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Shape registration is fundamental to 3D object acquisition; it is used to fuse scans from multiple views.
Existing algorithms mainly utilize geometric information to determine alignment, but this typically
results in noticeable misalignment of textures (i.e. surface colors) when using RGB-depth cameras. We
address this problem using a novel approach to color-aware registration, which takes both color and
geometry into consideration simultaneously. Color information is exploited throughout the pipeline to
provide more effective sampling, correspondence and alignment, in particular for surfaces with detailed
textures. Our method can furthermore tackle both rigid and non-rigid registration problems (arising, for
example, due to small changes in the object during scanning, or camera distortions). We demonstrate
that our approach produces significantly better results than previous methods.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Reconstructing 3D objects from multiple scans taken from
different viewpoints is a classical problem. A fundamental step in
this task is surface registration, in which geometric data in local
coordinate systems are aligned to a global coordinate system.
Registration involves two intertwined problems: establishing
correct correspondences between points on different surfaces, and
finding a suitable spatial transformation or deformation that puts
these surfaces into alignment. This is a computationally expensive
task; most methods iteratively optimize correspondences and
transformations alternately.

Surface registration has made substantial progress, and existing
methods perform quite well, even in challenging cases with little
overlap, noise and outliers. However, many methods formulate
registration as an optimization problem based on geometric errors,
and only use geometric information for finding correspondences
and transformations. Such methods work well with textureless
surfaces (in this paper, texture refers to surface coloring, not shape
detail). However, recently developed low-cost RGB-depth (RGB-D)
acquisition devices such as the Microsoft Kinect permit efficient
and cheap capture of textured surfaces, leading to many novel
applications such as clothed 3D human body reconstruction.
Often, the color information has greater detail than the geometric
information, so registration based on geometry alone can lead to
r Ltd. This is an open access article

(Z.-Q. Cheng).
poor results in which the textures are not well aligned. Worse still,
texture misalignments are typically much more noticeable to the
eye than geometric misalignments.

To overcome this problem, we present a novel color-aware
registration algorithm that produces high-quality registration of
textured surfaces. Our method can handle both rigid and non-rigid
alignment: even if scans are supposed to be rigidly related, non-rigid
alignment may be needed to correct for inaccurately determined
camera intrinsic parameters, to allow for lens distortion, or to rectify
small geometric changes (e.g. altered wrinkles in clothing when a
human subject has moved slightly between successive scans).

Our first contribution is to use color information as well as geo-
metric information to robustly find correspondences, in both rigid
and non-rigid cases. We filter out incorrect vertex correspondences
by using a combination of color, texture and geometric measures,
and further improve pruning by rejecting correspondences which are
not mutually consistent. Our second contribution is to also take color
into account when using optimization to find the transformation or
deformation needed for surface alignment.

We experimentally evaluate our color-aware registration algo-
rithm using real scans, demonstrating the effectiveness of our
algorithmwhen the subjects have richly textured clothing. We also
compare our algorithm with other state-of-the-art methods using
both real scans and a public dataset, showing the superiority of
our method. While we have mainly tested the algorithm on our
own data, we believe it to be generally useful, as identical pro-
blems are likely to arise in other RGB-D capture systems when
capturing subjects with rich color textures.
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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2. Related work

Surface registration is an active research area. Various surveys
[1–3] have summarized and categorized methods from different
perspectives, including performance of descriptors, rigid versus
non-rigid registration framework, etc. Here we only summarize
the work most relevant to our problem.

2.1. Registration based on geometric closeness

Registration aims to put two (or more) shapes into alignment,
so it is natural to use geometric closeness as a criterion to deter-
mine the transformations. In the rigid case, the most popular
approach is the iterative closest point (ICP) method [4,5]. The main
ideas are point correspondence selection based on Euclidean dis-
tances, and an energy function formulated based on closeness,
either point-to-point or point-to-plane, for transformation optimi-
zation. Its many variants address different challenges, including
noise, outliers, limited amounts of overlap, variations in initial
positions, etc. Recent improvements have been achieved by care in
correspondence selection [6], using Lp distances in the energy
formulation [7], and use of branch-and-bound [8] or game theory
[9] to explore the motion space. The approach has also been
generalized largely unchanged to non-rigid registration, using
dense reliable correspondences to find optimal local transforma-
tions [10–13]. To address the high degrees of freedom, priors are
required, such as smoothness and piecewise rigidity.

