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Summary 

Human Vγ9Vδ2 T cells constitute a novel type of APC (γδ T-APCs) capable of 

stimulating CD4+ T cell responses. The outcome of γδ T-APC induced CD4+ T cell 

responses in terms of cytokine profiles, and the physiological implications for 

infection and autoimmunity, remain unknown. 

This study demonstrates that γδ T cells are able to act as potent APCs, inducing 

proliferation in naive and memory CD4+ T cell populations. Resulting cytokine 

responses triggered in naive CD4+ T cells included production of IFN-γ and IL-22. Of 

note, γδ T cells had a greater capacity to promote production of IL-22 in naive and 

memory T cells than monocytes and monocyte-derived DCs in identical 

experiments. The microenvironment of γδ T-APCs played a major role in the 

subsequent polarisation of CD4+ T cell responses, with APCs induced in the 

presence of IL-15 being superior in promoting IL-22 responses in naive CD4+ T cells 

compared to γδ T-APCs generated in the presence of other cytokines. 

Unexpectedly, the IL-22 induction in CD4+ T cells was IL-6 independent, but instead 

involved TNF-α and ICOS-L, both expressed by the γδ T-APCs. In addition, γδ T-

APCs induced in the presence of IL-21 favoured increased induction of IL-10 in 

CD4+ T cells. 

The observation that γδ T-APCs are able to drive IL-22 responses in naive and 

memory T-cell populations presents a novel function for these APCs, with 

implications for a multitude of infection/disease scenarios. One such scenario is 

Inflammatory Bowel Disease (IBD), where IL-22 and γδ T-cells have previously been 

shown to play significant roles in disease pathogenesis and progression. Indeed, γδ 

T cells derived from intestinal biopsies are able to act as fully functional APCs. In 

summary, γδ T-APCs may be involved in the pathogenesis or maintenance of 

autoimmune inflammation in the intestine and other peripheral sites. 
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Chapter 1 - Introduction  

1.1 - Mounting a Cellular Immune Response 

1.1.1 - Innate and Adaptive Immunity 

The human immune system evolved for the purpose of protecting the host from 

invading pathogens, a role performed by a complex network of cells and molecules 

acting cooperatively. Traditionally, the immune system has been divided into two 

conceptual groups; innate immunity and adaptive immunity, and these categories 

are commonly distinguished on the basis of their levels of specificity1. Optimal 

immunity against pathogens requires both of these types of responses. 

The leukocytes which belong to the area of innate immunity, including neutrophils, 

macrophages, dendritic cells, and natural killer cells, possess receptors which 

recognise a limited number of ligands that are often evolutionarily conserved and 

expressed by wide ranges of pathogens and stressed tissues. Adaptive immunity is 

generally considered the domain of lymphocytes, with T lymphocytes and B 

lymphocytes expressing large repertoires of T cell antigen receptors and 

immunoglobulins, respectively. These receptors exhibit a vast diversity that is 

generated somatically through site-specific DNA recombination, allowing for the 

recognition of any possible antigen encountered. Each receptor of a particular 

specificity is in theory expressed by an individual lymphocyte clone.  

Further characterisation of innate versus adaptive immunity can be defined by a 

rapid response versus a slower response, as well as short lived immunity versus 

immunological memory and 'recall' responses2. Recent discoveries have called this 

simplistic dichotomy of the immune systems into question, with the identification of 

innate cells that are capable of memory3, and subsets of adaptive cells expressing 

conserved cell receptors4. What is certain is that as the mysteries of the immune 

system are gradually being unveiled, the complex network of immune components is 

moving beyond this simple characterisation of innate and adaptive immunity. 

1.1.2 - Development of a Cellular Immune Response 

The development of a cellular immune response is a complex process, involving 

multiple steps and different cell types. As a broad overview of the process, which is 

discussed in detail below, antigens from pathogenic organisms are taken up by cells 

called APCs (APCs), which process these antigens for presentation on their cell 

surface. Migration of APCs to the secondary lymphoid organs allows presentation of 
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antigens to clonally specific naive CD4+ and CD8+ T cells for their activation, 

allowing an adaptive immune response to be mounted. CD4+ and CD8+ T cells are 

then able to become effector cells to eradicate the infection, and subsequently 

become memory cells for rapid response to re-exposure to the antigen. These steps 

are discussed below. 

1.1.3 - APCs; Determining When to Mount an Immune Response 

Two fundamental questions exist in immunology. Firstly, how does the immune 

system decide when to respond to an antigen? And secondly, which kind of immune 

response should be generated? The first question will be examined here, the 

second in Section 1.2.  

A belief long held by immunologists is that the immune system discriminates 

between 'self' and 'non-self', with foreign antigens eliciting an immune response and 

self antigens being subject to immunological tolerance5. However, this model has 

proven to be over-simplistic, not least in the lack of a consensus on what constitutes 

'self'. More recent and seemingly more applicable models have since been 

proposed, termed the pattern recognition receptor model, and the danger model6. 

These models have a significant amount of overlap, and ultimately postulate that the 

immune system responds to stimuli determined to be 'dangerous' or 'damaging'. At 

the centre of both models are APCs, and it appears these cells are responsible for 

answering the question 'when should the immune system respond?'. 

The pattern recognition receptor model (PRR) describes the activation of APCs, and 

innate cells in general, by conserved molecular patterns (PAMPs) expressed by 

broad ranges of pathogenic and non-pathogenic organisms7. Common PRRs 

include the Toll-like receptors (TLRs) which recognise a range of PAMPs including 

lipopolysaccharides (LPS), peptidoglycans (PGN), or unmethylated CpG sequences. 

Danger signals were first suggested to describe an immune system which responds 

to substances which cause damage, rather than are simply non-self8. These signals 

consist of molecules or molecular structures which cells undergoing stress or cell 

death produce or release. APCs can recognise these molecules to become 

activated and initiate adaptive immunity. Danger signals can include 'primal' signals, 

which initiate activation of innate cells, and feedback signals which modify or 

enhance ongoing immunity. Common danger signals include membrane expressed 

molecules such as CD40L, cytokines such as TNF-α, metabolites including ATP, 

and heat shock proteins8. The term DAMPs (damage associated molecular patterns) 

covers both danger signals and PAMPs, and as such a combination of both models 
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appears applicable to immune responses9. What is fundamentally clear is that APCs 

play a pivotal role in generating immune responses to pathogens.  

1.1.4 - Antigen Presentation  

The main function of APCs is to present antigens to responder cells to either initiate 

specific immunity to that specific antigen, or to tolerise cells to the antigen, in order 

to prevent inappropriate immunity. Once an antigen has been obtained, it is 

processed into short peptides and presented on the cell surface via major 

histocompatibility complex (MHC) molecules. A number of different pathways are 

available to cells to combine peptides with MHC molecules, and these are discussed 

below. 

 1.1.4.1 - MHC Class I Antigen Presentation 

The classical pathway of MHC class I antigen presentation actually derives its 

peptides from intracellular pools of protein fragments. MHC class I molecules are 

expressed on all nucleated cells of the body, and as such all nucleated cells are 

able to present antigens on MHC class I molecules. Endogenous protein fragments 

originating in the cytosol or nucleus of cells are degraded by proteasomes to provide 

the peptides for presentation10. In fact, a large amount of protein produced by cells 

is immediately degraded after synthesis (referred to as DRiPs, defective ribosomal 

products), for reasons including defective transcription or translation, failed 

assembly into larger protein complexes, or incorporation of incorrect amino acids11. 

Upon degradation in the proteasome, resulting peptides are translocated into the 

endoplasmic reticulum (ER) by the TAP transporter protein. Inside the ER, MHC 

class I heterodimers are assembled from a polymorphic heavy chain, and a light 

chain referred to as β2 microglobulin. The peptide combines with the MHC class I 

heterodimer, triggering chaperone molecules to release the fully assembled 

molecule for presentation on the cell surface12. Utilising this process, nucleated cells 

present steady state proteins and also viral proteins to signal to the immune system 

if the presenting cell is healthy, infected, or transformed. 

 1.1.4.2 - MHC Class II Presentation 

MHC class II molecules are primarily expressed on professional APCs, such as 

dendritic cells, B cells, and macrophages. External protein complexes derived from 

pathogens or the general cellular microenvironment are taken up by APCs, and 

degraded in late endosomal compartments to provide peptides for presentation. 

Assembly of MHC class II molecules also occurs in the ER, where α and β chains 
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combine with the invariant chain Ii. The resulting complex is next transported to the 

MHC class II compartment (MIIC), a late endosomal compartment where Ii is 

digested to leave a class II associated Ii peptide (CLIP) in the binding groove of the 

MHC class II molecule. The molecule HLA-DM is required for the facilitation of CLIP 

exchange for an exogenous peptide. The MHC class II/peptide complex can then be 

transported to the cell surface for antigen presentation12. 

 1.1.4.3 - Cross Presentation on MHC Class I Molecules 

The restriction of the MHC class I loading pathway to endogenous antigens is 

insufficient in situations where naive CD8+ T cells require activation by APCs before 

they can perform their cytotoxic functions13. Despite the fact that endogenous 

peptides are classically presented on MHC class I molecules and exogenous 

peptides are presented on MHC class II, an alternate pathway allows for the 

presentation of material taken up from the cellular microenvironment to be displayed 

on MHC class I molecules for presentation to CD8+ T cells. This process is called 

cross-presentation, and allows for APCs to present antigens from pathogens which 

do not infect APCs, or alternatively to present tumour-derived antigens to CD8+ T 

cells. Self antigens are also able to be presented in the same way, for the induction 

of tolerance in a process termed cross-tolerance14. Multiple pathways in which 

antigens are able to be cross-presented exist, the majority of which involve the 

capture of antigen by phagocytosis. 

 1.1.4.4 - Endogenous Antigen Presentation on MHC Class II Molecules 

A further pathway allows for the presentation of endogenous peptides derived from 

the cytoplasm or nucleus to be displayed on the MHC class II molecules of APCs for 

presentation to CD4+ T cells. This is, for instance, necessary for the induction of 

CD4+ T cell immunity to viruses which may infect APCs, and as such antigens would 

be obtained from the intracellular rather than the extracellular compartment15. A 

process known as autophagy is responsible for this function16. Autophagy is defined 

as an auto-digestive process which performs the delivery of intracellular debris to 

lysosomal compartments for degradation and recycling. Via several distinct 

autophagy pathways17, this allows for the presentation of endogenous peptides on 

MHC class II molecules.  

1.1.5 - Migration of APCs to Lymph Nodes 

An activated APC such as a mature dendritic cell (DC) will present antigens on its 

cell surface to activate naive T cells. However, in order for APCs to have maximal 
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contact with naive T cells and induce the appropriate clonal expansion, these cells 

must migrate to the draining lymph nodes where naive lymphocytes gather and 

search for antigen. This migration requires the function of a distinct set of molecules, 

known as chemokines. 

Chemokines are a collection of small, structurally related molecules which regulate 

the trafficking of different subsets of leukocytes18. Via the action of corresponding 

chemokine receptors expressed on the surface of cells, chemokines direct each cell 

type to its appropriate location via a concentration gradient, and as such play pivotal 

roles during steady state and in inflammatory scenarios. The repertoire of 

chemokine receptors expressed on the surface of resting and activated cells is able 

to indicate their potential localisation and hence their likely role in immunity.  

Lymph nodes, also known as secondary lymphoid organs, are a group of 

strategically positioned locales in which antigen presentation to naive T cells 

occurs19. Naive lymphocytes of both B and T subsets circulate in the blood and 

lymphatics between lymph nodes in search of their specific antigen. There exist two 

ports of entry into the lymph nodes, either through the afferent lymphatic vessels, or 

via high endothelial venules (HEVs)20,21.The majority of lymphocytes utilise the 

HEVs for migration into the lymph nodes. A complex process involving a number of 

molecules is involved in the translocation of lymphocytes into the secondary 

lymphoid organs. The first molecule involved is the chemokine receptor CCR7, and 

its ligands CCL21 and CCL19. CCR7 is constitutively expressed by conventional 

naive T lymphocytes and directs these cells to localise at tissues possessing the 

relevant ligands22–24. CCL21 is constitutively expressed by HEVs, and CCL19 is 

expressed by the lymphatic endothelium and LN interstitial cells. As such, both 

chemokines are ideally located to direct naive lymphocyte migration to the 

secondary lymphoid organs. L-selectin, also referred to as CD62L, mediates 

tethering and rolling of lymphocytes along the endothelium via interaction with its 

ligand PNAd19. The lymphocytes are slowed down by this process, allowing CCR7 

to bind to its ligand. Upon the ligation of CCR7, activation of integrins such as LFA-1 

occurs, which allows it to interact with the intercellular adhesion molecule ICAM-125. 

This interaction causes the arrest of rolling T cells, allowing for lymph node 

transmigration. Upon entering the lymph nodes, lymphocytes are directed to B or T 

cell areas where they attempt to encounter their specific antigen. 

There are two main mechanisms by which antigens themselves are delivered to the 

secondary lymphoid organs. The first is when antigenic material enters the 
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lymphatics directly, independently of APCs, and makes its way to the lymph nodes 

where it can be taken up and processed by lymph node-resident DCs. The second 

is by transport from the tissue to the lymph node by migratory APCs themselves26,27. 

Regardless of the mechanism, an APC is required to process and present the 

antigen. Peripheral APCs are able to migrate to lymph nodes via the action of 

CCR728,29, as well as other chemokine receptors such as CXCR4 and CCR4. These 

chemokine receptors are upregulated upon maturation or activation of relevant 

APCs. While in transit, APCs upregulate the necessary molecules to attract and 

stimulate naive lymphocyte responses30. 

1.1.6 - Activation of αβ T Cell Responses 

Once an activated APC has reached the secondary lymphoid organs, it is able to 

interact with naive CD4+ or CD8+ T cells to stimulate an adaptive immune response. 

 1.1.6.1 - The Immunological Synapse 

T cell recognition of antigen presented by APCs requires intimate contact between 

cells, and as such the formation of an immunological synapse, which directs the 

redistribution of cell surface molecules towards the interface between cells31,32. This 

process is accompanied by cytoskeletal rearrangement and cellular polarisation. 

Molecules necessary for the formation of the immunological synapse and for T cell 

activation segregate into distinct areas within this interface. A clear identification of 

the mature synapse is the formation of a 'bulls eye' pattern of molecules, composed 

of a central supramolecular activation cluster (c-SMAC), surrounded by a peripheral 

adhesion ring (p-SMAC). The c-SMAC is enriched for molecules important in T cell 

signalling, such as the TCR, MHC-peptide, CD28, and CD2, whereas the p-SMAC is 

composed of the LFA-1 adhesion molecules and its ligand ICAM-1, and the 

cytoskeletal molecule talin. The formation of the immunological synapse is divided 

into several distinct stages; polarisation of T cell surface molecules, initial adhesion 

of cells, the initial signalling of synapse formation, and lastly the sustained signalling 

of a mature synapse. With the immunological synapse formed, three signals are 

provided by the APC to the naive T cell for optimal activation of T cell responses.  

 1.1.6.2 - Overview of 3 Signal Model 

The activation and fate of naive T cells is determined by 3 signals, and is referred to 

as the three signal model33. Signal 1 is an antigen specific stimulatory signal, 

mediated via T cell receptor triggering upon interaction with the relevant peptide-

MHC complex. Signal 2 is a co-stimulatory signal, provided by a variety of co-
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stimulatory receptors and ligands expressed by the T cell and APC, respectively. 

Signal 3 is a polarising signal, and is responsible for directing the naive T cell 

differentiation towards the appropriate functional quality. Each signal is discussed in 

turn below. 

 1.1.6.3 - Signal 1: Peptide/MHC recognition 

As previously stated, signal 1 for naive T cell activation is provided by TCR-

peptide/MHC interaction. Despite this, TCR-pMHC interactions alone are not 

sufficient to provide signal 1 to the T cell34,35. Instead, the co-receptors CD4 or CD8 

are involved in binding to the pMHC complex and in the downstream signalling. CD8 

molecules specifically interact with MHC class I molecules, whereas CD4 interacts 

with MHC class II molecules. CD4 and CD8 are differentially expressed on subsets 

of T lymphocytes; CD4 expression denotes T helper cells, whereas CD8 is found on 

cytotoxic T cells. During T cell activation, the TCR initially binds to the peptide-MHC 

complex, upon which CD4 or CD8 can then bind to the MHC molecule36, thereby 

stabilising the complex. The principal role of both molecules is in the recruitment of 

Lck, a Src tyrosine kinase, to the TCR-pMHC complex37. This complex and 

downstream signalling allows for signal 1 to be provided for naive T cell activation.  

Of note, it is currently unclear how provision of signal 1 occurs for "unconventional" 

non-MHC-restricted T cells that often lack both CD4 and CD8, such as NKT cells 

and other CD1-restricted T cells as well as γδ T cells. 

 1.1.6.4 - Signal 2: Costimulation 

Signal 2, or the co-stimulatory signal, is fundamental for triggering a naive T cell 

response to antigen, and plays an important role in the ultimate outcome of the 

APC-T cell interaction. Signal 2 is actually able to provide stimulatory or inhibitory 

signals, thereby tipping the balance between immunity and tolerance depending on 

which co-stimulatory or co-inhibitory molecules are involved in the interaction38. 

Signal 2 also has a primary role in 'fine-tuning' adaptive immunity by affecting the 

magnitude and quality of the ensuing response. A large number of co-stimulatory 

molecules have been identified, and these can either be constitutively expressed on 

APCs or upregulated upon activation. 

Perhaps the best known and most studied group of co-stimulatory molecules 

belongs to the immunoglobulin superfamily39,40, comprising CD28 and CTLA-4 

(CD152) with their ligands CD80 and CD86. CD28 is constitutively expressed on 

naive and activated T cells, whereas CTLA-4 becomes upregulated on activated T 

cells only; it is absent on naive and resting T cells. Both CD80 and CD86 become 
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upregulated on APCs following their activation. CD80 and CD86 alternatively bind 

CD28 during T cell activation to provide a co-stimulatory signal 2 to the naive T cell. 

Conversely, CD80/86 ligation with CTLA-4 provides an inhibitory signal to the T cell.  

Other co-stimulatory molecules such as ICOS (inducible co-stimulator of signalling) 

become upregulated on activated T cells, and its ligand ICOSL allows for further 

manipulation of the T cell response once it has been initiated41. Lastly, adhesion 

molecules themselves have also been identified to play a co-stimulatory role. Such 

molecules include LFA-1 and its ligand ICAM-1, which in addition to forming the 

immunological synapse help stabilise the transmission of T cell receptor mediated 

signals42,43. Many more co-stimulatory and co-inhibitory molecules exist, with both 

overlapping and distinct roles in manipulating the adaptive immune response, and 

each individual effect on CD4+ and CD8+ T cell responses will be discussed below. 

 1.1.6.5 - Signal 3: Polarisation 

Signal 3 is referred to as the polarising signal, and plays a major role in directing the 

type of immune response generated33. This signal is provided by the APC, and also 

from other locations and context dependent sources, predominantly in the form of 

polarising cytokines, such as IL-12 and IL-6. Many factors influence the types of 

polarising signals provided to T cells, not least the mechanism of activation of the 

APC itself. Signal 3 in the context of CD4+ T cell (and CD8+ T cell) polarisation is 

discussed in detail in a later section.  

1.1.7 - Memory CD4 Subsets 

Upon stimulation of naive CD4+ T cell responses, clonally expanded cells can go on 

to become effector cells, producing cytokines which aid the immune response, and 

can also become memory cells, which exhibit rapid responses to re-infection. It has 

been demonstrated that CD4+ T cells go through a number of stages of memory, 

characterised by their expression of the common leukocyte antigen CD45, and their 

chemokine receptor expression44.  

Naive CD4+ T cells are cells which, by definition, have not encountered their specific 

antigen, and represent a population of cells that is able to give rise to effector and 

memory CD4+ T cells45. CD45 is a tyrosine phosphatase which regulates the 

activation threshold of CD4+ T cells, with the longer isoform CD45RA instilling a 

higher activation threshold on the expressing cell, and the shorter isoform CD45RO 

allowing for a lower activation threshold46,47. Naive CD4+ T cells can be 

characterised by their expression of the longest isoform of CD45, known as 



10 
 

CD45RA, and expression of the lymph node homing molecules CCR7 and CD62L, 

which are essential for the circulation of those cells throughout the secondary 

lymphoid organs. Upon activation, naive CD4+ T cells produce IL-2 but little other 

effector cytokines, and proliferate. This activation is dependent on the naive CD4+ T 

cells receiving signals 1 and 2, and signal 3 for differentiation into effector cells. 

Naive CD4+ T cells which receive signal 1 but no co-stimulation are rendered 

anergic and subsequently are unable to respond to antigen, and are hence classed 

as tolerised44.  

Memory CD4+ T cells can be further differentiated into a number of memory subsets. 

This is due to the fact that some memory CD4+ T cells mediate rapid responses to 

antigens in the periphery, whereas other CD4+ memory cells continue to circulate 

the lymph nodes in their search for antigen. These subsets both express CD45RO, 

but differentially express CCR7, and to a lesser extent CD62L. Central memory cells 

(TCM) are classed as memory cells which re-circulate through secondary lymphoid 

organs, following the migratory routes of naive cells, and as such retain expression 

of CCR7 and CD62L upon becoming memory cells. TCM cells are phenotypically 

CD45RO+CCR7+CD62L+. In contrast, effector memory cells (TEM) are those which 

are found in the periphery, and as such do not express CCR7 and possess much 

lower levels of CD62L than TCM cells.  

In terms of activation threshold, TEM cells are much more responsive to TCR 

stimulation in the presence or absence of co-stimulation than are TCM cells, which in 

turn are much more responsive than naive CD4+ T cells. TEM cells also express a 

different repertoire of chemokine receptors ideally suited for direction to the 

peripheral tissues and inflammatory sites. This repertoire includes tissue specific 

receptors and integrins such as CD103/CLA and β1/β2 integrins, respectively48, and 

inflammatory chemokine receptors such as CCR1, CCR3, and CCR549,50. TCM cells 

instead express intermediate levels of tissue integrins, as well as CCR4, CCR6, and 

CXCR3 to varying degrees. Upon stimulation of each memory subset, TCM cells 

favour production of IL-2 only, whereas TEM cells produce effector cytokines such as 

IFN-γ and IL-4.  

Upon activation of each memory subset, cells are thought to mainly progress into 

the next memory subset in order. As such, naive cells potentially differentiate 

towards TCM, and TCM towards TEM upon TCR ligation, though it is unclear whether 

this is the only possible pathway of memory cell differentiation. This observation is 

supported by assessing the length of telomeres, which shorten as a process of cell 
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division51. As such, naive cells possess much longer telomeres than do TEM cells. 

This progressive differentiation of memory subsets identifies TCM cells as a clonally 

expanded, ligand-primed population which can generate a new wave of effector 

cells, whereas TEM cells represent a pool of cells able to rapidly enter peripheral 

tissues to mediate inflammation. Further dissection of memory subsets has also 

been achieved based on their expression of the co-stimulatory receptors CD27 and 

CD2852. The same subsets of memory cells can be identified in CD8+ T cells as well, 

in addition to terminally differentiated (TEMRA) cells, which display a CD45RA+CCR7- 

phenotype44.  

 1.1.7.1 - Asymmetric Division 

An interesting phenomenon has been investigated for its potential role in generating 

different memory subsets of daughter cells from a single progeny. This process, 

known as asymmetric division, refers to the division of a cell whereby unequal 

inheritance of critical molecules is achieved in individual daughter cells, allowing for 

the divergence of cell fates53. This has been identified in studies of CD4+ and CD8+ 

T cells, and is a potential mechanism by which differential memory subsets can be 

generated. Indeed, 'proximal' and 'distal' daughter cells have been identified to 

possess different sets of memory markers, representing TEM and TCM cells, 

respectively.  

1.2 - Polarisation of the T Lymphocyte Immune Response  

The second question in immunology is: "How is the appropriate immune response 

generated for a particular pathogen or threat?" The process of T cell polarisation is 

able to, at least partially, answer this question. It has widely been accepted in 

immunology that no one effector response is able to deal with all forms and types of 

pathogens, for example an immune response against intracellular viruses must 

involve different cells and molecules than a response against extracellular bacteria 

or helminths. This observation led to the discovery that effector T helper cells could 

be categorised into functionally distinct subsets. The first evidence of this was 

reported in the form of the Th1-Th2 paradigm; two effector states of CD4+ T cells 

which were functionally opposite to each other and were able to counter-regulate the 

opposing subset54. This phenomenon was first identified in murine T cell clones but 

subsequently reproduced with human T cells55. The control over CD4 functional fate 

was reported to be controlled by the antigen presenting cell, by a process called 

polarisation. Since this discovery, numerous factors have been identified as playing 
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a role in polarisation, forming a complex web or polarising factors. Arguably the 

most important ones amongst these are the polarising cytokines, which direct CD4 

differentiation and have been extensively studied for this role. Since this discovery, 

many more T helper subtypes, or lineages, have been characterised to form an 

expanding view of the polarisation of CD4+ T cells. Strong evidence supported the 

idea that these effector fates do not derive from distinct precursor cells but instead 

develop from single CD4+ precursor populations55. 

Each CD4+ T cell subset is characterised by a signature cytokine profile, which 

facilitates the characteristic immune effects related to each subset45. Further to this, 

each lineage has been reported to express a distinct chemokine receptor repertoire, 

aiding identification of lineages and indicating homing potential. Another important 

factor in defining a CD4+ T cell as a particular lineage is built around the premise 

that each lineage expresses a 'master transcription factor'56. Each unique subset 

identified can be defined by a critical transcription factor which directs the cell fate, 

effector cytokine production, phenotype, and also inhibits differentiation towards 

alternate cell fates and lineages. Due to the distinct differences in each lineage, 

each is associated with a particular arm of immunity. The polarisation of CD4 

responses in mice has been shown to be reasonably clear-cut, with either Th1 or 

Th2 responses observed in different experimental models. However, in human 

immunity the different subsets do not segregate as readily as in mice, with both Th1 

and Th2 responses overlapping in numerous infection and disease scenarios57. This 

fact is observed with other T helper lineages as well. Given the discrepancies 

between mouse and human CD4+ T cell polarisation mechanisms, the data 

discussed here are exclusively relevant for human immunity unless otherwise 

specified. A summary of CD4+ T cell polarisation is displayed in Table 1.1, at the 

end of the section. 

1.2.1 - The Th1 Cell Lineage 

Th1 cells are characterised by the secretion of IFN-γ, representing their predominant 

effector cytokine, and expression of the master transcription factor, TBX21. The 

overall cytokine profile of human Th1 cells typically includes IFN-γ, IL-2 and TNF-β, 

as well as TNF-α and GM-CSF which are expressed across most T helper 

subtypes55. The main role of Th1 cells is in the combat of intracellular pathogens.  

The polarisation of naive CD4+ T cells towards a Th1 phenotype has been 

extensively shown to be mediated by the cytokine IL-12, which is secreted by 

activated DCs and macrophages during the activation of CD4+ T cells58. IL-12 acts 
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via STAT4-mediated signalling, and induces the expression of IFN-γ. IFN-γ can then 

act in an autocrine fashion to induce the expression of TBX21 via STAT1 

signalling59. IL-12 also promotes a Th1 response by the inhibition of Th2 responses 

and the reversal of Th2 polarisation in humans. While IFN-α and IFN-β, which are 

produced by many cell types including DCs and macrophages60, also promote Th1 

polarisation via STAT461, IL-12 is necessary for optimal Th1 induction57 and induces 

much stronger Th1 responses than IFN-α/β. One potential explanation is that the IL-

12-induced activation of STAT4 is longer lived, allowing full Th1 differentiation, 

whereas IFN-α/β activation appears more transient61. The growth factor IL-2, also 

important in optimal Th1 polarisation, synergises with IL-12 to prolong the activation 

of STAT4, and such a synergy is not seen with type 1 IFNs. Further to this, patients 

who exhibit deficiencies in IL-12 receptor-mediated signalling but possess intact 

type 1 IFN signalling pathways, have an impaired Th1 immunity against pathogens 

including Mycobacteria and Salmonella species62,63.  

As previously mentioned, Th1 cells are characterised by uniform expression of the 

transcription factor TBX21. This transcription factor is responsible for the 

upregulation of numerous genes important in Th1 regulation and immunity, and the 

suppression of genes important for alternative T helper lineage differentiation and 

function59. A further characterisation of human Th1 cells revealed the expression of 

chemokine receptors CXCR3 and CCR5, the combination of which is preferentially 

expressed by the Th1 lineage over other subtypes64. 

Th1 cells exert their immunomodulatory effects predominantly via the action of IFN-

γ. This cytokine possesses far reaching effector functions to modulate a large 

number of immune and non-immune cells65. IFN-γ is able to induce the upregulation 

of APC markers such as MHC class I and II, and co-stimulatory molecules including 

CD80/86. A major role of IFN-γ during a Th1 immune response is the recruitment 

and activation of several immune cell subsets, such as macrophages and CD8+ 

cytotoxic T cells, which function to combat intracellular bacteria45, and IFN-γ can 

also act on APCs such as DCs to induce the production of IL-12, thereby forming a 

further positive feedback loop65. One final function of IFN-γ is in the promotion of 

antibody class switching, towards an IgG isotype response as opposed to IgE.  

Th1 responses have been investigated and identified in a wide range of diseases, 

from infectious scenarios to autoimmunity. The types of responses induced by Th1 

immunity have also been identified as optimal for the combating of various tumours, 

due to the ability to aid immunity against cellular targets. 
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1.2.2 - The Th2 Cell Lineage 

The antagonistic lineage to Th1 cells was historically denoted as the Th2 subset. 

This lineage specialises in the production of the cytokines IL-4 (as its signature 

cytokine), as well as IL-5, IL-13 and, non-exclusively, IL-10. Recent additions to the 

Th2 cytokine profile also include IL-9 and IL-25. The main function of Th2 cells is to 

promote immune responses dominated by the antibody isotype IgE, including 

eosinophil and basophil immunity against extracellular infections by parasitic 

helminths64. 

Many studies have shown the importance of IL-4 in the differentiation of naive CD4+ 

T cells towards the Th2 lineage54. However, with professional APCs such as DCs 

and macrophages lacking in the production of IL-4, the definitive source of 

exogenous IL-4 remains elusive. A number of cell types have been described as 

producing IL-4 and represent potential sources, including NK cells66, mast cells, and 

basophils55,67, however these cell types are unlikely to express IL-4 in the correct 

location and at the necessary time during Th2 polarisation. A number of studies 

have reported the production of low levels of IL-4 by stimulated naive CD4+ T cells 

themselves68,69, forming a potential autocrine feedback loop. A number of other 

molecules have been reported to promote Th2 polarisation other than IL-4. 

Prostaglandin E2, produced by APCs, can promote the Th2 lineage by inhibiting the 

production of IFN-γ by activated CD4+ T cells, and by inhibiting APC production of 

IL-1267. Further to this, IL-6, a cytokine produced by a wide range of cell types 

including APCs, has been identified to promote Th2 responses under certain 

circumstances70,71. IL-6 acts to promote the expression of IL-4, at least in mice, 

whereas in humans the role of IL-6 in the regulation of IL-4 expression is less clear. 

More recently a specialised type of epithelial cell in the intestine, called tuft cells, 

have been shown to induce Th2 type responses in mice via secretion of IL-2572.  

The major route of Th2 differentiation is via the action of IL-4 triggered STAT6 

signalling to induce expression of GATA3 in differentiating CD4+ T cells, the master 

transcription factor of the Th2 lineage73,74. GATA3, in combination with STAT5 

induced by the activation of the growth factor IL-2, induces the secretion of IL-4 by 

Th2 cells, as well as IL-5 and IL-13. Th2-derived IL-4 acts in an autocrine manner to 

maintain and promote Th2 phenotype and inhibit Th1 polarisation via STAT4 

signalling and inhibition of IFN-γ production. PGE2 and IL-6, among other factors, 

likely promote Th2 differentiation by the inhibition of IFN-γ and Th1 polarisation, 

rather than by direct activation of GATA3 and IL-4, allowing for CD4+ T cells 

themselves to induce their own Th2 polarisation. It is clear that Th2 differentiation 
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involves significantly more interaction of molecules than the IL-12 mediated Th1 

induction. 

Th2 cells express a unique repertoire of chemokine receptors which direct their 

functional potential, in the same manner as Th1 cells. These chemokine receptors 

include CCR3 and CCR4, which are co-expressed by eosinophils and basophils, 

allowing for the recruitment of all necessary cell types to the site of Th2 mediated 

immunity50,64. 

Th2 cells, via the secretion of the cytokines IL-4, IL-5, and IL-13, manipulate several 

immune subsets for the combat of extracellular parasites. B cells respond to both IL-

4 and IL-13 to become activated and class-switch to produce IgE antibodies45, while 

IL-5 aids the differentiation and proliferation of basophils and their precursors into 

matured basophils. IgE antibodies themselves trigger activation and degranulation 

of basophils and mast cells by cross linking cell-surface Fc receptors75. The 

strongest effect of IL-5 in humans is the activation of eosinophils, inducing terminal 

maturation, improving survival by delaying apoptosis, and enhancing effector 

functions76. Altogether these cytokines manipulate the immune response towards 

appropriate anti-parasitic immunity. 

Th2 cells have received much study for their role in allergic reactions, stemming 

from the fact that allergic symptoms and immune pathways are similar to those seen 

with anti-helminth responses77,78. Indeed, Th2 cells, in particular a high ratio of Th2 

to Th1 cells and cytokines, have been identified in a range of allergic reactions from 

asthma79 to chronic dermatitis80, characterised predominantly by infiltration of 

eosinophils and Th2 cells76. Although work on Th2 cells and associated eosinophil 

infiltration has largely been conducted in mouse models, Th2 involvement has also 

been confirmed in human studies81. The role of Th2 in inappropriate immunity led 

the way in identifying different T helper lineages involved in immune pathologies. 

1.2.3 - Limitations of the Th1/Th2 Paradigm 

Since the inception of the Th1/Th2 paradigm into immunology 30 years ago, it 

became a widely accepted phenomenon in numerous infectious models, providing a 

framework for studying and understanding the fundamentals of CD4+ T cell biology. 

However, almost as soon as the paradigm was postulated, flaws in the model were 

reasoned82–84, and over the past 10 years the paradigm has been amended 

considerably.  
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One initial limitation was the identification that CD4+ T cells, particularly in humans 

but also in murine systems, would not differentiate into distinct Th1 and Th2 

responses, and often a combination of both effector phenotypes could be observed. 

Further to this, IFN-γ and IL-4 co-expressing cells are a common occurrence in the 

analysis of T helper lineages, which are termed Th0 cells. Further to this, other 

cytokines were identified as either being produced by activated CD4+ T cells, such 

as IL-17, or involved in the differentiation of T helper cells, such as IL-23, but were 

not directly related to the Th1/Th2 system at the time. Thus the paradigm has been 

significantly adapted and extended to include a variety of other T helper lineages. 

1.2.4 - The Th17 Cell Lineage 

The discovery of the Th17 cell lineage was the first major expansion of the T helper 

lineage paradigm, and this subset has become arguably one of the most studied 

lineages to date. This subset is characterised by the production of its signature 

cytokine IL-17A, alongside IL-17F, IL-22, and IL-21, without the production of IFN-γ 

and IL-4. Th17 cells are thought to primarily function in the combat of extracellular 

bacterial and fungal infections85. 

The identity of the new Th17 lineage was studied extensively in murine models 

before human counterparts were identified. The search began with the discovery of 

the IL-12 related cytokine IL-23, both of which share a common p40 subunit86; in the 

case of IL-23, p40 pairs with the p19 subunit. IL-23 was subsequently shown to 

promote IL-17 responses in murine memory T cells87. The first impressions of the IL-

17 producing cells were that they represented Th1 cells capable of producing IL-17, 

due to the common features of IL-12 and IL-23 and the ability of CD4+ T cells to co-

express IFN-γ and IL-17 at the same time88,89. However, the tendency of cells to 

either produce IFN-γ or IL-17 alone suggested otherwise90. Subsequent studies 

identified IL-17 producing cells as a separate lineage to Th1 and Th2, and as such 

were termed Th17 cells. This lineage was inducible in naive CD4+ T cells via 

combinations of IL-1β, IL-6, IL-23, and TGF-β, and expressed the RORγt 

transcription factor as their master regulator91. Subsequent studies identified these 

cells in a range of pathologies including a significant role in autoimmune models. 

The Th17 subset was finally identified in humans shortly afterwards85.  

Following their identification, the polarising cytokine requirements of human Th17 

cells were investigated by several groups and generated controversy in the field due 

to a number of inconsistent studies and differences to murine Th17 cells. In 

comparison with the murine Th17-polarising cytokines IL-6 and TGF-β, it was 
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surprising that a number of studies found TGF-β actually possessed an inhibiting 

effect on human Th17 generation92, while in some studies IL-6 was seemingly 

dispensable93,94. From these initial studies, IL-1β and IL-23 exhibited a prominent 

role in Th17 differentiation. However, a number of subsequent studies found an 

inability to induce Th17 cells using just these cytokines95,96.Further work revealed 

that the presence of low doses of TGF-β in serum, utilised in culture media, played a 

prominent role in Th17 differentiation, and IL-6 played an additive role in the 

induction of IL-1797,98. As such, the consensus to date is that low dose TGF-β, 

alongside IL-1β and IL-6, induce the differentiation of naive CD4+ T cells towards a 

Th17 lineage. The role of IL-23 in Th17 differentiation appears obscure, in that the 

IL-23 receptor is only induced upon activation by other polarising cytokines. Indeed, 

the optimal role of IL-23 appears to be the addition after a few days of culture85, 

allowing maximal Th17 cell induction. In this way the IL-23 function in humans 

resembles that in mice, where it is responsible for maintaining the differentiation of 

Th17 cells and promoting their responses99, as well as regulating memory Th17 

responses, rather than in the direct differentiation of naive CD4+ T cells. IL-21 as 

well appears to play an autocrine role in humans as in the mouse, produced by 

Th17 cells themselves to promote their own phenotype100. 

While human Th17 cells are defined by their expression of IL-17A, they also co-

express IL-17F, IL-22, IL-21, IL-26 and at times IFN-γ or IL-10. This complex mix of 

cytokines is reflected in the polarising cytokine combinations required for Th17 

differentiation, with each having a distinct effect on the effector cytokines and 

phenotype. IL-17F is promoted by TGF-β, IL-23, and IL-1β. IL-22 and IL-21 are 

promoted by IL-23, IL-21, and IL-1β, and suppressed by TGF-β. IL-10 is inhibited by 

IL-1β, whereas IFN-γ is promoted by IL-1β alongside IL-21, IL-6, and IL-23. Lastly, 

IL-26 is promoted by both TGF-β and IL-1β. As expected, most Th17 cytokines, with 

the exception of IFN-γ and IL-22, are suppressed by IL-12. This complex network of 

induction and suppression highlights Th17 cells in humans, and indeed in mice, as a 

heterogeneous lineage that is highly regulated by the cytokine microenvironment 92–

94,97,98,100.  

Human Th17 cells, like Th1 and Th2 cells, can be identified by the expression of 

specific chemokine receptors. CCR6 and CCR4 were both found to indicate the 

expression of IL-17 but not IFN-γ by CD4+ cells85, directing these 'true' Th17 cells 

towards inflammatory sites. Interestingly, IL-17/IFN-γ double positive cells express a 

distinct chemokine receptor profile, consisting of CCR6 and CXCR3, again 

highlighting the heterogeneity of IL-17 producing CD4+ T cells. IL-17+ cells can also 
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be identified by their expression of IL-23R. This receptor is absent on naive CD4+ T 

cells, but is induced by the action of TGF-β and IL-1β; subsequent action of IL-23 

induces upregulation of its own receptor101. 

The master transcription factor RORC (murine homologue RORγt) is expressed by 

human Th17 cells in a restricted manner, while co-expression of TBX21 or GATA3 

denotes the cell's ability to co-express IFN-γ or IL-4, respectively85. RORC 

expression is regulated via STAT3 signalling, which can be induced directly or 

indirectly, by IL-6, IL-1β and TGF-β102,103. Several reports have shown that TGF-β 

alone, IL-21 alone, or the combination of IL-6 and IL-1β can induce the expression 

of RORC in human naive CD4+ T cells92,98,100. Interestingly however, the expression 

of RORC alone does not always correlate with the expression of IL-17, as 

combinations of polarising cytokines are required for IL-17 production, indicating 

potential roles of other transcription factors.  

Th17 cells may play significant roles in immunity against extracellular pathogens 

and fungi, due to the existence of memory CD4+ T cells specific for pathogens such 

as C.albicans85. IL-17 functions to mediate pro-inflammatory functions; downstream 

effects include induction of pro-inflammatory cytokines and chemokines by acting on 

mesenchymal and myeloid lineage cells, induction of antimicrobial peptides by 

epithelial cells, and neutrophil expansion and recruitment to inflammatory sites104. 

Since their discovery, Th17 cells have been extensively studied in the pathogenesis 

of autoimmune diseases, and have been shown to play significant roles, which were 

previously attributed to Th1 cells prior to the characterisation of IL-23, including 

psoriasis, inflammatory bowel diseases, rheumatoid arthritis, among other 

diseases93,105. 

1.2.5 - The Treg Lineage 

In addition to the differentiation towards effector T helper lineages mediating 

immunity against various pathogens, CD4+ T cells also possess the ability to 

differentiate towards suppressive cells, known collectively as regulatory T cells 

(Tregs). Tregs in humans are either generated in the thymus and are referred to as 

natural Tregs (nTregs), or can be induced in the periphery from naive CD4+ T cells, 

known as inducible Tregs (iTregs)106. Only iTregs will be discussed here. 

Human Tregs were first characterised as CD4+CD25+ T cells107, and subsequently 

shown to express the master transcription factor FOXP3108. Of note, CD25 and 

FOXP3 are also expressed by activated human CD4+ T cells at various 
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timepoints109. However, it appears the transient expression of FOXP3 does not 

confer a suppressive phenotype, whereas sustained expression is an inherent 

feature of Tregs110. Further surface markers such as CD45, CD127, and CD62L 

have all been reported to discriminate Tregs from effector cells, and also between 

certain Treg subsets111–113. However, these markers are also expressed at varying 

points in the effector CD4+ T cell lifecycle, and reliable identification of Tregs in 

humans remains problematic. 

Human inducible Tregs require TCR stimulation for their function, and TGF-β is key 

in Treg polarisation114. However, the exact mechanisms by which Tregs are induced 

by APCs in humans in vivo remains elusive. Human Tregs possess several 

mechanisms by which immunity can be suppressed115. The co-inhibitory molecule 

CTLA-4 is constitutively expressed by Tregs, allowing for a number of mechanisms 

to control effector T cell responses116. Treg subsets are also capable of producing 

the immunomodulatory cytokines TGF-β and/or IL-10, which can have context-

dependent suppressive functions.  

Due to their suppressive ability, Tregs have therapeutic potential in autoimmunity or 

allergy, in that they represent a mechanism by which inappropriate immune 

responses can be subdued. A number of groups are therefore investigating the 

induction of tolerance  by Tregs in autoimmune settings117,118. Akin to many 

elements of the immune system, Tregs present a 'double-edged sword'; their benefit 

in suppressing inappropriate immune responses to self is subverted in tumour 

settings, where Tregs are involved in restricting anti-tumour immunity119. 

1.2.6 - The Th22 Cell Lineage 

One of the more recent lineages to have been described is that of Th22 cells. These 

cells are characterised by their production of IL-22, in the absence of IFN-γ, IL-17 or 

IL-4 secretion. These cells have also been reported to co-express TNF-α, IL-10, and 

IL-13. They have since been shown to facilitate tissue homeostasis, antimicrobial 

responses in the skin and mucosa, and tissue repair.  

IL-22 was originally thought to be a Th1 cytokine, until the identification of Th17 

cells, which often co-express IL-22, and the observation that both IL-17 and IL-22 

possess similar functions in immunity. Indeed, murine Th17 cells consistently 

express both cytokines and RORγt appears essential for IL-22 production. However, 

given the identification of CD4+ T cells producing IL-22 in the absence of IL-17, and 

roles for IL-22 in tissue repair where IL-17 is redundant, it was shown that the two 

cytokines are differentially regulated in humans120. Further to this, induction of 
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RORC in human CD4+ T cells does not permit the production of IL-22, signifying 

differential regulation of RORC and IL-22 expression. This led to the identification of 

a population of Th22 cells in humans by several groups121–123. The cytokine 

requirements for polarisation of native CD4+ T cells toward a Th22 phenotype 

appear to be a combination of IL-6 and TNF-α, whereas the addition of IL-1β 

induces the expression of IL-17 as well. IL-23 appears to play a role in promoting 

Th22 responses in humans, although the effects of IL-23 on IL-22 expression are 

much more limited compared to the promotion of IL-17. The action of TGF-β has 

been noted to inhibit IL-22 production. 

The aryl hydrocarbon receptor transcription factor (AHR) has been extensively 

studied and shown to be fundamental in both human and murine Th22 responses, 

representing their master transcription factor. AHR is a ligand-activated transcription 

factor involved in xenobiotic responses, with emerging roles in immune responses. 

Its ligands include polycyclic aromatic hydrocarbons (PAHs) and halogenated 

aromatic hydrocarbons (HAHs), and the AHR itself is localised predominantly in the 

cytoplasm of cells124. Upon interaction with its ligands, transformation and nuclear 

translocation of AHR occurs for regulation of gene transcription. AHR activity 

features in many processes, including cell proliferation, differentiation and cytokine 

secretion125. AHR ligands have been shown to directly promote the expression of IL-

22 in naive CD4+ T cells stimulated via their TCR126. AHR activation favours IL-22 

expression and partially inhibits RORC and IL-17 expression. In humans, IL-21 has 

also been reported to play a role in IL-22 induction, acting via STAT3 to control AHR 

interaction with the IL-22 promoter127. While much is known of the downstream 

effects of AHR activation, little is currently known about the regulation of AHR 

expression by polarising factors, particularly IL-6 and TNF-α. 

The chemokine receptor repertoire of polarised human CD4+ T cells has been 

reported to include the expression of CCR6, CCR4, and CCR10121,123. Expression of 

the cutaneous lymphocyte antigen CLA has also been reported on Th22 cells. The 

migratory properties of Th22 cells have been suggested to involve relocation to the 

skin and mucosal sites where the actions of IL-22 are most pronounced during 

immune responses. 

IL-22 itself is a member of the IL-10 family of cytokines128,129. Its receptor is 

composed of a heterodimer of the IL-10Rβ-chain and an IL-22R chain. Expression 

of the IL-22 receptor is restricted to non-haematopoietic cells; immune cells such as 

lymphocytes and myeloid cells lack the receptor, whereas epithelial cells, 
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keratinocytes, hepatocytes, and other non-immune cells exhibit responsiveness to 

IL-22. As such, IL-22 plays a key role in the crosstalk between immune and non-

immune cells. One exception to this rule is the expression of IL-22R on human 

monocyte-derived macrophages, though the in vivo relevance of this expression is 

uncertain.  A soluble form of the receptor, known as IL-22 binding protein, is able to 

regulate IL-22 function by specifically binding IL-22 at higher affinities than the 

surface bound receptor, to limit receptor binding and signalling130. The cellular 

effects of IL-22 are mostly organ specific, with the target cells differing depending on 

the context. The major function of IL-22 is in the induction of epithelial immunity 

against extracellular pathogens, inducing the secretion of antimicrobial peptides, 

and also inducing migration, re-epithelialisation and proliferation of epithelial cells128. 

IL-22 also inhibits the differentiation and induces pro-inflammatory gene expression 

in keratinocytes131. Significant roles have also been highlighted in the process of 

wound healing132,133,134. Overall, IL-22 functions to maintain barrier function and aid 

repair of tissue damage. 

Since their identification, Th22 cells have been investigated in a number of 

diseases. These roles have included infections such as hepatitis135 and 

tuberculosis136, autoimmune conditions such as rheumatoid arthritis137 and 

psoriasis138, and in certain cancers139. 

1.2.7 - The Tfh Cell Lineage 

A further T helper lineage identified is that of T follicular helper cells (Tfh cells). 

These cells are characterised by the expression of the chemokine receptor CXCR5, 

co-stimulatory molecules ICOS and CD40L, and production of the cytokine IL-

21140,141. Tfh cells have been identified to play fundamental roles in aiding B cell 

responses, a role originally attributed to Th2 cells.  

Tfh cells were first identified as a subset of CD4+ memory T cells which reside in the 

B cell areas of secondary lymphoid organs in humans140,141. However, 15 years later 

the exact differentiation requirements of Tfh cells remain unclear. A number of 

cytokines have been reported to induce the production of IL-21 in naive CD4+ T cells 

in both humans and mice, including IL-6, IL-27, and IL-21 itself, via the action of 

STAT3142,143. IL-12 has also been reported to induce the expression of IL-21 in 

human cells144. These cytokines are indeed able to induce several characteristic 

markers of Tfh cells, including CXCR5 and ICOS, and BCL6. However, expression 

levels of these molecules are lower than those observed in Tfh cells directly isolated 

from germinal centres142. In vitro differentiated Tfh cells also lack the expression of 
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other Tfh associated molecules. For these reasons, it is believed co-stimulatory 

molecules may play a greater role in the induction of Tfh cells. 

The transcription factor B-cell lymphoma 6 (BCL6) has been identified as the master 

regulator of Tfh differentiation, expressed by Tfh cells isolated from germinal centres 

based on CXCR5 expression140,141. BCL6, in contrast to the other master 

transcription factors, is actually a transcriptional repressor, and as such it was 

initially difficult to attribute the differentiation of Tfh cells to BCL6 function. However, 

several mechanisms of action have been suggested; BCL6 can repress other 

master transcription factors such as GATA3, and also suppress the expression of 

microRNAs involved in inhibiting the generation of Tfh cells142. Despite these roles, 

expression of BCL6 is unable to induce substantial expression of either CXCR5 or 

ICOS, the two main characteristic molecules of Tfh cells. In this regard other 

transcription factors have been suggested, including c-Maf, BATF, and IRF4. 

As previously mentioned, CXCR5 is an important chemokine receptor expressed by 

Tfh cells in humans and mice. Upon its upregulation, CXCR5, which is also 

expressed by B cells, allows migration of Tfh cells into the B cell zone of secondary 

lymphoid organs for direct interaction with B cells. 

