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A numerical analysis of the interaction between decaying shear free turbulence and
quiescent fluid is performed by means of global statistical budgets of enstrophy,
both, at the single-point and two point levels. The single-point enstrophy budget
allows us to recognize three physically relevant layers: a bulk turbulent region, an
inhomogeneous turbulent layer, and an interfacial layer. Within these layers, enstro-
phy is produced, transferred, and finally destroyed while leading to a propagation of
the turbulent front. These processes do not only depend on the position in the flow
field but are also strongly scale dependent. In order to tackle this multi-dimensional
behaviour of enstrophy in the space of scales and in physical space, we analyse
the spectral enstrophy budget equation. The picture consists of an inviscid spatial
cascade of enstrophy from large to small scales parallel to the interface moving
towards the interface. At the interface, this phenomenon breaks, leaving place to
an anisotropic cascade where large scale structures exhibit only a cascade process
normal to the interface thus reducing their thickness while retaining their lengths
parallel to the interface. The observed behaviour could be relevant for both the theo-
retical and the modelling approaches to flow with interacting turbulent/nonturbulent
regions. The scale properties of the turbulent propagation mechanisms highlight that
the inviscid turbulent transport is a large-scale phenomenon. On the contrary, the
viscous diffusion, commonly associated with small scale mechanisms, highlights
a much richer physics involving small lengths, normal to the interface, but at
the same time large scales, parallel to the interface. © 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4937433]

. INTRODUCTION

Most flows in practical cases are characterized by the coexistence of turbulent and non-
turbulent regions. Examples are turbulent jets, turbulent boundary layers, gravity currents, flame
fronts, and plumes. In such flows, the dynamics of the turbulent/non-turbulent interface play a
very important role since they control relevant flow properties such as mixing rates, heat, and
momentum transport.! Despite its importance, the understanding of the physics of the interface
between turbulent/non-turbulent flows has been recognized as rather elusive. The reason is given
by the coupling of the complex multi-scale interactions commonly observed in fully developed
turbulent flows with interfacial phenomena which lack a rigorous interpretation and definition.

Since Corrsin and Kistler’ who provided the first study of interfacial processes, several works
have been carried out aiming at understanding the interaction between turbulent/nonturbulent re-
gions. It is well known that at the interface, the fluid in the non-turbulent region is entrained by the
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turbulent flow thus leading to a propagation of the turbulent front. It is believed that entrainment
is enforced locally by small-scale turbulent diffusion. A number of experiments and numerical
simulations support this thesis by linking some properties of the turbulent/non-turbulent interface
to the small scale features of the flow.>® Despite the fact that the interface propagation has an
intrinsically viscous origin, it has been shown that at large Reynolds numbers, the entrainment
rate and the velocity of propagation are independent of viscosity.” Thus, some properties as the
mean propagation velocity of the interface or the concentration jumps across the interface have
been found to be proportional to the centreline velocity in jets,*® or to the turbulent intensity for
oscillating-grid turbulence.’ This means that despite the work of adding irrotational fluid is thought
to act at (viscous) small scale level, the overall rate of entrainment is dictated by the large scale
properties of the flow. To reconcile this dual description, it has been argued in Liberzon et al.'” and
Sreenivasan et al.!! that the global entrainment flux determined by the mean entrainment velocity
u, and a projected area Ag can also be characterized in terms of a small-scale local entrainment
velocity v,, over a bigger convoluted interface area. The total convoluted surface is thought to
adjust together with the local entrainment velocity in such a way that the entrainment flux results
to be independent from viscosity; nevertheless, how actually this should happen is not yet clear.
Other contradictory results come from the observation of turbulent kinetic energy budgets'? and
enstrophy budget'® close to the interface, which show weak contributions from viscous diffusion
when compared to the advective and production terms. In a recent study on interfaces in jets and
zero-mean-shear flows, Wolf et al.'* split the local entrainment velocity in a viscous and in an
inviscid contribution v, = v}™ + v!™. By means of conditional averages with respect to the different
local shapes of the interface, they find that the local entrainment mechanisms are influenced by the
local curvature and the vorticity gradient. Indeed, v)* is stronger where the interface has a convex
(re-entrant) shape while for concave (protruding) shapes, it acts against entrainment. On the other
hand, the inviscid term v is weaker for convex shape and stronger for the concave ones, but always
contributes to the propagation of the interface. They conclude that vortex stretching is the driving
term to produce convolution while viscous diffusion tends to flatten the interface.

Most of the studies previously cited focus on local properties of the interface (local geometry,
structures topology, local gradients of enstrophy, local propagation velocities) in order to infer on
the governing mechanisms of the entrainment process. From a phenomenological point of view,
these local and conditional approaches highlight a picture of turbulent entrainment that is composed
mainly by two relevant processes: a large-scale inviscid phenomenon usually referred to as engulf-
ment and a small-scale partially viscous mechanism known as nibbling.*'> Which mechanism
dominates the processes of entrainment and mixing is still debated. The reason is partially due to
difficulties in defining quantitatively the processes of nibbling and engulfment thus leading to a
rather elusive discrimination of their contribution.

On a different approach, several studies are also devoted to the understanding of other physical
aspects such as the mixing spreading, the isotropy recovery, the interface propagation and the struc-
ture of small scales. The interaction of two energy-containing turbulence scales in the absence of
mean shear is studied in the work of Veeravalli and Warhaft'®!” where it is found that the mixing
layer is strongly intermittent with transverse velocity fluctuations characterized by large skewness.
A distinction between intermittent turbulent penetration and turbulent diffusion is made and it is
shown that both play an important role in the spreading of the mixing layer. In Tordella et al.,'8
the interaction of two isotropic turbulent fields of equal integral scale but different kinetic energy
is analysed. Also in this work, intermittency is observed and related with the presence of turbulent
energy gradients. This picture is extended in the work of Tordella and Iovieno'® by analysing how
small scale anisotropy and intermittency are generated. It is found that the departure from isotropy
is consistent with a reduction of the compression of fluid filaments parallel to the mixing layer
and enhancement of the filaments orthogonal to it. Overall, this anisotropy is found to be strongly
related with the inhomogeneity induced by the presence of the mixing layer.

