. Although there was a difference in 

mRNA expression for ACAN (p=0.1) and ALCAM (p=0.05) this was not found to be 

statistically significant. 

Table 4. 4: Custom- PCR-array plate layout. 
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Figure 4.11: Effect of endogenous Dkk-1 levels on chondrogenic 
differentiation of CPC from healthy and osteoarthritic donors (Day 0). 
Chondroprogenitor cells were cultured in chondrogenic differentiation medium and 
comparison of transcript levels of selected Wnt signalling pathway genes, 
multipotency marker genes, chondrogenic genes, hypertrophic chondrocyte genes 
and matrix degradation genes were analysed at defined time points (Day 0). Custom 
arrays were performed on mRNA from CPC prior to initiating the chondrogenic 
differentiation experiment and each cell line selected was assayed in triplicate (n=3 
per donor). Data are expressed as mean ± SEM after normalisation to GAPDH and 
B2M. Data were analysed using 1-way ANOVA (* = P < 0.05, ** = P < 0.01). 
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4.3.5.3.2. Analysis at 7 days post-differentiation. 

Figure 4.11 shows the calculated relative gene expression for all 11 genes analysed 

at day 7, interestingly, there was expression of all genes analysed at this time point 

however, there was no significant difference in mRNA expression of ACAN (1.7-fold, 

p=0.3) between the two groups analysed. There was however, a significant increase 

in mRNA expression of Dkk-1 and a modest but significant increase in β-catenin 

mRNA and ALCAM mRNA in Dkk-1high CPC compared with Dkk-1 low CPC (Figure 

4.11, 24-fold, p<0.001, 1.7-fold, p=0.01, 3.41-fold, p<0.001, respectively). 

Interestingly, there was a dramatic up-regulation of MMP-13 at day 7 with a 40-fold 

difference in mRNA expression levels in Dkk-1high CPC lines when compared to Dkk-1 

low CPC lines (Figure 4.11, p=0.001). In contrast, Dkk-1low CPC expressed higher 

levels of the chondrogenic marker genes Col2a1 and Sox-9 (Figure 4.11 nearly 75-

fold, p<0.0001, 3.3-fold, p<0.001, respectively) than the Dkk-1high CPC lines. Of 

interest, Dkk-2 was up-regulated in Dkk-1low CPC by 2-fold (Figure 4.10, p<0.001).  
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Figure 4. 12: Effect of endogenous Dkk-1 levels on chondrogenic 
differentiation of CPC from healthy and osteoarthritic donors (Day 7).  
Chondroprogenitor cells were cultured in chondrogenic differentiation medium and 
comparison of transcript levels of selected Wnt signalling pathway genes, 
multipotency marker genes, chondrogenic genes, hypertrophic chondrocyte genes 
and matrix degradation genes were analysed at defined time points (Day 7). Custom 
arrays were performed on mRNA from differentiated pellets and each cell line 
selected was repeated in triplicate (n=3 per donor). Data are expressed as mean ± 
SEM after normalisation to GAPDH and B2M. Data was analysed using 1-way ANOVA 
(* = P < 0.05, ** = P < 0.01). 
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4.3.5.3.3. Analysis at 14 days post-differentiation. 

Furthermore, molecular analysis of Dkk-1high and Dkk-1low CPC at day 14 post-

chondrogenic differentiation revealed that the molecular expression of Dkk-1high CPC 

showed consistently maintained elevated levels of Dkk-1 (9.5-fold, p<0.001). 

However, β-catenin between Dkk-1high and Dkk-1low CPC was down-regulated but not 

statistically significant (1.5-fold down-regulation, p=0.09). Consistent with the 

reduction in Dkk-2 gene expression seen post-day 7 of differentiation, Dkk-2 was up-

regulated in Dkk-1low CPC by almost 14.5 folds (p=0.005). But the interesting finding 

was the dramatic up-regulation of Col2a expression to over 400-folds (p=0.002) 

while the expression of Col2a was hardly detectable in Dkk-1high CPC (Figure 4.12). 

This increase in Col2a was consistent with an increase in Sox-9 expression in Dkk-

1low CPC by almost 5-fold (p<0.001) as well as ACAN expression 2-fold (p=0.01). 

Interestingly, Dkk-1low CPC also appeared to show expression of COL10A1 and 

Interleukin-1β although at low levels possibly suggesting some matrix remodelling 

(17-folds and 16-folds respectively, p=0.03 and 0.007 respectively) while Dkk-1high 

CPC showed hardly any expression of these genes (Figure 4.12). Similar to day 7 

post-chondrogenic differentiation, Dkk-1high CPC continued to express the MSCs 

marker ALCAM (2-fold, p<0.01).  
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Figure 4. 13: Effect of endogenous Dkk-1 levels on chondrogenic 
differentiation of CPC from healthy and osteoarthritic donors (Day 14). 
Chondroprogenitor cells were cultured in chondrogenic differentiation medium and 
comparison of transcript levels of selected Wnt signalling pathway genes, 
multipotency marker genes, chondrogenic genes, hypertrophic chondrocyte genes 
and matrix degradation genes were analysed at defined time points (Day 14). 
Custom arrays were performed on mRNA from differentiated pellets and each cell 
line selected was repeated in triplicate (n=3 per donor). Data are expressed as 
mean ± SEM after normalisation to GAPDH and B2M. Data was analysed using 1-
way ANOVA (* = P < 0.05, ** = P < 0.01). 
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4.3.5.3.4. Analysis at 21 days post-differentiation. 

The analysis of the molecular profile of Dkk-1high and Dkk-1low CPC at day 21 post-

chondrogenic differentiation is shown in Figure 4.12. The molecular expression of 

Dkk-1high CPC showed consistently elevated although less fold change expression of 

Dkk-1 when compared to Dkk-1low CPC (4-fold, p=0.02). Similarly, Dkk-2 expression 

in Dkk-1low CPC show maintained up-regulation (41-fold, p<0.01 greater than Dkk-

1high CPC). Col2a expression continued to be expressed in Dkk-1low CPC and was not 

detectible in Dkk-1high CPC (81-fold, p=0.0002 greater than Dkk-1high CPC). This 

increase in Col2a expression in Dkk-1low CPC was consistent with an increase in Sox-

9 expression by almost 4-fold (p=0.008) as well as ACAN expression 2.2-fold 

(p=0.01) relative to Dkk-1high CPC. Interestingly, Dkk-1low CPC also appeared to 

show expression of COL10A1 and MMP-13 at levels possibly suggesting some matrix 

remodelling or even hypertrophic differentiation (nearly 60-folds, p<0.01, and 31-

fold, p=0.02 greater than Dkk-1high CPC respectively). Furthermore, β-catenin and 

ALCAM were down-regulated in Dkk-1high CPC but not statistically significant (Figure 

4.13, 1.1-fold, p=0.8 and 1.4, p=0.1 greater than Dkk-1low CPC respectively). Both 

cell groups showed no statistical differences in the expression of ADAMTS-4 and IL-

1β.  
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Figure 4. 14: Effect of endogenous Dkk-1 levels on chondrogenic 
differentiation of CPC from healthy and osteoarthritic donors (Day 21). 
Chondroprogenitor cells were cultured in chondrogenic differentiation medium and 
comparison of transcript levels of selected Wnt signalling pathway genes, 
multipotency marker genes, chondrogenic genes, hypertrophic chondrocyte genes 
and matrix degradation genes were analysed at defined time points (Day 21). 
Custom arrays were performed on mRNA from differentiated pellets and each cell 
line selected was repeated in triplicate (n=3 per donor). Data are expressed as 
mean ± SEM after normalisation to GAPDH and B2M. Data was analysed using 1-
way ANOVA (* = P < 0.05, ** = P < 0.01). 
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4.3.5.3.5. Comparison of patient matched Dkk-1high and Dkk-1low CPC 

during chondrogenic differentiation. 

Molecular analysis of patient derived clonal CPC showed marked variation in the 

expression of Dkk-1. This finding is interesting as it shows that not all clonal CPC are 

similar and that this might result in different outcomes if sub-optimal populations of 

clonal cells were selected for cartilage production. To investigate the effect of Dkk-1 

variability at the patient level, CPC with endogenous Dkk-1high and Dkk-1low levels 

were taken from the same patient (n=2) and were induced to undergo chondrogenic 

differentiation. Dkk-1high and Dkk-1low CPC were able to form a pellet when cultured 

in chondrogenic differentiation medium.  

After 21 days of culture in chondrogenic differentiation medium Dkk-1low CPC and 

Dkk-1high CPC lines showed evidence of successful differentiation marked by 

assessing expression of the chondrogenic lineage genes ACAN, Col2a1 and Sox-9 

(Figure 4.14) (n=2 patients). By examining the molecular profile of osteoarthritic 

patient matched Dkk-1high and Dkk-1low CPC at day 21 post-chondrogenic 

differentiation, expression of Dkk-1high CPC showed up-regulated expression of Dkk-1 

when compared to Dkk-1low CPC (1.5-fold, p=0.02). In addition, ALCAM, Sox-9 and 

ACAN were up-regulated in Dkk-1high CPC but not statistically significant (Figure 4.14, 

1.3-fold, p=0.21, 1.7-fold, p=0.2 and 1.6-fold, p=0.3 respectively). In contrast, 

Col2a1 expression in Dkk-1low CPC was up-regulated when compared to Dkk-1high 

CPC (92-fold, p=0.0006), while β-catenin was up-regulated in Dkk-1low CPC however, 

not statistically significant (1.7-fold, p=0.8). 
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Figure 4. 15: Effect of differential expression levels of Dkk-1 on 
chondrogenic differentiation of CPC from the matched patients (Day 21). 
Chondroprogenitor cells were cultured in chondrogenic differentiation medium and 
comparison of transcript levels of selected Wnt signalling pathway genes, 
multipotency marker genes, chondrogenic genes, hypertrophic chondrocyte genes 
and matrix degradation genes were analysed at defined time points (Day 21). 
Custom arrays were performed on mRNA from differentiated pellets and each cell 
line selected was repeated in triplicate (n=2 per donor). Data are expressed as 
mean ± SEM after normalisation to GAPDH and B2M. Data was analysed using 1-
way ANOVA (* = P < 0.05, ** = P < 0.01). 
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4.3.6 Protein analysis of differentiated pellets.  

4.3.6.1. Histochemical analysis of chondrogenic differentiation of CPC. 

The morphology of the spherical pellets cultured in chondrogenic differentiation 

media was similar at 21 days post-differentiation. All cell groups showed formation 

of 3D pellets (Figure 4.15 A-C). In addition, Dkk-1low CPC from both normal and 

osteoarthritic CPC showed successful staining for Safranin-O as well as Toluidine 

blue staining (Figure 4.15 D-E and G-H respectively). Interestingly, it was observed 

that safranin-O of Dkk-1high CPC was slightly weaker when compared to Dkk-1low CPC 

groups. However, Toluidine blue staining in Dkk-1high CPC was comparable to other 

groups. 

 

Furthermore, by assessing the protein expression of aggrecan (6B4), Collagen type 

II and Sox9 using immunofluorescence microscopy, there was a clear pattern where 

Dkk-1high CPC showed little protein labelling for the three selected markers (Figure 

4.16, bottom panel). By comparison, their patient matched OA-Dkk-1low CPC (Figure 

4.16, middle panel) as well as healthy donor CPC N-Dkk-1low CPC showed evidence 

of aggrecan, collagen II and Sox-9 further supporting the molecular data (Figure 

4.16, upper panel).  
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Figure 4. 16: Histochemical and phase-contrast images 3D cell pellets 
from Dkk-1low CPC and Dkk-1high CPC cell lines subjected to 
chondrogenic differentiation.  
Phase contrast microscopic image of normal Dkk-1low CPC (N) and osteoarthritic CPC 
Dkk-1low CPC (OA) and Dkk-1high CPC (A-C) and the corresponding Safranin-O (D-F) 
and Toluidine blue (G-I) stained sections after 21 days in chondrogenic culture 
conditions. Scale bar= 25 µm, insert scale bar =50µm. Pellets that have undergone 
chondrogenic differentiation show successful matrix production in all of the three cell 
line investigated marked by Toluidine blue staining. 

 



 

 

 
Figure 4. 17: Immunohistochemical analysis of 3D cell pellets from Dkk-1low CPC and Dkk-1high CPC cell lines subjected 
to chondrogenic differentiation. 
 Representative immunofluorescence images of Dkk-1high CPC (OA donor) and Dkk-1low CPCs (OA donor) and Dkk-1low CPCs (Normal 
donor) lines were immuno-labelled for collagen type II/ CIIC (A-C), aggrecan/6B4 (D-F) and Sox-9 (G-I). Images J-K are representative of 
negative IgG controls (J) and IgM controls (K). Images A, B, C, G, H and I scale bar=50 µm. Images D-F and J-K scale bar=25 µm. 
 



 

143 

4.3.6.2. Immunohistochemical analysis of Dkk-1 in normal and 

osteoarthritic cartilage. 

Subsequent to studying the Dkk-1 mRNA expression and protein secretion in isolated 

chondrocytes and chondroprogenitor cells, from normal and osteoarthritic donors, 

subjected to culture in basal medium and in chondrogenic differentiation medium we 

then investigated the topographical location of Dkk-1 in cartilage from normal and 

OA donors using immunohistochemistry. In sections taken from normal cartilage, 

Dkk-1 was present in the superficial zone and upper middle zone (Figure 4.17 A2-

A3) of the tissue. This localisation of Dkk-1 appeared to be matrix associated. In 

addition, Dkk-1 was localised in a small number of chondrocytes within the deep 

zone of the tissue (Figure 4.17 A4). Similarly, in OA cartilage sections, Dkk-1 staining 

was present in the superficial zone (Figure 4.17 B1) but absent from the middle zone 

(Figure 4.17 B2). There was, however, intense localisation for this epitope within the 

pericellular matrix of deep zone chondrocyte clusters adjacent to the tidemark 

(Figure 4.17 B3). Immunohistochemical localisation of Dkk-1 in sections taken from 

the osteochondral plug of OA tissue was seen surrounding migratory cells from the 

subchondral bone region. These migratory subchondral bone cells had morphological 

features similar to mesenchymal stromal cells (Figure 4.17 B4). There was evidence 

of intense Dkk-1 staining around blood vessels (Figure 4.17 B3).  
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Figure 4. 18: Topographical expression of Dkk-1 in normal and 
osteoarthritic osteochondral tissue.  
Dkk-1 expression in whole osteochondral sections of normal (A1) and osteoarthritic 
cartilage (B1) were studied using confocal immunohistochemistry. Confocal imaging 
showed immuno-labelling for the Dkk-1 in the superficial zone (A2, B2), mid zone 
(A3, B3) and deep zone of AC (A4, B4). Positive Dkk-1 labelling was found 
surrounding the cellular infiltrate from the underlying subchondral bone (B4). Dkk-1 
protein was visualised using Goat anti-mouse Alexa Fluor 633 (red) and nuclei 
staining were attained using DAPI (blue). Image A1 & B1: scale bar =250µm. Image 
A2-A4 and B2-B4: scale bar =75µm. 
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4.4 Discussion. 

The Wnt pathway is emerging as a crucial pathway involved in the regulation and 

homeostasis of the synovial joint (Bafico et al., 2001; Diarra et al., 2007; Surmann-

Schmitt et al., 2009; Blom et al., 2009; Zhu et al., 2009a; Saito et al., 2010; Yang et 

al., 2010; Zhen et al., 2013). In this chapter, the differential expression pattern of 

84 related-Wnt pathway genes were investigated in culture-expanded clonal CPC cell 

lines isolated from normal and osteoarthritic donors. For the Wnt-array, CPC cell 

lines were selected randomly and had similar cumulative population doubling to 

reduce variation that can arise from in vitro expansion process. 

For the majority of selected Wnt genes, the transcriptional profile between normal 

and OA-derived CPC were comparable. However, several genes were up-regulated in 

OA-CPC including genes implicated in cell fate determination of cells such as Dkk-1, 

Wnt3a and genes involved in cell polarity including Axin2, Dvl2, MAPK-8 and NKD1. 

Wnt genes implicated in cell growth and proliferation including CTBP1, DAB2, FOSL1, 

LRP5, PPARD, WISP1 and WNT3 were also up-regulated in OA-CPC. In addition, Wnt 

genes involved in the regulation of cell migration such as Dkk-1 and its co-receptor 

LRP-5 and genes implicated in cell cycle regulation including CCND2, EP300, RHOU 

and TCF7L1 were over-expressed in OA-CPC when compared to normal CPC cell 

lines. Moreover, several non-canonical Wnt pathway genes were also up-regulated in 

OA-CPC lines when compared to normal CPC. But the interesting finding was the up-

regulation of several Wnt inhibitors ligands including AXIN-2, CTBP-1, DKK-1, DKK3, 

FBXW4, LRP5, TLE1 and NKD1. This data are interesting as it indicates the 

differential expression of both canonical and non-canonical Wnt pathways in 

osteoarthritis. In particular, the Wnt pathway is known to regulate stem cell fate in 
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many tissues and its misregulation was found to be associated with several diseases 

(Nuuse, 2005, Clevers, 2006). In addition, this data are in agreement with recently 

published microarray data examining transcriptional profiles between normal and 

osteoarthritic hip cartilage OA (Xu et al., 2012) and in MSCs isolated from Normal 

and OA patients (Churchman et al., 2012) showing that Dkk-1 and Wnt antagonists 

were over expressed in OA chondrocytes and in OA- MSCs, respectively. 

Interestingly, the expression levels of Dkk-1 were nearly 50-fold higher in OA-CPC 

when compared to normal counterparts but no significant differences were found 

between OA and normal chondrocytes therefore suggesting that the CPC might be 

behind the higher expression levels of Dkk-1.  

By examining mRNA expressional levels from larger set of donor cell lines (n=9 and 

20 for normal and OA respectively) as well as full-depth cartilage chondrocytes (n=6 

for normal and OA respectively), the expressional levels of Dkk-1 in culture 

expanded full-depth chondrocytes from normal and OA did not show any significant 

differences (p≥0.05). In addition, the expressional levels of Dkk-1 between normal 

CPC cell lines and both normal and osteoarthritic full-depth chondrocytes were not 

significantly different (p≥0.05). However, Dkk-1 expression was up-regulated in 

isolated osteoarthritic clonal CPC when compared to either full-depth chondrocytes 

or normal CPC (p<0.05). This finding in this thesis is partially in agreement with 

other recently published work by Oh et al. (2012b), Weng et al. (2010) and Leijten 

et al. (2012), all showing an up-regulation of Dkk-1 in OA chondrocytes. However, a 

novel finding in this study is the discovery that only OA-CPC, a subset of 

chondrocytes selected based on their high fibronectin adhesion capacity (cartilage 

progenitor cells), show the elevated Dkk-1 expression. This finding suggest the 
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potential role of cartilage progenitor cells in the pathogenesis of osteoarthritis. In 

addition, Dkk-1 was also proposed as a potential biomarker for the progression of 

osteoarthritis (Lane et al., 2007; Oh et al., 2012a;). The function of Dkk proteins 

have been studied in inflammatory arthritis including rheumatoid arthritis and 

ankylosing spondylitis in both human and animal models (Diarra et al., 2007; 

Daoussis et al., 2010). But its role in osteoarthritis remains not fully understood and 

often published work show contradictory findings (Weng et al., 2010; Oh et al., 

2012b; Leijten et al., 2012). A recent study by Oh (2012a) reported an increase in 

mRNA expression for Dkk-1 in OA cartilage which was shown to be protective of 

cartilage degradation. On the contrary, Weng et al. (2010) found that Dkk-1 up-

regulation in cartilage isolated from patients undergoing knee replacement and in rat 

models of OA were correlated with higher chondrocyte apoptosis. This highlights the 

complexity of the Wnt pathway and the need for more studies to understand the 

precise role of Wnt pathway in OA.  

