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ABSTRACT 

A new 3D finite element concrete model is described. The model brings together two recently developed sub-models 

for simulating cracking and crack contact behaviour, both of which use smoothed evolution functions, with a triaxial 

plasticity model component. A number of examples are presented that validate the model using a range of plain and 

reinforced concrete test data. These examples demonstrate that the model is numerically robust, has good 

equilibrium convergence performance and is objective with respect to mesh grading and increment size. The 

examples also illustrate the model’s ability to predict peak loads, failure modes and post-peak responses.    

 

1. INTRODUCTION 

The complex nature of the mechanical behaviour of concrete has provided numerical researchers with a set of 

problems that nearly fifty years of work has yet to fully resolve. The multi-scale nature of this particulate material and 

the many mechanical mechanisms that govern its behaviour combine to make the development of a comprehensive 

finite element concrete model a truly challenging undertaking.  Inherent flaws in early concrete models [1] became 

apparent in the mid 1980s as the fundamental importance of scale effects and the need for fracture mechanics 

concepts came to be understood [2-3]. From the finite element view point, this work demonstrated that it was not 

possible to use a constitutive model for softening behaviour governed by a unique stress–strain function whilst also 

maintaining objectivity with respect to mesh grading. Thus, it was recognised that the constitutive and computational 

aspects of a solution have to be considered together.   

We use the word constitutive to describe the stress-strain behaviour of a representative volume of material with the 

characteristic dimension of the fracture process zone (FPZ) width. The term computational encompasses numerical 

aspects of behaviour associated with the spatial and temporal discretisations. Thus, if the predicted behaviour 

changes with the density of a finite element mesh, we would describe this as a computational issue. It is recognised 

that the underlying micro- and nano- structure of a particular material has been (and should be) used in the 

development of computational techniques, which implies that there should not be such a clear distinction between 
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what we describe as constitutive and computational aspects of modelling. Whilst this is true, we have – for 

convenience – continued to use these terms in our descriptions of previous numerical models.        

Bazant and Oh’s  Crack Band model [3] was the first to address the issue of mesh dependency. Since the publication of 

their work, there has been a number of important computational developments that have combined constitutive and 

computational aspects of the modelling of concrete.  These have included integral and gradient non-local models [4-

12], visco regularisation schemes [13, 14], the extended finite element approach (X-FEM) [15-17], multi-scale models 

[18, 19] elements with embedded strong discontinuities [20-25] and elements with other enhanced interpolations to 

overcome problems with mesh bias [26]. Most frequently, these methods have been implemented with damage 

models [27,28], plasticity models [29, 30] or plastic-damage models [31]. These references represent only a small 

fraction of the research undertaken on modelling of concrete structures but in spite of the considerable progress 

made on this topic, not all of the computational problems have been fully resolved. 

Whatever the combined constitutive-computational procedure adopted, the resulting non-linear systems of 

equations are most-frequently solved using Newton-based incremental-iterative schemes [32,33]. The authors’ 

experience with many of the above computational techniques (i.e. viscous regularisation, integral and gradient non-

local schemes and procedures which model strong discontinuities) is that situations can arise in which there is 

breakdown of the incremental-iterative scheme, such that equilibrium convergence cannot be achieved to an 

acceptable tolerance. This is true for standard Newton and modified Newton methods, solutions with automatic step 

selection, line-search solutions as well as solutions with various types of arc-length control [32,33].    

In an attempt to avoid such difficulties, a number of researchers have developed solution procedures that either 

avoid (or limit) the use of iterations. These methods include the ‘implicit-explicit’ approach of Oliver et al. [34, 35] in 

which a projected state variable (e.g. a damage parameter) is used to determine a predicted consistent tangent 

matrix that is exact for the current increment but for which a correction is made in the subsequent stress-recovery 

phase.  An alternative approach, based on sequential linear solutions, was proposed by Rots et al. [36]. This method 

was subsequently extended by Graça-e-Costa et al. [37] such that the algorithm can capture responses from non-

linear materials governed by both loading and unloading behaviour of a softening material. It has also been recently 

applied with a new smooth crack propagation algorithm [38].  

Although there are considerable benefits to using these non-iterative approaches, they can result in non-smooth 

responses, and would require further development before being able to cope well with constitutive models that 

include non-linear crack closure in combined shear and normal modes. Currently they are not naturally compatible 

with non-linear plasticity models for other materials, which would be an issue for solving soil-structure problems.  

Crack opening and closing behaviour is important in most concrete structures, and even when the global loading is 

essentially monotonic in nature, some cracks open and then close again as other cracks grow [39 ]. Cracks in concrete 

are rough in nature and contact can be regained with increasing shear displacement even when a crack has a 

significant opening. This shear contact, often referred to as ‘aggregate interlock’, is important because it can be a 

significant load carrying mechanism in reinforced concrete structural members [40]. Crack opening and closing under 

normal displacements and aggregate interlock are both aspects of crack contact behaviour that should, in the 
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authors’ opinion, be treated in a unified manner. The introduction of crack contact into a finite element concrete 

model can result in loss of numerical robustness because the abrupt change of stiffness that occurs upon crack 

closure can result in the failure of the incremental-iterative solution procedure. A fuller review of previous 

experimental and numerical work on modelling crack opening-closing behaviour is provided in reference [41]. 

The philosophy that underlies both of the sub-models described in this paper is that the convergence of a Newton 

type solution to a set of non-linear equations is generally more reliable when the equations are smooth and the 

tangent matrix is positive-definite than when the equations are discontinuous and/or the tangent matrix is non-

positive-definite.  The processes involved with concrete cracking and crack closure may appear to be naturally 

discontinuous and not readily amenable to smoothing; however, a close examination of the experimental response of 

concrete elements [42] suggests that these processes are not truly abrupt. This means that there is scope for using 

smoothed crack evolution and crack contact functions. This thinking led to two separate developments. The first of 

these was a new model that employs smooth crack contact and contact evolution functions to simulate rough crack 

contact behaviour in concrete [41]. The authors showed how this approach could be applied in an anisotropic damage 

model using embedded crack planes. The computational benefits of smoothing crack closure paths has also been 

demonstrated by Sellier et al. [43]. The second development [44] was a new approach to the simulation of damage 

evolution using a smoothed unloading-reloading response function within an algorithm that always uses a positive 

definite stiffness matrix. This approach was applied with an isotropic damage model and was shown to give 

considerable benefits in terms of the efficiency of the incremental iterative solution process.  

The work described in the present paper brings together the two developments described in references [41] and [44], 

along with a plasticity model component [45-46], to form a new comprehensive 3D plastic-damage-contact model for 

concrete. There was considerable new work involved in making the two approaches compatible with one another and 

with the triaxial plasticity component, as well as with the development of a robust consistent solution algorithm for 

the new combined smoothed plastic-damage-contact model.  

Many previous papers have described the analysis of plain concrete fracture specimens, but it is rare to find 

descriptions of the analysis of reinforced concrete (RC) members that include mesh convergence studies, 

consideration of both pre- and post-peak responses and an examination of failure modes. Although models have long 

since been able to obtain a reasonable pre-peak response (with some model calibration), the ability of models to 

simulate all of the preceding facets of behaviour is unclear. The authors’ experience is that the multiple local 

instabilities that occur in the analysis of RC members commonly make it difficult to obtain reliable, comprehensive 

and accurate simulations for RC members, particularly if dominant shear cracks occur.  The examples presented in this 

paper address all of these issues and provide a thorough examination of the performance of the model with respect 

to the analysis of both plain and reinforced concrete structural elements. 