Moreover, in general, all the phenomena taking place when turbulent/non-turbulent regions
interact are multi-scale mechanisms which strongly depend on the distance from the interface.
Indeed, besides the multi-scale feature of turbulence, the presence of the interface induces inhomo-
geneity thus leading to multi-dimensional physical processes occurring both in the space of scales
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and in physical space. Aim of the present work is the analysis of the multidimensional features
of the turbulent/non-turbulent interactions. To this end, we study the spectral enstrophy budget
equation. This equation allows us to analyse for the first time two distinct transport mechanisms of
enstrophy at the basis of the turbulent entrainment. An enstrophy transfers in the space of scales
and a spatial flux in the inhomogeneous direction normal to the interface. The clear mathemat-
ical distinction of these two transports in diffusive and inertial mechanisms will enable a detailed
scale-by-scale analysis of the debated phenomenology of interfacial turbulent/nonturbulent flows.
It is worth noting that the formalism of the spectral enstrophy budget equation allows us to give a
detailed description of the global statistical features of turbulent flows interfacing with a quiescent
laminar region. However, the symmetries of this approach lack the description of the local dynamics
of the turbulent interface which would require statistical samples over a convoluted surface. Indeed,
in what follows when considering the interface, we will refer to the region of the flow where the
interface statistically takes place and not the instantaneous locus of the interface.

The paper is organized as follows. In Section II, we describe the numerical simulations and
in Section III, the main properties of the flow are summarized, see the works cited above for a
deeper understanding of the flow field. The inhomogeneity of the different regions of the flow
is characterized in Section IV by means of the single-point enstrophy budget equation while
the multi-dimensionality of the enstrophy production, transport, and destruction is analysed in
Section VI by means of the spectral enstrophy budget equation previously introduced in Section V.
The paper is finally closed by remarks in Section VII.

Il. DIRECT NUMERICAL SIMULATION PROCEDURE

The continuity and Navier-Stokes equations are discretized by means of a pseudo-spectral method
based on Fourier series and are integrated in time through a partially implicit Crank-Nicholson/Runge-
Kutta scheme, see De Angelis et al.? for the details on the algorithm. First, a homogeneous isotropic
turbulent box with dimensions 27 X 27 X 27 and discretized by 512 X 512 x 512 Fourier modes is
generated through a Gaussian distributed forcing centered at wavenumber |k| = 5 with variance o
= 0.6. The average Taylor-microscale Reynolds number is Re ;o = 120. The Taylor and Kolmogorov
length scales are 1y = 0.19 and 9 = 0.0075, respectively, while the integral length and time scales are
€o = 0.4 and ¢ty = 0.066, respectively. In this simulation, the spatial resolution is Ax/no = 1.6 and the
time step is Az = 5 - 1075, After the steady state is reached, independent velocity fields are sampled
to produce the initial conditions for the shear-less turbulent/non-turbulent flow. Indeed, the interfa-
cial flow is generated by matching two identical field of homogeneous isotropic turbulence in a new
periodic box with dimensions 47 X 27 X 27 and 1024 X 512 x 512 Fourier modes and, by means of
a continuous function p(x), half of the velocity field is damped to zero. The function

1 + tanh (a%)tanh (ax_LL/Z)tanh (asz)] 1)

and the procedure are the same used for the study of shearless mixing in the work of Tordella and
Tovieno,?! Tordella et al.,'® Tordella and Iovieno.'® From these initial conditions, the flow field is let
to freely evolve in time without any forcing. Let us notice that due to the decay of the small scales,
the spatial resolution parameter Ax/n decreases during the simulation. Due to the periodic boundary
conditions, the imposed velocity field generates a flow constituted by a homogeneous isotropic turbu-
lent region with two interfaces spreading in opposite directions along the x-direction, see Figure 1(a)
to have an idea of the instantaneous topology of the flow across the turbulent/nonturbulent region.
In this setting, the y- and z-axes are statistically homogeneous directions. Hence, statistics are ob-
tained by computing spatial averages in the homogeneous (y—z)-planes and ensemble averages over 20
different realizations. The resulting overall average is denoted by angle brackets. In what follows, the
results will be shown as a function of the distance from the average position of the interface X; = (x;),
where x; = x;(y, 7) is the instantaneous position of the interface detected by finding the outermost
point where enstrophy, Q = w;w;/2 with w; denoting vorticity, equals a given threshold €,;,. The value
of the threshold used for the interface detection is 2% of the mean enstrophy in the turbulent region at
a given time #/ty, i.e., Qs = 0.02(Q),,,.- Though the choice of a given threshold remains arbitrary, the

core*

p(x) = %
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FIG. 1. (a) Topology of the flow across the turbulent/nonturbulent region at ¢ /¢y ~ 3. The isosurfaces denote a specific value
of enstrophy, Q ~ 69u2, /A%, and it is colored by the distance from the mean interface, (x — X;)/A. (b) Initial mean energy
profile E = (u;u;)/2 for a =12n, a =20x, and a =407 normalised by its turbulent core value E,, as a function of the
distance from the mean interface.

value adopted here is within a range of values around which the detected interface does not change
sensibly with the threshold. The same Qy, is also used in other studies.’

Let us finally briefly address the role of the free parameter a of damping function (1). As
shown in Figure 1(b), the parameter a determines the initial thickness of the interface region. In
particular, by considering A as the thickness of the layer in which mean kinetic energy E drops
from 75% to 25% of its mean value in the core, Epy,'® we have A = 3.4, = 1.36£, for a = 12n,
A=2.129=0.84¢p for a = 20, and A = 1.1y = 0.44£, for a = 40x. In the following analysis, the
intermediate case a = 20x is considered. This value is chosen in order to satisfy two conflicting
needs of having an initial interface region large enough to be numerically well resolved and small
enough to be considered as an interface, i.e., no larger than an integral length scale ¢, see Ref. 18.
However, it is worth noting that the following analysis of the single-point and spectral enstrophy
budget has been conducted also for a = 127 and a = 40x. Despite the significant initial topological
differences, the main findings presented in the following also hold for these cases.

lll. PROPERTIES OF THE FLOW

We report here a general description of the flow field in order to provide instrumental infor-
mation for the analysis of the following single-point and spectral enstrophy budgets. As already
mentioned in Sec. II, from the initial condition, the turbulent/nonturbulent flow is left to freely
evolve in time without any forcing, thus leading to a decay. The turbulent kinetic energy decay
evaluated in the turbulent core, E ., is shown in Figure 2(a). After an initial transient, the energy
decay is found to follow a power law thus suggesting that a self-similar decay'® takes place for
t/to > 3. In particular, we measure E,,, ~ t~'-*8. During the decay, the Taylor-microscale Reynolds
number again evaluated in the core region decreases as shown in Figure 2(b). On the contrary,
after a small initial transient, for #/¢y > 3, the Taylor micro-scale evaluated in the turbulent core
increases, see the inset of Figure 2(b). Let us point out that in what follows, for the nondimension-
alization of lengths and velocities, we will use the time-dependent values of A and u,,,, evaluated
in the turbulent core. Finally, while decaying, the flow gives rise to a propagation of the turbulent
front. As shown in Figure 2(c), the mean interface position propagates as a square-root law of
time, (X;(t) — X;(0)) ~ Vt/to. This observation actually suggests the possible relevance of local
mechanisms of viscous diffusion at the interface.

