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a b s t r a c t

We present a robust and efficient form of the smoothed finite element method (S-FEM) to simulate

hyperelastic bodies with compressible and nearly-incompressible neo-Hookean behaviour. The resulting

method is stable, free from volumetric locking and robust on highly distorted meshes. To ensure inf-sup

stability of our method we add a cubic bubble function to each element. The weak form for the smoothed

hyperelastic problem is derived analogously to that of smoothed linear elastic problem. Smoothed strains

and smoothed deformation gradients are evaluated on sub-domains selected by either edge information

(edge-based S-FEM, ES-FEM) or nodal information (node-based S-FEM, NS-FEM). Numerical examples are

shown that demonstrate the efficiency and reliability of the proposed approach in the nearly-

incompressible limit and on highly distorted meshes. We conclude that, strain smoothing is at least as

accurate and stable, as the MINI element, for an equivalent problem size.

� 2017 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Low-order simplex (triangular or tetrahedral) finite element

methods (FEM) are widely used because of computational effi-

ciency, simplicity of implementation and the availability of largely

automatic mesh generation for complex geometries. However, the

accuracy of the low-order simplex FEM suffers in the incompress-

ible limit, an issue commonly referred to as volumetric locking, and

also when the mesh becomes highly distorted.

To deal with these difficulties various numerical techniques

have been developed. A classical approach is to use hexahedral ele-

ments instead of tetrahedral elements due to their superior perfor-

mance in plasticity, nearly-incompressible and bending problems,

and additionally their reduced sensitivity to highly distorted

meshes. However, automatically generating high-quality conform-

ing hexahedral meshes of complex geometries is still not possible,

and for this reason it is desirable to develop improved methods

that can use simplex meshes. Significant progress has, however,

been done in this direction [1].

Another option is to move to higher-order polynomial simplex

elements. While they are significantly better than linear tetrahe-

dral elements in terms of accuracy this is at the expense of

increased implementational and computational complexity, and

sensitivity to distortion.

Nodally averaged simplex elements [2,3] can effectively deal

with nearly-incompressible materials, but they still suffer from

an overly stiff behaviour in certain cases [4].

Meshfree (or meshless) methods [5–7] are another option

because of their improved accuracy on highly-distorted nodal lay-

outs, but the locking problem is still a challenging issue that needs

careful consideration [8]. To improve the non-mesh based meth-

ods, B-bar approach [9,10], which is appropriate not only to handle

incompressible limits but also to model shear bands with cohesive

surfaces, can be considered. Additionally, because they are sub-

stantially different to the FEM, they are not easily implemented

in it existing software.

Isogeometric Analysis (IGA) is another high-order alternative

and the interested reader is referred to [11,12]. Moreover for the

further studies for fractures undergoing large deformations, edge

rotation algorithm can be an another option in large plastic strains

[13,14].

Mixed and enhanced formulations are another popular remedy

for volumetric locking [15,16], but they retain the sensitivity to

mesh distortion of the standard simplex FEM [17].

Another approach, and the one that we employ in this paper, is

the strain smoothing method developed by Liu et al. [18,19]. The

strain smoothing method has the advantage over the above meth-

ods that it improves both the behaviour of low-order simplex ele-
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ments with respect to both volumetric locking and highly distorted

meshes, while being simple to implement within an existing finite

element code.

The basic idea of strain smoothing is based on the stabilised

conforming nodal integration (SCNI) proposed in the context of

meshfree methods by Chen et al. [20,21]. Later SCNI was extended

to the natural element method (NEM) by Yoo et al. [22], and was

shown to effectively handle nearly-incompressible problems.

In the smoothed finite element method (S-FEM), the domain is

divided into smoothing domains where the strain is smoothed as

shown in Fig. 1. Typically, the geometry of the smoothing

domains is derived directly from the standard simplex mesh

geometry. Then with the divergence theorem, numerical integra-

tion is transferred from the interior to the boundary of the

smoothing domains [23,24]. Critically, this procedure results in

a discrete weak form without the Jacobian, the matrix used to

map basis function derivatives from the reference element to

the real element in the mesh. In the standard FEM the Jacobian

is required to construct the derivatives of the basis functions.

When distorted meshes are used in the standard FEM, the Jaco-

bian becomes ill-conditioned, and this affects the accuracy of

the method. Because the Jacobian is not required in S-FEM, the

resulting method is significantly more robust than the standard

FEM on highly distorted meshes.

It is also known that the S-FEM produces stiffness matrices that

are less stiff than the standard FEM, and in certain cases this prop-

erty can be used to overcome volumetric locking. Since S-FEM was

introduced, its properties have been studied from a theoretical

viewpoint [18,19,25–29], extended to n-sided polygonal elements

[30] and applied to many engineering problems such as plate

and shell analysis [31–34].

Particularly, Bordas et al. [35] recalled the central theory and

features of S-FEM and showed notable properties of S-FEM which

depend on the number of smoothing domains in an element. More-

over, Bordas et al. [35] presented the coupling of strain smoothing

and partition of unity enrichment, so called SmXFEM, with exam-

ples of cracks in linear elastic continua and arbitrary cracks in

plates.

The contribution of this paper to the literature is to present a

robust, efficient and stable form of the smoothed finite element

methods to simulate both compressible and nearly-compressible

hyperelastic bodies. We study two forms of smoothing (node-

based and edge-based) and compare their relative merits. A key

ingredient of our method is to add cubic bubbles to each element

to ensure inf-sup stability. Although bubbles have been suggested

before in the context of linear elastic S-FEM by Nguyen-Xuan and

Liu [36] here we make the non-trivial extension to deal with

hyperelastic problems. Finally we present a rigorous testing proce-

dure that demonstrates the superior performance of our approach

over the standard FEM.

The outline of this paper is as follows; first, we briefly review

the idea fundamentals of S-FEM. In Section 3 we formulate the

non-linear S-FEM for hyperelastic neo-Hookean compressible

materials. To demonstrate the accuracy and convergence proper-

ties of the proposed methods we present extensive benchmark

tests in Section 4. Finally, conclusions and future work directions

are summarised in Section 5.

2. Smoothed finite element method (S-FEM)

It was shown in numerous studies that S-FEM provides a higher

efficiency, i.e. computational cost versus error than the conven-

tional FEM for many mechanical problems. We list below some

of the strengths and weaknesses of each variant: the cell-based

smoothed FEM (CS-FEM), the edge-based smoothed FEM

(ES-FEM), the node-based smoothed FEM (NS-FEM), and the

face-based smoothed FEM (FS-FEM).

� Volumetric locking. NS-FEM can handle effectively nearly-

incompressible materials where Poisson’s ratio v? 0.5 [37],

while ES-FEM suffers from volumetric locking. Combining NS-

and ES-FEM gives the so-called the smoothing-domain-based

selective ES/NS-FEM which also overcomes volumetric locking

[38]. In the case of CS-FEM, volumetric locking can be avoided

by selective integration [39].