2.2. Features, salience and texture assisted registration

While ICP approaches are effective, good initialization is
required to avoid such iterative methods stopping in a local
minimum. As an alternative, feature-based approaches identify
correspondences based on intrinsic geometric features. This helps
us to identify potential correspondences even when the shapes are
far from alignment and reduces the possibility of mismatches.
Features used include spin images [14], mean [15] and Gaussian
[16] curvature, SHOT signatures [17], and salience measures such
as differential properties [15] or multiscale slippage [18]. Color at
each vertex can also be used to provide features, either as direct
color values [19–21] or by derivation from color values, e.g. texture
spin images [22] and orbital point descriptors [23]. Both [24] and
[25] use color to assist registration and are thus closely related to
our paper. The former uses SURF descriptors to help find corre-
spondences and incorporates color information into the energy
representing alignment error. However, their focus is completion
and reconstruction of dynamic shapes from real-time data. Thus,
their SURF descriptor is augmented with a temporal coherence
constraint, which is not relevant in our setting where the multiple
views differ substantially both in time and space. The latter focu-
ses on texture correction to improve shape and texture recon-
struction. However, their method aims to reconstruct static, rigid
objects. Thus, their method starts by reconstructing a textureless
model using KinectFusion to establish uniform geometric con-
straints, and then optimizes texture consistency locally. Although
they consider sensor distortion, and apply non-rigid correction to
the images, they do not change the geometry provided by
KinectFusion. The method thus cannot cope with the data we
assume, where as noted, multiple scans can differ substantially
from views and minor non-rigid deformations are assumed to be
present: KinectFusion reconstruction does not allow for such
situations. The strength of our approach is to combine geometry
and texture information during the whole process, allowing us to
find good alignment even in challenging cases.
2.3. Other uses of color and geometric descriptors

Color has also been exploited in addition to geometric infor-
mation in other applications such as shape retrieval and recogni-
tion. Various effective descriptors have been proposed, including
heat kernel signatures [26], conformal factors [27], SIFT features
[28], wave kernel signatures [29], and MeshHOG (histograms of
oriented gradients) [30]. Although intended for applications which
only need sparse correspondences, such descriptors have the
potential for use in shape registration. In this paper, we use
MeshHOG [30] during correspondence search.

Several works [31–33] have considered optimization of tex-
tures on a 3D mesh. Multi-view textures can be projected onto a
pre-built 3D mesh and rectified to achieve texture consistency via
feature correspondences, using e.g. SIFT [31] and optical flow [32],
or discrete labeling optimization on each triangle [33]. Although
such methods achieve consistent colorization for a 3D mesh,
which is one of our goals as well, they assume rather simple
geometry which can be reconstructed using existing registration
methods, avoiding the difficulty of having to simultaneously
optimize both geometry and texture. As Fig. 11 shows later, for
challenging situations, independently performing shape registra-
tion to initially build a 3D mesh does not work well, whereas our
color-aware surface registration exploits both color and geometry
uniformly at all stages, producing substantially better results.

2.4. Textured surface fusion

Rapid advances in RGB-D cameras have driven applications
based on 3D modeling of highly textured surfaces. The GPU-based
capture system proposed in [34] uses a single Kinect camera to
incrementally build 3D models. Tong et al. [35] use three Kinect
sensors and associated components to produce acceptable 3D
human body models. A fixed Kinect can be used with user orien-
tation changes to capture and produce a full-body 3D self-portrait
[36]. These systems all use traditional registration techniques to
fuse scans. However, data captured by cheap RGB-D cameras has
significant geometric distortions due both to camera distortion
and errors introduced by depth processing; multiple frames cap-
tured even from a perfectly static subject may not align perfectly. If
a human subject is captured, misalignment is further exacerbated
by small unintentional movements. Our color-aware registration
algorithm utilizes color information both when finding corre-
spondences and when improving alignment; the emphasis is on
providing a high-quality texture on the recovered surface.

The method in [37] formulates registration in an overall opti-
mization framework which requires solution of a nonlinear sys-
tem. This is difficult, so local linearization is resorted to. The
method is furthermore used in a face tracking problem where
strong priors are available. The blendshape model used is a linear
combination of coordinates and is inapplicable to general objects
such as human bodies. Other recent work also considers real-time
non-rigid reconstruction from RGB-D data. The method in [38] is
effective but requires a complete static template model to be
captured first; this template is deformed to fit a real-time stream
of scans. Alternatively, [39] does not require a template model, and
demonstrates the effectiveness of using sparse color feature points
in a tracking scenario (where adjacent frames are very similar) to
help improve registration. Both methods require adjacent frames
to be highly similar, so are unsuitable for non-rigid registration of
general pairs of scans as considered in our problem. Our method
also differs in that dense color information is used to align two
scans to improve the geometry and texture alignment. Although
having a different purpose, RGB-D SLAM (simultaneous localiza-
tion and mapping) also considers use of RGB-D data to reconstruct
3D scenes [40,41]. Both color and geometry information are used
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to simultaneously estimate camera pose and fuse point clouds.
However, again, they focus on online applications where adjacent
frames are very similar.

Here, we extend existing registration frameworks (ICP [4] for
rigid registration, and embedded graphs [10] for the non-rigid
case), and use color descriptors [30,42] to improve correspondence
determination as well as to guide alignment. Unlike such previous
registration methods, we use both geometric and texture infor-
mation for optimization, and use multiple filters to search for
correct correspondences between data captured from different
viewpoints. After finding correspondences based on geometry and
color—good matches must respect both—our method recovers an
alignment result which provides a good compromise between
texture consistency and geometric consistency, in both rigid and
non-rigid cases. Our method utilizes color information in both
rigid and non-rigid registration in a consistent manner, and pro-
duces robust results by using effective descriptors.
3. Color aware registration

We now explain our algorithm for accurate registration which
exploits color information. We consider pairwise registration for
both rigid and non-rigid cases.