Overall, we argue that after an initial transient period, the main features of the shear-less turbu-
lent/nonturbulent flow reach a sort of asymptotic behaviour. More precisely, for ¢/t > 3, the energy
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FIG. 2. (a) Time evolution of the turbulent kinetic energy evaluated in the turbulent core, E . (solid line). The dashed
line reports the power law E e ~ t~1-38 (b) Time behaviour of the Taylor-microscale Reynolds number Re, and of the
Taylor-microscale A (inset), both evaluated in the turbulent core. (c) Propagation of the mean interface (X ;(¢)— X (0)) (solid
line). The dashed line is a square-root law of time, (X(¢)— X1(0)) ~ v /t0.

decay approaches a self-similar regime by following a power law, E,,.(t) ~ t~'-3, and the Taylor
micro-scale increases after a small transient where it is found to decrease. In the following anal-
ysis of the single-point and spectral enstrophy budget, we will only discuss results for 7/t = 4.5.
Accordingly to what has been shown, this value is found to be sufficiently far from the initial
conditions to reach a sort of asymptotic behaviour, while maintaining at the same time significant
values of turbulent energy.

IV. SINGLE-POINT ENSTROPHY BUDGET

We start the analysis of the statistical properties of the shear-less turbulent/non-turbulent flow
with the single-point evolution equation of enstrophy. Indeed, as shown in the work of da Silva
et al.,' enstrophy is a very robust and appropriate quantity for the study of interfacial layers be-
tween regions of different turbulence intensities. The profile of enstrophy, (Q) = (w;w;)/2, where
w; is the vector field of vorticity, at #/ty = 4.5 is shown in Figure 3(a), where information about
the anisotropy of the flow is also reported by showing the normal and parallel to the interface
components of enstrophy, (w?)/2 and (w?2)/2, respectively, with = = y,z. Enstrophy is shown to
be large and homogeneous well within the turbulent region and to decrease while moving towards
the nonturbulent flow. The different components of enstrophy highlight that in the turbulent core,
isotropy is maintained while anisotropy appears as we approach the nonturbulent region. In partic-
ular, it appears that initially the portion of enstrophy due to the vorticity component parallel to
the interface decays faster than that of the normal component, (w2)/2 < (w2)/2. Then, this anisot-
ropy reverses while moving closer and closer to the mean interface where (w2)/2 > (w2)/2. The
crossover between these two behaviours takes place at (x — X;)/A ~ 4.

Let us now consider the enstrophy budget equation. Using the symmetries of the present
problem, the evolution equation of enstrophy is given by

0{Q) ow; dw; 0{Qu) 0XQ)
Do wiwisg) — v | =222 /A 2
ar - (wwssi) V<6x.,- axj> ax ) ax2 @

where s;; = 1/2(0u;/0x; + du;/0x;) and (-) indicate both the ensemble average and spatial average
in the homogeneous y — z planes. Equation (2) allows us to analyse how enstrophy is produced,
transferred and destroyed as a function of the distance from the mean interface (x — X;), see Ref. 13
and for a Lagrangian approach, Refs. 22 and 9. The term on the left-hand side describes how
enstrophy decays or increases in time. It is worth noting that since no external forcing is applied
to the flow, the overall content of enstrophy decays in time but, depending on the position within
the flow, there could be regions where enstrophy increases. Indeed, the inhomogeneity induced
by the presence of the interface leads to a spatial redistribution of enstrophy that could contribute
to a positive balance of the right-hand side of Equation (2). While the balance of production and
destruction of enstrophy, the first and second terms, respectively, is always negative, the action of
spatial fluxes could be both positive and negative. The spatial fluxes are driven by two processes,
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FIG. 3. (a) Averaged profiles of enstrophy (Q) (inset) and of its parallel and normal to the interface components, (wi)/ 2
(dashed line) and <w,2,> /2 (dotted line), respectively, normalized with the mean enstrophy at the core, (Q..r.), and taken at
t/to=4.5 for a =20x. (b) Behaviour of the terms of single-point enstrophy budget (2) as a function of the distance from the
mean interface position x — X for t /to=4.5 and a = 20x: production (dashed line), destruction (dashed-dotted-dotted line),
inertial (dashed-dotted line) and viscous (dotted line) spatial flux, and temporal variation of enstrophy (solid line). The two
vertical lines highlight the three relevant regions of the flow. Bottom inset: magnification of the inhomogeneous layer. Top
inset: magnification of the interfacial layer.

one inertial and the other viscous. The first inviscid process is represented by the third term while
the viscous diffusion is given by the fourth term.