The paper is arranged as follows: 

• Section 2 presents the essential theory of the smooth unload-reloading (SUR) and smooth contact approaches 

in relation to a crack-plane model and then shows how the two approaches can be brought together in a 

single model; 
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• Section 3 explains how the crack-plane model is implemented in an embedded 3D constitutive model and 

coupled to a plasticity model component; 

• Section 4 gives guidance on material parameters; 

• Section 5 gives a number of example finite element analyses, including a new mesh convergence study, and 

an assessment of the numerical results with respect to experimental data; 

• Section 6 presents conclusions from the work.   

 

 

2.  CRACK-PLANE MODEL THEORY 

2.1 Preliminaries 

The proposed approach to modelling cracking and smooth contact is developed in terms of a crack-plane sub-model 

which is subsequently applied to an embedded (or smeared) crack model within finite elements.  A crack-plane is 

defined as the mid surface of a band of material of depth h containing a crack (or micro-cracks). This band of material 

is associated with a fracture process zone (FPZ) [3] and thus h is interpreted as the physical width of that zone.  

The orientation of the plane is defined by axes ri (i=1 to 3), with unit vector r1 being the normal to the crack plane and 

r2 and r3 being orthogonal in-plane unit vectors. The crack-plane stress vector (σɶ ) and local strain vector ( εɶ ) are as 

follows: 

 [ ]T11 12 13σ σ σ=σɶ ɶ ɶ ɶ  and [ ]T11 12 13ε ε ε=εɶ ɶ ɶ ɶ          (1) 

The local strains are assumed equal to the relative displacements across the crack-band divided by the crack band 

width. Only the stress and strain components which can be non-zero, with the present assumptions, are included in 

the vectors.   

The elastic crack-plane constitutive relationship is given by: 

( )e  = = −σ D ε D ε ε
⌣ɶ ɶɶ ɶ ɶ             (2) 

in which eεɶ is the elastic crack-band strain vector, ε
⌣

 is the inelastic or ‘fracture’ strain vector and 

E 0 0

0 G 0

0 0 G

 
 

=  
 
 

D

ɶ

ɶɶ

ɶ

, 

where Eɶ and Gɶ  are the effective normal and shear elastic moduli of the crack-band material respectively. 

The Cartesian stress and strain tensors are expressed in vector forms respectively as follows:  

[ ] [ ]T T
11 22 33 12 13 23 11 22 33 12 13 23and 2 2 2   σ σ σ σ σ σ ε ε ε ε ε ε= =σ ε  with the fourth order elastic 

constitutive tensor being represented as the 6x6 Matrix De, noting that Matrix notation is used throughout this paper.  

Hereafter, the terms ‘stress’ and ‘strain’ imply stress vector and strain vector respectively , unless applied to a scalar 

quantity.  

 



 4 

2.2 Standard and SUR crack-plane damage model   

The proposed approach may be classified as ‘smeared crack model’ in which cracks are represented by directional 

damage and where the elastic moduli associated with a particular crack-plane are degraded according to a directional 

damage parameter. The current work builds upon a standard crack-plane damage model, which has the following 

constitutive standard relationship; 

  ( )( )1  ω ζ= −σ D εɶɶ ɶ              (3) 

in which the damage parameter (ω)  is dependent upon the damage evolution parameter (ζ) . The crack-plane 

subscripts have been omitted for clarity. 

The contrast between the response of a standard damage model and the new SUR damage model in 1D is illustrated 

in Figure 1, in which the effective stress and strain (σef and εef respectively) correspond to uniaxial values when the 

model is considered in one dimension only. Also in Figure 1, ft denotes the uniaxial tensile strength, εt=ft/E , E denotes 

Young’s modulus and εm is the effective end of the softening curve, which experimentally equals um/h, where um = 

relative displacement across an FPZ at the end of the uniaxial softening curve. However; when the model was 

implemented in the finite element program, Bazant and Oh’s [3] crack-band theory was employed, in which εm is 

computed from the fracture energy parameter (Gf) and element characteristic length ( chℓ ).   

Figure 1a.  Standard damage model                                                 Figure 1b.  SUR damage model  

The counterpart to equation (3) for the SUR model is as follows; 

   ( )( )1 p p ef,  ω ζ ε= −σ D εɶɶ ɶ             (4) 

in which ζp is the damage evolution parameter for the SUR model, which is the counterpart to ζ from the standard 

damage model. The crack-plane effective strain (εef) is defined later in this paper in equation (10). 

The damage parameter is now defined as follows; 

σef 

εef εm 

ft 

εt 

Softening function  fs (ζ)   

ζ 

1 
(1-ω)E  

1 
E 

σef 

εef εm 

ft 

εk 

Softening function  fs (ζp)   

ζp 

1 

1 
E 

apζp 

SUR function  σp (ζp, ζef)   

σp 

(1-ωpf)E 

Max drift during SUR2 

iterations controlled by  ftol  
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( )

( )

1

1

k p
p p ef pf ef p p

p

p p ef
p p ef ef p p

ef

( )
,                                   a

E

( , )
,                                       a

E

σ ζ
ω ζ ε ω ε ζ

υ ζ

σ ζ ε
ω ζ ε ε ζ

ε

= = − ∀ ≤

= − ∀ >

      (5) 

where the following form of the SUR function from Ref [44] is used;    

  ( ) 1 1

ef p p

p p

a

( a )p
p p ef k p

a
, ( ) e

ε ζ

υ ζ
σ ζ ε σ ζ

υ

−
−

−

 
  

= − −   
  

 

         (6) 

in which the constants  ap and υ take the values 0.60 and 0.75 respectively. These vary slightly from those used in 

Reference [44] (in which values of 0.70 and  0.75 were recommended) and were selected so that the SUR model has 

good compatibility with the crack contact model described below.  

The asymptotic stress function (σk(ζp)) is given by; 

k p s k k p k

k p s p k p k

( ) f ( )  a                            

( ) f ( )  a                            

σ ζ ζ υ ζ ε

σ ζ ζ υ ζ ε

= ∀ ≤

= ∀ >
        (7) 

noting that εk (=akεt) is the strain at the peak of the uniaxial tension curve and that the expression for ak is defined 

below in equation (9).  

The softening function follows a standard exponential form given by equation (8); 

1
p k

m k

s p t p k

c

s p t p k

f ( ) = f                                             

f ( ) = f  e                        

ζ ε

ε ε

ζ ζ ε

ζ ζ ε

− 
−  

− 

∀ ≤

∀ >

         (8) 

 where c1=5.  

The parameter ak is computed from the condition that ( )p k k t, fσ ζ ζ = , which results in the following equation; 

1

1

1 1

p

p

k
a

ap

a

a
e

υ
υ

υ

 −
− 
 − 

=
 
  
 ⋅ − − ⋅ 
  
 
 

           (9) 

We note that the strain parameter (ζp) is initialised to ζk for all crack-planes and that when ζp = ζk , fs=ft and ωpf (from 

equation 5a) has the value zero. 

To complete the damage formulation, a crack-plane damage function is needed. The function employed here is taken 

from reference [45] and is given by; 
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( ) ( )
2

2
2 2 2 2 2 211

11 12 132

1
1 4

2
d p ef p p

 
( , )    ( )     r r

2 r r

ε
ζ ε ζ

ζ ζ

µε
ϕ ζ ε ζ µ ε ε ε ζ

  
 = − = + + − + + − 

  
   

ε ε
ɶ

ɶ ɶ ɶɶ ɶ

     

 (10) 

with the standard loading/unloading conditions 0 0 0 0 0p d p d p d d;   ;  ;         ζ ϕ ζ ϕ ζ ϕ ϕ≥ ≤ = = ∀ =ɺ ɺ ɺ ɺ  

The material constants rζ and µε are the relative shear strain intercept and the asymptotic shear friction factor 

respectively. These are the strain equivalents of the relative shear stress intercept rσ=c/ft and the asymptotic friction 

factor µ, noting that c is the shear stress intercept. rσ and µ are the input material parameters (See Summary of 

material properties in Table 1).  