As mentioned in the chapter one, Dkk-1 is a secretory protein released by cells and 

act via an autocrine manner (see Appendix 4 for monensin-blocked Dkk-1 secretion), 

therefore, secreted Dkk-1 was measured using commercially available ELISA kit. 

Consistent with the OA-CPC molecular up-regulation of Dkk-1, the concentration of 

Dkk-1 was significantly higher in OA-CPC. However, both molecular and protein 

analysis of Dkk-1 in clonal CPC cell lines showed variation in Dkk-1 expression within 

OA group. Based on these data, OA-CPC were further subdivided into Dkk-1high CPC 

and Dkk-1low CPC. In contrast, normal CPC show more homogenous expression of 

Dkk-1 therefore were classed as Dkk-1low CPC.  



 

148 

Having confirmed the differential expression of Dkk-1 in isolated CPC at the 

molecular and protein level, the next step was to examine if Dkk-1 up-regulation had 

a functional effect on the canonical Wnt pathway by modulating β-catenin. 

Therefore, 7df-3 cell line stably transfected with TCF-luciferase were used to assess 

the modulatory effect of conditioned media harvested from normal and OA-CPC 

(Dkk-1high CPC and Dkk-1low CPC) on the transcriptional role of β-catenin (Veeman et 

al., 2003; Ewan et al., 2010). This study, to our knowledge is the first to examine 

the effect of endogenous Dkk-1 secretion of CPC on β-catenin transcriptional TCF 

activation.  Cell viability of 7df-3 cell line treated with conditioned media were not 

affected over 24 hrs period. In accordance with the differential expression of Dkk-1 

in OA-CPC and normal CPC cell lines, it was shown that Dkk-1high CPC overall 

resulted in reduction of TCF-luciferase expression by directly inhibiting Wnt-3a and 

R-Spo-1 activity. In contrast, normal CPC did not show any inhibitory effect on Wnt-

3a and R-Spo-1 action. Interestingly, several normal CPC cell lines were shown to 

enhance the TCF-luciferase expressional levels more than the positive control hence 

suggesting the presence of β-catenin agonist factors released by the cell lines. 

Furthermore, addition of recombinant Dkk-1 at an increasing concentration showed 

the inhibitory role it exert on β-catenin transcriptional role. This data are in 

agreement with a study by Akiri et al. (2009) examining the effect of Dkk-1 on 

several β-catenin transcriptional role in non-small cells lung cancer. Moreover, there 

was an inverse correlation between the molecular and protein Dkk-1 expression and 

TCF-luciferase reporter activation.  

Having confirmed the elevated levels of Dkk-1 in OA-CPC, it was hypothesised that 

the differences in Dkk-1 expression levels and soluble protein secretion might have a 
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functional effect on CPC fate. Therefore, clonal CPC cell lines with high and low Dkk-

1 were induced to undergo chondrogenic differentiation. By comparing Dkk-1high CPC 

and Dkk-1low CPC prior to initiating chondrogenic differentiation, it was evident that 

Dkk-1high CPC had higher levels of Dkk-1 mRNA expression. In contrast, Dkk-1low CPC 

also had higher levels of β-catenin further supporting the inhibitory effect of high 

Dkk-1 on β-catenin message. Interestingly, Dkk-1low CPC also showed higher 

expressional levels of the chondrogenic transcriptional factor Sox-9 when compared 

to Dkk-1high CPC. This finding is in accordance with previously published work by 

Khan et al. (2009) which have shown that CPC were able to retain Sox-9 expression 

when expanded in vitro compared to full-depth chondrocytes.  

 Analysis of Dkk-1high CPC and Dkk-1low CPC from OA and normal clonal CPC cell lines 

at 7, 14 and 21 day interval have shown that CPC with initially higher levels of Dkk-1 

consistently maintained a higher levels of Dkk-1 at both molecular and secretory 

levels throughout the three week chondrogenic differentiation period. Dkk-1high CPC 

were unable to show evidence of chondrogenic differentiation both at molecular 

levels by examining mRNA levels of Sox-9, Col2a1 and aggrecan or at protein levels 

during the 3-week duration or by the immunofluorescence examination of these 

markers at the 21 day post-differentiation. In contrast, Dkk-1low CPC from normal 

clonal CPC cell lines as well as OA-matched Dkk-1low CPC both have shown evidence 

of successful chondrogenic differentiation.  

Heterogeneity in Dkk-1 expression between clonal cell lines from matched donors 

was shown using several experimental methods. This heterogeneity was clearly 

found in the molecular expression as well as protein secretion of Dkk-1 and also by 

clonal cells conditioned media modulation of β-catenin activity using the TCF-
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luciferase reporter assay. Whereas, most of the normal monoclonal CPC showed a 

homogenous expression of Dkk-1 and activation of the TCF-luciferase reporter 

assay, variation was seen in monoclonal osteoarthritic CPC where most of the cells 

lines conditioned media had pronounced inhibitory effect on TCF activation.  

These findings also shed light on the role of Dkk-1 in chondrogenic differentiation of 

CPC and it suggests that high levels of endogenous Dkk-1 in OA CPC results in failed 

in vitro chondrogenic differentiation. As it is known that β-catenin is required for 

chondrogenic differentiation (Akiyama et al., 2004; Kirton et al., 2007). Dkk-1 could 

possibly result in failed chondrogenic differentiation of CPC by inhibition of β-catenin. 

Lyashenko et al. (2012) have recently studied the impact of β-catenin inhibition on 

mouse embryonic stem cell differentiation. In in vitro and in vivo mouse model 

studies, β-catenin knock out resulted in failure of embryonic differentiation down the 

mesodermal lineage. Despite the lack of cytoskeletal β-catenin was somehow 

compensated by plakoglobin (γ-catenin) but ESCs failed to undergo differentiation 

thus confirming the vital role of β-catenin in formation of mesoderm (Guo et al., 

2004; Lyashenko et al., 2012).  

Interestingly, expression of Dkk-1 and Dkk-2 were noted to be in a reciprocal 

manner to each other during chondrogenic differentiation of CPC. This opposing 

expression of Dkk-1 and its homolog Dkk-2 have been reported previously by Liu et 

al. (2010) and more recently by Reis et al., (2012) and Oh et al. (2012). However, 

the reason behind this opposing expression remains to be investigated.  

This data confirm the coexistence of Dkk-1high and Dkk-1low CPC in OA cartilage and 

that these endogenous levels of Dkk-1, in part, could play a role in determining the 

capacity of clonal CPC in undergoing chondrogenic differentiation. Taken together, 
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these data show that clonal lines do not share the same differentiation potential and 

confirm that individual clonal cell lines selected from the same donor in the same 

culture conditions are functionally heterogeneous. However, further work is required 

to ascertain the true nature of this heterogeneity.  

In this study, we also demonstrated the immunolocalisation of Dkk-1 in the deep 

zone of normal and OA human cartilage. Expression of Dkk-1 in a small cohort of 

deep zone chondrocytes (potentially cartilage progenitor cells) might be in response 

to the local and systemic changes occurring in osteoarthritis. A recent study by 

Leijten et al. (2012) had shown that Dkk-1 over-expression in deeper part of foetal 

cartilage acts as a natural brake to prevent hypertrophic differentiation.  

In summary, this study provides an insight into the molecular differences found in 

chondroprogenitor cells isolated from normal and osteoarthritic donors. By 

examining the expressional profile of the Wnt signalling pathway, it was found that 

the expression of the canonical Wnt antagonist Dkk-1 to be up-regulated in 

osteoarthritic CPC when compared to those isolated from healthy donors and full-

depth chondrocytes. This difference, when interrogated further using TCF reporter 

assay and chondrogenic differentiation experiments, suggests that Dkk-1 has 

detrimental effects on chondrogenic differentiation of Dkk-1high CPC by directly 

inhibiting the transcriptional role of β-catenin. Interestingly, this present study also 

demonstrate heterogeneity in clonal cells lines from the same donor and their 

expression of Dkk-1.  

The Wnt pathway is emerging as a crucial pathway involved in the regulation and 

homeostasis of the synovial joint (Diarra et al., 2007). There is also emerging 
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literature, which illustrates that the Dickkopf family of Wnt inhibitors plays a key role 

in the pathogenesis of osteoarthritis. In addition, Dkk-1 was also proposed as a 

potential biomarker for the progression of osteoarthritis (Lane et al., 2007; Oh et al., 

2012a). As discussed in the introduction many signalling pathways have confirmed 

or proposed roles in the regulation and pathogenesis of osteoarthritis. Here we 

investigated the role of the Wnt pathway in detail with a particular emphasis on the 

role of the Wnt canonical inhibitor Dkk-1 using CPC as a model system. The overall 

purpose was to characterise CPC isolated from normal and OA donors and assess 

their chondrogenic differentiation potential.  
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CHAPTER 5: OSTEOCHONDRAL INTERFACE 
CHARACTERISATION OF CELLULAR INFILTRATION AND THE 
WNT ANTAGONIST DKK-1  
 

 

5.1 Introduction. 

As previously outlined, osteoarthritis (OA) is a chronic degenerative disease affecting 

synovial joints leading to articular cartilage destruction, accompanied by underlying 

bone remodelling. Cartilage is as an avascular tissue and therefore nutritional and 

oxygen exchange is provided by diffusion from the synovial joint to the upper parts 

of articular cartilage. For the deeper part of the articular cartilage, oxygen and 

nutrients supply is provided via the underlying subchondral bone (Buckwalter, 1999; 

Hunziker, 2002). Subchondral bone is at the interface between non-calcified 

cartilage and the trabecular bone of the skeletal system. It is separated from the 

articular cartilage by a thin basophilic acellular region known as the tidemark. The 

subchondral microenvironment is composed of a variety of cell types that influence 

the angiogenic response of endothelial cells in osteoarthritis. Subchondral bone 

hosts several cell types including bone cells (osteoblasts, osteoclasts and 

osteocytes), endothelial and mesenchymal progenitor cells. Features indicative of 

subchondral bone pathology in osteoarthritis include; tidemark duplication and 

cellular and vascular infiltration leading to cartilage angiogenesis (Suri and Walsh, 

2012; Yuan et al., 2014). 

Involvement of angiogenesis in tumour metastasis is a widely accepted concept in 

the field of cancer research. The role of angiogenesis in the pathogenesis of many 

diseases, including that of degenerative arthritis, has recently attracted the interest 
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of many researchers, as it is thought that the subchondral bone plays a key role in 

the development of osteoarthritis (Hillen and Griffioen, 2007).  

Angiogenesis is defined as the generation of new blood vessels from pre-existing 

ones. It is a vital process for organ formation during embryonic and postnatal 

development and depends on a complex network of activators and inhibitors (growth 

factors and morphogens) that are regulated in a temporal and spatial manner in 

order to facilitate vasculogenesis (Weis and Cheresh, 2011). In addition, 

development of new blood vessels continues during adult life to accommodate for 

physiological demands. This area of research has attracted significant attention in 

cancer studies as tumour metastasis is significantly influenced by blood vessel 

development (Bergers and Benjamin, 2003; Streit and Detmar, 2003). 

Of the observed changes that affect articular cartilage in osteoarthritis, it is thought 

that changes affecting the extracellular matrix structure of cartilage might be 

attributed to overall tissue weakness to invading cells from the underlying 

subchondral bone. Normal mature articular cartilage contain factors that are shown 

to be anti- angiogenic (thrombospondin-1) (Hsieh et al., 2010). Furthermore, the 

balance of cartilage matrix formation and breakdown in normal cartilage tissue is 

carefully regulated by the activity of metalloproteases (MMPs and ADAMTs) and their 

inhibitors (TIMPS) (Kim et al., 2011). During osteoarthritis, this balance is titled 

towards cartilage degradation therefore, indirectly might encourage tissue 

angiogenesis. This process is poorly understood and several regulatory pathways, 

thought to be implicated, such as Notch and the Wnt pathway, have been shown to 

play a role in activating in synovial joint tissues proliferation and angiogenesis. This 

alteration in tissue metabolism might, in part, be triggering angiogenesis as the 
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demand for higher oxygen and nutrient levels increase (Pfander et al., 2001; Walsh 

et al., 2007; Weng et al., 2012).  

Little is known about the factors promoting cellular infiltration and angiogenesis 

during late-stage osteoarthritis and in particular whether the Wnt signalling pathway 

is involved in such processes (Reis et al., 2012; Saito et al., 2012; Weng et al., 

2012). In vivo studies using transgenic mice have been conducted to further 

elucidate the role of Dkk-1 in growth-plate cartilage angiogenesis. Conditional over-

expression of Dkk-1 in endothelial cells of developing synovial joints in mice showed 

defects in endochondral ossification and growth plate size (Oh et al., 2013). This 

finding was due to failure of endothelial cell to maintain their phenotype, which has 

resulted in ultimate aberrant endochondral process.  Another study by Reis and 

colleagues have shown that aspects of the Wnt/ β-catenin pathway were implicated 

in glioma tumour metastasis (Reis et al., 2012). In their study, Dkk-1 over-

expression in brain-derived endothelial cells had a detrimental effect on the integrity 

of the blood brain barrier leading to glioma cell metastatic behaviour by activating 

platelet derived growth factor (PDGF). Dkk-1 was noted to have a pro-angiogenic 

effect on tumour progression whereas β-catenin activation, by Wnt-1, showed a 

rescuing role leading to blood vessel regression.  

In the previous chapter, Dkk-1 staining was observed to be along the cellular 

infiltrate from the underlying subchondral bone. Therefore, the aim of this chapter is 

to initially characterise the phenotype of invading cells by examining osteochondral 

tissues isolated from normal and osteoarthritic donors. In addition, the role Dkk-1 

plays in subchondral cellular infiltrate would be further studied using a well-known in 
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vitro endothelial cell model system to decipher if Dkk-1 exhibit pro-angiogenic and 

migratory effects on endothelial cells.  

5.2 Experimental methods. 

Osteochondral tissues were isolated from normal donors (n=6) and osteoarthritic 

donors (n=10) and were graded using the modified Mankin score system (Appendix 

1). To assess the phenotype of invading cellular structures at the osteochondral 

interface, sequential sections were examined. Sections were examined for the 

presence of endothelial cells using CD-34 immunostaining (section 2.8.2). In 

addition, the presence of migratory mesenchymal stem cells were examining using 

immunofluorescence confocal microscopy using the putative stem cells markers CD-

105 (Endoglin) and CD-166 (ALCAM). Furthermore, mature-osteoclasts are known to 

stain positive for TRAP. Therefore, for the characterisation of osteoclast infiltrate into 

the articular cartilage, was assessed using the Acid Phosphatase, Leukocyte (TRAP) 

Kit purchased from Sigma and used as per manufacturers’ protocol (section 2.7.3). 

Moreover, the number of CD-34 positive blood vessels invading the tidemark were 

manually quantified and the percentage of microvessel density measurement were 

recorded. Finally, the associative expression of Dkk-1 and endothelial cells markers 

were further examined using immunohistochemical labelled consecutive sections of 

osteoarthritic osteochondral tissues. To study the functional role of several canonical 

Wnt pathway modulators on endothelial cells, a well characterised and robust human 

endothelial cell line (HECV) was utilised to perform a series of assays assessing the 

effect of the canonical Wnt factors on endothelial cells the canonical Wnt pathway 

response marked by assessing β-catenin and plakoglobin (γ-catenin) levels. In 
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addition, endothelial cell proliferation, migration and invasion and angiogenesis were 

also examined in cells exposed to canonical Wnt factors. 

5.3 Results: 

5.3.1. Histological staining of osteochondral plugs. 

Osteochondral plugs were dissected from normal and osteoarthritic donors and 

sectioned as described in Chapter 2. Histological staining was carried out to study 

morphological and topographical features associated with OA osteochondral tissue 

from a range of patients. Figure 5.1 shows the Safranin O staining of tissue sections 

taken from one normal and five OA patients. Changes affecting the articular cartilage 

were observed including loss of cartilage proteoglycan. Patients coded OA-1 and OA-

6 showed proteoglycan loss indicative of the early stages of OA with a loss of 

Safranin O from the superficial zone of cartilage along with roughening and slight 

irregularity at the surface of the cartilage (Figure 5.1.B and C, respectively). In 

addition, patient coded OA-8 (Figure 5.1 D) showed a marked reduction of Safranin-

O staining in the superficial and mid zone of the cartilage and, damage to the 

superficial zone was found to increase from surface irregularity to mild fibrillation 

(Figure 5.1.D) indicating a more advanced stage of disease. Furthermore, as OA 

disease progression was seen in, subchondral changes with bone cysts (arrow) and 

cellular infiltration from the subchondral bone clearly noted in figure 5.1.D.  

Patients coded OA-10 and OA-2 (Figure 5.1F and E, respectively) showed advanced 

stages of OA, the cartilage superficial zone was completely lost and large fissures 

extending to the middle zone became frequent histological observations (Figure 

5.1.E and F). Chondrocyte morphology was also altered resulting in increased 
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cellular proliferation and chondrocytes clustering. Chondrocytes clusters extended 

from the deep regions of the cartilage and cellular infiltration was clearly apparent 

(Figure 5.1.E and F). The cellular composition of the articular cartilage included 

hyper-proliferated cells that did not have the classical chondrocyte morphology 

(Figure 5.1.F). Moreover, bone and vascular tissues were found to have invaded the 

cartilage and were in close proximity to deep zone chondrocytes (Figure 5.2.E-F). In 

addition, significant proteoglycan loss was observed in the mid zone and extended 

into the deep zone of the tissue.  