� Upper and lower bound properties. In typical engineering

analysis with homogeneous Dirichlet boundary conditions the

NS-FEM gives upper bound solution and FEM obtains lower

bound solution in the energy norm. While, in the case of prob-

lem with no external force but non-homogeneous Dirichlet

boundary conditions, NS-FEM and FEM provide lower and upper

bounds in the energy norm, respectively [40,41].

� Static and dynamic analyses. ES-FEM gives accurate and stable

results when solving either static or dynamic problems [42]. In

contrast, although NS-FEM is spatially stable, it is temporally

unstable. Therefore, to solve dynamic problems, NS-FEM

requires stabilisation techniques [43,44]. CS-FEM can also be

extended to solve dynamic problems [45].

� Other features. In NS-FEM, the accuracy of the solution in the

displacement norm is comparable to that of the standard FEM

using the same mesh, whereas the accuracy of stress solutions

Fig. 1. (a) Three smoothing domains in the three-node triangular (T3) finite mesh for edge-based smoothed FEM (ES-FEM), (b) three smoothing domains in the three-node

triangular (T3) finite mesh for node-based smoothed FEM (NS-FEM).
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in the energy norm is superior to that of FEM [38]. In terms of

computational time, in general, ES-FEM is more expensive than

conventional FEM on the same mesh [38].

2.1. Non-linear elasticity and S-FEM approximation

The principle of virtual work for finite elasticity can be written

in the Galerkin weak form [46–48]:

Z

X

@W
@~F

ðX; ~FðuÞÞ : rvdX ¼
Z

X

f � vdV þ
Z

CN

g � vdA ð1Þ

where the smoothed deformation gradient ~F ¼ Iþru is written in

terms of displacements u, v is the set of admissible test functions.

The strain energy density function W for a compressible neo-

Hookean material [49] is:

W ¼ 1

2
kðln JÞ2 � l ln J þ 1

2
lðtrC� 3Þ ð2Þ

where Lame’s first parameter k is k ¼ k� 2
3
l, and the shear modulus

l > 0 and the bulk modulus k > 0 are material parameters.

The smoothed deformation gradient ~F for the proposed tech-

nique is:

~FðxkÞ ¼
1

Ak

Z

Xk

FðxkÞUðxkÞdX ð3Þ

where the deformation gradient F is given in Appendix A.

To find an approximate solution using Eq. (2) for the displace-

ment field u, we employ the Newton-Raphson method. At iteration

iter + 1, knowing the displacement uiter from iteration iter, find riter
that satisfies [46]:

DRðuiterÞ � riter ¼ �RðuiterÞ ð4Þ

where

RðuÞ ¼
Z

X

@W
@~F ij

ðx; ~FðuÞÞ @v i

@Xj

dV �
Z

X

f iv idV �
Z

CN

giv idA ð5Þ

DRðuÞ � r ¼
Z

X

@2W
@~F ij@~Fkl

ðx; ~FðuÞÞ @rk
@Xl

@v i

@Xj

dV ð6Þ

and i; j; k; l 2 f1;2g for two dimensional problems.

The energy function Eq. (5) and its directional derivatives Eq. (6)

become the following equivalent formulations, respectively:

RðuÞ ¼
Z

X

2
@W
@~Cij

~Fki

@vk

@Xj

dV �
Z

X

f iv idV �
Z

CN

giv idA ð7Þ

DRðuÞ � r ¼
Z

X

4
@2W

@~Cij@~Ckl

~Fpi

@vp

@Xj

~Fsk

@rs
@Xl

þ 2
@W
@~Cij

@rk
@X i

@vk

@Xj

dV ð8Þ

where i; j; k; l;p; s 2 f1;2g.
The resulting algebraic system for the numerical approximation

of Eq. (4) is assembled from the block systems:

~K11
~K12

~K12
~K22

" #

r1

r2

� �

¼
~b1

~b2

" #

ð9Þ

By taking v ¼PINIv I , we obtain the stiffness matrix ~Kiter with fol-

lowing components:

~K11 ¼
Z

X

4
@2W

@~Cij@~Ckl

d1i þ
@u1

@X i

� �

@N1

@Xj

d1k þ
@u1

@Xk

� �

@N1

@Xl

þ 2
@W
@Cij

@N1

@X i

@N1

@Xj

dV

~K12 ¼
Z

X

4
@2W

@Cij@Ckl

d1i þ
@u1

@X i

� �

@N1

@X i

d2k þ
@u2

@Xk

� �

@N2

@Xl

dV

~K21 ¼ ~K12

~K22 ¼
Z

X

4
@2W

@~Cij@~Ckl

d2i þ
@u2

@X i

� �

@N2

@Xj

d2k þ
@u2

@Xk

� �

@N2

@Xl

þ 2
@W
@Cij

@N2

@X i

@N2

@Xj

dV

ð10Þ

and the components of the load vector are:

~b1 ¼ �
Z

X

2
@W
@Cij

d1i þ
@u1

@Xi

� �

@N1

@Xj

þ
Z

X

f 1N1dV þ
Z

CN

g1N1dA

~b2 ¼ �
Z

X

2
@W
@Cij

d2i þ
@u2

@Xi

� �

@N2

@Xj

þ
Z

X

f 2N2dV þ
Z

CN

g2N2dA

ð11Þ

The smoothed tangent stiffness ~Ktan ¼ ~Kmat þ ~Kgeo can be re-written

using Eq. (10):

~Kmat ¼
Z

X

~BT
0
~C~B0dX ¼

X

Ne

k¼1

Z

Xk

~BT
0
~C~B0dX ¼

X

Ne

k¼1

~BT
0
~C~B0Ak

~Kgeo ¼
Z

X

~BT~S~BdX ¼
X

Ne

k¼1

Z

Xk

~BT~S~BdX ¼
X

Ne

k¼1

~BT~S~BAk

ð12Þ

where the smoothed strain-displacement matrices ~B0 and ~B can be

expressed respectively as (also see in Fig. 2)

~B0ðxÞ ¼
~BI1

~F11
~BI1

~F21

~BI2
~F12

~BI2
~F22

~BI2
~F11 þ ~BI1

~F12
~BI1

~F22 þ ~BI2
~F21

2

6

4

3

7

5
ð13aÞ

~BðxÞ ¼

~BI1 0
~BI2 0

0 ~BI1

0 ~BI2

2

6

6

6

4

3

7

7

7

5

ð13bÞ

and by Eq. (11) the load vector ~b is:

~b ¼
X

Ne

k¼1

~B0f~SgAk ð14Þ

where matrix ~S is:

~S ¼

~S11 ~S12 0 0
~S12 ~S22 0 0

0 0 ~S11 ~S12

0 0 ~S12 ~S22

2

6

6

6

6

4

3

7

7

7

7

5

ð15Þ

and

f~Sg ¼
~S11
~S22
~S12

8

>

<

>

:

9

>

=

>

;

ð16Þ

where the fourth-order elasticity tensor ~C is:

~C ¼
~C11

~C12 0
~C12

~C22 0

0 0 ~C66

2

6

4

3

7

5
ð17Þ
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Finally, the global system of equations Eq. (4) can be written as:

~Kiterriter ¼ ~biter ð18Þ

and

uiterþ1 ¼ uiter þ riter ð19Þ

3. Enriched strain smoothing method with bubble functions

In the finite element method, to apply the Ritz-Galerkin method

to a variational problem, a finite dimensional sub-space of space V

is required. The space V defined on domain X is approximated by

simple functions which are polynomials [50].