 

A crucial aspect of the SUR model is the method used for updating ζp during the incremental iterative solution 

procedure.  For the work described in this paper, two SUR update options were used, namely SUR1 and SUR2. The 

first of these (SUR1)  involves updating ζp on every iteration and at every gauss point whenever the value of εef 

exceeds the value of ζp from the previous converged state. The second option (SUR2) involves ζp being frozen after a 

fixed number of iterations (itx) for each increment. However, in this latter process, the values of εef continue to be 

monitored for the iterations beyond the ‘fixing iteration’ and a further update undertaken if εef  exceeds ζp and the 

associated value fs(εef) becomes more than tolerance value (ftol) below fs(ζp). For the present work, the default SUR2 

parameters were set to itx=4 and ftol= 0.03ft.. The maximum ‘drift’ from the softening curve possible in the second stage 

SUR2 iterations is illustrated in Figure 1b. Further SUR update options, as well as a detailed study on the effects of 

using different options, are described in Alnaas and Jefferson [44]. 

 

An important aspect of the SUR approach is that it only ever uses a positive definite stiffness matrix in the 

incremental-iterative solution process. For the crack-plane model alone, the ‘tangent’ constitutive relationship 

obtained from equation (4) includes only the differentials of ωp w.r.t.  εef and not w.r.t ζp,  thereby ensuring that the 

incremental matrix is positive definite as long as the function σp, from which ωp is obtained, always has a positive 

slope, which is does.  

( )( )
( )

1

T
p p ef ef

p p ef
ef

,
,   

ω ζ ε ε
δ ω ζ ε δ

ε

 ∂ ∂ 
 ≈ − −    ∂ ∂  

σ D Dε ε
ε

ɶ ɶɶ ɶ ɶ
ɶ

       (11) 

Equation (11) only results in an ‘exact tangent’ matrix in the SUR2 approach when the number of iterations exceeds 

itx and the stress ‘drift’ is within the tolerance ftol; however, this ‘exact tangent’ is with respect to the frozen nonlinear 

SUR function (See figure 1b) and not w.r.t. the softening function. The term ‘exact tangent’ is therefore not employed 

in the same manner as in many descriptions of standard plasticity or damage models.  We emphasise that this SUR2 

procedure can result in the effective stress being slightly above the softening function, but not by more than the 

specified tolerance (ftol). The consequences of applying the SUR2 approximation are explored in the examples in 

section 5 of this paper.    
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2.3 Smoothed crack-plane contact model   

The smoothed SUR approach does not simulate the closure of cracks or the effects of contact between the surfaces of 

rough cracks when they are loaded in shear. To enable this contact behaviour to be simulated, the stress on the 

damage plane is assumed to comprise an undamaged (u) and contact component (c), as follows; 

u c= +σ σ σɶ ɶ ɶ              (12) 

This summation follows naturally from a local damage model. Furthermore, the implicit assumption that both stress 

components are governed by the same local strain vector has been found to result in a model that provides a good 

representation of the real damage-contact behaviour of a cracked band of material [41]. 

In the present case, uσɶ equates to the stress from SUR damage model, given by equation (4), and cσɶ will be obtained 

from the crack-plane contact constitutive model [41], which is now summarised.    

An important component of the model is ‘the effective contact function’ ϕ( εɶ ). This function is derived from 

experiments in which cracks are opened under normal loading and then loaded in shear [47-49].  These experiments 

show that there is a definite, relatively narrow, region over which contact is regained for a given crack opening. 

Jefferson [50] originally interpreted the centres of these contact regions as ‘contact points’ and showed that the locus 

of these points could reasonably be represented by a conical shaped ‘contact function’ ϕ in relative-displacement, or 

local strain, space. Furthermore, by assigning a normal and shear stiffness to the interface, the stress developed after 

contact could be based on the embedment strain, defined as the nearest distance to the contact surface. In the 

original crack contact model [45,50], the contact was assumed to be abrupt and the cone was assumed to have a 

sharp apex. These assumptions were not only inconsistent with the experiments, which show that there is a gradual 

increase in the level of contact as surfaces move together [47-49], but also gave rise to numerical difficulties resulting 

from the abrupt change of stiffness when cracks closed. To remedy these deficiencies, the new model was developed 

that uses a smooth effective contact function and a smoothed contact transition function [41].  

The effective contact function, illustrated in Figure 2, has the properties of a signed distance function in local strain 

space. The region names ‘contact’ (ϕ( εɶ )≤0) and ‘no-contact’ (ϕ( εɶ )>0  ) are used to describe the regions either side 

of ϕ=0.  

 

Figure 2. Effective contact surface.   

 

The contact function ( ( )ϕ εɶ )has the following properties  

ϕ( εɶ )=0 

No contact Contact 

εlm 

Start of contact transition region 1 

mg 

ϕc( εɶ )=0 

11εɶ

2 2
12 13ε ε+ɶ ɶ

εϕc εϕi 
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1
ϕ∂

=
∂εɶ

                      (13) 

c ( )
ϕ

φ
∂

= −
∂

ε ε ε
ε

ɶ ɶ ɶ
ɶ

                     (14) 

where cεɶ is the local strain on the contact surface nearest to εɶ , in local strain space. It is noted that equation 

(13) states that the magnitude of the gradient vector is unity. 

( )ϕ εɶ is a two-part function that comprises a section formed by a spherical arc at the apex and a section that is a 

partial cone which is tangential to the arc. The interface between the two functions is governed by the function ϕc, 

which is defined as follows: 

( )2 2
11 12 13

2

1

1
c c p g

g

( ) ε ( ) m ε ε

m
ϕϕ ε ζ

 
= − + + 

 +
εɶ ɶ ɶ ɶ         (15)   

The effective contact function is then evaluated using:  

( ) ( )

( )

2 2
11 12 13

2

2 2 2
11 12 13

1
0

1

0

g i p c p

g

c p c p c p

 m ε ( ) ε ε               ( , )

m

( ) ε ( ) ε ε                        ( , )

ϕ

ϕ ϕ

ϕ ε ζ ϕ ζ

ϕ ε ζ ε ζ ϕ ζ

 
= ⋅ − − + ∀ > 

 +

 
= − − + + ∀ ≤ 

 

ε

ε

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

     (16)  

where mg, (set to 0.425) defines the slope of the conical part of the contact function, as illustrated in Figure 2. 

The contact function is governed by the two parameters given in equations 17a&b. These are geometrically linked to 

the ‘offset’ strain εlm which governs the effective width of the transition region.  

( )
21

c p g m lm p

g g

i p g m lm p
g

( ) n ( )

m m
( ) n ( )

m

ϕ

ϕ

ε ζ ε ε ζ

ε ζ ε ε ζ

= +

− +
= +

                                           (17a,b) 

in which ng = 0.025, the offset strain (illustrated in Figure 2) is given by;  

( ) max( , )lm p lm p lm ma aε ζ ζ ε=             (18) 

in which alm=3/8 

The effective contact function and associated constants were obtained by matching the contact surface to 

experimental data [47-49], as explained in [41]. 