Tfh cells exert their B cell-helping functions via the production of IL-21 and 

expression of co-stimulatory molecules including ICOS and CD40L. CD40L ligation 

with CD40 expressed on B cells induces the inhibition of apoptosis145, which in turn 

allows IL-21 to enhance the differentiation of B cells, allowing for class-switching 

and production of all immunoglobulin isotypes146. The ligation of ICOS on Tfh cells 

with ICOSL on B cells induces the expression of IL-10 and IL-21 by Tfh cells to 

promote B cell activation and differentiation147. In this way, Tfh cells are ideally 

located to promote optimal B cell responses. The interest in Tfh cells has stemmed 

from their identification in a number of immunological disorders148.  

1.2.8 - The Th9 Cell Lineage 

The latest lineage identified is that of Th9 cells, characterised by the production of 

IL-9, but also capable of producing IL-10, IL-17, IL-21, and IL-22149. Much work 

conducted on this subset has been performed in murine models, whereby IL-4 and 

TGF-β have been identified as polarising cytokines for a Th9 phenotype. These 

cytokines also induce Th9 polarisation in human cells150. A number of other factors 

have also been identified to promote human IL-9 production; IL-21 plays a potent 

role in increasing the generation of IL-9 producing cells, and type 1 IFNs induce the 
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expression of IL-21 by CD4+ T cells, forming an indirect mechanism of Th9 

promotion151,152. TGF-β alone is sufficient to expand memory Th9 cells. 

No master transcription factor for Th9 cells has yet been identified and as such it 

remains unclear whether Th9 cells represent a stable lineage or a transitional 

phenotype. IL-4 and TGF-β each cause the upregulation of GATA3 and FOXP3, 

respectively. Interestingly, when these cytokines were used in combination to 

generate Th9 cells, IL-4 was shown to inhibit FOXP3 expression but TGF-β did not 

inhibit GATA3152.  

The physiological relevance of Th9 cells is only just beginning to be unveiled; roles 

have been identified in M. tuberculosis infection153, parasite immunity154 and in 

immunological disorders of the skin155. 

1.2.9 - T Helper Cell Plasticity 

Initially it was believed that the various T helper lineages represented stable 

phenotypes, and that memory T helper cells would become terminally differentiated 

and fixed in their role. As such, upon restimulation the memory cell would secrete 

the cytokine repertoire it had been polarised to produce initially. Each lineage would 

also be responsible for the production of a set of cytokines, which were only 

produced by that subset. However, it has become clear that there is significant 

flexibility in the T helper lineages, particularly in human cells. This led to the concept 

of 'plasticity' within the CD4+ T cell subsets156–158. Plasticity suggests that, although T 

helper lineages may become terminally differentiated and refractory to alternative 

pathways, a large proportion of CD4+ T cells are able to shift lineages upon 

encounter of differing polarising conditions. 

The concept of T helper plasticity has much evidence behind it in both human and 

murine systems. Th17 cells especially are considered plastic; they are able to 

express IFN-γ and shift to Th1 phenotypes, or express IL-10159. Indeed, Th17 cells 

expressing either IFN-γ or IL-10 have been found to play roles in different infections. 

Th1 cells and Th2 cells are rarely found separately in humans; instead, populations 

of both, in addition to IFN-γ/IL-4 co-expressing cells, are found routinely in vitro and 

ex vivo. Tregs can be converted to Th1 or Th17 cells depending on the culture 

conditions, and vice versa. Th1 cells are capable of expressing both IL-21 and IL-22. 

Further to this, a number of cytokines can be expressed across multiple lineages, IL-

10 being the most common. Originally a Th2 cytokine, IL-10 is now acknowledged to 

be produced by numerous other T helper lineages. 
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The original concept of a master transcription factor is also changing, to the more 

flexible 'lineage specifying' transcription factor instead56. This is reinforced by the 

observation that many lineage transcription factors are not mutually exclusive but 

can be co-expressed, either transiently or stably, allowing for multiple lineage 

functions and plasticity between subsets. What is clear is that the variety of APCs 

involved in the polarisation and the molecules and cytokines expressed play a 

fundamental role in determining the lineages present during an immune response.  
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Table 1.1 - Summary of human CD4
+
 T cell polarisation 

T Helper 

Lineage 

Polarising Cytokines Effector Cytokines Master 

Transcription 

Factor 

Chemokine 

Receptor Profile 

Roles in  

Immunity 

References 

Th1 IL-12 

IFN-α/IFN-β 

IL-2, IFN-γ 

IFN-γ, IL-2 

TNF-β, TNF-α 

GM-CSF 

TBX21 CXCR3 

CCR5 

Intracellular Pathogens, 

Anti-Tumour, 

Autoimmunity 

55–62 

Th2 IL-4 

PGE2, IL-6 

IL-4 

IL-5, IL-13, IL-10 

GATA-3 CCR3 

CCR4 

Humoral Immunity, 

Parasitic Infections, Allergy 

64–

71,73,75–79 

Th17 IL-1β, IL-6, TGF-β 

IL-23 

IL-21 

IL-17A, IL-17F, 

IL-21, IL-22, 

IL-10, IL-26 

RORC CCR6 

CCR4 

Extracellular Pathogens/Fungi, 

Autoimmunity 

85–104 

Treg TGF-β TGF-β 

IL-10 

FOXP3 - Suppression of Immunity 106–

115,117–119 

Th22 IL-6, TNF-α 

IL-23 

IL-22 

TNF-α, IL-10, IL-13 

AHR CCR4 

CCR6, CCR10 

Mucosal Barrier Maintenance, 

Wound Healing, Autoimmunity 

120–139 

Tfh IL-6, IL-27, IL-21 IL-21 BCL6 CXCR5 Humoral Immunity 140–148 

Th9 IL-4, TGF-β 

IL-21, IFN-α 

IL-9 

IL-10, IL-17 

IL-21, IL-22 

- - Anti-Parasitic Immunity, Skin 

Disorders 

149–154 
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1.2.10 - Signal 1 in CD4+ T Cell Polarisation 

While polarising cytokines play a major role in CD4+ T cell differentiation, a number 

of other factors play equally important roles. The role of signal 1 in inducing naive 

CD4+ T cell responses has previously been discussed, however this signal plays an 

additional role in determining the CD4+ T cell fate. It is the strength of signal 1 which 

affects differentiation; this can be in the form of affinity of the TCR to MHC/peptide 

complex, total number of TCRs triggered during activation, number and potency of 

APCs present, and the duration of T cell signalling160–162.  

The effects of the strength of signal 1 on CD4+ T cell differentiation can easily be 

observed on the induction of Th1 and Th2 cells. Both high doses of antigen and 

higher APC:responder ratios favour IFN-γ and Th1 induction, whereas lower 

doses/APC:responder ratios favour Th2 induction160,161. In addition, more potent 

APCs such as DCs, are able to more efficiently promote Th1 responses over less 

potent APCs such as macrophages. In addition, it has recently been demonstrated 

that lower strength T cell activation promotes Th17 responses over Th1 

responses163, and even favours inducible Tregs164. However, it is difficult to 

determine the optimal strength of stimulation for each T cell subtype from multiple 

studies, and given the number of factors which determine the strength of signal 1. 

Overall, it appears that stronger stimulations favour Th1 polarisation, whereas 

weaker stimulations favour promotion of other subsets, with very weak stimulations 

favouring T cell differentiation towards regulatory subsets.  

1.2.11 - Signal 2 in CD4+ T Cell Polarisation 

The role of co-stimulatory molecules has been accepted to play a significant role in 

the differentiation of CD4+ T cells and to affect the polarisation toward certain cell 

lineages. Much of the evidence regarding co-stimulation-mediated polarisation is 

derived from murine models, with selected studies conducted in human systems. 

While human functions will be the main topic of the discussion in this section, due to 

the limited information in human systems, relation to mouse models is necessary for 

a more complete picture. Some of the more commonly studied co-stimulatory 

molecules are discussed below. 

 1.2.11.1 - CD80/86-CD28 Pathway 

Signalling through CD28 and its interactions with CD80 and CD86 ligands has long 

been appreciated as a vital signal in inducing naive CD4+ T cell responses. A major 

result of CD28 signalling is the induction of IL-2 secretion by CD4+ T cells, aiding 
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cell survival and proliferation. A number of studies in both mouse and human 

systems have identified that signalling via CD28 can have polarising effects of CD4+ 

T cells165, promoting Th1165, Th2166, Th17167,168, or even Treg differentiation169, and 

modulating production of IFN-γ, IL-4, IL-17, IL-10 and IL-9, among others170. Indeed, 

the concentration of CD28 stimulating agents has been identified to play a role, with 

higher concentrations promoting Th1 responses and lower concentrations favouring 

Treg induction. The potency and importance of CD28 co-stimulation in humans has 

been highlighted by a clinical trial of anti-CD28 monoclonal antibody therapy, where 

the super-agonistic effects induced a massive cytokine storm in six healthy 

individuals171. The co-stimulatory molecules CD80/86 have been suggested to play 

differential roles in CD4 polarisation via interaction with CD28, with CD80 promoting 

a Th1 response and CD86 inducing a Th2 response in mice172. However, given that 

the majority of APCs often co-express both CD80 and CD86, the implications of 

these differential interactions remain unclear. The range of responses attributed to 

CD28 co-stimulation suggests this pathway may be related to a more general role in 

T cell activation than polarisation of specific T helper lineages. 

 1.2.11.2 - CD70-CD27 Pathway 

The CD70-CD27 co-stimulatory pathway has been identified to have important 

functions in generating CD4+ T cell responses. CD70 is expressed at varying levels 

on APCs, and also becomes upregulated on activated CD4+ T cells173. CD27 is 

constitutively expressed on naive CD4+ T cells. This co-stimulatory pathway 

functions to enhance T cell responses, promoting cell survival and enhancing 

effector functions, including having a qualitative role on CD4+ T cell phenotype. The 

majority of studies on the function of this pathway in CD4+ T cell polarisation have 

been conducted in mice, where CD70 ligation with CD27 has been shown to 

promote Th1 responses174,175, and inhibit Th17 type responses in vitro and in vivo176. 

This interaction sensitises differentiating cells to IL-12177, inhibits IL-17 production 

despite RORγt expression being unaffected176, and is able to induce Th1 

phenotypes in the absence of IL-12178. In humans, this effect has not been well 

studied. Limited data show that CD27 signalling can indeed promote Th1 responses 

or alternatively Th2, depending on culture conditions and other extrinsic 

factors173,179, a phenomenon which has more recently been realised in mice180. 

Indeed, more so in human systems than in mice, it appears that CD27 signalling 

provides a more 'neutral' signal for T cell activation, which enhances the signals the 

cell receives from other sources such as polarising cytokines179. Nevertheless, 
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CD70-CD27 interaction has the capability to promote CD4 responses and potentiate 

CD4+ T cell polarisation.  

 1.2.11.3 - ICOSL-ICOS Pathway 

The ICOSL (CD275) - ICOS (CD278) pathway is another co-stimulatory interaction 

studied for its role in inducing and aiding CD4+ T cell responses. ICOS is expressed 

at low levels or even absent on naive CD4+ T cells, but becomes upregulated upon 

TCR ligation and CD28 activation181. Its counterpart, ICOSL, is expressed on both 

haematopoietic and non-haematopoietic cells. Studies in murine models identified 

roles for ICOS signalling in Tfh cell development, Th2 differentiation, and most 

recently in Th17 development182. However, limited studies in human systems have 

shown markedly different mechanisms of action. Firstly, in murine systems IL-4 and 

ICOS form a positive feedback loop, with IL-4 inducing ICOS expression by CD4+ T 

cells, the ligation of which triggers increased IL-4 production182. As such, mouse Th2 

cells express higher levels of ICOS than Th1 cells. Conversely in humans, Th1 cells 

express higher levels of ICOS, which is promoted by the actions of both IL-12 and 

IL-23. 

Studies in humans have shown that ICOS signalling promotes the production of IFN- 

γ, TNF-α, IL-2, and IL-10, cytokines characteristic of a Th1 response, but not IL-4182. 

Interestingly, ICOS signalling in the absence of CD28 co-stimulation only induces 

low levels of cytokine production. More recently, a role for ICOS in promoting IL-17 

responses has been identified170,183, where IL-17A and IL-17F were increasingly 

produced by naive CD4+ T cells cultured under Th17 polarising conditions. Further 

to this, a study of ICOS-deficient patients revealed an impaired ability to mount Th1, 

Th2 and Th17 type responses in vitro184. 

 1.2.11.4 - OX40L-OX40 Pathway 

OX40 (CD134) is co-stimulatory molecule of the TNF receptor superfamily, induced 

on CD4+ T cells upon stimulation185. Its ligand, OX40L (CD252), is upregulated on 

several APC types upon activation, including DCs. Signalling via OX40 has positive 

effects on cell survival and proliferation, in addition to affecting the effector 

phenotype of CD4+ T cells. Studies in mice have revealed that signalling via the 

OX40 co-stimulatory pathway promotes the polarisation of Th2 and Th1 cells165, and 

even Th9 cells185, and inhibits the differentiation of Th17 and Treg subsets. The role 

of OX40 in promoting Th2 type-responses has been reproduced in humans, with 

recombinant OX40L186 or OX40L-expressing DCs187 promoting Th2 responses, 

acting in synergy with IL-4. This Th2 induction appears inferior to IL-12 signalling, 
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which is able to override the OX40 signalling effects. Due to this polarising ability, 

the OX40 pathway is of interest in treating human allergy. A role for OX40 signalling 

in Tfh cell differentiation and function has also been reported in humans188,189, in 

accordance with high expression levels of OX40 on Tfh cells.  

 1.2.11.5 - 4-1BBL-4-1BB Pathway 

4-1BB (CD137) and its ligand 4-1BBL (CD137L) constitute another co-stimulatory 

pathway for the induction of T cell responses. 4-1BB is expressed on activated CD4+ 

and CD8+ T cells, upregulated upon activation via the TCR, and its ligand 4-1BBL is 

expressed on a variety of APCs190. Activation of this co-stimulatory pathway in 

humans and mice causes increased T cell proliferation, cytokine production, and 

prevention of activation-induced cell death191. It is also able to reverse the anergic 

state of CD4+ T cells. Studies of this pathway in the polarisation of T cells are 

limited; in both humans and mice, promotion of Th1 responses can be 

observed190,192,193, and in mice Th2 responses are also promoted. When CD4+ T 

cells were analysed for their expression of 4-1BB in rheumatoid arthritis, increased 

levels were observed in patients over control groups, and produced increased levels 

of IFN-γ in vitro194. However, no data are available on the effects of 4-1BB on Th17 

differentiation or other lineages in humans. 

 1.2.11.6 - CD40-CD40L Pathway 

The CD40-CD40L co-stimulatory pathway is distinct from other co-stimulatory 

pathways, in that the primary direction of signalling is from the responding CD4+ T 

cell towards the APC, in contrast to the CD86/CD28, CD70/CD27, ICOSL/ICOS, 

OX40L/OX40, and 4-1BBL/4-1BB pathways discussed above. CD40 is constitutively 

expressed by APCs and becomes further upregulated upon cell activation. CD40L 

(CD154) is upregulated on CD4+ T cells upon TCR ligation and co-stimulation, 

allowing for ligation with CD40 on APCs165. This signalling via CD40 'licenses' the 

APC, enhancing expression of co-stimulatory molecules and polarising cytokines, 

allowing for a crosstalk between the APC and responder cell. This co-stimulatory 

pathway is able to promote Th1 and Th17 responses, by promoting the expression 

of polarising factors such as IL-12 and IL-6 by APCs195,196.  

 1.2.11.7 - Limitations of Studying Co-stimulatory Pathways in Human 

        Cells 

Whilst studies of the role of co-stimulatory pathways in human CD4+ T cell 

polarisation give valuable insight into their functions, there are several limitations. 
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Firstly, most co-stimulatory pathways are bidirectional in that co-stimulation 

promotes T cell responses but can also have significant effects on the APC as well. 

This concept is referred to as reverse co-stimulation. It is difficult to distinguish the 

direct effects on polarisation from indirect effects, such as a promotion of polarising 

cytokine secretion by APCs, which in turn affects CD4+ T cell polarisation. In 

addition, most experimental studies focus on a single co-stimulatory pathway in 

isolation, or in combination with a limited repertoire of polarising cytokines. However, 

it has been extensively observed that co-stimulatory molecules display differential 

polarising effects depending on the cytokine context. This means that the lineages 

promoted by certain co-stimulatory pathways may differ in the presence of 

alternative stimuli. Lastly, studies of multiple co-stimulatory molecules in 

combination may identify different effects to the study of single molecules, in that 

some co-stimulatory pathways may be dominant over others. For these reasons, a 

number of studies focus on the role of polarising cytokines and co-stimulatory 

molecules in the context of individual APC subtypes.  

1.2.12 - The Role of APCs in CD4+ T Cell Polarisation 

Given the large number of professional and non-professional APCs identified in 

humans and their distinct and overlapping roles in polarising CD4+ T cell responses, 

each cell type will be discussed in turn. 

Dendritic cells are the prototypic APC studied for the induction of T cell responses. A 

number of subtypes of DCs have been identified in humans197, including in vitro-

generated monocyte-derived DCs that are thought to closely resemble inflammatory 

DCs in vivo, blood-derived myeloid and plasmacytoid DCs, and skin-derived dermal 

DCs and Langerhans cells, among others. DC subtypes have been shown to 

possess a natural ability to promote certain CD4+ T cell lineages over others. For 

example, human CD14+ DCs have been shown to favour the induction of Tfh cells, 

aiding B cell responses, whereas Langerhans cells favour the promotion of Th2 type 

responses198. Another subset, CD141+ DCs, have also been identified to promote 

Th2 responses199. Further studies have identified distinct populations of skin DCs in 

the polarisation of differential Th17 or Th22 populations in human CD4+ T cells200–

202. Similar DC populations with differential effects in initiating adaptive immunity can 

be observed in other peripheral locations, and subsets of DCs which promote Treg 

or Th17 differentiation have also been identified203,204. 

In addition to this natural polarising ability of different subsets, DCs display an 

adaptive nature, allowing for induction of different T helper lineages, depending on 
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their recognition of distinct pathogenic components. As discussed previously, DCs 

can recognise pathogens via distinct sets of pathogen recognition receptors such as 

TLRs, with different pathogens expressing ligands for different sets of PRRs205. The 

recognition of different ligands directs the expression of co-stimulatory molecules 

and polarising cytokines. In this manner, it has been shown that E. coli stimulation of 

TLR4 on DCs directs them to polarise Th1 type responses via IL-12 secretion, 

whereas activating DCs through TLR2 induces the production of IL-10 by DCs, 

favouring a Th2 response206. Other studies have identified peptidoglycan, another 

TLR2 ligand, in its ability to favour Th17 induction via the production of IL-6, IL-1β 

and IL-2395. CD40 ligation on monocyte-derived DCs has been reported to favour IL-

21 induction in naive CD4+ T cells144. Further to this, differing subsets of DCs 

express varying combinations of pattern recognition receptors, allowing for subset 

specific recognition of PRR ligands205, and subsequent CD4+ T cell polarisation. 

In addition to DCs, monocytes and macrophages have both been shown to induce 

and polarise CD4+ T cell responses. Both cellular types have been shown to induce 

Th1, Th2, or Th17 type responses depending on the cellular context and 

location95,160,207,208. In this way, they are able to adapt to different stimulations in the 

same way as DCs. 

Finally, B cells are also able to stimulate CD4+ T cell responses, but their effects on 

polarisation have not been well studied. Limited studies in humans have shown the 

polarisation of Th2 type responses209,210, by direct or indirect means, and potentially 

in the promotion of Tfh cell responses. It is unclear if B cells may play a role in 

polarisation or inhibition of alternate T cell lineages.  

Cells which do not constitute classical APCs can also play roles in directing CD4+ T 

cell responses after stimulation by professional APCs. These non-classical APCs 

perform this role in the periphery. Basophils have been shown to promote Th2 type 

responses211, whereas mast cells and mesothelial cells have been identified to 

promote IL-22 responses in certain contexts and disease states212,213. Numerous 

other cell types are able to influence the adaptive immune response, including 

neutrophils214. 

1.2.13 - CD8+ T Cell Polarisation 

In addition to the polarisation of CD4+ T cells, CD8+ T cells are also able to assume 

polarised states, phenotypically mirroring the T helper lineages in terms of cytokine 

repertoires, in addition to maintaining cytotoxic potential. Tc1 cells, characterised by 

IFN-γ production, are most populous in humans215, whereas Tc2 and Tc17 cells are 
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minor populations occurring in vivo216. The differentiation requirements of Tc cells 

are similar to those required for T helper lineages. Further Tc subsets such as Tc22 

cells producing IL-22 have also been identified in humans217. The full extent of Tc 

subsets in infectious and disease scenarios is just beginning to be appreciated. 

1.3 - Human γδ T cells 

There exist three main lymphocyte lineages in all jawed vertebrates including 

humans; B cells, αβ T cells, and γδ T cells218. Conventional αβ T cells, arguably the 

best studied lymphocyte subset, are defined by their expression of a TCR comprised 

of Vα and Vβ subunits, and form the most populous T lymphocytes in humans and 

other jawed vertebrates, the majority being MHC/peptide restricted. However, 

subsequently two more TCR chains were identified, and designated as the Vγ and 

Vδ chains219–221. Thus, γδ T cells were identified as a third subset of lymphocytes by 

the discovery of this 'second' TCR. In this way it became apparent that T 

lymphocytes could express either an αβ TCR or a γδ TCR, the latter becoming 

referred to as γδ T cells. Intriguingly, most of these cells appear to be not restricted 

by MHC/peptide complexes like their αβ T cell counterparts. 

1.3.1 - The γδ TCR 

One of the foundations of immunology is that the adaptive immune system, 

comprised primarily of T and B lymphocytes, is believed to express a multitude of 

different cellular receptors to allow for the recognition of all possible antigens. The 

process of somatic DNA recombination allows for the generation of a vast diversity 

in the T cell and B cell receptors expressed by the relevant cells, from a very limited 

number of germline-encoded gene segments222. For αβ TCRs, differential V, D and 

J segments combine to give rise to diversity, in addition to somatic mutation of such 

gene segments. In the same manner, the Vγ and Vδ genes are capable of the 

same, if not more, diversity in the generation of γδ TCRs223,224, due to their ability to 

utilise multiple tandem copies of D segments. Despite this ability, only a small 

number of conserved γδ TCRs are observed in humans and other organisms, 

composed of distinct pairs of Vγ and Vδ genes, and the full diversity of these genes 

is never fully realised in vivo. 

In humans, there are three main Vδ segments utilised in TCRs, denoted Vδ1, Vδ2, 

and Vδ3218,225. Other less common segments exist which have both Vδ and Vα 

designation, due to the position of the Vδ locus within the Vα locus. With regards to 

Vγ gene segments, seven are commonly incorporated into human γδ TCRs; Vγ2, 
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Vγ3, Vγ4, Vγ5, Vγ8, Vγ9, and Vγ11. Other Vγ segments in humans are not utilised 

in rearranged TCRs and appear to represent pseudogenes, in contrast to other 

higher primates where these segments are functional226. A striking pairing bias of Vγ 

and Vδ segments is observed in humans and other species, and specific segment 

combinations forming TCRs often denote differential anatomical locations and 

function.  

1.3.2 - Human γδ T Cell Subsets 

A number of distinct subsets of γδ T cells have been described in humans, and 

these subsets do not appear to correlate with those identified in mice, with respect 

to TCR structure, ligand recognition, anatomical location and functional abilities. As 

such, this section will discuss the more common human γδ T cell subsets only. 

Given the restricted nature of γδ TCRs, it has become apparent that characterising 

these cells based on their Vδ chain is an efficient way of distinguishing between 

subsets. A summary of human γδ T cell subset anatomical location is displayed in 

Figure 1.1. 

 

Figure 1.1 - Anatomical Locations of human γδ T Cell Subsets. Figure adapted from 

Rajoriya et al, 2014
227
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 1.3.2.1 -Vδ1+ T Cells 

A major subset of human γδ T cells expresses a TCR comprised of a Vδ1 chain, 

paired with a number of different Vγ chains. Vδ1 T cells are a minor population of 

CD3+ T cells in adult human peripheral blood, decreasing from approximately 50% 

of γδ T cells at birth to <1% of CD3+ T cells in adults228. In contrast to the low 

number of circulating Vδ1 T cells, this subtype is enriched in the peripheral tissues, 

such as the skin and intestine229.  

Vδ1+ T cells as an overall subset are capable of detecting a number of different 

ligands, due to the number of Vγ chains expressed in Vδ1+ TCRs218. Only very few 

ligands for Vδ1+ T cells have been identified, which all appear to comprise members 

of the MHC superfamily; distinct from the classical MHC molecules but referred to as 

MHC-like230. The MHC-like molecule CD1c, which is capable of expressing various 

endogenous and exogenous lipids, was the first γδ T cell ligand indentified in 

humans231, recognised by a significant proportion of Vδ1+ T cells. A significant 

number of Vδ1+ cells are also reactive to CD1d molecules presenting lipids such as 

αGal-Cer232, and CD1a molecules. While CD1 molecule restriction is apparent in 

some human Vδ1+ T cells, a large proportion do not exhibit this same restriction, but 

instead show reactivity to tumour cells233, CMV/HIV-infected cells234, and certain 

bacterial and fungal species235, via recognition of unknown molecules.  

Functionally, Vδ1+ T cells are capable of rapid secretion of cytokines upon 

activation, activate DCs for antigen presentation, and possess cytotoxic ability 

against a number of cellular targets236. A range of studies have explored the role of 

Vδ1+ T cells in IL-17 production and IL-17-mediated disorders such as 

autoimmunity. Further to this, Vδ1+ T cells have been reported to express regulatory 

characteristics to suppress immunity237.  

 1.3.2.2 - Vδ3+ T Cells 

A minor cell population in humans, the majority of non-Vδ1/Vδ2 T cells express the 

Vδ3 chain, in combination with various Vγ chains236,238. Relatively little is known 

about this subset, which is enriched in healthy livers239, peripheral blood of CMV 

infected-transplant patients234, and HIV infection240. The ligand restriction of Vδ3+ T 

cells is unclear, but reactivity to CD1d molecules has been observed albeit in an α-

GalCer independent manner238. Rapid cytokine production including Th1, Th2, and 

Th17-related cytokines has been reported, as well as interaction with other cell 

types such as DCs. The full extent of these cells in infection and immune 

pathologies has yet to be identified.  
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 1.3.2.3 - Vδ2+ T Cells 

The most commonly studied γδ T cells in humans express the Vδ2 TCR chain, 

which combines with the Vγ9 chain to form the Vγ9Vδ2 TCR218. This particular 

subset is most prominent in adult peripheral blood, comprising approximately 5% of 

CD3+ T cells, but rapidly expand to higher numbers in certain infections. Vγ9Vδ2 T 

cells can also be found in peripheral tissues such as gut, liver, skin, peritoneal cavity 

and mucosal sites, albeit at reduced frequencies241,242. The Vγ9 and Vδ2 gene 

segments are conserved throughout primate evolution, and as such Vγ9Vδ2 T cells 

are found in all higher primates243. In contrast, this cellular subset is not present in 

rodents. Recent genomic analyses have indicated that other non-primate, non-

rodent species such as alpacas may also possess Vγ9Vδ2 T cells, suggesting that 

this cell subset emerged much earlier during mammalian evolution and was 

eventually lost in rodents244. The ligand recognition and functional role of Vγ9Vδ2 T 

cells is discussed in detail below. 

1.3.3 - Ligand Recognition by the Vγ9Vδ2 TCR 

 1.3.3.1 - Ligands 

The identity of the ligand for the Vγ9Vδ2 TCR was first suggested by the 

observation that Vγ9Vδ2 T cells are able to respond to Mycobacterium species in 

vitro, and that their numbers are expanded in the peripheral blood of infected 

patients and in disease lesions245–247. In contrast to αβ T cells, γδ T cells were 

observed to respond to mycobacterial fractions which were resistant to protease 

action, indicating a ligand of non-peptide nature. Later studies identified that the 

antigen present in Mycobacterium preparations were small molecules comprised of 

carbohydrate and phosphate248,249. Given this identification, synthetic 

'phosphoantigens' were tested which were recognised by Vγ9Vδ2 T cells, including 

isopentenyl pyrophosphate (IPP), which represents the first natural Vγ9Vδ2 T cell 

ligand identified250,251. However, IPP and its isomer DMAPP did not induce such 

pronounced expansion of Vγ9Vδ2 T cells as did mycobacterial preparations. Indeed, 

the concentrations of IPP and DMAPP recovered from bacterial preparations was 

insufficient to be attributed with the activation of Vγ9Vδ2 T cells252. Subsequent 

studies utilising genetically modified E. coli deficient in enzymes or components of 

the isoprenoid biosynthesis pathways identified that a precursor of IPP, (E)-4-

hydroxy-3-methyl-2-butenyl pyrophosphate (HMB-PP), was a high affinity ligand for 

the Vγ9Vδ2 T cells, exhibiting up to 10,000x more bioactivity than its downstream 

products, and induced sustained TCR signalling253. 
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Two pathways exist in nature for the generation of IPP, one of which relies on HMB-

PP and another which is independent of this molecule. Isoprenoids are essential in 

metabolism, and as a group include molecules such as sterols, ubiquinones, and 

carotenoids253. These isoprenoids all derive from IPP (and DMAPP), which itself 

derives from two mutually exclusive biosynthesis pathways; the mevalonate 

pathway, present in all eukaryotes and in bacteria such as staphylococci and 

streptococci, and the non-mevalonate (MEP) pathway, utilised by bacteria such as 

Mycobacterium tuberculosis, E. coli, Salmonella, Mycobacteria, and Yersinia, as 

well as parasites such as Plasmodium and Toxoplasma. Bacterial species such as 

Staphylococcus, which do not utilise the MEP pathway or HMB-PP, fail to induce 

Vγ9Vδ2 T cell activation in the same manner.  

Due to its low bioactivity, IPP at normal steady state concentrations potentially does 

not induce a response in Vγ9Vδ2 T cells. However, in certain scenarios such as in 

cancerous cells, increased expression of a rate-limiting enzyme upstream of IPP, 3-

hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, has been postulated 

to lead to increased accumulation of IPP in affected cells, accounting for one 

mechanism of Vγ9Vδ2 T cell reactivity against tumour cells254. Further to this, the 

enzyme farnesyl diphosphonate synthase (FPPS), responsible for utilising IPP units 

for the synthesis of higher isoprenoids, has been found to be inhibited by 

aminobisphosphonates such as pamidronate or zoledronate, allowing for 

accumulation of IPP in affected cells and potential recognition by Vγ9Vδ2 T cells255–

257. 

Other ligands aside from isoprenoid metabolites have also been described in the 

induction of Vγ9Vδ2 T cell responses. Vγ9Vδ2 T cells express the NK receptor 

NKG2D alongside other NK receptors to allow detection of stress-ligands such as 

MICA/B and transformed cells258.  

 1.3.3.2 - Presentation of Ligands 

Since the discovery of the Vγ9Vδ2 T cell subset, and the realisation that these cells 

are not restricted by classical MHC antigen presenting molecules, the question has 

remained as to whether Vγ9Vδ2 T cell ligands require presentation. From the 

earliest studies it was clear that optimal Vγ9Vδ2 T cell activation required the 

presence of feeder cells or APCs259,260, and where Vγ9Vδ2 T cells were activated 

alone with antigen they required cell-cell contact. This suggested the presence of a 

presenting molecule capable of displaying Vγ9Vδ2 T cell ligands for TCR ligation.  
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The recent discovery of butyrophilin 3A (BTN3A/CD277) has provided a long-sought 

answer to this question236. Initial identification of the potential role of BTN3A resulted 

from the ability of antibodies directed against CD277 to activate Vγ9Vδ2 T cells in a 

similar manner to HMB-PP and IPP261,262. In humans, BTN3A proteins are members 

of the butyrophilin family, and BTN3A itself features three family members; BTN3A1, 

BTN3A2, and BTN3A3, which possess extracellular domains structurally 

homologous to the B7 superfamily, which includes CD80 and CD86218. As such, 

BTN3A represents a group of unconventional presenting molecules for both HMB-

PP and IPP, though it does not act in the same manner as other classical and non-

classical antigen presenting molecules.  

Two models have been proposed to describe the mechanism by which BTN3A and 

HMB-PP/IPP combine to stimulate Vγ9Vδ2 T cells. The first suggests BTN3A 

molecules are able to bind and display antigen on the cell surface, much in the 

same way as MHC display peptides263, although this model is not supported by 

much of the evidence in the literature. The second and more accepted model, 

proposes that the intracellular B30.2 domain of the BTN3A1 molecule acts as a 

phosphoantigen sensor, and direct binding both of HMB-PP and, with a much lower 

affinity, of IPP to B30.2 has been observed264,265. Given this intracellular binding of 

phosphoantigen, current models propose that binding of B30.2 induces a 

conformational change in the BTN3A molecule itself, allowing for activation of 

Vγ9Vδ2 T cells262,266. Some groups have observed direct binding of BTN3A with the 

Vγ9Vδ2 TCR, whereas others report an unknown molecule may also be involved in 

this interaction218. Despite the complete process being unclear, it is certain that 

BTN3A molecules are essential for phosphoantigen activation of Vγ9Vδ2 T cells. 

BTN3A molecules themselves are expressed by a wide range of cells of 

haematopoietic and non-haematopoietic origin265, providing multiple opportunities for 

phosphoantigen presentation and Vγ9Vδ2 T cell activation. 

1.3.4 - Vγ9Vδ2 T cell Memory Subsets 

Although usually described as innate immune cells, γδ T cells expressing the 

Vγ9Vδ2 TCR have been proposed to possess a form of immunological memory, 

characteristically a hallmark of adaptive immune cells. The first evidence of this was 

in a study of Mycobacterium tuberculosis infection in macaques as a model of 

Vγ9Vδ2 T cell responses267,268. Primary responses were observed to BCG in naive 

animals, and subsequent recall responses could be observed upon re-immunisation, 

as evidence by a greater magnitude and speed of response.  
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Following the identification of memory subsets in CD8+ and CD4+ αβ T cells, 

Vγ9Vδ2 T cell memory subsets were also identified in adult peripheral blood269. 

Instead of the conventional CD45/CCR7 memory markers to distinguish between 

subtypes, Vγ9Vδ2 T cells are instead divided by the expression of CD45 and 

CD27270. Naive cells exhibit a CD45RA+CD27+ phenotype, central memory cells lose 

CD45RA expression to become CD45RA-CD27+, effector memory cells are 

CD45RA-CD27-, and terminally differentiated display a CD45RA+CD27- phenotype. 

These subsets respond differently to antigenic stimulation; naive cells proliferate but 

do not produce any cytokines and require higher antigenic concentrations to 

respond. Similarly, central memory cells proliferate well, albeit at lower stimulations 

than are required for naive cells. Effector memory cells comprise the main cytokine 

producing subset, whilst exhibiting reduced proliferative ability. Terminally 

differentiated cells appear to be potent cytolytic cells, with proliferation and cytokine 

production levels being low but expression of perforin and granulysin being highest 

in this subset. As with conventional T cells, Vγ9Vδ2 T cells progressing from naive 

to central memory to effector memory to terminally differentiated cells displayed 

progressively decreasing telomere length. Further differentiation between the 

effector memory subset has been identified based on the expression of FcγRIII 

(CD16)271, with the CD16− subset producing high levels of cytokines and expressing 

low levels of killer receptors, and vice versa for the CD16+ cells.  

1.3.5 - Control of Vγ9Vδ2 T cell responses  

Akin to conventional T cells, Vγ9Vδ2 T cell responses are not purely controlled by 

TCR ligation. Co-stimulatory molecules and cytokines have both been shown to play 

important roles in generating optimal Vγ9Vδ2 T cell immunity.  

 1.3.5.1 - Co-stimulation 

While the roles of co-stimulatory molecules in induction of CD4+ and CD8+ T cell 

responses have been thoroughly investigated, the knowledge of such molecules in 

the induction of Vγ9Vδ2 T cell responses is much more limited. Vγ9Vδ2 T cells do 

indeed express a range of co-stimulatory molecules, including CD28, CD27, ICOS, 

and OX40, on subsets of resting and activated cells272,273. CD28 and CD27 are both 

expressed on resting Vγ9Vδ2 T cells of certain memory subsets, and CD28 in 

particular is downregulated upon activation. Both CD28 and CD27 co-stimulation 

have been shown to promote proliferation and survival of Vγ9Vδ2 T cells upon TCR 

ligation, whereas ICOS and OX40 have not been observed in the same role. In 

addition, CD27 co-stimulation promotes the production of IFN-γ by Vγ9Vδ2 T cells, 
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imbuing the cells with a Th1 bias274. With the activation of Vγ9Vδ2 T cells dependent 

on BTN3A molecules, which are expressed by both APCs and non-APCs, it is 

unclear whether co-stimulation is provided by the activating cell in all circumstances 

in vivo, and whether Vγ9Vδ2 T cells are able to respond to antigen in the absence of 

co-stimulation. The observation that Vγ9Vδ2 T cells upregulate CD80/86 and CD70 

upon activation272 may allow for Vγ9Vδ2 T cell populations to provide their own co-

stimulatory signals via CD28 and CD27 if needed. 

 1.3.5.2 - Cytokines 

Cytokines play a crucial role in the generation and maintenance of T cell responses 

in general275. The group of cytokines whose receptors all possess the common γ-

chain, namely IL-2, IL-4, IL-7, IL-15, IL-21, and IL-9, have grown to represent a 

fundamental family which control the maintenance and survival of T cell populations, 

including Vγ9Vδ2 T cells. IL-2, produced by T cells and DCs, is a T cell growth 

factor which inhibits apoptosis and promotes proliferation, as well as promoting 

cytolytic activity. IL-4, produced by Th2 cells, mast cells and basophils, favours Th2-

type immunity and antibody class switching. IL-7 is secreted by stromal cells, 

epithelial cells, and fibroblasts, and is crucial for development of T cells as well as 

their homeostatic proliferation and survival. IL-9 is produced by Th9 cells and exerts 

its effects via activation of epithelial cells and B cells, among others, and potentially 

acts as a late stage T cell growth factor. IL-15, produced by DCs, monocytes, and 

epithelial cells, plays roles in T cell homeostasis, survival an proliferation. Lastly, IL-

21 is generated by CD4+ T cell subsets and promotes B cell responses as well as 

acting as a T cell growth factor alongside IL-2 and IL-15.  

In terms of Vγ9Vδ2 T cell responses, it has been observed that many of the 

common γ-chain cytokines exert differential effects on Vγ9Vδ2 T cells in terms of 

effector responses, and even promote the function of specific memory subsets. IL-2, 

utilised in the majority of Vγ9Vδ2 T cells studies, promotes Vγ9Vδ2 T cell activation, 

proliferation, cytokine production, and cytolytic capacity276. In addition, IL-2 favours 

the induction of a Th1-like phenotype, promoting the production of IFN-γ. The IL-2 

receptor is minimally expressed on naive cells but becomes upregulated as cells 

progress to central memory and effector memory stages, indicating its importance in 

effector responses277. Similarly, IL-15 induces proliferation, IFN-γ production and 

cytotoxic molecule expression in Vγ9Vδ2 T cells278, despite being generally 

regarded as a homeostatic cytokine. Further to this, IL-15 favours the proliferation 

and function of effector memory subsets, on which the IL-15 receptor expression is 
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highest277. Interestingly, the IL-7 receptor is predominantly expressed on naive cells 

and central memory cells, with lower expression on effector memory cells, and as 

such favours the proliferation of naive and central memory cells. In terms of 

functionality, IL-7 favours proliferation but is limited in its ability to promote IFN-γ 

secretion and cytotoxicity. Further studies have identified IL-7 as able to promote IL-

17 production by Vγ9Vδ2 T cells279. Lastly, IL-21 treatment of Vγ9Vδ2 T cells in vitro 

induces limited proliferation of Vγ9Vδ2 T cells but also promotes the expression of 

Tfh-like molecules by Vγ9Vδ2 T cells280. As such, the common γ-chain cytokines 

represent one mechanism by which Vγ9Vδ2 T cell responses can be regulated. 

1.3.6 - Vγ9Vδ2 T Cell Function 

The discovery of the Vγ9Vδ2 TCR ligands has allowed for significant study of the 

roles of Vγ9Vδ2 T cells in human immunity. Vγ9Vδ2 T cells are rapidly activated 

upon TCR ligation and function to produce high levels of varying cytokines, exhibit 

cytotoxic potential, and interact with many immune cell types to exert their anti-

microbial and anti-tumour effects. These rapid functions of Vγ9Vδ2 T cells in 

addition to their ability for immunological memory has blurred the line between the 

innate and adaptive response. Myeloid cells generally display innate characteristics, 

whereas lymphocytes display classic adaptive features; Vγ9Vδ2 T cells possess 

aspects of both. A summary of Vγ9Vδ2 T cell functions is displayed in Figure 1.2. 

 

 

Figure 1.2 - Functions of Vγ9Vδ2 T cells. Figure adapted from Vantourout and Hayday, 

2013
230

. 
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 1.3.6.1 - Cytokine production 

In a similar manner to CD4+ and CD8+ T cells, Vγ9Vδ2 T cells exhibit plasticity with 

regards to their cytokine profiles produced upon activation281. Indeed, Vγ9Vδ2 T 

cells can phenotypically resemble Th1, Th2, Th17, Treg and Tfh cells under certain 

conditions. It is unclear whether particular subsets of Vγ9Vδ2 T cells are responsible 

for each effector function, or if Vγ9Vδ2 T cells are capable of true plasticity, with 

evidence for both possibilities in the literature. Each of these phenotypes is 

discussed below. 

 1.3.6.2 - Th1-like γδ T Cells 

Vγ9Vδ2 T cells by default assume a Th1-like phenotype; upon stimulation with 

HMB-PP in vitro, significant levels of IFN-γ are produced, alongside TNF-α, LT-α, 

and GM-CSF282,283. In fact, the kinetics of IFN-γ production by Vγ9Vδ2 T cells is 

increased compared with that observed in CD4+ and CD8+ T cell responses284, 

highlighting Vγ9Vδ2 T cells as an important source of Th1 cytokines. The IFN-γ 

producing phenotype is significantly promoted by IL-2, which also favours the 

production of several chemokines such as RANTES and MIP-1α285. This Th1-like 

phenotype is also promoted by the Th1 polarising cytokine, IL-12, by IL-15, and by 

type 1 IFN. This natural tendency for IFN-γ production is dependent on TBX21 

expression, and cells often express the chemokine receptor CXCR3 on the cell 

surface. Due to this functional bias towards IFN-γ production, Vγ9Vδ2 T cells 

characteristically mediate immunity in a similar manner to Th1 cells, as discussed 

previously.  

 1.3.6.3 - Th2-like γδ T Cells 

Vγ9Vδ2 T cells are also able to assume a Th2-like phenotype, characterised by 

secretion of IL-4. Reflective of Th2 cell differentiation, treatment of freshly isolated 

Vγ9Vδ2 T cells with IL-4 allows for IL-4 production by the Vγ9Vδ2 T cells 

themselves281–283. Interestingly, production of other Th2-related cytokines IL-5 and 

IL-13 are not detected in Th2-like γδ T cell cultures, and instead are more readily 

found in cultures treated with IL-12 or IL-2282. IL-4 expression by Vγ9Vδ2 T cells 

requires the expression of GATA3, although expression is also detected in IL-2 

treated Vγ9Vδ2 T cells282. In addition to IL-4 production, IL-4 treated Vγ9Vδ2 T cells 

upregulated expression of CD27 and the B cell maturation protein CD269, which 

interacts with the B cell activating factor CD257. While Vγ9Vδ2 T cells readily 

produce IFN-γ within 24 hours of activation, the optimal production of IL-4 appears 
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to require longer periods of IL-4 exposure to polarise the response and overcome 

the natural Th1 bias283.  

 1.3.6.4 - Th17-like γδ T Cells 

Given the importance of IL-17 in many diseases, cellular subsets which produce IL-

17 have been of great interest. As such, the identification that Vγ9Vδ2 T cells are 

able to produce IL-17 has garnered much interest in this cellular subset and in γδ T 

cells in general. However, unlike murine γδ T cells286, Vγ9Vδ2 T cells do not readily 

produce IL-17 ex vivo, with less than 1% IL-17+ cells reported in most studies287,288, 

in contrast to Th17 memory cells which can be detected in healthy adult blood. 

Instead, the presence of Th17 polarising cytokines in various combinations is 

required over a long period of culture to induce significant levels of IL-17 in Vγ9Vδ2 

T cells289,290. Also, as previously mentioned, IL-7 has been reported to promote IL-17 

production by Vγ9Vδ2 T cells derived from cord blood279. In adult blood, almost all 

IL-17+ Vγ9Vδ2 T cells are also positive for IFN-γ. Despite the limited evidence for 

naturally occurring IL-17+ Vγ9Vδ2 T cells in peripheral blood, according to one study 

these cells can be detected in certain peripheral tissues and disease states291, 

suggesting tissue specific factors in the differentiation of Th17-like γδ T cells. IL-22 

producing Vγ9Vδ2 T cell populations have been identified as well289.  

 1.3.6.5 - Tfh-like γδ T Cells 

Vγ9Vδ2 T cells have also been reported to exhibit T follicular helper phenotypes. 

The induction of this phenotype is reliant on the presence of IL-21, which supports 

Vγ9Vδ2 T cell proliferation but not the production of pro-inflammatory cytokines 

including IFN-γ and TNF-α282. Instead, IL-21 promotes the expression of CD40L, 

ICOS, and CXCR5 for migration to the B cell compartment of lymph nodes and 

potentiation of B cell responses280,292. IL-21 also maintains CD62L expression 

following HMB-PP stimulation282. Vγ9Vδ2 T cells exhibiting a follicular helper 

phenotype can produce CXCL13 to attract CXCR5-expressing B cells and CD4+ T 

cells. Interestingly, and distinct from CD4+ conventional Tfh cells, Tfh-like γδ T cells 

do not produce IL-21, but instead express IL-4 and IL-10. One report indicated that 

CXCR5+ Vγ9Vδ2 T cells can be found in adult peripheral blood293, although those 

findings could not be confirmed by our own group241,280.  

 1.3.6.6 - Treg-like γδ T Cells 

In addition to the various pro-inflammatory effects of Vγ9Vδ2 T cells, reports have 

also suggested potential regulatory characteristics. FOXP3 is induced in Vγ9Vδ2 T 
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cells following HMB-PP stimulation, but full suppressive potential was dependent on 

the combination of IL-15 and TGF-β294–296. Treg-like γδ T cells are able to suppress 

CD4+ T cell responses in vitro, and limited evidence in vivo suggests that Vγ9Vδ2 T 

cells may utilise their suppressive abilities in certain disease conditions297,298.  

 1.3.6.7 - Cytotoxicity 

In addition to the secretion of a wide range of immunomodulatory cytokines, Vγ9Vδ2 

T cells are potent cytotoxic cells. Vγ9Vδ2 T cells utilise both the death 

ligand/receptor pathways, such as FasL/FasR to induce apoptosis, and the 

molecules perforin and granzyme to induce target cell lysis. Target cells include 

bacterial or virally infected cells and tumour cells299–301. The cytotoxic capacity in 

Vγ9Vδ2 T cells can be initiated via accumulation of IPP in transformed cells, or 

alternatively through receptors such as NKG2D302, independently of TCR signalling. 

The expression of CD56 and/or CD16 appears to distinguish Vγ9Vδ2 T cells with 

cytotoxic activity303. Due to their functional capacity as potent anti-tumour cells, 

Vγ9Vδ2 T cells are of particular interest for tumour immunotherapies256,257,304.  

1.3.7 - Interactions with Other Immune Cell Subsets 

Vγ9Vδ2 T cells exert a multitude of immunomodulatory effects by direct interaction 

with other cells of the immune system. Extensive research has shown that Vγ9Vδ2 

T cells are able to interact with DCs to induce their optimal maturation. DCs typically 

depend on the recognition of danger signals for maturation, but this process can 

also be controlled by inflammatory factors such as IFN-γ and TNF-α. As Vγ9Vδ2 T 

cells are significant sources of these cytokines, they are able to induce maturation of 

DCs upon activation. Consequently, Vγ9Vδ2 T cells induce the upregulation of APC 

markers, co-stimulatory molecules, a switch in chemokine receptor profiles, and 

secretion of polarising cytokines in DC populations236.  

Vγ9Vδ2 T cells also interact with other innate immune cells. Interaction with 

monocytes leads to the differentiation of inflammatory DCs, alongside improving 

monocyte survival and activation207. Interaction with neutrophils leads to similar 

effects on neutrophil survival and effector function305, and even induces populations 

of neutrophils capable of antigen uptake and presentation306. These interactions 

also provide positive effects to the Vγ9Vδ2 T cells, with both monocytes and 

neutrophils constituting efficient inducers of Vγ9Vδ2 T cell activation by presentation 

of HMB-PP via BTN3A and uptake and degradation of HMB-PP expressing 

organisms.  
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Lastly, due to their ability to assume follicular helper roles, Vγ9Vδ2 T cells are able 

to provide help to B cells. Via expression of CD40L, ICOS, IL-4 and IL-10, and 

CXCL13, Vγ9Vδ2 T cells recruit both B cells and Tfh cells and enhance generation 

of high affinity antibodies and class switching236.  

1.4 - γδ T Cells as APCs 

1.4.1 - Professional vs. Non-professional APCs 

Since their discovery, DCs have long been considered the prototype antigen 

presenting cell307, potent in their ability to induce αβ T cell responses308. DCs, along 

with macrophages and B cells, have been termed 'professional APCs' of the 

immune system, a category which denotes the possession of all necessary factors 

to mount adaptive immune responses against pathogenic antigens. A wide range of 

other cell types, both haematopoietic and non-haematopoietic in origin, have also 

been reported to be capable of antigen presentation, but due to the lack of one or 

more aspects of professional APCs are referred to as non-professional, or atypical, 

APCs309.  