An interesting phenomenon observed was the presence of numerous atypical cellular 

infiltrations into the articular cartilage from underlying subchondral bone. These cells 

were distinct from native chondrocytes. Infiltrated cells appeared to be 

heterogeneous in nature, consisting of bone-marrow stromal cells, bone cells and 

endothelial cells. Figure 5.1.E-F shows an example of many groups of large, clear, 

stromal cells in small clusters and are visible by histological staining. In addition, 

tidemark duplication was clearly evident in some regions.  
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Figure 5.1: Histochemical staining of normal and osteoarthritic 
osteochondral tissues.  
Representative images of Safranin-O and Fast Green stained osteochondral sections 
from normal (A) and osteoarthritic donors (B-F). Scale bar= 500µm. 
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5.3.2. Immunohistochemical labelling of Mesenchymal stem cell makers. 

Figure 5.2 shows representative confocal images of sections taken from 

osteochondral plugs stained for the MSC marker CD-105 (Endoglin) from normal and 

late-stage OA patient donors. Staining for CD-105 was not observed to be present in 

the superficial zone (Figure 5.2.A1) of normal donors but comparatively the middle 

zone of the tissue demonstrated positive immunolocalisation of CD-105 at the cell 

surface of chondrocytes with occasional labelling seen in cluster of chondrocytes 

arranged in columns in the deep zone of the tissue (Figure 5.2.A2). The staining 

patterns seen in the deep zone was found to be similar to the middle zone mainly at 

the cell surface of the chondrocytes with additional cytoplasmic staining (Figure 

5.2.A3).  

However sections stained from patients with late-stage osteoarthritis showed altered 

immunolocalisation patterns of the CD-105 marker which was found throughout the 

tissue (Figure 5.2 B1). In the superficial zone, some immunolabelling was noted 

especially around the first three layers of superficial zone chondrocytes (Figure 

5.2.B1 and higher magnification in Figure 5.2.B2). However, expression of CD-105 in 

the middle zone was absent (Figure 5.2.B2). CD-105 expression in the deep zone 

chondrocytes was present in two patterns. Chondrocytes in deep zones were positive 

for CD-105 (Figure 5.2.B) and in addition, an intense region of CD-105 labelling was 

evident particularly around the subchondral cellular infiltrate (Figure 5.2.B4). 

Figure 5.2 shows representative confocal images of sections taken from 

osteochondral plugs stained for the MSC marker CD-166 from normal and late-stage 

OA patient donors. Unlike the immunolabelling pattern of CD-105, the expression 
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patterns of the mesenchymal stem cell marker CD-166 in normal cartilage, was more 

wide-spread and found predominantly in the middle zone with less staining in the 

superficial and deep zones of the articular cartilage (Figure 5.3 A1). The expression 

pattern of CD-166 was observed to be mainly at the cell surface. However, in 

osteoarthritic tissue, this pattern changed with a generalised reduction in CD-166 

immunolabelling throughout the articular cartilage (Figure 5.3 B1). One exception 

was seen in superficial zone where CD-166 immunostaining, was intense in 

superficial zone regions where evidence of fibrillation was noted (Figure 5.3 B2). 

Similar to CD-105 immunolabelling in OA tissues, middle zone chondrocytes 

appeared to have reduced labelling of CD-166 (Figure 5.3. B3). However, CD-166 

was intensely expression around cellular infiltrates from the subchondral bone 

(Figure 5.3 B4).  
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Figure 5.2: Confocal images of immunohistochemical analysis of the CD-
105 protein in osteochondral tissues. 
Confocal images of CD-105 protein in normal (A) and osteoarthritic osteochondral 
tissues (B) from the full-depth of articular cartilage (A1, B1), superficial zone (B2), 
mid zone (A2, B3) and deep zone of articular cartilage (A3, B4). In addition, cellular 
infiltration from the underlying subchondral bone positively labelled for CD-105 
protein (blue) are evident in (B1) image (white arrow). CD-105 was visualised using 
Goat anti-mouse Alexa Fluor 633(blue) and nuclei staining were attained using 
propidium iodide (red). Scale bar=75µm. 
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Figure 5.3: Confocal images of immunohistochemical analysis of the CD-
166 protein in osteochondral tissues.  
Immuno-labelling of CD-166 in normal (A) and osteoarthritic osteochondral tissues 
(B) from the superficial zone of articular cartilage (A2, B2), mid zone (A3, B3) and 
deep zone of articular cartilage (A4, B4). (B4) image shows positive staining in 
cellular infiltrates from the underlying subchondral bone for CD-166 protein (blue). 
CD-166 was visualised using Goat anti-mouse Alexa Fluor 633(blue) and nuclei 
staining were attained using propidium iodide shown as red. Scale bar=75µm. 
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5.3.3. TRAP staining of osteochondral plugs: Involvement of osteoclast 

cells in cartilage invasion. 

Figure 5.4 shows representational TRAP staining of sections taken from normal and 

OA donors which was carried out in order to examine if the cellular infiltrate from 

the underlying subchondral bone were associated with the recruitment of osteoclast 

cells. The distribution of tartrate resistant acid phosphatase (TRAP) positive cells in 

osteochondral tissues from normal (n=6) and osteoarthritic (n=10) osteochondral 

tissues were investigated using the Acid Phosphatase, Leukocyte (TRAP) Kit as per 

manufacturer’s protocol. In osteochondral tissues isolated from normal donors 

(Figure 5.4. A-B, representative section), there was no evidence of osteoclast 

invasion to the articular cartilage show by a lack of cells staining positive for TRAP. 

However, in the osteoarthritic samples, a clear trend was observed showing an 

apparent increase in the number of TRAP positive multinucleated osteoclasts found 

in the calcified regions of the subchondral bone (Figure 5.4.C&D, representative 

sections). In some regions, a tip and stalk dynamic was noted where in some 

samples the osteoclasts were positioned at the tip (Figure 5.4.E). At other locations, 

the endothelial cells were leading the invasion and the osteoclast were located at the 

stalk (Figure 5.4.F). However, in certain regions of the osteochondral interface, there 

was no evidence of osteoclast association with vascular and stromal cell invasion 

(Figure 5.4.G-I).  
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Figure 5.4: TRAP staining assay of osteochondral tissues. 
Tartrate-resistant acid phosphatase (TRAP) staining of sections taken from normal 
and osteoarthritic osteochondral plugs. (A-B) Show absence of TRAP positive cells in 
normal tissues while (C-E) show evidence of TRAP positive (arrow; purple) in either 
the subchondral bone (C-D) or breaching the tidemark into non-calcified articular 
cartilage (E-F). Also, evidence are TRAP negative cellular infiltrates seen in several 
tissues (G-I). Scale bar=200µm and inset is 100µm. 

5.3.4. Microvessel density measurements. 

Immunohistochemical labelling of osteochondral plugs taken from OA patient donors 

with CD-34 antibody, an endothelial cell marker, showed positive staining around 

vessel-shaped infiltrating cells (Figure 5.5.G-I). From immunohistochemical studies, 

a positive trend in CD-34 labelled blood vessels and osteoarthritic disease severity 

was observed. This is marked by clear loss of articular cartilage and increased bone 



 

166 

sclerosis (Figure 5.5.A-C). The number of blood vessels increased with increasing 

severity of cartilage loss (Figure 5.5.A-C).  

In tissue with increased blood vessel invasion, Dkk-1 staining appeared to be 

surrounding the infiltrated blood vessels (Figure 5.5.D, F). In addition, 

immunolocalisation of Dkk-1 was also found in chondrocyte clusters present in the 

fibrillated superficial zone of articular cartilage (Figure 5.5.E). Microvessel density 

measurement of CD-34 positive cells in normal and OA osteochondral tissues 

showed that the mean CD-34 cell number positive in OA and normal were (12.82 

±1.7 and 4.3±0.7, p<0.05 respectively, Figure 5.6.A-C) 

 

 



 

167 

 

Figure 5.5: Representative immunohistochemical images of sections taken 
from osteochondral plugs from different stages of OA.  
Safranin-O and Fast green staining (A-C), Dkk-1 (D-F), CD-34 (G-I) in osteoarthritic 
osteochondral tissues. Chondrocytes in OA cartilages displayed intense expressions 
of Dkk-1 around blood vessels infiltrating from the subchondral bone (dark arrows; 
D&F) and also in the superficial zone chondrocytes (dark arrows; E). The pattern of 
Dkk-1 staining around blood vessels appeared to be similar to CD-34 staining in 
consecutive sections (D-G and F-I). Scale bar=200µm. 
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Figure 5.6: Representative CD-34 immunohistochemical staining of 
sections taken from normal and OA osteochondral tissues. 
Images A&B show CD-34 immunostaining of vascular infiltrates at the osteochondral 
interface from normal (A) where there are no vascular breaching of the non-calcified 
articular cartilage and OA (arrow; B) donors showing CD-34 positive endothelial cells 
breaching non-calcified cartilage. Number of blood vessels were quantified (C) (n=6 
normal, n=10 OA, p<0.05). Data are presented as the mean of three slides per 
patient stained for CD-34. 
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5.3.4 Characterisation of endothelial cells. 

To further understand the role that Dkk-1 plays in endothelial cell angiogenesis and 

invasion of articular cartilage in late-stage osteoarthritis (Figure 5.7. A-B), we used a 

well-known human endothelial cell line (HECV) that is known to retain their primary 

cell characteristics while being able to be cultured in vitro for up to 15 passages. 

 Flow cytometry was used to characterise the expression profile of CD-31 (Figure 

5.7.C), CD-34 (Figure 5.7.D) and CD-144 (Figure 5.7.E) as endothelial cell markers 

while CD-11b was used as a negative marker (Figure 5.7.F). Endothelial cells showed 

positive expression of CD-31 and CD-144 in over 95% of the gated cells using FACS, 

with a unimodal expression and 89% for CD-34 expression. In addition, expression 

of CD-11b, a negative marker for endothelial cells, was around 2%.  
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5.3.4.1. Dkk-1 inhibits the nuclear translocation of β-catenin in cultured 

endothelial cells. 

The addition of several canonical Wnt pathway modulators on endothelial cells in 

culture was examined to see if they had an effect on the cellular localisation of β-

catenin (Figure 5.8). Addition of recombinant Dkk-1 (100ng) resulted in reduced β-

catenin nuclear expression when compared to control (Figure 5.8). However, 

addition of Dkk-2 at 100 ng/mL showed no obvious reduction in β-catenin nuclear 

expression (Figure 5.8). Similarly, addition of Wnt-3a (100  ng/mL) or lithium 

chloride, an inhibitor of GSK-3β, at 10 mM showed increased positive staining of β-

catenin (Figure 5.8). Moreover, addition of a small molecule inhibitor of Dkk-1, WAY-

262611 (1µM) in addition to Dkk-1 (100 ng/mL), also increased the nuclear β-

catenin translocation in comparison to Dkk-1 treated cells (Figure 5.8).  

Having established that endothelial cells respond to modulators of the canonical Wnt 

pathway, as characterised by β-catenin cellular localisation, next western blot 

analysis was used to quantify the protein. Consistent with confocal results, western 

blot analysis showed a significant down regulation of total β-catenin levels in 

response to exogenous Dkk-1 treatment (Figure 5.9), while Dkk-2, had no obvious 

effects on total β-catenin levels when compared to untreated (control) cells (Figure 

5.9). Interestingly, addition of exogenous Wnt-3a, a positive canonical Wnt activator, 

resulted in increased total β-catenin levels (Figure 5.9). In addition, both lithium 

chloride (10 mM) and the addition of, a small molecule inhibitor of Dkk-1, WAY-

262611 (1µM), also increased the total β-catenin levels (Figure 5.9). 
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Figure 5. 8: Assessment of β-catenin nuclear 
localisation in response to exogenous 
treatment of several canonical Wnt pathway 
modulators. 

β-catenin immunofluorescence confocal imaging of 
endothelial cells with different treatments of 
exogenous Wnt proteins modulators. Nuclear 
localisation of β-catenin was examined in EC 

treated with basal media ± Dkk-1, Dkk-2, Wnt-3a 
treated, and LiCl (10mM), WAY inihibitor (1µM) 

treatment. 
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Figure 5.9: β-catenin protein analysis in response to exogenous treatment 
of several canonical Wnt pathway modulators. 
Endothelial cells treated with basal media +/- recombinant Dkk-1, Dkk-2 and Wnt-3a 
proteins all at (100 ng/mL) or LiCl (10 mM) and WAY-262611 (1µM) for 96hrs before 
total protein (20 μg/lane) was extracted and analysing using SDS-PAGE. Total Erk 
and β-actin were used as loading control. Experiments were conducted in triplicates 
per group. 
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5.3.4.2. Dkk-1 has an inhibitory effect on canonical β-catenin but does not 

alter its other catenin members.  

As mentioned in chapter one, β-catenin has a dual role in the cell, acting as a 

transcriptional factor when involved in the canonical Wnt pathway. In addition, β-

catenin is also involved in the cell cytoskeleton as it is a component of the adherence 

junctions linking isoforms of cadherin to the actin molecules. This role is also 

mediated in relation to other members of the catenin family including γ-catenin 

(Plakoglobin). This is important as alteration in a cells cytoskeleton can affect cell 

motility. Western blots were used to assess if Dkk-1 exerts any effect on the 

cytoskeletal role of catenin family members using γ-catenin. Plakoglobin (γ-catenin) 

only directly binds to β-catenin, therefore any alteration in β-catenin cytoskeletal 

levels would ultimately alter Plakoglobin (γ-catenin) levels. Western blot analysis 

showed that exogenous Dkk-1 treatment did not any effect the total levels of 

cytoskeletal Plakoglobin (γ-catenin) (Figure 5.10). 

5.3.5 Dkk proteins stimulate endothelial tubule formation. 

One of the most specific tests for angiogenesis is the ability of endothelial cells to 

form three-dimensional tubules. The effects of several canonical Wnt proteins on 

endothelial tubule formation (Figure 5.11) was examined. VEGF-C recombinant 

protein was used as a positive pro-angiogenic factor where tubule formation was 

assessed by culturing endothelial cells on Matrigel™ gel before adding recombinant 

Dkk-1 and Dkk-2 at 100  ng/mL or control medium alone (DMEM+PS+0.1% BSA). 

Dkk-1 and Dkk-2 showed positive tubule formation similar to VEGF treatment (Figure 
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5.11A). There was no significant difference at 24 hours between Dkk-1, Dkk-2 or 

VEGF, suggesting that Dickkopf proteins (Dkk-1 and Dkk-2) have positive angiogenic 

properties on endothelial cells in an in vitro setting while control did not exhibit any 

noticeable angiogenic response (Figure 5.11D). Examining the total branching 

points, number of rings and total tubes formed showed a statistically significant 

increase in all of Dkk-1, Dkk-2 and VEGF treated endothelial cells when compared to 

control (p<0.05) 

 

 
Figure 5.10: Plakoglobin (γ-catenin) protein analysis in response to 
exogenous treatment of several canonical Wnt pathway modulators. 
Endothelial cells treated with basal media +/- recombinant Dkk-1 and Dkk-2 proteins 
all at (100 ng/mL) for 96hrs before total protein (20 μg/lane) was extracted and 
analysing using SDS-PAGE. Total Erk was used as loading control. Experiments were 
conducted in triplicates per group.  
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Figure 5.11: Tubule formation assay of endothelial control cells and cells 
treated with VEGF, Dkk-1 and Dkk-2 recombinant protein.  
Representative images of tubule formation assay are shown (A-D). The ability of 
human endothelial cells to form capillary-like structures was assessed using 24-well 
plates coated with Matrigel™ treated with media alone- Control (DMEM+0.1% BSA; 
D) and media with Dkk-1(100 ng/mL; B), Dkk-2(100 ng/mL; C ) or VEGF (10 ng/mL) 
as positive angiogenic control (A). Cells were plated in Matrigel™ and were 
incubated for 24 hrs and images were taken using an inverted light microscope (n=6 
per group). E) Histogram showing mean total branching point, number of rings and 
total tubes per group. Data are presented as mean ± SEM (n=6 per group. 1-Way 
ANOVA, *p<0.05).  

 

 

5.3.6 Dkk-1 encourages endothelial cell migration and wound closure. 

Endothelial cell migration has an important role in the process of angiogenesis and 

neovascularisation. The effect of modulators of the canonical Wnt pathway was 

assessed in the wound closure assay. Figure 5.12 shows that Dkk-1 treated 

endothelial cells completely resulted in wound closure after 24 hrs while control cells 

were unable to close the generated wound in the same setting and this finding was 

statistically significant (Figure 5.12). Other factors including Dkk-2, Wnt-3a and LiCl 

all showed evidence of wound closure although statistically, this was not significantly 

different from control (Figure 5.12.B, p<0.05) This finding was further analysed 

using ANOVA which has shown that Dkk-1 treated cells had a higher migration rate 
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which was statistical significant (P<0.05) but among other treatment groups, there 

were no statistical significant difference with control (P>0.05). 

 

 

 
Figure 5.12: Migratory capacities of endothelial cells after stimulation with 
several canonical Wnt modulators as measured by the scratch wound 
closure assay. 
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Representative photographs of endothelial wound closure after 24 hrs incubation 
with control media (DMEM+PS+0.1% BSA) ± Dkk-1, Dkk-2 and Wnt-3a all at (100 
ng/mL) and LiCl (10 mM). B) Histogram showing percentage wound closure of 
different treatment groups where Dkk-1 treatment showed strong wound closure 
compared to control. Data are presented as % Control ± SEM (n=6 per group. 2-
Way ANOVA, *p<0.05).  
 
 
The positive cell motility role of Dkk-1 was further analysed using a Transwell-

migration assay. The Transwell migration assay examines the migratory capacity of 

cells under the chemotactic influence of test sample or paracrine factor in a 

directional setting. Transwell migration assays identified that endothelial cell 

migration in Dkk-1 treated groups was greater than that of the control group (Figure 

5.13.A). A 1.8-fold increase was observed in the number of migrating cells in the 

experimental group compared with the control group (P<0.05; figure 5.11B). 

Inhibiting Dkk-1 using the small molecule compound (WAY-262611) at 1µM resulted 

in reduction of endothelial cell migration to levels found similar to that of control 

groups (Figure 5.13.A-B). In addition statistical analysis using two-way ANOVA of the 

number of migrated cells in the three groups have shown that there was a 

significant difference between Dkk-1 treated and control (P<0.05) and between Dkk-

1 and WAY-262611 inhibited cells (P<0.05) while there were no significant 

differences between control and Dkk-1 inhibition (WAY-262611)(P>0.05). 
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Figure 5.13: Transwell migration assay. 
Figure A) Representative images of endothelial cells treated with Dkk-1 (100 ng/mL), 
WAY-262611, small molecule inhibitor of Dkk-1, at 1µM and control 
(DMEM+PS+0.1% BSA). Transwell cell migration assay was performed for 24 hrs 
followed by fixing migrated cells and staining with Gimesa staining. B) Number of 
migrated cells as per treatment groups were counted using an inverted microscope 
(n = 3 per group, data are presented as mean ± SEM, NS= not significant, 
***P<0.01; 2-way ANOVA). 
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5.3.7 Cell cycle analysis of endothelial cells treated with Wnt proteins.  