The effective contact function is now used in the evaluation of the contact stress vector. In its most basic form, the 

contact stress is simply the product of damage evolution function, the elastic matrix and the local strain contact 

vector,  i.e.  c_basic p p
d

( ) 
d

ϕ
ω ζ ϕ

 
=  

 
σ D

ε
ɶɶ

ɶ
. However, introducing the contact transition function (λc(ϕ))) and the offset 
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function (18), as well as a contact reduction function that accounts for the reduction in shear contact potential with 

increasing crack opening (Η ), gives a new form for the contact stress as follows;  

( )( )c p p c lm p
d

( ) ( ) ( ) ( )
d

ϕ
ω ζ Η λ ϕ ϕ ε ζ

 
= − 

 
σ ε D ε

ε
ɶɶ ɶ ɶ

ɶ
        (19) 

The contact transition function, given in equation (20), was derived [41] by assuming that in 1D  the tangent stiffness 

of the crack-plane stress-strain relationship for a closing crack follows a tanh function in terms of ϕ. Integrating the 

tanh function gave a constant which was related to the offset strain (εlm). This was then calibrated against data from 

Reinhardt’s tests [51].    

( )
1

1 ln
2

z
c

lm lm

cosh

( )=  
cosh

ϕ
εϕ

λ ϕ
ϕ ε ε

   
    −  

−      

          (20) 

in which εz=εlm/clm 

The basic contact reduction function [41] is defined as follows;  

( )1

3

0 1 1

1

0 1 1

                                                             

 = 1                                                                                  

k i m( )/ c

i k

i

k

H ( ) p e

H ( )

ε ε ε
ε ε ε

ε ε ε

− −

=

= ∀ ≥

∀ <

∑
ɶ

ɶ ɶ

ɶ ɶ

      (21) 

where typically p = [0.6, 0.3, 0.1]T and  c=[0.01, 0.05, 2.0]T, noting that the parameters are written as 

vectors for convenience. The material parameters p1,p2,p3 nominally represent the proportions of 

shear transfer associated with the hardened cement paste (hcp), fine and coarse aggregate phases 

respectively and satisfy the condition ∑pi=1 . ci (i=1 to 3) are associated parameters that are 

determined from shear-normal tests on cracked concrete specimens, as explained in reference [41]. 

In this work, ci are fixed at the values given and the only rough contact material parameters that are 

permitted to vary are pi  but, because they sum to unity, only two of the parameters (pi) need be set. 

We chose p2 and p3 to be model parameters. 

When the model is applied to continuum elements using the smeared crack approach it is necessary to scale the 

contact reduction function in order to ensure that the shear response of cracked elements is mesh invariant. The 

resulting element-size dependent function was proved in reference [41] to be;  

( )
( ) ( )( )

0

0 01

H ch
H

H ch H

H
H( )

H H h

η
η

η η
=

+ −

ℓ

ℓ
         (22) 

where ( ) 11 k
H

m

ε ε
η

ε

 −
=  
 

ε
ɶ

ɶ   

As mentioned in [41], the need to scale crack shear relationships has been overlooked in much work that has 

employed smeared crack models. 
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2.4 Combined crack-plane constitutive relationship 

The final crack-plane relationship is obtained by equating σɶ  from (4) to uσɶ in (12) and by using cσɶ from (19) in (12) as 

follows;  

( )( ) ( )( )1 p p ef p p c lm p
d

,  ( ) ( ) ( ) ( )
d

ϕ
ω ζ ε ω ζ Η λ ϕ ϕ ε ζ

 
= − + ⋅ − 

 
σ D ε ε D ε

ε
ɶ ɶɶ ɶ ɶ ɶ

ɶ
      (23) 

For convenience equation (23) is rewritten as; 

s s = +σ D M ε Dεɶ ɶɶ ɶ ɶ             (24) 

where ( )1s p  ω= −M I  and ( )s p c lm
d

 
d

ϕ
ω Η λ ϕ ε

 
= ⋅ − 

 
ε

ε
ɶ

ɶ
 

 

3. COUPLING THE CRACK-PLANE MODEL WITH CONTINUUM PLASTICITY  

3.1 Continuum plasticity model component 

The plasticity model component of the present combined plastic-damage-contact model uses the 3D yield function (

F( , ( ))Ζ κσ ), plastic potential ( G( , ( ))Ζ κσ ) and hardening function ( )Ζ κ from References [44] and [45]. The latter 

function depends on the pressure-dependent work hardening parameter (κ). All of these functions, and associated 

material parameters, are given in Appendix A. 

 

 

3.2 Combining the plasticity and crack-plane model components 

The Cartesian stress-strain relationship is given by; 

( )e p f   = − −σ D ε ε ε             (25) 

where εεεεf denotes the summed fracture strain and εεεεp  is the plastic strain. 

 

The following three assumptions are employed to link the crack-plane stress-strain relationship to the Cartesian (or 

overall) constitutive equation.  

1. The fracture strain is the sum of the transformed inelastic strain components from all cracks at a particular 

point, which is given by; 

T

1

p

j

n

f j
j

    
=

= ∑ε N ε
⌣

          (26) 

in which N is the stress transformation matrix (NT giving transformed strains) and j is the crack-plane 

number. 

2. The crack-plane stress is equal to the transformed Cartesian stress. This is also known as the ‘static 

constraint’, which for crack-plane j is given by; 

j
j ( )  =σ Ν r σɶ            (27) 
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3. The inelastic crack-plane strain ( ε
⌣

) may be obtained by subtracting the elastic component of the crack-plane 

strain from the total crack-plane strain as follows, noting that crack-plane suffixes have now been dropped for 

clarity; 

1−= −ε ε D σ
⌣ ɶɶ ɶ            (28) 

 Substituting for εɶ in (28) from (24) gives; 

( )1 1 1
s s  
− − −= − −ε M D σ Dε D σ

⌣ ɶ ɶ ɶɶ ɶ ɶ          (29) 

 (29) may be further rearranged to give; 

1
s s s  

−= −ε C σ M ε
⌣ ɶ ɶ ɶ           (30) 

in which ( )1
s s

−= −C M I Cɶ  and 1−=C Dɶ  

 alternatively, substituting for σɶ in (28) using (24) and rearranging results in; 

( )s s  = − +ε I M ε ε
⌣

ɶ ɶ           (31) 

 

Using (24), (26) and (30) in equation (25) gives the final form of the Cartesian stress-strain relationship;  

( )
-1

T T 1

1 1

p p

j jj

n n

e j s j e p j ss
j j

    
−

= =

   
= + − +   ∑ ∑
   
   

σ I D N C N D ε ε N M εɶ ɶ          (32) 

Although equation (32), along with its dependent functions, fully defines the constitutive relationship, a solution 

algorithm is required to make the model useable. An approach that includes a consistent tangent matrix and closest 

point projection (CPP) algorithm [52] has been developed for implementing the model in a finite element code. The 

principles used to develop the algorithm follow those described in [46] but the introduction of the SUR and smooth 

contact approaches into the model has necessitated some very significant changes.  The algorithm used to compute 

the stress and the details of the ‘tangent’ stiffness matrix will now be described in the following sub-sections. 

 

3.3. Calculation of stresses using a CPP approach 

The solution algorithm is developed in the context of an incremental-iterative Newton type solution. Differential 

relationships will be applied during iterations and differential quantities denoted by δ. The total change of a variable 

during an increment, from the last converged state, is denoted by ∆. 