The ability to categorise a cell as a professional APC depends on the expression of 

a number of fundamental characteristics. The first and foremost is the ability to 

express MHC class II molecules on the cell surface, alongside a repertoire of co-

stimulatory molecules. The ability to take up, process and present antigens on MHC 

class I and II molecules, expression of pattern recognition receptors, and the ability 

to alter migratory potential upon activation to home to the secondary lymphoid 

organs are all necessary aspects of professional APCs. Lastly, and potentially most 

importantly, is the ability to stimulate naive CD4+ and CD8+ αβ T cell responses in 

the process of generating adaptive immunity309.  

Dendritic cells, alongside B cells and macrophages, fulfil the relevant criteria 

necessary to be classified as professional APCs. Atypical APCs, however, are able 

to exhibit a limited range of APC characteristics, mainly the expression of MHC 

class II. Cells that have been reported to fill this role are numerous, and include 

haematopoietic cells such as mast cells310,311, neutrophils214,312,313, innate lymphoid 

cells314–316,and even CD4+ αβ T cells themselves317,318. Non-haematopoietic cells 

complement this repertoire of atypical APCs, including endothelial cells319, epithelial 

cells320 and lymph node stromal cells321. The main functional constraint which 

prevents these cells being termed professional APCs and covers most, if not all, of 

the atypical APCs is the lack of ability to stimulate naive αβ T cell responses. The 
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more likely role of these cells is in the modulation of responses already generated 

by one or more professional APCs, perhaps maintaining local immune responses in 

the peripheral tissues in a context-dependent manner.  

Vγ9Vδ2 T cells are the newest addition to the list of cells with antigen presenting 

capabilities, which appear to possess all the necessary factors to be termed a 

professional APC.  

1.4.2 - Identification of γδ T-APCs - Switch in Migratory Profile 

The unexpected identification that human γδ T cells could act as APCs was first 

evidenced by the discovery that the migratory profile of Vγ9Vδ2 T cells, in terms of 

expression of chemokine receptors, could switch shortly after activation241. 

Circulating Vγ9Vδ2 T cells express chemokine receptors necessary for rapid 

recruitment to peripheral inflammatory sites, including CCR5 and CXCR3. Upon 

activation however, a shift in the migratory profile of Vγ9Vδ2 T cells occurs, from 

CCR5+ (inflammatory site-homing) to CCR7+ (lymph node-homing). This shift and 

upregulation of CCR7 is rapid, occurs within 48 hours of stimulation, and is 

accompanied by changes in the migratory response to relevant chemokines. The 

cell adhesion molecule L-selectin, or CD62L, was also observed to be upregulated 

on activated Vγ9Vδ2 T cells322. The regulation of chemokine receptors by Vγ9Vδ2T 

cells is in direct contrast to that exhibited by CD4+ and CD8+ αβ T cells. The 

acquisition of lymph node homing potential was reflected in the ability to identify 

human Vγ9Vδ2 T cells in secondary lymphoid tissues such as those from 

gastrointestinal sites, tonsils, and spleen. These cells could be found in both the T 

cell and B cell zones. Low level CCR7 expression by peripheral blood Vγ9Vδ2 T 

cells could also be observed in a study of healthy and immunocompromised 

individuals323. The ability of Vγ9Vδ2 T cells to acquire a lymph node-homing 

phenotype indicated the potential APC role of these cells in generating or being 

involved in adaptive immunity.   

1.4.3 - Expression of APC Markers 

Subsequent analysis of Vγ9Vδ2 T cells shortly after activation identified the 

expression of antigen presenting molecules322. Vγ9Vδ2 T cells from peripheral 

blood, and also from tonsils, substantially upregulate the expression of HLA-DR, the 

antigen-presenting MHC class II molecule, in combination with a wide range of 

classic co-stimulatory molecules. These include, but are not limited to, CD80, CD86, 

and CD40, and expression of these molecules is completely absent on resting 

Vγ9Vδ2 T cells. The repertoire of APC markers is almost indistinguishable from that 
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displayed by monocyte-derived DCs, and is consistent across a range of Vγ9Vδ2 T 

cell stimulants. Interestingly, the expression of HLA-DR is the result of de novo 

production, in contrast to cell surface relocation of preformed molecules as seen 

with DCs. In addition to expression of MHC class II and co-stimulatory molecules, 

the maturation marker CD83, usually upregulated on mature DCs, can be observed 

on the surface of γδ T-APCs. Several cellular adhesion molecules including CD11a, 

CD18, CD50, and CD54 are all expressed by γδ T-APCs, indicating the potential to 

form tight interactions with other immune cells. Other studies have indentified the 

same APC phenotype of activated Vγ9Vδ2 T cells324,325. 

1.4.4 - Uptake, Processing and Presentation of Extracellular Antigens 

In addition to expressing an APC phenotype and lymph node homing receptors 

following activation, Vγ9Vδ2 T cells have also been shown to be able to take up, 

process and present antigens. The ability to take up exogenous material from the 

cellular microenvironment and process this material into peptides capable of being 

presented on MHC class I and II molecules is a hallmark of professional APCs. 

Vγ9Vδ2 T cells appear capable of two forms of endocytosis, the first being 

macropinocytosis, for the uptake of smaller particulate antigen and cellular debris326. 

Whereas DCs in an immature state exhibit high levels of endocytosis which 

decreases upon activation, Vγ9Vδ2 T cells appear to be less efficient in this 

process, showing diminished function more similar to that shown by B cells and 

monocytes. A second mechanism of Vγ9Vδ2 T cell antigen uptake is phagocytosis, 

allowing for the uptake of larger particles such as 1 µm synthetic beads or E. coli 

cells327. This phagocytic ability is dependent on the expression of the Fc receptor 

CD16. Interestingly, parallels could be drawn between phagocytosis performed by 

Vγ9Vδ2 T cells and mo-DCs, in that CD16 expression by resting Vγ9Vδ2 T cells is 

downregulated upon activation, in a similar manner to the reduction in phagocytic 

ability of DCs upon maturation. Vγ9Vδ2 T cells have also be shown to be able to kill 

and take up fragments of tumour cells for the presentation of tumour associated 

antigens328. This process was significantly improved by opsonisation of target cells 

with antibodies, in a mechanism the authors termed licensing.  

Once an antigen has been taken up, it is processed via the proteasome and 

displayed on either MHC class II molecules for presentation to CD4+ αβ T cells, or 

cross-presented for presentation on MHC class I molecules to stimulate CD8+ αβ T 

cells. γδ T-APCs are capable of both of these pathways, and have been shown to 

take up and process antigens such as the complex protein mixture Mycobacterium 
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tuberculosis-purified protein derivative (PPD)329, the influenza virus-encoded matrix 

protein M1, and even debris from influenza-infected cells326, for presentation to αβ T 

cells, thus stimulating proliferative responses. Interestingly, γδ T-APCs were shown 

to outperform monocyte-derived DCs and even conventional and plasmacytoid DCs 

at the cross-presentation of soluble antigen, and to be as capable as DCs of 

presenting antigen to CD4+ T cells329.  

1.4.5 - Induction of CD8+ αβ T Cell Responses 

The stimulation of CD8+ T cells by professional APCs allows for the generation of 

cytotoxic T lymphocyte responses. In co-culture mixed lymphocyte reaction systems 

with allogeneic naive CD8+ T cells, γδ T-APCs match or even exceed the magnitude 

of responses induced by monocyte-derived DCs322 in identical experiments, 

whereas activated αβ T cells are unable to perform a similar APC role under the 

same conditions. The CD8+ responding cells from γδ T-APC co-cultures displayed 

cytotoxic capability, perforin expression, IFN-γ production, and migratory 

reprogramming evidenced by the loss of CCR7 expression, all factors important in 

the generation of cytotoxic T lymphocytes (CTLs). Several other experimental 

systems have shown the ability of γδ T-APCs to induce CD8+ T cell responses, 

including use of the M1 flu peptide to induce M1-specific CD8+ T cell responses, 

where γδ T-APCs outperform their professional APC counterparts329. Further studies 

have examined the ability of Vγ9Vδ2 T cells expanded in the presence of HMB-PP 

or IPP, to function as professional APCs325. These cells maintain several of their 

APC characteristics over the period of culture, and efficiently induce CD8+ T cell 

responses to PPD and M1 flu peptides. These cells are currently being examined for 

their potential use as cancer vaccines330–332,304. The ability to generate high numbers 

of γδ T-APCs compared with DCs, their potent APC potential, and also ability to kill 

tumour cells themselves, make these cells a viable alternative to DC based 

vaccines. 

1.4.6 - Induction of CD4+ αβ T Cell Responses 

γδ T-APCs are also able to stimulate naive and memory CD4+ T cell responses in 

multiple co-culture systems322, mixed lymphocyte reactions with naive CD4+ T cells, 

autologous APC assays with naive CD4+ T cells using the bacterial superantigen 

TSST-1 as a surrogate antigen, and APC assays using either the single chain 

protein tetanus toxoid or Mycobacterium tuberculosis PPD. In terms of responder 

CD4+ T cell proliferation, responses induced by γδ T-APCs are almost 

indistinguishable from those induced by monocyte-derived DCs, even at 
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APC:responder rations of 1:104 cells. These responses were confirmed to be 

dependent on cell-contact and MHC class II. As such, γδ T-APCs are potent in their 

ability to induce significant proliferative responses in naive and memory CD4+ T 

cells. Further studies have found that expanded Vγ9Vδ2 T cells can efficiently 

stimulate CD4+ T cells to PPD in the same manner325, and in comparison with B 

cells showed significantly higher induction of CD4+ T cell responses324.  

Upon examining the effector phenotype of naive CD4+ T cells following stimulation 

by γδ T-APCs, strong Th1 or Th2 responses could be induced by varying the 

APC:responder ratios in the co-culture. High numbers of γδ T-APCs to responders 

favoured Th1 type responses, characterised by the intracellular production of IFN-γ, 

whereas lower γδ T-APC numbers promoted Th2 type responses, characterised by 

the intracellular expression of IL-4. The full extent of the γδ T-APC potential to 

polarise other T helper subsets however has yet to be investigated fully.  

1.4.7 - Induction of iNKT Cell Responses 

An interesting ability of γδ T-APCs is their ability to induce invariant natural killer T 

cell responses333. iNKT cells are an immunoregulatory T cell subset which play a 

role in initiating and facilitating anti-tumour immune responses. These cells are 

restricted by the CD1d antigen presenting molecule, which combines with the 

synthetic glycolipid α-galactosylceramide (α-GalCer). It has been shown that γδ T-

APCs present α-GalCer on CD1d molecules and activate iNKT cell responses, 

however this expression of CD1d was not the result of de novo synthesis, as in the 

case of HLA-DR. Instead, trogocytosis, the transfer of membrane molecules 

between cells for presentation on their cell surface, was required for CD1d 

expression and α-GalCer presentation on γδ T-APCs, which was obtained from 

feeder cells. Indeed, trogocytosis upon Vγ9Vδ2 T cell interaction with cancer cells 

has also been reported334, however this phenomenon was not predictive of 

functional outcomes, and due to the inherent ability of γδ T-APCs to express all 

relevant markers and possess distinct antigen uptake and processing pathways, this 

indicates that the APC phenotype and function of Vγ9Vδ2T cells is not simply the 

result of membrane exchange. 

1.4.8 - γδ T-APC Function in vivo 

An APC function of γδ T cells has been reported in a number of species, including 

cows335, pigs336, and mice337, though these populations did not resemble 

professional APCs as human γδ T-APCs do. However, due to the lack of 

corresponding Vγ9Vδ2 T cells in animal models outside of higher primates, the in 
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vivo study of γδ T-APCs is restricted by access to human tissues and lymph nodes. 

Nevertheless, there is a small but slowly expanding body of evidence that suggests 

that human Vγ9Vδ2T cells are indeed able to function as APCs in vivo, 

predominantly in inflammatory scenarios. Expression of HLA-DR on Vγ9Vδ2 T cells 

has been reported in several inflammatory conditions338–340, as well as in patients 

receiving zoledronate treatment for prostate cancer256, breast cancer257, and 

osteoporosis255. However, the functional relevance of this HLA-DR expression was 

not determined in these studies.  

A study into the role of human γδ T cells in rheumatoid arthritis (RA) revealed a 

potential role of γδ T-APCs in the pathogenesis of disease. RA is a common, 

systemic autoimmune disease that predominantly affects the synovial joints. A 

number of studies have identified the presence and importance of Vγ9Vδ2 T cells in 

RA341,342, and Vγ9Vδ2 T cells isolated from the synovial fluid of patients expressed 

the APC markers HLA-DR and CD86, and were capable of antigen uptake and 

presentation to induce CD4+ T cell responses324. Further to this, γδ T cells isolated 

from the peripheral blood of gastric cancer patients were able to exhibit APC 

phenotypes upon stimulation with tumour cells343 

1.4.9 - Continuing Questions 

The identification that Vγ9Vδ2 T cells acquire the ability to migrate to the lymph 

nodes shortly after activation and develop a professional APC phenotype in vitro 

suggests that these cells may play a role in adaptive immune responses and interact 

with B and T cells in the lymph nodes. Of note, γδ T cells resemble DCs 

morphologically upon activation, developing numerous dendrite-like protrusions, 

which are absent on their resting counterparts322. Indeed, the fact that Vγ9Vδ2 T 

cells exhibit an innate-like rapid response to inflammatory stimuli, then subsequently 

alter their phenotype and function to migrate to the lymph nodes supports this 

potential novel role in directing adaptive responses. This process is likely to occur 

before an effective conventional T cell response, induced by DCs for example, 

would have time to be mounted, due to the involvement of a number of time 

consuming steps. Other potential advantages that γδ T-APCs may have over DCs 

are that γδ T cells outnumber conventional DCs in the peripheral blood and mature 

into fully professional APCs much more quickly. The ability to continually survey the 

environment for potential antigens and decide whether to actively respond or 

tolerate antigenic challenges appears to be restricted mainly to DCs and it does not 

appear that γδ T cells would be able to fill this role, due to the requirement of 
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activation before antigen presenting capabilities are established. Further to this, it is 

unlikely for the same reason than γδ T-APCs would be involved in generating 

tolerance to specific antigens, their main role being induction of inflammatory 

responses.  

Despite the mounting evidence supporting the ability of human Vγ9Vδ2 T cells to 

function as fully competent APCs, there are a number of unanswered questions 

regarding their regulation and context dependent roles. It is currently uncertain in 

which locations γδ T cells may function as APCs in vivo. Limited evidence highlights 

the synovial fluid in RA and in certain tumours, and potential sites would include the 

peripheral tissues, draining lymph nodes, and mucosa, where microbial encounter is 

possible. It is also unclear whether Vγ9Vδ2 T cells are universally capable of APC 

characteristics, or whether particular subsets perform different roles, with the 

regulation of APC function over, for example, killing function still unclear. Other 

human γδ T cell subsets may also potentially feature as APCs, indicated by the 

observation that Vδ1+ T cells also upregulate CCR7 upon activation241. Lastly, γδ T 

cells are able to stimulate naive CD4+ T cell responses and polarise responding 

cells towards Th1 and Th2 phenotypes. However, given the recent identification of a 

number of alternative T helper subtypes such as Th17, Th22 and Tregs, it is 

unknown whether γδ T-APCs can in fact promote these subsets over others. Further 

to this, it is unclear whether γδ T-APCs are able to adapt to the cellular 

microenvironment, as DCs do, and whether any adaptation would have a 'knock-on' 

effect on subsequent naive CD4+ T cell polarisation. What is clear is that the 

investigation of γδ T-APCs in humans is about 30 years behind that of DCs, 

providing much potential to discover the niche where γδ T cells perform professional 

antigen presentation in vivo. 
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1.5 - Hypothesis 

Human γδ T-APCs are able to polarise naive CD4+ T cell responses to different T 

helper lineages depending on the Vγ9Vδ2 T cell microenvironment.  

1.6 - Aims 

 To establish the conditions in which Vγ9Vδ2 T cells acquire an APC 

phenotype and relevant functional capabilities. 

 To investigate the polarisation of naive and memory CD4+ T cells in 

response to stimulation with γδ T-APCs. 

 To determine which polarising molecules expressed by γδ T-APCs are 

important in determining the outcome of CD4+ T cell polarisation. 

 To relate the specific CD4+ T cell subsets induced by γδ T-APCs to a specific 

body compartment or disease scenario. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



51 
 

Chapter 2 - Materials and Methods 

2.1 - Cell Culture Media and Buffers 

2.1.1 - Complete RPMI Medium 

The cell culture medium used throughout this study, unless otherwise indicated, was 

RPMI-1640 medium (Invitrogen) supplemented with 10% foetal calf serum (FCS; 

Invitrogen), 50 mg/ml penicillin/streptomycin (Invitrogen), 2 mM L-glutamine 

(Invitrogen), 1% sodium pyruvate (Invitrogen) and 100 µM non-essential amino 

acids (NEAA; Invitrogen).  

2.1.2 - Complete IMDM Medium 

Where indicated, IMDM medium (Invitrogen) supplemented with 10% foetal calf 

serum (FCS; Invitrogen), 50 mg/ml penicillin/streptomycin (Invitrogen), 2 mM L-

glutamine (Invitrogen), 1% sodium pyruvate (Invitrogen) and 100 µM non-essential 

amino acids (NEAA; Invitrogen) was used. 

2.1.3 - Fluorescence Activated Cell Sorting (FACS) buffer 

FACS buffer comprised of sterile phosphate-buffered saline (PBS) with 2% FCS 

(Invitrogen) and 0.02% sodium azide, passed through a 0.22 µm filter prior to use.  

2.1.4 - Magnetic-activated Cell Sorting (MACS) buffer 

MACS buffer comprised of sterile phosphate-buffered saline (PBS) with 2% FCS 

(Invitrogen) and 5 mM EDTA, passed through a 0.22 µm filter prior to use.  

2.2 - Isolation of Immune Effector Cells 

2.2.1 - Healthy/Patient Cohorts 

Healthy volunteers were recruited locally for donations of venous blood. 

Patients with a diagnosis of inflammatory bowel disease were selected based on all 

disease subsets, who were not currently being treated with azathioprine therapy or 

had alternatively been off azathioprine treatment for >6 months when samples were 

collected. Patients were recruited at The Royal London Hospital/Queen Mary 

University of London, during IBD clinics by Dr James Lindsay.  
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Human mucosal tissue was obtained from patients undergoing surgical resection for 

non-inflammatory disorders. Mucosal tissue was derived either from the terminal 

ileum or from the colonic mucosa. 

2.2.2 - Isolation of Peripheral Blood Mononuclear Cells (PBMCs) 

Healthy PBMCs were isolated from venous blood collected locally from healthy 

volunteers. Venous blood was heparinised with anti-coagulant buffer, consisting of 

20 U/ml heparin and 15 mM EDTA (Fisher Scientific UK, Ltd), to prevent 

coagulation. Blood was subsequently separated using Lymphoprep density gradient 

separation media (Axis-Shield) by layering blood on top of Lymphoprep, then 

centrifuging at 1680 rpm (687 xg), at 18°C for 20 minutes, without brake. 

Mononuclear cells within the buffy coat layer were collected and washed three times 

with sterile PBS for the subsequent purification of immune cell subsets.  

Alternatively, healthy PBMCs were isolated from blood bags supplied by the Welsh 

Blood Service (Velindre NHS Trust). Blood bags were diluted at 1:2 ratio with sterile 

PBS, and separated similarly using Lymphoprep.  

PBMCs from patients diagnosed with Inflammatory Bowel Diseases were isolated in 

the same manner as with healthy volunteers.  

2.2.2 - Purification of Vγ9Vδ2 T cells from PBMC 

Vγ9+ or Vδ2+ T cells (>99%) were purified from bulk PBMCs by incubation with 

monoclonal antibodies (mAb) directed against the Vγ9 or Vδ2 TCR chain, 

conjugated with PE-Cy5 (Immu360;Beckman-Coulter) or PE (B6.1; BD Biosciences) 

respectively, and incubated for 20 minutes at 4°C (positive selection). Cells were 

subsequently washed with MACS buffer and labelled with anti-PE microbeads 

(Miltenyi Biotec) for 20 minutes at 4°C. Dual-labelled cells were separated from 

PBMCs using a midi-MACS system and two LS columns (Purity after one column 

>95%, purity after two columns >99%). Purity of Vγ9+ or Vδ2+ T cells was assessed 

prior to all assays to ensure minimal contamination.  

2.2.3 - Purification of CD14+ Monocytes from PBMC 

CD14+ monocytes were purified from PBMC by incubating cells with anti-CD14 

Microbeads (Miltenyi Biotec) for 20 minutes at 4°C (positive selection). Labelled 

cells were separated over one LS column, and purity was assessed prior to use in 

assays (>98.7% purity). 
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2.2.4 - Purification of CD4+ T cells from PBMC 

CD4+ T cells were purified from PBMC via negative selection, using the CD4+ T cell 

Isolation Kit (Miltenyi Biotec), as per the manufacturer's instructions. Labelled PBMC 

populations were passed over one LS column and labelled cells were removed from 

CD4+ T cell populations (CD4+ T cell purity >95%). 

In some assays, where indicated, enriched naive CD4+ T cells were used. For 

enrichment of naive CD4+ T cells (CD4+CD45RO−), total CD4+ T cells isolated 

previously were labelled with anti-CD45RO microbeads (Miltenyi Biotec) at 4°C for 

20 minutes. Following labelling, cells were passed over one LS column, and 

enriched naive CD4+ T cells were obtained by negative selection (>95% 

CD4+CD45RA+). 

In assays where highly purified naive CD4+ T cells were used, bulk CD4+ T cells 

were labelled with mAbs to CD4, CD45RA, and CCR7, labelled with BV421 (RPA-

T4; BD Biosciences), APC (HI100; BD Biosciences), andPE-Cy7 (G043H7; 

BioLegend), respectively. Cells were labelled at 4°C for 20 minutes. Cells were 

subsequently washed and sorted based on a CD4+CD45RA+CCR7+ phenotype 

using a BD FACSAria II (BD Biosciences) to high purities (>99.4%). Similarly, highly 

purified memory CD4+ T cells, consisting of TCM, TEM, and TEMRA cells, were sorted 

from the same populations based on non-naive cells (CD45RA−CCR7−) to high 

purities (>99%). The same method was also used to isolate naive CD8+ T cells 

(CD8+CD45RA+CCR7+). 

2.2.5 - Isolation of Vγ9Vδ2 T cells from Intestinal Tissue Samples 

Human mucosal tissue from terminal ileum and colonic mucosa were obtained from 

patients undergoing surgical resection. To obtain Lamina Propria Mononuclear Cells 

(LPMCs) from human intestinal tissue, material was collected into cold, Dutch-

Modified RPMI-1640 medium (Sigma-Aldrich). Mucus and faeces were removed in 

calcium and magnesium-free HBSS (Sigma-Aldrich) containing 1 mM DTT (Sigma-

Aldrich). Material was subsequently incubated in complete RPMI medium in 24-well 

plates for 3 days, to allow leukocyte egress from the mucosa. Cultures were 

supplemented with or without 10 nM HMB-PP, in the presence of 50 U/ml IL-2 and 

20 ng/ml IL-15. LPMCs released from intestinal tissue were passed through a cell 

strainer242. Optimisation of this isolation method can be found in previous studies344. 

Work was conducted in collaboration with Dr Neil McCarthy at QMUL.   
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LPMCs were labelled with mAbs directed against CD3 and Vδ2, conjugated with 

BV421 (UCHT1; BioLegend) or PE (B6.1; BD Biosciences), respectively, at 4°C for 

20 minutes. Cells were subsequently washed and sorted based on a CD3+Vδ2+ 

phenotype using a BD FACSAria II (BD Biosciences) to high purities (>99%). 

2.3 - Functional Assays 

2.3.1 - Monocyte-derived Dendritic Cell Generation 

CD14+ monocytes purified from PBMC were cultured for 3-4 days in complete RPMI, 

in the presence of 50 ng/ml GM-CSF (Miltenyi Biotec) and 50 ng/ml IL-4 (Miltenyi 

Biotec). At day 3/4, cultures were supplemented with fresh RPMI containing GM-

CSF and IL-4. Monocyte-derived DCs were phenotyped by flow cytometry at day 5/6 

and used in functional assays. 

2.3.2 - Maturation of Dendritic Cells and Monocytes 

Monocyte-derived DCs (immature DCs; iDCs) were cultured for 24 hours in the 

presence of 100 ng/ml lipopolysaccharide (LPS; Sigma Aldrich) or 1 µg/ml 

peptidoglycan (PGN; Sigma Aldrich). Mature DCs (mDCs) were phenotyped by flow 

cytometry and used in functional assays. Freshly isolated monocytes were 

stimulated in the same manner. 

2.3.3 - Generation of γδ T-APCs 

Freshly isolated CD14+ monocytes were irradiated at 50 Gy, and subsequently 

plated into 96-well round-bottom plates as feeder cells. Freshly isolated, autologous 

Vγ9Vδ2 T cells were plated into wells containing monocytes at a 1:10 

monocyte:Vγ9Vδ2 T cell ratio, unless otherwise stated. Cultures were treated with 

10 nM or 1 nM HMB-PP (a kind gift from H. Jomaa, Giessen, Germany) alone, or in 

combination with one of the following cytokines; 100 U/ml IL-2 (Proleukin, Chiron), 

20 ng/ml IL-15 (Miltenyi Biotec), 20 ng/ml IL-21 (Zymogenetics), 20 ng/ml IL-7 

(Peprotech), 20 ng/ml IL-4 (Miltenyi Biotec). Cells were cultured for 3 days in 

complete RPMI. At day 3, Vγ9Vδ2 T cells were phenotyped and purity was 

assessed. If purity was below 99%, Vγ9Vδ2 T cells were further purified from 

contaminating cells using identical methods to initial cell isolation. Cells were 

collected and subsequently irradiated at 12 Gy, or left non-irradiated where stated in 

experimental protocols. Vγ9Vδ2 T cells were then utilised for assays or analysis.  
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2.3.4 - Cellular Proliferation Assays 

For the measurement of cell proliferation, relevant cells (Vγ9Vδ2 T cells, naive CD4+ 

T cells, etc.) were stained with 1 µM CFSE (Life Technologies) for 5 minutes at 

room temperature, in complete RPMI. Cells were subsequently washed and used in 

assays. Cell proliferation was assessed at day 5 unless otherwise stated, by 

measuring CFSE dilution in the FITC channel by flow cytometry.     

2.3.5 - Cellular Supernatant Generation 

Cellular supernatants were generated for the measurement of secreted cytokines by 

ELISA. Vγ9Vδ2 T cell supernatants were obtained after the 3-day culture period of 

γδT-APC generation (described above). Supernatants were removed from cultures, 

centrifuged to ensure no cell contamination, and subsequently stored at −20°C until 

analysis. Similarly, DC and monocyte supernatants were generated by stimulating 

cells over a 3-day culture period with either 100 ng/ml LPS, 1 µg/ml PGN, or left 

unstimulated. Supernatants were collected in the same manner.  

Polarised CD4+ T cell supernatants were generated over a 24 hour culture period. 

Cultures were counted using a haemocytometer and re-plated at 50,000 cells per 

well prior to stimulation. Cells were stimulated with 10 ng/ml PMA (Sigma Aldrich) 

and 1 µg/ml ionomycin (Sigma Aldrich), and supernatants were collected as 

previously described.   

To obtain supernatants from intestinal tissue cells, tissue samples from colon or 

terminal ileum were prepared as previously stated and plated into 24-well plates in 

complete RPMI. Cultures were treated with 50 U/ml IL-2 and 20 ng/ml IL-15, in the 

presence or absence of 10nM HMB-PP. After a culture period of 3 days, 

supernatants were obtained and stored at −20°C until analysis. 

2.3.6 - Vγ9Vδ2 T cell Antigen Uptake 

Vγ9Vδ2 T cells were stimulated in an identical manner to generation of γδT-APCs. 

At the relevant timepoint (1, 24, 72 and 120 hours after initial stimulation), cells were 

separated into triplicate wells, with two conditions incubated at 37°C and one 

condition incubated at 4°C for 2 hours prior to assay. FITC-conjugated BSA (1 

mg/ml; Sigma Aldrich) was added to cultures at the relevant temperatures, or as 

control no BSA-FITC was added. After 1 hour incubation, cultures were washed 

three times with complete RPMI, stained with extracellular markers, and assessed 

for fluorescence in the FITC channel by flow cytometry.  
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2.3.7 - CD4+ T cell Polarisation 

Freshly isolated CD4+ T cells were cultured in flat-bottom 96-well plates which had 

been pre-coated with anti-CD3 monoclonal antibodies (OKT3 functional grade, 

eBioscience) for >2 hours prior to CD4+ T cell addition. 50,000 CD4+ T cells were 

plated out per well in complete RPMI, unless otherwise stated. Subsequently, 

different combinations of cytokines and monoclonal antibodies were added to CD4+ 

T cell cultures, as described in Table 2.1. CD4+ T cells were cultured for 5 days 

(analysis of proliferation), or for 6 days (cytokine expression/transcription factor 

expression) upon which cultures were transferred to round-bottom 96-well plates 

and supplemented with fresh RPMI containing 50 U/ml IL-2 and 20 ng/ml IL-23 

(Miltenyi Biotec), unless otherwise stated. Cells were cultured until day 9, at which 

timepoint cells were analysed.  

For analysis of intracellular cytokines, CD4+ T cell cultures were restimulated with 10 

ng/ml PMA and 1 µg/ml ionomycin for 5 hours at 37°C, in complete RPMI. After 1 

hour of the 5 hour incubation period, 10 µg/ml brefeldin A (BioLegend) was added to 

cultures, unless otherwise stated. Following the 5 hour incubation, cultures were 

stained for flow cytometric analysis.  

For analysis of secreted cytokines, cells were counted and restimulated as 

previously described.  

For analysis of transcription factor expression by PCR, cultures were counted and 

RNA was extracted from cells directly.  

 

 

 

 

 

 

 

 

 

 



57 
 

Table 2.1 - Polarising factors used in the polarisation of CD4
+
 T cells 

Polarising 

Condition 

Polarising  

Factor 

Concentration Company 

All Anti-CD3 2.5 µg/ml 

(Th1 - 5 µg/ml), 

eBioscience 

All Anti-CD28 1 µg/ml eBioscience 

Th1 IL-12 20 ng/ml Miltenyi Biotec 

Th1 IL-2 100 U/ml Chiron 

Th2 IL-4 20 ng/ml Miltenyi Biotec 

Th17 IL-1β 20 ng/ml Miltenyi Biotec 

Th17/Th22 IL-6 50 ng/ml Miltenyi Biotec 

Th17/Treg TGFβ 2 ng/ml Pharmingen 

Th22 TNFα 20 ng/ml Miltenyi Biotec 

Th2/Th17/Th22/Treg Anti-IFNγ 10 µg/ml BioLegend 

Th1/Th17/Th22/Treg Anti-IL-4 10 µg/ml BioLegend 

- sCD70 2 µg/ml Gift from Jannie 

Borst, 

Netherlands 

Cancer Institute 

- Anti-ICOS 10 µg/ml eBioscience 

2.3.8 - Mixed Lymphocyte Reactions 

γδ T-APCs were generated as previously stated and either irradiated or non-

irradiated prior to assays. γδ T-APCs were plated out in 96 well round-bottom plates 

at either 50,000, 5000, or 500 cells per well, depending on the ratio of 

APC:responder. Subsequently, allogeneic CD4+ T cell responders were added to γδ 

T-APC cultures at 50,000 cells per well. Co-cultures were incubated for either 5 

days (proliferation analysis) or 9 days (cytokine/transcription factor expression). For 

analysis of intracellular cytokines, co-cultures were restimulated with 

PMA/ionomycin for 5 hours as previously stated. Cultures were then stained with 

fluorochrome conjugated monoclonal antibodies for analysis by flow cytometry. For 

analysis of cytokine secretion, cultures were counted and re-plated at 50,000 cells 

per well, then stimulated for 24 hours with PMA/Ionomycin as previously stated. For 

analysis of transcription factor expression, CD4+ T cell responders were purified 

from surviving γδ T-APC contaminants by FACS based on CD4 expression to 

>99.1% purity. Following purification, RNA was extracted directly from cultures. 
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MLRs of CD4+ T cell responders with monocytes or dendritic cells were conducted 

in an identical manner. 

For assays where blocking of co-stimulatory molecules was conducted, γδ T-APCs 

were cultured with blocking monoclonal antibodies for >2 hours prior to addition of 

responder cells. Following this incubation, γδ T-APCs were washed three times, 

before CD4+ T cell responder cells were added to cultures. For assays where 

blockade of cytokines was conducted, blocking antibodies were added directly to co-

cultures at day 0 of MLR co-culture assays. Technical replicates were conducted in 

duplicate.  
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Figure 2.1 -  Overall Protocol for MLR Setup. 

2.3.9 - TSST-1 Assays 

γδ T-APCs were generated as previously stated, and CD4+ T cell populations were 

isolated to high purities from autologous donors. γδ T-APCs were plated into 96 well 

round-bottom plates at 5,000 cells per well, and either 10 ng/ml or 1 ng/ml TSST-1 

(Toxin Technology) was added to γδ T-APC cultures for 1 hour. Cultures were 

subsequently washed three times in complete RPMI prior to addition of CD4+ T cell 

responders at 50,000 cells per well. Co-cultures were then cultured in the same 

manner as MLRs for a period of 9 days. Percentages of CD3+CD4+Vβ2+ T cells and 

cytokine expression were determined by flow cytometry. Technical replicates were 

conducted in duplicate. 

2.3.10 - PPD Assays 

γδ T-APCs were generated as previously stated, and CD4+ T cell populations were 

isolated to high purities from autologous, BCG-vaccinated, healthy donors. At 48 

hours into γδ T-APC generation, cells were pulsed with 1 µg/ml PPD (Sigma Aldrich) 

for the final 24 hours of APC generation, to allow for antigen uptake. Similarly, iDCs 

and monocytes were stimulated with LPS or PGN for 24 hours in combination with 1 

µg/ml PPD. Following 24 hour culture with PPD, APCs were washed three times 

with complete RPMI. Subsequently, CD4+ T cells were added to APC cultures at a 

1:10 APC:responder ratio and cultured for a period of 5 or 9 days in the same 
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manner as MLRs described previously. Technical replicates were conducted in 

duplicate.  

2.3.11 - Expansion of Vγ9Vδ2 T cells 

Vγ9Vδ2 T cells were expanded from PBMCs of healthy donors using 1 µM 

zoledronate (Zometa; Novartis) for 14 days of culture, as per previously published 

protocols325. Zoledronate in complete RPMI was added to total PBMC cultures at 

day 0. At day 5 of culture, cells were supplemented with fresh complete RPMI 

containing either 100 U/ml IL-2, 20 ng/ml IL-15, 20 ng/ml IL-21, or 20 ng/ml IL-7. 

Similarly, cytokines in fresh RPMI were added to cultures every 2-3 days, or when 

media had turned acidic. After 14 days of culture, expanded Vγ9Vδ2 T cells (<90% 

purity) were purified from contaminating cells using an identical method to Vγ9Vδ2 T 

cell isolation from PBMC (>99% purity), described previously. Expanded cells were 

phenotyped, and subsequently either stimulated with 1 nM HMB-PP or left 

unstimulated for use in assays.  

2.3.12 - Migration Assays 

For migration assays, γδ T-APCs were generated as previously described. 

Transwell plates (HTS transwell 96 well permeable supports with 5 µm pores plates; 

Corning) were utilised for all migration assays, and 100,000 cells were used per 

well. Chemotaxis buffer comprised of RPMI supplemented with 5% human serum 

albumin and 1 M HEPES (Sigma Aldrich) was used throughout the assay. A series 

of 10-fold serial dilutions were prepared for CXCL10, CCL2, and CCL25, with a 

maximum concentration of 1 µg/ml. Alternatively, blank chemotaxis buffer was used 

as a negative control. Chemokines were added to lower chambers at different 

concentrations, and γδ T-APCs were added to upper chambers. Chemotaxis assays 

were run for 3 hours. Cells, which had migrated to the lower chamber, were 

collected and stained for phenotypic markers and assessed by flow cytometry. 

AccuCheck counting beads (ThermoFisher) were used to calculate the percentage 

of cells that had migrated. Technical replicates were conducted in duplicate. 

2.4 - Flow Cytometry 

2.4.1 - Staining Protocol 

For all flow cytometric measurements, cells were firstly stained with Zombie Aqua 

Fixable Viability Kit (BioLegend) to distinguish between live and dead cells in the 

analysis. Live/Dead stain was diluted at 1:40 dilution, and 3 µl of diluted stain were 
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added to cells in 96-well, round-bottom plates. Cells were incubated with stain for 20 

minutes at room temperature. Subsequently, cells were washed with FACS buffer, 

and treated with intravenous immunoglobulin (IvIg; Kiovig; Baxter) at a 1:1000 

dilution to block Fc receptors on cells, for 15 minutes at room temperature.  

For extracellular staining of antigens, Live/Dead stained cells were incubated for 20 

minutes on ice, with panels of monoclonal antibodies conjugated with different 

fluorochromes. A complete list of all antibodies and appropriate dilutions can be 

found in Table 2.2. For intracellular staining of antigens, extracellularly-stained cells 

were incubated with Fixation Buffer (eBioscience) for 15 minutes at room 

temperature. Cells were subsequently incubated with Permeabilisation Buffer 

(eBioscience) and incubated with fluorochrome-conjugated monoclonal antibodies 

diluted in permeabilisation buffer, for 20 minutes at room temperature according to 

the manufacturer's instructions. In all cases, cells were washed with FACS buffer 

between each stage of staining. Cellular samples were acquired using an 8-colour 

BD FACSCanto II (BD Biosciences). 
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2.4.2 - Table of Antibodies 

Table 2.2 - Antibodies used in this study 

Antigen Clone Conjugate Dilution Company Application 

CD3 UCHT1 BV421 1/100 BioLegend Flow Cytometry 

CD3 SK7 FITC 1/30 BD Bioscience Flow Cytometry 

CD4 RPA-T4 APC-H7 1/80 BD Bioscience Flow Cytometry 

CD4 RPA-T4 BV421 1/100 BD Bioscience Flow Cytometry 

CD8 HIT8a PE 1/20 BD Bioscience Flow Cytometry 

CD14 M5E2 BV421 1/40 BioLegend Flow Cytometry 

CD25 BC96 APC 1/20 eBioscience Flow Cytometry 

CD27 M-T271 FITC 1/20 BD Bioscience Flow Cytometry 

CD40 mAB89 PE 1/20 Beckman 

Coulter 

Flow Cytometry 

CD45RA HI100 APC 1/10 BD Bioscience Flow Cytometry 

CD45RO UCHL1 FITC 1/20 BD Bioscience Flow Cytometry 

CD70 113-16 FITC 1/20 BioLegend Flow Cytometry 

CD80 2D10.4 FITC 1/10 eBioscience Flow Cytometry 

CD83 HB15c PE-Cy7 1/100 BD Bioscience Flow Cytometry 

CD86 IT2.2 APC 1/20 BioLegend Flow Cytometry 

CD275 

(ICOSL) 

2D3 PE 1/20 BioLegend Flow Cytometry 

CD275 

(ICOSL) 

MIH12 PE 1/20 eBioscience Flow Cytometry 

CCR2 K036C2 APC 1/20 BioLegend Flow Cytometry 

CCR4 1G1 PE-Cy7 1/20 LeukoSite Flow Cytometry 

CCR6 11A9 PE 1/20 BD Bioscience Flow Cytometry 

CCR7 G043H7 PE-Cy7 1/20 BioLegend Flow Cytometry 

CCR9 L053E8 AF647 1/30 BioLegend Flow Cytometry 

CCR10 314305 APC 1/40 R&D Flow Cytometry 

CXCR3 49801.11

1 

FITC 1/10 R&D Flow Cytometry 

TCR Vβ2 MPB2D5 FITC 1/40 Beckman 

Coulter 

Flow Cytometry 

TCRVδ2 B6.1 PE 1/50 BD Bioscience Flow Cytometry 

TCRVγ9 Immu360 PE-Cy5 1/400 Beckman Flow Cytometry 
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Coulter 

HLA-DR L243 APC-H7 1/40 BD Bioscience Flow Cytometry 

β7 

Integrin 

FIB504 APC 1/20 BioLegend Flow Cytometry 

IFN-γ 4S.B3 BV421 1/50 BioLegend Flow Cytometry 

IL-4 8D4-8 PE 1/10 BD Bioscience Flow Cytometry 

IL-9 MH9A4 AF647 1/20 BioLegend Flow Cytometry 

IL-10 JES3-

9D7 

PE-Cy7 1/20 BioLegend Flow Cytometry 

IL-17 64DEC17 APC 1/40 eBioscience Flow Cytometry 

IL-22 22URTI PE-Cy7 1/40 eBioscience Flow Cytometry 

CD3 OKT3 Purified 1-5 

µg/ml 

eBioscience Functional 

Assays 

CD11a TS1-22 Purified 10 µg/ml Gift from 

Ruggero Pardi, 

Milan 

Blocking Assays 

CD18 TS1-18 Purified 10 µg/ml Gift from 

Ruggero Pardi, 

Milan 

Blocking Assays 

CD28 CD28.2 Purified 1 µg/ml eBioscience Functional 

Assays 

CD48 TU145 Purified 10 µg/ml BD Bioscience Blocking Assays 

CD70 Ki-24 Purified 10 µg/ml BD Bioscience Blocking Assays 

CD80 2D10.4 Purified 10 µg/ml BD Bioscience Blocking Assays 

CD86 IT2.2 Purified 10 µg/ml BD Bioscience Blocking Assays 

CD134 

(OX40L) 

MAB105

41 

Purified 10 µg/ml R&D Blocking Assays 

CD137 

(4-1BBL) 

H41BB-

M127 

Purified 10 µg/ml BD Bioscience Blocking Assays 

CD275 

(ICOSL) 

9F.8A4 Purified 10 µg/ml BioLegend Blocking Assays 

CD278 

(ICOS) 

MIH12 Purified 10µg/ml eBioscience Functional 

Assays 

IFN-γ B27 Purified 10 µg/ml BioLegend Blocking Assays 

sTNFR - Purified 25 mg/ml Immunex Blocking Assays 

IL-4 8D4-8 Purified 10 µg/ml BioLegend Blocking Assays 
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IL-6 MQ2-

13A5 

Purified 10 µg/ml BioLegend Blocking Assays 

IgG1 MOPC-

21 

Purified 10 µg/ml BioLegend Isotype 

(Functional 

Assays) 

IgG2 MPC-11 Purified 10 µg/ml BioLegend Isotype 

(Functional 

Assays) 

IgG3 MG3-35 Purified 10 µg/ml BioLegend Isotype 

(Functional 

Assays) 

 

2.4.3 - Analysis 

Unless otherwise stated, 50,000 events were collected using a BD FACS Canto II 

for all experiments. All analysis of raw data was performed using FlowJo software 

(Version 10, TreeStar Inc.), by gating on intact cells (FSC-A/SSC-A), single cells 

(FSC-A/FSC-H), live cells (Zombie Aqua−), and expression of markers of interest. 

Percentages of cells were transferred to GraphPad Prism 6 software (GraphPad 

Software, Inc., CA, USA) for further analysis. 

2.5 - ELISA 

Soluble cytokines were measured in cell-free culture supernatants using ELISA kits 

for several cytokines. IFN-γ (BioLegend), TNF-α, IL-4, IL-5, IL-13, IL-17, IL-22, IL-

10, IL-23 (all from eBioscience), IL-1β, IL-6, CXCL13, and TGF-β (all from R&D 

Systems) were all measured according to the manufacturers‟ protocols. All samples 

were measured in duplicate on a Dynex MRX II reader.  

Analysis of ELISA data sets was conducted using Microsoft Excel, and absorbance 

values were calculated by subtracting values at 570 nm from those obtained at 450 

nm. Concentrations of cytokines were calculated using the standard curve method.  

2.6 - Real-time PCR 

2.6.1 - RNA Isolation 

Total RNA was extracted from cell pellets using the RNeasy Micro Kit (Qiagen) 

according to the manufacturer‟s instructions. Extracted RNA was examined 
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qualitatively and quantitatively using a NanoDrop ND1000 (Thermo Scientific) for 

RNA concentration and purity (ratios of OD at wavelengths of 230, 260, and 280 

nm). RNA was subsequently divided into aliquots and stored at −80°C, or 

alternatively used for cDNA generation immediately.   

2.6.2 - Generation of cDNA 

Total RNA was used to generate cDNA, using the SuperScript VILO cDNA 

Synthesis Kit (ThermoFisher Scientific), according to the manufacturer‟s 

instructions. cDNA was stored at −80°C until use.  

2.6.3 - Real-Time Quantitative PCR 

Transcripts were quantified by real-time quantitative PCR (RT-qPCR) using a ViiA7 

Real-Time PCR System (ThermoFisher Scientific). Predesigned TaqMan Gene 

Expression Assays and reagents were used according to the manufacturers' 

instructions. Probes with the following ThermoFisher Scientific assay identification 

numbers were utilised;  

TBX21 - Hs00203436_m1,  

GATA-3 - Hs00231122_m1,  

RORC - Hs01076112_m1,  

AHR - Hs00169233_m1,  

FOXP3 - Hs01085834_m1,  

BCL-6 - Hs00153368_m1,  

18S RNA - Hs99999901_m1,  

PPIL-2 - Hs00204962_m1  

(all from ThermoFisher Scientific).  

The Taqman Universal Master Mix II, no UNG (ThermoFisher Scientific) was used 

for PCR assays. All samples were measured in triplicate technical replicates. 

2.6.4 - Analysis 

The comparative ΔΔCt method was used to calculate the relative quantification and the 

range of confidence or samples. Data was analysed using the ExpressionSuite Software 

(ThermoFisher Scientific), and mRNA abundance was normalised to the amount of 

PPIL2 (Cyclophilin) expressed by cells, and is presented as relative expression in 

arbitrary units.  

2.7 - Statistical Analysis 
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Statistical analysis was performed with the use of GraphPad Prism 6 software 

(GraphPad Software, Inc.). Column statistics were carried out in the first instance to 

assess distribution of data sets and identify whether datasets were parametric or 

non-parametric. For the comparison of two variables, either Student's t test 

(parametric data sets), Mann-Whitney U test (unpaired, non-parametric data sets), 

or Wilcoxon matched-pairs signed rank test (paired, non-parametric data sets) were 

utilised. For comparison of multiple variables, either the one-way ANOVA 

(parametric data sets), Kruskal-Wallis test (unpaired, non-parametric data sets), or 

Friedman test (paired, non-parametric data sets) was used. Following analysis, the 

Dunn's multiple comparison test was used for comparison of each condition within 

experiments. Descriptive statistics are displayed as mean ± standard deviation of 

the mean (SD) in all figures presented. Significance was defined as p values of 

<0.05, and resulting statistical significances of difference are indicated in figures as 

*=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001, ns=non-significant. 

2.8 - Ethics 

This study was conducted according to the principles expressed in the Declaration 

of Helsinki and under local ethical guidelines (Bro Taf Health Authority, Wales). The 

study was approved by the South East Wales Local Ethics Committee (Reference 

Number 04WSE04/27). All healthy blood donors provided written informed consent 

for the collection of samples and subsequent analysis. 

For experiments conducted at QMUL Blizard Institute, ethical permissions for the 

study were granted by the appropriate local research ethics committees (approvals 

05/ Q0405/71 from Harrow Research Ethics Committee; 10/H0704/74 from East 

London Research Ethics Committee 2, London, UK; P/01/023 from East London and 

City Health Authority Research Ethics Committee, London, UK; and 7/H0805/46 

from Bromley Local Research Ethics Committee). All volunteers gave written 

informed consent prior to inclusion in the study345.  
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Chapter 3 - Optimisation of CD4+ T Cell Polarisation and 

Generation of Antigen Presenting Cells 

3.1 - Introduction 

Despite the potent APC function of Vγ9Vδ2 T cells with regard to cross-presentation 

of soluble antigens to CD8+ T cells, the full capacity of these novel APCs to polarise 

distinct subsets of CD4+ T helper cells is currently unknown. The ability of CD4+ T 

cells to be polarised towards distinct effector phenotypes has been extensively 

studied in the literature, with numerous T helper subsets being described. Further to 

this, with the concept of CD4+ T cell plasticity becoming more and more recognised, 

these T helper lineages have been shown to be capable of significant diversity in the 

cytokines they produce156. Given the large number of studies on each T helper 

lineage and the multitude of experimental protocols utilised by such studies, initial 

experiments in the present thesis focused on the optimisation of the conditions 

necessary for efficient CD4+ T cell polarisation. By optimising these protocols, and 

using them to polarise each T helper subset in turn, a useful reference point would 

be generated for the overall study into the polarisation of CD4+ T cell responses by 

γδ T-APCs. 

In addition, different types of antigen presenting cells differ in the ability to polarise 

CD4+ T cells towards specific lineages has been highlighted in the literature. In order 

to give the polarisation of CD4+ T cell responses by γδ T-APCs some context and 

determine their efficacy at inducing different T helper lineages, identical 

polarisations by other antigen presenting cell subsets were necessary. For this 

purpose, the role of well-studied APCs such as dendritic cells and monocytes, and 

their characteristics, was examined.  

Lastly, an efficient generation of γδ T-APCs themselves is required to study their 

CD4+ T cell-polarising capacity. Despite the number of studies examining the ability 

of Vγ9Vδ2 T cells to act as antigen presenting cells, it remains unclear under which 

conditions these cells actually assume their novel function. The majority of studies 

have examined TCR stimulation in combination with IL-2 to generate the APC 

phenotype and function322, while limited studies have assessed combinations of IL-2 

and IL-15325. The family of cytokines which utilise receptors containing the common 

γ-chain have shown significant ability to promote Vγ9Vδ2 T cell responses277,282. 

Given the significant role of the common-γ chain cytokines in optimal γδ T cell 
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immunity, their potential roles in the generation of γδ T-APCs and regulation of APC 

function was investigated.  

3.2 - Aims of Chapter 

In this chapter, four experimental aims will be discussed: 

 The optimisation of CD4+ T cell polarisation protocols. 

 The polarisation of naive CD4+ T cell responses towards distinct T helper 

lineages. 

 The generation and optimisation of dendritic cell and monocyte APC 

controls. 