The following notation is used. A textured mesh surface S has a set
of vertices V ¼ fvg and a set of faces F ¼ ff g; N is the number of
vertices. Pairwise registration works on two partially overlapping
surfaces Sa ¼ fVa; Fag and Sp ¼ fVp; Fpg, where a stands for active and
p stands for passive. During registration, transformations or defor-
mations are used to align the active surface with the passive one.
〈vai ; v

p
j 〉 represents a pair of corresponding vertices, one from each

surface. We assume that Sa and Sp have initially been coarsely aligned,
e.g. from knowledge of the camera configuration. A rigid transfor-
mation T ¼ ðR; tÞ comprises a rigid rotation R and translation t.

3.1. Pairwise color-aware rigid registration

Rigid registration involves finding a global transformation with
6 degrees of freedom (DoF). For surfaces which also undergo
minor deformation, it is appropriate to factor out a rigid trans-
formation before performing non-rigid registration; the rigid
alignment provides good initialization for non-rigid alignment. We
thus first consider rigid registration. Given the few DoF, three
corresponding vertex pairs suffice to uniquely determine a rigid
transformation T. Further correspondences may help us to
improve robustness, but may also introduce mismatches that
negatively impact the result. The quality of correspondences is
more important than their quantity. We conservatively select only
those correspondences in which we have high confidence. As we
assume that a coarse alignment is given and partial overlaps exist
between surfaces, we search in the overlapping areas for
Fig. 1. Using rigid and non-rigid registration to correct misalignments in geometry and t
configuration provides initial alignment (b). Successive rigid (c) and non-rigid (d) steps
correspondences. For both quality of results and efficiency, we
sample both surfaces and only match sampled vertices. Vertices
with salient colors (i.e. locally distinctive colors) should have a
higher probability of being sampled as they are more likely to
provide accurate correspondences. Fig. 2 shows our rigid regis-
tration pipeline. We give details below.

3.1.1. Sampling candidate vertex sets
We now consider the first three steps in our pipeline. We

establish correspondences using subsets of the overlapping parts
of Va and Vp. These subsets are called the candidate vertex sets Ωa

andΩp. For each vertex in Sa, we find the K closest vertices vpk in Sp,
and only keep those vertices in Sa that are sufficiently close to Sp in
Euclidean space. Instead of setting a threshold, we use a ranking
approach which is more robust and insensitive to variations in
hardware configuration and other changes. We use the mean value
of Euclidean distance between vertex va and its K closest vertices
vpk as the metric in the ranking process: only the closest fraction η
of vertices in Sa are preserved as the overlapping area on Sa. Then
the overlapping area is used as a sampling pool for Sa. The use of K
nearest neighbors and η help improve robustness and efficiency;
our experiments suggest that K¼20 and η¼75% give a good bal-
ance between coverage and efficiency. kD-trees are built to
accelerate nearest neighbor searches throughout our algorithm.
The same approach is applied to obtain the overlapping area on Vp.

For each vertex in each sampling pool, we first estimate its
color distinctness from its neighbors as Mcolor

i and assign it a
sampling weight Wi

smp:

Mi
color ¼

X

jANi

SingleColorDistðvi; vjÞ=jNi j ;

Wi
smp ¼Mi

color=
X

Mi
color ; ð1Þ

where Ni are the indices of the 1-ring neighbors of vi, and
SingleColorDistð�; �Þ is the L2 norm between the colors of two ver-
tices, so Mcolor

i represents the mean color difference between vi
and its 1-ring neighbors.

The overlapping areas may contain thousands of vertices. To
improve efficiency without visible degradation of results, we
randomly sample 5% of these vertices to get Ωa and Ωp. The
probability that a vertex i is selected is given by Wi

smp. Vertices
with more salient colors are more likely to be selected, while at
the same time, some less salient vertices are still chosen to ensure
robustness against outlying vertices in color space. Fig. 3 demon-
strates this step.

3.1.2. MeshHOG descriptor
The HOG descriptor for 2D images captures local characteristics

of pixels, and has been used to match pixels between transformed
images. MeshHOG extends it from 2D to 3D [30], allowing
extraction of local characteristics of scalar functions defined at
each vertex on a 3D surface. We use MeshHOG to extract local
exture. Two input textured surfaces (a) are captured by RGB-D cameras; the camera
improve it, giving a final surface with high-quality textures.
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descriptors for the vertices in the candidate vertex sets, which are
then used for finding correspondences.

3.1.3. Establishment of correspondences
To find good correspondences between Sa and Sp, we first

identify candidate vertex pairs by finding the Krigid closest vertices
from Ωp to each vertex in Ωa. We use cascaded filtering for effi-
ciency. Candidate pairs are ranked according to their Euclidean
distance and their color distance (in the L2 norm). Only vertex
pairs which are in the best fraction κ of both ranking arrays are
retained (choice of κ will be discussed later). These are then fur-
ther pruned to obtain one-to-one vertex pairs as follows. Suppose
that for vai from Ωa, vertex pair 〈vai ; v

p
j 〉 has the minimum Mesh-

HOG feature distance of all remaining vertex pairs 〈vai ; �〉 related to
vai , 〈vai ; v

p
j 〉 is retained temporarily. Then we swap roles of Ωa and

Ωp and search again as above, and check whether vai is the vertex
which has minimum MeshHOG feature distance from vpj . If there is
reciprocal agreement, 〈vai ; v

p
j 〉 is viewed as a valid correspondence.