 

At every iteration, the strain at the last converged state (εεεεlcs) will be known and the increment of strain from this 

converged strain will also be available (∆εεεε). The aim of the stress algorithm is then to compute the new stress 

associated with the strain (εεεεlcs+∆εεεε). This involves first checking for any new cracks, forming them as necessary, and 

then updating the crack-plane and plastic variables for all cracks and yield conditions as required. A principal stress 

criterion is used for crack formation and the formation of cracks is systematically checked one at a time during the 

overall stress recovery procedure.    
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Once the number of cracks is known, a CPP algorithm is used to compute the stress. This is outlined in the remainder 

of this subsection in which it is assumed that there is at least one crack and that plasticity is active. The aim of the CPP 

algorithm is to compute stresses which satisfy the yield function, the static constraint, plastic strain error condition 

and work hardening parameter error condition, as given in equations (33) to (36) respectively.  

 

( ) 0F ,κ =σ               (33) 

( )j jj j j s j s= − + =ψ N σ D M ε ε 0ɶ ɶ ɶ             (34) 

p
G

ε λ
∂

= −∆ + ∆ =
∂

R ε 0
σ

            (35) 

0T G
R     κ κ Χ λ

∂
= −∆ + ∆ =

∂
σ

σ
            (36) 

in which λ is the plastic multiplier and Χ  is the ductility parameter defined in Appendix A. 

 

A trial stress will generally result in some or all of the above functions being nonzero and a Newton-Raphson solution 

is employed to solve a set of coupled equations such that all four conditions are satisfied to within defined tolerances 

(see Box 1).  To derive these coupled equations, we start by expanding (36), such that 0R Rκ κδ+ = , and rearranging 

the result to obtain the following expression for δκ. 

( )T
a R cκ κ σ κδκ λ δ δλ= + ∆ +k σ           (37) 

in which 

1
2

1
T G

a
d

κ λΧ
κ

−
 ∂

= − ∆ 
 ∂ ∂ 

σ
σ

,      
T G

cκ Χ
∂

=
∂

σ
σ

    and  

2

2

G G
σ Χ

 ∂ ∂
= ⋅ + 

 ∂ ∂ 
k σ

σ σ
.   

Undertaking a similar process for equation (35) gives the following equation for δεεεεp;   

2 2 2 2

2

T
p

G G G G G
a R a c aε κ κ κ κ κ σδ λ δλ λ λ λ λ δ

κ κ κ

     ∂ ∂ ∂ ∂ ∂
= + ∆ + + ∆ + ∆ + ∆ ∆     
     ∂ ∂ ∂ ∂ ∂ ∂ ∂∂     

ε R k σ
σ σ σ σσ

   (38) 

The yield function consistency condition, derived from (33), may be written; 

0
T

F F
F δ δκ

κ

∂ ∂
+ + =

∂ ∂
σ

σ
           (39) 

Noting that F is the value of the yield function with the most recent non-converged value of σσσσ. 

Substituting for δκ  from (37) and grouping terms that pre-multiply δσσσσ results in; 

0T F
F a R hκ κ κ κδ δλ

κ

∂
+ + + =

∂
f σ            (40) 

where  
F F

aκ κ σ∆λ
κ

∂ ∂
= +

∂ ∂
f k

σ
 and 

F
h a cκ κ κ

κ

∂
=

∂
 

 

Expanding the static constraint as j jδ+ =ψ ψ 0  gives; 

jj j t jδ δ+ − =ψ N σ D ε 0ɶ ɶ             (41) 
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in which 
j j

'
t s=D DMɶ ɶ  ,  

j j

j j

s s'
s s j

j j

∂ ∂ 
 = + +
 ∂ ∂ 

M ε
M M ε

ε ε

ɶ

ɶ�
ɶ ɶ

 and � denotes a third-order-matrix vector contraction. 

 

The first trial stress is given by; 

T

1

p

j

n

e p j
j=

 
= + ∆ − − ∑

 
 

σ D ε ε ε N ε
⌣

           (42) 

in which εεεε, εεεεp and ε
⌣

 are all values from the last converged state, ε
⌣

being computed from the stored values of εɶ and 

equation (31). 

 

Iterations are performed to satisfy equations (33) to (36) and during these stress-update iterations the total strain 

tensor does not change, therefore the iterative change in the stress is given by; 

T

1

pn

e p j j
j

δ δ δ
=

 
= − + ∑

 
 

σ D ε N ε
⌣

           (43) 

The unknowns in (34) are the crack-plane strains whereas it is the crack-plane fracture strains that appear in (43). We 

chose to solve for εɶ  since these do not vanish when cracks are fully closed.  

The relationship between the differential strainsδ εɶ  and δ ε
⌣

 may be derived from (24) and (31) to be; 

( )j j

'
s j  δ δ= −ε I M ε

⌣
ɶ             (44) 

 

The next stage in the derivation involves replacing δεεεεp and δ ε
⌣

, from (38) and (44) respectively, in (43)and rearranging 

to obtain; 

 ( )T

1

p

j

n
'

e m j s j
j

εκδ δλ δ
=

 
= − + + − ∑

 
 

σ A R g N I M εɶ         (45) 

in which 

1
2 2

T

2e e e
G G

aκ σ∆λ λ
κ

−
  ∂ ∂
 = + + ∆ 

  ∂ ∂∂  

A I D k D
σσ

 

Substituting for δσσσσ from (45) into (40) and (41), and rearranging gives the following set of coupled equations; 

k

j j ,k

k

E j E E k

F      M       

       

λ λ λδλ δ

δλ δ

= +

= +

b ε

ψ m B ε

ɶ

ɶ

            (46) 

in which both j and k are crack plane indices from 1 to np. 

( ) ( )

T

T

T T T

j

j

k k j ,k j k j ,k

e E j j e

e m E j e m

e k s E e k s t j ,k

F
F F a R          

M h                           

                

λ κ κ κ εκ εκ

λ κ κ

λ κ

κ

∂
= + − = −

∂

= − =

′ ′= − = − + ∂

f A R ψ ψ N A R

f A g m N A g

b f A N I M B N A N I M Dɶ

 

where ∂i,j is Kronecker’s delta, 
2 2

and m
G G G

a R     a cεκ ε κ κ κ κ∆λ ∆λ
κ κ

 ∂ ∂ ∂
= + = + 
 ∂ ∂ ∂ ∂ ∂ 

R R g
σ σ σ
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For a particular case in which plasticity and two cracks are active, (46) takes the following form; 

1 1 11 1 2

2 2 2 1 2 2

1 2

1

2

, ,

, ,

E E E E

E E E E

F Mλ λ λ λ δλ

δ

δ

         =              

b b

ψ m B B ε

εψ m B B

ɶ

ɶ

          (47) 

which is alternatively written as the following single matrix equation and in which the vectors and matrix correspond 

directly to those in (47); 

    δ=Γ Ξ Λ              (48) 

The return mapping algorithm is now summarised in Box 1. 
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Box 1. Return-mapping algorithm 

Step Description 

1 Initialize 0,  and   0 =κ∆=λ∆   

2 
Compute trial stress from ( )( )T

1

p

j j

n

e p j s j s
j=

 
= − − − + ∑

 
 

σ D ε ε N I M ε εɶ ɶ  (i.e. equation 42 and 31) 

3 Evaluate ΓΓΓΓ and ΞΞΞΞ  from (48) and solve for δΛΛΛΛ (which gives δλ and jδεɶ ) 

4 Update jεɶ  and 
jpζ  

5 Compute δσσσσ from (43) 

6 Compute δκ  and δεεεεp from (37) and (38) respectively 

7 Update plastic terms 

p p p p p p;  ;  ;    ;    δ ∆ ∆ δ ∆λ ∆λ δλ ∆κ ∆κ δκ κ κ δκ= + = + = + = + = +ε ε ε ε ε ε  

8 
Compute a new trial stress from   ( )( )T

1

p

j j

n

e p j s j s
j=

 
= − − − + ∑

 
 

σ D ε ε N I M ε εɶ ɶ    

9 Compute F and ψψψψj, Rε, Rκ  from (33-36) 

10 Check for convergence i.e.  

if tol tol tol tol F ;     ;      ; R  ε κσ σ ε ε≤ ≤ ≤ ≤ψ R  If all satisfied then exit CPP loop, else return to Step 3 (1) 

1.  Tolerance levels are εtol = εt*10-6  σtol = ft*10-6  

 

Attention now turns to the tangent matrix that is consistent with this CPP algorithm. 