From this point onward, the terms of the discussed budgets are shown once nondimensionalized
with the appropriate quantity formed by using u,,,; and A evaluated in the turbulent core at the time
considered. The behaviour of the terms of Equation (2) as a function of the distance from the mean
interface is shown in Figure 3(b). We distinguish three regions: a bulk turbulent region, an inhomo-
geneous layer, and an interfacial layer. In the bulk turbulent region for (x — X;)/A < —10, enstrophy
essentially behaves like a homogeneous isotropic decaying turbulent flow. The effect of the inhomo-
geneity induced by the presence of the nonturbulent region is very small since the spatial fluxes are
negligible. In this region, viscous destruction and production due to vortex stretching are the domi-
nant terms and their negative balance leads to an enstrophy decay. In the inhomogeneous layer, for
—10 < (x = X;)/ A < =0.5, the effect of the presence of the nonturbulent region becomes important.
Both, destruction and production of enstrophy decrease while approaching the interface highlighting
a strong inhomogeneous feature of this layer. Indeed, the inertial spatial flux is significant. In the
inner part of the inhomogeneous layer for —10 < (x — X;)/ A < =5, enstrophy (while decaying in
time) is partially released to feed the regions closer to the non-turbulent flow, —9(Qu)/dx < 0.
The peak of enstrophy drain due to the spatial flux is achieved at (x — X;)/4 ~ —7, see the bottom
inset of Figure 3(b). In the external part of the inhomogeneous layer for -5 < (x — X;)/A < =0.5,
the enstrophy decay is lower since the inertial spatial flux changes sign and thus sustains en-
strophy, —d(Qu)/dx > 0. The peak of the enstrophy source due to the spatial flux is reached at
(x = X;)/ A ~ =2, see the bottom inset of Figure 3(b). As expected, the drain and source behaviour
of the spatial fluxes within the inhomogeneous layer is essentially driven by inviscid processes while
the viscous diffusion is negligible, |0(Qu)/dx| > [v0*(Q)/0x?|. Indeed, the level of turbulence is
still high in this layer. In the interfacial layer for (x — X;)/A > —0.5, the enstrophy supply of the
spatial fluxes compared to the balance between production and destruction is strong enough to give
rise to a positive enstrophy variation in time, 9{(Q2)/dt¢ > 0, see the top inset of Figure 3(b). Although
the rate is very small, this is the only region where enstrophy increases in time and corresponds
to the layer where the average interface is located. In the interfacial layer, the production term is
small and the local source of enstrophy is mostly provided by the spatial flux. Also in this region
of the flow, this transport of enstrophy is mainly driven by inviscid mechanisms, but for the first
time, viscous diffusion starts to play a non-negligible role. It is worth pointing out that the depicted
behaviour of the single-point enstrophy budget remains substantially unaltered during all the decay.
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A similar behavior is also observed by changing the Reynolds number. Indeed, even if not reported
here for brevity, we have also analysed the budget (2) for 7/t = 6, t/t) = 8 and for an additional
simulation at a lower Reynolds number, Re; = 50. In all these cases, we found that bulk turbulent
region, the inhomogeneous layer, and the interfacial layer are roughly located at the same distance
(x = X;)/ A from the interface and their role on the enstrophy production, transfer, and dissipation is
found to be qualitatively the same.

Overall, we observe that the interactions between turbulent/non-turbulent flow take place mainly
in the inhomogeneous layer which is 9.54 wide. These interactions appear to be essentially inviscid
and statistically lead to an inertial spatial flux which is responsible for the sustainment of enstrophy
at the average position of the interface. It is worth pointing out that the regions where the inertial
flux is more intense roughly coincide with the regions of strongest anisotropy between the enstrophy
components as shown in Figure 3(a). Thus, it can be thought that the action of turbulent fluctuations
advecting enstrophy tends to increase the anisotropy by either drawing the in-plane component of
vorticity from the core and transferring it toward the interface or by re-orienting the out of plane
vorticity into in-plane direction as suggested by Gampert et al.>> We can conjecture that the peculiar
feature of the turbulent fluctuations carrying enstrophy toward the interface may affect the overall
behaviour of the turbulent/non-turbulent interface thus leading to different features depending on
the turbulent core considered, e.g., boundary layer and jets. Viscosity starts to play a non-negligible
role only at the interface by diffusing the level of enstrophy provided there by inviscid mechanisms.
Contrary to the inhomogeneous layer, the action of viscous diffusion in the external part of the inter-
facial layer should lead to a propagation which is independent on the peculiar feature of the turbu-
lent region, i.e., a more universal behaviour is expected for the interface propagation. Accordingly,
in Figure 2(c), we observe a propagation of the turbulent front following the general viscous law,
(X;(t) = X;(0))/ 2 ~ \t]to. From the inspection of the data, we measure that the depth of the layer
where viscous diffusion overcomes production is Ax = 0.194 = 4.057. This observation could be
consistent with the idea that enstrophy at the outer edge of the interface is diffused by small scales
normal to the interface in the order of 7. However, at this point, no precise information is available
on the scales involved in these processes and could lead to inexact predictions. Indeed, while this
conjecture could be true when considering normal to the interface scales, we anticipate here that
the analysis of the scale properties of the turbulent/non-turbulent interface through the study of the
spectral enstrophy budget that is contained in the rest of the paper actually suggests that the viscous
diffusion is a large scale phenomenon in terms of parallel to the interface scales.

In closing this section, let us notice that when studying the local structure of the interface, two
adjacent layers bridging the irrotational and turbulent flow are commonly identified, the so-called
viscous superlayer and the turbulent sublayer.">* These two layers characterize the local dynamic
of turbulent entrainment and can be found by means of conditional statistics over convoluted sur-
faces representing the instantaneous locus of the interface. Contrary to this approach, here, we
intend to understand the global statistical features of the entire turbulent flow interacting with a
quiescent laminar region without restricting the analysis solely to the interface. In this context,
the three regions introduced here represent the simpler way to characterize the inhomogeneity of
the flow and, as mentioned in the Introduction, rely on the symmetries of the enstrophy balance
equation both at the single-point and two-point levels. Hence, no direct correspondence between
the present decomposition and the viscous superlayer and turbulent sublayer can be found since
the former characterizes the global features of the entire flow while the latter describe the local
dynamics of the interface. However, it is possible to conjecture that the behaviour of the interfacial
layer is consistent with the presence of a viscous superlayer, in particular in its external part where
viscous diffusion overcomes production in a very thin layer whose extension is 4 which is very
close to the value of the viscous superlayer thickness reported in the work of Taveira and da Silva.'

V. THE BALANCE EQUATION FOR SPECTRAL ENSTROPHY

The description of the turbulent/non-turbulent interactions, made so far in terms of the single-
point enstrophy budget, is here extended to a multi-scale framework. Indeed, the mechanisms
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of production, transport, and destruction of enstrophy, previously shown, are actually multi-scale
phenomena which depend not only on the position with respect to the interface but also on the
scale considered. Moreover, it has long been recognized that the dynamics of the interface are
linked to two relevant local processes occurring at the interface, the so-called engulfment and nibbl-
ing."*!3> By definition, both mechanisms are strongly scale-dependent with engulfment referring to
an inviscid large-scale ingestion of non-turbulent fluid, and nibbling referring to a partially viscous
process caused by small-scale fluctuations. In this scenario, a compound description in the phys-
ical/scale space is required for the correct understanding of the physics of the turbulent entrainment.
As an example, in Cimarelli et al.,>** the use of a multidimensional approach has been shown
to be fundamental for the study and modelling of the energy paths in a turbulent channel flow,
while in Philip ef al.,’ a multiscale analysis has been successfully applied for the study of the
turbulent/non-turbulent interface.