3.1.4. Rigid registration
After finding correspondences, we determine the transforma-

tion T between the surfaces by minimizing the sum of weighted
Euclidean distances between all remaining vertex pairs 〈vai ; v

p
j 〉:

arg min
T

X

〈vai ;v
p
j 〉AP

wij JT � vai �vpj J
2; ð2Þ

where the weight wij ¼ 1�SingleColorDistðvai ; vpj Þ=δC , and δC is the
maximum color distance observed in the previous color distance
ranking. This approach gives greater weight to vertex pairs with
more consistent colors. Note that in this energy formulation, once
the correspondences have been established, the color-related
weights wij do not change with transformation T. Thus, this
energy can be very efficiently optimized, as in standard ICP
registration.

The rigid registration process terminates when the transfor-
mation matrix relating consecutive registration steps is close to a
unit matrix or the number of iterations exceeds a maximum pre-
defined value (which we take to be 50). In detail, if JR� IJF is
below 10�3 and the magnitude of translation is smaller than the
resolution of the current mesh surface, then iteration terminates;
here J � JF represents the Frobenius norm of a matrix, R is the
rotation matrix, and I is a unit matrix. Fig. 11 shows example
results of our rigid registration algorithm.

3.2. Pairwise color-aware non-rigid registration

Rigid registration helps put both surfaces into alignment.
However, as the top row of Fig. 12 shows, some misalignments
may still remain, especially in boundary areas of each scan. Causes
are various: systematic distortion produced by the depth cameras,
mutual interference when using multiple infrared projectors,
depth processing artifacts caused for example by smoothing, a
human subject cannot hold perfectly still during scanning. All lead
to non-rigid deformation between scans. To overcome this pro-
blem and achieve better alignment results, we further use a non-
rigid registration step, again taking color information into account.

Non-rigid registration has many more DoF than rigid registra-
tion. Local transformations must be determined; a dense set of
correspondences is required. This is much more challenging than
rigid registration case for which only a few reliable corre-
spondences suffice. We adapt various techniques to improve cor-
respondences in this case.

The steps used for non-rigid registration are shown in Fig. 4.
We first build an embedded graph on each surface, following [10],
and use it to control deformation. Local transformations are
defined at each node of the embedded graph, with the transfor-
mation at each vertex being obtained by a weighted average of
transformations at neighboring nodes. Each weight is proportional
to the inverse of the distance between the vertex and the node.

3.2.1. Random candidate sampling
As in rigid registration, we start by randomly sampling vertices

to provide a candidate set. For efficiency, correspondences are only
drawn from this candidate set henceforth. As we need a dense yet
reliable set of correspondences, a modified sampling weight is
used here.

Since the surfaces are quite well aligned in general after rigid
alignment, we just need to rectify misalignments at a fine scale
during non-rigid registration. These misalignments correspond to
vertex pairs which are geometrically close but not yet consistent in
color (inconsistent vertices). So instead of considering color dis-
tinctness of each vertex on its own surface, we now consider the
color distinctness by taking both vertices in a pair, and considering
both surfaces. To do so, for each vertex va on Sa, we find the
nearest vertex vp on Sp, again using reciprocal validation. Their
Euclidean distance is put into an array, which is sorted in
ascending order. Color differences based both on a single vertex
(SingleColorDist) and on the mean value of the 1-ring of neighbors
(MeanColorDist) are ranked in descending order: we use mean
color distance here to improve robustness when judging whether
a pair of vertices is a correct correspondence or not. Here
MeanColorDistðvi; vjÞ ¼ JMi

color�Mj
color J2, where Mcolor

i is defined
in Eq. (1). After ranking, we retain a fraction η¼0.75 of vertices
from each array. Vertices which are close in Euclidean distance,
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Fig. 5. Gabor filter and texture projected from the 3D surface for calculation of
Gabor filter descriptor.
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but far in color, are marked as inconsistent. We now sample ver-
tices from each surface, giving preference to inconsistent vertices
by weights which control the probability of sampling. We use a
weight of one for normal vertices, but a weight of N=NI for
inconsistent vertices, where N is the total number of vertices on
the surface and NI is the number of inconsistent vertices. Vertices
are chosen randomly as in rigid registration.

After sampling, as shown in Algorithm 1, each sampling vertex
is used to find multiple prospective matching vertices on the other
surface which are filtered by reciprocal validation; remaining
vertex pairs form candidate correspondences for the subsequent
pruning step.