 

3.4 Consistent tangent matrix 

To derive the consistent tangent matrix we start by taking the incremental form of equation (25) and making use of 

(26), as follows; 

( )T T

1

pn

e p j j j j
j

δ δ δ δ δ
=

 
= − − +∑ 

 
σ D ε ε N ε N ε

⌣ ⌣
          (49) 

In the present approach, 
jδN is set to 0. This is considered reasonable because crack directions are fixed after a 

prescribed number of iterations (itf=3) in each increment.   

The incremental local fracture strains are derived from the differential form of (24), which  may be derived to be; 

'
sδ δ=σ DM εɶɶ ɶ                 (50) 

The incremental fracture strains are then given by equation (51); 

( )1 1' '
sδ δ δ δ δ− −= − = − =ε ε D σ M I C σ C σ

⌣ ɶ ɶɶɶ ɶ ɶ ɶ                       (51) 

Focusing now the plasticity component of the model, for which the increments of the hardening parameter and 

plastic strain are given by equations (52) and (53) respectively; 
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( )T
a d cκ σ κδκ λ δλ= ∆ +k σ            (52) 

2 2

2p
G G G

δ δλ λ δ λ δκ
κ

∂ ∂ ∂
= + ∆ + ∆

∂ ∂ ∂∂
ε σ

σ σσ
         (53) 

Using (52) in (53) gives the following form for the incremental plastic strain;  

p mδ δλ λ δ= + ∆ σκε g G σ             (54) 

where  
2 2

2 2

TG G
= aσκ κ σ∆λ

κ

 ∂ ∂
+ 

 ∂ ∂∂ 
G k

σσ
 and 

2

m
G G

a cκ κλ
κ

∂ ∂
= + ∆

∂ ∂ ∂
g

σ σ
 

Substituting for the differential plastic strain from  (54) and the differential crack-plane fracture strain from (51) into 

(49), using (27) in incremental form and remembering that δ N  is 0, results in the following;  

 ( ) T

1

pn
'

e m j j j
j

δ δ δλ λ δ δ
=

 
= − + ∆ − ∑ 

 
σκσ D ε g G σ N C N σɶ        (55) 

(55) may be rearranged into the form shown in (56). 

( )c mδ δ δλ= −σ A ε g             (56) 

in which  

1

2
1

p

j

n
T '

c e j j e
j

σκλ

−

=

  
 = + ∆ + ∑

  
  

A I D G N C N Dɶ  

Using the consistency condition for the yield surface gives;  

0T
F hκ κδ δ δλ= + =f σ            (57) 

from which an expression for δλ is derived as follows; 

( )
T

c

T
c m

 =
h

κ

κ κ

δ
δλ

−

f A ε

f A g
             (58) 

in which 
F

h a cκ κ κ
κ

∂
=

∂
 

Finally, substituting for δλ from (58) into (56) and rearranging gives the following tangential stress–strain relationship; 

T
c m c

c T
c m

   -  
h

κ

κ κ

δ δ
 

=  
−  

A g f A
σ A ε

f A g
          (59) 

The matrix (in square brackets) shown in equation (59) is used in the finite element program to form the tangent 

stiffness matrix in the standard way [32,33].    
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4. MATERIAL AND SOLUTION PARAMETERS 

The constitutive model described in the preceding sections contains quite a few material parameters. These include 

standard elastic constants, parameters obtained from uniaxial, biaxial and triaxial compression tests, as well as 

fracture tests. Table 1 gives a summary of the material parameters, typical values and guidance on how they can be 

obtained. 

  

Table 1. Material parameters 

 

Symbol Description Typical values 

for concrete  

Comments / Relevant section of paper 

E Young’s modulus.  35000 N/mm2 Standard elastic material constant 

ν Poisson’s ratio 0.2 Standard elastic material constant 

fc Uniaxial compressive strength  40 N/mm2 Standard material strength parameter 

ft Uniaxial tensile strength  3 N/mm2 Standard material strength parameter 

εc Strain at peak uniaxial compression  0.0022 Standard material parameter obtained form 

uniaxial compression tests. Appendix A. 

Gf Fracture energy per unit area. 0.1 N/mm Standard material parameter obtained from 

notched fracture tests [3,54]. Section 2.2 

br Biaxial to uniaxial peak principal stress 

ratio 

1.15 Common parameter obtained from biaxial 

compression tests  [54]. Section 3.1 & Appendix 

A. 

Ζ0 Initial value of friction hardening variable 0.6 Obtained from triaxial compression tests [54-

55]. Section 3.1 & Appendix A. 

ψ Dilatancy factor giving plastic potential 

slope relative to that of yield surface  

-0.1 Obtained from triaxial compression tests [55]. 

Section 3.1 & Appendix A. 

mg Constant in interlock state function  0.425 Governs slope of the contact surface cone. 

Obtained from tests in which shear loading is 

applied to specimens with fully formed cracks 

at different opening displacements. [47-49]. 

Section 2.3. 

[p2,p3] Shear contact proportion parameters   [0.3, 0.1] 

 

 

pi  (i=1 to 3 )nominally represent the 

proportions of shear transfer associated with 

the hcp, fine and coarse aggregate phases 

respectively.  pi can calibrated using tests in 

which cracks are opened under normal loading 

and then loaded in shear. [47-49]. Section 2.3. 

Note: p1 =1-p2-p3 . 

rσσσσ Shear intercept to tensile strength ratio 

for local damage surface 

1.25 Obtained from shear tests on aggregate-hcp 

interfaces by inversely identifying parameters 

that accurately represent crack growth under 

mixed mode conditions. Standard values taken 

from [45]. Section 2.3 

µ Limiting friction ratio on which damage 

surface is based 

0.8 

h Physical fracture process zone width (i.e. 

3x coarse aggregate size) 

60mm Based on the size of the coarse aggregate. 

Section 2.2. 

 

 

5. EXAMPLES  

The material model described in this paper has been implemented in finite element program LUSAS [62] and used to 

produce all of the examples presented this section.  
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The examples include an illustrative single element example, the analysis of plain concrete samples and the 

simulation of some reinforced concrete structural elements. These examples examine the mesh convergence 

properties of the model, as well as exploring the ability of the model to predict pre- and post-peak responses and 

failure modes of both plain and reinforced concrete structural elements.  

The material parameters used for each of the examples are given in Tables 2 and 3. Table 3 also includes the 

convergence tolerance adopted.  A Newton-based incremental iterative scheme was used to solve the nonlinear finite 

element equations and the convergence tolerances (Ψd,Ψf ) relate to  the L2 iterative displacement and out of balance 

force norms respectively. All 2D meshes comprised bilinear quadrilateral elements and the 3D mesh used trilinear 

hexahedral elements. The size of the load/displacement increments used in each example is evident from the 

response curve graphs, in which markers show the result at each increment solved. The solutions presented were 

obtain with option SUR2 unless noted otherwise. 