V ¼ fu 2 ðH1ðXÞÞ2; u ¼ uC on CDg ð20Þ

where displacement u, boundary C and a Hilbert space H
1ðXÞ. In this

space, we cannot avoid the locking phenomenon in the incompressible

limit, and S-FEM may face this obstacle as well because in both FEM

and S-FEM, the same low-order simplex elements are used. One popu-

lar technique to overcome the locking effects is employing bubble

functions within mixed finite element approximation [51,52].

Nguyen-Xuan and Liu [36] proposed a bubble enriched smoothed finite

element method called the bES-FEM (see also [53]). In addition, further

studies of bubble functions are used inmixed finite strain plasticity for-

mulation with MINI element for quasi-incompressible plasticity frac-

tures [54], and brittle and ductile models [14].

A bubble function supplements an additional displacement field

at a node placed at centroid of triangle T. In contrast to the MINI

element, ES-FEM constructs a displacement-based formulation.

ES-FEM with a bubble function has only a linear displacement field

as unknown which has value one at the centroid of triangle T and

the pressure vanishes at the edges of triangle T. As shown in Fig. 3,

and interior node is located at the geometric centre with an addi-

tional displacement field associated with the cube bubble.

The cubic bubble function introduced in [55] is used in this

paper. Since the first three basis functions are not zero at the cen-

troid (1/3,1/3), a basis function �Wðn;gÞ ¼ ½1� n� g; n; g;

27ngð1� n� gÞ�T is necessarily required transformation form gives as:

Wðn;gÞT ¼ �Wðn;gÞTB�1
S ¼ ½1� n� g; n; g; 27ngð1� ngÞ�

1 0 0 0

0 1 0 0

0 0 1 0

� 1
3

� 1
3

� 1
3

1

2

6

6

6

4

3

7

7

7

5

ð21Þ
and therefore the basis functions become as:

Wðn;gÞ ¼

ð1� n� gÞ � 9ngð1� n� gÞ
n� 9ngð1� n� gÞ
g� 9ngð1� n� gÞ
27ngð1� n� gÞ

2

6

6

6

4

3

7

7

7

5

ð22Þ

The properties of renewed basis functions and cubic bubble

function of a right 45� three-node triangular element are given as

(also see in Fig. 4):

Wb > 0 in Xe

Wb ¼ 0 on Ce

Wb ¼ 1 at internal nodes

8

>

<

>

:

ð23Þ

4. Numerical examples

Three numerical examples, simple shear, lateral extension and

‘‘Not-so-simple” shear deformation, are chosen as benchmarks.1

These examples are given in [46,48,56] with analytical solutions.

Then, we test the behaviour of the method in the near-

incompressible limit (Poisson’s ratio v? 0.5) for the Cook’s mem-

brane problem [57] with bulk moduli (k = 1.96, 10, 102, 103, 104,

105, 106 and 107) and mesh distortion sensitivity (artificially dis-

torted meshes) for the problem of a block under bending [58].

4.1. Simple shear deformation

For simple shear deformation, the deformation gradient takes

the form:

F ¼
1 k 0

0 1 0

0 0 1

2

6

4

3

7

5
ð24Þ

where k > 0. For this deformation, the strain invariants are:

I1 ¼ k
2 þ 3 ¼ I2; I3 ¼ 1 ð25Þ

Thus the incompressibility condition is always satisfied regardless

of the material characteristics (isochoric deformation).

Substituting this in Eq. (2) gives the following strain energy

function:

W ¼ l
2
k
2 ð26Þ

Fig. 2. The integration is performed on Gauss points located at the mid-point of the boundaries Ck of the smoothing domain Xk.

1 For these problems, following parameters for Newton-Raphson method are used:

tolerance is 10�9, the number of load step is 50–100 and the number of iteration to

convergence is 4–6.
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The non-zero entries of the corresponding Cauchy stress tensor are

[59,46]:

r11 ¼ b0 þ b1ð1þ k
2Þ þ b�1;

r22 ¼ b0 þ b1 þ b�1ð1þ k
2Þ;

r33 ¼ b0 þ b1 þ b�1;

r12 ¼ kðb1 � b�1Þ;

ð27Þ

where

b0 ¼ 2
@W
@I3

¼ �l; b1 ¼ 2
@W
@I1

¼ l; b�1 ¼ 0: ð28Þ

Hence Eq. (27) can be written:

r11 ¼ k
2l; r22 ¼ r33 ¼ 0; r12 ¼ kl ð29Þ

Fig. 3. Lagrange triangular elements: (a) linear Lagrange element, (b) quadratic Lagrange element and (c) cubic Lagrange element.

Fig. 4. Renewed basis functions and the cubic bubble function associated the centroid of a right 45� three-node triangular (T3) element.
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The resulting first Piola-Kirchhoff stress tensor is then:

P ¼
r11 � kr12 r12 0

r12 � kr22 r22 0

0 0 r33

2

6

4

3

7

5
¼

0 kl 0

kl 0 0

0 0 0

2

6

4

3

7

5
ð30Þ

For this section, the shear and bulk moduli used are l ¼ 0:6 and

j ¼ 100, respectively. The higher value of j, the material is more

incompressible.

Dirichlet boundary conditions. To obtain the simple shear of a

square section as shown in Fig. 5, the following Dirichlet boundary

conditions can be imposed:

� All edges: ðu1;u2Þ ¼ ðkX2;0Þ.

Fig. 6 illustrates the deformed shape of the standard FEM and

the proposed technique for the simple shear deformation with

Dirichlet boundary conditions when the deformation is k = 1 for

both the FEM and the S-FEM.

The strain energies for the analytical, FEM and ES-FEM solutions

are shown in Table 1. The analytical solution can be calculated by

Eq. (26) and is such that W ¼ 0:3.

Table 1 provides the values of the relative error in strain energy for

FEM, ES-FEM and NS-FEM. The values of the proposed formulations

are within machine precision for moderate and coarse meshes.