 The generation and functional comparison of γδ T-APCs produced in the 

presence of differing cytokine microenvironments. 
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3.3 - Optimisation of CD4+ T cell Polarisation 

As a first step in developing polarised CD4+ T cell controls for subsequent APC 

assays, a number of factors were optimised. As previously discussed, the strength 

of stimulation, effect of co-stimulation, and presence of polarising cytokines are all 

important in determining the outcome of CD4+ T cell polarisation161. To this end, the 

concentrations of stimulating agents, namely anti-CD3 and anti-CD28 antibodies, 

were optimised alongside other factors such as the length of the culture period and 

the type of culture medium. It should be noted that combinations of cytokines used 

for CD4+ T cell polarisation, and their relevant concentrations, were not optimised 

here, due to the extensive study in the literature describing the most effective 

combinations92,121. For all of these experiments, 'enriched' naive CD4+ T cells were 

used, where total CD4+ T cells were isolated from healthy peripheral blood, and 

CD45RO expressing memory cells were subsequently depleted. As such, the purity 

of the resulting CD4+ T cells (CD4+CD45RA+) was approximately 95% (data not 

shown). 

In the first instance, concentrations of anti-CD3 and anti-CD28 were titrated, and the 

induction of CD4+ T cell effector responses was determined (Figure 3.1). In 

combination with anti-CD3/anti-CD28 stimulation, cells were cultured in either Th1 

(IL-12), Th2 (IL-4), or Th17 (IL-1β/IL-6/TGFβ) polarising cytokine conditions to 

promote the relevant T helper lineages, and cultured for 6 days. Following this 

culture period, cells were restimulated with PMA/Ionomycin to induce cytokine 

production, and cultured for a further 24 hours. Subsequently, culture supernatants 

were obtained and assessed for IFN-γ, IL-4 and IL-17 by ELISA.  

Figure 3.1a displays the concentration of IFN-γ, IL-4 and IL-17 produced by cells 

cultured in the presence of Th1, Th2, and Th17 polarising conditions respectively, in 

response to increasing concentrations of anti-CD3 antibody. IFN-γ displayed a dose-

dependent response,  with increasing concentrations of anti-CD3 favouring 

increased levels of IFN-γ. This is consistent with previous studies, where stronger 

TCR stimulations were reported to promote Th1-type responses160. In contrast, IL-4 

production was favoured at lower concentrations of anti-CD3, and was inhibited at 

concentrations of 5 µg/ml. Similarly, IL-17 production peaked at concentrations of 

2.5 µg/ml anti-CD3. This too is consistent with published studies, where lower TCR 

signalling strengths favoured non-Th1 responses163. Given these results, the optimal 

anti-CD3 concentrations for Th1 responses was 5 µg/ml, whereas for Th2 and Th17 
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responses it was 2.5 µg/ml, which were consequently utilised in all following 

experiments. 

Next, the concentration of anti-CD28 was examined (Figure 3.1b). There was little 

variation in the production of cytokines where anti-CD28 concentration differed, 

indicating a more redundant role of this pathway in CD4+ T cell polarisation, at the 

concentrations examined. The optimal concentration of anti-CD28 appeared to be 1 

µg/ml, and as such was utilised for all subsequent CD4+ T cell polarisation assays.  
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Figure 3.1 - Titration of anti-CD3 (αCD3) and anti-CD28 (αCD28) stimulating antibodies 

for the polarisation of CD4
+
 T cell responses. (a) Secretion of IFN-γ, IL-4 and IL-17 by 

CD4
+
 T cells cultured in the presence of Th1 (IL-12), Th2 (IL-4), or Th17 (IL-1β/IL-6/TGFβ) 

polarising cytokines, respectively, at varying concentrations of αCD3 antibody. All cells were 

stimulated with 1 µg/ml αCD28 antibody. (b) Secretion of IFN-γ, IL-4 and IL-17 by CD4
+
 T 

cells cultured in the presence of Th1, Th2, or Th17 polarising cytokines, respectively, at 

varying concentrations of αCD28 antibody. Cells cultured in Th1 conditions were stimulated 

with 5 µg/ml αCD3, whereas Th2 and Th17 polarised cells were stimulated with 2.5 µg/ml 

αCD3. In all experiments, CD4
+
 T cells were freshly isolated from peripheral blood and 

depleted of CD45RO expressing memory cells. Cytokine concentrations were determined in 

cell culture supernatants by ELISA, after 24 hour restimulation with PMA/Ionommycin. Bar 

charts display mean data from two healthy donors in two individual experiments. Error bars 

display standard deviation of samples.  

With the concentrations of stimulating agents determined, different time points for 

analysis of intracellular cytokine production were assessed. In the literature, several 

different time points for CD4+ T cell cytokine production have been used, from 6 to 

12 days of culture after initial stimulation92,97,98. As such, experiments were designed 

to assess the optimal time point for intracellular analysis. Similarly to previous 

experiments, enriched naive CD4+ T cells were stimulated and cultured in Th1, 

Th17, or Th22 (IL-6/TNFα) polarising conditions and cultured for 6-12 days. At each 

time point, cultures were restimulated with PMA/ionomycin and stained 

intracellularly for cytokines (Figure 3.2).  

a

b
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The observed expression of each cytokine at day 6 of culture was much lower than 

those seen at later time points. This may be due to the fact that CD4+ T cells 

remained in a proliferative state at day 6, whereas at later time points cells returned 

to a resting state, perhaps allowing for more optimal restimulation. Nevertheless, 

later time points appeared optimal for assessing intracellular cytokine production, 

with day 9 in particular standing out across all three cytokines examined. For this 

reason, day 9 analysis was chosen for subsequent experiments.  
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Figure 3.2 - Comparison of timepoints for intracellular analysis of CD4
+
 T cell cytokine 

production. CD4
+
 T cells were stimulated for 6-12 days in the presence of Th1 (IL-12), Th17 

(IL-1β/IL-6/TGFβ), or Th22 (IL-6/TNFα) polarising cytokines, and assessed for intracellular 

expression of IFN-γ, IL-17, and IL-22, respectively.  Cultures were restimulated with 

PMA/Ionomycin for 5 hours at the relevant timepoint for intracellular analysis of cytokine 

production by flow cytometry, and percentages of cytokine positive cells were determined.  

For days 9 and 12 of analysis, cultures were supplemented with IL-2/IL-23 at day 6. In all 

experiments, CD4
+
 T cells were freshly isolated from peripheral blood and depleted of 

CD45RO expressing memory cells. Bar charts display data from one healthy donor. Data 

was obtained by gating on live, single, CD4
+
 cells.  

Given the late time point of analysis of CD4+ T cell cytokine production, protocols 

which use this time point generally 'feed' cultures at approximately day 6, to improve 

survival of cells as they proliferate and to maintain effector phenotypes generated. 

For this reason, cultures  were set up to investigate different combinations of 

cytokines in order to maintain optimal CD4+ T cell polarisation readouts. IL-2 alone, 

or a combination of IL-2 and IL-23, were examined (Figure 3.3). IFN-γ and IL-22 

were both similarly expressed across both treatments, as expected, given that IL-23 

is dispensable for Th1 and Th22 responses. However, IL-23 proved to be essential 

for Th17 polarisation, with IL-2 alone maintaining a low percentage of IL-17+ cells, 

whereas a combination of IL-2 and IL-23 favoured a much greater population of IL-

17+ cells. This is consistent with previous studies, where IL-23 was shown to 

maintain Th17 phenotypes and aid memory Th17 cells in their IL-17 production85. IL-

4 production by polarised CD4+ T cells was also consistent across IL-2 alone or IL-

2/IL-23 treatments (data not shown). It should be noted that culture of cells with IL-

23 alone did not favour the production of any cytokines examined. For these 

reasons, a combination of IL-2 and IL-23 was considered optimal for future 

experiments due to its ability to allow maximum detection of all cytokines tested. 
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Figure 3.3 - Comparison of cytokine supplements at day 6 of CD4
+
 T cell polarisation. 

CD4
+
 T cells were stimulated for 9 days in the presence of Th1 (IL-12), Th17 (IL-1β/IL-

6/TGFβ), or Th22 (IL-6/TNFα) polarising cytokines and assessed for intracellular expression 

of IFN-γ, IL-17, and IL-22 respectively. Cultures were supplemented with either IL-2 or a 

combination of IL-2 and IL-23 at day 6, and restimulated at day 9 with PMA/Ionomycin for 5 

hours for intracellular analysis by flow cytometry. Resulting percentages of cytokine positive 

cells were determined. In all experiments, CD4
+
 T cells were freshly isolated from peripheral 

blood and depleted of CD45RO-expressing memory cells. Bar charts display mean data from 

two healthy donors from two individual experiments. Error bars display standard deviation of 

samples. Data was obtained by gating on live, single, CD4
+
 cells. 

To finalise the optimisation of CD4+ T cell polarisation cultures, a comparison of 

culture media was conducted to assess their effects on cytokine expression. The 

majority of studies utilise RPMI medium to study CD4+ T cell polarisation, a common 

medium also used for Vγ9Vδ2 T cell and monocyte/dendritic cell culture. However, 

recently a few studies have shown the efficacy of IMDM medium to favour Th17 

polarisation346. In order to determine which media was the best to use for future 

experiments, the polarisation of Th1, Th17, and Th22 lineages was examined in the 

presence of RPMI or IMDM media (Figure 3.4). Across all cytokines examined, 

percentages of cytokine-positive cells were consistent in either culture medium. The 

lack of efficacy of IMDM to favour Th17 differentiation in these cultures could have 

been due to a number of factors, not least of which the concentration of TGFβ in the 

fetal calf serum used to supplement the culture medium92. For this reason, RPMI 

was used for all future experiments, as it allows for examination of CD4+ T cell 

polarisation, but is also optimal for Vγ9Vδ2 T cell culture, necessary for future 

assays.  
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Figure 3.4 - Comparison of different culture media in the polarisation of CD4
+
 T cells. 

CD4
+
 T cells were stimulated for 9 days in the presence of Th1 (IL-12), Th17 (IL-1β/IL-

6/TGFβ), or Th22 (IL-6/TNFα) polarising cytokines and assessed for intracellular expression 

of IFN-γ, IL-17, and IL-22 respectively.  Cultures were supplemented with IL-2 and IL-23 at 

day 6, and restimulated at day 9 for intracellular analysis of cytokine production by flow 

cytometry. Resulting percentages of cytokine positive cells were determined after 

restimulation.  CD4
+
 T cells were freshly isolated from peripheral blood and depleted of 

CD45RO expressing memory cells. Bar charts display data from two healthy donors from 

two individual experiments. Error bars display standard deviation of samples. Data was 

obtained by gating on live, single, CD4
+
 cells.  

3.4 - Polarisation of Naive CD4+ T cell Responses 

With the optimal culture conditions determined for CD4+ T cell polarisation, the next 

step was to investigate the ability of these conditions to polarise sorted naive CD4+ 

T cells. Given that the optimal culture conditions in the previous section were 

determined using enriched naive CD4+ T cell cultures, in which residual numbers of 

memory cells remained (up to 5% of all T cells), and the fact that highly pure naive 

CD4+ T cells would need to be used in APC polarisation assays with γδ T-APCs, 

naive CD4+ T cells were sorted to a high purity (>99.4% CD4+CD45RA+CCR7+). 

This would confirm the optimal conditions identified for polarisation of highly pure 

naive CD4+ T cell populations. The importance of pure cell fractions in such assays 

was fundamental as even minor contamination of naive CD4+ T cell cultures with 

memory or effector cells might skew results and potentially give false readouts. In 

addition, pure APCs were required to be able to attribute naive CD4+ T cell 

polarisation to each APC subset independently. Figure 3.5 displays the purity of 

cells isolated for all subsequent assays (Vγ9Vδ2 T cell purity >99%, monocyte purity 

>98.7%). 
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Figure 3.5 - Purity of isolated cell subsets for use in assays. (a) Representative plot 

displaying the purity of  CD14
+
 monocytes obtained from freshly isolated PBMC from a 

healthy donor, using MACS separation. Purity was assessed by flow cytometry. (b) 

Representative plot displaying the purity of TCR Vγ9
+
 γδ T cells obtained from freshly 

isolated PBMC from a healthy donor, using MACS separation. (c) Representative plots 

displaying purity of FACS sorted naive CD4
+
 T cells obtained from freshly isolated PBMC 

from  a healthy donor. Naive CD4
+
 T cells were sorted based on a CD8

-

CD4
+
CD45RA

+
CCR7

+
 phenotype. All plots representative of >30 individual donors from 

individual experiments. Numbers on plots display percentages of cells. All plots are gated on 

live, single cells.  

Having obtained highly purified naive CD4+ T cells, these cells were subsequently 

cultured in the presence of polarising cytokines, and resulting intracellular cytokine 

expression determined upon restimulation. Naive CD4+ T cells were cultured under 

Th1 (IL-12), Th2 (IL-4), Th17 (IL-1β/IL-6/TGF-β), Th22 (IL-6/TNF-α), and Treg 

(TGFβ) polarising conditions, and examined for the intracellular production of IFN-γ, 

IL-17, IL-22, IL-4, and IL-10. Figure 3.6 displays representative flow cytometry plots 

of cytokine expression by such polarised cells. As can be seen, IFN-γ expression by 

polarised naive CD4+ T cells was the largest population identified, whereas IL-4, IL-

17, and IL-22, were present at lower percentages in their relevant polarising 

conditions. This is in line with published studies, whereby IFN-γ producing cells are 

often the most prominent in in vitro experiments, compared with other T helper 

lineage cytokines. Under Th1 polarising conditions, minimal expression of IL-4 was 

detected, and vice versa in Th2 polarising conditions. Under Th17 polarising 
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conditions, significant populations of IL-17+ cells were identified, with small 

populations of IFN-γ+ and IL-22+ cells identified. In contrast, under Th22 polarising 

conditions, small populations of IL-22 single-positive cells were observed, but 

significant proportions of IL-22 expressing cells were also identified as co-

expressing IFNγ or IL-17.  

In these experiments, only low levels of IL-10 expression were detected. Previous 

reports suggested that lack of protein transport inhibitor usage during intracellular 

staining may actually lead to higher levels of IL-10 detection347. This was indeed true 

for cultures tested in the absence of brefeldin A treatment, with frequencies of IL-10 

producing cells increasing from approximately 2.5% to 4% (data not shown). 

However, absence of a protein transport inhibitor negates the ability to detect 

alternative cytokines. For this reason, intracellular cytokine stainings were carried 

out using the inhibitor brefeldin A, so as to allow for all cytokines to be detected, 

including IL-10, albeit at the cost of losing sensitivity for IL-10. Overall, these 

experiment demonstrated an efficient polarisation of naive CD4+ T cells towards 

various T helper lineages in accordance with previous publications92,121.  
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Figure 3.6 - Intracellular stainings of polarised naive CD4
+
 T cells.  Sorted naive CD4

+
 T 

cells were stimulated for 9 days in the presence of T helper polarising cytokines. Cells were 

restimulated at day 9 for intracellular staining and analysis by flow cytometry. Cells cultured 

in (a) Th1, (b) Th2, (c) Th17, (d) Th22, and (e) Treg polarising conditions were stained for 

IFNγ, IL-17, IL-22, IL-4, and IL-10. Gated on live, single, CD4
+
 cells. Representative dot plots 

display results for a total of 4 healthy donors from 3 individual experiments. Numbers in 

gates display percentages of cytokine-positive cells.      

Figure 3.7 displays the overall cytokine response of naive CD4+ T cells cultured in 

each lineage polarising condition. As expected, IFN-γ was expressed predominantly 

by naive CD4+ T cells cultured in the presence of IL-12, to induce a Th1 phenotype. 

A significant level of IFN-γ expression was also observed in Th17 polarising 

conditions, reflective of the plasticity of human Th17 cells and their ability to co-

express IFN-γ and IL-17. Th22 polarising conditions also featured heightened levels 

of IFN-γ expression, though this was not significant compared to unstimulated 
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controls. With respect to IL-17, expression levels were highest in Th17 polarising 

conditions, but significant levels could also be observed in Th22 polarising 

conditions, potentially reflecting the presence of TGF-β in the culture serum in 

combination with addition of IL-697,98. IL-4 expression was distinctly expressed by 

Th2 cells, with cells cultured under other conditions expressing minimal levels. 

Interestingly, Th1, Th17, and Th22-polarised cells all expressed similar levels of 

intracellular IL-22. Whilst commonly known as a Th17 cytokine, IL-22 can also 

feature strongly in Th1 type responses, explaining its presence in both of these 

culture conditions. The lack of increased IL-22+ cells in Th22 polarising conditions is 

intriguing, potentially due to the fact that, while IL-6 and TNF-α have been reported 

to promote IL-22 production by naive CD4+ T cells, these conditions have not been 

as extensively studied as the other polarising conditions, suggesting other factors 

may be important. Indeed, the original Th22 study found higher levels of IL-22 

induction using certain dendritic cell subsets instead of a combination of IL-6 and 

TNF-α, supporting the view that other polarising factors are involved121. Finally, IL-

10 was expressed predominantly by Treg-polarised cells but also in non-polarised 

cells. Of note, the overall mixed populations of cells induced under each polarising 

condition are reflective of the non-discrete populations observed in the human 

immune system as compared with murine models. 
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Figure 3.7 - Expression of T helper cytokines by polarised CD4
+
 T cells. Sorted naive 

CD4
+
 T cells were stimulated for 9 days in the presence of combinations of T helper 

polarising cytokines. Cells were restimulated at day 9 for intracellular staining and analysis 

by flow cytometry. Percentages of cytokine positive cells were determined by gating of live, 

single, CD4
+
 cells. Data points display results from individual healthy donors. Horizontal lines 

display means of data sets. Error bars display standard deviation of samples. Statistical 

significance was determined using the Friedman Test, followed by the Dunn‟s multiple 

comparison test, *=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001, ns=not significant.  

Significance displayed in comparison to unstimulated control.  

In addition to examining the intracellular expression of cytokines in polarised CD4+ T 

cells, the secretion of such cytokines into the culture supernatants was examined by 

ELISA (Figure 3.8). The production of T helper lineage cytokines showed a similar 

pattern of expression to that seen with intracellular expression, for example Th1 

cells produced the highest concentrations of IFN-γ, whereas Th2-polarised cells 

produced significant levels of IL-4. In addition to the five cytokines assessed 

intracellularly, levels of TNF-α were also assessed in culture supernatants, and were 

most highly produced by Th17 cells, though this cytokine is expressed by most, if 

not all, T helper lineages.  

Interestingly, the percentages of cytokine positive cells did not reflect exactly the 

levels of cytokine secreted. For example, the expression of intracellular IFN-γ by 

Th1 cells was approximately 3 fold higher than that observed with Th17 cells (Figure 

3.7), however, the secretion of IFN-γ was only 2 fold higher by Th1 cells over Th17 
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(Figure 3.8). This phenomenon has been reported in the literature, whereby protein 

expression intracellularly and production extracellularly do not necessarily correlate 

exactly348. Despite this, overall patterns of CD4+ T cell polarisation with respect to 

cytokine expression and production remained largely the same.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



82 
 

 

Figure 3.8 - Secretion of T helper cytokines by polarised CD4
+
 T cells. Sorted naive 

CD4
+
 T cells were stimulated for 9 days in the presence of polarising cytokine combinations. 

Cells were restimulated at day 9, and supernatants were collected 24 hours later for analysis 

by ELISA. Data points display results from individual healthy donors. Horizontal lines display 

means of data sets. Error bars display standard deviation of samples. Statistical significance 

was determined using the Friedman Test, followed by the Dunn‟s multiple comparison test, 

*=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001, ns=not significant.  Significance displayed 

in comparison to unstimulated control.  

In addition to assessing cytokine production and secretion, polarised naive CD4+ T 

cells were assessed for their expression of master transcription factors, which 

regulate specific phenotypes and effector functions in distinct T helper lineages56. 

Such transcription factors include the proteins TBX21 (Th1), GATA3 (Th2), RORC 

(Th17), AHR (Th22), FOXP3 (Treg) and BCL6 (Tfh). In identical assays to those 

shown in Figures 3.7 and 3.8, naive CD4+ T cells were stimulated for 9 days in 

different polarising microenvironments. At day 9 of culture, the RNA was extracted 

from total, non-restimulated cell populations, and expression of each transcription 

factor was determined, in relation to naive CD4+ T cell controls.  

Figure 3.9 displays the relative gene expression levels of each transcription factor in 

polarised cell populations. TBX21, GATA3, and RORC, representing the Th1, Th2, 

and Th17 master transcription factors, were most highly expressed in the relevant 

polarising conditions. Lower expression levels of each of these transcription factors 

were identified in other polarising conditions, reflecting the mix of lineages induced 

and identified by cytokine expression. In addition, Th1 and Th17 polarised cells co-
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expressed significant levels of RORC and TBX21 respectively as well, highlighting 

the plasticity between these two lineages. Th22 cells, as expected, expressed high 

levels of AHR. However, both Th1 and Th17 polarised populations also showed 

significant AHR expression, consistent with the expression of IL-22 by the three 

different T cell subsets. Cells polarised in Treg-favouring conditions expressed 

marginally higher levels of FOXP3 than naive CD4+ T cells, though levels of 

expression were not as prominently affected as with other transcription factors. Treg 

cells should display stable FOXP3 expression, in contrast to activated cells which 

show transient FOXP3 expression110. Lastly, BCL6, representing the master 

transcription factor for Tfh cells140,141, was not induced under any polarising 

condition. As control, CXCR5+ T cells isolated directly from PBMC displayed 

increased BCL6 mRNA levels compared to naive CD4+ T cells.  
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Figure 3.9 – Expression of transcription factors by polarised CD4
+
 T cells. Sorted naive 

CD4
+
 T cells were stimulated for 9 days in the presence of polarising cytokine combinations. 

At day 9, RNA was extracted from cultures and expression of several transcription factors 

was assessed by real-time PCR. As an additional control, CXCR5
+
 cells isolated directly 

from PBMC were assessed for BCL6 expression. Relative expression was determined in 

reference to naive CD4
+
 T cell control. Data points display results from individual healthy 

donors. Horizontal lines display means of data sets. Error bars display standard deviation of 

samples. Statistical significance was determined using the Friedman Test, followed by the 

Dunn‟s multiple comparison test, *=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001, ns=not 

significant.  Significance displayed in comparison to unstimulated control.  

In addition to measuring the functional quality of polarised cells, cell proliferation 

was assessed as further valuable readout for APC-induced CD4+ T cell responses. 

Representative flow cytometry plots are shown in Figure 3.10a, displaying the 

dilution of CFSE and expression of CD25 by activated naive CD4+ T cells. CFSE 

dilution, reflected by decreasing fluorescence, denotes cell proliferation, whereas 

CD25 is a common activation marker of T cell activation, and as such becomes 

expressed upon stimulation. Cells cultured under Th2 and Th17 conditions 

displayed high levels of proliferation at day 5 of culture, with Th1 cells and no 

cytokine conditions showing reduced levels of proliferation. This difference was 

likely due to the fact that IL-4 and IL-6, which are present in Th2 and Th17 polarising 

conditions respectively, function as T cell growth factors in addition to their 

polarising function, thereby aiding CD4+ T cell proliferation. Upon co-stimulation via 

CD28, CD4+ T cells produce IL-2 as an autologous growth factor, but this is unlikely 
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to be expressed at similar concentrations as IL-4 or IL-6 are added to culture. 

Interestingly, while cells cultured in Th1, Th17, and no cytokine conditions all 

upregulated CD25, Th2 cells expressed lower levels or were even negative for 

CD25 expression, despite proliferating at comparable levels. This indicates that Th2 

cells do not utilise CD25, a component of the IL-2 receptor, and as such may rely 

solely on IL-4 as a growth factor. Figure 3.10b shows the comparison of CD4+ T cell 

proliferation at days 4 and 5 of culture. Higher percentages of proliferating cells were 

observed at day 5 of culture than day 4, reflecting the increased amount of time for 

cells to proliferate. As such, day 5 analysis of proliferation was used for subsequent 

assays.   
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Figure 3.10 - Proliferation of polarised naive CD4
+
 T cells. (a) Representative plots of 

naive CD4
+
 T cell proliferation. Sorted naive CD4

+
 T cells were stimulated for 5 days in the 

presence of combinations of T helper polarising cytokines. Proliferating cells were 

determined by CFSE dilution as assessed by flow cytometry, and numbers on graphs display 

percentages of proliferating cells. Plots are representative of two healthy donors from two 

individual experiments. Gated on live, single, CD4
+
 cells. (b) Comparison of naive CD4

+
 T 

cell proliferation at multiple timepoints. Percentages of proliferating cells were compared at 

days 4 and 5 for each polarising condition. Values displayed are mean values of two donors 

from two individual experiments. Error bars display standard deviation of samples. Gated on 

live, single, CD4
+
 cells.   

Taken together, by utilising highly purified naive CD4+ T cells, differential polarising 

conditions were able to induce markedly different phenotypes in responding cells. 

Given the ability to detect each T helper lineage in turn, the ability to generate 

different APC subtypes for investigation of APC-induced CD4+ T cell polarisation 

was next to be examined.  
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3.5 - Generation of APC Controls 

Monocyte-derived dendritic cells are the prototypic antigen presenting cell studied in 

human immunology. Indeed, monocytes and DCs have been extensively shown to 

polarise distinct CD4+ T cell responses, and are adaptable to external stimuli206. 

Such well-defined APCs polarising CD4+ T cell responses under identical 

experimental conditions to those that were to be used with γδ T-APCs therefore 

represented a useful control, which ensured that data produced here were 

consistent with published studies.  

Figure 3.11 displays the phenotype of APCs generated for future assays. Figure 

3.11a shows the morphology of monocyte-derived DCs after differentiation from 

purified monocytes cultured with IL-4 and GM-CSF for 6 days. In addition to 

phenotype, cell morphology is an indication that monocytes have differentiated into 

DCs. As observed, monocyte-derived DCs displayed dendrite-like protrusions, 

indicating their efficient differentiation from monocytes. Figure 3.11b shows 

representative flow cytometry stainings of DCs after a 24 hour stimulation with LPS. 

Figure 3.11c displays the comparison of APC phenotype between monocytes and 

DCs before and after 24 hour stimulation with LPS. A number of APC markers were 

examined; HLA-DR denoting MHC class II expression, costimulatory molecules 

such as CD80, CD86, and CD40, the maturation marker CD83, and the monocyte 

marker CD14. As expected, all cells were positive for HLA-DR. The costimulatory 

molecules CD80 and CD86 were upregulated upon activation of cells, and were 

more highly expressed on DCs than on monocytes. CD40 was constitutively 

expressed on DCs before and after activation, while it was upregulated on 

stimulated monocytes. CD83 and CD14 also behaved as expected, with CD83 

denoting DC maturation after stimulation with LPS, and CD14 becoming 

downregulated upon DC differentiation. These data show that monocytes and DCs 

generated in vitro expressed the correct repertoire of APC molecules necessary for 

their functions, and as such were suitable for downstream assays. Data obtained 

however were not statistically significant, due to the low number of replicates 

examined. 
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Figure 3.11 - APC phenotype of monocytes and monocyte-derived dendritic cells. (a) 

Cellular morphology of immature monocyte-derived dendritic cells. Freshly isolated 

monocytes from healthy human blood were cultured for 6 days with IL-4 and GM-CSF to 

generate mo-DCs. Image was taken at day 6 of cell culture. (b) Representative plots of APC 

marker expression by mature monocyte-derived DCs. Mo-DCs were generated over 6 days, 

and subsequently stimulated with LPS for 24 hours. APC marker expression was determined 

by flow cytometry. Numbers display percentages of cells. Gated on live, single cells. (c) 

Comparison of APC marker expression by unstimulated and LPS-matured monocytes and 

mo-DCs. Data points represent individual donors, from individual experiments. Horizontal 

lines display means of data sets. Error bars display standard deviation of samples. Gated on 

live, single cells. Statistical significance was determined using the Kruskal-Wallis test, 

followed by the Dunn‟s multiple comparison test, *=p<0.05, **=p<0.01, ***=p<0.001, 

****=p<0.0001, ns=not significant.   

With APC controls generated, optimisation of naive CD4+ T cell mixed lymphocyte 

reactions could be conducted. The concept of the mixed lymphocyte reaction relies 

on the fact that approximately 10% of an individual's T cells will be alloreactive, 

allowing them to respond to allogeneic antigen presenting cells. Monocytes and 

H
LA

-D
R

CD80

C
D

4
0

CD86

S
S

C

CD83

88.5

3.01

7.30

1.23

99.7

0.03

0.26

0

87.6

a b

c



89 
 

monocyte-derived DCs were consequently cultured with allogeneic naive CD4+ T 

cells at decreasing APC:responder cell ratios, and the proliferation of naive CD4+ T 

cells was determined by CFSE dilution measured by flow cytometry (Figure 3.12). 

As expected, and reflected by their APC phenotype, LPS-matured DCs (mDCs) 

induced the highest levels of proliferation in naive responder cells, reaching 60% 

CFSElo cells at an APC:responder ration of 1:1. The efficacy of APCs decreased 

from immature DCs (iDCs) to LPS-stimulated and unstimulated monocytes, which 

induced less pronounced proliferative responses than those observed with mDCs. 

While mDCs were able to induce CD4+ T cell proliferation to APC:responder ratios 

as low as 1:1000, naive CD4+ T cells co-cultured with monocytes required ratios of 

1:10 for sufficient stimulation. With the APC:responder ratio determining the signal 

strength provided to the naive CD4+ T cells, and the pronounced effect this signal 

strength has on the functional outcome, it was decided to conduct all future mixed 

lymphocyte reactions at multiple APC:responder ratios .  
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Figure 3.12 - Proliferation of naive CD4
+
 T cells induced by co-culture with antigen 

presenting cells. Sorted naive CD4
+
 T cells were cultured for 5 days with allogeneic APC 

types at decreasing APC:responder ratios. Proliferation of naive CD4
+
 T cells was 

determined at day 5 by CFSE dilution, and percentages of CFSE
lo
 (proliferating) cells were 

determined. Data points display mean results of >5 healthy donors for each APC type, from 

>5 individual experiments. 

3.6 - γδ T-APCs 

With the experimental conditions for efficient CD4+ T cell polarisation and generation 

of control APCs optimised, the generation of γδ T-APCs was the next point of focus. 

As previously mentioned, the common γ-chain cytokines IL-2, IL-4, IL-7, IL-15 and 

IL-21 regulate Vγ9Vδ2 T cells in different ways277,282. Given that these cytokines play 

distinct roles in homeostasis and inflammation275, it is conceivable that they may be 

involved in regulating APC function by Vγ9Vδ2 T cells as well.  

As an initial experiment to assess the responsiveness of Vγ9Vδ2 T cells to members 

of the common γ-chain family, isolated Vγ9Vδ2 T cells were stimulated with HMB-

PP and cultured with individual cytokines in the presence of autologous monocytes 

serving as feeder cells, and their proliferation (Figure 3.13). Initial experiments were 

performed at different monocyte:Vγ9Vδ2 T cell ratios to determine the optimal 

culture conditions to induce Vγ9Vδ2 T cell proliferation. Monocyte:Vγ9Vδ2 T cell 

ratios were titrated, and the proliferation of Vγ9Vδ2 T cells in response to HMB-PP 

and individual common γ-chain cytokines was assessed by flow cytometry (Figure 

3.13a). In these experiments, monocyte:Vγ9Vδ2 T cell ratios of 1:1 and 1:10 allowed 

for significant proliferation of Vγ9Vδ2 T cells, in contrast to lower ratios where 

proliferation was limited. As only little difference could be observed between the rate 

of Vγ9Vδ2 T cell proliferation at 1:1 and 1:10 ratios, the 1:10 ratio was selected for 
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all subsequent assays. The rationale behind this choice was that Vγ9Vδ2 T cells, 

once an APC function was induced, would need to be purified from co-cultures with 

monocyte feeder cells to use in APC assays; as such, 1:10 ratios meant fewer 

contaminating cells to remove in downstream applications.  

In Figure 3.13b, representative histograms display proliferation of Vγ9Vδ2 T cells in 

response to HMB-PP and various common γ-chain cytokines. The highest levels of 

proliferation were observed with IL-2, IL-15, and IL-7. IL-21 was less able to aid 

proliferation of Vγ9Vδ2 T cells as compared to IL-2 and IL-15, whereas IL-4 showed 

little efficacy in supporting proliferation above the background of cells cultured with 

HMB-PP alone and unstimulated controls (Figure 3.13d). The individual effects of 

these cytokines could also be observed across decreasing concentrations of HMB-

PP (Figure 3.13c), with IL-2, IL-15, and IL-7 all supporting Vγ9Vδ2 T cell 

proliferation at as little as 0.1 nM HMB-PP. In contrast, IL-21 was unable to maintain 

proliferation at this low level of stimulation, and IL-4 only supported proliferation at 

the highest concentration (100 nM HMB-PP).  The lack of proliferation of Vγ9Vδ2 T 

cells in response to HMB-PP stimulation alone highlights the importance of common 

γ-chain cytokines in promoting Vγ9Vδ2 T cell responses. Of note, multiple 

concentrations of each cytokine were tested in identical assays and similar patterns 

of results were identified (data not shown). 
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Figure 3.13 - Proliferation of Vγ9Vδ2 T cells in response to common γ-chain cytokines. 

(a) Comparison of decreasing irradiated monocyte feeder cell:Vγ9Vδ2 T cell ratios on the 

induction of Vγ9Vδ2 T cell proliferation. CFSE-stained Vγ9Vδ2 T cells were stimulated with 

10 nM HMB-PP +/- either IL-2 (100 U/ml), IL-15 (20 ng/ml), IL-7 (20 ng/ml), IL-21 (20 ng/ml), 

IL-4 (20 ng/ml), or left unstimulated. Displays a representative healthy donor from 4 total 

donors, in 3 independent experiments. (b) Representative CFSE-dilution histograms of 

Vγ9Vδ2 T cells cultured in the presence of 1:10 ratio of irradiated monocyte:Vγ9Vδ2 T cells, 

in the presence of 10 nM HMB-PP and common γ-chain cytokines. Displays a representative 

healthy donor from 4 total donors, in 3 independent experiments. (c) Titration of HMB-PP 

concentrations and the effect on Vγ9Vδ2 T cell proliferation. Cultures were stimulated with 

decreasing concentrations of HMB-PP in combination with common γ-chain cytokines. 

Displays a representative healthy donor from 4 total donors, in 3 independent experiments. 

(d) Proliferation of Vγ9Vδ2 T cells in response to 10 nM HMB-PP in combination with 

different common γ-chain cytokines. Data points represent individual healthy donors, from 3 

independent experiments. Percentage proliferation was determined by CFSE dilution on day 

5 of culture, gated on live, single, TCR Vγ9
+
 cells. Horizontal lines display means of data 

sets. Error bars represent standard deviation of samples. Statistical significance was 

determined using the Friedman Test, followed by the Dunn‟s multiple comparison test,  

*=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001, ns=not significant.  Significance displayed 

in comparison to unstimulated control.      
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With the confirmation that a number of common γ-chain cytokines support Vγ9Vδ2 T 

cell responses, the next step was to investigate the APC phenotype in response to 

these different cytokines (Figure 3.14). A time course was set up to assess 

expression of several APC molecules over a 5 day culture period (Figure 3.14a). 

The markers HLA-DR, CD86, and CD70 were absent on freshly isolated cells (day 

0), and low level expression could be observed after 24 hours of stimulation with 

HMB-PP and IL-15. Increased expression levels were detected at day 3, and by day 

5 the majority of cells expressed all three proteins. The difference in expression 

between days 3 and 5 was minimal, and hence it was decided to use day 3 γδ T-

APCs in all future experiments.  

In addition to HLA-DR, CD86 and CD70, further APC markers were assessed on 

Vγ9Vδ2 T cells at day 3 of culture, including the co-stimulatory proteins CD40 and 

CD80, the DC marker CD83 and the chemokine receptor CCR7 (Figure 3.14b). 

Expression of the costimulatory molecule ICOSL was also examined (Figure 3.14c), 

although staining for this molecule was not as distinct as for other markers. As a 

control, CD19+ B cells, which express ICOSL349, were stained, and revealed similar 

stainings via flow cytometry. 
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Figure 3.14 - Expression of antigen presenting cell markers by Vγ9Vδ2 T cells. (a) 

Time course of the expression of APC markers by Vγ9Vδ2 T cells, stimulated with 10 nM 

HMB-PP and IL-15. Percentage of HLA-DR positive cells were determined by gating on live, 

single, Vγ9
+
 T cells. Remaining APC marker-positive cells were determined by gating on live, 

single, HLA-DR
+
Vγ9

+
 T cells. (b) Representative plots of Vγ9Vδ2 T cell HLA-DR expression 

at day 3 of culture. Cells were stimulated with 10 nM HMB-PP and IL-15. HLA-DR 

expressing cells are gated on live, single, Vγ9
+
 T cells. (c) Representative plots of Vγ9Vδ2 T 

cell APC phenotype at day 3 of culture. Cells were stimulated with 10 nM HMB-PP and IL-

15. Expression of APC markers determined by gating on Vγ9
+ 

HLA-DR
+
 cells. Numbers 

inside gates represent percentage positive cells. (d) Representative plots showing 

expression of ICOSL by Vγ9Vδ2 T cells at day 3 of culture, or unstimulated CD19
+
 B cells as 

a control. All figures representative of > 4 individual donors from >4 individual experiments.  

Figure 3.15 displays the expression of APC markers by Vγ9Vδ2 T cells, stimulated 

with 10 nM HMB-PP in combination with each common γ-chain cytokine. Consistent 

with the robust proliferation observed, both IL-2 and IL-15 supported optimal 

expression of numerous APC markers, all of which were expressed to significantly 
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higher levels than unstimulated controls. The majority of cells cultured under these 

conditions showed expression of HLA-DR, CD80, CD86, CD40, and CD70, which 

are all necessary for induction of naive CD4+ T cell responses. Expression of CD83 

and ICOSL was evident on a smaller fraction of cells, but nevertheless was clearly 

expressed. In contrast to the robust proliferative response induced, IL-7 completely 

failed to support the expression of any APC marker by Vγ9Vδ2 T cells. IL-21, in a 

similar manner to its low level induction of proliferation, supported low level 

expression of APC markers such as HLA-DR and CD86, in comparison to IL-2 and 

IL-15. Vγ9Vδ2 T cells cultured with IL-4 failed to express APC characteristics, 

similarly to Vγ9Vδ2 T cells cultured in the absence of any cytokine. Of note, similar 

patterns of results and levels of marker expression were observed when using 1 nM 

HMB-PP instead of 10 nM HMB-PP (data not shown).  
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Figure 3.15 - Expression of antigen presenting cell markers by Vγ9Vδ2 T cells in 

response to HMB-PP and common γ-chain cytokines. Summary graphs displaying 

expression of APC markers by Vγ9Vδ2 T cells, stimulated with 10 nM HMB-PP in 

combination with different common γ-chain cytokines. Percentages of APC marker positive 

cells were determined at day 3 of culture by flow cytometry. Percentage of HLA-DR
+
 cells 

were determined by gating on live, single, Vγ9
+
 T cells. Remaining APC marker-positive cells 

were determined by gating on live, single, HLA-DR
+
Vγ9

+
 T cells. Data points display 

individual donors from individual experiments. Horizontal lines display means of data sets. 

Error bars display standard deviation of samples. Statistical significance was determined 

using the Friedman test, followed by the Dunn‟s multiple comparison test, *=p<0.05, 

**=p<0.01, ***=p<0.001, ****=p<0.0001, ns=not significant.  Significance displayed in 

comparison to unstimulated control.  

In addition to assessing the proliferation and APC phenotype of Vγ9Vδ2 T cells, the 

production of cytokines was examined (Figure 3.16). In a similar manner to previous 

experiments, Vγ9Vδ2 T cells were cultured over 3 days, stimulated with HMB-PP 

and common γ-chain cytokines, and production of IFN-γ and TNF-α was determined 

by ELISA. Significant levels of both cytokines were produced in the presence of both 

IL-2 and IL-15, with reduced levels produced by IL-7 cultured cells. Interestingly, 



97 
 

cells cultured in the presence of IL-15 produced significantly higher levels of TNF-α 

as compared to those cultured with IL-2. As expected282, IL-21 did not support the 

production of either cytokine, despite allowing for sufficient activation of cells in 

terms of proliferation and APC phenotype, and actually inhibited production of IFN-γ 

and to a lesser extent TNF-α as compared to HMB-PP alone controls. Other 

cytokines assessed, including IL-4 and IL-10, were absent in cell culture 

supernatants.  
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Figure 3.16 - Production of cytokines by Vγ9Vδ2 T cells in response to various 

common γ-chain cytokines. Vγ9Vδ2 T cells were stimulated with 10 nM HMB-PP in 

combination with different common γ-chain cytokines. Cytokine levels were determined in 

supernatants by ELISA, after 24 hours of culture. Bar charts display mean data from 4 

individual donors, from 3 individual experiments. Error bars display standard deviation of 

samples. Statistical significance was determined using the Friedman test, followed by the 

Dunn‟s multiple comparison test, *=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001.  

Significance displayed in comparison to unstimulated control.  

The importance of cytokine production by antigen presenting cells in the polarisation 

of naive CD4+ T cell responses has been extensively studied in the literature and 

discussed here. As such, an overall analysis of cytokine production by all APC types 

to be used in the polarisation of naive CD4+ T cells was conducted (Figure 3.17). In 

addition to the different APC types, multiple methods of stimulation for each subset 

were examined. With monocyte and DC controls, LPS and PGN stimulated cells 

were examined for cytokine production alongside unstimulated cells. For γδ T-APCs, 

the four common γ-chain cytokines IL-2, IL-15, IL-7, and IL-21 were assessed, 

henceforth referred to as giving rise to IL-2 γδ T-APCs, those generated with IL-15 

referred to as IL-15 γδ T-APCs, and so on.  

A total of 11 individual cytokines were assessed by ELISA. As previously discussed, 

the only cytokines amongst these 11 markers produced by γδ T-APCs were IFN-γ 

and TNF-α. In contrast, both monocytes and DCs displayed a wide range of 

cytokine production, differing depending on the type of stimulation used. IL-12p70 

was only produced by DCs stimulated with LPS, in contrast to IL-23 which was 

favoured by both DCs and monocytes stimulated with PGN. The production of IL-

12p70 by LPS-matured DCs is consistent with published data, in that these cells are 

potent Th1 cell inducers206. PGN treatment of cells, in addition to inducing IL-23 
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production, also induced significant levels of IL-6, and IL-1β in monocytes, all 

cytokines directed towards Th17 cell polarisation. Indeed, PGN has previously been 

shown to favour Th17 cell differentiation95. DCs stimulated with PGN also produced 

high levels of IL-10, potentially allowing for Th2 cell differentiation. The cytokines IL-

4, IL-17, IL-22, and IL-27, were absent in all culture supernatants examined. By 

analysing the cytokine profiles of different APCs, it is clear that each type of APC is 

likely to have the potential to polarise markedly different subsets of T helper 

lineages.  
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Figure 3.17 - Cytokine profiles of antigen presenting cells in response to various 

stimulations. Monocyte-derived dendritic cells (DCs) or monocytes (Mono) were either 

unstimulated (iDC/Unstimulated Mono) or stimulated for 24 hours with LPS or PGN. Vγ9Vδ2 

T cells were stimulated with 10 nM HMB-PP and different common γ-chain cytokines for 24 

hours. Cytokine levels were determined in culture supernatants by ELISA. Data points 

display individual donors from individual experiments. Horizontal lines display means of data 

sets. Error bars display standard deviation of samples. Statistical significance was 

determined using the Kruskal-Wallis test, followed by the Dunn‟s multiple comparison test, 

*=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001, ns=non-significant.   

 One last aspect of γδ T-APCs to be examined was that of antigen uptake. Previous 

studies examined the process of antigen uptake by Vγ9Vδ2 T cells in detail326, 

however, the control of this feature by different common γ-chain cytokines has yet to 

be determined. To investigate this function, FITC-labelled BSA was added to 

cultures for 1 hour, allowing for its uptake, and the fluorescence of cells in the FITC 

channel was determined by flow cytometry (Figure 3.18). BSA-FITC was added to 
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differentially cultured cells at various time points, either at 4°C or 37°C. As such, the 

fold change in MFI could be calculated between 4°C cultures, where little/no antigen 

would be taken up, and 37°C cultures, where antigen uptake is unhindered.  

A representative histogram is displayed in Figure 3.18a, showing the clear uptake of 

BSA-FITC at 37°C as compared to controls. A time course was set up, to investigate 

the kinetics of uptake by Vγ9Vδ2 T cells after activation (Figure 3.18b). Freshly 

isolated cells, stimulated with HMB-PP and IL-15 for 1 hour, exhibited no difference 

to unstimulated cells, as expected. Progressing through the later time points, 

differences between stimulated and unstimulated cells became more prominent. 

Given that the largest differences in fold change MFI were observed at day 5, 

cultures of Vγ9Vδ2 T cells were set up with the different common γ-chain cytokines 

to assess any differences between treatments at day 5 of culture. Consistent with 

prior observations, both IL-2 and IL-15 treatments induced significant antigen uptake 

over unstimulated controls. The effect of IL-7, while allowing for an increase in 

antigen uptake, was not significant as compared to unstimulated cells. Given these 

results, it appears that increase in antigen uptake by Vγ9Vδ2 T cells correlated more 

with proliferative data than with APC phenotype. Indeed, there was no difference in 

fold change MFI between APC marker positive and negative cells in all conditions 

(data not shown).  
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Figure 3.18 – Fluorescent antigen uptake by Vγ9Vδ2 T cells. (a) Representative 

histograms displaying antigen uptake by Vγ9Vδ2 T cells cultured in the presence of 10 nM 

HMB-PP and IL-15; red displays fluorescence in the FITC channel at 37°C with no BSA-

FITC, blue at 4°C with BSA FITC, and orange at 37°C with BSA-FITC added to the culture. 

(b) Time course of fluorescent antigen uptake by unstimulated and 10 nM HMB-PP/IL-15-

stimulated Vγ9Vδ2 T cells over 5 days of culture. BSA-FITC was added at each timepoint for 

1 hour of culture and MFI assessed by flow cytometry. Fold change MFI calculated as the 

difference between MFI at 4°C and 37°C in the presence of BSA-FITC. (c) Fold change in 

MFI of Vγ9Vδ2 T cells cultured in the presence of BSA-FITC in combination with different 

common γ-chain cytokines at day 5 of culture. Horizontal lines display means of data sets. 

Error bars display standard deviation of samples. Statistical significance was determined 

using the Friedman test, followed by the Dunn‟s multiple comparison test,  *=p<0.05, 

**=p<0.01, ***=p<0.001, ****=p<0.0001.  
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3.7 - Discussion 

In summary, this chapter has discussed the optimisation of appropriate controls for 

assays investigating the polarisation of CD4+ T cells by γδ T-APCs. Using naive 

CD4+ T cells, controls for each T helper lineage were optimised and methods for the 

detection of intracellular cytokines, secreted cytokines, and transcription factors 

were all established. In addition, dendritic cell and monocyte APC controls were 

generated for comparison with γδ T-APCs.  

With experimental controls established, focus shifted to the regulation of APC 

function in Vγ9Vδ2 T cells. Data presented here show that the common γ-chain 

family of cytokines regulates a multitude of Vγ9Vδ2 T cell functions. IL-2 and IL-15 

were able to promote 'full' functional abilities of Vγ9Vδ2 T cells, promoting their 

proliferation, APC phenotype, cytokine production, and increased ability to take up 

soluble antigen. The role of IL-21 in controlling Vγ9Vδ2 T cells appeared less potent, 

allowing cells to proliferate and express APC characteristics, albeit at lower levels as 

compared to IL-2 and IL-15. Interestingly, IL-21 also did not support production of 

IFN-γ and TNF-α, which has been reported previously282. Most surprising perhaps 

was the role of IL-7; this cytokine supported Vγ9Vδ2 T cell proliferation and cytokine 

production to similar levels as did IL-2 and IL-15, but did not support any APC 

marker expression from those examined. In contrast to all other cytokines, IL-4 only 

showed very poor efficacy in aiding any of the Vγ9Vδ2 T cell functions investigated 

and was thus excluded from the experiments in the following chapters.  

The differences between these cytokines in regulating Vγ9Vδ2 T cell immunity, and 

that of T cells in general, has been described in the literature275. IL-2 is reported to 

be a pro-inflammatory cytokine, produced predominantly by T cells upon activation 

and co-stimulation. Given this role in immunity, it is not surprising that IL-2 would 

also promote APC function by Vγ9Vδ2 T cells, allowing them to promote further 

inflammatory immune responses. IL-15 is generally reported to be a homeostatic 

cytokine, though it is produced by activated DCs and monocytes, favouring cell 

survival and proliferation. In this chapter, IL-15 has been identified to favour an APC 

phenotype in Vγ9Vδ2 T cells as well. Both IL-2 and IL-15 have been examined in 

previous γδ T-APC studies, identified to promote this function, as well as inducing 

significant effector expansion and cytotoxic ability325. However, the role of IL-15 

alone in inducing γδ T-APCs has not been presented prior to this study. IL-21 has 

been reported to function as a T cell growth factor, as well as favouring Vγ9Vδ2 T 

cell function in aiding B cell responses, inducing a Tfh cell phenotype280,282. 
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Expression of co-stimulatory molecules such as CD40L and ICOS has been 

identified as regulated by IL-21280, and the repertoire of molecules regulated by IL-

21 has been expanded to include CD86 and CD70 (Unpublished data, Raj Bansal 

PhD Thesis). The reason why IL-21 supports only a sub-optimal APC phenotype as 

compared to IL-2 and IL-15 is unclear. This effect was also observed at higher 

concentrations of IL-21, suggesting the suboptimal phenotype is a result of the 

cytokine activity itself rather than a lower bioactivity. The role of IL-7, described as a 

homeostatic cytokine produced by a variety of epithelial cell types, in favouring 

proliferation but not APC marker expression by Vγ9Vδ2 T cells is in line with this 

observation, in that it supports non-inflammatory proliferation of cells, and as such 

does not promote an inflammatory APC phenotype.  

In terms of specific effects on Vγ9Vδ2 T cells, the common γ-chain cytokines have 

been reported to induce responses in different memory subsets. IL-2 and IL-15 

favour responses in TEM cells where receptor expression is highest, whereas the IL-

7 receptor is found mainly on naive and TCM cells277. The differential effects between 

these cytokines could indeed be due to different memory subsets responding to 

each treatment, indicating TEM cells may be capable of APC function whereas naive 

or TCM cells may be limited in this functional capacity. Alternatively, longer culture 

periods may be required to induce APC function in naive and TCM cells, which can 

transition towards the TEM phenotype under the correct stimulatory conditions. What 

is clear is that APC function in Vγ9Vδ2 T cells is differentially regulated by the 

common γ-chain cytokines. 