Algorithm 1. Find correspondences for color-aware non-rigid
registration.
Inp

Ou
1:
2:
3:
4:
5:
6:

7:
8:
9:
10:
11:

12:
13:
14:

15:
16:

17:
18:
19:
20:
ut: Candidate vertex sets Ωa and Ωp, embedded graph Ea

and Ep on each surface, kd-trees Ka and Kp built on Sa and Sp,
number Knonrigid of closest vertices to consider, retention
ratio κ used in metric ranking
tput: Corresponding vertex pair set P
for each vertex vaAΩa do
Set corresponding vertex set CðvaÞ ¼∅
Find Knonrigid closest vertices from Kp, put them into CðvaÞ
for each vertex vpACðvaÞ do
for each graph node connected to va do
Put SingleColorDist ðva; vpÞ, MeanColorDist ðva; vpÞ and

Euclidean distance between vp and va into ranking arrays of
current graph node

for
end

end
for each graph node in Ea do
Rank its three metrics in ascending order and keep those

vertex pairs all of whose metrics lie within the best fraction
κ
end
for each retained vertex pair 〈va; vp〉 do
If 〈va; vp〉 wins local ranking of each related graph node to

va, put vp into Ωp, put 〈va; vp〉 in Pa.
end
Repeat process from Lines 1 to 9 for each vertex vpAΩp

with Ka, perform local ranking from Lines 10 to 12 on Ep, and
collect eligible vertex pair 〈vp; va〉 as Lines 13 to 15 to build
Pp.
for each vertex pair 〈va; vp〉APa do

if 〈vp; va〉APp then
P ¼ P [ f〈va; vp〉g

end
end
Inp

Ou
21:

3.2.2. Texture descriptors
MeshHOG descriptors are used in rigid registration. Being

based on gradients, they are likely to be perturbed when the color
or geometry is unreliable, particularly in challenging boundary
areas or distorted areas. The descriptor only focuses on a small
neighborhood and thus is unable to capture texture information
well. To overcome this limitation, we generalize the Gabor filter
descriptor [42] from 2D to mesh surfaces. Gabor filters are based
on an integral method which captures textures at multiple scales
and in different directions. Previous work has proved its effec-
tiveness in 2D texture comparison.

In order to exploit Gabor filter descriptors on 3D textured
surfaces, the Gabor filter is convolved with the texture projection
at each vertex (see Fig. 5(b)). The area surrounding each vertex is
projected onto its tangent plane, and sampled to give a grayscale
image. To obtain a rotation-invariant descriptor, we only keep
pixels within a disk centered at each vertex. After convolution, to
avoid the arbitrariness of tangent plane orientation, following [42],
the output for different scales and orientations of the Gabor filter
are circularly shifted so that the maximum filter output corre-
sponds to the first orientation at the first scale, so that similar
textures generate similar Gabor filter descriptors. The fast Fourier
transform (FFT) is used for rapid convolution computation.

Fig. 6 shows some non-rigid registration results using either or
both of these descriptors, revealing their different advantages.
MeshHOG is more sensitive to sudden changes while Gabor filters
are more robust in the presence of distortion e.g. in boundary
areas: in Fig. 6(a), the pattern alignment in general is better, while
in Fig. 6(b), texture alignment is better in distorted areas (which
were blurred in the previous result). Combining them gives good
alignment results everywhere: see Fig. 6(c).

3.2.3. Correspondence pruning using both color and geometric
consistency

We notice that the distances between MeshHOG and Gabor
descriptors of corresponding vertex pairs follow normal distribu-
tions. As MeshHOG and Gabor filters provide complementary
information, we combine them to prune inconsistent corre-
spondences jointly and use their weighted Gaussian errors to
assess each remaining correspondence in Algorithm 2.

We first discard improbable pairs for which either MeshHOG or
Gabor descriptor distances are larger than μþεσ, where μ is the
mean, σ is the standard deviation and ε¼ 0:674 to retain 75% of
the distribution. The retained vertex pairs may still contain wrong
correspondences, as correspondences have been considered in
isolation. We can improve correspondences by considering their
mutual consistency. We adapt the method in [43] which considers
local isometric consistency and uses diffusion pruning. We first
compute a matrix M measuring consistency of local geodesic
distances between pairs of correspondences, then fill the diagonals
of this matrix with measures which depend only on single cor-
respondences rather than pairs. Unlike [43], the diagonal values
are weighted probabilities based on distances of two texture
descriptors, to reflect color texture consistency of corre-
spondences. Intuitively, the probability should decrease with
increasing descriptor distance; it should be normalized. We use
the cumulative distribution functions CHOG and CGabor as they are
monotonic, in the range of ½0;1� and can be explicitly obtained
from the Gaussian distribution (see Algorithm 2). Each diagonal
value is set to W 〈va ;vp〉 ¼ αð1�CHOGÞþð1�αÞð1�CGaborÞ. Diffusion
pruning is then used to find a suitable set of correspondences.

Algorithm 2. Prune inconsistent corresponding vertex pairs.
ut: Corresponding vertex pair set P, MeshHOG descriptor
sets Φa;Φp, Gabor filter descriptor sets Γa;Γp

tput: Final pruned corresponding vertex pair set Pf
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Compute the mean μ, standard deviation σ of MeshHOG and

Gabor filter descriptors respectively, giving μHOG, σHOG, and
μGabor, σGabor
for each vertex pair 〈va; vp〉 in P do
Compute MeshHOG and Gabor descriptor distances DHOG,