4.2. Pure shear deformation

In this section pure shear deformation is considered, the defor-

mation of pure shear is given as [46,60]:

x1 ¼ aX1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðb2 � a2Þ
q

X2; x2 ¼ bX2; x3 ¼ cX3 ð31Þ

and therefore the deformation gradient for pure shear F is:

F ¼
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b
2 � a2

p

0

0 b 0

0 0 1

2

6

4

3

7

5
ð32Þ

Therefore the left Cauchy-Green tensor B is:

B ¼ FFT ¼
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b
2 � a2

p

0
0 b 0
0 0 1

2

4

3

5

a 0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b
2 � a2

p

b 0
0 0 1

2

4

3

5

¼
b
2

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b
2 � a2

p

0

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b
2 � a2

p

b
2

0
0 0 1

2

6

4

3

7

5
ð33Þ

The Cauchy stress is:

r ¼
lð1� b

2Þ lb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b
2 � a2

p

0

lb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b
2 � a2

p

lð1� b
2Þ 0

0 0 0

2

6

6

4

3

7

7

5

ð34Þ

Mixed boundary conditions. To obtain the pure shear of a square

section, the mixed Neumann and Dirichlet boundary conditions

can be imposed as follows:

� Bottom edge: ðP1;u2Þ ¼ ð�r12;0Þ;
� Left edge: ðP1; P2Þ ¼ ðr11;�r21Þ;
� Right edge: ðP1; P2Þ ¼ ð�r11;r21Þ;
� Top edge: ðP1; P2Þ ¼ ðr12;r22Þ.

The deformed shape of the approach for pure shear with the

mixed Neumann and Dirichlet boundary conditions are shown in

Fig. 7.

4.3. Uniform extension with lateral contraction

We deform a 3D sample of compressible material in Eq. (24) by

the following triaxial stretch:

x1 ¼ k1X1; x2 ¼ k2X2; x3 ¼ k3X3 ð35Þ

where X = [X1, X2, X3]
T and x = [x1, x2, x3]

T denote the reference

(Lagrangian) and current (Eulerian) coordinates, respectively, and

ki > 0, i = 1, 2, 3, are positive constants. The corresponding deforma-

tion gradient is:

F ¼
k1 0 0

0 k2 0

0 0 k3

2

6

4

3

7

5
ð36Þ

and the left Cauchy-Green tensor is B = FFT.

We can then calculate the strain invariants using the following

formulae:

I1ðBÞ ¼ trB

I2ðBÞ ¼ trðcofðBÞÞ ¼ 1

2
ððtrBÞ2 � trB2Þ

I3ðBÞ ¼ detB

ð37Þ

For the triaxial deformation, the strain invariants are:

I1 ¼ k21 þ k22 þ k23

I2 ¼ k21k
2
2 þ k22k

2
3 þ k23k

2
1

I3 ¼ k21k
2
2k

2
3

ð38Þ

In particular, if the deformation is isochoric (preserves volume),

then I3 = 1.

The biaxial deformation associated with a square section of the

material is then obtained by setting k3 ¼ 1. In this case, if the defor-

mation is isochoric, then k2 ¼ 1=k1, and the strain invariants are:

I1 ¼ k21 þ
1

k21
þ 1 ¼ I2; I3 ¼ 1 ð39Þ

Substituting these in Eq. (2) gives the following value for the strain

energy function:

Fig. 5. Simple shear deformation of a unit square.
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W ¼ l
2

k21 þ
1

k21
� 2

 !

ð40Þ

By the Rivlin-Ericksen representation, the Cauchy stress takes

the general form:

r ¼ b0Iþ b1Bþ b�1B
�1 ð41Þ

where the elastic response coefficients are calculated as follows:

b0 ¼ 2
ffiffiffiffi

I3
p I2

@W
@I2

þ I3
@W
@I3

� �

b1 ¼ 2
ffiffiffiffi

I3
p @W

@I1

b�1 ¼ �2
ffiffiffiffi

I3
p @W

@I2

ð42Þ

In particular, for the biaxial deformation of the square material,

the non-zero components of the Cauchy stress are:

r11 ¼ b0 þ b1k
2
1 þ b�1

1

k21

r22 ¼ b0 þ b1

1

k21
þ b�1k

2
1

r33 ¼ b0 þ b1 þ b�1

ð43Þ

where

b0 ¼ 2
@W
@I3

¼ �l; b1 ¼ 2
@W
@I1

¼ l; b�1 ¼ 0 ð44Þ

Hence, the non-zero components of the Cauchy stress tensor

are:

r11 ¼ lðk21 � 1Þ; r22 ¼ l
1

k21
� 1

 !

ð45Þ

Dirichlet boundary conditions. To obtain the above biaxial stretch

of a square section, assuming that the sides of the square are

aligned with the directions X1 and X2, and the bottom left-hand

corner is at the origin O (0,0), then the following Dirichlet bound-

ary conditions can be imposed:

� Bottom edge: ðu1;u2Þ ¼ ððk1 � 1ÞX1;0Þ;
� Left-hand edge: ðu1;u2Þ ¼ ð0; ð1=k1 � 1ÞX2Þ;
� Top and right-hand edge: ðu1;u2Þ ¼ ððk1 � 1ÞX1; ð1=k1 � 1ÞX2Þ.

The deformed shapes for the uniform extension with lateral

contraction with Dirichlet boundary conditions are illustrated in

Fig. 8. The relative strain energy errors are shown in Table 2.2

Mixed boundary conditions. Alternatively, Neumann boundary

conditions can be imposed on some of the edges. Before we can

do this, we need to recall the general formula for the first Piola-

Kirchhoff stress tensor:

P ¼ rcofðFÞ ¼ rJF�T ð46Þ

Then, for the biaxial stretch with k2 ¼ 1=k1 and k3 ¼ 1, we

obtain the following non-zero components for this tensor:

P11 ¼ r11

k1
¼ l k1 �

1

k1

� �

¼ �P22 ð47Þ

At the corners, if one of the adjacent edges is subject to Dirichlet

conditions and the other to Neumann conditions, the Dirichlet con-

ditions are essential and take priority over the Neumann conditions.

If both edges are subject to Neumann conditions, these are to be

imposed simultaneously at the corner.

Fig. 9 represents the deformed shapes with mixed boundary

conditions, and the relative errors for this problem are given in

Table 3. Note that all methods provide, again, the exact results

down to machine precision.

4.4. ‘‘Not-So-Simple” shear deformation

Consider now the non-homogeneous deformation:

x1 ¼ X1 þ kX
2
2; x2 ¼ X2; x3 ¼ X3 ð48Þ

for which the deformation gradient is:

F ¼
1 2kX2 0

0 1 0

0 0 1

2

6

4

3

7

5
ð49Þ

where k > 0.

For clarity of presentation, denote K = 2kX2. Then the strain

invariants are:

Fig. 6. Deformed shape for the simple shear deformation with Dirichlet BCs (4 � 4

T3 mesh with bulk modulus j = 100).

Fig. 7. Deformed shape for the pure shear deformation with Neumann BCs (4 � 4

T3 mesh with bulk modulus j = 100).

Table 1

Strain energy relative error (�10�12%) for the simple shear deformation with Dirichlet

boundary conditions: FEM, edge-based smoothing and node-based-smoothing.

Num. of elements FEM ES-FEM NS-FEM

4 � 4 0.0019 �0.0037 0.0056

8 � 8 �0.0019 0.0148 0.0037

16 � 16 0.0093 �0.0056 �0.0130

32 � 32 �0.0296 0.0500 0.0056

Strain energy relative error is given by: WNumerical�WExact

WExact

� �

� 100%.