 

Table 2. Concrete material properties 

Ex E 

GPa 

ν fc 

MPa 

ft 

MPa 
εc Gf 

N/mm 

bc Z0 ψ mg p2 

p3 
rσ µ h 

mm 

1 35 0.2 40.0 3.0 0.0022 0.10 1.15 0.6 -0.1 0.425 0.3 

0.1 

1.25 0.8 60 

2 35 0.2 40.0 3.0 0.0022 0.10 1.15 0.6 -0.1 0.425 0.3 

0.1 

1.25 0.8 30 

3 38 0.2 40.0 2.5 0.0018 0.075 1.15 0.6 -0.1 0.425 0.3 

0.1 

1.25 0.8 30 

4 22.5 0.2 25.0 2.5 0.0018 0.12 1.15 0.6 -0.1 0.425 0.3 

0.2 

1.25 0.8 60 

5 37 0.12 52.6 3.1 0.0024 0.12 1.15 0.6 -0.1 0.425 0.3 

0.2 

1.25 1.0 60 

 

Table 3. Reinforcement properties and convergence tolerances 

Ex. Es 

GPa 

fy 

MPa 

Hy 

GPa 

εm  Ψd 

% 

Ψf 

% 

1 - - - -  0.1 0.1 

2 - - - -  0.0001* 0.0001* 

3 - - - -  0.1 0.1 

4 205 556 2 0.03  0.1 0.1 

5 210 484 4 0.03  0.1 0.1 

fy=yield stress, Hy =hardening modulus, εm= the strain limit for hardening 

*Tighter tolerance used for SUR option comparison only 

 

 

 

Example 1. Single element tests 

Example 1 considers a 100mm cube of concrete and simulates the response under 3 different displacement paths 

using a single 8-noded hexahedral element. The purpose of this example is to illustrate the constitutive behaviour of 

the model for paths that involve cracking, crack closing, crack contact in shear, crushing in compression and crack 

formation in shear under constrained conditions.   
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The paths considered are explained in Figure 3 and the results presented in Figures 4 to 6. The responses are not 

compared to any experimental data but are purely for illustrative purposes.  In all cases the smooth response of the 

model predictions is evident. We note that the sign of the minor principal stress has been reversed in the graph in 

Figure 6 and that the peak value exceeds fc because the element is confined (i.e. εxx=εyy=εzz=0). 

 

 
 

Figure 3. Example 1 displacement paths.  

Path 1.  Uniaxial tension-compression. Lower surface (y=0) restrained: 

upper surface (y=100) displaced, firstly in a  positive and then 

a negative direction.   

Path 2. Crack formed under normal loading and then shear applied. 

All sides restrained. Upper surface displaced to 0.05 mm in y 

direction and then held constant whilst displacement 

increased in x direction to 0.06mm. 

Path 3. Restrained shear. Lower surface restrained whilst upper 

surface displaced in the x and z directions only with the ratio 

ux/uz=2/1.  

100 

100 

100 

x 

y 

z 
All dimensions in mm 
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Figure 4. Path 1 responses.  

 

 

Figure 5. Path 2 responses.  

 

Figure 6. Path 3 response and exaggerated deformed mesh plot showing crack orientations. 
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Example 2. Direct fracture example 

The second example presents results from a number of plane stress analyses of a fracture test specimen. The un-

reinforced fracture specimen was tested by Petersson [57] and was loaded in direct tension under displacement 

control. The dimensions of the specimen are shown in Figure 7, the material properties are given in Table 2 and the 

three finite element meshes used for the analyses are shown in Figure 8. The analyses are chosen to explore not only 

the effect of varying the mesh but also the effect of varying the increment size and the SUR option. The number of 

increments used for the full solutions were either 20 or 50. The analysis using mesh 1 with 20 loading increments was 

undertaken with the two different SUR options (See Section 2.2). The experimental and numerical load displacement 

responses from all analyses are shown in Figure 9 in which the average stress is the total vertical load divided by the 

cross-sectional area at the neck.  

 

The results from all analyses using meshes 1 and 2 are indistinguishable from one another at the scale plotted, with 

the results from the analyses using SUR1 and SUR2 being coincident to within four decimal places. This result implies 

that, for this type of problem, the approximation inherent in the SUR2 procedure causes negligible error. The only 

noticeably different result is that from the distorted mesh but even this, in practical terms, is acceptably close to the 

other results.      

 

Principal strain plots on exaggerated deformed meshes are given in Figure 10 in order to show the strain localisation 

bands.  The convergence histories of the 20 increment mesh 1 solutions with the two different SUR options are 

presented in Figure 11. A tighter tolerance was selected than that used for the other examples in order to illustrate 

the difference in the convergence histories of the two SUR options. The out of balance force norm is plotted for each 

case for the increment that required the most iterations to achieve convergence.  The solutions match up to iteration 

itx (i.e 4), after which the SUR1 solution converges linearly but the SUR2 solution has quadratic convergence.  

 

 

Figure 7. Experimental arrangement. 
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Figure 8. Finite element meshes. 

 

 

Figure 9. Experimental and numerical load-displacement responses for coarse and fine meshes. 

 

 

      

Figure 10. Maximum principal strain plots on deformed meshes for Meshes 2 and 3 at final increment 
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Figure 11. Convergence history:   a) Number of iterations to converge:   b) ψf history for increment 4.  

 

Example 3. Prismatic torsion beam  

The third example considers a notched prismatic concrete beam which was originally tested by Brokenshire [58], the 

full details of which may also be found in Jefferson et al. [59]. As described in the second of the aforementioned 

references, the beam was previously analysed by the first author but at that time considerable difficulties were 

encountered in obtaining converged solutions and it was not possible to replicate the load CMOD (crack mouth 

opening displacement) response. Neither was mesh convergence considered in the original work. We therefore 

thought that it would be worthwhile to revisit the example and to assess the performance of the new model for this 

problem.  

 

The experimental arrangement is shown in Figure 12 and the material properties are given in Table 2.  
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The meshes used for the analysis comprised 8-noded hexahedral elements and are shown in Figure 13.  The analyses 

were undertaken with the automatic step selection procedure in which between 50 to 60 steps were used to reach a 

displacement of 2.5mm at the load position.   

 

 

 

Figure 13. Finite element meshes.  

 

The numerical load-CMOD responses, shown in Figure 14, are considerably closer to that of the original experimental 

study than that achieved with the previous model. The results from the two meshes are almost indistinguishable from 

each other at the graph scale used. The numerical response tends to a plateau at 0.10kN, rather than 0, which 

suggests that final failure mode is not quite captured with these meshes and elements. A deformed mesh plot at the 

final displacement increment for the analysis with mesh 2 is shown in Figure 15.  A comparison with the previous 

analysis [59], which failed to converge after the CMOD reached 0.3mm, shows the benefit of using the SUR approach.   

 

 

Figure 14. Load CMOD response for Brokenshire’s torsion fracture beam. 
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Figure 15. Exaggerated deformed mesh plot at final increment  

 

Example 4. Bresler-Scordelis beam  

Example 4 presents a study based on an experimental beam tested long ago by Brelser and Scordleis [60]. The 

experimental arrangement is shown in Figure 16.  The three meshes employed, which make use of symmetry and 

comprise bilinear elements for concrete and linear ‘bar’ elements for the reinforcement, are shown in Figures 17 and 

18.  The load/displacement step parameters used gave solutions in 60 to 100 increments. A graph showing the 

numerical and experimental load-central deflection (P versus u) curves is given in Figure 19.  