The cellular proliferation effect of canonical Wnt pathway modulators on endothelial 

cells was studied and determined by measuring the DNA content using the 

propidium iodide flow cytometry assay. Dkk-1 and Dkk-2 treated cells exhibited a 

shifting pattern of cells from a pre-mitotic phase (G0/G1) into more cells present in 

mitosis stage (G2/M) (Figure 5.14 and Table 5.1). Exposure of human endothelial 

cell lines to exogenous Dkk-1 and Dkk-2 (100 ng/mL) resulted in a significant 

decrease of cells in G0/G1 phase (73 ± 0.5 and 70.35 ± 0.22 respectively), and no 

alteration of cells in S phase, but doubling of cells in G2/M (9.9 ± 0.06 and 11.15 ± 

0.58 respectively) compared with control (Table 5.1).  
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Figure 5. 14: Effect of different modulators of the canonical Wnt pathway 
on cell cycle profile of an endothelial cell line. 
Endothelial cells were serum starved overnight before treating with basal media 
(control) +/- different Wnt modulators (Dkk-1, Dkk-2 and Wnt-3a, LiCl & WAY-
262611) for 48hrs. Cell cycle profiles were determined by labelling cells with 
propidium iodide and data were attained using flow cytometry (n=3 per group).  
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Table 5. 1: Distribution of endothelial cells between cell cycle phases in 
control and treated groups.  

Endothelial cells were incubated with basal media (control) +/- different Wnt 

modulators (Dkk-1, Dkk-2 and Wnt-3a, LiCl & WAY-262611) for 48hrs. Analysis of 

cell cycle distribution was performed using ethanol-fixed, RNase-treated and PI-

stained cells by flow cytometry. The percentage of cells in G0/G1, S and G2/M cell 

cycle phases were analysed with the FACS Canto flow-cytometer. Data are presented 

as mean ±SEM. (n=3 per group). ANOVA between endothelial cells of control and 

treated for each cell cycle phase are marked with *p<0.05. The experiment was 

repeated 3 times. 

 

Treatment G0/G1 phase (%)  S phase (%)  G2/M phase (%) 

control 80.51 ± 0.36 11.42 ± 0.11 5.3 ± 0.24 

Dkk-1 73.76 ±0.58* 12.03 ± 0.64 10.01± 0.07* 

Dkk2 70.35 ±0.22* 13.94 ± 0.27 11.1± 0.58* 

Wnt3a 75.63 ±0.46* 12.51 ±0.02 8.90± 0.35* 

LiCl 80.70 ±0.32 8.86 ± 0.19* 7.13± 0.19 

WAY 74.68 ±0.43* 12.7 ± 0.09 8.02± 0.13* 
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5.4 Discussion. 

The purpose of this study was to examine cellular changes occurring in the deeper 

zones of articular cartilage and particularly at the osteochondral interface. With this 

in mind, we used osteochondral plugs isolated from healthy tissues donated post-

mortem and osteoarthritic tissues from patients undergoing total knee replacement. 

The first part of this study characterised infiltrating cellular phenotypes using 

markers for endothelial and mesenchymal stromal cells. In addition, the involvement 

of bone cells in particular osteoclast was also investigated using the TRAP assay.  

This work suggests that changes affecting the subchondral bone marked by 

alteration in proteoglycan composition, loss of tidemark integrity and invasion of 

blood vessels from the subchondral bone is apparent even in early stages of the 

disease where there is little damage affecting the superficial zone of the articular 

cartilage. This observation needs to be further supported by increasing the sample 

number at each osteoarthritic histological stage before a definitive hypothesis can be 

deduced. However, this finding is interesting as it is increasingly becoming more 

evident than in osteoarthritis, changes in the underlying bone including 

microfracture which are thought to occur due to abnormal joint loading, might 

supersede that of articular cartilage (Radin et al. 1970; Radin and Rose 1986; 

Quasnichka et al. 2006; Zamli et al. 2014).  

Vascularisation of articular cartilage is thought to be through a series of blood vessel 

migration and channel extension from subchondral bone into the non-calcified layers 

of articular cartilage. Under a normal situation articular cartilage is hostile to vascular 

invasion, in part due to its matrix composition (Walsh et al., 2007; Hsieh et al., 
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2010). Beyond the contributions of specific cell type to blood vessels angiogenesis, 

loss of cartilage matrix in particular loss of cartilage proteoglycans during 

osteoarthritis is thought to be implicated in cartilage’s increased susceptibility to 

attack from the subchondral bone (Hsieh et al., 2010; Bara et al., 2012). It can also 

influence vascular recruitment at early stages of OA and to drive disease progression 

at later stages. Indeed, in this report there was a positive association of the loss of 

proteoglycan content in articular cartilage investigated by Safranin-O staining seen in 

tissue sections and the number of cellular infiltrates from the subchondral bone 

(Bara et al., 2012).  

Migratory subchondral cells are thought to exploit their environment by releasing 

cytokines and growth factors to activate normal, quiescent cells around them and 

initiate a cascade of events that quickly becomes dysregulated.  

Immunohistochemical studies of osteochondral tissue from OA donors suggest the 

multicellular origin of these migratory subchondral cells marked by CD-34 positive 

invading endothelial cell and CD-105 and CD-166 positive mesenchymal stem cell 

infiltration. The precise steps involved in the angiogenesis of articular cartilage is not 

clearly understood, however, results in this study also suggest that the expression of 

putative MSCs markers, CD-105 and CD-166 recognised is altered in osteoarthritis as 

there was noted to be loss of expression in mature human articular cartilage of 

advanced stage of OA and it’s re-expression around invading mesenchymal stem 

cells from underlying bone (Alsalameh et al.; 2004, Koelling et al., 2009; Pretzel et 

al., 2011). It has been postulated that the association of vascular endothelial cells 

with bone-marrow MSCs supports blood vessel migration by secreting pro-
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angiogenic and pro-migratory proteins all enhancing further vascular invasion of 

articular cartilage (Walsh et al., 2007).  

The concept of bone-marrow mesenchymal stem cell migration into articular 

cartilage in late-stage osteoarthritic has been described by Koelling et al. (2009). It 

was postulated that MSCs migration into articular cartilage might be in response to 

stimulatory factors by articular cartilage encouraging cellular infiltration from 

underlying subchondral bone. This suggests that the joint might be attempting to 

undergo some form of reparative process (Koelling et al., 2009). Interestingly, a 

differential expression of CD-166 was found between normal and osteoarthritic 

osteochondral tissues. There was an increase in CD-105 and CD-166 around 

fibrillated superficial zone chondrocytes and at the osteochondral interface. 

However, the success of migratory MSCs in replacing damaged chondrocytes is 

unclear.  

By examining the association of bone cells particularly osteoclast with endothelial 

cells at the osteochondral interface, the results showed that osteoclasts play a role in 

altering articular cartilage integrity. In normal osteochondral tissues, there was no 

evidence of TRAP positive cells approaching the tidemark of the osteochondral 

interface. TRAP positive cells appeared to be mainly found in osteoarthritic tissues. 

Furthermore, there seemed to be a strong association between endothelial cells, 

bone marrow mesenchymal stem cells and osteoclast cells in an interesting manner 

where endothelial cells act like a ‘Trojan horse’ by invading articular cartilage 

eventually leading to cartilage loss (Bruni-Cardoso et al., 2010). These findings helps 

one to understand the complex and intricate relationship between different cell types 
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found in the subchondral bone in osteoarthritis (Cackowski et al., 2010; Stacker et 

al., 2014) 

Findings in OA osteochondral tissue for Dkk-1 and CD-34 immuno-labelling have 

suggested an increased expression around blood vessels of late-stage osteoarthritis. 

Unlike normal angiogenesis of skeletal tissues where blood vessel formation ceases 

to occur once pro-angiogenic stimuli is discontinued, in osteoarthritis it is thought 

that driving forces that stimulate angiogenesis seem not to stop as newly formed 

blood vessels are thought to be constantly exposed to stimulatory pro-angiogenic 

signals ultimately leading to cartilage disruption (Bonnet and Walsh, 2005; Walsh et 

al., 2007; Ashraf et al., 2011).  

The mechanisms by which endothelial cells are activated in osteoarthritis is poorly 

understood and was an aim of this chapter. In this study, the focus was on the role 

of the canonical Wnt signalling pathway, and in particular, the role Dkk-1 plays in 

angiogenesis and migration of endothelial cells. In vitro angiogenesis assay studying 

the biological role of Dkk-1 as well as the role Dkk-2 have shown that both Dickkopf 

proteins to be pro-angiogenic. This finding is in agreement with recently published 

work by Smajda et al. (2010) and Weng et al. (2012) both showing that Dkk-1 had a 

pro-angiogenic role in both endothelial progenitor cells and umbilical cord endothelial 

cells.  

In addition, the pro-angiogenic role of Dkk-2 seen in this study is also supported by 

a study by Min et al. (2011) using both in vitro Matrigel plug assay as well as in vivo 

corneal angiogenesis assay. Interestingly, both this study and another study (Oh et 

al., 2010b) reported conflicting findings to ours and others (Weng et al., 2012, 
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Smadja et al., 2010; Reis et al., 2012) where it was shown that Dkk-1 had an 

opposite effect of being anti-angiogenic.  

The dichotomous role of Dkk-1 in modulating angiogenesis is intriguing. By looking 

at the study of Min et al. (2010), addition of Dkk-1 recombinant proteins was noted 

to be higher than that of ours and indeed Weng et al. (2012) and Smajda et al. 

(2010). One possible explanation to this discrepancy in the angiogenic role of Dkk-1 

could be attributed to whether the levels of Dkk-1 are high enough to inhibit total β-

catenin that is crucial for cell viability. Whereas some studies show that Dkk-1 

expression is elevated in osteoarthritis has led to tissue destruction (Diarra et al., 

2007; Weng et al., 2010), others show that it has a protective role against 

advancement of osteoarthritis (Lane et al., 2007, Oh et al., 2012a). In addition, its 

angiogenic role is also debated in recent studies whereas some studies document 

Dkk-1 is an anti-angiogenic factor (Oh et al., 2012b; Min et al., 2011) others show 

that Dkk-1 plays a crucial pro-angiogenic role. This demonstrate that the role of Dkk-

1 might be highly contextual and more studies are required before the definitive role 

of Dkk-1 can be decided. However, this PhD study has shown that Dkk-1 might play 

a detrimental role in osteoarthritis by modulating angiogenesis in articular cartilage. 

In addition, Dkk-1 in part, also plays a key role in endothelial cells migration. 

However, the process at which Dkk-1 promotes endothelial cell migration is not fully 

understood and would be the aim of the next chapter.  

In addition, Dkk-1 also resulted in promoting endothelial cells to undergo 

proliferation by increasing cells entry into mitosis and G2 phase of cell cycle. 

Endothelial cell proliferation and migration is essential for successful angiogenesis 

and inhibition of Dkk-1 using the small molecule (WAY-262611) resulted in the 
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reduction of cell migration. Cell migration is principally governed by a chemo-

attractant encouraging a cells movement in a defined gradient (Raggatt et al., 

2006). However, despite this modest shifting in cell cycle state of endothelial cells 

exposed to exogenous Dkk-1, there were no discernible differences in the 

proliferative state of Dkk-1 on endothelial cells when compared to control which 

suggest that cell proliferation is not the main cause of the enhanced angiogenesis 

and migration of Dkk-1 treated endothelial cells.  

In summary, this chapter suggest that the expression of Dkk-1 protein is enhanced 

around subchondral blood vessels invading articular cartilage of osteoarthritic 

osteochondral tissues. In addition, vascular channels extending from the 

subchondral bone were often associated with multicellular infiltrates of MSCs and 

bone osteoclast cells. By studying the role Dkk-1 plays in endothelial cells using a 

series of in vitro assays, it was clear that Dkk-1 had a pro-angiogenic and pro-

migratory role in endothelial cells. Whether this conclusion can be considered to be 

the case in osteoarthritis is to be seen. However, this finding could provide an initial 

understanding of possible mechanisms involving the Wnt pathway in osteoarthritic 

angiogenesis. Understanding these alterations at the osteochondral junction and 

regulating pathways implicated in their initial occurrence will lead to a greater 

knowledge of the pathophysiology of osteoarthritis.  
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CHAPTER 6: AN IN VITRO MODEL TO STUDY THE INTERACTION 
OF CHONDROCYTES AND ENDOTHELIAL CELLS. 
 

6.1 Introduction. 

The synovial joint is composed of a variety of cell types and tissues. Some have 

direct contact with each other, such as the calcified cartilage and subchondral bone 

and other areas have indirect contact such as the articular cartilage and synovial 

membrane. Due to this alignment, changes which affect one location would 

inevitably have an influence on the synovial joint as a whole. 

Classical features of OA are the presence of foreign cells in the articular cartilage 

that include blood vessels and stromal cells. This results in the disruption of the 

homogenous cellular structure found mainly in articular cartilage. Little is known 

about what drives subchondral cellular and specifically endothelial cells to migrate 

towards articular cartilage. It is postulated that pathological changes that occur at 

the superficial zone might encourage these cellular infiltrations by exposing the 

underlying subchondral cells to migratory factors found in the synovial joint space. 

During osteoarthritis, the superficial region of articular cartilage is thought to be 

exposed to excessive biomechanical factors leading to surface zone fibrillation. In 

addition, alteration to biomechanical properties of injured tissue results in the 

development of longitudinal fissures. These fissures extend from the surface zone to 

the underlying subchondral bone. Its development leads to the exposure of the 

subchondral bone to cytokines and growth factors that are normally found in the 

synovial space. This might encourage cellular proliferation and migration from 

subchondral bone. It is therefore reasonable to hypothesise that alterations in the 
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synovial joint micro environment stimulates subchondral cellular migration including 

vascular and endothelial progenitor cells.  

A major difficulty in understanding the pathological changes at the synovial joint is 

the lack of earlier warning signs from the articular cartilage due to its avascular 

properties. Therefore, for the vast majority of cases diagnosed with osteoarthritis, 

diagnosis is usually at the late-stage where the underlying subchondral bone is 

affected.  

It is not clear what stimulates endothelial cells to migrate towards articular cartilage. 

Under normal physiological circumstances, endothelial cells appear to be quiescent 

(Deanfield et al. 2007). With the exception of repairing lost or damaged vessels, 

endothelial cells resume a state of dormancy for the most part of adult life (Bergers 

and Benjamin 2003). Therefore, the mechanisms responsible for the abnormal 

endothelial activity leading to their propagation and invasion remains elusive and 

needs to be investigated. It is therefore crucial to understand what activates 

endothelial cells in osteoarthritis and ultimately encourages vessel invasion of 

articular cartilage.  

There is an absence of well-established models system to study the dynamic 

interactions between articular cartilage chondrocytes and endothelial cells. We 

therefore designed an indirect Transwell co-culture system that allowed the study of 

the impact of chondrocytes on endothelial cells. This study also would address if co-

culturing endothelial cells with chondrocytes leads to an endothelial to mesenchymal 

transformation (EnMT) phenotype formation in the latter cell type.  
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6.2 Experimental Methods. 

Due to lack of a defined model to study the dynamic interaction that occur at the 

osteochondral interface between chondrocytes and endothelial cells, this study 

utilised the Transwell co-culture model system. This system assessed the paracrine 

effect of chondrocytes on primary endothelial cells from umbilical vein (EC) for a 

seven day duration. In addition, the transformative effect of co-culturing endothelial 

cells with normal as well as osteoarthritic chondrocytes were examined using 

confocal immunofluorescence for a series of proteins implicated in EnMT and further 

validated using Western blot.  

To further investigate the transformative effect that co-culturing chondrocytes had 

on endothelial cells, by promoting mesenchymal transition, total protein was isolated 

from control and both, normal and osteoarthritic, chondrocytes. Subsequently, this 

was subjected to a proteome profiler array that analysed the expressional patterns 

of 84 different proteins implicated in EnMT from those isolated proteins (See section 

2.6).  

In addition, conditioned media from normal and osteoarthritic chondrocytes (n=3 

donors per group) were collected and centrifuged for 5minutes at 400 x g to remove 

debris and dead cells before filtering the collected media using 0.2µm filter. 

Endothelial cells were grown in chamber slides overnight to allow adherence before 

culturing cells in chondrocyte conditioned media or basal media for seven days. The 

media was changed three times a week and replaced with a conditioned media and 

fresh basal media at 1:1 ratio. In order to examine the role of Dkk-1 on EnMT, 

endothelial cells were treated with recombinant Dkk-1 (100 ng/mL) for seven days 
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and mRNA levels of a list of genes implicated in EnMT were examined using q-PCR 

(see section 2.12.5).  

Finally, normal and osteoarthritic derived osteochondral tissues were examined to 

assess the expression of EnMT using immunohistochemical staining (see section 

2.8.1 and 2.8.2). In addition, co-localisation experiments for MMP-13, CD-34 were 

carried out using osteoarthritic osteochondral tissue to assess for cellular and 

vascular infiltration at the osteochondral interface (see section 2.8.1). 

6.3 Results: 

6.3.1. Characterisation of chondrocytes and endothelial cells. 

The primary articular cartilage chondrocytes formed a spindle-fibroblast-like 

morphology, when cultured in in vitro setting (Figure 6.1.F). Endothelial cells, on the 

other hand, assumed a cobblestone morphology when examined using a phase-

contrast microscope (Figure 6.1.I). Prior to initiating the experiment, we 

characterised chondrocytes and endothelial cells using markers known to be 

expressed in the two cell groups. Immunofluorescence analysis showed that 

chondrocytes stained positively for integrin (CD-29), hyaluronan (CD-44), Stro-1, 

Notch-1 and CD-166 (Figure 6.1. A-E). Whilst the endothelial cells, showed positive 

expression for VE-cadherin (Figure 6.1. G) and Pecam-1 (Figure 6.1. H).  
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6.3.2. Primary endothelial and chondrocytes co-culture promotes EnMT. 

Chondrocytes from normal and osteoarthritic donors were seeded on the top 

compartment in the experimental group while at the bottom compartment of the 

Transwell insert endothelial cells were seeded (Figure 6.2.A). In the control group, 

endothelial cells were seeded in both compartments. By day five, normal co-cultured 

chondrocytes, isolated from the knee joint, with endothelial cells, resulted in the 

endothelial cells losing their closely backed cell-cell junctions and resulted in the 

formation of spindle shaped cells embedded in the rest of the endothelial cells. This 

had no effect on their viability (see Appendix 3 for Annexin-V/7-AAD viability assay). 

By day seven, the majority of endothelial cells lost their cobblestone morphology, 

marked by a complete loss of cell-cell contacts, and the adoption of a spindle-shaped 

morphology similar to that observed for mesenchymal cells (Figure 6.2. B II, IV).  