2 We observe that all methods provide the exact results at machine precision.
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I1 ¼ K2 þ 3 ¼ I2 and I3 ¼ 1 ð50Þ

and substituting Eq. (49) in Eq. (2) gives the strain energy function:

W ¼ l
2
K2 ¼ l

2
ð2kX2Þ2 ¼ 2lk2X2

2 ð51Þ

Note that this function is not constant.

Dirichlet boundary conditions. To obtain the simple shear of a

square section, the following Dirichlet boundary conditions can

be imposed (see Fig. 10):

� All edges: ðu1;u2Þ ¼ ðkX2
2;0Þ

The deformed shape of the ‘‘Not-so-simple” shear deformation

is illustrated in Fig. 11. The strain energy relative errors for FEM

and S-FEM are given in Table 4. The results of the FEM are compa-

rable to those of the S-FEM; however, errors for ES-FEM and NS-

FEM are globally small, around �0.4% and �0.5% respectively.

4.5. Near-incompressibility

In this section, near-incompressibility tests are studied. For

these examples, different bulk moduli are used, j = 102, 103 and

104. With those bulk moduli, for which the Poisson’s ratio is close

to 0.5, the model becomes nearly-incompressible. The geometry of

the structure is illustrated in Fig. 12.

Fig. 13 represents the convergence of the strain energy for the

standard FEM, ES-FEM, and NS-FEM with T3 elements. The num-

bers of elements along each side are 4 � 4, 8 � 8, 10 � 10,

16 � 16, 20 � 20, 32 � 32, 40 � 40 and 100 � 100. Because an ana-

lytical solution is not available for this problem we calculate a ref-

erence solution numerically using a mixed finite element method

on a highly-refined mesh within the DOLFIN finite element soft-

ware [61,62]. As shown in Fig. 13, edge- and node-based S-FEM

are proven to be accurate and reliable for both compressible and

nearly-incompressible problems. The x- and y-directions represent

logarithmic number of global degrees of freedom and logarithm of

a fraction of numerical results and analytical solution, respectively.

When the Poisson’s ratio is close to 0.5, the convergence of the ES-

FEM becomes slow. The NS-FEM provides here an upper bound

solution. Tables 5–7 provide the strain energy relative errors for

FEM, ES-FEM and NS-FEM. As shown in Table 7, S-FEM handles

near-incompressibility excellently, with results provided by NS-

FEM up to 140 times more accurate than the FEM.

4.6. Mesh distortion sensitivity

In this section, a mesh distortion sensitivity is considered. For

this test, results of DOLFIN finite element software are compared

with the gradient smoothing techniques. We use artificially dis-

torted meshes which are given by [35]:

x0 ¼ xþ rcaMx

y0 ¼ yþ rcaMy
ð52Þ

where rc is a random number between �1.0 and 1.0, a is the mag-

nitude of the distortion and Mx, My are initial regular element sizes

in the x- and y-direction. The higher a the more distorted the mesh.

The geometry of the examples is given in Sections 2.2.6 and

5.2.4 of [58] (see also Fig. 14). Consider a rectangle in the reference

Cartesian coordinates (X, Y) defined by:

Fig. 9. Deformed shape for the uniform extension with lateral contraction with

Neumann BCs (4 � 4 T3 mesh with the bulk modulus j = 100).

Fig. 8. Deformed shape for the uniform extension with lateral contraction with

Dirichlet BCs (4 � 4 T3 mesh with bulk modulus j = 100).

Table 2

Strain energy relative error (�10�12%) for the uniform extension with lateral

contraction with Dirichlet boundary conditions: FEM, edge-based smoothing and

node-based smoothing.

Num. of elements FEM ES-FEM NS-FEM

4 � 4 �0.0265 �0.0176 �0.0059

8 � 8 �0.0221 0.0132 �0.0103

16 � 16 �0.0882 �0.0147 �0.0471

32 � 32 0.3809 �0.3618 �0.0426

Strain energy relative error is given by: WNumerical�WExact

WExact

� �

� 100%.

Table 3

Strain energy relative error (�10�12%) for the uniform extension with lateral

contraction with mixed Dirichlet and Neuman boundary conditions: FEM, edge-

based smoothing and node-based smoothing.

Num. of elements FEM ES-FEM NS-FEM

4 � 4 �0.0882 �0.0868 �0.0838

8 � 8 �0.0985 �0.0765 �0.0897

16 � 16 �0.1176 �0.1412 �0.1088

32 � 32 �0.0338 �0.4132 �0.1000

Strain energy relative error is given by: WNumerical�WExact

WExact

� �

� 100%.
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X ¼ ðA1;A2Þ; Y ¼ ð�B;BÞ; Z ¼ ð0; 0Þ ð53Þ

where ðA1;A2;B > 0Þ. The corresponding unit vector for current

cylindrical coordinates ðr; h; zÞ are:

er ¼
cos h

sin h

0

2

6

4

3

7

5
; eh ¼

� sin h

cos h

0

2

6

4

3

7

5
; ez ¼

0

0

0

2

6

4

3

7

5
ð54Þ

The deformation in cylindrical coordinates is:

r ¼ f ðXÞ ¼
ffiffiffiffiffiffiffiffiffi

2aX
p

h ¼ gðYÞ ¼ 1

a
Y

z ¼ 0

ð55Þ

For implementation, the given cylindrical coordinates are rewritten

in Cartesian form:

x ¼ r cos h ¼
ffiffiffiffiffiffiffiffiffi

2aX
p

cos
Y

a

y ¼ r sin h
ffiffiffiffiffiffiffiffiffi

2aX
p

sin
Y

a
z ¼ 0

ð56Þ

Dirichlet boundary conditions. Dirichlet boundary conditions are

imposed as following:

� Bottom edge (Y = �B):

ux ¼
ffiffiffiffiffiffiffiffiffi

2aX
p

cos
�B

a
� X

uy ¼
ffiffiffiffiffiffiffiffiffi

2aX
p

sin
�B

a
þ B

� Top edge (Y = B):

ux ¼
ffiffiffiffiffiffiffiffiffi

2aX
p

cos
B

a
� X

uy ¼
ffiffiffiffiffiffiffiffiffi

2aX
p

sin
B

a
� B

� Left-hand edge (X = A1):

ux ¼
ffiffiffiffiffiffiffiffiffiffiffi

2aA1

p

cos
Y

a
� A1

uy ¼
ffiffiffiffiffiffiffiffiffiffiffi

2aA1

p

sin
Y

a
� Y

� Right-hand edge (X = A2):

ux ¼
ffiffiffiffiffiffiffiffiffiffiffi

2aA2

p

cos
Y

a
� A2

uy ¼
ffiffiffiffiffiffiffiffiffiffiffi

2aA2

p

sin
Y

a
� Y

Parameters, a = 0.9, A1 = 2, A2 = 3 and B = 2 for Dirichlet bound-

ary conditions, the distortion factors a = 0.1, 0.2, 0.3, 0.4 and 0.45

for mesh distortion, and l = 0.6 and j = 1.95 (E � 1.6326,

v � 0.3605) for neo-Hookean material, are used in this test. In addi-

tion, we can obtain an exact solution for this example [58]. The

deformation gradient F for this problem is:

F ¼
f
0

0 0

0 fg
0

0

0 0 1

2

6

4

3

7

5
ð57Þ

Fig. 10. ‘‘Not-So-Simple” shear deformation of a square.