With respect to expression of APC markers, the majority of those examined 

displayed clear expression upon Vγ9Vδ2 T cell stimulation. However, staining for 

ICOSL, in addition to CD83, was not as defined as other markers (Figure 3.14c). 

Previous unpublished data (Ana de Barros, PhD thesis) described the expression of 

ICOSL on a proportion of Vγ9Vδ2 T cells cultured using similar protocols as 

described here. This subpopulation was identified as approximately 20% of Vγ9Vδ2 

T cells, similar to the levels described in this study. Given that staining of CD19+ B 

cells as a positive control displayed similar staining efficacy, and the previous data 

in support, it appears that Vγ9Vδ2 T cells do indeed express ICOSL at low levels 

after stimulation. In addition, ICOSL expression by other cellular subsets has been 

reported to become upregulated upon CD40 ligation350, and as such higher 

expression of ICOSL by Vγ9Vδ2 T cells may also depend on cellular interaction with 

responder cells via the CD40 pathway. The functionality of this molecule in inducing 
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CD4+ T cell responses, in addition to other APC markers, will be examined in 

subsequent assays.  

In contrast to previous studies conducted examining the upregulation of APC 

markers by Vγ9Vδ2 T cells, the kinetics of expression presented here for HLA-DR, 

CD86, and CD70 (Figure 3.14a) differ from those studies, in that APC marker 

expression was detected at 72 hours instead of 18-24 hours. This is likely due to the 

culture conditions examined; previous studies utilised irradiated EBV-transfected B 

cells322 at feeder cell:Vγ9Vδ2 T cell ratios of 1:3 (or ranges of 1:1-1:10 in some 

experiments), whereas the data presented here utilised monocyte ratios of 1:10. 

Given the increased number of feeder cells, and the large size of EBV-B cells 

compared to monocytes, it is possible these cells were more efficient at presenting 

HMB-PP to Vγ9Vδ2 T cells, providing a much stronger stimulation than with 

monocytes and allowing for more rapid expression of APC characteristics.  

The regulation of antigen uptake by Vγ9Vδ2 T cells differs to other APCs such as 

DCs. In previous studies and again presented here, Vγ9Vδ2 T cells require 

activation before an increase in antigen uptake is observed. In contrast, immature 

DCs constantly take up and process antigen until maturation, upon which endocytic 

function is downregulated326. Given this reverse in roles, and consistent with the 

requirement for activation to induce APC phenotypes in Vγ9Vδ2 T cells, a likely 

scenario for γδ T-APC function is dependent on activation by relevant stimuli, rather 

than as a constant processing of antigen322. 

Given the differential regulation of APC phenotype, Vγ9Vδ2 T cells cultured in the 

presence of IL-2, IL-15, IL-7, or IL-21 were used for subsequent assays, assessing 

their ability to polarise naive CD4+ T cell responses; IL-2 and IL-15 γδ T-APCs 

representing 'optimal' APCs, IL-21 cultured cells as 'sub-optimal', and IL-7 γδ T-

APCs presenting a negative APC control, given their lack of expression of molecules 

necessary to induce CD4+ T cell responses.    
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Chapter 4 - Polarisation of CD4+ T Cell Responses 

4.1 - Introduction 

The polarisation of CD4+ T cell responses is a complex process involving multiple 

cell types and polarising factors, which work either in collaboration to induce the 

required response, or antagonistically to prevent alternative phenotypes from 

emerging. Such factors include both cytokines and costimulatory molecules, 

differentially expressed by various antigen presenting cell types and under different 

conditions. Dendritic cells are the prototypic antigen presenting cells studied for the 

polarisation of naive CD4+ T cell responses. These cells are capable of remarkable 

plasticity; able to adapt to different stimulating ligands and polarise the appropriate T 

helper cell lineage206. Alongside this plasticity, DC subsets have proven specially 

equipped to induce certain lineages over others, as a result of restricted expression 

of certain pattern recognition receptors and polarising factors198. In addition to DCs 

however, numerous other cell types have proven capable of antigen presenting 

function, either non-professionally such as neutrophils306, or professionally such as 

B cells210. Alongside naive CD4+ T cell polarisation, memory CD4+ T cells have also 

been shown to exhibit plasticity in their phenotype156, transitioning from one lineage 

to another upon encountering the correct conditions, and as such this process is 

heavily mediated by APCs. 

As presented in Chapter 3, and consistent with previous published data, Vγ9Vδ2 T 

cells are capable of becoming antigen presenting cells. This cellular subset 

expresses key antigen presenting cell markers and costimulatory molecules, is 

capable of antigen uptake, processing and presentation, and has previously been 

shown to induce CD4+ and CD8+ T cell responses322. While much is known of the 

induction of CD8+ T cells responses by γδ T-APCs, little is known of the induction of 

CD4+ T cell responses, and the subsequent polarisation of T helper lineages. 

Limited data have shown that γδ T-APCs are capable of inducing distinct Th1 and 

Th2 responses, depending on culture conditions322. However, given the rapid 

expansion in the number of T helper lineages described in recent years, it remains 

unclear how γδ T-APCs may fit in with other APCs in the polarisation of CD4+ T cell 

responses.  

Vγ9Vδ2 T cells are capable of becoming antigen presenting cells under certain 

conditions; IL-2 and IL-15 favoured a strong APC phenotype, whereas IL-21 

supported limited APC characteristics and IL-7 did not support this novel function at 
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all (Figure 3.15). Previous studies of γδ T-APCs have predominantly focused on the 

role of IL-2 to promote APC function322,326, and as such little is known about how the 

cytokine microenvironment may affect Vγ9Vδ2 T cell function, with respect to APC 

capability and polarisation of CD4+ T cell responses. Indeed, Vγ9Vδ2 T cells display 

marked plasticity to differential cytokines in terms of their own cytokine 

production282, so it remains possible that APC function is plastic as well. As such, a 

central aim of this results chapter was to identify which T helper lineages are able to 

be induced by γδ T-APCs, and whether the cytokine microenvironment utilised for 

generating APCs has a knock-on effect on the subsequent T helper cell polarisation. 

This concept would be in line with current dendritic cell literature, where the APC 

has to adapt to the microenvironment and stimulation pathways, and 'make 

decisions' as to which lineage is most suitable to be induced206. Alternatively, given 

the DC subtype-specific nature of induction of certain CD4+ T cell lineages, it may 

be that γδ T-APCs favour the induction of one T helper subset over others, or are 

only capable of inducing certain arms of the CD4+ T cell immune response.   

In addition to assessing the polarising capabilities of γδ T-APCs, T helper lineages 

induced must be examined in the context of alternative APC polarisations. Given the 

complex nature of CD4+ T cell polarisation, and the ability of CD4+ T cell subsets to 

co-express different T helper lineage factors, a comparison of T helper responses 

induced by each APC subset is useful to identify where, and under which 

immunological scenarios, γδ T-APCs may exhibit their APC function in vivo.  

Once the polarising capacity of γδ T-APCs is determined, it is necessary to examine 

the mechanisms behind such polarisations. Due to the significant number of 

cytokines and costimulatory molecules required for CD4+ T cell polarisation, it is 

unclear which factors expressed by γδ T-APCs may be important in directing CD4+ 

T cell responses. As discussed previously, the cytokine expression profiles of γδ T-

APCs compared to DCs and monocytes show distinct variations (Figure 3.17), and 

as such it may be unlikely that γδ T-APCs utilise the same mechanisms to direct 

CD4+ T cell polarisation as their DC counterparts.  

Whilst much of the focus in the literature and in this thesis is on the polarisation of 

CD4+ T cell responses, the emergence of different CD8+ T cell lineages parallel to 

CD4+ T cells has identified possible functional niches where different APCs may 

play prominent roles in CD8+ T cell polarisation215,216. It is unclear at present whether 

γδ T-APCs promote polarisation of CD8+ T cell lineages.  
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4.2 - Aims of Chapter 

The following experimental aims will be discussed in this chapter: 

 Assess the ability of differentially generated γδ T-APCs to induce naive and 

memory CD4+ T cell proliferation. 

 Examine the polarisation of naive and memory CD4+ T cells by γδ T-APCs, 

in terms of intracellular cytokine expression, cytokine secretion, transcription 

factor expression, and chemokine receptor expression. 

 Compare T helper responses polarised by γδ T-APCs to those induced by 

DC and monocyte controls. 

 Examine autologous polarising systems to confirm responses observed 

using an allogeneic, mixed lymphocyte reaction culture system.  

 Assess CD8+ T cell polarisation by γδ T-APCs 

 Determine the polarising factors expressed by γδ T-APCs which are required 

for the polarisation of CD4+ T cell responses. 

4.3 - γδ T-APC Mediated Induction of CD4+ T Cell Proliferation 

As an initial step in investigating the ability of γδ T-APCs to induce CD4+ T cell 

responses, co-cultures were established to investigate the induction of proliferation 

in naive and memory CD4+ T cell populations. In a similar manner to those 

conducted with monocytes and dendritic cells (Figure 3.12), mixed lymphocyte 

reactions were set up utilising γδ T-APCs, and either naive CD4+ T cells or memory 

CD4+ T cells as responder cells. As discussed previously, γδ T-APCs were 

generated over a 3 day culture period by stimulating Vγ9Vδ2 T cells with 10 nM 

HMB-PP, in combination with IL-2, IL-15, IL-7, or IL-21. Once generated, γδ T-APCs 

were subsequently cultured at decreasing APC:responder ratios with CFSE-stained, 

allogeneic naive CD4+ T cells for a period of 5 days, upon which proliferation, in 

terms of CFSE dilution, was determined by flow cytometry (Figure 4.1).  

Figure 4.1 displays the proliferation induced in naive CD4+ T cells by differentially 

generated γδ T-APCs, at decreasing APC:responder ratios. Both IL-2 and IL-15 γδ 

T-APCs, which exhibited the most potent APC phenotype in terms of co-stimulatory 

molecule expression (Figure 3.15), induced high levels of naive CD4+ T cell 

proliferation at 1:1 APC:responder ratios. IL-2 and IL-15 γδ T-APCs both maintained 

this level of proliferation up to a 1:10 ratio, with further dilution of APCs resulting in 

reduced induction of proliferation. At a 1:1000 ratio, minimal proliferation was 
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observed in naive CD4+ T cell populations. IL-21 γδ T-APCs exhibited a similar 

pattern of CD4+ T cell proliferation induction, although the levels of proliferation 

observed were markedly lower than those induced by their IL-2 and IL-15 

counterparts. This is consistent with the APC phenotype of each subset, in that IL-

21 γδ T-APCs displayed significantly lower expression of costimulatory molecules 

necessary to induce naive CD4+ T cell responses. In contrast to these responses, 

IL-7 γδ T-APCs were unable to induce proliferative responses in naive CD4+ T cell 

populations, even at 1:1 cell ratios, reflective of their poor APC phenotype (Figure 

3.15). In a similar manner, unstimulated Vγ9Vδ2 T cells and HMB-PP alone-

stimulated cells did not induce significant proliferation in naive CD4+ T cell 

responder populations (data not shown). As such, IL-7 γδ T-APCs represented a 

good negative control for subsequent assays.   

By comparing these results with those obtained for monocytes and DCs in identical 

experiments (Figure 3.12), it can be seen that all APC subsets tested (excluding IL-7 

γδ T-APCs) were able to induce naive CD4+ T cell responses at a 1:10 

APC:responder ratio. Decreasing this ratio to 1:100, IL-2 and IL-15 γδ T-APCs, in 

addition to DCs, induced nCD4 proliferation, in contrast to IL-21 γδ T-APCs and 

monocytes which were unable to induce responses at this ratio. The only cell 

capable of maintaining naive CD4+ T cell proliferation at a 1:1000 ratio were DCs. 

Given this range of abilities to induce naive CD4+ T cell responses, it was decided 

that assessing CD4+ T cell proliferation at 1:10 APC:responder ratio would allow for 

examination of all APC types' ability to polarise CD4+ T cell responses.  The inability 

of γδ T-APCs to maintain naive CD4+ T cell proliferation at 1:1000 ratios is in 

contrast to previous studies, where at lower ratios, γδ T-APCs were as efficient as 

DCs at inducing responses322. As previously discussed, the APC generation 

protocols differed between those studies and this one, in that perhaps γδ T-APC 

stimulation in this experimental system was suboptimal as compared to others, likely 

accounting for this reduced capacity. Nevertheless, γδ T-APCs induced similar 

levels of naive CD4+ T cell proliferation at ratios up to 1:100 as did DCs, showing 

they are potent antigen presenting cells in their ability to promote CD4+ T cell 

responses.  

For these assays and subsequent ones, γδ T-APCs were treated with low dose 

radiation (12 Gy) to prevent significant cell proliferation whilst in culture with 

responder cells, minimising functional defects, as performed in previous studies322. 

Given the fact that DCs and monocytes do not proliferate in the co-culture system, 

whereas γδ T-APCs are still able to proliferate at day 3 when utilised in the assays, 
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this presented a potential inequality between APCs in the culture systems used. As 

such, irradiated γδ T-APCs were utilised in all future assays presented to minimise 

the effects that γδ T-APC proliferation may have on induction of naive CD4+ T cell 

responses. However, where possible, the findings produced utilising irradiated γδ T-

APCs were replicated using non-irradiated γδ T-APCs, and will be discussed at 

each stage of data presented. In comparison with the data presented in Figure 4.1 

using irradiated γδ T-APCs, non-irradiated γδ T-APCs induced similar levels of 

proliferation, and no statistically significant differences were observed between the 

two populations (data not shown).     
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Figure 4.1 – Proliferation of naive CD4
+
 T cells in response to decreasing γδ T-

APC:responder cell ratios. Naive CD4
+
 T cells were cultured with allogeneic γδ T-APCs at 

decreasing APC:responder cell ratios for a period of five days. γδ T-APCs were generated 

with either IL-2, IL-15, IL-21, or IL-7. Proliferation of naive CD4
+
 T cells was determined by 

assessing CFSE dilution by flow cytometry, and percentages of proliferating, CFSE
lo
 cells 

were determined. Data displayed represent an individual healthy donor, from a total of 3 γδ T 

cell and CD4
+
 T cell donors from 3 individual experiments.  

Having determined a 1:10 APC:responder ratio was optimal for assessing 

responses induced by all APC subtypes, a comparison of proliferation induced by 

each APC subtype was conducted (Figure 4.2). In Figure 4.2a, representative flow 

cytometry histograms displaying naive CD4+ proliferation induced by each γδ T-APC 

subtype are presented, in addition to naive CD4+ T cells cultured alone for 5 days. 

Figure 4.2b displays a comparison of naive CD4+ T cell proliferation induced by 

each subtype of APC, under all stimulating conditions. The levels of proliferation 

induced by IL-2 and IL-15 γδ T-APCs were almost identical to those promoted by 

LPS and PGN-treated DCs, indicating these cells possess a similar capacity to 

stimulate naive CD4+ T cell responses in this system, with naive CD4+ T cell 

proliferation significantly higher than that observed with naive cells cultured alone. In 

contrast, IL-21 γδ T-APCs induced responses more consistent with those observed 

when utilising immature DCs or monocytes as APCs. However, the levels of 

proliferation observed were not statistically significant as compared to naive CD4+ T 

cells alone. This is likely due to the variation in proliferation; in mixed lymphocyte 

reactions, the reactivity of allogeneic cell populations can vary significantly 

depending on the combination of donors, and this variation can be seen in all 

conditions examined.  Overall, IL-2 and IL-15  γδ T-APCs induced robust 
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proliferation in naive CD4+ T cell populations in a similar manner to DCs, whereas 

IL-21 γδ T-APCs favoured low level proliferation more comparable to monocytes. IL-

7 γδ T-APCs, as previously discussed, were unable to induce naive CD4+ T cell 

proliferation.  
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Figure 4.2 – Proliferation of naive CD4
+
 T cells induced by different antigen presenting 

cells. Naive CD4
+
 T cells were cultured with different types of APC, stimulated under 

differing conditions, at a 1:10 APC:responder ratio for five days. Proliferation of naive CD4
+
 T 

cells was determined by assessing CFSE dilution by flow cytometry at day 5 of culture, and 

percentages of proliferating, CFSE
lo 

cells were determined. (a) Representative histograms 

displaying naive CD4
+
 T cell proliferation in response to γδ T-APCs, generated under 

different conditions. Numbers on graphs display percentages of proliferating, CFSE
lo 

cells . 

(b) Comparison of naive CD4
+
 T cell proliferation induced by each APC. Data points 

represent individual healthy APC donors from individual experiments. Horizontal lines display 

means of data sets. Error bars display standard deviation of samples. Statistical significance 

was determined using the Kruskal-Wallis test, followed by the Dunn‟s multiple comparison 

test, *=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001, ns=not significant.  Significance 

displayed in comparison to unstimulated, nCD4 alone control.  

In comparison to naive CD4+ T cells, memory CD4+ T cells possess reduced 

requirements to respond to antigen, in that activation thresholds are lower and 

memory cells are less dependent on costimulation46,47. For these reasons, the 

induction of memory CD4+ T cell proliferation by APC subtypes was also assessed, 

to determine if any differences could be observed compared to naive CD4+ T cells 

(Figure 4.3). As with naive responders, IL-2 and IL-15 γδ T-APCs induced robust 
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memory CD4+ T cell responses, promoting levels of proliferation similar to those 

seen with DCs. IL-21 γδ T-APCs again induced lower levels of proliferation, 

consistent with immature DCs and monocytes. However, as with naive CD4+ T cell 

responses, only the high levels of proliferation induced by IL-2 and IL-15 γδ T-APCs, 

alongside DCs, were statistically significant. Interestingly, and potentially reflecting 

the reduced activation requirements of memory cells, the levels of proliferation 

observed with memory CD4+ T cells were higher than those with naive CD4+ T cells. 

Again, IL-7 γδ T-APCs were unable to induce any responses in memory CD4+ T cell 

populations.  
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Figure 4.3 – Proliferation of memory CD4
+
 T cells induced by different antigen 

presenting cells. Comparison of memory CD4
+
 T cell proliferation induced by each type of 

APC. Memory CD4
+
 T cells (CD4

+
CD45RA

-
) were cultured with different APCs, stimulated 

under differing conditions, at a 1:10 APC:responder ratio for five days. Proliferation of 

memory CD4
+
 T cells was determined by assessing CFSE dilution by flow cytometry, and 

percentages of proliferating, CFSE
lo
 cells were determined. Data points represent individual 

healthy APC donors from individual experiments. Horizontal lines display means of data 

sets. Error bars display standard deviation of samples. Statistical significance was 

determined using the Kruskal-Wallis test, followed by the Dunn‟s multiple comparison test, 

*=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001, ns=not significant.  Significance displayed 

in comparison to unstimulated, nCD4 alone control.  

To confirm the induction of CD4+ T cell responses was indeed dependent on cell 

contact with γδ T-APCs, blocking antibodies against integrin molecules were added 

to cultures and responder cell proliferation was measured (Figure 4.4). A number of 

cell adhesion molecules and their integrin ligands exist to facilitate cell adhesion. 

Members of the β2 family of integrins are expressed exclusively by leukocytes, and 

are all composed of a common β chain known as CD18, in combination with one of 

four known α chains, referred to as CD11a/b/c/d351,352. CD11a/CD18, or lymphocyte 

function-associated antigen (LFA-1), is expressed by all leukocytes, and interacts 

with ICAM-1 (CD54) to facilitate cell adhesion. CD11b/CD18, or Mac-1, is primarily 

expressed my myeloid cells, and is also capable of ICAM-1 interaction, among other 
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receptors. CD11c/CD18 and CD11d/CD18 also play roles in cell adhesion, in 

addition to mediating phagocytosis351.  

To confirm that cell contact and adhesion between γδ T-APCs and naive CD4+ T 

cells was essential for induction of CD4+ T cell responses, γδ T-APCs were labelled 

with a blocking antibody to CD18, targeting all β2 integrin members, prior to co-

culture with responder cells (Figure 4.4). Upon addition of this antibody, proliferation 

of naive CD4+ T cells was completely abrogated, as compared to no blocking and 

isotype controls. With confirmation that β2-mediated cell adhesion was necessary 

for responses observed, an antibody to CD11a was added in the same manner to γδ 

T-APC cultures. Similarly to CD18, blocking CD11a significantly reduced 

proliferation of naive CD4+ T cells, and no significant difference was observed 

between anti-CD18 and anti-CD11a treatments. These experiments indicate that 

LFA-1 (CD11a/CD18) interaction with ICAM-1 is the primary mechanism responsible 

for cell adhesion between γδ T-APCs and naive CD4+ T cells, respectively. 
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Figure 4.4 – Blockade of cell adhesion molecules in γδ T-APC:naive CD4
+
 T cell co-

cultures. Comparison of naive CD4
+
 T cell proliferation induced by IL-15 γδ T-APCs, in the 

presence or absence of blocking antibodies to cell adhesion molecules. Naive CD4
+
 T cells 

were cultured with allogeneic IL-15 γδ T-APCs at a 1:10 APC:responder ratio for five days. 

Proliferation of naive CD4
+
 T cells was determined by assessing CFSE dilution by flow 

cytometry, and percentages of proliferating, CFSE
lo 

cells were determined. Data points 

represent individual healthy donors from individual experiments. Horizontal lines display 

means of data sets. Error bars display standard deviation of samples. Statistical significance 

was determined using the Friedman test, followed by the Dunn‟s multiple comparison test 

*=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001, ns=not significant.   

In summary, γδ T-APCs generated in this system are able to induce both naive and 

memory CD4+ T cell responses, in terms of proliferation. Further to this, the 

mechanism by which γδ T-APCs are generated with reference to the 

microenvironment plays a significant role in their subsequent ability to promote CD4+ 

T cell responses. 

4.4 - Polarisation of naive CD4+ T cells    

With confirmation that γδ T-APCs are indeed able to induce proliferative responses 

in naive CD4+ T cells, attention was next focused on the effector phenotype of 

stimulated naive CD4+ T cells. 

In a similar manner to previous experiments assessing CD4+ T cell proliferation, γδ 

T-APC and naive CD4+ T cell co-cultures were set up at 1:10 APC:responder ratios. 
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Cultures were fed at day 6 with IL-2 and IL-23 as described in Chapter 3, and 

incubated up until day 9,at which point cells were restimulated to induce cytokine 

production. Subsequently, intracellular cytokine expression was assessed by flow 

cytometry, and the percentages of cells expressing a number of cytokines were 

determined.  

Figure 4.5 displays representative flow cytometry plots, showing intracellular 

stainings of naive CD4+ T cells co-cultured with either IL-2, IL-15, or IL-21 γδ T-

APCs. Upon co-culture with IL-2 γδ T-APCs, naive CD4+ T cells expressed a 

number of different cytokines. A large percentage of CD4+ T cells produced IFN-γ, in 

the absence of any other cytokines, and as such exhibited a classical Th1 

phenotype (Figure 4.5a). In addition, a small percentage of cells also appeared to 

express IL-22, either alone or in combination with IFN-γ. No IL-17-expressing 

populations could be identified in the responder cells. With a lack of IL-17 

production, the IL-22-expressing cells detected were split between IFN-γ− (Th22) 

and IFN-γ+ (Th1) lineages. In addition to these cytokines, a population of IL-4 single-

positive cells was identified, representing Th2 cells (Figure 4.5b). Minimal levels of 

IL-9 or IL-10 producing cells were detected in IL-2 γδ T-APC co-cultures.  

In comparison to IL-2 γδ T-APC mediated polarisation of naive CD4+ T cells, IL-15 

γδ T-APCs induced a similar repertoire of T helper cell lineages in responding cells. 

Populations of Th1 and Th2 cells appeared similar across both types of APC 

cultures, and no IL-17 producing cells were detected. However, increased 

populations of IL-22 expressing cells were detected when naive CD4+ T cells were 

polarised by IL-15 γδ T-APCs, a large proportion of which were Th1 cells co-

expressing IFN-γ, with a smaller subset comprising IFN-γ− Th22 cells (Figure 4.5a).  

Additionally, when naive CD4+ T cells were polarised by IL-21 γδ T-APCs, similar 

populations were identified, with a number of exceptions. The magnitude of the Th1 

response induced by IL-21 γδ T-APCs appeared to be reduced as compared with IL-

2 and IL-15 counterparts, whereas IL-4 and IL-17 expressing populations were 

similar across all conditions. The polarisation of IL-22 producing cells was similar to 

that observed with IL-15 γδ T-APCs, with IL-22+ cells split between IFN-γ+ and IFN-

γ−. The biggest difference in IL-21 γδ T-APC-polarised naive CD4+ T cell phenotype 

as compared to other subsets was a small but apparent population of IL-10 

producing cells, which were negative for all other cytokines examined, and a small 

group of cells co-expressing IL-4 and IL-10 together (Figure 4.5b). These IL-10 

producing populations were undetectable in IL-2 and IL-15 γδ T-APC co-cultures. 
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Overall, it appeared that differentially generated γδ T-APC populations were, at least 

partially, able to induce different magnitudes of each T helper lineage observed, 

while no IL-17 or IL-9 was detected across all cultures. In comparison with 

previously published data on naive CD4+ T cell polarisation by γδ T-APCs, both Th1 

and Th2 populations were identified, making these findings consistent with previous 

work322. However, the expression of IL-22 and IL-10 as cytokines induced by γδ T-

APCs has not been reported before.  
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Figure 4.5 – Intracellular cytokine expression by naive CD4
+
 T cells in response to 

stimulation by γδ T-APCs. Comparison of intracellular cytokine expression by naive CD4
+
 

T cells stimulated by allogeneic γδ T-APCs, generated under differing conditions, after co-

culture for 9 days at 1:10 APC:responder ratios. Intracellular cytokine production was 

assessed by flow cytometry after cell restimulation at day 9 of culture. (a) Representative 

intracellular stainings displaying intracellular expression of IFN-γ, IL-17, and IL-22 by naive 

CD4
+
 T cells, polarised by IL-2, IL-15, and IL-21 γδ T-APCs. (b) Representative intracellular 

stainings displaying intracellular expression of IL-4, IL-10, and IL-9 by naive CD4
+
 T cells, 

polarised by IL-2, IL-15, and IL-21 γδ T-APCs. Plots are representative of >5 individual 

healthy γδ T cell donors from >5 individual experiments. Numbers on graphs display 

percentages of cytokine-expressing cells, gated on CD3
+
CD4

+
Vδ2

-
 cells.  

IF
N

-γ

IL-22

IL
-1

7

IL-2 γδ T-APCs IL-15 γδ T-APCs IL-21 γδ T-APCs

33.8 1.96

1.26

30.9 4.65

3.29

0.43 0.05

3.05

0.22 0.03

7.84

19.0 2.66

3.71

0.23 0.00

6.32

a

b

IL
-1

0

IL-4

IL
-9

IL-2 γδ T-APCs IL-15 γδ T-APCs IL-21 γδ T-APCs

0.40 0.55

13.0

0.32 0.24

10.5

0.17 0.38

12.4

0.23 0.16

9.70

1.29 1.17

10.9

0.45 0.34

10.7



121 
 

When dendritic cells were utilised as APCs in identical naive CD4+ T cell polarisation 

assays, markedly different responses were observed as compared to those seen 

with γδ T-APCs (Figure 4.6). In terms of Th1 type responses, iDCs and PGN-treated 

DCs both induced similar levels of single IFN-γ+ cells to IL-21 γδ T-APCs, whereas 

LPS-treated DCs induced higher percentages of Th1 cells more similar to those 

observed with IL-2 and IL-15 γδ T-APCs. Both iDCs and LPS-treated DCs induced 

low levels of IL-17 single positive cells (Th17 cells), and low levels of IL-22-

producing cells. PGN-treated DCs appeared the only DC condition capable of 

inducing similar levels of IL-22 as compared to IL-15 and IL-21 γδ T-APCs. 

However, a significant proportion of these IL-22+ cells co-expressed IL-17, and as 

such were characterised as Th17 cells. No DC condition examined induced levels of 

IL-22+ IL-17− cells as seen with IL-15 and IL-21 γδ T-APCs.  

With respect to IL-4, IL-9 and IL-10 induction by DCs, only small populations of IL-4 

single positive cells were identified, and no significant populations of IL-10 and IL-9 

producing cells (data not shown). To relate these findings to published data, LPS-

treated DCs have been reported to predominantly promote Th1 responses206, as can 

be seen in these data (Figure 4.6). In contrast, PGN activation of APCs has been 

identified to promote Th17 responses over other lineages95, reflected in these data 

whereby increased populations of IL-17+ cells were detected, in contrast to the 

decreased levels of Th1 cells.  
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Figure 4.6 – Intracellular cytokine expression by naive CD4
+
 T cell responses in 

response to stimulation by dendritic cells. Comparison of intracellular cytokine 

expression by naive CD4
+
 T cells stimulated by allogeneic DCs, after co-culture for 9 days at 

1:10 APC:responder ratios. DCs were cultured with LPS or PGN, or left unstimulated, for 24 

hours prior to co-culture. Intracellular cytokine expression was assessed by flow cytometry 

after cell restimulation at day 9 of culture. Representative intracellular stainings displaying 

expression of IFN-γ, IL-17, and IL-22 by naive CD4
+
 T cells, polarised by immature, LPS-

treated, or PGN-treated monocyte-derived DCs. Plots are representative of >5 individual 

healthy DC donors from >5 individual experiments. Numbers on graphs display percentages 

of cytokine-expressing cells, gated on CD3
+
CD4

+
 cells.  

In addition to DCs, monocytes were also examined for their ability to polarise distinct 

lineages of T helper cells (Figure 4.7). In identical experiments to DCs, monocytes 

were either left unstimulated or treated with LPS or PGN, and used to polarise 

allogeneic naive CD4+ T cells over a 9 day culture period. Similar patterns of results 

were identified with monocyte APCs as compared with DCs. Unstimulated 

monocytes only induced low levels of Th1 and Th17 cells, LPS-treated monocytes 

favoured Th1 responses and induced little IL-17 and IL-22, and finally PGN-treated 

monocytes supported the polarisation of significant populations of Th17 cells. Again, 

no condition examined was able to promote the levels of IL-22+IL-17− cells as 

observed with γδ T-APCs. Monocytes treated with PGN have been identified as 

potent Th17 inducing APCs95, able to outperform DCs in this role despite inducing 

lower levels of proliferation in allogeneic naive CD4+ T cell responders, as observed 
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in Figure 4.7. Levels of Th2 cells induced by monocytes were indistinguishable from 

those induced by DCs, and only low levels of IL-10 producing cells were identified. 

Minimal IL-9+ cell populations were identified (data not shown).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



124 
 

 

Figure 4.7 – Intracellular cytokine expression by naive CD4
+
 T cell responses in 

response to stimulation by monocytes. Comparison of intracellular cytokine expression 

by naive CD4
+
 T cells stimulated by allogeneic monocytes, after co-culture for 9 days at 1:10 

APC:responder ratios. Monocytes were cultured with LPS or PGN, or left unstimulated, for 

24 hours prior to co-culture. Intracellular cytokine expression was assessed by flow 

cytometry after cell restimulation at day 9 of culture. Representative intracellular stainings 

displaying expression of IFN-γ, IL-17, and IL-22 by naive CD4
+
 T cells, polarised by 

unstimulated, LPS-treated, or PGN-treated monocytes. Plots are representative of >5 

individual healthy monocyte donors from >5 individual experiments. Numbers on graphs 

display percentages of cytokine-expressing cells, CD3
+
CD4

+
 cells.  

Figure 4.8 displays a summary of the percentages of cytokine positive cells in 

polarised naive CD4+ T cell populations. With respect to IFN-γ induction, both IL-2 

and IL-15 γδ T-APCs induced the highest levels in naive CD4+ T cell responders, 

matched only by LPS-treated DCs and monocytes. In contrast, IL-21 γδ T-APCs, in 

a similar manner to PGN-treated monocytes and immature DCs, polarised reduced 

populations of IFN-γ-producing cells. The differences in IFN-γ induction observed 

between IL-2/IL-15 γδ T-APCs and those induced by IL-21 γδ T-APCs were 

statistically significant. As previously stated, IL-17 was completely absent from γδ T-

APC:naive CD4+ T cell co-cultures. In contrast, all monocyte and DC cultures 

induced at least minimal levels of IL-17, increasing from immature APCs, to LPS 

treated APCs, with the highest levels of IL-17 induced by PGN-treated DCs and 

monocytes. Despite significant variation across donors in terms of DC and 
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monocyte-induced Th17 polarisation, these levels of Th17 induction were 

significantly higher than those in γδ T-APC co-cultures.  

One of the most defining effects of γδ T-APC co-culture on naive CD4+ responder T 

cells, and that showed significant variation between Vγ9Vδ2 T cell treatments, was 

in the induction of IL-22. Whilst IL-2 and IL-21 γδ T-APCs induced similar 

percentages of IL-22+ cells as did monocytes and DCs, IL-15 γδ T-APCs polarised 

increased populations of IL-22-expressing cells across all donors examined, the 

results of which were statistically significant compared to other γδ T-APC co-cultures 

and alternative APC controls. As previously discussed, a large proportion of these 

IL-22 expressing cells were IFN-γ co-producers (Th1 cells), whereas the remaining 

cells represented IFN-γ− Th22 cells. All IL-22+ cells in these cultures were absent for 

IL-17 expression.  

In terms of IL-4 induction in naive CD4+ T cells, γδ T-APCs induced similar levels of 

positive cells, regardless of the generation protocol. Only monocytes treated with 

LPS and PGN were able to polarise similar levels of IL-4 producing cells. Across 

donors, large levels of variation in IL-4 producing cells were identified, particularly in 

γδ T-APC co-cultures, though there appeared to be a trend towards higher levels of 

IL-4 induction by γδ T-APCs than by DC controls, and to some extent monocytes. 

IL-9 induction in naive CD4+ T cells was minimal, with marginally higher levels 

induced by IL-2 and IL-15 γδ T-APCs, though these levels did not exceed 2% of 

responding CD4+ T cells. Finally, IL-10 induction by IL-21 γδ T-APCs exceeded 

levels induced by all other APC subtypes. The percentages of IL-10 positive cells 

were significantly higher that naive CD4+ T cell alone cultures, but not statistically 

significant as compared to other conditions.     
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Figure 4.8 – Comparison of intracellular cytokine expression by naive CD4
+
 T cells, 

polarised by different APCs. Comparison of naive CD4
+
 T cell intracellular cytokine 

expression, polarised by γδ T cell, monocyte, or DC APCs, generated under different 

conditions. Naive CD4
+
 T cells were cultured with relevant APC subtypes at a 1:10 

APC:responder ratio for 9 days. Intracellular cytokine expression was assessed by flow 

cytometry after cell restimulation at day 9 of culture. Percentages of cytokine positive cells 

were determined by gating of live, single, CD3
+
CD4

+
Vγ9

-
 cells. Data points display results 

from individual healthy donors. Horizontal lines display means of data sets. Error bars 

display standard deviation of samples. Statistical significance was determined using the 

Kruskal-Wallis test, followed by the Dunn‟s multiple comparison test, *=p<0.05, **=p<0.01, 

***=p<0.001, ****=p<0.0001. Significance displayed for most important results.  
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In addition to assessing intracellular cytokine expression by polarised naive CD4+ T 

cells, the secretion of cytokines in cellular supernatants was also assessed by 

ELISA (Figure 4.9). Of note, given the fact that γδ T-APCs were irradiated prior to 

co-culture with naive CD4+ T cells, the majority of APCs did not survive until day 9 of 

culture. As such, co-cultures mainly consisted of CD4+ T cells (>97% CD4+) when 

restimulated for analysis of cytokine secretion by ELISA (data not shown). However, 

small contributions of γδ T-APCs to secretion of cytokines cannot be dismissed. In 

addition to five of the cytokines assessed intracellularly, a further four were 

examined by ELISA. Similarly to intracellular expression, secretion of IFN-γ was 

highest amongst naive CD4+ T cells stimulated with IL-2 and IL-15 γδ T-APCs, in 

addition to LPS treated DCs and monocytes, with IL-21 γδ T-APCs favouring lower 

secretion of IFN-γ by responder cells. Secretion of TNF-α by polarised naive CD4+ T 

cells displayed a similar pattern of secretion as compared with IFN-γ. IL-17 secretion 

by CD4+ T cells in co-culture with γδ T-APCs was undetectable, in accordance with 

the flow cytometric analysis. When IL-22 secretion was assessed, again IL-15 γδ T-

APCs proved to be most effective in polarisation of naive responses towards 

expression of this cytokine, with levels significantly higher than those observed with 

IL-2 γδ T-APCs and PGN-treated DCs. In contrast to the intracellular data, the 

difference between IL-15 and IL-21 γδ T-APC induction of IL-22 secretion was not 

statistically significant.  

The secretion of IL-4 by polarised naive CD4+ T cells presented a much clearer 

picture than that observed with intracellular expression; IL-4 secretion was 

significantly higher when naive CD4+ T cells were cultured with γδ T-APCs 

compared with alternative APC controls, though no differences were observed 

between different γδ T-APC conditions. In addition to IL-4, the Th2 cytokines IL-5 

and IL-13 followed similar patterns of secretion to IL-4. Secretion of IL-10 by IL-21 

γδ T-APC polarised responder cells was increased compared to all other conditions, 

and this difference was more pronounced in culture supernatant analysis than that 

identified by intracellular analysis. Only LPS-treated monocytes were able to induce 

naive CD4+ T cells to produce IL-10 to levels approaching those observed with IL-21 

γδ T-APCs. Finally, the chemokine CXCL13 was examined, which is involved in the 

recruitment of CXCR5 expressing cells and as such important in Tfh cell 

responses353. γδ T-APCs across all conditions were unable to induce this chemokine 

in responding cells, whereas DCs and monocytes were able to induce varying levels 

of CXCL13 production in naive CD4+ T cell responders.  
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Of note, the main findings from intracellular cytokine expression and secretion were 

reproducible at APC:responder ratios between 1:1 and 1:100, and using non-

irradiated γδ T-APCs instead of irradiated γδ T-APCs (data not shown). 
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Figure 4.9 – Comparison of cytokine secretion by naive CD4
+
 T cells, polarised by 

APCs. Naive CD4
+
 T cells were cultured with γδ T cell, monocyte, or DC APCs, stimulated 

under different conditions, at 1:10 APC:responder ratios for 9 days. Cytokine secretion was 

assessed by ELISA after cell restimulation at day 9 of culture, where cells were cultured for 

24 hours post-restimulation and supernatants obtained. Data points display results from 

individual healthy donors. Horizontal lines display means of data sets. Error bars display 

standard deviation of samples. Statistical significance was determined using the Kruskal-

Wallis test, followed by the Dunn‟s multiple comparison test, *=p<0.05, **=p<0.01, 

***=p<0.001, ****=p<0.0001. Significance displayed for most important results.  

Having identified a number of T helper subtypes induced in naive CD4+ T cells by γδ 

T-APCs, expression of corresponding transcription factors induced in responder 

cells was examined next. In identical experiments to those previously discussed, γδ 

T-APCs were co-cultured with naive CD4+ T cells for a period of 9 days. At day 9, 

CD4+ T cells from co-cultures were purified from γδ T-APC contaminating cells by 

cell sorting and total RNA was extracted from the responder cells. Gene expression 

was subsequently assessed by real-time PCR. Due to the irradiation of γδ T-APCs 

prior to co-culture, the majority of APCs did not survive until day 9 of culture, 

allowing for effective purification of CD4+ responder cells. As such, RNA extraction 

was conducted on CD4+ T cell populations which were >99.1% CD4+, thus 

minimising the contamination by γδ T-APCs.  
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Figure 4.10 displays the expression of transcription factors induced in naive CD4+ T 

cells upon polarisation by γδ T-APCs generated under different conditions. 

Reflective of the high induction of IFN-γ, cells responding to IL-2 or IL-15 γδ T-APCs 

displayed increased expression of TBX21, in accordance with the induction of Th1 

type cells. IL-21 γδ T-APCs induced lower levels of TBX21 expression in naive CD4+ 

T cell populations, agreeing with the cytokine analysis showing that IL-21 γδ T-APCs 

are less potent at inducing Th1 type responses. Consistent with the induction of IL-4 

in all samples, increased expression of GATA3 by responder cells was identified in 

all cultures, in comparison with naive CD4+ T cell controls. The highest expression 

levels of the Th22-associated factor AHR were identified in IL-15 γδ T-APC 

polarised cells, with reduced expression observed in IL-2 and IL-21 γδ T-APC co-

cultures. In contrast with the expression of IL-17, which was absent in all γδ T-APC 

co-cultures, an increased expression of RORC, the Th17 master transcription factor, 

was identified under all conditions, especially in IL-15 γδ T-APC polarised naive 

CD4+ T cells. Minimal expression of FOXP3 and BCL6 were induced in γδ T-APC 

co-cultures, indicating an absence of Treg and Tfh cell induction under the 

conditions examined. In contrast to IL-10 detection, none of the transcription factors 

assessed displayed increased expression in IL-21 γδ T-APC co-cultures.  
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Figure 4.10 – Transcription factor expression by naive CD4
+
 T cells, polarised by γδ T-

APCs. Naive CD4
+
 T cells were cultured with γδ T-APCs, stimulated under different 

conditions, at 1:10 APC:responder ratios for 9 days. Transcription factor expression was 

assessed at day 9 of culture by real-time PCR. Relative expression was determined in 

reference to naive CD4
+
 T cell control. Data points display results from individual healthy 

donors. Horizontal lines display means of data sets. Error bars display standard deviation of 

samples. Statistical significance was determined using the Friedman test, followed by the 

Dunn‟s multiple comparison test, *=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001.   

In addition to characterising T helper responses by expression of cytokines and 

transcription factors, the major CD4+ T cell lineages can be identified based on the 

repertoire of chemokine receptors they express. As such, responder cells after co-

culture with γδ T-APCs were assessed for expression of CXCR3, CCR6, and 
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CCR10, which are differentially expressed by Th1, Th17, and Th22 cells 

respectively92,121. Whilst expression of each of these receptors alone would not fully 

characterise T helper lineages specifically, due to the fact that combinations of two 

or three receptors are generally used for this process, identification of each receptor 

would provide an indication of the lineages induced. Figure 4.11a displays 

representative flow cytometry stainings of each chemokine receptor, expressed by 

naive CD4+ T cells polarised by IL-15 γδ T-APCs. Distinct populations of CXCR3+ 

and CXCR3− cells could be identified in responder cells. However, only low levels of 

CCR10 and CCR6 were identified, and these populations did not display high 

expression of each marker. Figure 4.11b displays expression of each marker on 

naive CD4+ T cells, polarised by γδ T-APCs generated under different conditions. 

Similar expression of CXCR3 was observed in IL-2 and IL-15 γδ T-APC co-cultures, 

with percentages of positive cells reduced in IL-21 γδ T-APC co-cultures. Consistent 

with Figure 4.11a, only low levels of CCR10+ and CCR6+ cells were identified across 

all co-cultures examined. Minimal expression of each chemokine receptor was 

identified in naive CD4+ T cell populations.  
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Figure 4.11 – Expression of chemokine receptors by naive CD4
+
 T cells, polarised by 

γδ T-APCs. (a) Representative flow cytometry plots displaying chemokine receptor 

expression by naive CD4
+
 T cells, polarised by IL-15 γδ T-APCs. Naive CD4

+
 T cells were 

cultured with IL-15 γδ T-APCs for 9 days, and at day 9 were stained for chemokine receptor 

expression and assessed by flow cytometry. Numbers on graphs display percentages of 

positive cells. (b) Summary plots displaying chemokine receptor expression by naive CD4
+
 T 

cells, polarised by differentially generated γδ T-APCs. Data points on graphs display 

individual γδ T cell donors. Horizontal lines display means of data sets. Error bars display 

standard deviation of samples. Statistical significance was determined using the Friedman 

test, followed by the Dunn‟s multiple comparison test, *=p<0.05, **=p<0.01, ***=p<0.001, 

****=p<0.0001, ns=not significant. Significance displayed in comparison to nCD4 alone 

control.  

Whilst IL-2, IL-15 and IL-21 appeared to have significant effects on the polarising 

capacity of γδ T-APCs, it was unknown whether the strength of stimulation provided 

to γδ T-APCs during their generation may also play a role in subsequent polarisation 

of T helper responses. Indeed, TCR signalling strength has important roles in naive 

CD4+ T cell polarisation161, and as such may be important in γδ T-APC function as 

well. Given this possibility, γδ T-APCs generated with either 10 nM or 1 nM HMB-PP 

in combination with IL-15 were assessed for their abilities to polarise naive CD4+ T 

cell responses (Figure 4.12a). Cells treated with 1 nM HMB-PP displayed 

upregulation of all APC markers examined, albeit at significantly reduced levels 

compared to cells stimulated with 10 nM HMB-PP. 1 nM HMB-PP treated γδ T-
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APCs also induced lower levels of proliferation than 10 nM HMB-PP treated cells, 

although these differences were not statistically significant (data not shown).  

Figure 4.12b displays representative flow cytometry plots of IFN-γ and IL-22 

expression by naive CD4+ T cells cultured in the presence of 10 nM or 1 nM HMB-

PP-stimulated IL-15 γδ T-APCs, with Figure 4.12c showing a summary of the 

percentages of cytokine positive cells. Reduced levels of IFN-γ expression by 

responder cells were detected when co-cultured with 1 nM HMB-PP treated APCs 

compared with 10 nM, potentially reflecting a reduced level of stimulation provided 

by these APCs to responding cells. Levels of IL-22 expression however were not 

significantly affected overall. Within IL-22+ cell populations, the distribution between 

IFN-γ+ and IFN-γ− cells was altered by γδ T-APC stimulation, with more IL-22+ cells 

co-expressing IFN-γ when polarised with 10 nM HMB-PP-treated APCs than with 1 

nM HMB-PP-treated APCs. With respect to IL-4 induction by γδ T-APCs, 

percentages of IL-4+ cells were marginally increased with 1 nM HMB-PP treated 

APCs as compared to 10 nM HMB-PP treated APCs, although this increase was not 

statistically significant (data not shown). No significant effects of HMB-PP 

concentrations were observed with respect to the induction of IL-10, IL-17, and IL-9 

expression.  

 

 

 

 

 

 

 

 

 

 

 

 



135 
 

 

Figure 4.12 – Effect of γδ T-APC TCR stimulation strength on ability to polarise naive 

CD4
+
 T cell responses. (a) Comparison of APC marker expression by γδ T-APCs 

stimulated with 10 nM or 1 nM HMB-PP in combination with IL-15. Percentages of APC 

marker positive cells were determined at day 3 of culture by flow cytometry. Percentage of 

HLA-DR
+
 cells were determined by gating on live, single, Vγ9

+
 T cells. CD86 and CD70 

positive cells were determined by gating on live, single, HLA-DR
+
Vγ9

+
 T cells. (b) 

Representative flow cytometry plots displaying intracellular expression of IFN-γ and IL-22 by 

naive CD4
+
 T cells, polarised by IL-15 γδ T-APCs generated with either 10 nM or 1 nM HMB-

PP. Plots are representative of 5 individual healthy donors from 5 individual experiments. 

Numbers on graphs display percentages of cytokine-expressing cells. (c) Comparison of 

naive CD4
+
 T cell expression of intracellular IFN-γ and IL-22, polarised by IL-15 γδ T-APCs 

generated with either 10 nM or 1 nM HMB-PP. Intracellular cytokine production was 

assessed by flow cytometry after cell restimulation at day 9 of culture. Percentages of 

cytokine positive cells were determined by gating of live, single, CD3
+
CD4

+
Vγ9

-
 cells. Data 

points represent individual healthy γδ T cell donors from individual experiments. Horizontal 

lines display means of data sets. Error bars display standard deviation of samples. Statistical 

significance was determined using the Mann-Whitney test, *=p<0.05, **=p<0.01, 

***=p<0.001, ****=p<0.0001, ns=not significant.  
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4.5 - Polarisation of Memory CD4+ T cells 

In addition to the induction of naive CD4+ T cell responses, γδ T-APCs have proven 

capable of robust induction of memory CD4+ T cell responses. Given this potential, 

and the fact that memory CD4+ T cells are capable of significant plasticity between T 

helper lineages, assays were established to examine the polarisation of memory 

responses by γδ T-APCs. In analogous experiments to the naive CD4+ T cell 

assays, memory (CD4+CD45RA−) CD4+ T cells were co-cultured with different APC 

subsets, and the cytokine expression was assessed.  

Figure 4.13 displays representative flow cytometry plots of memory CD4+ T cell 

polarisation by differentially generated γδ T-APCs.  In a similar manner to naive 

CD4+ T cell responses, six cytokines were assessed for their intracellular 

expression. Memory CD4+ T cells stimulated with IL-2 γδ T-APCs displayed large 

populations of IFN-γ+ and IL-22+ single positive cells as well as IFN-γ+ IL-22+ co-

producers (Figure 4.13a). In addition, small but apparent populations of IL-17+ cells 

were identified, all of which  were co-producing IFN-γ and a sub-population 

expressing IL-22 as well. Similarly to naive CD4+ T cell responders, a population of 

Th2 cells was also identified (Figure 4.13b). Both IL-10 and IL-9 were minimally 

expressed in these cultures.  

When memory CD4+ T cells were co-cultured with IL-15 γδ T-APCs, significant 

populations of IFN-γ+ and IL-17+ cells were observed. The main difference between 

IL-2 and IL-15 γδ T-APCs in terms of memory cell polarisation was in the promotion 

of IL-22 responses; IL-15 γδ T-APCs promoted much larger populations of IL-22+ 

cells than IL-2 γδ T-APCs, the majority of which were IFN-γ+, and a smaller 

population representing IFN-γ− Th22 cells. In addition, populations of Th2 cells did 

not appear to differ significantly between IL-2 and IL-15 γδ T-APC treatments.  