Appropriate candidates to consider for a simultaneous description of dynamics in physical and
scale space are the two-point statistical observables, such as the spectral decomposition of enstrophy,
Q= ®;®}/2, where * and * denote the 3D Fourier transform and the complex conjugate, respectively.
In the case of homogeneous isotropic turbulence, the balance equation for spectral enstrophy is

—
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where k2 = k2 + k2 + k2 and i is the imaginary unit. Once considering the turbulent/non-turbulent
interface, due to Vlolatlon of spatial homogeneity, the enstrophy spectrum depends both on the
wavenumber considered and on the spatial location. In particular, for the symmetries of the problem,
we can derive an evolution equation for the spectral enstrophy written in wavenumber space along
the homogeneous (y,z)-directions and in physical space along the inhomogeneous x-direction,
ie., Q = Q(x, ky), where () refers to a 2D Fourier transform in the homogeneous (y—z)-space. The
resulting equation reads

R c')wu " u; 0HQ d@; 00
S = kom0 0 ( )> 2@ v G D @
Ty Ty S——— €k T Ex
Y

where k. = k, , and k%[ = ki + k2. Equation (4) allows us to analyse the dynamics of enstrophy
in the compound wavenumber/physical space. Since the wavenumber space k, is isotropic, we
consider the integral of Equation (4) over a shell in the (k,, k;)-space of radius k and thickness dk in
order to reduce the degrees of freedom of the analysis. The resulting equation takes the same form
as Equation (4) but is a function of a single scalar quantity k and of the position x.

Equation (4) extends the picture delineated with Equation (2) by describing how enstrophy
is produced, transferred, and destroyed among different wavenumbers k and distances from the
average interface (x — X;). We can hence have an insight into the scales involved in the viscous and
inertial propagation mechanisms of enstrophy in the inhomogeneous x-direction. More explicitly,
the term on the left-hand side describes how enstrophy decreases/increases in time as a function
of the wavenumber and position considered. This variation in time depends on the local balance
between production and viscous destruction and on the amount of enstrophy supply/drain due to
the fluxes. The spectral production due to vortex stretching is represented by y while the effects
of viscous destruction are split into two terms: €; represents the homogeneous viscous destruction
related to the in-plane wavenumbers k, while €, is the viscous destruction associated with the
inhomogeneity in the x-direction induced by the presence of the interface. Two kinds of fluxes
appear in Equation (4), namely, a spectral flux 7, which identifies the transfer through in-plane
wavenumbers k and 7 and D, which are the inertial and viscous spatial fluxes of spectral enstrophy
in the direction normal to the interface, x. It is useful to group together some terms of Equation (4)
into an effective source term & = y + € + €, and into an effective spatial flux S, = T, + D,. Hence,
the equation for spectral enstrophy reduces to

%=§+SX+T1<, (5)
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allowing to describe in a simple way how for a given wavenumber k and distance from the interface
(x — X;), enstrophy is generated/destroyed (£) and transferred through the space of wavenumbers
(Ty) and physical space (Sy).

It is worth pointing out that the scales considered here, namely, 27 /k, refer to the lengths of
the turbulent structures in the directions parallel to the mean interface. Indeed, the formalism intro-
duced with Equation (4) does not allow us to describe the behaviour of enstrophy in the space of
longitudinal scales, 27/k,. Nevertheless, Equation (4) contains the contributions from the putative
space of longitudinal wavenumbers k, within the inhomogeneous terms S, and €, although in a
non-explicit form. This fact increases the complexity of the interpretation of the inhomogeneous
terms since we cannot distinguish between mechanisms associated with k, from those related to
the inhomogeneity and hence associated with x-derivatives. In order to explain this point, let us
consider to apply Equation (4) to a homogeneous isotropic turbulent flow. With this setting, we
may expect that the terms Sy and €, should vanish since they are conceived as associated with
the inhomogeneity of the flow. Actually, these terms will not be zero, even if the term D, in S,
disappears, since they account also for the spectral flux and viscous destruction among wavenum-
bers ky, i.e., for the components ik (®;w;uy) and 2vk§(f2) of Equation (3) integrated over all
wavenumbers k.. However, let us note that the integral over k of the contribution to S, coming from
f ikx(cf):.‘m) dk, is zero for homogeneous isotropic flows, i.e., f Sy dk = 0. This information
allows us to partially distinguish between inhomogeneous and longitudinal wavenumber effects.
Analogously, the integral over k of the contribution to €, of [ 2vk§(f)) dk, is one third of the total
viscous destruction for homogeneous isotropic turbulence, i.e., f €xdk = f € dk/2, and allows us
again to discriminate between inhomogeneous and spectral effects.

VI. SPECTRAL ENSTROPHY BUDGETS

Before starting with the analysis of the spectral enstrophy budget equation, let us describe
first the behaviour of spectral enstrophy. In Figure 4(a), the logarithm of (Q)/P/ufmx is shown as
a function of the distance from the mean interface (x — X;)/A and of the wavenumber kA, par-
allel to the interface, for t/fp = 4.5. The maximum values of enstrophy are achieved in the bulk
turbulent region with a peak at small wavenumbers for kA4 ~ 2.5 corresponding to wavelength
/A =2n/(kA) ~ 2.51. Within the bulk turbulent region, the spectral distribution of enstrophy re-
mains unaltered by changing the distance from the mean interface. The dependence on (x — X;)/4
appears in the inhomogeneous layer and continues in the interfacial layer. In particular, in the inner
part of the inhomogeneous layer for —10 < (x — X;)/A < =5, the width of the spectral range of
enstrophy reduces. Indeed, this is the layer where enstrophy is drained by the spatial flux to feed
regions towards the non-turbulent flow. On the contrary, in the external part of the inhomogeneous
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FIG. 4. Isocontours of log((f))/lz’/u%ms) in the (k, x — X;)-space for (a) t /t9p=4.5 and (b) #/to=8.
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layer for =5 < (x — X1)/A < —0.5, the spectral range increases showing a peak. As will be shown in
the following, this fact is related to the presence of an enstrophy cascade from large to small scale
moving in the interface direction. In the interfacial layer, the width of the spectral range of enstro-
phy decreases. Interestingly, the peak of (Q) remains located, independently of the distance from
the mean interface, at kA ~ 2.5. As will be shown in the following, the fact that the interfacial layer
exhibits relatively large parallel to the interface scales is related to the presence of an anisotropic
enstrophy cascade. The same observations can be made for #/¢y = 8 as shown in Figure 4(b) where
the peak of the spectral width of enstrophy is even more evident. Let us mention at this point that
the effect of the Reynolds number has been also analysed by considering an additional simulation at
a lower Reynolds, namely, Re,; = 50. The same overall features are observed and the effect of Re,
simply reduces to a shift of the processes at slightly smaller wavenumbers k A.