Fig. 11. Deformed shape for the ‘‘Not-So-Simple” shear deformation with Dirichlet

BCs (10 � 10 T3 mesh with the bulk modulus j = 100).

Table 4

Strain energy relative error (%) for the ‘‘Not-so-simple” shear example: edge-based

and node-based smoothing.

Num. of elements FEM ES-FEM NS-FEM

4 � 4 �1.7452 �2.9355 �5.2169

8 � 8 �0.6442 �1.0000 �1.6983

16 � 16 �0.3799 �0.4774 �0.6662

32 � 32 �0.3162 �0.3419 �0.3902

Strain energy relative error is given by: WNumerical�WExact

WExact

� �

� 100%.

Fig. 12. The geometry of Cook’s membrane with bending load.
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Fig. 13. Strain energy convergence of the Cook’s membrane with the bulk moduli 102, 103 and 104:Wnumerical is numerical solutions of FEM and S-FEM, and WReferences is the

solution of DOLFIN finite element software. For nearly-incompressible, S-FEM, particularly NS-FEM, performs much better than the classical FEM.

Table 5

Strain energies relative error of the Cook’s membrane for the standard FEM, ES-FEM

and NS-FEM with bulk modulus j = 100.

Bulk modulus j = 100

FEM ES-FEM NS-FEM

4 � 4 �44.3239 �28.1828 5.0776

8 � 8 �32.2319 �10.8392 2.4749

16 � 16 �18.8038 �3.2010 0.9324

32 � 32 �8.3037 �1.1087 0.3672

Strain energy relative error is given by: WNumerical�WExact

WExact

� �

� 100%.

Table 6

Strain energies relative error of the Cook’s membrane for the standard FEM, ES-FEM

and NS-FEM with bulk modulus j = 1000.

Bulk modulus j = 1000

FEM ES-FEM NS-FEM

4 � 4 �50.3251 �42.8593 4.2691

8 � 8 �45.5338 �27.8347 2.4078

16 � 16 �38.3660 �11.1631 0.9216

32 � 32 �27.1125 �3.4408 0.3649

Strain energy relative error is given by: WNumerical�WExact

WExact

� �

� 100%.

Table 7

Strain energies relative error of the Cook’s membrane for the standard FEM, ES-FEM

and NS-FEM with bulk modulus j = 10,000.

Bulk modulus j = 10,000

FEM ES-FEM NS-FEM

4 � 4 �51.1435 �47.4285 4.3948

8 � 8 �48.7502 �41.6966 2.3891

16 � 16 �46.6042 �26.4562 0.9102

32 � 32 �42.7694 �10.6931 0.3593

Strain energy relative error is given by: WNumerical�WExact

WExact

� �

� 100%.

Fig. 14. The geometry of bending of a rectangle.
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where f, g, f0 and g0 are:

f ¼
ffiffiffiffiffiffiffiffiffi

2aX
p

; f
0 ¼

ffiffiffiffiffiffi

2a
p

2
ffiffiffiffi

X
p ; g ¼ 1

a
Y; g0 ¼ 1

a
ð58Þ

The strain energy density can be rewritten as:

W ¼ 1

2
lðI1 � 3Þ þ 1

2
kðln JÞ2 � l ln J ¼ 1

2
lðI1 � 3Þ; J ¼

ffiffiffiffi

I3
p

¼ 1

ð59Þ

where I1 = f02 + (fg0)2 + 1. Hence, Eq. (59) is:

W ¼ l
2

a
2X

þ 2X

a
� 2

� �

¼ l
ða� 2XÞ2

4aX
¼ l

ð0:9� 2XÞ2
3:6X

ð60Þ

where a = 0.9 and then strain energy is

W ¼
R 3

2

R 2

�2
WðXÞdYdX � 4:485618.

Fig. 15 illustrates the deformed configurations of bending block

with different distortion factors. When the distortion factor a is

close to 0.5, the meshes become severely distorted. In this test,

we only impose Dirichlet boundary conditions which means that

applied external forces vanish and no body force acts on the

domain.

Detailed values of strain energy relative error are given in

Tables 8–11. The relative error of S-FEM is much less than that of

the FEM: errors for ES-FEM are about �1.0% and �1.9%, those of

NS-FEM are around �1.5% and �3.5% with finer meshes (2 � 32

and 4 � 32) and highly distorted meshes (a = 0.45) whilst errors

for FEM are approximately �0.7% and 260%. Moreover, MINI ele-

ment gives accurate results; however, when meshes are severely

distorted, MINI element fails to converge. This indicates that the

S-FEM can effectively alleviate the mesh distortion sensitivity.

4.7. Edge-based smoothing strain using bubble functions

Lastly, we provide the results of the enhanced strain smoothing

method, implementing Cook’s membrane with the larger bulk

moduli j = 105, 106 and 107. Parameters which are used in this sec-

tion are exactly the same as in the previous section. Fig. 16 illus-

trates the convergence of the strain energy. DOLFIN finite

element software based on mixed finite element formulation on

highly refined meshes is used as a reference solution.

The strain energy convergence of given techniques are

described in Fig. 16. As shown in Fig. 16, NS-FEM performs much

better than ES-FEM and the classical FEM. However the bubble-

Fig. 15. Deformed shape of the rectangle with different distortion factors: (a) regular mesh, (b) a = 0.1, (c) a = 0.2, (d) a = 0.3, (e) a = 0.4, (f) a = 0.45.
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enhanced ES-FEM produces more accurate results and higher con-

vergence rates than NS-FEM. It is clearly shown that the bubble

function within ES-FEM effectively improves the quality of T3 ele-

ments in the nearly-incompressible limit.

Relative errors in the strain energy for FEM, ES-FEM, NS-FEM

and ES-FEM with the bubbles are given in Tables 12–15. The rela-

tive errors of FEM and ES-FEM are around 50% for both methods

with fine meshes, whereas NS-FEM and bES-FEM prevent volumet-

Table 8

Strain energies relative error for the bending of a rectangle using the standard FEM with a = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.45. The higher the value of a the more distorted the mesh is.