In order to explore if endothelial cells had undergone EnMT phenotype, the protein 

expression of key endothelial and mesenchymal markers were examined using 

immunoblotting and immunofluorescence microscopy. The control group was found 

to express VE-cadherin at the junction between adjacent endothelial cells (white 

arrows; Figure 6.3.C).  Interestingly, endothelial cells co-cultured with normal as well 

as osteoarthritic chondrocytes clearly started to lose expression of the endothelial 

marker VE-cadherin (Figure 6.3. A, E, I).  Reduction of VE-cadherin was more 

pronounced in endothelial cells co-cultured with osteoarthritic chondrocytes (Figure 

6.3.I). In endothelial cells co-cultured with normal chondrocytes there was a 

significant shift in VE-cadherin expression from the cell membrane into a nuclear 

location (white arrows; Figure 6.3.E). 
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Figure 6. 2: Morphological changes in endothelial cells following co-
culture with chondrocytes. 
Primary endothelial cells (EC) were either mono-cultured with EC serving as control 
or with primary normal and osteoarthritic chondrocytes cells (Chon) using Transwell 
co-culture assay for 7days (Panel A). Panel B shows the morphological changes in 
control (I and III) or co-culture group were evaluated using an inverted microscope 
96hrs after incubation under 100x magnification (II, IV). In Transwell co-culture 
setting, EC: Chon induced spindle-like morphological changes while EC: EC mono-
culture showed classical endothelial cobblestone morphology. Scale bar for panel B 
images I and II=100µm and images III and IV =500µm. 
 

Subsequently, the expression of β-catenin, which forms a cell-cell junction protein 

complex with VE-cadherin, was examined. The control group was found to express 

β-catenin at the cell surface as well as in the cytoplasm hence showing two locations 

of β-catenin accumulation in the cell (Figure 6.3.C). Interestingly, as the cell-cell 

junction was disrupted and the cells lost their apical-basal polarity. β-catenin was 

found only in the nuclei of the endothelial cells that had been co-cultured with 

normal chondrocytes. More nuclear presence of β-catenin were observed in cells that 

adopted a front-rear polarity similar to that seen in mesenchymal stem cells in 

endothelial cells co-cultured with normal chondrocytes (white arrows ; Figure 6.3. 

G).This shifting patterns seen here with VE-cadherin and β-catenin from the cell-
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junction to the cytoplasm and nuclear suggest that these factors play a 

transcriptional activity.  

 Examination of markers of mesenchymal morphology alpha-smooth muscle actin (α-

SMA) showed that there was no expression of α-SMA in the control group (Figure 

6.3. B). As endothelial cells lost their phenotype in the presence of chondrocytes, 

expression of α-SMA was evident in endothelial cells co-cultured with both normal 

chondrocytes (white arrows; Figure 6.3.F) as well as osteoarthritic chondrocytes 

(white arrows; Figure 6.3. J). 

The process of EMT and EnMT is thought to result in the alteration of actin filaments 

as cells change their polarity. In this study, F-actin was investigated by staining the 

control group and the co-cultured endothelial cells with Phalloidin-conguated-488. 

The control endothelial cells were found to lack any evidence of actin stress fibre 

formation.  

In contrast the endothelial cells co-cultured with normal and osteoarthritic 

chondrocytes resulted in the induction of stress fibre formation (Figure 6.3. D, H, L). 

The presence of actin stress fibres were more prominent in endothelial cells co-

cultured with osteoarthritic chondrocytes compared to normal chondrocytes (Figure 

6.3. L). 
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Analysis of protein lysate from control group and endothelial co-cultured group 

confirmed a clear reduction of VE-cadherin in the co-culture group (Figure 6.4). In 

addition, control and experimental groups showed differences in the total β-catenin 

levels, where the expression showed some reduction in experimental groups more 

evident in endothelial cells co-cultured with normal chondrocytes. Furthermore, 

there was an associated increase in vimentin protein expression in endothelial cells 

co-cultured with osteoarthritic chondrocytes but the levels of vimentin in endothelial 

cells co-cultured with normal chondrocytes were comparable (Figure 6.4).  

 

Figure 6. 4: Western blot analysis of EnMT markers in co-culture 
experiments. 
Protein lysates from endothelial cells monoculture (EC+EC) serving as control and 
endothelial cells co-cultured with osteoarthritic derived chondrocytes (EC+OA-Chon) 
or normal chondrocytes (EC+N-Chon) were harvested using RIPA buffer and the 
protein expression of EnMT markers including VE-cadherin, β-catenin, vimentin were 
examined by Western blot analysis. Β-actin protein expression served as loading 
control. 
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6.3.3. Chondrocytes conditioned media resulted in endothelial cell 

alteration.  

Data from the previous section suggests that chondrocytes from normal and 

osteoarthritic subjects stimulated endothelial cells to undergo mesenchymal 

transformation under a co-culture setting. Hence one can speculated that 

chondrocytes had a transformative effect on endothelial cells in a paracrine manner. 

Cultivation of endothelial cells with conditioned media from normal chondrocytes as 

well as osteoarthritic chondrocytes, resulted in the endothelial cells displaying 

changes in morphology as marked by loss of apical-basal cell polarity and adoption 

of spindle-like morphology (Figure 6.5). In both endothelial cells, treated with 

normal and osteoarthritic conditioned media not all endothelial cells, when 

immunolabelled for the mesenchymal transformation maker, α-SMA, showed 

complete mesenchymal transformation (Figure 6.5).  
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Figure 6. 5: Chondrocytes induced EnMT through secretory factors. 
Endothelial cells were seeded in chamber slides and cultured with basal media 

(Control; A) or conditioned media from normal (N-Chon CM; B) and osteoarthritic 

chondrocytes conditioned media (OA-Chon CM; C) for 7 days. Fixed cells were 

immuno-labelled with α-SMA (red) and F-actin (green). Nuclei are counterstained 

with DAPI. Scale bar=100µm.  

 

6.3.4. Proteomic profiling of EnMT. 

Proteomic array study of endothelial cells co-cultured with normal chondrocytes 

showed significant down-regulation in several endothelial marker proteins including 

VE-cadherin (1.7 fold, p=0.03), Endoglin (3.5 fold, p=0.04), eNOS (2.6 fold, 

p=0.05), PDGF-AA (3.9 fold, p=0.01), Pecam-1 (4 fold, p=0.001) and Tie-2 (3.6 

fold, p=0.01). Additional proteins that were observed to be down-regulated included 

CA-9 (1.17 fold, p=0.03) and Cathepsin B (2.0 fold, p=0.03). In contrast, proteins 

that were observed to be up-regulated in endothelial cells co-cultured with normal 

chondrocytes included Dkk-1 (1.5 fold, p=0.3), Lumican (2.1 fold, p=0.03), CCL-
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2/MCP-1 (3.8 fold, p=0.02), MMP-9 (2.0 fold, p=0.03) and Snail (1.2 fold, p=0.8) 

(Figure 6.6).  

On the Other hand, the protein profile of the endothelial cells co-cultured with 

osteoarthritic chondrocytes showed the down regulation of several endothelial 

marker proteins compared to the control. These proteins included VE-cadherin (4.3 

fold, p=0.03), Endoglin (4.2 fold, p=0.01), eNOS (2.4 fold, p=0.08), PDGF-AA (2.8 

fold, p=0.003), PECAM (4.9 fold, p=0.001) and Tie-2 (6.2 fold, p=0.007). 

Furthermore, proteins that were observed to be down-regulated included CA-9 (1.6 

fold, p=0.02), Cathepsin B (1.5 fold, p=0.01). Meanwhile, proteins that were up-

regulated in endothelial cells co-cultured with normal chondrocytes included Dkk-1 

(4 fold, p=0.01), Lumican (5.5 fold, p=0.03), CCL-2/MCP-1 (4.6 fold, p=0.01), MMP-

9 (1.9 fold, p=0.01), Snail (1.3 fold, p=0.7) and vimentin (6 fold, p=0.002). 

The proteomic array study of endothelial cells co-cultured with chondrocytes showed 

that Dkk-1 was up-regulated in endothelial cells that had been co-cultured with 

osteoarthritic chondrocytes (Figure 6.6). This increase in Dkk-1 levels in co-culture 

group coincided with reduction of several endothelial markers (VE-cadherin, pecam-

1, PDGFR and Tie-1). Furthermore, there was an increase in vimentin protein by 4 

fold. These data indicate that chondrocytes had a transformative effect on 

endothelial cells by demoting several markers of endothelial cells and promoting 

markers of mesenchymal stem cells. 
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6.3.5. Dkk-1 influence MMP-13 expression and other markers of the EnMT-

like transition in endothelial cells. 

Endothelial cells treated with Dkk-1 showed morphological alterations, changing 

from cobblestone to spindle like structures. Moreover, molecular analysis of 

endothelial and mesenchymal markers genes using RT-PCR showed that Dkk-1 

treated endothelial cells, when compared to control, showed a marked reduction in 

the mRNA levels of VE-cadherin, PECAM-1 and VEGF-A and up-regulation of α-SMA 

and MMP-13. Interestingly, no effect on the mRNA levels of Hif-1α (Figure 6.7) was 

observed.  

In previous chapters, Dkk-1 expression was generally localised around vascular and 

stromal tissues invading articular cartilage. Therefore, the expression of MMP-13 

around vascular invasions from the subchondral bone was investigated using 

immunohistochemical staining. Interestingly, expression of MMP-13 and Dkk-1 and 

CD-34 were co-immunostained in the deep zone of osteoarthritic cartilage and 

subchondral bone. The expression of CD-34 was mainly localised to the cell surface 

of endothelial cells invading articular cartilage (Figure 6.8. H&K) while MMP-13 was 

confined to the periphery especially at the leading edge (Figure 6.8. A, D, G & J). 

The expression of Dkk-1 on the other hand was predominantly extracellular and 

intensely expressed around cellular and invading vascular tissues and some locations 

were superimposed in some locations with that of MMP-13 and in other invading 

vasculature adjacent to it (Figure 6.8. A&D).  
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Figure 6.8: MMP-13, Dkk-1 and CD-34 co-localisation in invading OA-
osteochondral interface tissues.  
Double immuno-labelling of Dkk-1 and MMP-13 (panel A-F) and CD-34 and MMP-13 
(panel G-L) in invading vascular tissues found at the interface of the osteochondral 
region. Expression of CD-34 reveals highly vascularized area at the osteochondral 
interface of osteoarthritic tissues. Double-immunofluorescence-labelling of Dkk-1 
(red) and MMP-13 (green) and CD-34 (red) in the same area shows strong co-
localisation expression of these proteins close to the tidemark and often breaching it 
(dashed line). Nuclei are counterstained with DAPI. Scale bar embedded in the 
image.  
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6.3.6 Endothelial to mesenchymal transitions in human osteochondral 

tissues.  

6.3.6.1. Expression of Aggrecan. 

Aggrecan is a proteoglycan found in abundance in articular cartilage. It is usually 

associated with providing anchorage of the cell to the surrounding pericellular 

matrix. In healthy articular cartilage, aggrecan immunostaining was found 

throughout the cartilage tissue surrounding the pericellular regions of the ECM 

(Figure 6.9. A-D). Furthermore, there were occasional aggrecan expression in the 

extracellular region of superficial zone articular cartilage. However in osteoarthritic 

osteochondral tissues, aggrecan showed a different pattern of expression compared 

to healthy cartilage. In osteoarthritis, osteochondral tissue labelled for aggrecan 

showed a marked reduction in the overall proteoglycan staining with a noted 

reduction in extracellular aggrecan in all regions of articular cartilage (Figure 6.9. E). 

In addition, with this generalised reduction in aggrecan, a shift of intense 

cytoplasmic staining was observed in severe osteoarthritis in chondrocytes of the 

surface and middle zone (Figure 6.9. F). Furthermore, the subchondral region and 

deep zone of articular cartilage showed vascular and stromal invasion highly 

expressing aggrecan especially around the peripheries of the invading stromal and 

vascular tissues (Figure 6.9. G-I). 



 

 

209 

 
Figure 6.9: Aggrecan immunolabelling in normal and OA osteochondral 
tissues.  
Representative Immunohistochemical figures of normal and OA osteochondral tissue 
showing aggrecan labelling. Aggrecan labelling in normal tissue in superficial zone 
chondrocytes is found in the extracellular matrix of superficial zone (empty arrow; A) 
as well as middle zone (empty arrow; C) and in the pericellular region of most 
chondrocytes (A-D). Extracellular expression of aggrecan is also seen in the deep 
zone and subchondral bone (empty arrow; B). High power image of deep zone 
chondrocytes showing labelling in the pericellular region (D). Aggrecan labelling in 
OA superficial tissue (E) and a high power of chondrocytes in superficial zone (F). 
Subchondral OA tissues displayed generalised loss of aggrecan from extracellular 
regions and occasionally intense expressions of aggrecan around blood vessels 
infiltrating from subchondral bone (G-I). Scale bar= 100µm. High magnification 
images scale bar=200µm.  
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6.3.6.2. Expression of Alpha smooth muscle actin. 

In normal osteochondral tissue, α-SMA immunostaining was absent in any regions of 

articular cartilage (Figure 6.10. A and B). In addition, subchondral bone blood 

vessels and stromal tissues also lacked any expression of α-SMA at protein level 

(Figure 6.10. B). In osteoarthritic tissue investigated, the pattern of α-SMA 

immunostaining was associated with the severity of the tissue as α-SMA expression 

and was observed in chondrocytes along a severely damaged region (Figure 6.10. C 

and D). Furthermore, there was a large increase of α-SMA immunostaining in 

subchondral bone blood vessels (Figure 6.10. C, E, F and G). Endothelial cells in 

subchondral bone of osteoarthritic patients appeared to be enlarged when compared 

to healthy group and intensely labelled for α-SMA (G).  
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Figure 6.10: α-SMA Immunolabelling in normal and OA osteochondral 
tissues.  
Representative Immunohistochemical figures of normal and OA osteochondral tissue 
showing α-SMA labelling. α-SMA labelling in normal tissue in superficial zone 
chondrocytes is absent in all regions of chondrocytes (A) and also in the subchondral 
tissue (B). In OA osteochondral tissues, α-SMA labelling was observed in regions 
where there was high damage (C). High power image of chondrocytes located in the 
fibrillated superficial zone intensely express α-SMA in the cytoplasm (D and F). In 
addition, subchondral regions displayed intense expressions of α-SMA around blood 
vessels infiltrating from subchondral bone (E, F and G). Scale bar for A-B= 50µm. 
Scale bar for C and F = 100µm and high magnification images (D, E, F). Scale 
bar=200µm.  
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6.3.6.3. Expression of vimentin staining. 

In normal osteochondral tissue, the expression of vimentin was cytoplasmic in 

nature and restricted to regions of the superficial zone of articular cartilage (Figure 

6.11.D). Occasionally, there was vimentin immunostaining observed in deep zone 

chondrocytes (Figure 6.11. A). In the zone of calcified cartilage, however, vimentin 

staining was weak around blood vessels and there was no evidence of vascular or 

mesenchymal stem cell infiltration to the non-calcified cartilage (Figure 6.11. B).  

In moderate to severe osteochondral tissue studied, fibrillated surface zone articular 

cartilage showed an intense vimentin immunostaining (Figure 6.11. H). Furthermore, 

intense vimentin expression was evident in the deep zone chondrocytes (Figure 

6.11.E). Remarkably, areas of intense vimentin immunolabelling was arising from 

invading vascular and stromal tissues in deep zone and throughout the subchondral 

region of osteochondral tissue (Figure 6.11. E, F, I and J). This was particularly 

enhanced in blood vessels stromal tissue infiltrating the tidemark (Figure 6.11.C, F 

and J).  



 

 

213 

 
Figure 6.11: Vimentin immunolabelling in normal and OA osteochondral 
tissues. 
Representative immunohistochemical figures of normal and OA osteochondral tissue 
showing vimentin labelling. Vimentin labelling in normal tissue in upper regions was 
expressed in the superficial and mid zone chondrocytes (D) and mildly expressed in 
deep zone chondrocytes (A). Vimentin labelling in the subchondral tissue was absent 
(B). In OA osteochondral tissues, vimentin labelling was observed in regions where 
there was high damage (C, E, F, H, J and I). Chondrocytes located in the fibrillated 
superficial zone intensely express vimentin in the cytoplasm (H). In addition, deep 
zone chondrocytes also showed intense expression of vimentin (E). But the highest 
expression was seen in subchondral regions displaying intense labelling for vimentin 
around blood vessels infiltrating from subchondral bone (C, F and G). Scale bar = 
100µm. Scale bar for high magnification C, F and J = 200µm. 
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6.3.6.4 Expression of Snail. 

Snail is a zinc finger related transcriptional factor that was found to play a central 

role in the EMT process (Cano et al. 2000). In osteoarthritis tissues, a moderate 

nuclear localisation of snail was observed particularly around migratory blood vessels 

approaching articular cartilage (Figure 6.12.A-D). This expression was noted to be 

located at the periphery of blood vessels (Figure 6.12. B and D).  

 
 Figure 6.12: Snail immunolabelling in OA osteochondral tissues.  
Representative immunohistochemical figures of OA osteochondral tissue showing 
snail transcriptional factor labelling. In OA osteochondral tissues, Snail labelling was 
observed in regions where there was activity particularly around invading 
vasculature (A-D). High power image of subchondral bone show intense expression 
of snail at the periphery of blood vessels approaching articular cartilage (D). Scale 
bar = 100µm. Scale bar for high magnification inset B & D = 200µm.  Arrows 
highlight the expression of Snail in the nuclei of infiltrating blood vessels. 
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6.4 Discussion. 

In the previous chapter, we examined cellular infiltrations at the osteochondral 

interface of pathological osteoarthritic tissues. This endeavour sought to design a co-

culture model system to understand the crucial interaction between articular 

cartilage and the underlying subchondral bone. In particular, whether chondrocytes 

influence endothelial cell phenotype by enhancing its migration towards articular 

cartilage.  

A novel, and somewhat unexpected, finding in this study was that by co-culturing 

endothelial cells with both normal as well as osteoarthritic chondrocytes, we 

observed a phenotypic switch in endothelial cells when indirectly co-cultured using 

Transwell co-culture inserts. Traditionally, endothelial cells assume a classical 

cobble-stone arrangement when grown in vitro. This statement was true in control 

groups. However, in endothelial cells co-cultured with normal and osteoarthritic 

chondrocytes, spindle-like morphology often associated with MSCs and fibroblast 

was observed. This phenotypic switch in endothelial cells is often associated with a 

developmental process known as EnMT. Therefore, it was decided to investigate if 

by co-culturing chondrocytes and endothelial cells, chondrocytes lead endothelial 

cells to transform into more MSCs-like cells.  