The spectral enstrophy budgets as a function of k are shown in Figures 5-8 for #/ty = 4.5
and for different distances from the average position of the interface, namely, in the bulk turbulent
region, in the inner and outer part of the inhomogeneous layer, and in the interfacial layer. The
figures are organized as follows: in plot (a), the compact form of the budget, Equation (5), is shown
while in plot (b), the different contributions to the effective source ¢ and to the effective spatial flux
S, are reported.

A. The bulk turbulent region

We start the analysis by considering the spectral enstrophy budget within the bulk turbulent
region shown in Figure 5. We observe that the entire spectrum of scales decays in time. In particular,
the rate of decay is larger at relatively small wavenumbers where spectral enstrophy is more intense
as shown in Figure 4. In agreement with the picture of a homogeneous isotropic decaying turbu-
lent flow, these enstrophy containing wavenumbers decay in time mostly because of an enstrophy
cascade process which drains enstrophy from large structures at small wavenumbers, 7 < 0, and
releases it to small eddies at larger wavenumbers, 7; > 0, where it is destroyed since the source term
is negative, £ < 0, due to the action of viscous forces. Actually, the source term shows a positive
peak at small wavenumbers since production due to vortex stretching exceeds viscous destruction,
& =7v+€x+ € >0, but it is not strong enough to balance the flow of enstrophy towards small
scales thus leading to a decay. At intermediate wavenumbers, the intensity of spectral enstrophy is
smaller. In this range, the source term is negative, & < 0, and reaches its minimum dissipating the
enstrophy available through the cascade process, T; > 0. Since the enstrophy draining due to ¢ is
larger than the source due to T}, enstrophy decays also at these wavenumbers.

Due to the statistical homogeneity of this region of the flow, the behaviour of the inhomo-
geneous terms Sy and €, has to be understood as a result of spectral interactions in the putative
space of longitudinal wavenumbers, k. In fact, the integral of S is essentially zero, f Sydk ~ 0,
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FIG. 5. Spectral enstrophy budget within the bulk turbulent region at (x — Xr)/ A = —20 for ¢ /to=4.5. (a) Spectral behaviour
of the different terms of Equation (5). (b) Behaviour of the different components of & and of Sy (inset).
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highlighting the fact that inhomogeneity and spatial fluxes are negligible in this layer. Hence, the
small wavenumber drain and large wavenumber source of S, appear as the net effect on the space
of the wavenumbers k, parallel to the interface, of an enstrophy cascade among the wavenumbers
ky, normal to the interface. Analogously, €, reports in the k-space the destruction of enstrophy
occurring in the putative k,-space. Indeed, the integral of €, is roughly half the integral of e,
ie., [ exdk ~ [ exdk/2.

Before considering the inhomogeneous and interfacial layers, it is worth pointing out that in
these regions of the flow, the behaviour of these terms is essentially driven by inhomogeneity, thus
allowing us to interpret Sy as a spatial flux and €, as a viscous destruction mainly due to gradients
in the x-direction, respectively. Accordingly, the integral of S, within these regions of the flow
is significantly different from zero, [ Sy dk # 0. Hence, the behaviour of S is mainly due to the
inhomogeneity of the flow and represents a spatial flux of spectral enstrophy which overshadows the
scale-by-scale interactions in the putative k,-space. On the other hand, the integral of €, is larger
than half the integral of €, [ €xdk > [ € dk/2, highlighting the fact that inhomogeneity intro-
duces an additional viscous destruction related to spatial velocity gradients. The spectral enstrophy
budgets in both layers are discussed in Subsections VI B and VI C.

B. The inhomogeneous layer

The spectral enstrophy budget in the inner part of the inhomogeneous layer is reported in
Figure 6 at (x — X;)/A = —7 where the peak of enstrophy draining of the single-point spatial flux
occurs. As highlighted by the single-point enstrophy budget, the inner part of this layer is the region
where turbulent/non-turbulent interactions lead to a strong enstrophy release towards the interface,
i.e., this is the engine of the turbulent propagation since it is the unique region which significantly
releases enstrophy through the spatial flux. As already shown in Figure 4, the overall intensity of
spectral enstrophy is reduced in comparison with the bulk turbulent region but essentially retains
the same spectral distribution, i.e., the enstrophy containing scales are those corresponding to small
wavenumbers. As shown in Figure 6(a), analogously to the bulk turbulent region, the entire spec-
trum of enstrophy decays in time. In particular, the decay reaches its maximum at the enstrophy
containing scales at small wavenumbers. In this range, the source term is positive, & > 0, due to
vortex stretching mechanisms that are active at the small wavenumber range of this region, see the
main plot of Figure 6(b). However, this enstrophy source is not strong enough to balance the small
wavenumber enstrophy release due to the spectral flux, 7; < 0, and to the spatial flux of enstro-
phy, S, < 0. These large scales (small wavenumbers) are thus responsible for feeding enstrophy at
smaller scales (larger wavenumbers) through a cascade process and to sustain enstrophy in regions
closer to the interface through a spatial flux in physical space. Hence, a multidimensional transport
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FIG. 6. Spectral enstrophy budget within the inhomogeneous layer at (x —Xy)/A=-7 where the peak of enstrophy
draining due to the spatial flux takes place and for ¢ /#p=4.5. (a) Spectral behaviour of the different terms of Equation (5).
(b) Behaviour of the different components of & and of S (inset).
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of enstrophy takes place with large scales sustaining a transport of enstrophy towards smaller scales
located closer to the interface. In accordance with the single-point budget, the inhomogeneous
spatial flux is mainly carried out by inviscid mechanisms, T > D, see the inset plot of Figure 6(b).
Considering larger wavenumbers, the spatial flux term is essentially negligible and enstrophy is
sustained exclusively by the spectral flux, 7, > 0. However, this supply of enstrophy is not strong
enough to balance the draining of the source term, £ < 0, due to viscous destruction, thus leading to
an enstrophy decay also at large wavenumbers.