The polarisation of memory CD4+ T cells by IL-21 γδ T-APCs appeared to mirror the 

responses observed with naive CD4+ T cells. Expression of IFN-γ was reduced in IL-

21 γδ T-APC co-cultures compared with IL-2 and IL-15 γδ T-APCs, and IL-22 

induction was more similar to IL-2 than IL-15 γδ T-APCs. Most strikingly, IL-10 

single-positive cell induction in memory CD4+ T cells was observed only using IL-21 

γδ T-APCs as polarising cells, with no increase in IL-4 induction. Small populations 

of IL-9+IL-4− and IL-9+IL-4+ cells were primarily observed in IL-21 γδ T-APC co-

cultures.  
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Figure 4.13 – Intracellular cytokine expression by memory CD4
+
 T cells in response to 

stimulation by γδ T-APCs. Comparison of intracellular cytokine expression by memory 
CD4

+
 T cells stimulated by allogeneic γδ T-APCs, generated under differing conditions, after 

co-culture for 9 days at 1:10 APC:responder ratios. Intracellular cytokine production was 
assessed by flow cytometry after cell restimulation at day 9 of culture. (a) Representative 
intracellular stainings displaying intracellular expression of IFN-γ, IL-17, and IL-22 by 
memory CD4

+
 T cells, polarised by IL-2, IL-15, and IL-21 γδ T-APCs. (b) Representative 

intracellular stainings displaying intracellular expression of IL-4, IL-10, and IL-9 by memory 
CD4

+
 T cells, polarised by IL-2, IL-15, and IL-21 γδ T-APCs. Plots are representative of >5 

individual healthy γδ T cell donors from >5 individual experiments. Numbers on graphs 
display percentages of cytokine-expressing cells. 
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Figure 4.14 displays a summary of intracellular cytokine expression by memory 

CD4+ T cells polarised by all APC subsets. Given that memory CD4+ T cells 

comprise a population which has already encountered antigen in vivo and been 

polarised towards distinct T helper lineages, additional controls were established for 

comparison of APC-mediated polarisation. MemCD4 Day 0 conditions were 

measured to assess T helper phenotypes on the day of isolation, before assays 

were set up, by PMA/Ionomycin stimulation for 5 hours. This control allowed for 

identification of percentages of each lineage before specific APC-mediated 

polarisations had occurred. Additionally, memory CD4+ T cells left unstimulated over 

the 9 day culture period were assessed alongside APC-polarising conditions. Lastly, 

memory CD4+ T cells stimulated with αCD3/αCD28 antibodies were assessed for 

cytokine expression at day 9 of culture, to confirm any polarising effects observed 

utilising APCs were not simply due to memory cell expansion, but rather by active 

polarisation of cells.  

In summary of the data presented in Figure 4.14, IFN-γ expression by memory CD4+ 

T cells was favoured by IL-2 and IL-15 γδ T-APCs, as well as LPS-treated DCs, 

which matched the data observed using naive CD4+ T cells. In contrast to naive 

CD4+ T cell responses, small populations of IL-17+ cells were identified when 

memory CD4+ T cells were polarised by all γδ T-APCs. However, the magnitude of 

IL-17 responses was not significantly increased above the levels observed at day 0, 

prior to polarisation. IL-22 responses also appeared to mirror those observed with 

naive CD4+ T cells; IL-15 γδ T-APCs favoured the highest production of IL-22, 

significantly increased above all other APC controls, reaching up to 40% of 

responding cells. IL-4 production by memory CD4+ T cells was also increased 

among γδ T-APC polarisations as compared to DCs, whereas no significant 

induction of IL-9 was observed among any polarising conditions. Lastly, the 

promotion of IL-10 responses by IL-21 γδ T-APCs was increased above all other 

APC controls. The percentages of cytokine positive cells observed with memory 

CD4+ T cells exceeded those observed with naive CD4+ T cells, possibly reflecting 

reduced activation requirements of memory responder cells. Overall, it appeared γδ 

T-APCs favoured the polarisation of similar T helper lineages in memory CD4+ T 

cells as they did in naive responder populations previously.  
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Figure 4.14 – Comparison of intracellular cytokine expression by memory CD4
+
 T 

cells, polarised by different APCs. Comparison of memory CD4
+
 T cell polarisation 

induced by γδ T cell, monocyte, or DC APCs, generated under different conditions. Memory 

CD4
+
 T cells were cultured with relevant APC subtypes at 1:10 APC:responder ratios for 9 

days. In addition, the CD4
+
 T cell intracellular cytokine profile of freshly isolated, 

PMA/Ionomycin-stimulated cells (MemCD4 Day 0), and phenotype after stimulation with 

αCD3/αCD28 alone were determined. Intracellular cytokine production was assessed by flow 

cytometry after cell restimulation at day 9 of culture. Percentages of cytokine positive cells 

were determined by gating of live, single, CD3
+
CD4

+
Vγ9

-
 cells. Data points display results 

from individual healthy donors. Horizontal lines display means of data sets. Error bars 

display standard deviation of samples. Statistical significance was determined using the 

Kruskal-Wallis test, followed by the Dunn‟s multiple comparison test, *=p<0.05, **=p<0.01, 

***=p<0.001, ****=p<0.0001. Significance displayed for most important results.   
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4.6 - Polarisation of Naive CD8+ T Cell Responses 

With the knowledge that CD8+ T cells also exhibit functional plasticity in terms of 

cytokine production, and are able to be polarised into different effector 

lineages215,216, assays were established to assess whether γδ T-APCs may 

contribute to this process. The CD8+ T cell response to γδ T-APCs has been widely 

studied in terms of induction of cytotoxic activity322,325, however the cytokine 

production of responding CD8+ T cells, beyond IFN-γ, is unknown. As γδ T-APCs in 

previous assays displayed potential to promote different CD4+ T cell lineages, it 

seemed likely these cells may also promote certain CD8+ Tc lineages over others.  

In identical assays to naive CD4+ T cell polarisation, naive CD8+ T cells (CD8+ 

CD45RA+ CCR7+) were co-cultured with γδ T-APCs generated under different 

conditions, and responding cell proliferation and intracellular cytokine production 

was determined (Figure 4.15). The proliferation of naive CD8+ T cells was similar to 

that observed with their CD4+ counterparts, in that both IL-2 and IL-15 γδ T-APCs 

induced the highest levels of proliferation in responder cells (Figure 4.15a). IL-21 γδ 

T-APCs induced low levels of proliferation, and IL-7 γδ T-APCs were again unable 

to stimulate any response in naive CD8+ T cells. When the intracellular cytokine 

expression of naive CD8+  T cells was determined at day 9 of culture, several 

differences were observed compared with naive CD4+ T cell polarisation. Induction 

of Tc1 and Tc2 cell populations were identified, with IL-2 and IL-15 γδ T-APCs 

favouring increased Th1 responses over IL-21 γδ T-APCs. However, cultures were 

completely negative for all other cytokines examined, including IL-22 and IL-10, 

which had been induced in naive CD4+ T cell cultures. Given these data, γδ T-APCs 

were able to promote both Tc1 and Tc2 responses in naive CD8+ T cells, but were 

incapable of alternative lineage induction under the conditions examined.  
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Figure 4.15 – Induction of naive CD8
+
 T cell responses by γδ T-APCs. (a) Comparison of 

naive CD8
+
 T cell proliferation induced by γδ T-APCs, generated under different conditions. 

Naive CD8
+
 T cells (CD8

+
CD45RA

+
CCR7

+
) were cultured with IL-2, IL-15, or IL-21 γδ T-

APCs, at a 1:10 APC:responder ratio for five days. Proliferation of naive CD8
+
 T cells was 

determined by assessing CFSE dilution by flow cytometry, and percentages of proliferating, 

CFSE
lo
 cells were determined. (b) Comparison of intracellular cytokine production by naive 

CD8
+
 T cells, polarised by γδ T-APCs. Naive CD8

+
 T cells were cultured with relevant APC 

subtypes at 1:10 APC:responder ratios for 9 days. Intracellular cytokine expression was 

assessed by flow cytometry after cell restimulation at day 9 of culture. Percentages of 

cytokine positive cells were determined by gating of live, single, CD3
+
CD8

+
Vγ9

-
 cells. Data 

points represent individual healthy donors from individual experiments. Horizontal lines 

display means of data sets. Error bars display standard deviation of samples. Statistical 

significance was determined using the Friedman test, followed by the Dunn‟s multiple 

comparison test, *=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001, ns=not significant.   
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4.7 - Polarisation of naive CD4+ T cells by expanded γδ T-APCs 

While the data presented so far have focused on the ability of freshly isolated 

Vγ9Vδ2 T cells to function as APCs after short term activation, several studies 

characterised the ability of long term activated cells, or 'expanded' Vγ9Vδ2 T cells to 

exhibit APC capabilities325,326,329. While those studies mainly examined the ability of 

expanded Vγ9Vδ2 T cells to take up antigen and induce CD8+ T cell activation, little 

is known of the CD4+ T cell response to expanded Vγ9Vδ2 T-APCs. Further to this, 

it is unclear whether the differential polarising abilities of IL-2, IL-15, and IL-21 γδ T-

APCs are maintained during long term culture of APCs.  

In order to investigate the ability of expanded γδ T-APCs to polarise CD4+ T cell 

responses, long term cultures of Vγ9Vδ2 T cells were set up325. Vγ9Vδ2 T cells were 

stimulated with HMB-PP in the presence of IL-2, IL-15, IL-7, or IL-21, or in the 

absence of cytokines, for 14 days to expand the cells, upon which γδ T-APCs were 

restimulated, assessed for phenotypic markers, and used in CD4+ T cell polarisation 

assays. Of note, expanded Vγ9Vδ2 T cells displayed minimum viability of 70% live 

cells at day 3, 50% at day 5, 65% at day 9, and 75% at day 14, consistent across all 

conditions examined. IL-2, IL-15, and IL-7 were able to maintain γδ T-APC 

proliferation and survival over a 14 day culture period. Similarly to 3-day generated 

APCs, both IL-2 and IL-15 supported expression of the APC markers HLA-DR, 

CD86 and CD70 after long term culture of cells (Figure 4.16a). In contrast, IL-7 did 

not support significant expression of these markers. Vγ9Vδ2 T cells cultured in the 

presence of IL-21 or in the absence of cytokines were unable to survive the 14 day 

culture period, with poor viability of cells by this timepoint, and as such no data is 

available for these conditions. In addition to assessing the expression of APC 

markers on expanded cells, the expression of the memory markers CD45RA and 

CD27 was also examined (Figure 4.16b). In the presence of IL-15, γδ T-APCs 

displayed a predominant CD45RA− CD27− TEM phenotype. Expanded γδ T-APCs 

generated with IL-2 displayed an indistinguishable memory phenotype compared to 

IL-15 expanded cells. Highlighting the differences between IL-7 and other cytokines, 

IL-7 expanded cells displayed a more dominant TCM phenotype, the majority of cells 

expressing CD27 but not CD45RA, whereas a small population comprised TEM cells. 

These findings are in agreement with previous reports on the ability of IL-7 and IL-

2/IL-15 to expand different memory subsets of Vγ9Vδ2 T cells277. 

When expanded γδ T-APCs were utilised in naive CD4+ T cell polarisation assays, 

the results reflected those observed with 3-day generated γδ T-APCs. In terms of 
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the induction of naive CD4+ T cell proliferation, IL-2 and IL-15 expanded γδ T-APCs 

induced high levels of proliferation, whereas IL-7 expanded γδ T-APCs were unable 

to induce proliferative responses (Figure 4.16c). The levels of proliferation induced 

by IL-2 and IL-15 expanded γδ T-APCs were marginally lower than those observed 

previously with 3-day generated γδ T-APCs. When intracellular cytokine expression 

was assessed, significant induction of IFN-γ+ and IL-22+ cells were identified, in the 

absence of IL-17 expressing cells. Both IL-2 and IL-15 expanded γδ T-APCs 

induced similar levels of IFN-γ, whereas IL-22 induction by IL-15-expanded γδ T-

APCs exceeded that induced by IL-2-expanded γδ T-APCs. In terms of IL-4, low 

levels of Th2 cells were apparent in both culture conditions, and only minimal IL-10 

or IL-9 expression was found (data not shown). Given these findings, it appears 

expanded γδ T-APCs do indeed maintain their ability to induce and polarise naive 

CD4+ T cell responses.  
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Figure 4.16 – Ability of expanded γδ T-APCs to induce naive CD4
+
 T cell responses. (a) 

Expression of APC markers by Vγ9Vδ2
+
 T cells expanded with zoledronate and common γ-

chain cytokines for 14 days, and subsequently restimulated for 24 hours with 1 nM HMB-PP. 
Percentages of APC marker-expressing cells were determined after restimulation by flow 
cytometry. Percentage of HLA-DR

+
 cells were determined by gating on live, single, Vγ9

+
 T 

cells. CD86 and CD70 positive cells were determined by gating on live, single, HLA-DR
+
Vγ9

+
 

T cells. (b) Expression of γδ T cell memory markers by IL-15 and IL-7 expanded Vγ9Vδ2
+
 T 

cells. Expanded cells were stained for CD45RA and CD27 at day 14 of culture and 
expression of markers was assessed by flow cytometry. Plots are representative of 3 
individual donors. Numbers on graphs display percentages of cells. (c) Comparison of naive 
CD4

+
 T cell proliferation induced by expanded γδ T-APCs, generated under different 

conditions. Naive CD4
+
 T cells were cultured with IL-2, IL-15, or IL-7 expanded γδ T-APCs, 

at a 1:10 APC:responder ratio for five days. Proliferation of naive CD4
+
 T cells was 

determined by assessing CFSE dilution by flow cytometry, and percentages of proliferating, 
CFSE

lo
 cells were determined. (d) Comparison of naive CD4

+
 T cell intracellular cytokine 

expression after polarisation by expanded γδ T-APCs. Naive CD4
+
 T cells were cultured with 

IL-2 or IL-15 expanded γδ T-APCs at 1:10 APC:responder ratios for 9 days. Intracellular 
cytokine production was assessed by flow cytometry after cell restimulation at day 9 of 
culture. Percentages of cytokine positive cells were determined by gating of live, single, 
CD3

+
CD4

+
Vγ9

-
 cells. Data points represent individual healthy donors from individual 

experiments. Horizontal bars display means of data sets. Error bars display standard 
deviation of samples. Statistical significance was determined using the Friedman test, 
followed by the Dunn‟s multiple comparison test, *=p<0.05, **=p<0.01, ***=p<0.001, 
****=p<0.0001, ns=not significant.   
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4.8 - Antigen-specific Polarisation of Autologous CD4+ T Cells 

With the demonstration that γδ T-APCs are able to differentially polarise naive and 

memory CD4+ T cell responses in mixed lymphocyte reaction assays, experiments 

were next designed to replicate these findings in autologous culture systems. Mixed 

lymphocyte reactions are useful assays to determine the polarisation of naive CD4+ 

T cells by APCs, due to the fact that approximately 10% of naive CD4+ T cells will be 

alloreactive to allogeneic APCs. However, an allogeneic system may not be 

reflective of the types of responses which would occur in vivo, when antigen specific 

responses are induced. One limitation of autologous, antigen-specific systems 

utilising naive cells as responders is that the frequency of each antigen-specific cell 

is low, making accurate detection of responses difficult. To counter this limitation, 

two autologous systems were utilised to assess CD4+ T cell 'antigen specific' 

responses to γδ T-APCs. Firstly, the bacterial superantigen TSST-1, which cross-

links MHC class II molecules with TCRs expressing a Vβ2 chain160, was used to 

stimulate a fraction of naive CD4+ T cells upon encounter with γδ T-APCs. 

Alternatively, the complex antigen PPD was utilised to stimulate specific memory 

CD4+ T cell responses in healthy, Mycobacterium bovis Bacillus Calmette–Guérin 

(BCG)-vaccinated donors322. Both of these culture systems have been widely used 

to assess CD4+ T cell responses previously. 

Figure 4.17 displays naive CD4+ T cell responses to autologous APCs labelled with 

TSST-1 superantigen. Given that approximately 10% of naive CD4+ T cells in 

peripheral blood would express a TCR containing a Vβ2 chain before stimulation 

with APCs, the percentages of Vβ2+ naive CD4+ T cells were assessed before and 

after co-culture with γδ T-APCs. Figure 4.17a displays representative flow cytometry 

plots of Vβ2 staining on naive CD4+ T cell populations prior to and following co-

culture with IL-15 γδ T-APCs, and Figure 4.17b displays a summary of Vβ2+ cell 

percentages after all γδ T-APC co-cultures. Similarly to induction of proliferation, IL-

2 and IL-15 γδ T-APC co-culture resulted in the highest levels of Vβ2+ cell 

expansion across a range of TSST-1 concentrations, with IL-21 γδ T-APC co-culture 

resulting in a more limited expansion of specific cells. IL-7 γδ T-APCs were unable 

to expand Vβ2 TCR expressing naive CD4+ T cells, and as such, percentages did 

not differ to unstimulated cells. Naive CD4+ T cells were also cultured with TSST-1 

in the absence of any APCs, where no expansion of specific cells was detected, 

highlighting the requirement for MHC class II-expressing APCs in this culture 

system.  
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Having identified Vβ2+ specific expansion of cells in response to γδ T-APCs, the 

intracellular cytokine expression of such cells was determined. Figure 4.17c displays 

expression of IFN-γ, IL-22 and IL-10 induced by γδ T-APCs at two different 

concentrations of TSST-1. Similarly to results obtained in mixed lymphocyte 

reactions, IL-2 and IL-15 γδ T-APCs favoured potent IFN-γ responses, with IL-15 γδ 

T-APCs also supporting large populations of IL-22+ cells. In contrast, IL-21 γδ T-

APCs favoured IL-10 expression by naive CD4+ T cell responders. A comparison of 

10 ng/ml and 1 ng/ml TSST-1 revealed that IFN-γ induction was supported by higher 

concentrations of superantigen, whereas both IL-22 and IL-10 were increased at 

lower TSST-1 concentrations. Upon comparison of γδ T-APC mediated TSST-1 

polarisation with alternative APC subsets, similar patterns of cytokine induction were 

observed as with mixed lymphocyte reaction culture systems. Of note, no IL-17 was 

detected in γδ T-APC-polarised cells, and low levels of Th2 cells were also identified 

(data not shown). In addition to these experiments with naive CD4+ T cells, memory 

CD4+ T cell responses to autologous, TSST-1 presenting γδ T-APCs were also 

assessed. Here, intracellular cytokine profiles did not differ significantly from the 

patterns obtained with memory CD4+ T cells in MLR assays.  
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Figure 4.17 – Induction of naive CD4
+
 T cell responses by TSST-1-presenting 

autologous APCs. (a) Representative flow cytometry plots displaying expression of TCR 

Vβ2 by naive CD4
+
 T cells cultured either alone or with autologous IL-15 γδ T-APCs at a 

1:10 APC:responder ratio. γδ T-APC cultures were supplemented with 1 ng/ml TSST-1 prior 

to co-culture, and were subsequently cultured for 9 days with naive CD4
+
 T cells.  Cells were 

then restimulated and stained for expression of TCR Vβ2 and intracellular cytokines. 

Percentages of positive cells were determined by flow cytometry. (b) Percentages of 

Vβ2
+
CD4

+
 T cells after co-culture with autologous γδ T-APCs for 9 days, labelled with either 

10 ng/ml or 1 ng/ml TSST-1 prior to co-culture. Displaying data from 3 healthy donors from 3 

individual experiments. (c) Expression of intracellular cytokines by naive CD4
+
 T cells 

polarised by autologous γδ T-APCs, labelled with either 10 ng/ml or 1 ng/ml TSST-1. 

Displaying data from 3 healthy donors from 3 individual experiments. (d) Expression of 

intracellular cytokines by naive CD4
+
 T cells polarised by autologous APCs, labelled with 1 

ng/ml TSST-1. Data points represent individual healthy donors. Horizontal lines display 

means of data sets. Error bars display standard deviation of samples. Statistical significance 

was determined using the Kruskal-Wallis test, followed by the Dunn‟s multiple comparison 

test, *=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001, ns=not significant.  
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Next, the antigen-specific memory response to PPD-presenting γδ T-APCs was 

investigated (Figure 4.18). While the naive CD4+ T cell pool contains only very few 

PPD-specific cells, the memory compartment from BCG-vaccinated contains a 

sizeable population of PPD-specific CD4+ T cells, thereby allowing the 

characterisation of antigen-specific memory responses in humans. PPD was added 

to γδ T-APCs for 24 hours to allow for antigen uptake, processing and presentation. 

Subsequently, these antigen-loaded γδ T-APCs were co-cultured with autologous 

memory CD4+ T cells, and responding cells were assessed for proliferation and 

intracellular cytokine expression. As controls, CD4+ T cells were cultured with PPD 

in the absence of APCs.  

As shown in Figure 4.18a, IL-2, IL-15 and IL-21 γδ T-APCs were all able to induce 

proliferation of autologous memory CD4+ T cells. Memory cells also displayed low 

levels of proliferation in response to IL-7 γδ T-APCs and in conditions where 

memory CD4+ T cells were cultured with PPD in the absence of APCs. As observed, 

PPD was able to induce limited cell activation in purified cultures of CD4+ T cells 

from BCG-vaccinated individuals, but responses were significantly enhanced in the 

presence of APCs. As such, the proliferation observed with IL-7 γδ T-APCs was 

likely due to the presence of PPD, rather than any APC activity by these cells. No 

memory CD4+ T cell proliferation was observed when cultured with autologous γδ T-

APCs in the absence of PPD (data not shown). 

Upon assessing the intracellular cytokine production of responding memory cells, 

IFN-γ was predominantly expressed by cells co-cultured with IL-2 and IL-15 γδ T-

APCs, as well as with LPS-treated DCs and monocyte controls (Figure 4.18b). 

Again, IL-22 production was favoured by IL-15 γδ T-APCs, and IL-10 by IL-21 γδ T-

APCs. Interestingly, the increased levels of IL-22 and IL-10 detected in previous 

systems were less pronounced utilising this PPD culture system. This may be due to 

the inherent effects of PPD on the responding cells, which may favour non-IL-22 and 

non-IL-10 responses at the expense of other lineages. Alternatively, Th1 clones for 

example may possess relatively stable phenotypes which are more restricted in their 

plasticity. Regardless, the overall patterns observed resembled those obtained with 

other culture systems. Of note, Th2 populations were detected at low frequencies in 

all γδ T-APC co-cultures (data not shown). 
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Figure 4.18 – Induction of PPD-specific memory CD4
+
 T cell responses by PPD-

presenting autologous APCs. (a) Proliferation of memory CD4
+
 T cells cultured with γδ T-

APCs for 5 days, in the presence of 1 µg/ml PPD. Proliferation of memory CD4
+
 T cells was 

determined by assessing CFSE dilution by flow cytometry, and percentages of proliferating, 

CFSE
lo
 cells were determined. (b) Expression of intracellular cytokines by memory CD4

+
 T 

cells polarised by autologous APCs, in the presence of 1 µg/ml PPD. Data points represent 

individual healthy donors. Horizontal lines display means of data sets. Error bars display 

standard deviation of samples. Statistical significance was determined using the Kruskal-

Wallis test, followed by the Dunn‟s multiple comparison test, *=p<0.05, **=p<0.01, 

***=p<0.001, ****=p<0.0001, ns=not significant.  
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4.9 - Role of Cytokines in γδ T-APC Mediated CD4+ T Cell Polarisation 

As observed, γδ T-APCs are capable of driving naive and memory CD4+ T cell 

responses in vitro, and are able to polarise distinct responses. The polarisation of 

naive CD4+ T cells appears to depend on the cellular microenvironment that Vγ9Vδ2 

T cells experience whilst undergoing APC generation. This observation led to three 

main findings; IL-2 and IL-15 γδ T-APCs polarise potent Th1 type responses, IL-15 

γδ T-APCs also favour high levels of IL-22 production in responding cells, and IL-21 

γδ T-APCs promote IL-10 responses in naive CD4+ T cells. In addition, γδ T-APCs 

in general appear superior inducers of Th2 type responses over DCs. Given these 

observations, assays were next established to examine the mechanisms behind 

such polarisations.  

The role of specific cytokines in the polarisation of naive CD4+ T cells is well 

understood, with particular combinations promoting certain T helper lineages over 

others. As previously investigated , γδ T-APCs expressed markedly distinct 

repertoires of cytokines compared with dendritic cells or monocytes, with IFN-γ and 

TNF-α representing the predominant cytokines detected in γδ T-APC culture 

supernatants (Figure 3.17). However, Vγ9Vδ2 T cells are also capable of alternative 

cytokine expression, such as IL-4 under certain conditions281,282, so the role of these 

cytokines could not be ruled out in the γδ T-APC-mediated polarisation of naive 

CD4+ T cell responses. As such, γδ T-APC:naive CD4+ T cell co-cultures were set 

up with the addition of blocking agents to various cytokines. 

Due to the observations that IL-15 γδ T-APCs induced potent IFN-γ and IL-22 type 

responses in naive CD4+ T cells, and IL-21 γδ T-APCs promoted the highest levels 

of IL-10 expression, these two cell populations were utilised for all subsequent 

assays, to investigate the mechanisms behind the induction of each individual 

cytokine. In identical experiments to those previously presented, 3-day generated γδ 

T-APCs were co-cultured at 1:10 ratios with naive CD4+ T cells for a period of 9 

days, in the presence or absence of blocking agents or isotype controls, after which 

the cultures were restimulated and intracellular cytokine expression was assessed 

(Figure 4.19). Figure 4.19a displays the intracellular cytokine production of naive 

CD4+ T cells polarised by IL-15 γδ T-APCs. Using αIFN-γ neutralising antibodies, 

the percentage of IFN-γ-expressing CD4+ T cells was significantly reduced as 

compared to controls. Small increases in the expression of IL-22 and IL-4 were also 

observed in responder populations, however these differences were not significant. 

In contrast, use of soluble TNF receptor to block TNF-α activity appeared to have 
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only a minimal effect on the expression of IFN-γ and IL-4 by naive CD4+ T cells, but 

had a significant effect on the IL-22 induction, with IL-22 expression levels reduced 

in this condition. Blockade of IL-4 showed a trend to lower the induction of IL-4 

expressing responder cells, although this decrease was not significant, due to the 

variability in expression levels. Blocking antibodies to IL-4 and IL-6 appeared to play 

no role in the polarisation of naive responses towards IFN-γ and IL-22.  

When the polarisation of IL-10 responses was assessed in response to IL-21 γδ T-

APCs, no significant effects could be observed with any of the cytokine blocking 

agents examined, indicating a lack of cytokine involvement in this polarisation 

pathway, at least in those assessed (Figure 4.19b). Of note, no significant effects on 

naive CD4+ T cell proliferation or viability were observed upon blocking of cytokines 

(data not shown).  
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Figure 4.19 – Blockade of cytokines in γδ T-APC mediated polarisation of naive CD4
+
 

T cell intracellular cytokine production. (a) Naive CD4
+
 T cells were cultured at 10:1 

ratios with IL-15 γδ T-APCs for 9 days, in the presence or absence of blocking antibodies or 

isotype controls. At day 9 of culture, cultures were restimulated and intracellular cytokine 

production was assessed by flow cytometry. (b) Naive CD4
+
 T cells were cultured with IL-21 

γδ T-APCs for 9 days, in the presence or absence of blocking antibodies or isotype controls. 

At day 9 of culture, cultures were restimulated and intracellular cytokine production was 

assessed by flow cytometry. Percentages of cytokine positive cells were determined by 

gating on live, single, CD3
+
CD4

+
Vγ9

-
CFSE

lo
 cells. Data points represent individual healthy 

donors. Horizontal lines display means of data sets. Error bars display standard deviation of 

samples. Statistical significance was determined using the Friedman test, followed by the 

Dunn‟s multiple comparison test, *=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001, ns=not 

significant.  

When cell culture supernatants were examined for secretion of cytokines by 

polarised naive CD4+ T cells, similar observations could be made (Figure 4.20). 

Blockade of IFN-γ significantly reduced IFN-γ secretion by responder cells, and 

inhibition of TNF-α led to a reduction in IL-22 secretion (Figure 4.20a). Blockade of 

a IL-15 γδ T-APC:naive CD4+ T cell co-cultures 

b IL-21 γδ T-APC:naive CD4+ T cell co-cultures 
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IL-4 did in fact cause a significant reduction in IL-4 secretion by responder cells. 

Similarly to intracellular expression, no inhibition of IL-10 could be observed in IL-21 

γδ T-APC co-cultures (Figure 4.20b), and IL-6 appeared to have no role in 

polarisation of cytokine secretion by naive CD4+ T cells.  
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Figure 4.20 - Blockade of cytokines in γδ T-APC mediated polarisation of naive CD4
+
 T 

cell cytokine secretion. (a) Naive CD4
+
 T cells were cultured at 10:1 ratios with IL-15 γδ T-

APCs for 9 days, in the presence or absence of blocking antibodies or isotype controls. At 

day 9 of culture, cultures were restimulated for 24 hours, after which supernatants were 

obtained and cytokine production was assessed by ELISA. (b) Naive CD4
+
 T cells were 

cultured with IL-21 γδ T-APCs for 9 days, in the presence or absence of blocking antibodies 

or isotype controls. At day 9 of culture, cultures were restimulated for 24 hours, after which 

supernatants were obtained and cytokine production was assessed by ELISA. Data points 

represent individual healthy donors. Horizontal lines display means of data sets. Error bars 

display standard deviation of samples. Statistical significance was determined using the 

Friedman test, followed by the Dunn‟s multiple comparison test, *=p<0.05, **=p<0.01, 

***=p<0.001, ****=p<0.0001, ns=not significant.  

Given the significant effects of IFN-γ and TNF-α on the induction of IFN-γ and IL-22 

responses, the expression of transcription factors was examined to identify whether 

these factors were similarly affected by polarising cytokines. Figure 4.21 displays 

the transcription factor expression in response to blockade of IFN-γ or TNF-α in IL-

15 γδ T-APC co-cultures. In a similar manner to cytokine expression, blockade of 

IFN-γ in co-cultures resulted in reduced expression of Th1 master regulator TBX21 

a IL-15 γδ T-APC:naive CD4+ T cell co-cultures 

b IL-21 γδ T-APC:naive CD4+ T cell co-cultures 



155 
 

by responder cells, in comparison with untreated and isotype control conditions. 

However, given the variation in expression of TBX21, this reduction was not 

significant. Furthermore, expression of AHR was dependent on the action of TNF-α, 

with addition of sTNFR resulting in a marked decrease in the expression of the Th22 

master transcription factor. Upon examining the expression of RORC and GATA3, 

no significant effects were observed upon blockade of either cytokine examined. 

Overall, expression of TBX21 and AHR appeared to respond similarly to blockade of 

IFN-γ and TNF-α, as did IFN-γ and IL-22 expression by polarised naive CD4+ T 

cells.  
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Figure 4.21 - Blockade of cytokines in γδ T-APC mediated polarisation of naive CD4
+
 T 

cell transcription factor expression. Naive CD4
+
 T cells were cultured at 10:1 ratios with 

IL-15 γδ T-APCs for 9 days, in the presence or absence of blocking antibodies or isotype 

controls. At day 9 of culture, cultures were assessed for transcription factor expression by 

real-time PCR. Relative expression was determined in reference to naive CD4
+
 T cell 

control. Data points represent individual healthy donors. Horizontal lines display means of 

data sets. Error bars display standard deviation of samples. Statistical significance was 

determined using the Friedman test, followed by the Dunn‟s multiple comparison test, 

*=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001, ns=not significant.  

In summary, the role of cytokines appeared to have prominent roles in the γδ T-APC 

mediated polarisation of naive CD4+ T cells. However, these cytokines alone did not 

account for the complete polarisation of responses, indicating other polarising 

factors may be involved.  

 

 

IL-15 γδ T-APC:naive CD4+ T cell co-cultures 
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4.10 - Role of Co-stimulatory Molecules in γδ T-APC Mediated CD4+ T 

Cell Polarisation 

The range of cytokines produced by γδ T-APCs appeared more limited than that 

observed with DCs and monocytes (Figure 3.17), despite the γδ T-APC potential to 

polarise different T helper lineages. In addition, the roles of IFN-γ, TNF-α and IL-4 

did not account for the total polarisation of naive CD4+ T cells observed, as 

evidenced by the fact that neutralisation of IFN-γ only had a partial effect on the 

polarisation toward Th1 cells and by the inability to block the generation of IL-10 

producing CD4+ T cells. These observations together suggested that other 

molecules might be important in γδ T-APC mediated CD4+ T cell polarisation. As γδ 

T-APCs have been shown to express a wide range of co-stimulatory molecules in 

this study, the roles of each co-stimulatory molecule in γδ T-APC:naive CD4+ T cell 

co-cultures were next investigated.    

In similar experiments to the blocking of γδ T-derived cytokines, γδ T-APC co-

cultures were set up with naive CD4+ T cells, and cell proliferation, viability, cytokine 

production, and transcription factor expression were assessed. Blocking antibodies 

to each co-stimulatory molecule were added to γδ T-APC cultures for 1 hour prior to 

co-culture, then cells were washed and used in assays. Figure 4.22 displays the 

proliferation and viability of naive CD4+ T cells after 5-day co-culture with IL-15 γδ T-

APCs that had been pre-incubated with blocking antibodies to co-stimulatory 

molecules or isotype controls. In terms of naive CD4+ T cell proliferation (Figure 

4.22a), a significant reduction was observed in the presence of αCD80 and αCD86 

blocking antibodies. In addition, blockade of CD48 led to an inhibition of naive CD4+ 

T cell proliferation. Blockade of a range of other co-stimulatory molecules (CD70, 

ICOSL, 4-1BBL, OX40L, CD40) did not appear to cause a significant effect on 

responder cell proliferation. When viability was assessed, almost all treatments did 

not significantly affect cell viability as compared to controls (Figure 4.22b). However, 

blocking of CD48, expressed by IL-15 γδ T-APCs, led to a significant reduction in 

cell viability of responder cells. Similar effects on cell proliferation and viability were 

observed in assays utilising IL-2 or IL-21 γδ T-APCs (data not shown). 
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Figure 4.22 – Effects of γδ T-APC-expressed costimulatory molecule blockade on 

induction of naive CD4
+
 T cell responses. Blockade of costimulatory molecules expressed 

by IL-15 γδT-APCs in naive CD4
+
 T cell co-cultures. (a) Naive CD4

+
 T cells were cultured at 

10:1 ratios with IL-15 γδT-APCs for 5 days, in the presence or absence of blocking 

antibodies or isotype controls. At day 5 of culture, cells were assessed for proliferation by 

assessing CFSE dilution by flow cytometry. Percentages of proliferating, CFSE
low

 cells were 

determined. (b) Naive CD4
+
 T cells were cultured with IL-15 γδT-APCs for 9 days, in the 

presence or absence of blocking antibodies or isotype controls. At day 9 of culture, cultures 

were restimulated and percentage viability (live cells) were determined based on live/dead 

staining by flow cytometry. Data points represent individual healthy donors. Error bars 

display standard deviation of samples. Statistical significance was determined using the 

Kruskal-Wallis test (non-parametric, one-way ANOVA), *=p<0.05, **=p<0.01, ***=p<0.001, 

****=p<0.0001, ns=not significant. Significance displayed in comparison to No Blocking 

control.  

Subsequent assays focused on the role of co-stimulatory molecules in the induction 

of IFN-γ, IL-4, IL-22, and IL-10 in naive CD4+ T cells.  Figure 4.23 displays 

representative flow cytometry plots of intracellular cytokine staining and CFSE 

staining of naive CD4+ T cells, polarised by IL-15 γδ T-APCs in the presence or 

absence of several blocking agents. Data displayed are for CD70 and ICOSL 

blocking, which appeared to show the most significant effects on CD4+ T cell 

cytokine expression. In the presence of anti-CD70 blocking antibodies, naive CD4+ 

responder cells expressed markedly lower levels of IFN-γ upon restimulation, 

indicating a crucial contribution of CD70 signalling to the ability of IL-15 γδ T-APCs 

to promote Th1 responses (Figure 4.23a). This reduction in IFN-γ expression was 

identified in the proportion of cells which had undergone proliferation, reflected by 

dilution of CFSE staining, with CFSE-stained cells expressing no IFN-γ in either 

a b
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condition. In response to ICOSL blockade, a significant reduction of IL-22 responses 

in responder cells was observed (Figure 4.23b). Similarly to IFN-γ, the IL-22 

expression was observed in CFSE negative cells, highlighting the requirement for 

proliferation and response to γδ T-APCs to express these cytokines. Given that 

previous stainings of IL-22 and IFN-γ highlighted two populations of IL-22+ cells, 

either expressing this cytokine alone or in combination with IFN-γ, co-stainings of 

these cytokines are displayed in Figure 4.23c. In the presence of ICOSL blocking 

antibodies, the reduction in IL-22 expression was observed in both the IFN-γ+ and 

IFN-γ− populations, and as such affected both Th1 and Th22 differentiation. IL-17 

was not expressed by responding CD4+ T cells upon blockade of any co-stimulatory 

pathway investigated.  
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Figure 4.23 – Effects of γδ T-APC-expressed CD70 and ICOSL blockade on 

intracellular cytokine production by naive CD4
+
 T cells. (a) Representative flow 

cytometry plots displaying intracellular expression of IFN-γ and CFSE staining in naive CD4
+
 

T cells, polarised by IL-15 γδ T-APCs either labelled or unlabelled with CD70 blocking 

antibodies. CFSE-stained naive CD4
+
 T cells were cultured with IL-15 γδ T-APCs for 9 days, 

and subsequently restimulated at day 9 for analysis of intracellular cytokine  expression by 

flow cytometry. (b) Representative flow cytometry plots displaying intracellular expression of 

IL-22 and CFSE staining in naive CD4
+
 T cells, polarised by IL-15 γδ T-APCs either labelled 

or unlabelled with ICOSL blocking antibodies. CFSE-stained naive CD4
+
 T cells were 

cultured with IL-15 γδ T-APCs for 9 days, and subsequently restimulated at day 9 for 

analysis of intracellular cytokine  expression by flow cytometry. (c) Representative flow 

cytometry plots displaying intracellular expression of IFN-γ, IL-17, and IL-22 in naive CD4
+
 T 

cells, polarised by IL-15 γδ T-APCs either labelled or unlabelled with ICOSL blocking 

antibodies. CFSE-stained naive CD4
+
 T cells were cultured with IL-15 γδ T-APCs for 9 days, 

and subsequently restimulated at day 9 for analysis of intracellular cytokine  expression by 

flow cytometry. Numbers on graphs display percentages of positive cells. Gated on live, 

single, CD3
+
CD4

+
Vγ9

-
 cells. Representative of 4 individual γδ T cell donors from 4 individual 

experiments.  

Figure 4.24 displays a summary of the intracellular expression of IFN-γ, IL-22, IL-4, 

and IL-10 by naive CD4+ T cells polarised by IL-15 or IL-21 γδ T-APCs, in the 

presence or absence of blocking antibodies. In response to IL-15 γδ T-APCs (Figure 

4.24a), blockade of co-stimulatory molecules displayed a range of effects on 

expression of each cytokine. CD80 and CD86 appeared to play similar roles in naive 

CD4+ T cell polarisation, with blocking of these molecules leading to an overall 
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reduction in IFN-γ, IL-22, and IL-4. However, given the variation in these conditions, 

the reductions observed were not statistically significant. Blockade of CD70, as 

previously discussed, caused a significant reduction in the ability of IL-15 γδ T-APCs 

to promote IFN-γ type responses, and also appeared to increase the ability to 

polarise IL-4 and IL-22 type responses. In opposition to the effects of CD70, 

blockade of ICOSL resulted in a significant reduction of IL-22 expressing responder 

cells, although no real effects were observed on the induction of IFN-γ or IL-4. 

Blockade of other costimulatory molecules such as CD40 had only minimal effects 

on the expression of cytokines assessed. Blocking of CD48, in line with its reduction 

in CD4+ T cell proliferation and viability, reduced the expression of all cytokines 

examined. The response of naive CD4+ T cells to IL-21 γδ T-APCs, in terms of IL-10 

intracellular expression, appeared to be unaffected by the majority of blocking 

agents examined (Figure 4.24b). Both CD80 and CD86 were essential for IL-10 

induction by IL-21 γδ T-APCs, with blocking of either of these molecules almost 

abrogating the IL-10 response. CD48 function was also necessary in IL-10 

expression, whereas no other molecules examined showed a significant effect on IL-

10 induction. Similar responses to costimulatory molecule blockade were observed 

with memory CD4+ T cell and γδ T-APC co-culture.   
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Figure 4.24 - Blockade of costimulatory molecules in γδ T-APC mediated polarisation 

of naive CD4
+
 T cell intracellular cytokine production. Blockade of costimulatory 

molecules expressed by γδ T-APCs in naive CD4
+
 T cell co-cultures. (a) Naive CD4

+
 T cells 

were cultured at 10:1 ratios with IL-15 γδ T-APCs for 9 days, in the presence or absence of 

blocking antibodies or isotype controls. At day 9 of culture, cultures were restimulated and 

intracellular cytokine production was assessed by flow cytometry. (b) Naive CD4
+
 T cells 

were cultured with IL-21 γδ T-APCs for 9 days, in the presence or absence of blocking 

antibodies or isotype controls. At day 9 of culture, cultures were restimulated and 

intracellular cytokine production was assessed by flow cytometry. Percentages of cytokine 

positive cells were determined by gating on live, single, CD3
+
CD4

+
Vγ9

-
CFSE

lo
 cells. Data 

points represent individual healthy donors. Horizontal bars display means of data sets. Error 

bars display standard deviation of samples. Statistical significance was determined using the 

Friedman test, followed by the Dunn‟s multiple comparison test, *=p<0.05, **=p<0.01, 

***=p<0.001, ****=p<0.0001, ns=not significant. Significance displayed in comparison with 

No Blocking control.  

a IL-15 γδ T-APC:naive CD4+ T cell co-cultures 

b IL-21 γδ T-APC:naive CD4+ T cell co-cultures 
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To complement intracellular cytokine expression data, levels of cytokines in co-

culture supernatants were measured in the presence or absence of co-stimulatory 

blocking antibodies (Figure 4.25). The effects of blocking antibodies observed were 

consistent with those observed previously. CD80 and CD86 were important in the 

induction of all cytokines, with blockade of these molecules decreasing overall 

cytokine production by polarised naive CD4+ T cells. CD70 blocking again reduced 

the capacity of IL-15 γδ T-APCs to promote IFN-γ production by responding cells, 

and interference with the ICOSL signalling pathway reduced the secretion of IL-22 in 

naive CD4+ T cells (Figure 4.25a). In response to IL-21 γδ T-APCs, IL-10 production 

by responding cells appeared to be reduced in the presence of CD40 blocking 

antibodies, although this decrease was not significant (Figure 4.25b). Lastly, CD48 

was important for overall CD4+ T cell responses, with blockade of this γδ T-APC-

expressed costimulatory molecule resulting in a decreased production of all 

cytokines assessed.  
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Figure 4.25 - Blockade of costimulatory molecules in γδ T-APC mediated polarisation 

of naive CD4
+
 T cell cytokine secretion. Blockade of costimulatory molecules expressed 

by γδ T-APCs in naive CD4
+
 T cell co-cultures. (a) Naive CD4

+
 T cells were cultured at 10:1 

ratios with IL-15 γδ T-APCs for 9 days, in the presence or absence of blocking antibodies or 

isotype controls. At day 9 of culture, cultures were restimulated for 24 hours, supernatants 

collected and cytokine concentrations were assessed by ELISA. (b) Naive CD4
+
 T cells were 

cultured with IL-21 γδ T-APCs for 9 days, in the presence or absence of blocking antibodies 

or isotype controls. At day 9 of culture, cultures were restimulated for 24 hours, supernatants 

collected and cytokine concentrations were assessed by ELISA. Data points represent 

individual healthy donors. Horizontal bars display means of data sets. Error bars display 

standard deviation of samples. Statistical significance was determined using the Friedman 

test, followed by the Dunn‟s multiple comparison test, *=p<0.05, **=p<0.01, ***=p<0.001, 

****=p<0.0001, ns=not significant. Significance displayed in comparison with No Blocking 

control.  

Having identified that CD70 and ICOSL play significant roles in the polarisation of 

naive CD4+ T cells by γδ T-APCs, towards IFN-γ and IL-22 responses, respectively, 

a IL-15 γδ T-APC:naive CD4+ T cell co-cultures 

b IL-21 γδ T-APC:naive CD4+ T cell co-cultures 
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the role of these molecules in transcription factor gene expression was next 

examined. Figure 4.26 displays the expression of several transcription factors by 

naive CD4+ T cells when polarised by IL-15 γδ T-APCs. Expression of TBX21 

followed a similar pattern of expression as did IFN-γ, in that blockade of CD70 led to 

a significant reduction in expression of this transcription factor. CD70 blocking also 

resulted in an increase in RORC expression, although this was not statistically 

significant. Conversely, ICOSL blocking led to a reduced expression of both RORC 

and AHR by polarised responder cells, reflecting a reduction in IL-22 expression. No 

significant effects were observed on GATA3 levels when blocking agents were used, 

consistent with the unaffected expression of IL-4 in responder cells under these 

conditions.  
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Figure 4.26 - Blockade of costimulatory molecules in γδ T-APC mediated polarisation 

of naive CD4
+
 T cell transcription factor expression. Blockade of costimulatory molecules 

expressed by γδ T-APCs in naive CD4
+
 T cell co-cultures. Naive CD4

+
 T cells were cultured 

at 10:1 ratios with IL-15 γδ T-APCs for 9 days, in the presence or absence of blocking 

antibodies or isotype controls. At day 9 of culture, polarised CD4
+
 T cells were assessed for 

transcription factor expression by real-time PCR. Relative expression was determined in 

reference to naive CD4
+
 T cell control. Data points represent individual healthy donors. 

Horizontal bars display means of data sets. Error bars display standard deviation of samples. 

Statistical significance was determined using the Friedman test, followed by the Dunn‟s 

multiple comparison test, *=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001, ns=not 

significant. Significance displayed in comparison to No Blocking control.  

 

 

 

IL-15 γδ T-APC:naive CD4+ T cell co-cultures 
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4.11 - Roles of TNF-α, ICOS-L, and CD70 in Polarisation of Naive CD4+ T 

cells 

By blocking the action of either TNF-α or ICOSL individually in co-cultures, partial 

but significant reductions in the expression of IL-22 and AHR were observed. 

Further to this, IL-6 was redundant in this system, in contrast to previous reports 

identifying a combination of IL-6 and TNF-α as required for efficient induction of 

optimal IL-22 responses in CD4+ T cells121. Highlighting a potentially new role for 

ICOSL in IL-22 induction, blockade of both TNF-α and ICOSL in combination was 

assessed, to examine the overall effects on induction of IL-22-type responses. 

Figure 4.27 displays the intracellular expression of IL-22 (Figure 4.27a), secretion of 

IL-22 (Figure 4.27b), and expression of AHR (Figure 4.27c), by naive CD4+ T cells 

polarised by IL-15 γδ T-APCs. In all readouts, a combination of TNF-α and ICOSL 

blockade led to an increased reduction in IL-22/AHR expression, highlighting the 

roles of these two molecules in IL-22-type responses. Of note, low levels of IL-22 

and AHR were still detected in polarised responder cells after blockade of TNF-α 

and ICOSL , suggesting the presence of further unidentified polarising factors 

provided by γδ T-APCs.  
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Figure 4.27 – Effects of γδ T-APC expressed TNF-α and ICOSL blockade on the 

polarisation of naive CD4
+
 T cells. (a) Summary plot displaying intracellular cytokine 

expression of naive CD4
+
 T cells, polarised by IL-15 γδ T-APCs in the presence of blocking 

antibodies to polarising factors. Naive CD4
+
 T cells were cultured at 10:1 ratios with IL-15 γδ 

T-APCs for 9 days, in the presence or absence of blocking antibodies or isotype controls. At 

day 9 of culture, cultures were restimulated and intracellular cytokine production was 

assessed by flow cytometry. (b) Summary plot displaying cytokine secretion by naive CD4
+
 T 

cells, polarised by IL-15 γδ T-APCs in the presence of blocking antibodies to polarising 

factors. Naive CD4
+
 T cells were cultured at 10:1 ratios with IL-15 γδ T-APCs for 9 days, in 

the presence or absence of blocking antibodies or isotype controls. At day 9 of culture, 

cultures were restimulated for 24 hours, supernatants collected and cytokine concentrations 

were assessed by ELISA. (c) Summary plot displaying transcription factor expression by 

naive CD4
+
 T cells, polarised by IL-15 γδ T-APCs in the presence of blocking antibodies to 

polarising factors. At day 9, transcription factor expression was determined by real-time 

PCR. Relative expression was determined in reference to naive CD4
+
 T cell control. Data 

points represent individual healthy donors. Horizontal lines display means of data sets. Error 

bars display standard deviation of samples. Statistical significance was determined using the 

Friedman test, followed by the Dunn‟s multiple comparison test, *=p<0.05, **=p<0.01, 

***=p<0.001, ****=p<0.0001, ns=not significant.  

a b
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With the demonstration that CD70 costimulation is able to promote Th1 type 

responses, and that a combination of TNF-α and ICOSL promotes γδ T-APC-driven 

IL-22 responses by  naive CD4+ T cells, assays were established to assess whether 

these effects were reproducible in APC-free cultures. Naive CD4+ T cells were 

stimulated with anti-CD3 and anti-CD28, in addition to each polarising factor, and 

subsequent cytokine expression was determined.  

Figure 4.28 displays the intracellular cytokine expression of naive CD4+ T cells 

polarised by each factor. With the addition of soluble CD70, which stimulates cells 

via CD27, IFN-γ intracellular expression was increased over αCD3/αCD28 cultures 

only (Figure 4.28a). In addition, when naive CD4+ T cells were cultured in the 

presence of polarising cytokines to each T helper lineage in addition to sCD70, 

responses were consistently skewed towards Th1 responses, with the levels of IFN-

γ increased in all cultures. Further to this, sCD70 addition to cultures led to 

decreases in Th2 and Th22 populations, and particularly in Th17 populations (data 

not shown).  

IL-22 responses were also investigated in response to TNF-α and ICOSL stimulation 

of naive CD4+ T cells (Figure 4.28b). After stimulation with αCD3/αCD28 antibodies 

alone, naive CD4+ T cells exhibited low levels of IL-22 polarisation. These levels of 

expression were marginally enhanced by the addition of either TNF-α or agonistic 

antibodies to ICOS. However, upon addition of both polarising factors in 

combination, IL-22 expression levels by naive CD4+ T cells were significantly 

increased. With the observation that these two factors in combination could promote 

strong IL-22 responses in naive CD4+ T cells, IL-22 expression levels were 

compared to the Th22 polarising combination of TNF-α and IL-6, which have been 

identified previously to promote the polarisation of Th22 cells121. Total percentages 

of IL-22-expressing cells were similar between each set of polarising conditions. 