A hallmark of EnMT is the down-regulation of endothelial markers and up-regulation 

of mesenchymal markers. By examining a series of endothelial markers and 

mesenchymal markers, we observed that the endothelial cells co-cultured with 

normal chondrocytes and osteoarthritic chondrocytes expressed the down-regulation 

of the VE-cadherin protein. The reduction of VE-cadherin was more pronounced in 



 

 

216 

endothelial cells co-cultured with osteoarthritic chondrocytes. In addition, with this 

reduction, there was evidence of disruption of cell-cell junctions which ultimately 

affected the cytoskeletal role of β-catenin. Furthermore, there was a reciprocal 

increase in the expression of mesenchymal markers α-SMA in both normal and 

osteoarthritic co-cultured group when compared to control. α-SMA 

immunofluorescence labelling clearly showed that endothelial cells had adopted a 

MSCs-like feature of having front-rear polarity. Moreover, with EnMT and to similar 

extent epithelial to mesenchymal transition, there was an increase of actin 

cytoskeleton remodelling marked by presence of stress fibres. By examining 

endothelial cells co-cultured with normal and osteoarthritic chondrocytes, there was 

clear evidence of actin re-organisation and stress fibres formation that was more 

pronounced in the osteoarthritic co-cultured group. 

These observations were further supported by examining the total protein using 

Western blot. Both endothelial cells co-cultured with normal and osteoarthritic 

chondrocytes showed marked reduction in total VE-cadherin when compared to 

control. In addition, endothelial cells co-cultured with osteoarthritic chondrocytes 

showed a marked increase in the mesenchymal marker vimentin using Western blot. 

However, there were no obvious differences between endothelial cells (control) and 

those co-cultured with normal chondrocytes on the protein expression levels of 

vimentin. The total β-catenin levels between all three experimental groups were not 

markedly different. Although these particular findings have never been reported in 

literature, a recent paper by (Sigurdsson et al. 2011) studied the transformative 

effect of endothelial and breast cancer cell lines co-culturing using a similar 

approach to this study. More recently, (Nie et al. 2014) using a similar Transwell co-
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culture system to study the interaction of endothelial cells with oesophageal 

adenocarcinoma cells have shown that cancer cells enhanced endothelial to 

mesenchymal transition. EnMT is a key developmental and physiological phenomena 

vital for several organogenesis including heart and vessel formation. Moreover, this 

also extends to blood vessels repair in adulthood. EnMT and EMT are activated 

pathologically during tissue fibrosis and wound healing. They were found to be 

highly implicated in tumour metastasis (Lamouille et al. 2014). In addition, seminal 

work carried out by Medici and colleagues have shown endothelial cells were 

permissive to undergo mesenchymal transformation and ultimately were able to 

possess multi-lineage differentiation into chondrocytes, osteoblasts and adipocyte 

(Medici et al. 2010; Medici 2015) 

This study also suggested that the mediated effect of chondrocytes on endothelial 

cells is probably via a paracrine mechanism (Sigurdsson et al., 2011). Exposing 

endothelial cells to conditioned media secreted by both normal and osteoarthritic 

chondrocytes showed some evidence of cellular transformation. It was observed that 

transformation of endothelial cells cultured in OA-chondrocyte conditioned media 

showed greater loss of apical-basal polarity and presence of more spindle-features 

when compared to endothelial cells cultured in conditioned media from normal-

chondrocytes. In addition, α-SMA immunolabelling appeared to be located at both 

the cytoskeleton of the cells but also there is evidence of punctate expression of α-

SMA in the nuclei of normal and OA conditioned media exposed endothelial cells. 

However, as the paracrine factors secreted by chondrocytes are largely unknown. 

Future studies would to be conducted to unveil these factors. Moreover, there was 

some interesting differences noted between endothelial cells treated with normal 
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and osteoarthritic chondrocytes. In endothelial cells co-cultured with osteoarthritic 

chondrocytes vimentin expression at protein level, was significantly up-regulated. 

However, there was no noteworthy difference observed in vimentin protein 

expression in normal chondrocytes group. This finding highlights that the rate of 

EnMT is possibly accelerated in OA more so than normal chondrocytes.  

Protein array studies of endothelial cells co-cultured with chondrocytes have 

revealed a list of proteins that are implicated in EMT that could be potential 

candidates for EnMT induction in our model system. Based on the protein array data, 

endothelial phenotype markers were all down-regulated significantly in co-culture 

settings when compared to control. In addition, there was reciprocal activation of 

mesenchymal phenotype marker proteins. In addition, this study also highlighted the 

differential regulation of other proteins whose roles in transcriptional regulation of 

EnMT is yet to be studied. For example, expression of carbonic anhydrases (CA-9), a 

member of a family of zinc metalloenzymes that are activated in response to 

hypoxia, were found to be a strong promoter of tumour metastasis by inducing 

epithelial to mesenchymal transition (Shin et al., 2011; McDonald et al., 2012).  

By examining factors implicated in EnMT in normal and patient derived adult human 

osteochondral tissues, a significant up-regulation of several of these factors around 

invading cellular tissues at the osteochondral interface, were noted. Reduction in 

ECM is a prognostic marker of osteoarthritis (Attur et al., 2013). Aggrecan is a highly 

abundant proteoglycan in articular cartilage. In normal osteochondral tissue, 

aggrecan expression was predominantly found throughout the matrix of 

chondrocytes throughout the tissue. In addition, there was occasional expression of 

aggrecan in the pericellular matrix of the superficial zone. However in osteoarthritis, 
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a generalised reduction in aggrecan immunostaining was observed throughout the 

tissue. Strikingly, in late-stage osteoarthritis, evidence of intense aggrecan 

expression was observed in regions of vascular and stromal tissue invasion. This 

suggested that the ECM was undergoing an intense remodelling process around 

blood vessels and stromal infiltrates (Puisieux et al. 2014). Interestingly, aggrecan 

over-expression in superficial zone chondrocytes was predominately cytoplasmic in 

nature. Aggrecan is strongly negatively implicated in neovascularisation and the 

angiogenesis in many diseases are somewhat associated with reduction of aggrecan 

(Iozzo and Sanderson, 2011). Furthermore, it has been postulated that aggrecan is 

an anti angiogenic proteoglycan (Bara et al., 2012; Johnson et al., 2005; Fenwick et 

al., 1997). Therefore reduction in aggrecan at the articular cartilage region might 

enhance neovascularisation and endothelial invasion in osteoarthritis.                            

Vimentin is an intermediate protein found in many musculoskeletal tissues. Its role in 

the cell is to form the cytoskeleton of cells in combination with other cytoskeletal 

proteins. In articular cartilage, vimentin forms the main component of intermediate 

filaments. In this study, by focusing on vimentin immunolabelling, in normal cartilage 

there was mild cytoplasmic vimentin expression in normal chondrocytes. However, 

for vimentin immunostaining in osteoarthritic tissue, there were areas of intense 

labelling at the superficial zone chondrocyte with occasional presence of pockets of 

positive vimentin expression around deep zone chondrocytes. Interestingly, the 

highest level of vimentin immunostaining was found in regions of vascular and 

stromal invasion along the osteochondral interface. But this finding was absent in 

normal tissue. In cancer studies, vimentin expression is generally the hallmark of 

mesenchymal transformation. Epithelial acquisition of the mesenchymal phenotype 
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enhances tumour migration and invasion capacity to local surrounding and distant 

regions. It is also indicative of aggressive behaviour of tumour cells and usually 

patients presented with relapse of cancer, frequently have an elevated levels of 

vimentin expression, indicating tumour metastasis (Mendez et al., 2010; Vuoriluoto 

et al., 2011).  

Alpha smooth muscle actin (α-SMA) is an isoform of actin filament. It is found in 

smooth muscle cells, myofibroblast and, occasionally, epithelial cells and fibroblast. 

However, endothelial cells do not appear to express α-SMA. Therefore, the 

expression of α-SMA is a classical marker for EnMT (Willis et al., 2005). Pattern of α-

SMA was similar to the expression of vimentin, where endothelial cells invading the 

non-calcified cartilage expressed high level of alpha smooth muscle actin protein. 

While in normal tissue, there was hardly any a-SMA expression. This finding was 

further supported by in vitro EnMT assay of normal endothelial cells co-cultured with 

chondrocytes.  

Finally, we examined the immunohistochemical expression of the down-stream Snail 

protein. Snail and Slug are zinc finger binding transcriptional factor believed to be 

master repressors of e-cadherin (Vincent et al., 2009). We demonstrated that, in 

osteoarthritic osteochondral tissues, snail nuclear expression was observed around 

the peripheries of blood vessels. This finding was in agreement with a recent study 

by (Maddaluno et al., 2013). Their study revealed that in cavernous malformation, 

there was a significant correlation between slug expression, another close relative to 

snail, and EnMT. In addition, snail expression was positively associated with the 

expression of vimentin. The expression of activated snail in endothelial cells found in 

osteochondral tissue, suggested that the tissue was possibly undergoing EnMT. 
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Based on the proteome array data, there was a four-fold up-regulation of Dkk-1 

protein expression in endothelial cells co-cultured with osteoarthritic chondrocytes, 

which was statistically significant. However, in endothelial cells co-cultured with 

normal chondrocytes, despite Dkk-1 levels being up-regulated by 1.5 fold, this 

finding was not statistically significant. These findings were interesting as we 

routinely observed the expression of Dkk-1 around blood vessels invading articular 

cartilage. Studies by Frei et al. (2013) investigating the role of Dkk-1 in inflammatory 

bowel disease, showed that Dkk-1 promote epithelial to mesenchymal transition in 

inflammatory bowel disease therefore promoting large fistula formation. Concurrent 

with this, Cheng et al. (2013) investigating the role of Dkk-1 in cardiovascular 

disease, has found that to be a strong inducer for EnMT in mouse models of Dkk-1 

over-expression led to aortic vascular calcification. 

Exposure of endothelial cells to exogenous Dkk-1, to see if Dkk-1 had a 

transformative effect on endothelial cell phenotype, resulted in the downgrading of 

several endothelial phenotypes genes. This occurs whilst enhancing the expression 

of genes implicated in remodelling. We report here that the addition of Dkk-1 over 

seven day period had significantly resulted in the reduction of mRNA expression of 

VE-cadherin and pecam-1 and to a lesser extent VEGF-A with additional increase in 

mRNA levels of α-SMA. In addition, the mRNA expression of MMP-13 was 

significantly up-regulated in Dkk-1 treated group when compared to control. These 

findings suggest that the aberrant expression of the Wnt antagonist protein Dkk-1 

may be a marker for angiogenesis and vascular invasion in osteoarthritis. Examining 

the expression of MMP-13 in invading endothelial cells at the osteochondral interface 

using dual immunostaining of MMP-13 study have shown a direct co-localisation of 
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MMP-13 with Dkk-1 or CD-34. The expression of MMP-13 was found to be 

predominantly surrounding the tip of these invading blood vessels. This finding 

suggests that MMP-13 locally degrades basement membrane of blood vessels and 

the ECM. Therefore, enhancing endothelial cells to migrate towards the articular 

cartilage. This occurs presumably via a chemotactic mechanism yet to be identified 

(Zigrino et al., 2009).  

In summary, trends in the expression of EnMT markers; such as VE-cadherin, 

extracellular matrix markers proteins, Wnt pathway and snail transcriptional factors, 

showed that EnMT was likely implicated in the pathogenesis of osteoarthritis. This is, 

to our knowledge, the first study suggesting that endothelial-mesenchymal transition 

occurs in osteoarthritis. This thesis proposes that in OA, cellular changes occurring in 

the AC, marked by surface zone fibrillation and reduced proteoglycan synthesis, 

support an increase in an endothelial cell invasion from the subchondral bone. 

Subsequently, it encourages vascular and stromal cellular invasion from the 

subchondral bone by which these cells undergo EnMT, possibly as a final reparative 

attempt.  
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CHAPTER 7: GENERAL DISCUSSION. 
 

7.1 General Discussion. 
 

Osteoarthritis (OA) is generally regarded as a chronic degenerative disease and 

cartilage degradation a hallmark feature of this disease. OA is the most common 

form of polyarthritis disease. The aetiology of the condition is believed to be multi-

factorial (Noth et al., 2008). In the UK, there are over 2.6 million cases of 

symptomatic OA affecting knee joints in male population and over 3.1 million cases 

in female population. The majority of these cases affect more than one joint and the 

prevalence is on the rise (ARUK key facts, 2013). 

The core of the OA disease process is a breakdown of the articular cartilage which 

could ultimately lead to the need for joint replacement surgery (arthroplasty). 

Arthroplasty surgery has revolutionised the treatment of osteoarthritis by restoring 

mobility to many affected individuals. However, arthroplasty is not suitable for 

individuals with limited or focal defects. The commonest predisposing factor to the 

development of OA in relatively young individuals is trauma to articular cartilage and 

or subchondral bone. In addition, in patient diagnosed with end-stage OA, there are 

several exclusion criteria including age and presence of other co-morbidities. 

Therefore, the use of biological therapies such as cell-based regenerative surgery is 

becoming a new promising treatment modality for osteoarthritis. The current “gold 

standard” method of cell base therapies is autologous chondrocyte implantation 

(ACI) where some success has been well documented (Viste et al., 2012; Corpus et 

al., 2012). However, this procedure is costly and the resurfaced cartilage is not 

necessarily the same native form of cartilage found in the synovial joint. Also 
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expansion of chondrocytes in vitro is limited therefore this approach is restricted to 

the treatment of small focal defects.  

Articular cartilage and subchondral bone arise from mesenchymal stem cell 

differentiation during chondrogenesis. It is a specialized tissue comprising a single 

cell type, the chondrocyte that is embedded in extracellular matrix composed of 

collagens and proteoglycans. Histological evaluation of mature articular cartilage 

reveals it is composed of anisotropic structure of whose prime functions are allowing 

frictionless articulation between bones and transmitting load across diarthroidal 

joints. Being avascular and aneural in composition, its limited in reparative potential 

in comparison to vascularised tissues (Freyria et al., 2011).  

Chapter three of this PhD thesis discussed the successful isolation of 

chondroprogenitor cells (CPC) using the well reported fibronectin adhesion assay 

method developed by Jones and Watt (1993) and adopted by Dowthwaite et al. 

(2004). CPC were isolated from normal and osteoarthritic articular cartilage. Initial 

studies were carried out on isolated CPC from normal and osteoarthritic articular 

cartilage. Results for both normal and osteoarthritic CPC were shown to have a 

comparable cell morphology, initial adherence to fibronectin and colony forming 

ability. Statistically, no-apparent differences were noted between the two cell 

groups. The percentage of colony forming cells in this study was comparable to 

previously published data (Alsalameh et al. 2004; Dowthwaite et al. 2004; Williams 

et al. 2010). In addition, using Ficoll™ density gradient centrifugation, matched-bone 

marrow derived MSCs were isolated from patients diagnosed with OA. Bone marrow 

mesenchymal stem cells (BM-MSCs) were also successfully isolated from the tibial 

plateau of the knee joints. The isolation and characterisation of osteoarthritic derived 
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CPC is very important as they could provide an allogeneic cell source for tissue 

repair.  

This research study (chapter three), to our knowledge, is the first to conduct 

comparative analysis of adult human chondroprogenitor cells (CPC) and BM-MSCs 

from matched patient-derived samples and comparing with CPC isolated from 

macroscopically normal cartilage from donors. Proliferation studies were carried out 

in patient matched CPC and OA-BM-MSCs as well as normal CPC. Based on these 

studies, all three cell types reached 20 population doublings in 30 days or less. 

Despite both OA-CPC and OA-BM-MSCs slowing in their proliferation rate post 30 

days, incidences of cell senescence were found to be relatively low. Moreover, 

analysis of cell proliferation using BrdU incorporation assay showed that all cell types 

were in a proliferative state when examined at cumulative population doubling of 

25± 2.5. By examining cell MSCs surface marker expression of OA-CPC, OA-BM-

MSCs and N-CPC, all three cell types showed positive MSC stem cell marker 

expression for CD-90, CD-105 & CD-166 while lacking the cellular expression for CD-

34 thus confirming both cell types were of mesenchymal lineage. 

Further functional characterisation of adipogenic, chondrogenic and osteogenic 

differentiation of isolated CPC and BM-MSCs by were studied. Based on 

histochemical studies of differentiated CPC and BM-MSCs as well as molecular 

analysis using RT-PCR, CPC as well as BM-MSCs were able to undergo successful tri-

lineage differentiation. This initial studies further encouraged us to conduct a 

detailed study comparing normal and osteoarthritic CPC. The notion that articular 

cartilage holds a population of stem/progenitor cells is becoming widely accepted. 

The potential that CPC could hold a regenerative capacity have been proposed by 
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several groups and where it can provide suitable cell-based source for cartilage 

regeneration (Alsalameh et al., 2004; Williams et al., 2010; Fickert et al., 2004; 

Pretzel et al., 2011; Grogan et al., 2009). However, further studies are needed to 

assess if patient dervied CPC are comparable to cell lines derived from healthy 

individuals. In particular, detailed molecular and functional studies are needed to 

assess the true potential of these unique cell source which served the aim for 

chapter 4.  

Regulatory pathways including the FGF, TGF-β and the Wnt signalling pathways are 

known to be important in the development of the musculoskeletal system in the 

processes of chondrogenesis and osteogenesis (Hartmann 2006; Hidaka and 

Goldring 2008). The Wnt proteins have a wide range of role ranging of action from 

the several developmental and homeostasis process including pattering of anterior-

posterior axis to cell and calcium ion movement, cell proliferation, differentiation and 

morphogenesis (Clevers and Nusse 2012; Niehrs 2012; Nusse 2012). In addition, the 

Wnt pathway is emerging as a crucial pathway involved in the regulation and 

homeostasis of the synovial joint (Diarra et al. 2007).  

A growing amount of evidence is emerging, which shows that the Wnt pathway 

plays a pivotal role in stem cell fate determination in many tissues including skeletal, 

skin, hematopoietic and gastrointestinal tissues (Hartmann 2006; Sato et al. 2009; 

Lander et al. 2012). Previous developmental work conducted on chicks and rodents 

have uncovered the important role the Wnt pathway plays in the process of 

chondrogenesis and chondrocyte homeostasis during postnatal development. There 

is also emerging literature showing the Dickkopf family of Wnt inhibitors to play a 
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role in the pathogenesis of osteoarthritis and to have the potential to be useful 

biomarkers for the progression of osteoarthritis (Lane et al. 2007; Oh et al. 2012). 