In the external part of the inhomogeneous layer shown in Figure 7, the picture is completely
modified. Figure 7 shows the spectral budget at (x — X;)/1 = —2 where the peak of enstrophy
source of the single-point spatial flux occurs. As shown by the single-point enstrophy budget, the
external part of the inhomogeneous layer is a region where enstrophy is sustained by a strong spatial
flux emerging from the inner part of this layer. Accordingly, the spectral enstrophy budget shows
that the entire spectrum of scales gains enstrophy from the spatial flux, Sy > 0. This inhomogeneous
enstrophy supply compared to the local source term, &, is significant and leads to a reduction of the
decay rate which is small compared to the one in the bulk turbulent region and in the inner part of
the inhomogeneous layer. The source term in this region of the flow is negative at all wavenumbers,
¢ < 0. Indeed, the intensity of production due to vortex stretching, v, is reduced and found to be
overcome by viscous destruction, €, + €, as can be seen in the main plot of Figure 7(b). The
inhomogeneous contribution to destruction, €,, starts to be comparable in magnitude to the spectral
one € and is found to act at relatively small wavenumbers where the production mechanisms occur.
Also in this region, an enstrophy cascade is present which drains enstrophy at small wavenumbers,
Ty < 0, and releases it at larger ones, Ty > 0. It is worth noting that the enstrophy source due to the
spatial flux, Sy, is active at wavenumbers larger than those where the spatial flux drains enstrophy
in the inner part of the inhomogeneous layer. In particular, from Figure 7(a), we observe that the
maximum of enstrophy source from the spatial flux occurs at k4 =~ 5 while the peak of enstrophy
sink of the spatial flux shown in Figure 6(a) takes place at kA ~ 2. This spectral shift of the scales
involved in the spatial flux, Sy, from the inner to the outer part of the inhomogeneous layer is in
agreement with the previously mentioned directionality of the enstrophy flux both from large to
small scales and toward the interface in physical space. More explicitly, the large scales of the inner
part of the inhomogeneous layer are responsible to sustain enstrophy at smaller scales toward the
interface. As shown in the inset plot of Figures 6(b) and 7(b), this spatial transport is essentially an
inviscid mechanisms, i.e., Ty > D,.

C. The interfacial layer

Let us finally analyse the spectral enstrophy budget in the interfacial layer shown in Figure 8
for (x — X;)/A = 0. As shown by the single-point enstrophy budget, this is the region of the flow
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FIG. 7. Spectral enstrophy budget within the inhomogeneous layer at (x —Xjy)/A=-2 where the peak of enstrophy
source due to the spatial flux takes place and for ¢/¢p=4.5. (a) Spectral behaviour of the different terms of Equation (5).
(b) Behaviour of the different components of & and of S (inset).
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where the enstrophy supply due to the spatial flux is strong enough to give rise to a positive variation
in time of enstrophy. Furthermore, this is the only region where viscous diffusion is not negligible
anymore. Accordingly, the spectral budget in Figure 8(a) shows that enstrophy in the entire spectrum
of scales increases in time. As already shown in Figure 4, the enstrophy containing scales is still
located at moderately small wavenumbers with a peak of enstrophy at kA ~ 2.5. The source term is
always negative ¢ < 0 since production at small wavenumbers, 7y, is overcome by an increasingly
large viscous destruction associated with the inhomogeneity of this layer, €, as shown in the main
plot of Figure 8(b). As a consequence, the enstrophy growth is exclusively driven by a strong spatial
flux §,. Interestingly, the peak of enstrophy source due to Sy in the interfacial layer is roughly located
at the same wavenumber of that in the external part of the inhomogeneous layer (both at kA ~ 5) as
can be seen by comparing Figures 7 and 8. This fact implies that the picture of a double cascade of
enstrophy from large to small scales while moving in the interface direction is broken in the interfacial
layer since the parallel to the interface scales fed by the spatial flux are almost the same. Hence, it
appears that in the interfacial layer, the turbulent fluctuations while transporting enstrophy towards
the non-turbulent region retain their scales parallel to the interface length. This phenomenon can be
explained by looking to the behaviour of the spectral transport of enstrophy 7.

As shown in Figure 8(a), T} is negative at all wavenumbers. This behaviour may appear anoma-
lous since by the definition of transport term, we may expect a balance between scales gaining and
scales losing enstrophy. This peculiar feature is due to the fact that the strong inhomogeneity at the
interface induces a significant anisotropy with strong consequences on the cascade mechanisms of
enstrophy. The spectral transfer is not anymore isotropic, i.e., directed radially from small to large
wavenumbers along the (k/|K|)-direction. The fact that the entire spectrum of parallel to the inter-
face wavenumbers, k, loses enstrophy in particular at small wavenumbers means that the enstrophy
cascade is redirected towards the putative space of longitudinal wavenumbers, k,, which flows
down to small scales up to dissipation. Hence, at the interfacial layer, we observe structures with
large dimensions parallel to the interface that cascade down reducing their longitudinal thickness
while retaining their parallel to the interface lengths. See Figure 9(a) where the instantaneous topol-
ogy of the flow field is reported, to appreciate the large parallel to the interface surface exhibited by
the enstrophy structures.

Let us finally address the role of viscous and inertial mechanisms in the spatial transport of
enstrophy in the interfacial layer. As shown in the inset plot of Figure 8(b), the viscous contribution
to the spatial flux, Dy, is for the first time not negligible. Interestingly, it appears that the wavenum-
bers gaining enstrophy through a viscous diffusion process are smaller than those gaining from the
inviscid transport mechanisms. In particular, the peak of D, occurs at kA ~ 2.5 while the peak of T
at kA =~ 5. This observation may have strong repercussions on the phenomenological understanding
of the turbulent/non-turbulent interactions. Indeed, it is commonly assumed that inertial mecha-
nisms are large scale phenomena while viscous mechanisms are small scale processes. In agreement
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FIG. 8. Spectral enstrophy budget within the interfacial layer at (x — X 1)/ A =0 for ¢ /tg=4.5. (a) Spectral behaviour of the
different terms of Equation (5). (b) Behaviour of the different components of & and of S (inset).
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with this picture, we measured in Sec. IV that the thickness of the layer where viscous diffusion
is significant is of the order of the Kolmogorov scale, 47, actually suggesting that the longitudinal
length scales involved in the viscous propagation are very small. On the contrary, while considering
interface parallel scales, the spectral analysis shows that the viscous diffusion takes place at large
scales. This phenomenon is presumably due to the previously shown anisotropic enstrophy cascade
at the interfacial layer and, hence, with the presence of large structures having very coherent par-
allel to the interface pattern. Therefore, viscous diffusion acting on top of these fronts is mainly
directed along the x-axis leading to a significant contribution to the enstrophy transport at large
scales. Accordingly, in Figure 9(b) where the instantaneous enstrophy structures at the interface are
colored by the viscous diffusion term, it is shown that the instantaneous contribution of viscous
diffusion to the enstrophy transport is mainly active on top of the very coherent and smooth parallel
to the interface fronts.