DGabor

if DHOG4ϵσHOGþμHOG or DGabor4ϵσGaborþμGabor then
Delete 〈va; vp〉 from P

else
Compute cumulative distribution function for DHOG and

DGabor as CHOG and CGabor:
CHOG ¼ ð1þerfððDHOG�μHOGÞ=ð

ffiffiffi
2

p
σHOGÞÞÞ=2

CGabor ¼ ð1þerfððDGabor�μGaborÞ=ð
ffiffiffi
2

p
σGaborÞÞÞ=2

Assign weight W 〈va ;vp〉 ¼ αð1�CHOGÞþð1�αÞð1�CGaborÞ
end

for
Use local geodesic distance consistency for non-diagonals
and weights W 〈va ;vp〉 for diagonals and apply diffusion
pruning to produce selected set Pf.
3.2.4. Non-rigid registration
Having found correspondences, an embedded-graph based

approach is exploited to compute local deformations between the
two surfaces, following [10]. We formulate the deformation by
minimizing the energy in Eq. (3),

E¼wrigidErigidþwsmoothEsmoothþwcorrEcorr ; ð3Þ

where the terms Erigid and Esmooth measure the rigidity and
smoothness of the embedded graph deformation respectively. Ecorr
measures the weighted Euclidean distance between corresponding
vertex pairs:

Ecorr ¼
X

W 〈vai ;v
p
j 〉

vai �vpj

���
���
2

ð4Þ

where W 〈vai ;v
p
j 〉
is defined previously. This weight gives a combined

assessment of each correspondence based on its two descriptor
differences. Our implementation sets wrigid ¼ 10, wsmooth ¼ 2,
wcorr ¼ 10. Fig. 12 shows corresponding alignment results.
4. Results

In this section, we first briefly describe the experimental setup
and parameter settings, then evaluate our algorithm and compare
it to other state-of-the-art registration techniques.
4.1. Textured surfaces captured by two calibrated Kinects

Human data was captured using two calibrated Kinect cameras
to generate textured 3D surfaces. The cameras were located on the
left and right sides of the subject as shown in Fig. 7. Their orien-
tations were at 90° to each other; they were about 1.4 m apart, and
1.0 m above the floor. The subject is about 1.0 m from the line
between the Kinects, along its perpendicular bisector. The two
Kinects were calibrated using the method in [44], giving the 3D
coordinates of each 3D point captured by the two Kinects in the
same reference frame. The two Kinects capture the data succes-
sively: first, the left camera turns on and captures a single RGB-
depth frame, then turns off, then the right Kinect does likewise.
This avoids interference between the Kinects: attempting to
simultaneously capture two depth maps results in major quality
degradation in overlapping areas due to the technology used. The
time between capture of these two frames is about 1 s, during
which time, a person always moves slightly, even if trying to hold
a static pose. In the raw data captured by the Kinect, each frame is
a partial scan of the captured subject, comprising a 640�480
color image registered with a 640�480 depth image. The two
captured RGB-D images are converted to a 3D mesh surface with
texture information using the OpenNI package.

4.2. Parameter settings

While our method involves several parameters, they were fixed
in all our experiments. For rigid registration they were set to: Krigid



Inconsistent Vertices Distance Moved
0

0.2

0.4

0.6

0.8

1

R
at

io

0.1
0.05
0.02
0.01
0.005
0.002
0.001

Fig. 10. Registration results for different numbers of embedded graph nodes. The
legend gives the numerical ratio of graph nodes to surface vertices.
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¼ 20 and κ¼0.5. Parameters in Algorithms 1 and 2 for non-rigid
registration were set to: Knonrigid ¼ 50, κ¼0.5, α¼0.5. Clearly, the
retention ratio parameter κ used in searching for correspondences
and size of the embedded graph nodes are the two key parameters
in our approach. We thus first experimentally justify our choices
for these parameters.

4.2.1. Retention ratio κ
The retention ratio κ is in 0;1½ �. We considered values from

0.1 to 0.8 in steps of 0.1, and tested registration performance for
the same pair of surfaces under various starting conditions, with
increasing difficulty of registration for cases from 1 to 6 in Fig. 8.
The final registration result is shown in the bottom row of Fig. 11.
For each pair of surfaces, we used different values of κ to register
them 50 times and collected statistics.

Fig. 9 compares the average number of iterations, the number
of corresponding vertices, and their average color distance, after
registration using varying κ. Smaller κ removes bad corre-
spondences more easily, which speeds up convergence and pro-
vides better registration accuracy. However, larger κ avoids local
minima and is more robust to different starting conditions. As we
may assume that the initial transformation is quite well known
from the camera configuration, for this experimental setup, we can
choose a smaller value of κ. Taking speed of convergence, final
registration accuracy and robustness into account, κ¼0.5 is a good
compromise.

4.2.2. Number of embedded graph nodes
During non-rigid registration, the embedded graph is used not

only to describe surface deformation, but also to organize local
ranking when searching for correspondences, so the size and
distribution of graph nodes has an impact on results. Our algo-
rithm distributes the graph nodes evenly on the surface (as is
usual): doing so is both easy and effective. Fig. 10 considers six
different choices for the number of graph nodes. Each bar shown
represents a specific ratio of number of graph nodes to the total
number vertices on the surface. Different fractions of embedded
graph nodes were tested on the surfaces shown in Fig. 1(a). We
considered two statistics: the ratio of inconsistent vertices before
and after registration, and the ratio of distance moved, which is a
normalized value which represents the average change in position
change of each active vertex due to registration.