However, when gated on IL-22+ cells, the co-expression of IFN-γ differed between 

conditions (Figure 4.28c). In the presence of TNF-α and IL-6, the majority of cells 

expressing IL-22 did not co-express IFN-γ. In contrast, a large subset of TNF-

α/αICOS stimulated cells, which were identified as IL-22+, co-expressed IFN-γ but 

were also negative for all other cytokines examined. Under either condition, IL-22+ 

cells were negative for IL-4, IL-17, IL-9 and IL-10. 
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Figure 4.28 - Role of polarising factors in the polarisation of naive CD4
+
 T cell 

intracellular cytokine expression. (a) Naive CD4
+
 T cells were stimulated with 

αCD3/αCD28 antibodies for 9 days, in the presence or absence of soluble CD70. At day 9 of 

culture, cultures were restimulated and intracellular cytokine expression was assessed by 

flow cytometry. (b) Naive CD4
+
 T cells were stimulated with αCD3/αCD28 antibodies for 9 

days, in the presence or absence of different combinations of polarising factors. At day 9 of 

culture, cultures were restimulated and intracellular cytokine expression was assessed by 

flow cytometry. Significance displayed in comparison to αCD3/αCD28 only condition. (c) 

Expression of IFN-γ by IL-22-expressing CD4
+
 T cells. Naive CD4

+
 T cells were stimulated 

with αCD3/αCD28 antibodies for 9 days, in the presence or absence of different 

combinations of polarising factors. At day 9 of culture, cultures were restimulated and 

intracellular cytokine expression was assessed by flow cytometry. Percentages of IFN-γ
+
 

cells were determined by gating on IL-22
+
 cells. Data points represent individual healthy 

donors. Horizontal bars display means of data sets. Error bars display standard deviation of 

samples. Statistical significance was determined using the Friedman test, followed by the 

Dunn‟s multiple comparison test, *=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001, ns=not 

significant.  

a

b c
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Following examination of intracellular cytokine expression, cytokine production and 

secretion was measured in identical culture conditions (Figure 4.29). Similar effects 

could be observed with each polarising factor; sCD70 favoured increased production 

of IFN-γ, whereas combinations of TNF-α/αICOS or TNF-α/IL-6 induced potent IL-22 

induction. Of note, ICOS stimulation did appear to increase levels of IL-4 secretion 

in associated cultures, though this increase was not significant compared to control 

conditions (data not shown).     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



172 
 

 

Figure 4.29 - Role of polarising factors in the polarisation of naive CD4
+
 T cell cytokine 

secretion. (a) Naive CD4
+
 T cells were stimulated with αCD3/αCD28 antibodies for 9 days, 

in the presence or absence of soluble CD70. At day 9 of culture, cultures were restimulated 

for 24 hours, supernatants collected and cytokine concentrations were assessed by 

ELISA.(b) Naive CD4
+
 T cells were stimulated with αCD3/αCD28 antibodies for 9 days, in 

the presence or absence of different combinations of polarising factors. At day 9 of culture, 

cultures restimulated for 24 hours, supernatants collected and cytokine concentrations were 

assessed by ELISA. Data points represent individual healthy donors. Horizontal lines display 

means of data sets. Error bars display standard deviation of samples. Statistical significance 

was determined using the Friedman test, followed by the Dunn‟s multiple comparison test, 

*=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001, ns=not significant. Significance displayed 

in comparison to αCD3/αCD28 only condition.  

In addition to measuring the induction of IL-22 in naive CD4+ T cells, transcription 

factor expression was assessed in response to the same polarising factors. TBX21 

displayed low level expression in response to CD3/CD28 stimulation alone, with only 

sCD70 stimulation via CD27 able to induce significantly higher expression of this 

transcription factor. Several other conditions induced higher levels of TBX21 

expression, although these increases were not significant. In addition, small 

increases of TBX21 were observed in ICOS/TNF-α stimulated cells as compared 

with TNF-α and IL-6 treated cells. Naive CD4+ T cells exhibited increased 

expression of GATA3 in response to ICOS stimulation, either alone or in 

combination with TNF-α, or with TNF-α and IL-6 treatment. However, increased 

expression of GATA3 was not statistically significant. RORC expression followed a 

similar trend to GATA3, showing upregulation in the majority of conditions, which 

again were not significant. Of note, sCD70 treatment led to reductions in both 

GATA3 and RORC expression.  

a b
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Lastly, AHR displayed similar patterns of expression to those observed with IL-22. 

Low levels of AHR were detected in populations stimulated with CD3/CD28 alone, 

and levels were not significantly affected by sCD70 or TNF-α treatment. ICOS 

stimulation alone led to small increases in AHR expression. However, highest 

expression levels of AHR were observed with either αICOS/TNF-α or TNF-α/IL-6 

treatments.  
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Figure 4.30 - Role of polarising factors in the induction of naive CD4
+
 T cell 

transcription factors. Naive CD4
+
 T cells were stimulated with αCD3/αCD28 antibodies for 

9 days, in the presence or absence of different combinations of polarising factors. At day 9 of 

culture, RNA was isolated from cultures and assessed for transcription factor expression by 

real-time PCR. Relative expression determined in reference to naive CD4
+
 T cell control. 

Data points represent individual healthy donors. Horizontal bars display means of data sets. 

Error bars display standard deviation of samples. Statistical significance was determined 

using the Friedman test, followed by the Dunn‟s multiple comparison test, *=p<0.05, 

**=p<0.01, ***=p<0.001, ****=p<0.0001, ns=not significant. Significance displayed in 

comparison to αCD3/αCD28 only condition.  
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4.12 - Discussion 

In summary, the data presented in this Chapter provide evidence for the ability of γδ 

T-APCs to polarise CD4+ T cell responses. These findings demonstrate that not only 

are γδ T-APCs able to differentially induce T helper lineages, but also induce distinct 

responses as compared to DCs and monocytes.  

Initial experiments were aimed at assessing the ability of differentially generated γδ 

T-APC subsets to initiate CD4+ T cell responses. The γδ T-APCs presented here 

were potent inducers of naive and memory CD4+ T cell responses and able to match 

DCs and outperform monocytes at APC:responder cell ratios of up to 1:100, in 

agreement with previous reports322. However, only γδ T-APCs cultured in the 

presence of IL-2 and IL-15 were able to induce such strong responses, whereas 

presence of IL-21 during γδ T-APC generation led to a population of APCs which 

induced relatively limited responses as characterised by only modest proliferation 

even at APC:responder cell ratios of up to 1:1. In contrast, IL-7 did not support the 

ability of γδ T-APCs to induce a response in naive or memory CD4+ T cell 

populations. The fact that IL-7, a homeostatic cytokine, did not support an APC 

phenotype in Vγ9Vδ2 T cells, and as such did not allow for induction of CD4+ T cell 

responses, highlights the requirement for a strong γδ T-APC phenotype to induce 

subsequent responses. Indeed, this was confirmed utilising blocking antibodies to 

adhesion molecules, which revealed that LFA-1 interaction was essential for γδ T-

APC induction of naive CD4+ T cell responses. Overall, γδ T-APCs were capable of 

inducing robust responses in CD4+ T cell populations, and also displayed an 

adaptive nature to their microenvironment, in terms of APC function; in the presence 

of IL-2, IL-15, or IL-21,  Vγ9Vδ2 T cells were able to become APCs and induce 

adaptive immunity, whereas in the presence of IL-7, Vγ9Vδ2 T cells displayed no 

APC function and would potentially play roles in other aspects of Vγ9Vδ2 T cell 

immunity. In addition to the induction of CD4+ T cell responses, γδ T-APCs were 

able to promote proliferative responses in naive CD8+ T cell populations, highlighting 

the overall role this novel APC subset can perform. In addition to these findings 

obtained with freshly isolated γδ T cells, expanded γδ T-APCs were equally capable 

of inducing naive CD4+ T cell proliferation, indicating that γδ T-APCs maintain their 

functional potential over extended periods of time, and that the APC function is not a 

transient phenomenon.   

In this Thesis, a crucial role for CD48 was identified in the initiation and maintenance 

of CD4+ T cell responses by γδ T-APCs. When γδ T-APC-expressed CD48 was 
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prevented from interacting with CD2 on CD4+ T cells, only limited naive CD4+ T cell 

proliferation and survival were observed. The CD48 interaction with CD2 was 

described previously to provide many costimulatory effects to responding CD4+ T 

cells, aiding cell adhesion, proliferation, survival, and cytokine production354. 

Blockade of CD48 has been shown to inhibit IL-2 production, IL-2 receptor 

expression, and proliferation of CD4+ T cells355, and as such observations made in 

γδ T-APC co-cultures are in accordance with those earlier studies.  

With the demonstration that γδ T-APCs do indeed promote naive and memory CD4+ 

T cell responses, the investigation focused on which T helper lineages were 

induced. Using either IL-2 or IL-15 γδ T-APCs, significant populations of both Th1 

and Th2 cells were induced in naive and memory CD4+ T cell responders, 

characterised by IFN-γ/TBX21 and IL-4/GATA3 expression, respectively. Previous 

studies had shown that IL-2 γδ T-APCs are able to promote both of these subsets 

(albeit with a strong preference for Th1 cells)322, and in this study similar effects 

were additionally observed utilising IL-15 γδ T-APCs. LPS-matured DCs, which 

exhibited strong production of IL-12, were among the most potent inducers of Th1 

responses, in agreement with the established role of IL-12 in directing Th1 

responses. However, in comparison with LPS-matured DCs, IL-2 and IL-15 γδ T-

APCs were able to match this level of IFN-γ induction in naive CD4+ T cells, and 

induced high levels of TBX21 expression, despite a complete lack of IL-12 

production by γδ T cells. This Th1-promoting capacity was at least partially reliant on 

the combined effects of IFN-γ production and CD70 expression by γδ T-APCs. IFN-γ 

is able to directly induce TBX21 in naive CD4+ T cells, and as such polarises Th1 

responses59. Given that both γδ T-APCs and CD4+ T cells themselves produce IFN-

γ, it is unclear whether production of this cytokine by each subset is important in cell 

polarisation, and is likely a combination of both. In addition, a large fraction of γδ T-

APCs were identified as CD70+, whereas monocyte-derived DCs appear to express 

CD70 at lower levels173, suggesting γδ T-APC-mediated Th1 induction was much 

more reliant on the CD70-CD27 costimulatory pathway than DC-mediated Th1 

responses.  

In contrast to IL-2 and IL-15 γδ T-APCs, IL-21 γδ T-APCs were less capable of Th1 

induction. Two reasons are evident for this effect; firstly a lower percentage of IL-21 

γδ T-APCs expressed CD70 than that observed with IL-2 and IL-15 γδ T-APCs, and 

secondly IL-21 γδ T-APCs failed to produce IFN-γ. With a lower expression of both 

of these molecules, IL-21 γδ T-APCs were incapable of inducing strong Th1 

responses. As such, it appears a combination of IFN-γ and CD70 expression 
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account for the induction of Th1 responses by γδ T-APCs, in the absence of IL-12. 

In addition to the action of these two molecules, it is likely that the strength of 

stimulation provided by γδ T-APCs also accounted for a certain level of Th1 

induction as strong stimulations have been described to favour Th1 polarisation160. 

As judged by their potential to induce proliferation of naive CD4+ T cells, IL-21 γδ T-

APCs provided reduced strength stimulations over IL-2 and IL-15 γδ T-APCs.  

Significant induction of Th2 responses was observed using all γδ T-APC subsets, as 

confirmed by expression of IL-4, IL-5, IL-13 and GATA3. However, such responses 

only constituted a relatively small proportion of all responding cells, and under no 

condition was the resulting CD4+ T cell response dominated by Th2 cells. The levels 

of IL-4 induction appeared to exceed those induced by DCs, and were only matched 

by monocytes. In this respect, neutralisation studies demonstrated that IL-4 was at 

least partially responsible for the induction of Th2 responses by γδ T-APCs, 

highlighted by the reduced IL-4 secretion by naive CD4+ T cells in γδ T-APC: CD4+ 

T cell co-cultures in the presence of anti-IL-4 mAbs. However, it is unclear whether 

this IL-4 was actually produced by γδ T-APCs to prime Th2 responses, or by naive 

CD4+ T cells during their initial stimulation. Vγ9Vδ2 T cells are indeed capable of IL-

4 production, but the question remains as to whether γδ T-APCs utilised this ability 

during co-cultures. In addition, lack of IL-12 production by γδ T-APCs may have 

allowed for increased levels of Th2 differentiation over DC co-cultures to occur. Of 

note, a similar induction of IL-4 and IFN-γ responses was detected in naive CD8+ T 

cell responders, highlighting the capacity of γδ T-APCs not only to promote Th1 and 

Th2 responses but to trigger Tc1 and Tc2 responses as well.  

A significant contrast between responses induced by γδ T-APCs, and those induced 

by DCs and monocytes, was in the induction and promotion of Th17 responses. γδ 

T-APCs failed to induce any IL-17 in naive CD4+ T cell co-cultures, and even did not 

expand IL-17 expressing cells in memory CD4+ T cell populations. In contrast, DCs 

and monocytes were both able to induce significant populations of IL-17 producing 

cells, the highest levels observed with PGN-treated APCs, consistent with previous 

reports95. A lack of IL-17 induction by γδ T-APCs can be attributed to a number of 

factors, not least of which is the absence of polarising cytokine production to direct 

Th17 differentiation. The cytokine requirements for Th17 differentiation are well 

defined, involving a combination of IL-1β, IL-6, and TGF-β. These cytokines are 

produced by DCs and monocytes, particularly in the presence of PGN95. However, 

none of these cytokines were detected in γδ T-APC supernatants, indicating a lack 

of ability to promote Th17 differentiation. In addition, CD70 interaction with CD27, 
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expressed by CD4+ T cells, has been identified to provide a Th1 promoting signal at 

the expense of Th17 polarisation176. Indeed, addition of soluble CD70 to naive CD4+ 

T cells, cultured in the presence of Th17 polarising cytokines, reduced IL-17 

expression in favour of IFN-γ expression (data not shown). Given the high 

expression of CD70 by γδ T-APCs, this presents a possible mechanism by which γδ 

T-APCs not only do not induce IL-17 production in responder cells, but also limit or 

even inhibit the expansion of Th17 cells, as observed with memory CD4+ T cell 

responses. Of note, upregulation of the Th17 master transcription factor, RORC, 

was detected in all γδ T-APC co-cultures, with increased levels in IL-15 γδ T-APC 

polarising cultures. Given the lack of IL-17 production by CD4+ T cells under those 

conditions, it is unlikely this RORC expression was identified in Th17 cells. One 

explanation is that any contaminating γδ T-APCs left at the time of RNA extraction 

may have provided the RORC signal. Indeed, Vγ9Vδ2 T cells have been described 

to produce IL-17 and express RORC albeit only under very long culture periods and 

with relatively poor efficiency289,290. In the present Thesis, no IL-17 production was 

detected under any culture condition, in accordance with previous findings from our 

laboratory305,306. It appears that any surviving γδ T-APCs did not possess a Th17-

phenotype, and given the minimal contamination of sorted CD4+ T cell populations 

(>99.1% purity), this explanation appears unlikely. Another, and potentially more 

likely explanation, is that IL-22 expressing cells, such as Th22 cells, also display 

limited expression of RORC, despite a lack of IL-17 production, as discussed below.  

One of the most surprising effects of γδ T-APC mediated CD4+ T cell polarisation 

was in the efficient induction of IL-22. Both IL-2 and IL-21 γδ T-APCs induced IL-22 

populations in naive responder cells, with levels of IL-22 induction similar to those 

observed with alternative APC controls. In contrast, IL-15 γδ T-APCs were able to 

promote IL-22 responses to levels which exceeded those induced by all other APC 

subsets. Similarly, highest levels of AHR expression were observed in IL-15 γδ T-

APC co-cultures. A large proportion of the IL-22+ cells induced were in fact IFN-γ co-

expressing Th1 cells, with the remaining cells representing Th22 cells. In addition to 

the increased levels of IL-22 induction, these subsets induced by IL-15 γδ T-APCs 

were completely IL-17 negative. IL-22 was originally identified as a Th1 type 

cytokine, but is also co-expressed by Th17 cells101. The identification that γδ T-

APCs may be important in the induction of IL-22 mediated immunity presents a 

novel function for these cells. As previously discussed, RORC expression was 

detected in all γδ T-APC co-culture systems, with highest levels observed in IL-15 

γδ T-APC co-cultures. However, RORC expression does not always identify IL-17+ 



179 
 

cells98, and Th22 cells have been identified to express RORC in addition to AHR121. 

Having identified the highest expression of RORC in responder cells polarised by IL-

15 γδ T-APCs, where highest levels of IL-22 were identified, it appears these IL-22+ 

cells may provide the RORC expression identified.  

With the observation that IL-15 γδ T-APCs promote IL-22 type responses, the 

mechanism behind such induction was examined. According to previous studies, a 

combination of IL-6 and TNF-α promote the differentiation of Th22 cells121, which do 

not co-express IFN-γ or IL-17, although the authors of that study did state that other 

polarising factors may also account for the induction or enhancement of Th22 

responses. Consistent with previous reports, TNF-α was partially responsible for the 

induction of IL-22 by IL-15 γδ T-APCs, with blockade of this cytokine accounting for 

a significant decrease in IL-22 and AHR expression by naive CD4+ T cells. Although 

limited studies have suggested that Vγ9Vδ2 T cells are capable of IL-6 production356 

under certain conditions, IL-6 was undetectable in γδ T-APC supernatants 

suggesting these cells do not contribute IL-6 to the polarising environment. Also, the 

lack of IL-6 function was confirmed utilising specific blocking antibodies against IL-6, 

which had no effect on the polarisation of IL-22-type responses. Instead, a role for 

ICOSL was identified, given that blockade of this costimulatory molecule, expressed 

by γδ T-APCs, resulted in a reduced ability to promote IL-22 responses. The role of 

ICOSL was confirmed by subsequent assays stimulating naive CD4+ T cells in the 

absence of APCs; anti-ICOS agonistic mAbs or recombinant TNF-α alone induced 

low levels of IL-22 and AHR expression, whereas a combination of these two factors 

appeared to have a synergistic effect. In comparison with IL-6/TNF-α, similar levels 

of IL-22 and AHR were observed, however a higher proportion of IL-22+ cells 

induced by αICOS/TNF-α co-expressed IFN-γ. In support of these findings, 

increased TBX21 expression was observed with αICOS/TNF-α treatment, mirroring 

expression of IL-22 and IFN-γ in these culture conditions. Of note, this is the first 

description of a crucial role of ICOSL in the polarisation of IL-22-type responses, the 

precise mechanism of which remaining to be resolved. As such it is unknown 

whether a combination of ICOS stimulation with cytokines other than TNF-α (for 

instance IL-6) is similarly able to promote IL-22 expression by CD4+ T cells, or 

whether it exerts any other differential effects on CD4+ T cell polarisation. Also, it 

remains unclear whether ICOS stimulation in the presence of other polarising 

factors, such as Th17 polarising cytokines, may promote different effects in CD4+ T 

cell polarisation, or always skews responses towards IL-22 by default. With regards 

to why IL-15 γδ T-APCs may be more prominent inducers of IL-22 than their IL-2 γδ 
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T-APC and IL-21 γδ T-APC counterparts, significantly higher expression of TNF-α 

production by IL-15 γδ T-APCs was identified, possibly accounting for increased 

induction of IL-22. In addition, increased expression of ICOSL was identified on IL-

15 γδ T-APCs compared with IL-21 γδ T-APCs, and to a lesser extent IL-2 γδ T-

APCs. However, other factors cannot be ruled out which could account for 

differential IL-22 induction by γδ T-APCs. Indeed, several other factors have been 

identified as IL-22 promoting, such as FICZ346 and the active form of vitamin D3 

(1,25(OH)2D3)
121, indicating a complex regulation of IL-22 expression involving a 

multitude of factors. Interestingly, low levels of IL-22 and AHR expression could be 

identified in IL-15 γδ T-APC:naive CD4+ T cell co-cultures, after blockade of both 

ICOSL and TNF-α. This suggests that further, as yet unidentified, factors may be 

involved in IL-22 induction; however, given the low level expression of both IL-22 

and AHR after CD3/CD28 stimulation of naive CD4+ T cells alone, these cells may 

possess a natural tendency to express IL-22, which is further enhanced by 

polarising factors such as ICOSL, TNF-α, and/or IL-6. Interestingly, IL-22 induction 

was not detected in naive CD8+ T cell co-cultures, indicating an alternate 

mechanism of Tc22 polarisation. Indeed, IL-21 has been reported as an important 

factor in driving Tc22 responses217, and production of this cytokine by Vγ9Vδ2 T 

cells was not examined. As such, it appears IL-22 production by CD4+ and CD8+ T 

cells requires different pathways, and Tc22 induction may not depend on ICOSL and 

TNF-α action.  

Given the roles of cytokines and costimulatory molecules expressed by γδ T-APCs 

in the facilitation of CD4+ T cell polarisation as identified in this Chapter, a model of 

this process can be proposed (Figure 4.31). This model highlights that the 

molecules LFA-1, CD80, CD86, and CD48, expressed by the γδ T-APC, are all 

essential in stimulating and maintaining a CD4+ T cell response. In addition, the 

polarising factors IFN-γ and CD70 promote CD4+ T cell polarisation towards a Th1 

type response, whereas TNF-α and ICOS-L promote the production of IL-22. It is the 

balance of these factors which promote the IFN-γ/IL-22 phenotype observed when 

naive and memory CD4+ T cells are stimulated by γδ T-APCs.  
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Figure 4.31 – Proposed model of γδT-APC expressed polarising factors and their roles 

in naive CD4
+
 T cell polarisation. 

In addition to the novel observation that γδ T-APCs can regulate IL-22 production, 

increased induction of IL-10 was observed in naive and memory CD4+ T cells, 

mediated by IL-21 γδ T-APCs. The majority of IL-10+ cells were negative for all other 

cytokines examined, while a small population were co-expressing IL-4. In addition, 

there were no significant increases in the expression of any of the transcription 

factors examined in IL-21 γδ T-APC co-cultures as compared to IL-2 or IL-15 

cultures. Unfortunately, the specific mechanism and molecules behind the induction 

of IL-10 remain unclear. IL-10 induction was dependent on cell contact mediated by 

LFA-1, and the costimulation of both CD80 and CD86. However, all other 

costimulatory molecules examined appeared to have no effect on IL-10 induction. 

Additionally, blockade of a range of different γδ T cell-derived cytokines did not 

affect the ability of naive CD4+ T cells to express IL-10. Prior to co-culture, IL-21 γδ 

T-APCs were identified to express only minimal levels of TNF-α and IFN-γ, 

explaining why the blockade of those cytokines had no effect on IL-10 induction. 

One potential mechanism by which IL-10 induction may have occurred is due to a 

lack of polarising cytokines, in combination with a relatively weak stimulation 

provided by IL-21 γδ T-APCs compared to other subsets, allowing for differentiation 

of CD4+ T cells towards an IL-10+ regulatory phenotype. However, no significant 
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increases in stable FOXP3 expression were identified, and given the presence of 

IFN-γ+, IL-4+, and IL-22+ cells induced alongside the IL-10+ cells, a regulatory 

phenotype appears unlikely.  Another possible explanation of IL-10 induction by IL-

21 γδ T-APCs is a Tfh cell function. Vγ9Vδ2 T cells and CD4+ T cells have been 

shown to interact with B cells to promote antibody class switching and humoral 

responses280,292, and interactions were reliant on both IL-21 and IL-10. Given these 

findings, it is possible the IL-21 γδ T-APC function may allow for CD4+ T cells to aid 

B cell responses, in accordance with the fact that IL-21 is a signatory cytokine 

expressed by Tfh cells themselves280. However, no increases in BCL6 were 

identified in IL-21 γδ T-APC co-cultures, indicating that these cells did not represent 

Tfh cells. Further investigation is needed to identify which T helper lineage these IL-

10+ cells belong to, and where IL-21 γδ T-APCs may play a role in immunity.  

The expression of chemokine receptor repertoires is an inherent component of T 

helper lineages, with each subtype displaying unique combinations of receptors. 

With the identification of a number of different T helper subsets induced by γδ T-

APCs, characterised by cytokine and transcription factor expression, responder cells 

were examined for the expression of a number of chemokine receptors. CXCR3 

staining, identifying cells likely to belong to the Th1 lineage, was expressed on a 

large proportion of responder cells. In contrast, only minimal CCR6 and CCR10 

expression was detected in polarised CD4+ T cells. CCR6 is expressed by Th17 

cells85, in combination with CCR4, and given the lack of IL-17 induced in responder 

populations, it is not surprising that no CCR6 was detected under the conditions 

examined. However, CCR10 has been reported to be expressed by Th22 cells121, 

alongside CCR4 and CCR6. Small populations of Th22 cells were identified in co-

cultures, making the lack of CCR10 expression a contrast to previous studies. The 

regulation of chemokine receptors on CD4+ T cells is a complex process, involving 

antigen presenting cells and also external, often tissue specific, factors. CXCR3 

appears to become upregulated on CD4+ T cells as a result of cell activation357, as 

opposed to being dependent on the cytokine microenvironment, perhaps explaining 

the prominent induction of this chemokine receptor on responder cells identified 

here. However, to define Th1 cells exclusively, a combination of CXCR3 and CCR5 

is necessary92, whereas CXCR3 staining gives an indication of the T helper subset 

identified. In contrast to CXCR3, upregulation of CCR10, an epidermotropic 

receptor358, is controlled by several factors. IL-12 and the vitamin D3 metabolite, 

1α,25-dihydroxyvitamin D3, have both been described to be involved in the induction 

of CCR10 on T cells358. Given the lack of IL-12 production by Vγ9Vδ2 T cells, this 
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may account for the absence of CCR10 induction. In addition, in the absence of 

vitamin D3 metabolites, it is unclear whether γδ T-APCs may permit CCR10 

induction under the necessary culture conditions, or whether responder cells may be 

directed to other peripheral sites in the absence of skin-specific metabolites.  

The reliance of γδ T-APCs on co-stimulatory molecules instead of polarising 

cytokines appears consistent with their functional phenotype. For example, DCs and 

monocytes are capable of producing a range of polarising cytokines, and adapted 

their cytokine profiles depending on the ligands encountered. In contrast, Vγ9Vδ2 T 

cells in this system only produced IFN-γ and TNF-α and failed to produce classical 

polarising factors such as IL-1β, IL-6, IL-12, IL-23 and IL-10. Given the reduced 

range of cytokines produced by γδ T-APCs under the conditions examined, the 

expression of a wide range of co-stimulatory molecules indicates a much more 

prominent effect in γδ T-APC mediated CD4+ T cell polarisation than in DC or 

monocyte mediated responses. It should be noted that while certain responses were 

promoted over others in these assays, multiple lineages were induced 

simultaneously in all APC co-cultures. This reflects the complexity of CD4+ T cell 

polarisation in humans; in murine models, responses are much clearer, with only 

limited numbers of discrete lineages present during different immune scenarios. 

However, in human immunity, T helper lineage responses are often identified 

together in disease conditions, highlighting a collaboration between CD4+ T cell 

subsets to mediate immune responses.  

Overall, the data presented in this Chapter show that γδ T-APCs are indeed able to 

adapt to their cellular microenvironment, become antigen presenting cells, and direct 

the polarisation of naive CD4+ T cells towards appropriate lineages, depending on 

the Vγ9Vδ2 stimulation. In addition, the responses generated by γδ T-APCs in this 

system were strikingly different to those observed with DCs and monocytes, 

indicating γδ T-APCs may occupy a 'functional niche', where they induce specific T 

helper responses under certain conditions, or at certain anatomical locations, that do 

not induce optimal generation of DCs. Alternatively, γδ T-APC polarisation of 

adaptive immunity may act in concert with DC mediated polarisation to facilitate the 

complex mix of CD4+ T cell subsets often observed in human immunity. Further 

questions remain about the extent to which γδ T-APCs can adapt to their 

microenvironment and initiate different immune responses, whether there are 

cytokines outside the common γ-chain family which may support APC differentiation, 

and what responses these differentially generated γδ T-APCs may induce.   
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Chapter 5 - Role of γδ T-APCs in Intestinal Immunity 

5.1 - Introduction 

γδ T-APC studies to date have focused on utilising Vγ9Vδ2 T cells from blood to 

generate an APC phenotype in these cells322,326. This is largely due to the fact that 

Vγ9Vδ2 T cells are readily available to isolate from blood and display prominent 

APC characteristics following stimulation. However, this has highlighted a lack of 

knowledge regarding the presence and role of γδ T-APCs at peripheral sites other 

than blood. Having identified that IL-15 promotes the generation of APCs which 

polarise potent IL-22-type responses in responding CD4+ T cells, subsequent 

experiments focused on relating this IL-15/γδ T-APC/IL-22 axis to one or more 

peripheral sites, with the aim of defining a potential site-specific role of γδ T-APCs in 

an immune response.  

IL-22 as an effector cytokine plays a multitude of roles in many different anatomical 

sites, the functions of which can be general or organ-specific. Prominent locations of 

IL-22 action include the skin and the intestine. Acting on non-haematopoietic cells, 

IL-22 in the skin acts predominantly on keratinocytes to induce production of 

antimicrobial peptides, enhances proliferation, induces epidermal hyperplasia, and 

inhibits terminal differentiation of keratinocytes, to facilitate the maintenance of 

overall barrier integrity359. Similarly, IL-22 in the intestine facilitates antimicrobial 

peptide production, promotes inflammation and epithelial cell proliferation and 

repair, and maintains barrier integrity360. In addition, IL-22 has been shown to 

mediate immunity in the liver361 and the lung362. Given the diverse peripheral 

locations of IL-22 function, there are many scenarios whereby γδ T-APCs may play 

a role in IL-22 induction. Similarly, IL-15 is produced by a number of different cell 

types and at different sites. IL-15 is produced by DCs, keratinocytes, and intestinal 

epithelial cells, among others363. As such, both the skin and intestine are sources of 

IL-15, and represent peripheral sites where IL-22 action is fundamental to tissue 

homeostasis and maintenance of barrier integrity.  

Given the range of anatomical sites where an IL-15 dependent γδ T cell-mediated 

induction of IL-22 might occur under physiological conditions in health or disease, 

specific locations may be dependent on where Vγ9Vδ2 T cells have been observed 

to extravasate from the peripheral blood into the tissues, to facilitate immune 

responses. In this respect, the most compelling evidence of tissue-specific Vγ9Vδ2 

T cell immunity derives again from the skin and the intestine. Given that studies of 
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skin and gut immunity in healthy individuals are limited due to restricted access to 

relevant tissues, much of the knowledge of the immune system in these locales 

comes from studies of autoimmune diseases, such as psoriasis, inflammatory bowel 

disease (IBD), and rheumatoid arthritis. Indeed, Vγ9Vδ2 T cells have been identified 

as important in human skin immunity; a subset of circulating Vγ9Vδ2 T cells 

expresses the skin homing marker CLA, in combination with chemokine receptors 

such as CCR6, and as such can be recruited to the skin291. In addition, psoriasis 

patients, who exhibit significant skin inflammation among other symptoms, show 

increased numbers of Vγ9Vδ2 T cells in psoriatic lesions. Functionally, these skin-

homing Vγ9Vδ2 T cells produce several inflammatory mediators such as IFN-γ, 

TNF-α, and IL-17, and as such may contribute to disease pathogenesis or 

progression. Similarly, Vγ9Vδ2 T cells have been observed to play roles in intestinal 

immunity242. Subsets of Vγ9Vδ2 T cells exhibit expression of gut homing receptors 

such as integrin α4β7, and can be identified in intestinal biopsies. In addition, 

Vγ9Vδ2 T cells derived from the intestine produce pro-inflammatory cytokines such 

as IFN-γ and TNF-α, and have even been identified to express HLA-DR and CD70, 

and interact with intestinal αβ T cells242. Further to this, roles for Vγ9Vδ2 T cells 

have been proposed in IBD345. Lastly, Vγ9Vδ2 T cells have displayed APC potential 

in rheumatoid arthritis, expressing APC markers and contributing to the induction of 

CD4+ T cell responses324. Given these observations, it appears likely that not only 

will Vγ9Vδ2 T cells be able to facilitate APC function in both the skin and intestine, 

but may also contribute to autoimmune pathologies in these peripheral sites. Indeed, 

both IL-15 and IL-22 have been shown to contribute to autoimmune disease 

pathology137,138,364, and as such all factors in the IL-15/γδ T-APC/IL-22 axis appear 

to be involved in the pathogenesis of autoimmune diseases.  

To investigate at which peripheral site Vγ9Vδ2 T cells may contribute to IL-22 

immunity, the homing potential of γδ T-APC and their function in the intestine was to 

be assessed. In addition, the potential of γδ T-APCs to contribute to autoimmune 

disorders would be investigated, in particular IBD.   
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5.2 - Aims of Chapter 

The following experimental aims will be discussed in this chapter: 

 Investigate homing receptor expression on cellular subsets. 

 Assess the role of Vγ9Vδ2 T cells in intestinal biopsies. 

 Examine the ability of intestinal Vγ9Vδ2 T cells to become APCs and control 

CD4+ T cell responses. 

 Investigate the role of Vγ9Vδ2 T cells in IBD. 

5.3 - Expression of Homing Receptors  

As an initial step in identifying at which anatomical location γδ T-APCs may induce 

IL-22 type responses, the expression of several homing receptors was assessed on 

the surface of γδ T-APCs. Immune cells, which are able to extravasate from blood 

into peripheral tissues, express distinct receptors necessary for this process, and 

skin and intestinal extravasation in particular require distinct receptors. The 

cutaneous lymphocyte-associated antigen, CLA, is a requirement for cell entry into 

the skin. By binding its ligand, endothelial cell adhesion molecule (ELAM-1), CLA-

expressing cells are able to enter the skin365. In addition, CLA is readily identified on 

T cells located in the skin, highlighting the importance of this molecule in skin 

homing358. Conversely, entry into intestinal sites requires expression of α4β7 

integrin, which recognises its ligand mucosal addressin cell adhesion molecule 1 

(MAdCAM-1), expressed by endothelial cells in the small intestine and colonic 

lamina propria366. Populations of α4β7 expressing cells are detectable in peripheral 

blood and comprise immune cells which are potentially involved in intestinal 

immunity. In addition to the expression of tissue specific adhesion molecules, 

chemokines and their receptors are also essential in directing immune cells to the 

skin or intestine. As previously discussed, CCR10 and its ligand CCL27, as well as 

CCR4 and its ligand CCL17, may be involved in skin homing of human T cells358,366, 

among other locations. Lastly, CCR8 has been shown to mediate skin-resident 

memory T cell trafficking to the skin358. Similarly, specific chemokine receptors and 

ligands have been identified for intestinal homing. CCR9, and its ligand CCL25, 

contributes to homing of immune cells to the small intestine366. Overall, 

combinations of molecules are required for homing of immune cells to peripheral 

sites, and the expression of such molecules allows for the identification of subsets 

with distinct migratory properties.  
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To identify the homing potential of γδ T-APCs, Vγ9Vδ2 T cells were stimulated with 

HMB-PP and common γ-chain cytokines for 3 days to induce an APC phenotype, 

and subsequently stained for β7 integrin and CCR9 for intestinal homing, and CLA 

for skin homing (Figure 5.1). Figure 5.1a displays representative stainings of each 

homing marker by total γδ T-APCs, generated with IL-15. Significant staining of β7 

integrin was observed, with the majority of γδ T-APCs expressing this receptor. Of 

note, β7 integrin is able to associate with α4 or αE, and as such the β7 staining in 

these experiments did not exclusively identify α4β7 expression. CCR9 staining was 

less pronounced on IL-15 γδ T-APCs, whereas CLA expression was very limited on 

this cell population. Comparisons of homing marker expression across γδ T-APCs 

generated under different conditions are presented in Figure 5.1b. Highest levels of 

β7 integrin were identified on γδ T-APCs generated with IL-2 and IL-15, exhibiting 

significantly higher percentages of positive cells compared to unstimulated Vγ9Vδ2 

T cells. IL-7 γδ T-APCs displayed increased expression of  β7 integrin as compared 

to unstimulated cells, although this increase was not statistically significant. CCR9 

expression displayed a similar pattern, yet with the only significant upregulation 

detected on IL-15 γδ T-APCs. Of note, even unstimulated cells showed marked 

expression of CCR9 (approx. 30%). Lastly, CLA expression followed an opposite 

pattern, whereby CLA was actually downregulated on γδ T-APCs generated with IL-

2, IL-15, or IL-7, displaying significantly lower percentages of CLA positive cells as 

compared to unstimulated cultures. Overall, it appeared that most γδ T-APCs 

generated under the influence of IL-2 and IL-15, and to some degree also IL-7, 

possessed an intestinal homing phenotype and did not show any skin homing 

properties.  
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Figure 5.1 – Expression of homing markers by γδ T-APCs. (a) Representative flow 

cytometry plots displaying expression of β7 integrin, CCR9 and CLA on 3-day generated IL-

15 γδ T-APCs. Vγ9Vδ2 T cells were stimulated with 10 nM HMB-PP in the presence or 

absence of IL-15 for 3 days, and assessed for expression of homing markers at day 3 of 

culture. Percentages of positive cells were determined by flow cytometry. (b) Summary of 

homing marker expression by γδ T-APCs generated in the presence or absence of different 

common γ-chain cytokines. Data points represent individual healthy donors from individual 

experiments. Horizontal lines display means of data sets. Error bars display standard 

deviation of samples. Statistical significance was determined using the Friedman test, 

followed by the Dunn‟s multiple comparison test, *=p<0.05, **=p<0.01, ***=p<0.001, 

****=p<0.0001, ns=not significant.  Significance displayed in comparison to unstimulated 

control.  
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Given that CCR9 had been identified as upregulated on IL-15 γδ T-APCs, but that 

staining for this receptor did not identify distinct populations of positive and negative 

cells, migration assays were established to assess whether expression of CCR9 

was functional (Figure 5.2). To assess migration to CCL25, the ligand for CCR9, IL-

15 γδ T-APCs were generated over 3 days and placed in the top chamber of a 

transwell plate, and titrated concentrations of CCL25 were added in the bottom 

chamber. As γδ T-APCs utilised in migration assays were positive for CXCR3 

(96.5%) and negative for CCR2 and CCR4 (data not shown), migration to CXCL10 

(IP-10) and CCL2 (MCP-1) was assessed, representing ligands for CXCR3 and 

CCR2/CCR4, respectively. As such, CXCL10 represented a positive control for cell 

migration, and CCL2 a negative control. After 3 hours of culture, the numbers of 

cells which had migrated to the lower chamber were counted and the percentage of 

migrated cells was calculated.  

Figure 5.2a displays migration of IL-15 γδ T-APCs toward each chemokine at a 

range of concentrations, for one individual donor examined. Migration to CXCL10 

followed a dose-dependent response, with a peak migration observed at 100 ng/ml 

CXCL10. A similar dose-dependent response was observed to CCL25, with a peak 

migration at 100 ng/ml of chemokine. No increase in migration to CCL2 was 

detected in comparison with blank (no chemokine) controls. In terms of percentages 

of migrated cells, CXCL10 at 100 ng/ml led to approximately 20% of cell migration, 

compared to CCL25 which induced approximately 13% migration. The increased 

migration toward CXCL10 over CCL25 is was likely due to the higher expression 

levels of CXCR3 compared to CCR9. Figure 5.2b displays the expression of several 

APC markers on IL-15 γδ T-APCs, prior to and following migration to CCL25. Cells 

which had migrated to CCL25, in comparison to total input cells, showed higher 

levels of expression of HLA-DR and CD86, and to a lesser extent of CD70, 

indicating a selective enrichment of Vγ9Vδ2 T cells with an APC phenotype 

following CCR9 mediated migration.  
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Figure 5.2 – Migration of IL-15 γδ T-APCs to chemokines. (a) Migration of IL-15 γδ T-

APCs to IP-10, CCL25, and CCL2. IL-15 γδ T-APCs were cultured in the upper chamber of 

transwell plates, with different concentrations of each chemokine in lower chambers, and 

allowed to migrate for 3 hours. Numbers of migrated cells to each chemokine were 

calculated as a percentage of total input cells, determined by flow cytometry. (b) Expression 

of HLA-DR, CD86, and CD70 on IL-15 γδ T-APCs prior to use in migration assay and 

following 3 hour migration to CCL25. Percentages of APC marker positive cells were 

determined by flow cytometry. Data presented are derived from 1 healthy donor.   

Having identified a preferential homing to the intestine by γδ T-APCs, assays were 

conducted to examine the homing potential of CD4+ T cells upon polarisation by γδ 

T-APCs (Figure 5.3). Figure 5.3a displays the expression of each homing marker by 

naive CD4+ T cells after 9 days of co-culture with different populations of γδ T-APCs. 

In response to IL-2 or IL-15 γδ T-APCs, naive CD4+ T cells were induced to express 

significant levels of β7 integrin as compared to unstimulated naive CD4+ T cells. IL-

21 γδ T-APCs also induced β7 expression by responder cells, although this increase 

over naive cells was not statistically significant. CCR9 was not expressed by 

polarised naive CD4+ T cells nor by unstimulated cells. Lastly, CLA expression by 

CD4+ T cells was induced by IL-2 and IL-15 γδ T-APCs, although the expression 

levels observed were not significantly increased over unstimulated controls.  

a

b
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To identify which homing markers IL-22+ CD4+ T cells express, IL-15 γδ T-APC : 

naive CD4+ T cell co-cultures were restimulated at day 9 and stained for intracellular 

IL-22, in combination with homing markers. Figure 5.3b displays representative 

stainings of IL-22 expression, and staining of β7, CLA, and CCR9 within the IL-22+ 

population. The majority of IL-22 expressing cells also expressed β7, with a much 

smaller population being positive for CLA. No CCR9 expression was detected in IL-

22 expressing cells. Of note, similar expression of β7 and CLA was detected on 

IFN-γ expressing CD4+ T cells induced by IL-15 γδ T-APCs (data not shown). These 

data indicate that despite the capacity of giving rise to distinct CD4+ T cell subsets 

as characterised by their cytokine profiles, under the experimental conditions 

chosen γδ T-APCs were unable to induce differential homing properties in those 

CD4+ T cell subsets.  
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Figure 5.3 – Expression of homing markers by polarised naive CD4
+
 T cells. (a) 

Expression of homing markers by naive CD4
+
 T cells polarised by γδ T-APCs over 9 days of 

culture. At day 9, percentages of cells expression each homing marker by CFSE
lo
CD4

+
 T 

cells was determined by flow cytometry. (b) Expression of homing markers by IL-22-

polarised CD4
+
 T cells. Naive CD4

+
 T cells were polarised by IL-15 γδ T-APCs over 9 days 

of culture, and at day 9 were restimulated and assessed for IL-22 and homing marker 

expression. Expression of β7 integrin, CLA, and CCR9 determined by gating on IL-22
+
 cells. 

Plots representative of 4 healthy donors. Data points represent individual healthy donors. 

Horizontal lines display means of data sets. Error bars display standard deviation of 

samples. Statistical significance was determined using the Friedman test, followed by the 

Dunn‟s multiple comparison test, *=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001, ns=not 

significant.  Significance displayed in comparison to naive CD4 alone control. 

5.4 - Vγ9Vδ2 T cells in Intestinal Biopsies 

With the identification that IL-15 γδ T-APCs, and their responder cells, preferentially 

express intestinal homing receptors, attention focused on a potential role for γδ T-

APCs in the intestine. Previous studies have identified that Vγ9Vδ2 T cells are 

indeed present in the intestine and can be obtained and studied in intestinal 

biopsies242,345. As such, assays were designed to assess the ability of Vγ9Vδ2 T 

cells to potentially act as APCs in the context of intestinal immunity. This work was 
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conducted in collaboration with Drs Neil McCarthy, James Lindsay and Andrew 

Stagg at the Blizard Institute, Queen Mary University of London. 

To first examine this potential, human mucosal tissue was obtained from patients 

undergoing surgical resection for non-inflammatory disorders. Mucosal tissue, 

derived either from the terminal ileum or from colonic mucosa, was divided and 

cultured in 24 well plates in the presence of IL-2 and IL-15, with and without HMB-

PP of culture. At day 3, supernatants from total mucosal cells were obtained and 

assessed for cytokine secretion by ELISA to assess the effect of specific Vγ9Vδ2 T 

cell activation in the context of total intestinal cells 

Figure 5.4a displays the levels of cytokines expressed by total colon biopsy cells in 

the presence or absence of HMB-PP. In response to HMB-PP, increases in both 

IFN-γ and IL-22 were detected in cell supernatants. In contrast, no significant effects 

were observed on IL-17, IL-10, TNF-α or TGF-β. Considerable variation in the 

concentration of cytokines detected was observed between mucosal tissues 

obtained from different individuals. Given this inter-donor variation, the relative 

increase in IFN-γ and IL-22 was determined (Figure 5.4b). The increase in IFN-γ 

ranged from 20% to 75%, and increases in IL-22 ranged from 40% to 80%. Overall, 

addition of the Vγ9Vδ2 T cell-specific stimulus HMB-PP led to a significant induction 

of both IFN-γ and IL-22 in total, colon-derived cells.  
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Figure 5.4 – Secretion of cytokines by total colon biopsy cells (a) Secretion of cytokines 

by total colon biopsy cells cultured in the presence or absence of HMB-PP. Colon biopsy 

tissue was cultured with IL-2 and IL-15, with or without 10 nM HMB-PP, for a period of 3 

days. At day 3, supernatants were obtained and assessed for the presence of cytokines by 

ELISA. (b) Percentage increase in secretion of IFN-γ and IL-22 by total colon biopsy cells 

cultured in the presence or absence of HMB-PP. Data points represent individual pair-

matched donors. Statistical significance was determined using the Mann-Whitney test, 

*=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001, ns=not significant.  

In identical experiments to those conducted with colon-derived cells, cultures of 

terminal ileum-derived cells were established, and cultured in the presence or 

absence of HMB-PP (Figure 5.5). Similar trends in IFN-γ and IL-22 secretion were 

detected, with increased levels in response to HMB-PP. However, with the limited 

number of terminal ileum samples obtained, increases were not statistically 

significant. Consistent increases were similarly not observed in any of the other 

cytokines assessed.  

a

b Percentage Increases
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Figure 5.5 – Secretion of cytokines by total ileum biopsy cells (a) Secretion of cytokines 

by total ileum biopsy cells cultured in the presence or absence of HMB-PP. Ileum biopsy 

tissue was cultured with IL-2 and IL-15, with or without 10 nM HMB-PP, for a period of 3 

days. At day 3, supernatants were obtained and assessed for the presence of cytokines by 

ELISA. (b) Percentage increase in secretion of IFN-γ and IL-22 by total ileum biopsy cells 

cultured in the presence or absence of HMB-PP. Data points represent individual pair-

matched donors. Statistical significance was determined using the Mann-Whitney test, 

*=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001, ns=not significant.  

Overall, addition of HMB-PP to cultures of total cells, obtained from either colon or 

terminal ileum tissue, appeared to cause an increase in the production of IFN-γ and 

IL-22.  

 

 

 

 

 

b



196 
 

5.5 - Control of Naive CD4+ T cell Responses by Intestinal γδ T-APCs 

With the observation that simply stimulating Vγ9Vδ2 T cells in cultures of total 

biopsy cells led to increases in overall IFN-γ and IL-22 secretion, the two cytokines 

previously identified as induced by γδ T-APCs, the next stage was to assess the 

ability of intestinal Vγ9Vδ2 T cells to act as professional APCs in the same manner 

as blood-derived cells.  

In the first instance, Vγ9Vδ2 T cells were sorted from cultures of total intestinal 

tissue samples, previously cultured for 7 days with IL-2 and IL-15 in the presence or 

absence of HMB-PP. Vγ9Vδ2 T cells were identified in cultures of total intestinal 

cells as previously described242. The percentages of CD3+Vδ2+ T cells pre-sort and 

cellular yields obtained post-sort are displayed in Table 5.1. With the limited number 

of samples obtained, it appeared increased numbers of Vγ9Vδ2 T cells were 

isolated from terminal ileum samples in comparison with colonic tissue, in paired 

donors. In addition, addition of HMB-PP to cultures over the 3 day period appeared 

to increase both the percentage and yield of Vγ9Vδ2 T cells in all samples. As such, 

significant numbers of cells could be isolated from tissue samples obtained.  
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Table 5.1 - Cell Sort Yield of Vδ2
+
 T Cells from Intestinal Tissue Samples  

Donor Tissue HMB-PP 

Treatment 

CD3+Vδ2+ 

Cell Percentage 

CD3+Vδ2+ 

Cell Yield 

1 Colon - 0.43% 2065 

1 Colon + 0.89% 4532 

1 Ileum - 0.55% 5189 

1 Ileum + 0.76% 8843 

2 Colon - 0.55% 5605 

2 Colon + 1.01% 11,534 

3 Colon - 0.24% 5039 

3 Colon + 0.37% 6765 

4 Colon - 0.44% 1489 

4 Colon + 0.54% 1885 

4 Ileum - 0.76% 4016 

4 Ileum + 0.82% 4574 

5 Colon - 0.05% 182 

5 Colon + 0.08% 318 

 

Having confirmed the ability to isolate Vγ9Vδ2 T cells directly from intestinal tissue, 

attention shifted to the ability of these cells to become APCs. As previously 

discussed, total biopsy cells were cultured for 7 days in the presence of IL-2 and IL-

15, with or without HMB-PP. At day 4, additional IL-2 and IL-15 was added to 

cultures. Upon reaching day 7 of culture, CD3+ Vδ2+ cells were sorted to high purity 

(>99.2% Vδ2+) from total intestinal cells and assessed for expression of several 

APC markers.  

Figure 5.6 shows the APC phenotype of intestinal-derived Vγ9Vδ2 T cells. 