Vil. FINAL REMARKS

How turbulent/non-turbulent flows interact leading to a propagation of the turbulent front is
analysed here by means of global statistical budgets of enstrophy, both, at the single-point and the
two-point levels. Three physically relevant regions are identified for the production, transport, and
destruction mechanisms of enstrophy: a bulk turbulent region, an inhomogeneous layer, and an inter-
facial layer. Enstrophy flows from the bulk turbulent region towards the interfacial layer by means
of inviscid turbulent transport mechanisms. Most of the enstrophy transferred towards the interface
is drained by the spatial flux in the inner part of the inhomogeneous layer with a peak at seven Taylor
microscales behind the average position of the interface. As a consequence, this layer can be consid-
ered as the engine of the turbulent front propagation. Most of the enstrophy drained in the inner part of
the inhomogeneous layer is then released by the spatial flux in the external part of the inhomogeneous
layer, two Taylor microscales behind the mean interface. But the interfacial layer, where the average
position of the interface is located, is the only region where the spatial transport mechanisms are pro-
portionally strong enough to give rise to an enstrophy growth in time. The viscous diffusion is found
to be negligible everywhere except in the external part of the interfacial layer where it contributes to
the transport of enstrophy locally available through inertial mechanisms.

The spectral enstrophy budget shows that enstrophy, while moving towards the non-turbulent
region, flows down to smaller scales before being destroyed by viscosity. Hence, larger scales in
the inner part of the inhomogeneous layer are responsible for feeding enstrophy at smaller scales

(a) —— (b) T

FIG. 9. Instantaneous topology of the turbulent/nonturbulent interface at #/to=4.5. The isosurface denotes the enstrophy
threshold, Q= Q, =0.02(Qc0re), and it is colored by the distance from the mean interface, (x — Xj)/4, in (a) and by the
viscous diffusion term, v92Q/dx2, in (b).
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in the external part of the inhomogeneous layer. This phenomenon is the result of a coupling of an
enstrophy cascade in the space of scales with a transport in physical space in the interface direction.
Let us point out that this picture of a spatial cascade of enstrophy can be highlighted only through
a multidimensional approach. Even if the shift from large to small scales seems to be small, it is
important to note that moving along the x-axis, the Kolmogorov scale 7 is increasing due to a reduc-
tion of the local Reynolds number and makes this shift more pronounced than it appears (7 is found
to double moving from (x — X;)/4 = -7 to (x — X;)/A = 0). As a consequence of the combined
presence of a cascade process towards small scales and a spatial flux towards the non-turbulent flow,
viscous destruction is not anymore an in-plane phenomenon since small scales dissipate enstrophy
emerging from larger scales located further away from the interface. This is a peculiar feature
of inhomogeneous flows. Once the interfacial layer is reached, the symmetries of the enstrophy
cascade break down giving rise to an anisotropic cascade where enstrophy does not cascade from
large to small parallel to the interface scales but mainly flows down towards small normal to the
interface scales where it is then destroyed by viscosity. Hence, in the interfacial layer, large parallel
to the interface structures experience a reduction of their thickness up to few Kolmogorov scales
while essentially retaining their parallel to the interface lengths. This aspect is consistent with the
anisotropic structure of the small scales observed in the work of Tordella et al.'® Finally, the trans-
port mechanisms of the spatial cascade of spectral enstrophy are mainly inviscid. Viscosity starts to
play a non-negligible role only in the external part of the interfacial layer. Interestingly, it is found
that the action of viscous diffusion is stronger at scales larger than those where inviscid turbulent
mechanisms are dominant. Actually, viscous mechanisms are commonly associated with small scale
phenomena. But, as shown here in quantitative terms, viscous diffusion is found to characterize
relatively large scales parallel to the interface even if in a very thin layer whose depth is of the order
of few Kolmogorov scales. This behaviour is the result of the presence of an anisotropic enstrophy
cascade which generates in the interfacial layer large parallel to the interface structures character-
ized by having a very coherent pattern. Hence, viscous diffusion acting on top of these large-scale
fronts is mainly directed along the x-axis leading to a significant contribution to the enstrophy
transport at large scales. In conclusion, the observed anisotropy of the enstrophy cascade could
have strong repercussions on the physical understanding of turbulent/nonturbulent interactions and
should be taken into account in the modelling approaches.

In closing this work, let us discuss how the present results on the interactions between shear-
less turbulent/non-turbulent flows can be generalized to other type of flows. It is shown that inviscid
turbulent mechanisms are responsible for carrying enstrophy towards the interfacial layer. Most of
these complex turbulent/non-turbulent interactions take place in the inhomogeneous layer. Through
this layer enstrophy is transported by large scale turbulent fluctuations. The main features of these
fluctuations are presumably dependent on the turbulent bulk flow that has generated them, and,
hence, the main features of the inhomogeneous layer are conjectured not to be universal, i.e., they
are dependent of the flow considered being either a turbulent jet or boundary layer. According to
the fact that vorticity can be transmitted to an irrotational flow only through the tangential forces
due to viscosity,” in the interfacial layer, viscous diffusion is more important and contributes to the
transport of enstrophy. Hence, the dynamics of the interfacial layer could have a more universal
feature since the inertial transport is less important and, above all, far from its source, i.e., the bulk
turbulent region. Accordingly, the propagation rate of the turbulent front measured here follows a
square-root law of time as it is found for all diffusive flows. Overall, these facts suggest that the
turbulent region drives the interface through an inertial mechanism while viscosity acts as a final
redistribution of enstrophy provided at the interface layer by inertial fluxes.
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