 

The original paper by Bresler and Scordelis gives a ‘typical crack pattern’ at failure. This showed a diagonal tension 

shear failure with a dominant shear crack and a horizontal splitting crack just above the level of the main 

reinforcement. There were also characteristic inclined flexural cracks. The experiment was undertaken under load 

control and therefore no post-peak load-displacement response data were measured; however, the ability of the 

model to predict the pre-peak response, failure mode, peak load and stable post-peak response are nevertheless all 

of interest here. For this purpose, three sets of major principal strain plots are presented in Figure 20 at three 

different central displacements, the first representing a working load level (at 3mm), the second being just before the 

peak load (at 6mm) and the third giving the conditions at the final increment.  The magnitudes of the strains vary 

since the softening curve is scaled to maintain constant fracture energy (See section 2.2). Thus, it is the patterns of 

localised strains which are of interest rather than their absolute magnitudes. 

 

The analyses predict that strain localisation occurs in the working load range, suggesting that the fracture energy 

approach to computing the strain at the end of the softening curve is appropriate for this RC beam analysis.  The 

analyses captured the inclined flexural cracks, which are at approximately the same average spacing as those given in 

the original paper, as well as the failure mode. The peak load is predicted well, with the computed peak values being 

90%, 98% and 100% of the experimental peak load for meshes 1 to 3 respectively. The immediate post peak response 

is very close to snap back behaviour but is nevertheless captured by the analyses and the results show clear mesh 

convergence. The relatively small difference in the predicted post-peak responses from meshes 2 and 3 is considered 

acceptable in the vicinity of a near brittle collapse.  
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Figure 16. Experimental arrangement. 

 

Figure 17. Finite element mesh 1, showing boundary conditions. 

 

 

 

Figure 18. Meshes 2 and 3. 
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Figure 19. Comparison of load-displacement responses. 
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Figure 20. Major principal strain plots showing regions with localised strains. 

 

Example 5. I-Beam test by Kaufmann 

The final example considers a test undertaken by Kaufmann [61] on a reinforced concrete I-Beam which was 

reinforced in both the flange and the web, as shown in Figure 21. The complex loading rig developed for these tests 

was designed to apply pure shear, with and without axial load, to reinforced concrete members. The particular test 

considered here (denoted VN2) had zero axial load and was loaded in shear, with a loading unloading cycle to 300kN 

being applied before final loading to failure. The beam exhibited considerable cracking in shear prior to final failure, 

which occurred by a shear compression type of failure with some horizontal splitting crack adjacent to the beam 

flanges. 

 

The beam was analysed using the mesh shown in Figure 22, in which bilinear elements were used for the concrete 

and linear ‘bar’ elements for the reinforcement. The material properties are given in Tables 2 and 3. 
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The mesh includes representation of stiff endplates and the mesh on the left boundary has been extended to allow 

simulation of the zero rotation restraint with no axial load. Loading on the right hand boundary was by prescribed 

displacement.  The automatic step size selection procedure was used and the solution required 135 increments,  

including the increments for the loading/unloading cycle. The experimental and numerical load displacement 

responses are given in Figure 23 and principal strain plots on exaggerated deformed mesh plots at the final load stage 

are given in Figure 24. The principal strain plot for the continuum elements is used to show the regions of localised 

strain. A plot of the axial plastic strains in the reinforcement at the final load stage is also provided in Figure 24 in 

order to show the extent of yielding in the reinforcement. 

 

Figure 21. Experimental arrangement for Kaufmann beam. 
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Figure 22. Finite element mesh showing boundary conditions. 

 

 

 

Figure 23. Experimental and numerical responses. 

 

 

Figure 24. Major principal strain and plastic reinforcement strain plots at final step 
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A notable feature of the experimental and numerical responses is the jump in displacements at a load of around 

300kN. This is little surprising since the shear and flexural reinforcement percentages are both above the code 

minimum levels required for ductility but it is nevertheless encouraging from the point of view of the model that this 

jump is captured in the analysis.   

 

The failure mode suggested by the localised strain plot (i.e. assumed crack pattern) is essentially similar to that 

described for the experiment i.e. diagonal shear cracking and splitting along the web–flange interface. However, in 

the experiment there was more general diagonal cracking in the flange and horizontal splitting was less dominant 

than in the analysis. The present analyses included crushing, multi-directional cracking, shear contact (aggregate 

interlock), reinforcement yield and strain hardening but did not include bond slip or any direct representation of 

dowel action. Ultimately these factors should be included for a truly comprehensive representation of the beam.   

 

6. CONCLUSIONS 

The recently developed smooth unloading-reloading approach for damage mechanics simulations has been combined 

with a smoothed crack contact sub-model to form a new concrete crack-plane material model. This crack-plane sub-

model has then been incorporated into a 3D algorithmic framework, along with a triaxial plasticity model component, 

to form a new three dimensional finite element material model for concrete. The implementation of the model 

components using a closest point projection stress recovery algorithm and consistent tangent matrix has resulted in a 

model that is numerically efficient and computationally robust. The model possesses good convergence properties 

with respect to a Newton based incremental iterative solution process. It is also shown to be objective with respect to 

mesh grading and increment size. 

 

The examples show that the new model is able to reproduce the behaviour of a range of plain and reinforced 

concrete structural elements. In particular, the examples show that the model can realistically predict overall 

structural responses, crack patterns, post-peak behaviour and failure modes.  
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APPENDIX A. Summary of triaxial plasticity model 

The yield function, plastic potential and hardening functions for the plasticity component of the present model are all 

taken from Reference [45] and summarised in this Appendix.   

 

The yield function is given by  
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and I1 = 1st stress invariant, J2 = 2nd deviatoric stress invariant, θ is the Lode angle (with range 0 to 60o) and Ζ is a 

friction hardening factor, which is a function of the work hardening parameter κ. Ζ varies from Ζ0 to  1. Z0 is a 

material parameter which in all the examples in this paper is set to 0.6.   The biaxial to uniaxial compressive strength 

ratio br (typically = 1.15) is a material parameter and is used in the computation of the other parameters in equation 

(A1), as follows; 
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The plastic potential function is given by; 

 2 1 1
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This has the same form as the yield function with the exception of the addition of the dilatancy term, ψ. ψ is a 

material parameter which normally set to -0.1. 

The flow rule is derived from the plastic potential in the standard way as follows 

 p pl
G

λ
∂

=
∂

ε
σ
ɺɺ              (A3) 

λpl is the plastic multiplier, which obeys the condition 0plλ ≥ɺ  and pεɺ is the plastic strain rate. 

 

The work hardening parameter, expressed in rate form, is given by 

 p
T

)( εσσ ɺɺ Χ=κ             (A4) 

in which Χ(σσσσ) is ductility parameter which depends upon the  first stress invariant as follows 
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The basic friction hardening/softening function for Ζ gives a smooth transition from pre to post peak behaviour, as 

follows; 
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where   ηc=κ/κp;   κp = value of κ at the peak yield surface position and is given by 0 72
2

c
p c c

f
f .

E
κ ε

 
= − 

 
. 

On order to ensure that the peak occurs at Ζ = 1, the constants must satisfy the following relationships 
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The actual values used are cc2= 5, cc1 = 0.0339182745  and ac = 0.9601372615  

 

 

 

 

 

 

 

 

  

 