If graph nodes are too many, each node considers vertex pairs
from too local a perspective, so local alignment may be trapped in
1 2 3

Fig. 8. Different starting conditions for determining the best value of κ
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Fig. 9. Registration results for varying retention ratio κ: average number of iter
a local minimum and robustness cannot be guaranteed; vertices'
positions tend to oscillate rather than converging to the correct
position. If graph nodes are too few, local ranking reduces to global
ranking, so only correspondences with global consistency will be
retained. Using fewer graph nodes means we cannot handle fine
details of surface deformation so well, and we are more likely to
find a global near-rigid transformation: non-rigid registration does
little to improve the initial rigid registration. As a compromise, we
use 0.5% of the number of surface vertices as the number of
embedded graph nodes.

4.3. Evaluation

We now evaluate our method for effectiveness and robustness,
and then consider limitations. Although our method involves
random sampling, our tests show that we use sufficient samples to
ensure almost identical results in repeated runs.

4.3.1. Effectiveness
The aim of our technique is to produce visually high-quality

registered textured surfaces for cases where color misalignment is
particularly noticeable. We thus demonstrate the effectiveness of
our method via visual comparisons with the results of other rigid
[4,7,21] and non-rigid [24] registration methods, using several
datasets.

Registration results from five pairs of scans are shown in
Figs. 11 and 12. The data in Examples 1–4 were captured using two
calibrated Kinects. The surfaces involve slight non-rigid deforma-
tion; they were aligned by our rigid registration algorithm first. To
ensure a fair comparison with other non-rigid registration
4 5 6

for rigid registration. See the last row of Fig. 11 for aligned results.
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Example1 Example2 Example5
texture geometry texture geometry texture geometry

Initial
Position

ICP [4]

SparseICP
[7]

ColorICP
[21]

Our rigid
method

Fig. 11. Comparison of our rigid registration method to other state-of-the-art algorithms. Alignment differences in texture can be clearly seen in regions marked by red
rectangles on the left of each example. On the right, geometry corrections are shown in registration results without texture; pseudo-color rendering of closest vertex pair
distances before and after registration: the distance ranges are 0–6 mm, 0–4 mm and 0–12 mm for the three examples. Vertices for which a closest vertex pair could not be
found are rendered as black (largely for non-overlapping regions), with distance thresholds the same as the maximum of the above range in each case. (For interpretation of
the references to color in this figure caption, the reader is referred to the web version of this paper.)
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Example3 Example4
texture geometry texture geometry

Starting position
set up by our
rigid method

Our non-rigid
method

Non-rigid
method in [24]

Fig. 12. Different alignment effects produced by our non-rigid registration method and the method in [24]. The latter is able to correct geometric discrepancies, as shown by
the untextured registration results in which pseuodocolor gives closest vertex pair distances before and after registration. For the two examples, the distance ranges are 0–
6.8 mm and 0–2.37 mm. Vertices for which a closest vertex pair could not be found are rendered as black (largely for non-overlapping regions), with distance thresholds the
same as the maximum of the above range in each case. Our method is better at rectifying texture misalignments, especially in the regions marked by red rectangles. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Table 1
Mean distance of closest vertex pair after rigid alignment for examples in Fig. 11
(mm).

Initial ICP [4] SparseICP [7] ColorICP [21] Our rigid method

Example 1 2.56 1.86 2.15 1.50 1.25
Example 2 1.67 1.30 1.36 0.93 1.06
Example 5 2.38 1.55 1.44 1.34 1.30
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methods, the same rigid registration output was used as initi-
alization in each case. Example 5 used a dataset from [17], and
only involves rigid transformation; nonrigid registration is not
used. Parameter settings for various methods were those given by
their authors. We use Examples 1, 2, 5 for rigid registration result
comparisons and Examples 3, 4 for non-rigid comparisons. Similar
conclusions apply to all examples.

Our color-aware rigid registration method produces better
results than the other methods, as shown in Fig. 11, thanks to the
effective use of color texture information in the registration fra-
mework. See in particular the registered regions in red rectangles:
our texture visual alignment is much more accurate than that
produced by other methods [4,7,21]. ICP [4] and sparseICP [7] do
not use color information. In ColorICP [21], color information is
directly incorporated into the ICP framework.

Geometric registration results are also shown in Fig. 11, using
pseudo-color rendering of closest vertex pair distances for over-
lapping regions and black for points for which no suitable corre-
spondences were found (mainly in non-overlapping regions). The
mean distance of closest vertex pairs in overlapping regions is also
provided in Table 1, both the initial values, and values after
registration by various methods [4,7,21] including ours. Each
method converged monotonically to a minimum—the result was
smaller than the initial value in each case. However, the method in
[7] converged to an incorrect local minimum for Example 2, with
misalignment of the nose.



Table 2
Run times for rigid/non-rigid registration steps (ms).
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RGB-D cameras often capture higher resolution color images
than depth images. Color provides valuable additional informa-
tion, allowing our registration framework to produce better results
than purely geometric methods. Our color descriptors were further
designed to be robust to illumination differences between scans,
and relative distortions. By using color descriptors, our method
makes better use of color than ColorICP [21], as Fig. 11 shows.