In chapter four, the expression levels of Wnt signalling pathway genes were studied 

using targeted Wnt pathway array. Examination of the differential expression levels 

of Wnt pathway genes in both normal and osteoarthritic CPC, revealed the up 

regulation of several Wnt antagonist genes in OA-CPC. This finding was in good 

agreement with previously published studies investigating mutations of several Wnt 

inhibitors and increased predisposition to OA development (Loughlin et al. 2004; 

Rodriguez-Lopez et al. 2007; Blom et al. 2009). Of the several Wnt antagonist genes 

up-regulated in osteoarthritis, Dkk-1 was shown to be highly up-regulated in OA-CPC 

with nearly 50-fold up-regulation when compared to normal CPC. Because of this 

discovery the molecular expression of Dkk-1 was further investigated in full-depth 

chondrocytes, isolated from macroscopically normal cartilage and osteoarthritic 

patients and monoclonal CPC cell lines isolated from either macroscopically normal 

cartilage or osteoarthritic cartilage. Congruent with this Wnt-array data, the 

expression of Dkk-1 at the mRNA level was found to increase in CPC isolated from 

OA donors, relative to CPC isolated from macroscopically normal cartilage and full-

depth chondrocytes. A recent study (Oh et al. 2012) also reported increases in 

mRNA expression for Dkk-1 in OA chondrocytes. Uniquely, however, this research 

study (chapter four) showed that when OA-chondrocytes were further separated into 

full-depth and CPC, only CPC had displayed the elevated expressional levels of Dkk-

1. This results suggests that the expression of Dkk-1 is highly up-regulated in the 

stem cells compartment of articular cartilage in osteoarthritis.  
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The role of elevated Dkk-1 in osteoarthritis has recently attracted a lot of attention. 

The Wnt pathway is emerging as a crucial pathway involved in the regulation and 

homeostasis of the synovial joint (Diarra et al. 2007). Oh et al. (2012) showed that 

elevated levels of Dkk-1 in the DMM surgically induced mouse model of OA 

ameliorated cartilage degradation by inhibiting matrix metalloproteinase through 

ubiquitination of β-catenin. Contrary to these findings, (Thorfve et al. 2012) and 

(Weng et al. 2010) found that Dkk-1 up-regulation in cartilage isolated from patients 

undergoing knee replacement and in rat models of OA were correlated with higher 

chondrocyte apoptosis. These contradictory results highlights the complex nature of 

the Wnt pathway and was discussed in a recent review (Funck-Brentano and Cohen-

Solal 2011). This inconsistency in published literature was thought to be attributed 

the differences to be due to the differences in the experimental models used in 

these studies as well as the potential of Dkk-1 having canonical as well as non-

canonical roles. Adding to these remarks, Dkk-1 might have a Wnt independent role 

by directly activating inflammatory cascades (Gunn et al., 2006). A more detailed 

study by Weng et al. (2009, 2010 and 2012) tried to ascertain the role of Dkk-1 in 

human and animal models of osteoarthritis and showed that inhibition of Dkk-1 

significantly reduced cartilage degradation and bone remodelling.  Chapter four 

highlighted that by relating the molecular expression of Dkk-1 with the severity of 

cartilage damage found that higher Dkk-1 levels was positively correlated with an 

increase in Mankin score.  

Articular cartilage is a highly organised and a homogenous tissue that functions to 

provide a frictionless surface for load-bearing synovial joints, hence enabling smooth 

gliding movements. Scientific literature, from several research groups, have 
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previously demonstrated that isolated cartilage progenitor cells, upon culture 

expansion, show marked variation in both their colony formation efficiency as well as 

their proliferation rate (Williams, 2010; Nelson et al., 2014).  

In this study (chapter four), targeted Wnt array molecular characterisation as well as 

reporter assay and protein analysis of normal and osteoarthritic clonal CPC cell lines, 

demonstrated that osteoarthritic CPC have an inherent variation in their initial 

adherence to fibronectin, colony forming ability and proliferation capacity. 

Heterogeneity was also observed in Dkk-1 expression between clonal cell lines from 

matched donors using molecular and protein approaches. Furthermore, this variation 

was also documented in the ability of osteoarthritic CPC conditioned media to 

modulate β-catenin activity using the TCF-luciferase reporter assay. Therefore, 

based on the endogenous expression of Dkk-1, CPC were sub-divided into Dkk-1high 

CPC of osteoarthritic origin and Dkk-1low CPC of normal and low Dkk-1 expressing 

OA-CPC cell lines. Heterogeneous expression embryonic stem cells based on their 

Wnt expression was recently investigated by Nusse and colleagues (Blauwkamp et 

al. 2012). In addition, stem cell heterogeneity has been previously described in 

embryonic stem cells (MacArthur et al. 2012; Kumar et al. 2014) and in adult stem 

cells found in several tissues including intestine (Barker et al. 2007; Yan et al. 2012), 

epidermis (Janich et al. 2011), hematopoietic bone-marrow (Ratajczak 2015) among 

some tissues, (reviewed in more detail by (Goodell et al. 2015). The concept of stem 

cell heterogeneity has been widely studied in cancer, in order, to understand the 

hierarchal nature of cancer which is thought to be governed by cancer stem cells 

(Al-Hajj et al. 2003; Ricci-Vitiani et al. 2007; Singh et al. 2007).  Using custom-based 

PCR array, a detailed transcriptional profile of Dkk-1high CPC from osteoarthritic 
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donors and Dkk-1low CPC from normal donors were generated. Based on 

transcriptional profiling of chondrogenic differentiated pellets, distinctive differences 

between Dkk-1high CPC, Dkk-1low CPC were found. In addition, to gain further insight 

into the distinct subset of OA-CPC based on their Dkk-1 expressional levels, patient 

matched osteoarthritic Dkk-1high CPC and Dkk-1low CPC cell lines were examined. 

Interestingly, Dkk-1high CPC were unable to undergo chondrogenic differentiation. In 

contrast, both normal and osteoarthritic CPC cell lines with low endogenous levels of 

Dkk-1 protein were able to show evidence of chondrogenic differentiation at a 

molecular as well as protein levels. Inability of Dkk-1high CPC to undergo successful 

chondrogenic differentiation could be partly explained by the inhibitory role Dkk-1 on 

the canonical Wnt pathway which is required for chondrogenesis (Akiyama et al. 

2004; Kirton et al. 2007). This PhD data is in accordance with Lyashenko et al. 

(2012) which recently studied the impact of β-catenin inhibition on mouse embryonic 

stem cells differentiation. In in vitro and in vivo mouse model studies, knock out of 

β-catenin resulted in failure of embryonic differentiation. Lack of cytoskeletal β-

catenin was somehow compensated by plakoglobin (γ-catenin) but ESCs failed to 

undergo differentiation thus confirming the vital role of β-catenin in formation of 

three-germ layers (Guo et al., 2004; Lyashenko et al., 2012). An interesting 

observation of our study, at day 7 and 14 of differentiation, was the slight increase 

in β-catenin levels in Dkk-1high CPC. This finding might be postulated by an up-

regulation of β-catenin via a negative feedback mechanism and is probably 

insufficient to counteract the constantly high levels of Dkk-1 during the three weeks 

period. One aspect of the chondrogenic differentiation assay that was not 

investigated due to time limitations, but should be done in the future, is to perform 
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the assay in the presence of the Dkk-1 inhibitor, WAY-262611, in order to 

investigate if inhibiting Dkk-1 in Dkk-1high CPC can rescue chondrogenic 

differentiation. 

For a long time, emphasis on OA research was mainly on studying the role of hyaline 

cartilage (primary diseased tissue) during OA progression. However in the last two 

decades or so, it is becoming more evident that whole joint is affected and in 

particular the underlying subchondral bone where the majority of force transmission 

into the articular cartilage arises from. In addition, it is debated that during 

osteoarthritis, changes of the underlying bone including microfracture, tidemark 

duplication and changes in calcified cartilage, which normally thought to constitute 

as a barrier to cartilage vascularization are disrupted, are thought to supersede that 

of cartilage loss (Quasnichka et al. 2006; Zamli et al. 2014). Therefore, there is a 

shift among scientist studying osteoarthritis by looking at changes affecting the joint 

as an “organ” and not exclusively focusing on changes at a “tissue” level 

(Lajeunesse et al. 1999; Lajeunesse et al. 2003; Hollander et al., 2010; Luyten et al., 

2009). Chapter four’s examination of the topographical expression of Dkk-1 in 

osteochondral tissues, isolated from normal and osteoarthritic donors, resulted in 

positive immunolabelling in chondrocytes located at the superficial zone and deep 

zone regions of articular cartilage. In addition, in late-stage osteoarthritis, there 

were regions of intense Dkk-1 immunolabelling mainly around the peripheries of 

invading blood and stromal tissues.  

In osteoarthritic tissues investigated in this report, a strong ECM remodelling process 

was observed around blood vessels and stromal infiltrates from underlying 

subchondral bone. Proteoglycans are strongly implicated in neovascularisation and 



 

 

232 

the angiogenesis in many diseases (Iozzo and Sanderson, 2011). In addition, it has 

been postulated that aggrecan is an anti angiogenic proteoglycan (Fenwick et al., 

1997; Johnson et al., 2005; Bara et al., 2012). Beyond the contributions of specific 

cell type to blood vessels angiogenesis, loss of cartilage matrix in particular loss of 

cartilage proteoglycans during osteoarthritis is thought to be implicated in cartilage’s 

increased susceptibility to attack from the subchondral bone (Hsieh et al. 2010; Bara 

et al. 2012). It can also influence vascular recruitment. Indeed, the composition of 

the extracellular matrix is altered measured by reduction in Safranin-O and aggrecan 

staining seen in osteoarthritic tissues in this report. Therefore reduction in aggrecan 

at the articular cartilage region might enhances neovascularisation and endothelial 

invasion in osteoarthritis.  

Angiogenesis play a vital role in endochondral ossification during embryonic and 

postnatal development and is a crucial step for normal skeletal tissue formation. 

However, reactivation of angiogenesis in osteoarthritis is a process that is not fully 

understood. Possible hypothesis include the reactivation of pathways implicated in 

synovial joint development as an attempt to undergo reparative attempt (Cornelis et 

al.,2011). Nonetheless, this process ultimately alters the homogenous cellularity of 

articular cartilage due to cellular infiltration from the underlying subchondral bone.  

The precise steps involved in the angiogenesis of articular cartilage is not clearly 

understood. However, results in this study suggested that the expression putative 

MSCs markers, CD-105 and CD-166 around MSCs infiltrating breaching the tidemark 

(Alsalameh et al. 2004; Koelling et al. 2009; Pretzel et al. 2011). In cancer studies, it 

was suggested that mesenchymal stromal cells exploit alterations in local 

microenvironment by releasing cytokines and growth factors to activate quiescent 
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endothelial cells around them and initiate a cascade of events that quickly becomes 

dysregulated. 

The aim of chapter five was to elucidate the role canonical Wnt pathway play in 

angiogenesis of articular cartilage, endothelial cells were exposed to a range of 

putative canonical Wnt modulators. Based on in vitro assay of angiogenesis, 

migration and invasion studies, Dkk-1 was found to be highly pro-angiogenic and 

stimulate endothelial migration and invasion. This finding was reassuring as the pro-

angiogenic role of Dkk-1 was previously observed by (Smajda et al., 2010; and 

Weng et al., 2012). In addition, the pro-migratory and invasive role of Dkk-1 in 

endothelial cells although novel, is supported by several studies using cancer cell line 

as model system and where Dkk-1 inhibition was found to abrogate the invasive 

properties of cancer cells (Chen et al., 2013; Shi et al., 2013). 

 In Chapter 6, the aim was to design a co-culture system consisting of endothelial 

cells and chondrocytes with the purpose of evaluating how endothelial cell and 

chondrocyte interactions within the osteochondral interface contribute to the 

progression of osteoarthritis. Both cells types (chondrocyte and endothelial cells) are 

generally considered to be quiescent for the majority of normal adult life (Bergers 

and Benjamin, 2003). The mechanisms responsible for the aberrant endothelial 

activity leading to their propagation and invasion of articular cartilage was 

investigated in direct co-culture studies using normal and osteoarthritic chondrocytes 

and endothelial cells. The results of chapter six indicated that the chondrocytes had 

a transformative effect on endothelial cells. In EnMT, endothelial cells lose cell-cell 

junction marked by a reduction in membrane-associated vascular endothelial VE-

cadherin protein expression. This, in turn, results in VE-cadherin translocation from 
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the cell membrane to the cytoplasm with further down-stream target activation of 

key transcriptional factors implicated in EnMT including  c-Myc, Twist, Zinc-finger E-

box-binding 1 (Zeb-1) and snail (Lamouille et al., 2014). Concurrent with changes 

occurring at the cell surface, chapter six highlighted the down regulation of genes 

crucial for endothelial programming including VE-cadherin, PECAM (CD31) and Tie-2. 

Simultaneously, genes involved in mesenchymal phenotype transformation were 

switched on including N-cadherin, vimentin and alpha-smooth muscle actin (α-SMA). 

Furthermore, transcriptional factors Snail-1 and Snail-2, also known as Slug, were 

triggered and resulted in potent repression of cadherin genes. This further enhanced 

cell reprogramming to mesenchymal morphology by activating factors involved in 

remodelling of the ECM, including MMPs (Kovacic et al., 2012). Based on chapter 

six’s protein analysis (using immunofluorescence microscopy, immunoblotting, 

immunohistochemical staining of several EnMT marker proteins in normal and 

osteoarthritic osteochondral tissue) and its proteomic array data it is evident that 

endothelial cells co-cultured with chondrocytes showed EnMT transformation 

characteristics and that EnMT is possibly activated in osteoarthritis.  

Previous studies attempting to understand angiogenesis, in relation to tumour 

invasion and metastasis, have unveiled an important clue to how tumour cells 

overcome their microenvironment and start to invade local and distant sites. It was 

shown that tumour cells undergo a process of mesenchymal transition by which 

tumour cells adopt a highly motile configuration ultimately allow for tumour 

propagation and metastasis (Quail and Joyce 2013).  

Endothelial to mesenchymal transition (EnMT) is a key cellular process vital during 

the development of embryo. More recently, it was noted that EnMT is reactivated in 
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several pathological processes including tumour invasion and kidney and cardiac 

diseases (Lamouille et al., 2014).  

A seminal study by Medici et al. (2010) have shown that endothelial cells showed a 

remarkable plasticity by being able transform into mesenchymal stem cells and 

therefore give rise to chondrocyte and osteoblast in a rare an debilitating condition 

known as fibrodysplasia ossificans progressiva. It was then discovered that a 

mutation in the ALK5 gene was causing blood vessels to undergo a constant state of 

endothelial to mesenchymal transition (EnMT). Moreover, a review by Shoshani and 

Zipori (2011) commenting on the study by the Olsen group have raised the question 

whether endothelial to mesenchymal transition occurs in osteoarthritis. As it is 

evident in osteoarthritis, that endothelial cells are motile and invade articular 

cartilage, it possible to postulate that EnMT might be partially implicated in 

endothelial cells migration.  

Chapter six used proteomic array data to confirm that endothelial markers proteins 

were all down-regulated in endothelial cells co-cultured with chondrocytes when 

compared to control. Based on the proteome array data, several proteins were 

differentially expressed between control and experimental group. These proteins 

were not known to play a role in EnMT and further investigation is therefore required 

to determine their role. Furthermore, Dkk-1 protein was up-regulated in endothelial 

cells co-cultured with chondrocytes. Therefore, to determine the role Dkk-1 plays, 

endothelial cells were treated with exogenous Dkk-1. Molecular analysis results 

suggested that Dkk-1 down-regulated mRNA levels of endothelial phenotype genes 

(VE-cadherin and PECAM-1 and to a lesser extent VEGF-A) while promoting 

mesenchymal marker α-SMA. A recent study investigating the role of Dkk-1 in 
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cardiovascular disease has found that Dkk-1 was a strong inducer for endothelial-

mesenchymal transition in mouse models leading to aortic vascular fibrosis and 

calcification (Cheng et al., 2013). Moreover, Dkk-1 was shown to enhance the 

expression of MMP-13 and this is in agreement with work by Weng et al. (2010) and 

Nalesso et al. (2011) both showing a positive effect of Dkk-1 on MMP-13 expression 

on chondrocytes. By examining the protein localisation of Dkk-1, MMP-13 in 

endothelial cells, it was shown that the two protein co-localise around invading blood 

vessels of osteoarthritic tissues. The expression of MMP-13 was found to be 

predominantly surrounding the tip of these invading blood vessels. This finding 

suggests that MMP-13 locally degrades basement membrane of blood vessels and 

the ECM. Therefore, this enhanced endothelial cells to migrate towards the articular 

cartilage (Zigrino et al., 2009). 

In conclusion, this study shows that the canonical Wnt pathway is differentially 

expressed in osteoarthritic chondroprogenitor cells. This study shows that the 

expression of Dkk-1proteins is enhanced around subchondral blood vessels invading 

articular cartilage at the early and late stages of osteoarthritis. 

 There are clear differences in the expression of Dkk-1 between normal and 

osteoarthritis cartilage progenitor cell lines. The data from this thesis suggests that 

these differences may indicate a role for the Wnt pathway in osteoarthritis 

progression. Studying the role Dkk-1 played, using in vitro assays, it is clear that 

Dkk-1 has a pro-angiogenic and pro-migratory role on endothelial cells. Whether this 

conclusion can be considered to be the case in osteoarthritis is to be seen. However, 

findings in this report and others provide an initial understanding of possible 

mechanism involving Wnt pathway in osteoarthritic angiogenesis. Understanding 
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these alterations at the osteochondral junction and regulating pathways implicated 

in their initial occurrence will lead to a greater knowledge of the pathophysiology of 

osteoarthritis with development of pharmacological therapies.  Figure 7.1 is 

proposed role of Dkk-1 at the osteochondral interface. 

 

 

 

 
Figure 7. 1: Proposed model of the role of Dkk-1 in the osteochondral 
tissues. 

In normal synovial joint, articular cartilage and subchondral bone are nicely 

separated by tidemark. Endothelial cell are inactive and MSCs a bone cells show no 

evidence of cartilage invasion. In the articular cartilage, CPC are located at the 
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superficial zone and upper-middle zone and there are plenty of ECM produced 

marked by strong Safranin-O staining. However, in osteoarthritis, articular cartilage 

degradation and loss of tidemark integrity exposes the underlying subchondral bone 

to stimulatory factors secreted by chondrocytes. This in turn promote vascular and 

cellular migration which is in part regulated by Dkk-1. At the cartilage region, Dkk-1 

is proposed to have an inhibitory role on CPC differentiation. In addition, endothelial 

cells migratory capacity is enhanced as these cells possibly undergo transformation 

into motile mesenchymal cells hence further promoting their invasive capacity.  

7.2 Limitation and future work 

As it was difficult to study patient derived endothelial cells in this PhD thesis due to 

lack of ethical approval, we used primary and endothelial cell lines. Despite the 

wealth of information that endothelial cells provide, an important limitation is the 

nature of endothelial cells used in this study (macro-vascular endothelial cells). The 

advantage of using normal macro-vessel endothelial cells is the ease of isolation 

from umbilical cord vessels and commercial availability of a homogenous cells.  