FEM

a = 0.0 a = 0.1 a = 0.2 a = 0.3 a = 0.4 a = 0.45

2 � 4 �0.0104 15.0394 207.8773 26.7563 372.4084 75.7918

2 � 8 �1.0311 �0.3799 2.9302 9.5888 16.1777 2.7048

2 � 16 �0.5370 �0.5493 �0.2529 1.0435 2.5121 �8.0411

2 � 32 �0.3738 �0.3704 �0.3814 �0.3209 �0.2496 �0.6437

4 � 4 �0.3003 20.9957 37.5691 98.2786 25.7889 415.3821

4 � 8 �1.3384 3.1601 6.9526 50.9083 5.8777 37.5263

4 � 16 �0.8566 �0.4581 0.6311 3.4588 0.5084 11.6704

4 � 32 �0.6992 �0.6773 �0.5890 �0.4389 �100.00 260.4544

Strain energy relative error is given by: WNumerical�WExact

WExact

� �

� 100%.

Table 9

Strain energies relative error of bending of a rectangle for the ES-FEM with a = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.45. The higher the value of a the more distorted the mesh is.

ES-FEM

a = 0.0 a = 0.1 a = 0.2 a = 0.3 a = 0.4 a = 0.45

2 � 4 �10.2873 �5.2592 18.6808 4.2299 108.2842 99.6165

2 � 8 �4.7602 �4.6609 �3.2316 0.3819 3.3278 �3.1995

2 � 16 �1.8747 �1.8473 �1.7188 �1.4042 �1.0809 �0.6074

2 � 32 �1.0366 �1.0339 �1.0355 �1.0064 �1.0212 �0.9328

4 � 4 �10.4365 �1.6956 5.6167 38.2155 82.1832 398.7013

4 � 8 �4.8010 �2.6057 �0.7515 12.6831 18.5201 22.3123

4 � 16 �1.8911 �1.7469 �1.3835 �0.5151 �0.5468 �0.0267

4 � 32 �1.0479 �1.0406 �1.0317 �1.0076 �1.2111 �1.9604

Strain energy relative error is given by: WNumerical�WExact

WExact

� �

� 100%.

Table 10

Strain energies relative error of bending of a rectangle for the NS-FEM with a = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.45. The higher the value of a the more distorted the mesh is.

NS-FEM

a = 0.0 a = 0.1 a = 0.2 a = 0.3 a = 0.4 a = 0.45

2 � 4 �18.7712 �16.8430 �15.2692 �16.6087 �17.5341 �33.9235

2 � 8 �8.9208 �9.1403 �9.3727 �8.2951 �6.9028 �5.3375

2 � 16 �3.4159 �3.4044 �3.4011 �3.4437 �3.5667 �1.2245

2 � 32 �1.7789 �1.7803 �1.7894 �1.7800 �1.8358 5.5170

4 � 4 �17.4487 �15.1659 �9.3829 �7.3456 �19.3577 7.1348

4 � 8 �8.6421 �8.4482 �8.4558 �8.1246 �8.7415 �7.7612

4 � 16 �3.1376 �3.1419 �3.1703 �3.1546 �3.1434 �3.6126

4 � 32 �1.4738 �1.4745 �1.4972 �1.5394 �2.0218 �3.5447

Strain energy relative error is given by: WNumerical�WExact

WExact

� �

� 100%.

Table 11

Strain energies relative error of bending of a rectangle for the MINI element with a = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.45. The higher the value of a the more distorted the mesh is.

MINI

a = 0.0 a = 0.1 a = 0.2 a = 0.3 a = 0.4 a = 0.45

2 � 4 0.04954 8.7773 139.3670 21.8627 DNC⁄ DNC⁄

2 � 8 �1.1833 �0.8831 0.7415 5.3501 9.2233 0.4476

2 � 16 �0.6882 �0.7193 �0.5462 0.1692 0.9047 0.3323

2 � 32 �0.4992 �0.4984 �0.5096 �0.4703 �0.4430 �0.4142

4 � 4 �0.1426 13.8506 28.6429 83.3968 112.1389 DNC⁄

4 � 8 �1.3670 1.5785 3.7108 37.2203 35.9437 53.4136

4 � 16 �0.8857 �0.7011 �0.1721 1.2907 0.9638 2.7327

4 � 32 �0.7181 �0.7094 �0.6777 �0.6245 �0.8825 �1.6318

Strain energy relative error is given by: WNumerical�WExact

WExact

� �

� 100%.

DNC⁄: Did Not Converge.
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ric locking in quasi-incompressible limit ðm! 0:5Þ. Notable

improvement of the bubble-enhanced ES-FEM is that its relative

errors, �0.8% for the bulk moduli j = 105, 106 and 107 with 8 � 8

elements, are smaller than those of NS-FEM, 0.9% for the bulk mod-

uli j = 105, 106 and 107 with 16 � 16 elements. In other words,

bubble-enriched ES-FEM has more accurate results and faster con-

vergence and overcomes the overestimation of the stiffness matrix

and the locking problems.

Fig. 16. Strain energy convergence of the Cook’s membrane with the bulk moduli j = 105, 106 and 107: DOLFIN finite element software is to be the reference solution.

Table 12

Strain energies relative error of the Cook’s membrane for the standard FEM with bulk

moduli j = 105, 106 and 107.

FEM

j = 105 j = 106 j = 107

4 � 4 �51.2286 �51.2284 �51.2380

8 � 8 �49.1550 �49.1967 �49.2009

16 � 16 �48.1180 �48.2921 �48.3098

32 � 32 �47.2637 �47.9235 �47.9486

Strain energy relative error is given by: WNumerical�WReference

WReference

� �

� 100%.

Table 13

Strain energies relative error of the Cook’s membrane for the standard ES-FEM with

bulk moduli j = 105, 106 and 107.

ES-FEM

j = 105 j = 106 j = 107

4 � 4 �45.3871 �48.1101 �48.1194

8 � 8 �45.6787 �47.7943 �47.8887

16 � 16 �40.6140 �46.4490 �47.6438

32 � 32 �27.7231 �38.1638 �45.8184

Strain energy relative error is given by: WNumerical�WReference

WReference

� �

� 100%.

Table 14

Strain energies relative error of the Cook’s membrane for the standard NS-FEM with

the higher bulk moduli j = 105, 106 and 107.

NS-FEM

j = 105 j = 106 j = 107

4 � 4 4.5274 4.5461 4.5756

8 � 8 2.3875 2.4000 2.3907

16 � 16 0.9097 0.9113 0.9130

32 � 32 0.3576 0.3594 0.3593

Strain energy relative error is given by: WNumerical�WReference

WReference

� �

� 100%.

Table 15

Strain energies relative error of the Cook’s membrane for the standard ES-FEM with

the bubbles with bulk moduli j = 105, 106 and 107.

bES-FEM

j = 105 j = 106 j = 107

4 � 4 �2.3551 �2.3552 �2.3552

8 � 8 �0.8061 �0.8061 �0.8061

16 � 16 �0.3952 �0.3952 �0.3952

32 � 32 �0.2010 �0.2010 �0.2010

Strain energy relative error is given by: WNumerical�WReference

WReference

� �

� 100%.
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5. Conclusions

In this work, we reviewed the basic theory of the smoothed

finite element method in linear and finite elasticity. Through

numerical examples, we showed the accuracy and convergence

of the proposed method in hyperelasticity, and its ability to over-

come locking and mesh distortion effects.