Our non-rigid registration further improves texture alignment.
The only previous non-rigid registration method using color [24]
uses color descriptors with a consistency constraint between
successive frames, assuming continuous data capture. They base
non-rigid registration on a pairwise method [10], constrained by
color descriptors. Therefore, starting from the same initial rigid
alignment, we compare non-rigid registration results with [24] via
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Fig. 13. Mean color distance in rigid registration with respect to number of
iterations.
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Fig. 14. Fraction of vertices remaining inconsistent during non-rigid registration
with respect to the number of iterations.

Fig. 15. Robustness in mid-scale registration. (a) The initial partial data before registratio
non-rigid alignment. (b) Overlap of the partial data before and after registration. (c) Eu
Distances in the range 0–15 mm are rendered in pseudo-color. Vertices for which a close
as black, with a distance threshold of 15 mm.
pair-wise registration. Our results in Fig. 12 have better visual
quality. We use pseudocolor in overlapping regions to visualize
geometric distances between the vertices of the registered sur-
faces in Fig. 12.

4.3.2. Convergence
The convergence of our method is demonstrated by registration

results for Examples 1–5 in Figs. 11 and 12; corresponding statis-
tics are provided in Figs. 13 and 14.

For rigid registration, Fig. 13 shows the average color distances
for vertex pairs in the overlapping region. During iteration, as
n. Minor pose and cloth wrinkle changes cause difficulties especially if we try to use
clidean distance changes for the closest vertex pairs before and after registration.
st vertex pair could not be found (largely for non-overlapping regions) are rendered

Fig. 16. Little-textured surfaces. (a) and (b) are parts captured from a mannequin
model with pure color. There is little texture in the red rectangle. It is too difficult to
generate sufficient vertex pairs depending on color/texture information, so the
registration is prone to geometric discrepancies (c). (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of
this paper.)

Prepare Sampling Descriptor Search Prune Postprocess

Rigid 359 2777 59 160 28
Non-rigid 3494 1242 56 14,632 58,902 780
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more and more of these vertices become correctly aligned, the
average color distance reduces, gradually converging to a fixed
residual. For Example 3, surfaces need to be warped to eliminate
misalignment, so rigid registration cannot improve it beyond a
certain limit, and after that, further decrease in color distance
is minor.

Using non-rigid registration, the inconsistent vertices (vertices
geometrically close to the matched vertices but with large color
deviation) give a good indication of convergence. Fig. 14 shows the
fraction of remaining inconsistent vertices compared to the initial
number: our algorithm improves color consistency by iterative
non-rigid alignment.

4.3.3. Robustness
In order to test the robustness of our method to larger than

expected non-rigid deformations, we chose two similar surfaces
captured from the same torso in different poses, as shown in
Fig. 15(a). Our algorithm successfully registers the parts with ver-
tices with same texture. Fig. 15(c) show the change of Euclidean
distance for the same vertex pairs before and after registration.
These distances reduce after registration, indicating the robustness
of our algorithm when presented with mid-scale deformation.

In general, it is difficult to ensure that objects are evenly illu-
minated and all images are equally bright: surfaces captured by
different cameras show differences in overall intensity. This is
noticeable in all the examples in this paper. Our algorithm handles
this issue well, and is robust to a certain degree of illumination
change.

4.3.4. Timing
As we utilize two kinds of color descriptors as well as a pruning

strategy, our algorithm takes longer than algorithms which do not
use color. Table 2 gives run times of our algorithm per iteration, for
two surfaces each containing 95K vertices. These statistics were
obtained on a computer with a 1.6 GHz Intel Core i7 processor and
4 GB memory. The Prepare stage covers preprocessing including
building kD-trees and loading descriptors from file, while the
Postprocess stage concerns assembling and solving equations, as
well as transforming surfaces. For speed, we precompute the
descriptors and used a hash table to store and reuse them. Our
method takes 3 s and 76 s per iteration respectively for rigid and
non-rigid cases.

4.4. Limitations

Our method has certain limitations. We assume that coarse
alignment is available with reasonable amounts of overlap
between scans. This is acceptable when the camera configuration
can be controlled, but may be more difficult to achieve in general
settings such as a hand-held capture system. In such cases, coarse
registration techniques based on e.g. intrinsic properties could be
used to initialize our method. Even with precomputation, the
runtime is quite high, and further acceleration e.g. by GPU, should
be investigated. Our method achieves improved registration by
exploiting color information. For surfaces with little texture, our
method degrades to traditional rigid or non-rigid registration
using only geometric information. See Fig. 16 for an example.
5. Conclusions

We have proposed a novel algorithm to register 3D surfaces
with detailed textures. It is distinctive in use of two color
descriptors to improve the finding of corresponding vertex pairs.
Color is also taken into account when computing the transfor-
mation (in the rigid case) or deformation needed to bring the
surfaces into alignment (in the non-rigid case). In both cases, our
experiments show that our method can accurately align surfaces
with detailed textures, outperforming earlier approaches. The
descriptors we currently use are based on either color texture or
geometry. In the future, we hope to directly combine color and
intrinsic geometry which could potentially provide a more effec-
tive joint descriptor for registration. Our current approach regis-
ters two scans. Applying our method sequentially to multiple
scans may not produce ideal results as registration errors can
accumulate. We wish in future to extend the method to multiple
scans using ideas such as group registration.
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