Future studies should be carried out to investigate patient-derived endothelial cells 

from human peripheral blood and or marrow aspirate (microvascular endothelial 

cells) provide similar outcome and in particular if Dkk-1 expression can be examined 

directly.  

Whilst chondroprogenitor cells were successfully isolated using fibronectin adhesion 

assay, it is becoming evident that there are marked variability of CPC proliferation 

and differentiation. This heterogeneity is found between individuals and also among 

cell clones obtained from the same individual. Suitability of CPC application in tissue 
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engineering is dependent on identifying cells with the optimum “stemness” potential 

and development of an efficient and time-saving method of isolating CPC. In 

addition, full characterisation of isolated CPC are required with regards to their 

differentiation potential. Little is known about key regulators of CPC self-renewal and 

multipotent state “stemness” (Hayes et al., 2007; Fuchs and Horsley, 2012; Lander 

et al., 2012; Churchman et al., 2012). Therefore, based on data generated using 

targeted Wnt-array, it would interesting to investigate the role of other Wnt 

antagonist transcripts that were up-regulated in OA-CPC. 

In addition, although this study confirmed the heterogeneous nature of patient 

derived CPC in relation to their chondrogenic differentiation capabilities, due to time 

limitation, we were unable to examine osteogenic and adipogenic differentiation of 

Dkk-1high and Dkk-1low CPC. However, recent work by Bajada et al. (2009) examining 

osteogenic differentiation of MSCs and Gustafson et al. (2012) examining adipocyte 

differentiation both concluded that Dkk-1 had inhibitory effect of osteogenesis while 

promoting adipogenesis. It would be interesting to examine if Dkk-1high CPC were 

lineage biased towards adipogenesis. 
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Appendix 1: 
 

Sample Age Sex Mankin  
Score 

Connective 
Tissue 
Type 

   

ID#    BM-MSCs Full depth 
chondrocytes 

polyclonal 
CPC 

monoclonal 
CPC 

        

OA-1 63 Male 4 - OA-1-FD OA-1 (P) OA-1(3 
monoclonal 

cell lines) 

OA-2 70 Female 7 - OA-2-FD OA-2 (P) OA-2 (3 

monoclonal 
cell lines) 

OA-3 53 Female 8 OA-3-MSCs OA-3-FD OA-3 (P) OA-3 (3 
monoclonal 

cell lines) 

OA-4 58 Male 10 OA-4-MSCs OA-4-FD OA-4 (P) OA-4 (3 

monoclonal 
cell lines) 

OA-5 79 Male 8 OA-5-MSCs OA-5-FD OA-5 (P) OA-5 (3 
monoclonal 

cell lines) 

OA-6 62 Female 3 OA-6-MSCs OA-6-FD OA-6 (P) OA-6 (3 

monoclonal 
cell lines) 

OA-7 60 Female 4 OA-7-MSCs OA-7-FD OA-7 (P) OA-7 (3 
monoclonal 

cell lines) 

OA-8 75 MALE 6 OA-8-MSCs OA-8-FD OA-8 (P) OA-8 (3 

monoclonal 
cell lines) 

OA-9 70 male 13 OA-9-MSCs OA-9-FD OA-9 (P) OA-9 (3 
monoclonal 

cell lines) 

OA-10 69 Female 9 - OA-10-FD OA-10 (P) OA-10 (3 

monoclonal 
cell lines) 
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Appendix 2: 
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Figure 8. 1: Cumulative population doublings of isolated CPCs and MSCs. 
Cumulative population doublings of isolated monoclonal CPCs from normal donor (A) 

and OA donor (B) as well as normal and OA polyclonal CPCs and OA BM-MSCs (C). 
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Appendix 3: 
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Appendix 4: 
 

 
 

Figure 8. 3: Figure 8.3: Confocal scanning images of Dkk-1 protein in 
monensin blocked full-depth osteoarthritic cartilage. 
Positive intracellular labelling of vesicles containing Dkk-1 proteins (red). X63 Magnification 

with cellular localisation of Dkk-1 in the cytoplasm (red) in confocal image and differential 

interference contrast images (A-B respectively). Figure C Dkk-1 Immunoblot of protein 

lysates from OA tissue show similar band of 39kDa in all patients. 
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Appendix 5: 
 

gene 
symbol 

Gene Ref 
Seq 

Description Analys
ed 

AES NM_00113
0 

Amino-terminal enhancer of split/ TLE/Groucho Yes 

APC NM_00003
8 

Adenomatous polyposis coli Yes 

AXIN1 NM_00350
2 

Axin 1 Yes 

AXIN2 NM_00465
5 

Axin 2 Yes 

BCL9 NM_00432
6 

B-cell CLL/lymphoma 9 Yes 

BTRC NM_03363
7 

Beta-transducin repeat containing Yes 

CCND1 NM_05305

6 

Cyclin D1 Yes 

CCND2 NM_00175
9 

Cyclin D2 Yes 

CSNK1A1 NM_00189
2 

Casein kinase 1, alpha 1 Yes 

CSNK2A1 NM_00189
5 

Casein kinase 2, alpha 1 polypeptide Yes 

CTBP1 NM_00132
8 

C-terminal binding protein 1 Yes 

CTNNB1 NM_00190
4 

Catenin (cadherin-associated protein), beta 1, 
88kDa 

Yes 

CTNNBIP1 NM_02024
8 

Catenin, beta interacting protein 1 Yes 

CXXC4 NM_02521
2 

CXXC finger protein 4 Yes 

DAAM1 NM_01499
2 

Dishevelled associated activator of 
morphogenesis 1 

Yes 

DAB2 NM_00134

3 

Disabled homolog 2, mitogen-responsive 

phosphoprotein (Drosophila) 

Yes 

DIXDC1 NM_03342
5 

DIX domain containing 1 Yes 

DKK-1 NM_01224
2 

Dickkopf homolog 1 (Xenopus laevis) Yes 

Dkk2    Dickkopf homolog 2 No 

DKK3 NM_01588
1 

Dickkopf homolog 3 (Xenopus laevis) Yes 

Dkk4    Dickkopf homolog 4 (Xenopus laevis) No 

DVL1 NM_00442

1 

Dishevelled, dsh homolog 1 (Drosophila) Yes 

DVL2 NM_00442
2 

Dishevelled, dsh homolog 2 (Drosophila) Yes 

EP300 NM_00142
9 

E1A binding protein p300 Yes 



 

 

246 

FBXW11 NM_01230
0 

F-box and WD repeat domain containing 11 Yes 

FBXW4 NM_02203
9 

F-box and WD repeat domain containing 4 Yes 

FGF4 NM_00200

7 

Fibroblast growth factor 4 Yes 

FOSL1 NM_00543
8 

FOS-like antigen 1 Yes 

FOXN1 NM_00359
3 

Forkhead box N1 Yes 

FRAT1 NM_00547
9 

Frequently rearranged in advanced T-cell 
lymphomas 

Yes 

FRZB NM_00146
3 

Frizzled-related protein Yes 

FZD1 NM_00350
5 

Frizzled family receptor 1 Yes 

FZD2 NM_00146
6 

Frizzled family receptor 2 Yes 

FZD3 NM_01741
2 

Frizzled family receptor 3 Yes 

FZD4 NM_01219
3 

Frizzled family receptor 4 Yes 

FZD5 NM_00346

8 

Frizzled family receptor 5 Yes 

FZD6 NM_00350
6 

Frizzled family receptor 6 Yes 

FZD7 NM_00350
7 

Frizzled family receptor 7 Yes 

FZD8 NM_03186
6 

Frizzled family receptor 8 Yes 

FZD9 NM_00350
8 

Frizzled family receptor 9 Yes 

GSK3A NM_01988
4 

Glycogen synthase kinase 3 alpha Yes 

GSK3B NM_00209
3 

Glycogen synthase kinase 3 beta Yes 

JUN NM_00222
8 

Jun proto-oncogene Yes 

KREMEN1 NM_00103
9570 

Kringle containing transmembrane protein 1 Yes 

LEF1 NM_01626
9 

Lymphoid enhancer-binding factor 1 Yes 

LRP5 NM_00233
5 

Low density lipoprotein receptor-related protein 
5 

Yes 

LRP6 NM_00233
6 

Low density lipoprotein receptor-related protein 
6 

Yes 

MAPK8 NM_00275
0 

Mitogen-activated protein kinase 8 Yes 

MMP7 NM_00242
3 

Matrix metallopeptidase 7 (matrilysin, uterine) Yes 

MYC NM_00246 V-myc myelocytomatosis viral oncogene Yes 



 

 

247 

7 homolog (avian) 

NFATC1 NM_17239
0 

Nuclear factor of activated T-cells, cytoplasmic, 
calcineurin-dependent 1 

Yes 

NKD1 NM_03311
9 

Naked cuticle homolog 1 (Drosophila) Yes 

NLK NM_01623
1 

Nemo-like kinase Yes 

PITX2 NM_00032
5 

Paired-like homeodomain 2 Yes 

PORCN NM_02282
5 

Porcupine homolog (Drosophila) Yes 

PPARD NM_00623
8 

Peroxisome proliferator-activated receptor delta Yes 

PRICKLE1 NM_15302

6 

Prickle homolog 1 (Drosophila) Yes 

PYGO1 NM_01561
7 

Pygopus homolog 1 (Drosophila) Yes 

RHOA NM_00166
4 

Ras homolog gene family, member A Yes 

RHOU NM_02120
5 

Ras homolog gene family, member U Yes 

RUVBL1 NM_00370
7 

RuvB-like 1 (E. coli) Yes 

SFRP1 NM_00301
2 

Secreted frizzled-related protein 1 Yes 

SFRP4 NM_00301
4 

Secreted frizzled-related protein 4 Yes 

SOX17 NM_02245
4 

SRY (sex determining region Y)-box 17 Yes 

TCF7 NM_00320
2 

Transcription factor 7 (T-cell specific, HMG-box) Yes 

TCF7L1 NM_03128

3 

Transcription factor 7-like 1 (T-cell specific, 

HMG-box) 

Yes 

TLE1 NM_00507
7 

Transducin-like enhancer of split 1 (E(sp1) 
homolog, Drosophila) 

Yes 

VANGL2 NM_02033
5 

Vang-like 2 (van gogh, Drosophila) Yes 

WIF1 NM_00719
1 

WNT inhibitory factor 1 Yes 

WISP1 NM_00388
2 

WNT1 inducible signaling pathway protein 1 Yes 

WNT1 NM_00543

0 

Wingless-type MMTV integration site family, 

member 1 

Yes 

WNT10A NM_02521
6 

Wingless-type MMTV integration site family, 
member 10A 

Yes 

WNT11 NM_00462
6 

Wingless-type MMTV integration site family, 
member 11 

Yes 

WNT16 NM_05716
8 

Wingless-type MMTV integration site family, 
member 16 

Yes 

WNT2 NM_00339
1 

Wingless-type MMTV integration site family 
member 2 

Yes 



 

 

248 

WNT2B NM_00418
5 

Wingless-type MMTV integration site family, 
member 2B 

Yes 

WNT3 NM_03075
3 

Wingless-type MMTV integration site family, 
member 3 

Yes 

WNT3A NM_03313

1 

Wingless-type MMTV integration site family, 

member 3A 

Yes 

WNT4 NM_03076
1 

Wingless-type MMTV integration site family, 
member 4 

Yes 

WNT5A NM_00339
2 

Wingless-type MMTV integration site family, 
member 5A 

Yes 

WNT5B NM_03264
2 

Wingless-type MMTV integration site family, 
member 5B 

Yes 

WNT6 NM_00652
2 

Wingless-type MMTV integration site family, 
member 6 

Yes 

WNT7A NM_00462
5 

Wingless-type MMTV integration site family, 
member 7A 

Yes 

WNT7B NM_05823
8 

Wingless-type MMTV integration site family, 
member 7B 

Yes 

WNT8A NM_05824
4 

Wingless-type MMTV integration site family, 
member 8A 

Yes 

WNT9A NM_00339
5 

Wingless-type MMTV integration site family, 
member 9A 

Yes 

ACTB NM_00110

1 

Actin, beta Yes 

B2M NM_00404
8 

Beta-2-microglobulin Yes 

GAPDH NM_00204
6 

Glyceraldehyde-3-phosphate dehydrogenase Yes 

HPRT1 NM_00019
4 

Hypoxanthine phosphoribosyltransferase 1 Yes 

RPLP0 NM_00100
2 

Ribosomal protein, large, P0 Yes 

HGDC SA_00105 Human Genomic DNA Contamination Yes 

RTC SA_00104 Reverse Transcription Control Yes 

RTC SA_00104 Reverse Transcription Control Yes 

RTC SA_00104 Reverse Transcription Control Yes 

PPC SA_00103 Positive PCR Control Yes 

PPC SA_00103 Positive PCR Control Yes 

PPC SA_00103 Positive PCR Control Yes 
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Appendix 6: 

 

Figure 8. 4: Summary of CPC chondrogenic differeniation experiments at 
time points 0, 7, 14& 21. 

 



 

 

250 

Appendix 7: 
 

   

Position 
Gene 

Symbol 

Control 

Gene 

Control Group Group 1 

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 

12 B2M 
 

23.84 21.73 23.68 21.18 22.10 21.27 

13 GAPDH 
 

22.54 21.88 22.95 22.11 22.02 22.23 

Arithmetic Mean 22.54 21.88 22.95 22.11 22.02 22.23 

Avg. of Arithmetic Mean 22.46 22.12 

Geometric Mean 22.54 21.88 22.95 22.11 22.02 22.23 

Avg. of Geometric Mean 22.46 22.12 
 

  

  

Ct Range 
Distribution of Ct Values 

Average ST DEV 
Sample 4 Sample 5 Sample 6 

<25 4 4 4 4.00 0 

25-30 5 6 5 5.33 0.5774 

30-35 1 0 2 1.00 1.0000 

Absent Calls 6 6 5 5.67 0.5774 

Percent Distribution of Ct Values 

<25 25.00% 25.00% 25.00% 25.00% 0 

25-30 31.25% 37.50% 31.25% 33.33% 0.0361 

30-35 6.25% 0.00% 12.50% 6.25% 0.0625 

Absent Calls 37.50% 37.50% 31.25% 35.42% 0.0361 
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Position 
Gene 

Symbol 
Average ST DEV Sample 4 Sample 5 Sample 6 

1 DKK1 27.79 0.904908 26.81 27.98 28.59 

2 DKK2 35.00 0 36.23 35.89 35.35 

3 CTNNB1 27.64 0.410099 27.99 27.74 27.19 

4 COL2A1 35.00 0 35.77 No Ct No Ct 

5 ACAN 29.54 1.771883 31.57 28.73 28.31 

6 SOX9 30.02 1.420408 28.75 29.75 31.55 

7 COL10A1 34.68 0.554256 35.80 35.46 34.04 

8 MMP13 27.07 1.691036 28.87 26.83 25.51 

9 ADAMTS4 35.00 0 No Ct 39.28 38.67 

10 IL1B 35.00 0 37.34 37.38 No Ct 

11 ALCAM 25.81 0.410406 26.18 25.37 25.89 

12 B2M 21.52 0.507995 21.18 22.10 21.27 

13 GAPDH 22.12 0.108543 22.11 22.02 22.23 

14 HIGX1A 35.00 0 39.72 No Ct No Ct 

15 RTC 23.99 0.399291 24.16 23.53 24.27 

16 PPC 20.01 0.147460 20.17 19.88 19.97 
 

Select Group:  
 

Standard RT² cDNA Synthesis Kit used  

Standard RT² cDNA Synthesis Kit used with RT² Arrays Performed on Rotor-Gene Q  

RT² PreAMP cDNA Synthesis Kit used with fresh/frozen samples*   
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RT² PreAMP cDNA Synthesis Kit used with fixed samples (FFPE)*   

 

*Note: The respective RT² PreAMP cDNA Synthesis Kit analysis settings also apply when the 

PreAMP kits are used with RT² Arrays performed on Rotor-Gene Q. 
 

Quality Checks Performed 

Test Performed Sample 4 Sample 5 Sample 6 

1. PCR Array Reproducibility Pass Pass Pass 

2. RT Efficiency Pass Pass Pass 

3. Genomic DNA Contamination Pass Pass Pass 
 

 Remember to check each experimental group 

 If 'Inquiry' is displayed then see the Troubleshooting Guide of the PCR Array User Manual/Handbook or Contact Technical Support at 888-

503-3187. 

Calculations Supporting Data Above 

1. PCR Array Reproducibility: 

Array Sample 4 Sample 5 Sample 6 AVG ST DEV 

Average Ct (PPC) 20.17 19.88 19.97 20.01 0.15 

ST DEV Ct (PPC) N/A N/A N/A 0 -- 

Average Ct (RTC) 24.16 23.53 24.27 23.99 0.4 

ST DEV Ct (RTC) N/A N/A N/A 0 -- 

Criteria for the PCR Array Reproducibility: If the Average PPC Ct is 20±2 and no two arrays have Average PPC Ct are > 2 away from one 

another then the sample and group Pass. 

2. Reverse Transcription Control (RTC): 

Array Sample 4 Sample 5 Sample 6 

Delta Ct (AVG RTC - AVG PPC) 3.99 3.65 4.3 

RT Efficiency Pass Pass Pass 

Criteria: If Delta Ct (AVG RTC - AVG PPC) <= 5, RT Efficiency reports 'Pass'; otherwise, RT Efficiency reports 'Inquiry'. 

See the Troubleshooting Guide of the PCR Array User Manual or Contact Technical Support at 888-503-3187. 

3. Genomic DNA Contamination (GDC): 

Array Sample 4 Sample 5 Sample 6 

Ct(GDC) N/A N/A N/A 

Genomic DNA N/A N/A N/A 

Criteria: If Ct(GDC) >= 35, then the GDC QC reports 'Pass'; if Ct(GDC) < 35, then the GDC QC reports 'Inquiry'. 

See the Troubleshooting Guide of the PCR Array User Manual or Contact Technical Support at 888-503-3187. 
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Appendix 8: 
 

 
Figure 8. 5:  Amplification, dissociation, thermal profile setup and 
standard curve of PCR reaction of GAPDH. 
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Appendix 9: 
 
 

 
Figure 8. 6: BrdU-incorporated assay was used to determinate the cell 
proliferation after treatment with Wnt canonical modulators.  

BrdU incorporation assay of CPC with different treatments of exogenous Wnt 
proteins modulators. Nuclear localisation of BrdU was examined in CPC treated with 
basal media ± Dkk-1, Dkk-2, Wnt-3a all at 100ng/mL treatment for 48hrs. The 
percentage of positive stained cells was calculated (n=3) for each cell line and data 
are presented as mean ± SEM. One-Way ANOVA to compare percentage BrdU 
incopration of control with treated. NS=not significant. 
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