We also presented the analytical solutions for Simple Shear

deformation with Dirichlet boundary conditions, Uniform Exten-

sion with lateral contraction with both Dirichlet and mixed bound-

ary conditions, and ‘‘Not-So-Simple” Shear deformation with

Dirichlet boundary conditions. We analysed the accuracy of the

proposed technique, compared to those analytical solutions and

numerical results obtained with FEM.

To show the ability of the method to handle nearly-

incompressible problems, bulk moduli j = 1.95, 10, 102, 103 and

104 were used. For nearly-incompressible problems, FEM provides

very slow convergence, whereas S-FEM is shown to be stable and

accurate. When the bulk modulus is large, ES-FEM reveals rela-

tively slower convergence than NS-FEM. Although NS-FEM itself

is stable and reliable for near-incompressibility, enhanced ES-

FEM, using the bubble functions, sufficiently improves the quality

of lower-order simplex element and prevents the locking issue

under large deformations.

Lastly, to study mesh distortion sensitivity, artificially distorted

meshes are constructed with various distortion factors. For heavily

distorted meshes, FEM shows unreliable results, whilst S-FEM per-

forms very well.

As shown in the numerical examples the S-FEM is able to alle-

viate the spurious effects of both shear locking and mesh distortion

whilst requiring only simplex elements, meshes of which are easily

generated. It is therefore apparent that these elements, which are

easily implemented within existing FE codes offer an alternative

to quadrilateral elements. We are currently extending this work

to 3D hyperelastic problems and proceeding to GPU implementa-

tion for real-time applications [63].
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Appendix A. Smoothed deformation gradient

If the deformation gradient F is homogeneous on element, the

displacement field on a single element can be explained as follows:

uðXÞ ¼ u1ðXÞ
u2ðXÞ

� �

¼ a11X1 þ a12X2 þ b1

a21X1 þ a22X2 þ b2

� �

ðA:1Þ

where the undetermined coefficients aij and bi, for i, j = 1, 2, are

constant.

We here consider the smoothed deformation gradient ~F for ES-

FEM. The deformation gradient on a triangle MABC for the standard

FEM in Fig. A1 is:

F ¼ a11 þ 1 a12

a21 a22 þ 1

� �

¼ ðuB
1 � uA

1 Þ=hþ 1 ðuC
1 � uA

1 Þ=h
ðuB

2 � uA
2 Þ=h ðuC

2 � uA
2 Þ=hþ 1

" #

For the smoothed deformation gradient ~F in the smoothing domain

Xk in Fig. A.1, the deformation gradient in the smoothing domain X1
k

can be expressed as following:

u1ðO1Þ ¼
1

3
ðuA

1 þ uB
1 þ uC

1Þ; u2ðO1Þ ¼
1

3
ðuA

2 þ uB
2 þ uC

2Þ ðA:2Þ

Substituting Eq. (A.2) into Eq. (A.1), the displacement field on mid-

point O1 is given by:

1

3
ðuA

1 þ uB
1 þ uC

1Þ ¼ a11
h

3
þ a12

h

3
þ b1

1

3
ðuA

2 þ uB
2 þ uC

2Þ ¼ a21
h

3
þ a22

h

3
þ b2

Similarly, the displacement fields on node B and C can be written as:

uB
1 ¼ a11hþ b1; uB

2 ¼ a21hþ b2 ðA:3Þ

and

Fig. A.1. Smoothing domains associated target edge k for ES-FEM and node k for

NS-FEM to assemble the smoothed deformation gradient ~F.
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uC
1 ¼ a12hþ b1; uC

2 ¼ a22hþ b2 ðA:4Þ

Substituting Eq. (A.4) into Eq. (A.3), we obtain:

a11 � a12 ¼ uB
1 � uC

1

h
; a21 � a22 ¼ uB

2 � uC
2

h

Hence, the displacements on the mid-point O1 are given by:

uA
1 þ uB

1 þ uC
1 ¼ a11hþ a12hþ 3ðuC

1 � a12hÞ
uA
2 þ uB

2 þ uC
2 ¼ a21hþ a22hþ 3ðuC

2 � a22hÞ
ðA:5Þ

From Eq. (A.5), the undetermined coefficient aij are defined as

follows:

a11 ¼ uB
1 � uA

1

h
; a12 ¼ uC

1 � uA
1

h
; a21 ¼ uB

2 � uA
2

h
; a22 ¼ uC

2 � uA
2

h

Similarly, the undetermined coefficient aij for triangle MDCB in

Fig. A.1 are given by:

a11 ¼ uC
1 � uD

1

h
; a12 ¼ uB

1 � uD
1

h
; a21 ¼ uC

2 � uD
2

h
; a22 ¼ uB

2 � uD
2

h

The smoothed deformation gradient is given by Hu et al. [64]:

~F ijðxkÞ ¼
1

Ak

Z

Xk

F ijðxÞUðxÞdX ¼ 1

Ak

Z

Xk

@uh
i

@Xj

� �

UðxÞdXþ dij

where U is:

U ¼
1 x 2 Xk

0 otherwise

	

ðA:6Þ

and then:

~F11 ¼
1

Ak

Z

X1
k

@uh
1

@X1

dXþ
Z

X2
k

@uh
1

@X1

dX

( )

þ1¼ 3

h
2

a111
h
2

6
þ a211

h
2

6

 !

þ 1

~F12 ¼
1

Ak

Z

X1
k

@uh
1

@X2

dXþ
Z

X2
k

@uh
1

@X2

dX

( )

¼ 3

h
2

a112
h
2

6
þ a212

h
2

6

 !

~F21 ¼
1

Ak

Z

X1
k

@uh
2

@X1

dXþ
Z

X2
k

@uh
2

@X1

dX

( )

¼ 3

h
2

a121
h
2

6
þ a221

h
2

6

 !

~F22 ¼
1

Ak

Z

X1
k

@uh
2

@X2

dXþ
Z

X2
k

@uh
2

@X2

dX

( )

þ1¼ 3

h
2

a122
h
2

6
þ a222

h
2

6

 !

þ 1

where Ak ¼ A1
k þ A2

k ¼ h2

6
þ h2

6
¼ h2

3
, and the matrix form is:

~F ¼
1
2

uB
1
�uA

1

h
þ uC

1
�uD

1

h

� �

þ 1 1
2

uC
1
�uA

1

h
þ uB

1
�uD

1

h

� �

1
2

uB
2
�uA

2

h
þ uC

2
�uD

2

h

� �

1
2

uC
2
�uA

2

h
þ uB

2
�uD

2

h

� �

þ 1

2

6

4

3

7

5
ðA:7Þ

In case the edge is on the boundary, the smoothed deformation

gradient ~F can be described as following:

~F ¼
1
2

uB
1
�uA

1

h

� �

þ 1 1
2

uC
1
�uA

1

h

� �

1
2

uB
2
�uA

2

h

� �

1
2

uC
2
�uA

2

h

� �

þ 1

2

6

4

3

7

5
ðA:8Þ
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