Representative flow cytometry plots display the expression of APC markers by 

Vγ9Vδ2 T cells from cultures stimulated with or without HMB-PP (Figure 5.6a). In 

the absence of HMB-PP, Vγ9Vδ2 T cells exhibited moderate expression of all APC 

markers examined, and overall stainings mirrored those obtained with peripheral 

blood Vγ9Vδ2 T cells (Figure 3.15, Chapter 3). Cultures with HMB-PP displayed 

increased expression of HLA-DR, CD86, and ICOS-L, and CD70 expression 

appeared to be maintained. Figure 5.6b shows a summary of expression of APC 

markers by Vγ9Vδ2 T cells, derived from colon or terminal ileum tissue. In cultures 

of both colon and ileal cells, Vγ9Vδ2 T cells displayed an increase in expression of 

all APC markers, except CD70 for which percentages of positive cells remained 
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stable but high. There also appeared to be no difference between colon and ileum 

cells, although only a limited number of samples were analysed including 1 donor of 

terminal ileum tissue. Due to the low number of replicates, increases observed in 

APC marker expression were not statistically significant.  
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Figure 5.6 – Expression of APC markers by intestine-derived Vγ9Vδ2 T cells. (a) 

Representative flow cytometry plots displaying expression of APC markers by colon-derived 

Vγ9Vδ2 T cells. Total colon cells were cultured for 7 days with IL-2 and IL-15, in the 

presence or absence of 10 nM HMB-PP. At day 7, Vδ2
+
 T cells were sorted by FACS and 

stained for expression of markers. Figures representative of 3 individual donors. Numbers on 

graphs display percentages of cytokine positive cells. CD86, CD70, and ICOSL stainings 

were obtained by gating on HLA-DR
+
 cells. (b) Summary plots displaying expression of APC 

markers by Vδ2
+
 T cells derived from colon and ileum biopsies. Dots display individual 

donors. Horizontal lines display means of data sets. Error bars display standard deviation of 

samples. Statistical significance was determined using the Mann-Whitney test, *=p<0.05, 

**=p<0.01, ***=p<0.001, ****=p<0.0001, ns=not significant.  
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With the demonstration that intestinal Vγ9Vδ2 T cells are indeed capable of 

expressing an APC phenotype, the ability of these cells to initiate and polarise CD4+ 

T cell responses was examined. In similar experiments to those conducted with 

peripheral blood-derived γδ T-APCs, intestinal Vγ9Vδ2 T cells were sorted from total 

intestinal cells at day 7, and subsequently cultured with CFSE stained naive CD4+ T 

cells for a period of 9 days. Proliferation was assessed at day 9 instead of day 5 due 

to limited numbers of cells isolated from intestinal tissue.  

Reflective of the enhanced APC phenotype, Vγ9Vδ2 T cells cultured in the presence 

of HMB-PP were stronger inducers of naive CD4+ T cell proliferation, compared with 

HMB-PP negative cultures (Figure 5.7a). In addition, there did not appear to be any 

difference between colon and ileum derived Vγ9Vδ2 T cells, at least in the number 

of donors examined (Figure 5.7b). Similarly to experiments using blood-derived γδ 

T-APCs, polarised responder cells expressed both IFN-γ and IL-22, and no IL-17 

expression was detected (Figure 5.7c). In addition, the majority of IL-22+ cells were 

also IFN-γ+. Vγ9Vδ2 T cells derived from either colon or ileum and cultured in the 

absence of HMB-PP, induced only low levels of cytokines in responder cells. The 

induction of both IFN-γ and IL-22 was increased when HMB-PP treated cells were 

used as APCs (Figure 5.7d). Again, no real differences could be identified between 

Vγ9Vδ2 T cells derived from either colon or terminal ileum tissue.  
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Figure 5.7 – Induction of naive CD4
+
 T cell responses by intestinal γδ T-APCs. (a) 

Representative flow cytometry plots displaying proliferation of naive CD4
+
 T cells, in 

response to co-culture with γδ T-APCs derived from a colon biopsy. γδ T-APCs were 

generated with IL-2 and IL-15 in the presence or absence of HMB-PP. Proliferation of naive 

CD4
+
 T cells was determined at day 9 of culture by flow cytometry. (b) Summary plot 

displaying proliferation of naive CD4
+
 T cells, in response to co-culture with γδ T-APCs 

derived from colon or ileum biopsies. (c) Representative flow cytometry plots displaying 

intracellular cytokine expression by naive CD4
+
 T cells, polarised by γδ T-APCs derived from 

a colon biopsy. γδ T-APCs were generated with IL-2 and IL-15 in the presence of HMB-PP. 

Expression of cytokines was determined at day 9 of culture by flow cytometry. (d) Summary 

plots displaying intracellular cytokine expression by naive CD4
+
 T cells, in response to co-

culture with γδ T-APCs derived from colon or ileum biopsies. Data points represent individual 

donors. Horizontal bars display means of data sets. Error bars display standard deviation of 

samples. Statistical significance was determined using the Mann-Whitney test, *=p<0.05, 

**=p<0.01, ***=p<0.001, ****=p<0.0001, ns=not significant.  
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5.6 - Roles of γδ T-APCs in Inflammatory Bowel Diseases 

Given the results obtained in previous experiments, it appears that Vγ9Vδ2 T cells 

derived from the intestine are indeed able to act as APCs and trigger CD4+ T cell 

responses. Further to this, potential roles of Vγ9Vδ2 T cells in the pathogenesis of 

IBD were postulated345. Since during this PhD study no intestinal tissue samples 

were available for an examination of local Vγ9Vδ2 T cell functions at inflamed sites, 

the APC function of circulating Vγ9Vδ2 T cells from the blood of IBD patients was 

examined instead.  

A heterogeneous group of IBD patients presenting with either Crohn's disease or 

Ulcerative Colitis was recruited for the present studies. Given the recently identified 

effects of azathioprine treatment on γδ T cells345, these patients were either 

untreated or had been off azathioprine treatment for >6 months. Patients were 

grouped into patients with either active or inactive disease, as determined 

symptomatically by the treating clinician, Dr James Lindsay.     

In a similar manner to γδ T-APCs generated from the blood of healthy donors, 

Vγ9Vδ2 T cells were isolated from PBMC obtained from either inactive or active IBD 

patients and stimulated with HMB-PP and IL-15. At day 4 of culture, expression of 

APC markers was assessed by flow cytometry (Figure 5.8). Similarly to healthy γδ 

T-APCs, those derived from IBD patients displayed expression of several APC 

markers, including HLA-DR and CD86. Expression levels of these markers by γδ T-

APCs derived from patients with inactive disease showed similar levels of 

expression to healthy γδ T-APCs (Figure 3.15, Chapter 3). In contrast, γδ T-APCs 

derived from patients with active disease showed significantly reduced expression of 

both HLA-DR and CD86 but not CD70 and ICOS-L (Figure 5.8).  
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Figure 5.8 – Expression of APC markers by γδ T-APCs isolated from patients with IBD. 

Summary plots displaying expression of APC markers by Vγ9Vδ2 T cells, isolated from the 

peripheral blood of inflammatory bowel disease patients with either inactive or active 

disease. Vγ9Vδ2 T cells were isolated and cultured for 4 days in the presence of 10 nM 

HMB-PP and IL-15. At day 4 of culture, cells were assessed for expression of APC markers 

by flow cytometry. Results obtained by gating on live, single, Vδ2
+
 cells. Dots on graphs 

display results obtained from individual donors. Horizontal lines display means of data sets. 

Error bars represent standard deviation of samples. Statistical significance was determined 

using the Mann-Whitney test, *=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001, ns=not 

significant.  

With the indication that γδ T-APCs derived from inactive and active IBD patients 

may possess a differential ability to act as APCs, these cells were subsequently co-

cultured with allogeneic naive CD4+ T cells obtained from healthy donors, and the 

polarisation of such responder cells was assessed (Figure 5.9). Expression of 

cytokines was determined by intracellular analysis. Similarly to healthy γδ T-APCs, 

induction of both IFN-γ and IL-22 was observed in responder cells when polarised 

by γδ T-APCs generated from inactive IBD patients. However, in accordance with 

the impaired APC phenotype observed with γδ T-APCs generated from active IBD 
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patients, the induction of both IFN-γ and IL-22 were significantly reduced. No IL-17 

induction in naive CD4+ T cells was observed under any condition tested.  
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Figure 5.9 – Expression of cytokines by naive CD4
+
 T cells polarised by IBD-derived 

γδ T-APCs. (a) Summary plots displaying expression of cytokines by naive CD4
+
 T cells, 

polarised by IL-15 γδ T-APCs obtained from IBD patients with either inactive or active 

disease. Vγ9Vδ2 T cells were isolated from peripheral blood of IBD patients and stimulated 

with HMB-PP and IL-15 for 4 days, and were subsequently cultured with allogeneic naive 

CD4
+
 T cells obtained from healthy donors for 9 days. At day 9, intracellular expression of 

cytokines by CD4
+
 T cells was assessed by flow cytometry. Results obtained by gating on 

live, single, CD3
+
CD4

+
Vγ9

-
CFSE

lo
 cells. Points on graphs display results obtained from 

individual donors. Horizontal lines display means of data sets. Error bars represent standard 

deviation of samples. Statistical significance was determined using the Mann-Whitney test, 

*=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001, ns=not significant.  

The secretion of cytokines by polarised naive CD4+ T cells was also examined by 

ELISA (Figure 5.10). Similarly to intracellular expression, IFN-γ and IL-22 were both 

identified in cell culture supernatants of naive CD4+ T cells, cultured IBD patient-

derived γδ T-APCs. Again, decreased secretion of both cytokines was detected in 

co-cultures with γδ T-APCs generated from active patients as compared to cells 

from inactive IBD patients, although given the small number of donors examined 

such differences were not statistically significant. Similar trends were also observed 

for the secretion of IL-4 and TNF-α into the culture supernatants, indicating an 
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overall reduction in the ability of γδ T-APCs derived from active IBD patients to 

stimulate naive CD4+ T cell responses. Only minimal levels of IL-17 and IL-10 were 

detected in these culture supernatants.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



207 
 

 

Figure 5.10 – Secretion of cytokines by naive CD4
+
 T cells polarised by IBD-derived γδ 

T-APCs. (a) Summary plots displaying secretion of cytokines by naive CD4
+
 T cells, 

polarised by IL-15 γδ T-APCs obtained from IBD patients with either inactive or active 

disease. Vγ9Vδ2 T cells were isolated from peripheral blood of IBD patients and stimulated 

with HMB-PP and IL-15 for 4 days, and were subsequently cultured with allogeneic naive 

CD4
+
 T cells obtained from healthy donors for 9 days. At day 9, cells were restimulated for 

24 hours and cytokine secretion was assessed by ELISA. Points on graphs display results 

obtained from individual donors. Horizontal lines display means of data sets. Error bars 

represent standard deviation of samples. Statistical significance was determined using the 

Mann-Whitney test, *=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001, ns=not significant.  

 

 

 

 

 

 

 

 



208 
 

5.7 - Discussion 

A number of studies have demonstrated that blood-derived Vγ9Vδ2 T cells are 

capable of becoming potent APCs and initiating CD4+ and CD8+ T cell responses, 

findings which have been replicated in this study. However, data presented here 

indicate for the first time that γδ T-APCs may play a role locally in intestinal 

immunity, with blood-derived cells expressing receptors for the migration to the 

intestine, and also the ability of intestine-derived Vγ9Vδ2 T cells to become APCs 

and drive IFN-γ and IL-22 responses.  

Based on the expression of several homing markers expressed by both γδ T-APCs 

and responder CD4+ T cells, the present findings demonstrate that, under the 

conditions examined, both APCs and responder cells preferentially home to the 

intestines as opposed to skin. However, a number of additional homing receptors 

were not examined in the present study, most importantly CCR8, which if expressed 

would direct recruitment to the skin358. γδ T-APCs and CD4+ T cells displayed high 

levels of β7 integrin expression, and additionally a population of CCR9-expressing 

cells was identified among γδ T-APCs. In contrast, expression of the skin-specific 

receptor CLA was downregulated on γδ T-APCs, and only a small population of 

CD4+ T cells expressed this receptor. Circulating Vγ9Vδ2 T cell populations have 

been identified to express both α4β7 and CLA upon isolation from human peripheral 

blood242,366, and as such culture of γδ T-APCs led to shift in expression of these 

receptors towards α4β7 and away from CLA expression. Of note, β7 integrin is able 

to combine with either α4 or αE subunits to form distinct receptors, which recognise 

MAdCAM-1 and E-cadherin, respectively. To confirm that the β7+ cells described 

here co-express the α4 subunit, and are able to home to the intestine, MAdCAM-1 

binding could be examined in future studies, which would also confirm that 

expression of α4β7 by both γδ T-APCs and responding CD4+ T cells is functional. 

Indeed, Vγ9Vδ2 T cells have previously been identified to express functional α4β7 in 

MAdCAM-1 binding assays242. In combination with β7 expression, CCR9 was 

identified in the present study on a population of γδ T-APCs, and proven to be 

functional in migration assays toward its ligand CCL25. In comparison with CXCR3-

mediated migration to CXCL10, migration to CCL25 was less pronounced, likely 

reflecting the lower expression of CCR9 (~60%) compared with CXCR3 (~95%). 

However, further donors are required to confirm the functionality of CCR9 expressed 

by γδ T-APCs.  
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The regulation of homing receptor expression is a complex process and relies on a 

number of environmental factors. Retinoic acid, which is produced by dendritic cells 

in the intestine and associated lymphoid organs367, has been shown to upregulate 

α4β7 expression by γδ T cells, as well as αβ T cells242. In addition, inhibition of 

retinoic acid leads to decreased expression of α4β7 and increased expression of 

CLA. Of note, the RPMI-1640 medium that was used for culturing γδ T-APCs in this 

study contains traces of retinoic acid242, and as such may have directly allowed for 

the expression of α4β7 by Vγ9Vδ2 T cells and CD4+ T cells. Regulation of CCR9 

expression by T cells is less well defined. Retinoic acid appears important for CCR9 

induction on responder cells, and DC subsets derived from mesenteric lymph nodes 

are able to induce CCR9 in αβ T cell populations368, although the specific 

mechanisms behind this induction are unknown. As such, it is unclear why in this 

study CCR9 was identified on Vγ9Vδ2 T cells but not on responding CD4+ T cells. 

Given the role of intestinal DCs in the induction of CCR9 in αβ T cell populations, it 

may be possible that only intestine-derived γδ T-APCs are capable of inducing 

CCR9 whereas blood or skin derived γδ T-APCs may induce expression of other 

chemokine receptors on CD4+ T cells. Of note, CCR9 expression does identify cells 

which are able to migrate to the intestine, however CCR9-independent recruitment 

of cells to this site has been identified369.   

Given the gut-tropism of the cells used in these assays, the ability of γδ T-APCs to 

mediate intestinal immunity was investigated further. By examining the response of 

total intestinal-derived cells to HMB-PP, significant increases in the secretion of IFN-

γ and IL-22 were observed, drawing parallels between the cytokines induced in 

naive CD4+ T cells by γδ T-APCs in MLR cultures and these intestinal cell cultures. 

In contrast, IL-17 and IL-10, among other cytokines, were not increased in intestinal 

culture supernatants. Given the short culture period of 3 days compared to 

polarisation of naive CD4+ T cells over 9 days, it is likely that memory responses 

were stimulated in these cultures rather than naive responses. Significant levels of 

IFN-γ and IL-22 were already detected in culture supernatants in the absence of 

HMB-PP. However, the HMB-PP negative conditions did not represent a true 

negative control, as cells were treated with IL-2 and IL-15 to support cell survival, 

and may have become exposed to HMB-PP or other cell ligands as a result of the 

issue processing. As such, a comparison of untreated cells (no cytokines) with 

HMB-PP treated cells in future experiments may present a clearer picture of the 

effects of HMB-PP on total intestinal cell cultures. As no mechanism was identified 

behind the induction of these two cytokines in total intestinal cell cultures, the 



210 
 

promotion of these responses by γδ T-APCs is but one explanation for the effects 

seen. Regardless, it is an indication that stimulation of Vγ9Vδ2 T cells drives IFN-γ 

and IL-22 responses. Indeed, the lack of TNF-α identified in intestine biopsy cultures 

contrasts with the potent secretion of this cytokine exhibited by stimulated Vγ9Vδ2 T 

cells, indicating TNF-α uptake and action on CD4+ T cells. 

With the indication that Vγ9Vδ2 T cell activation in the context of total intestinal cell 

populations leads to increases in IFN-γ and IL-22 secretion, colon and ileum-derived 

Vγ9Vδ2 T cells were assessed for their ability to become APCs. Indeed, these cells 

were able to exhibit strong expression of APC markers, and induced robust naive 

CD4+ T cell responses, favouring IFN-γ and IL-22 induction. Interestingly, the 

expression of APC markers by Vγ9Vδ2 T cells, to similar levels to those observed 

with blood Vγ9Vδ2 T cells, required a longer culture period. This was likely due to 

increased populations of contaminating cells in intestinal cultures. A previous study 

had attempted to generate γδ T-APCs from intestine-derived Vγ9Vδ2 T cells242, and 

observed induction of HLA-DR and CD70 but no CD86. Again, this may have been 

due to the shorter culture period utilised as compared to this study, and the lack of 

IL-15 as stimulant. The magnitude of IFN-γ and IL-22 responses in naive CD4+ T 

cell populations identified were similar to those observed using blood derived γδ T-

APCs. However, an appropriate control would be to use intestine-derived DCs to 

polarise naive CD4+ T cell responses, as this would allow direct comparison of 

several intestinal APC populations and determine if intestine-derived γδ T-APCs 

have a preferential ability to promote IFN-γ and IL-22 type immunity. In addition, it 

would be useful to use γδ T-APCs to polarise memory CD4+ T cells derived from the 

intestine, to identify any differences in responses as compared to memory CD4+ T 

cells derived from the peripheral blood. 

Having identified a role for γδ T-APCs in intestinal immunity, a potential contribution 

of this cell population to  IBD pathology was postulated. Indeed, Vγ9Vδ2 T cells are 

recruited to the intestine during inflammatory conditions and may play roles in the 

pathogenesis of intestinal autoimmune diseases242. Given the lack of access to 

inflamed bowel samples, the ability of Vγ9Vδ2 T cells derived from the peripheral 

blood of patients with IBD to become APCs was examined. IBD of course show 

significant inflammation in the intestine, but several systemic effects can be 

observed in these patients, in the blood and skin, among other locales370,371. 

Similarly, changes in Vγ9Vδ2 T cell populations in the blood have been observed in 

patients with IBD, from expression of homing markers to memory subsets 

observed242,345. Given the systemic inflammatory state of patients with active 
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disease, it was expected that Vγ9Vδ2 T cells derived from peripheral blood may 

possess an increased ability to become APCs. Instead, data obtained revealed 

Vγ9Vδ2 T cells derived from patients with active disease showed a less pronounced 

ability to become APCs as compared with inactive disease, displaying significantly 

reduced expression of HLA-DR and CD86. This reduced ability was reflected in a 

lower induction of IFN-γ and IL-22 in naive CD4+ T cell responders. One explanation 

for this is that central and effector memory cell populations of Vγ9Vδ2 T cells have 

been reported to decrease in frequency in the blood of Crohn's disease patients, 

whereas these populations are increased in inflamed intestinal sites345. With the 

effect of IL-2 and IL-15 somewhat restricted to the effector and memory stages of 

Vγ9Vδ2 T cells277, it may be that the Vγ9Vδ2 T cells remaining in the peripheral 

blood of active disease patients are those less capable to becoming APCs, with the 

more capable cells being recruited to inflammatory sites.  

While the division between active and inactive disease has identified differences 

between Vγ9Vδ2 T cell ability to become APCs, this division is arbitrary and could 

be improved upon recruitment of further patients. The diagnosis of IBD includes both 

Crohn's disease and Ulcerative Colitis; two distinct autoimmune diseases affecting 

different intestinal sites and differing in their immunological background370. 

Consequently, stratifying patients according to the type IBD may highlight disease-

specific differences between Vγ9Vδ2 T cells and allow for a better definition of their 

involvement in the pathogenesis of each condition. In addition, the active/inactive 

division is based on symptomatic assessment by clinicians, and as such ranking 

patients based on expression of inflammatory markers or scoring of disease severity 

may highlight further effects of Vγ9Vδ2 T cells. 

Overall, the data presented in this Chapter have highlighted a potential role for 

Vγ9Vδ2 T cells to become APCs in the intestine, and mediate local immunity during 

infection and disease scenarios. 
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Chapter 6 - General Discussion 

6.1 - Summary 

Vγ9Vδ2 T cells have been previously reported to represent a novel type of 

professional APC that is able to take up, process and present antigens to naive and 

memory CD4+ and CD8+ T cells. The aims of this study were to investigate the 

different conditions which induce an APC phenotype in Vγ9Vδ2 T cells, and the 

different T helper responses these APCs trigger in naive CD4+ T cells. Potential 

sites or functional niches where γδ T-APCs may facilitate such CD4+ T cell 

responses were to be investigated using appropriate samples from healthy 

individuals and patients.  

Expanding on previous studies into γδ T-APCs, data presented here show that 

cytokines belonging to the common γ-chain family differentially regulate the APC 

phenotype of Vγ9Vδ2 T cells. In combination with TCR stimulation by the Vγ9Vδ2 T 

cell ligand HMB-PP, both IL-2 and IL-15 induced strong APC phenotypes in Vγ9Vδ2 

T cells as identified by expression of key APC markers and co-stimulatory molecules 

in addition to high levels of proliferation, cytokine production, and antigen uptake. In 

contrast, IL-7 did not support the generation of γδ T-APCs, favouring cell 

proliferation and cytokine production but not expression of APC markers. Lastly, IL-

21 supported a suboptimal APC phenotype, with Vγ9Vδ2 T cells cultured in the 

presence of this cytokine displaying reduced levels of proliferation, cytokine 

production and expression of APC markers as compared to cells cultured with IL-2 

or IL-15. Given the different capacity of each cytokine to support the APC function of 

Vγ9Vδ2 T cells, APCs generated under these conditions were utilised for functional 

assays to investigate their CD4+ T cell stimulating and polarising potential. 

Using γδ T-APCs generated with IL-2, IL-15, IL-7, or IL-21, responses of naive and 

memory CD4+ T cells were examined. Both IL-2 and IL-15 γδ T-APCs, in agreement 

with their expression of key APC markers, induced robust naive and memory CD4+ 

T cell proliferative responses, which matched the CD4+ T cell responses induced by 

mature monocyte-derived dendritic cells (mDCs). When the resulting effector 

phenotype of responder CD4+ T cells was assessed, significant induction of Th1 

cells was observed by both IL-2 and IL-15 γδ T-APCs, to comparable levels as 

those obtained when using mDCs. The most unexpected finding was that of IL-22 

induction in naive and memory CD4+ T cells; IL-15 γδ T-APCs induced the highest 

levels of IL-22 expression in both naive and memory responder cells, compared with 
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all other APC types examined. These IL-22 expressing cells were negative for IL-17 

and hence did not represent Th17 cells. While many of these IL-22+IL-17− T cells co-

expressed IFN-γ and were reminiscent of Th1 cells, there was a proportion of single 

positive IL-22+ cells induced, representing true Th22 cells. In accordance with the 

potent induction of IFN-γ and IL-22, IL-15 γδ T-APCs also favoured the expression 

of the Th1 and Th22 associated transcription factors TBX21 and AHR, respectively.  

In striking contrast to the effects ofIL-2 and IL-15 γδ T-APCs on naïve CD4+ T cells, 

IL-21 γδ T-APCs induced a significant population of IL-10 producing CD4+ T cells, 

which were not identified under any other culture conditions assessed. 

Unfortunately, the resulting function of these IL-10+ cells could not be identified 

during the course of this PhD thesis, with no preferential expression of any of the 

lineage-specific transcription factors tested. Finally, all γδ T-APC populations that 

were able to induce CD4+ T cell responses triggered increased levels of IL-4, 

indicative of an increased generation ofTh2 cells, as compared to DCs and 

monocytes.  

With the identification that IL-15 γδ T-APCs favoured high levels of IL-22 and AHR 

expression by responder CD4+ T cells, attention turned to the mechanism behind 

such induction. In terms of polarising cytokines, IFN-γ and TNF-α played important 

roles in CD4+ T cell polarisation, favouring Th1 (IFN-γ, TBX21) and Th2 (IL-22, 

AHR) type responses, respectively. However, the induction and polarisation of CD4+ 

T cell responses by γδ T-APCs were also reliant on co-stimulatory interactions, in 

addition to cell-cell contact between APCs and responder cells via LFA-1. CD80, 

CD86, and CD48 expressed by γδ T-APCs were all required for robust induction of 

CD4+ T cell proliferation and survival. In addition to these molecules, CD70 and 

ICOSL expression by γδ T-APCs promoted IFN-γ and IL-22 induction in CD4+ T 

cells, respectively. Of note, such a role for ICOSL has not been described before. 

Subsequent investigations were oriented towards potential peripheral sites or 

disease conditions where such interactions may take place in vivo. Both γδ T-APCs 

and naive CD4+ T cells displayed preferential expression of intestinal homing 

receptors as opposed to skin homing molecules, and with the knowledge that 

Vγ9Vδ2 T cells play important roles in the intestinal immune response242,345,366, the 

ability of intestinal Vγ9Vδ2 T cells to function as APCs was assessed. Indeed, 

simply stimulating total colon or terminal ileum-derived cells with HMB-PP, and 

therefore only directly activating Vγ9Vδ2 T cells, led to significant increases in both 

IFN-γ and IL-22 secretion. This indicated that Vγ9Vδ2 T cells may indeed favour 
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Th1 and Th22 responses in the intestinal environment. Subsequently, intestine-

derived Vγ9Vδ2 T cells proved capable of becoming APCs and stimulating naive 

CD4+ T cell responses to produce IFN-γ and IL-22. Without access to inflamed 

tissue from IBD patients, the systemic effects on blood Vγ9Vδ2 T cells were 

investigated in IBD patients with active or inactive disease, with reference to APC 

function of Vγ9Vδ2 T cells. Given the systemic inflammation observed in patients 

with IBD242, it was expected that peripheral blood-derived Vγ9Vδ2 T cells from 

patients with active disease may exhibit increased APC and inflammatory ability 

over patients with active inactive disease. In contrast to expectations, Vγ9Vδ2 T 

cells derived from patients with active IBD were less capable of becoming APCs, 

inducing lower CD4+ T cell responses in terms of proliferation and cytokine 

production, than in patients with inactive disease.  

Overall, data obtained during this study highlighted the capacity of Vγ9Vδ2 T cells to 

polarise naive and memory CD4+ T cells towards distinct responses, depending on 

the original Vγ9Vδ2 T cell culture microenvironment. Further to this, a potential role 

for Vγ9Vδ2 T cells to act as APCs in the intestine has been revealed, although this 

novel function may not be restricted to this site alone. 

6.2 - Regulation of Vγ9Vδ2 T Cell APC Function 

Whilst data presented in this study have elucidated several factors which are able to 

regulate the APC potential of Vγ9Vδ2 T cells, the exact mechanisms behind this 

function remain unknown. It is well documented that cellular activation is required for 

the induction of APC function in Vγ9Vδ2 T cells, with studies either activating cells 

directly using HMB-PP or IPP, or indirectly with zoledronate322,325,326. It is unclear 

whether it is TCR stimulation in general, or the specific action of HMB-PP, which 

allows for upregulation of APC characteristics. To investigate this, activation of 

Vγ9Vδ2 T cells with different stimuli, such as HMB-PP, αCD3 or αTCR antibody 

stimulation, in combination with cytokines may help to solve this question. In 

addition, while several cytokines investigated here, such as IL-2, IL-15, and IL-21, 

promoted the APC function of Vγ9Vδ2 T cells, other cytokines which were not 

investigated here may be important in the regulation of the APC function. What also 

remains unclear is the mechanism behind the differential regulation of APC 

phenotype by different common γ-chain cytokines. The clearest contrast between IL-

2/IL-15 and IL-7 on induction of APC function was their differential ability to induce 

an APC phenotype, as well as their effects on the memory phenotype of expanded 

Vγ9Vδ2 T cells. Microarray analysis of Vγ9Vδ2 T cells stimulated with each common 
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γ-chain cytokine may thus reveal pathways that are important in the decision of 

Vγ9Vδ2 T cells to become APCs or not. Besides common γ-chain cytokines, 

cytokines such as IL-6 and IL-23 have been described as important regulators of 

other Vγ9Vδ2 T cell functions281,289, and as such may have similar effects on γδ T-

APC generation. Lastly, the role of co-stimulation in the induction of APC phenotype 

is largely unknown. While some studies have presented data to suggest opsonising 

antibodies induce and aid certain aspects of Vγ9Vδ2 T cell APC function via 

interaction with CD16327,328, the role of molecules such as CD28 and CD27 

expressed by Vγ9Vδ2 T cells have not been studied with respect to APC 

phenotype372. Given the importance of co-stimulation in the immune system, the 

question as to whether stimulation via these pathways would permit or alter APC 

function is an interesting area to investigate.  

6.3 - Vγ9Vδ2 T cells as an APC Subset 

One of the main findings of this study was the identification that IL-15 γδ T-APCs are 

more efficient at promoting IL-22 expression in naive and memory CD4+ T cell 

populations than all other types of APC examined. These findings evoke similar 

studies that examined the ability of different types of DCs to polarise CD4+ T cells. 

Indeed, while DCs are capable of remarkable plasticity with reference to directing 

CD4+ T cell responses depending on the context206, some DC subsets have proven 

capable of promoting certain T helper lineages over others. With particular respect 

to IL-22121; blood plasmacytoid DCs stimulated with CpG have been shown to act as 

potent Th22 inducers that outperform LPS-stimulated conventional DCs. In 

agreement with the important roles of IL-22 in skin homeostasis and immunity, 

human skin Langerhans cells are much better in promoting IL-22 responses, by both 

CD4+ T cells and CD8+ T cells than dermal DCs and monocyte-derived DCs201. Of 

note, Langerhans cell-induced IL-22+CD4+ T cells are negative for IFN-γ, IL-4, and 

IL-17, although other populations positive for each of these other cytokines were 

also identified in total cell cultures. However, no mechanism has been identified for 

this preferential induction of IL-22 by Langerhans cells. Given the potent induction of 

IL-22 by IL-15 γδ T-APCs, a direct comparison of γδ T-APCs with plasmacytoid DCs 

and Langerhans cells would identify whether these different types of APCs are 

equivalent in their IL-22 promoting function, and whether the same molecular 

pathways are involved in inducing IL-22 in CD4+ T cells. Further to this, all DC 

subsets identified as Th22 inducing APCs also induced varying levels IL-17 and 

IFN-γ expression in responder cells121,201. The overall phenotype of IL-15 γδ T-APC-
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induced naive CD4+ T cell responder populations, identified in this study as 

containing IFN-γ+, IL-4+, and IL-22+ cells, in the absence of IL-17+ cells, appears to 

vary in comparison with all DC polarising data presented, where IL-17 is consistently 

induced to varying degrees. To date, no specific intestinal DC subsets have been 

identified as optimal Th22 or IL-22 inducers in humans, potentially identifying a 

functional niche where γδ T-APC mediated IL-22 induction may be facilitated. 

With respect to the mechanism behind γδ T-APC induction of IL-22, combinations of 

TNF-α and ICOSL were identified as essential in this response, and consequently 

stimulation of naive CD4+ T cells with TNF-α and ICOS stimulation leads to induction 

of IL-22 and AHR expression. This role of ICOSL in promoting IL-22 responses has 

not been reported before. Earlier studies utilising blood and skin-derived DCs in 

humans identified IL-6 and TNF-α as Th22 cell promoting factors, in addition to 

tissue specific factors such as the active form of vitamin D3, produced in the skin121. 

DCs of course have been shown to express ICOSL, inducing Th17, Treg, or Th2 

cells depending on the culture conditions373,374. A study of skin-derived human DC 

subsets did investigate the role of ICOSL in the polarisation of IL-17, IL-21, and IL-

22 responses in CD4+ T cell populations202, although no significant effects of ICOSL 

blockade were identified on IL-22 induction, whereas ICOSL stimulation appeared to 

inhibit IL-21 responses. Given the fact that Langerhans cells and other DC subsets 

produce IL-6375, a factor important in Th22 induction, it may be that DCs rely less on 

ICOSL and other co-stimulatory molecules compared with γδ T-APCs, and are able 

to induce Th22 cells even when ICOSL action is inhibited, via IL-6. Indeed, as 

discussed previously DCs favour Th1 induction by secreting IL-12206, whereas γδ T-

APCs induce Th1 cells via CD70 expression in addition to IFN-γ, supporting the 

observation that γδ T-APC mediated CD4+ T cell polarisation is more dependent on 

co-stimulatory molecules than polarising cytokines. Given the lack of IL-6 production 

by γδ T-APCs shown in this study, and a failure to block IL-22 production by anti-IL-

6 treatment, γδ T-APC induction of IL-22 type responses appears to rely on ICOSL 

function. In addition to these observations, IL-22 responses promoted by 

Langerhans cells and plasmacytoid DCs are predominantly IFN-γ−, representing 

Th22 cells121,201, whereas in γδ T-APC co-cultures, IL-22 expressing cells were 

predominantly IFN-γ+. Supported by the observation that ICOS/TNF-α stimulated 

naive CD4+ T cells express predominantly IL-22+IFN-γ+ cells, whereas IL-6/TNF-α 

stimulated cells were split between IL-22+IFN-γ+ and IL-22+IFN-γ− cells, the main 

difference between γδ T-APC and DC induced IL-22 responses may be in the co-

expression of IFN-γ. As such, these responder cell populations may be involved in 
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different aspects of immune responses or tissue homeostasis. It is important to note 

that all APCs express a range of polarising factors, which all act agonistically or 

antagonistically to induce the overall CD4+ T cell responses induced. As such, while 

specific induction of IL-22 can be supported by the action of factors such as ICOSL 

and IL-6, other molecules may also be involved in directing IL-22 and other 

responses as well. 

A function of γδ T-APCs that has not been investigated in detail before, and was 

only touched on in this study, is the ability of γδ T-APCs to induce specific homing 

receptor expression on responder cells. Several factors are important in the 

induction of chemokine receptors and tissue-specific integrins on CD4+ and CD8+ T 

cells following stimulation, not least of which are environmental factors, often 

metabolised by APCs such as DCs. For example, retinoic acid produced in the 

intestine by DCs is important in the induction of CCR9 and α4β7 expression by both 

DCs and αβ T cells376,377. As such, αβ T cell activation by retinoic acid-producing 

DCs in the mesenteric lymph nodes is able to induce an intestinal-homing 

phenotype in responder αβ T cells378. However, this ability to confer intestine-

homing capacity on responder cells is restricted to subsets of DCs identified by 

CD103 expression. It remains unclear whether γδ T-APCs are able to metabolise 

factors important in induction of homing receptors, such as retinoic acid. Indeed, 

CD103-expressing Vγ9Vδ2 T cell populations can be identified in the intestinal 

mucosa345. In addition, skin specific factors derived from keratinocytes have been 

identified as essential in the induction of the skin-specific chemokine receptor 

CCR8358. Given that the source of these factors is not the APC itself, it may be that 

γδ T-APC induction of chemokine receptors on CD4+ T cells is dependent on 

external factors produced by local tissue cells including epithelial cells and 

keratinocytes. 

While the present study focused mainly on the induction of IL-22 by γδ T-APCs, γδ 

T-APCs may be able to promote alternative T helper cell responses, under different 

conditions. Indeed, significant induction of IL-10 was observed with IL-21 γδ T-

APCs, although the underlying mechanism remains unclear. To further investigate 

this plasticity in inducing distinct qualities of CD4+ T cell responses, gene expression 

profiling of IL-21 γδ T-APCs in comparison with IL-15 γδ T-APCs may identify novel 

factors involved in this IL-10 induction, and as such may also aid in defining the IL-

10 producing CD4+ T cell subset. Another area of interest could be the induction of 

Treg cells by γδ T-APCs. While no evidence of Treg induction was found in this 

study under the conditions examined, γδ T cells themselves have been shown to 
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exhibit regulatory potential295. As the generation of such suppressor γδ T cells 

requires the action of TGF-β and IL-15, a comparison of γδ T-APCs generated in the 

presence of IL-15 with and without addition of TGF-β may yield interesting insights 

into the underlying pathways of driving suppressive and APC functions, and may 

define conditions under which γδ T-APCs may promote the induction of suppressive 

Tregs.   

6.4 - Characterising the IL-22 Response 

With the demonstration that a combination of ICOSL and TNF-α induces populations 

of IL-22+IFN-γ+ cells in naïve CD4+ T cells, and that γδ T-APCs favour a similar 

induction of such double-positive cells, questions remain as to why these IL-22 

expressing cells also co-express IFN-γ, rather than expressing IL-22 alone. Given 

that IL-22 is often found co-expressed with IL-17, the wealth of studies examining 

Th17 cells may give insights into the potential roles of these different IL-22+ sub-

populations. It has been reported that different subsets of human Th17 cells, 

depending on their co-expressed cytokines, are more suited to combat particular 

pathogens over others. For example, Candida albicans-induced Th17 cells express 

IL-17 in combination with IFN-γ, whereas Staphylococcus aureus-specific Th17 cells 

co-express IL-17 and IL-10159. The induction of these different Th17 subsets is 

largely reliant on IL-1β control. Using this concept, it is conceivable that IL-22+IFN-γ+ 

cells participate in the eradication of certain pathogens, whereas IL-22+IFN-γ− cells 

may be involved in other aspects of immunity. In addition, only a relatively limited 

range of cytokines has been examined in this study, and it cannot be ruled out that 

IL-22+IFN-γ− cells may co-express other cytokines. IL-13 in particular has been 

reported to be co-expressed by IL-22+ cells379, and these cells are found in human 

atopic dermatitis. In this respect, increased levels of IL-13 were detected in ELISA 

supernatants of γδ T-APC-polarised naive CD4+ T cells, in support of a potential 

induction of IL-22+IFN-γ−IL-13+ cells.  

Another potential concept, which may apply to IL-22 expressing cells, derives from 

the study of murine Th17 cells. Extensive study of this subset has revealed sub-

populations of “pathogenic” and “non-pathogenic” Th17 cells, as characterised by 

the cytokines they secrete and their involvement in autoimmune diseases380. Of 

particular interest is the finding that the IL-17+IFN-γ+ cells identified in humans 

reportedly possess a profile similar to the “pathogenic” Th17 cells involved in 

autoimmunity in mice, whereas IL-17+IL-10+ cells are more similar to non-pathogenic 

cells381. By applying this concept to IL-22 producing cells, it could be postulated that 
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IL-22+IFN-γ+ cells, induced by γδ T-APCs, may represent a more pathogenic T 

helper subset involved in inappropriate immune responses and autoimmunity, 

whereas bona fide Th22 cells induced by Langerhans cells and plasmacytoid DCs 

may be involved in protective immunity or homeostasis. Indeed, IL-22 has been 

identified as having both homeostatic132 and pro-inflammatory roles359, and as such 

is both beneficial and damaging depending on the immunological context, similarly 

as IL-1789, highlighting the 'double-edged' aspects of these cytokines. 

6.5 - Potential Roles of γδ T-APCs in Intestinal Immunity and 

Inflammatory Bowel Disease 

A number of factors in the IL-15 γδ T-APC induction of IL-22 in CD4+ T cells are of 

interest for intestinal immunity. IL-15364, IL-22382, and Vγ9Vδ2 T cells242 have all 

been implicated in intestinal immune responses and in inflammatory bowel 

diseases.  As such, the in vitro mechanisms identified in this study appear to 

resemble a potential interaction, which may occur in the intestinal lamina propria or 

the mesenteric lymph nodes. Such a role is supported by the expression of the 

intestinal-homing molecules CCR9 and β7 integrin by IL-15 γδ T-APCs. With the 

identification that colon and ileum-derived Vγ9Vδ2 T cells are indeed capable of 

acting as APCs, and that Vγ9Vδ2 T cells isolated from the peripheral blood of IBD 

patients with active disease are restricted in their ability to become APCs as 

compared with inactive patients, the following model of the potential Vγ9Vδ2 T cell 

function in intestinal immunity and IBD is proposed (Figure 6.1). 

The first step in Vγ9Vδ2 T cell-mediated intestinal immunity is the entry of cells into 

the intestinal lamina propria. Given that the peripheral blood contains the largest 

population of Vγ9Vδ2 T cells322, migrating cells to the intestine likely derive from the 

peripheral blood. Circulating Vγ9Vδ2 T cells express inflammatory chemokine 

receptors such as CXCR3 and CCR5 for rapid recruitment to inflammatory sites241. 

Ligands for these chemokine receptors such as CXCL10 are secreted during 

inflammatory episodes of IBD383, and as such represent one mechanism by which 

Vγ9Vδ2 T cells may be recruited to an already inflamed site. In addition, sub-

populations of Vγ9Vδ2 T cells express α4β7 integrin and as such are able to enter 

intestinal sites without any prior activation. The expression of CCR9 by Vγ9Vδ2 T 

cells identified in this study was dependent on cell activation, and as such Vγ9Vδ2 T 

cells in vivo would likely require recognition of antigen prior to upregulation of this 

chemokine receptor. A significant feature of IBD is an increased intestinal barrier 

permeability during inflammatory episodes345. This potentially increases the 
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availability of stimulating ligands to circulating cells, thereby allowing for immune cell 

activation by microbial compounds including HMB-PP derived from the intestinal 

microflora. Upon recognition of HMB-PP, Vγ9Vδ2 T cells would potentially 

upregulate CCR9 and α4β7 to allow entry into the intestinal lamina propria. 

Preferential recruitment of TEM cells in particular would describe the reduced APC 

phenotype of cells remaining in the peripheral blood of patients with active 

disease345. In addition to the recruitment of Vγ9Vδ2 T cells to inflamed sites, small 

populations are already present locally in the intestine, and as such may contribute 

to the initiation of inflammatory episodes.  

Once Vγ9Vδ2 T cells have entered the inflamed sites, the necessary components to 

induce an APC phenotype would be present. HMB-PP can be provided by 

commensal bacteria upon increased barrier permeability, and IL-15 has been 

reported to be over-expressed in IBD364. Alternatively, Vγ9Vδ2 T cells can be 

activated by TCR independent mechanisms such as stress receptors258, or type I 

IFNs384,385. With these factors present, Vγ9Vδ2 T cells would be able to upregulate 

APC markers and present antigens to CD4+ T cells. Two routes of CD4+ T cell 

stimulation would then exist; migration to mesenteric lymph nodes to stimulate naive 

CD4+ T cell responses, or stimulation of local memory CD4+ T cells in inflamed 

tissue. Vγ9Vδ2 T cells have been shown in this study and previously to be able to 

upregulate CCR7241, which is necessary for lymph node homing. Upon upregulation 

of CCR7, γδ T-APCs would be able to enter the T cell zone of the mesenteric lymph 

nodes241,322, and interact with naive CD4+ T cells to induce IFN-γ and IL-22-

expressing T helper cells. These responder cells would then be able to enter the 

peripheral blood and contribute to the systemic inflammation observed in IBD, or 

alternatively under the required conditions in the mesenteric lymph nodes, these 

activated CD4+ T cells would be able to upregulate intestinal-homing receptors and 

migrate to inflamed sites to contribute to local inflammation. Alternatively, γδ T-

APCs would be able to stimulate local memory CD4+ T cell responses, skewing their 

effector phenotypes and promoting IFN-γ and IL-22 type responses. This model 

describes a potential mechanism by which γδ T-APCs are able to contribute to the 

initiation and pathogenesis of inflammatory bowel diseases. A number of unknowns 

remain with regards to this mode.  It is unclear whether γδ T-APCs may be located 

in the same area of the intestinal lamina propria as CD4+ T cells, and also whether 

the induction of IFN-γ and IL-22 responses would be beneficial or detrimental to the 

intestinal environment. More work is required to investigate these questions and 

further identify the roles of γδ T-APCs in intestinal immunity. 
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Figure 6.1 - Proposed model of γδ T-APC involvement in intestinal inflammation. 

This model describes a potential role of γδ T-APCs in IBD, as well as in immune 

responses of the intestine. Of course, the diversity of cells in the intestinal lamina 

propria386 highlights the fact that γδ T-APCs and induction of IFN-γ and IL-22 would 

only represent a relatively small component of the mechanisms involved. Indeed, 

Th17 cells in particular have been highlighted for their central role in autoimmune 

disorders104, including IBD387. In many models of autoimmune conditions and in 

numerous patient groups, IL-17 has been identified as a central molecule driving the 

inflammatory environment104. Anti-IL-17 therapy is just beginning to be utilised in the 

therapy of autoimmune diseases, and has shown significant efficacy in diseases 

such as psoriasis, with treatment for moderate to severe psoriasis now approved388. 

However, use of Secukinumab, a monoclonal anti-IL-17 therapy, has to date proven 

ineffective in the treatment of patients with moderate to severe Crohn's disease. In 

fact, increased rates of adverse events were detected in some patient groups. The 

role of IL-17 in the pathogenesis of IBD is therefore currently unclear, and other 

cytokines such as IFN-γ may be equally as important in disease pathogenesis387. As 

such, this highlights the importance of molecules other than IL-17 in the 

pathogenesis of IBD and autoimmunity in general.   
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One of the questions not investigated in this study is the difference between 

intestinal sites, the colon and ileum, in terms of effector cells and potential Vγ9Vδ2 T 

cell involvement. The intestines are a complex organ with numerous sections that 

differ in their functions and immunological capacity. The intestines are divided into 

the small and large intestine, which are again divided into discrete sections386. Given 

that the most compelling evidence of Vγ9Vδ2 T cell involvement in intestinal 

immunity is derived from studies of inflammatory bowel diseases242,345, which are 

restricted to the distal parts of the small intestine, termed the ileum, and the large 

intestine, predominantly formed of the colon, discussion of Vγ9Vδ2 T cell function 

will be restricted to these sites382. Large populations of CD4+ T cells are found in 

both the ileum and colon, and as such represent areas of potential γδ T-APC 

function386. In addition, as shown in this study, Vγ9Vδ2 T cells can be isolated from 

both the terminal ileum and colon. Interestingly, ILC3 cells, which have been shown 

to be essential producers of IL-22 in the intestine, are found in reduced numbers in 

the colon in particular386, and as such IL-22 production in this area of the intestine is 

likely derived from other sources. In addition, the bacterial colonisation is most 

apparent in the distal parts of the intestine, such as the colon and ileum, supporting 

the involvement of commensal bacteria in the pathogenesis of IBD. These factors 

together suggest Vγ9Vδ2 T cells may facilitate IFN-γ and IL-22 responses 

predominantly in these distal areas of the intestine, although their function may not 

be restricted to these areas alone. The ability of Vγ9Vδ2 T cells to become APCs 

did not appear to differ between cells derived from the colon or ileum, although with 

the limited number of donors examined it is not possible to confirm whether there 

are any functional differences between Vγ9Vδ2 T cells found in different areas of the 

intestine. Narrowing down the anatomical locations in which the APC function of 

Vγ9Vδ2 T cells is supported may aid in identifying their contribution to IBD and 

immune responses to infections.  

Aside from potential differences in intestinal sites in terms of Vγ9Vδ2 T cell function, 

the differences between Crohn's disease and ulcerative colitis have not been 

addressed in this study. Crohn's disease can affect the distal small intestine and 

colon, whereas colitis is restricted to the colon382. Limited evidence suggests that 

Vγ9Vδ2 T cells may contribute to both Crohn's and colitis345, although no data are 

available comparing the action of these cells in both diseases. Interestingly, 

increased numbers of IL-22 producing cells are observed in both Crohn's disease 

and ulcerative colitis compared with healthy controls, although Crohn's disease have 

increased IL-22+ populations over ulcerative colitis in the intestinal lamina propria389. 
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The majority of these IL-22 producing cells are of the T helper subtype, highlighting 

the importance of CD4+ T cell infiltration into inflamed sites during inflammatory 

episodes. In contrast, a study has shown that IL-22+CD4+ T cells are actually 

depleted in the inflamed tissue of ulcerative colitis patients, as compared with 

healthy and Crohn's disease controls390. It is possible that, given the distinct 

pathologies of Crohn's disease and ulcerative colitis, Vγ9Vδ2 T cells and their APC 

function involving the induction of IL-22 and IFN-γ type responses may differ 

between the two conditions. With larger patient cohorts, any differences in 

involvement of Vγ9Vδ2 T cells in Crohn's disease and ulcerative colitis may become 

more apparent. In addition, study of intestine-derived Vγ9Vδ2 T cells from inflamed 

sites of patients with Crohn's disease and ulcerative colitis would identify differences 

in recruited cells and their involvement in disease pathogenesis.  

With the evidence of IL-15 γδ T-APC induction of IFN-γ/IL-22 responses in IBD, the 

question remains as to whether these responses would be beneficial or damaging to 

the afflicted individual. Much evidence has identified positive roles for IL-22 in 

intestinal immunity and during IBD activity; in murine models, inhibition of IL-22 led 

to increased tissue damage, and IL-22 mediates protective effects and tissue repair 

via proliferation of epithelial cells, among other mechanisms382. However, IL-22 

possesses several pro-inflammatory effects, not least of which is the induction of 

pro-inflammatory cytokine production such as IL-6 and CXCL8 by colonic 

myofibroblasts389. Given this evidence, IL-22 appears to possess both beneficial and 

detrimental effects during IBD. The co-expression of IFN-γ, which has an 

established role in autoimmunity391, by IL-22-expressing cells induced by γδ T-APCs 

may differentiate the pathogenic effects of these effector cells from the beneficial 

effects. It could be suggested that local IL-22 production by cells such as ILC3s acts 

in a beneficial, homeostatic and tissue reparatory mechanism, whereas infiltration of 

inflammatory Vγ9Vδ2 T cells and IFN-γ+IL-22+ CD4+ T cells leads to intestinal 

damage. Given the limited evidence presented in this study, more work is required 

to address this question.  

A final question remains as to which antigens γδ T-APCs may present to CD4+ T 

cells during inflammatory episodes of IBD. Whether these antigens may be 

autoantigens, such as the recently identified FAM84A392, or foreign antigens from 

the gut microbiota remains to be investigated. Indeed, the antigenic target in 

addition to the APC has significant roles on the resulting T helper effector 

phenotype, and presents an interesting area of further research393.  



224 
 

6.7 - Conclusion 

This study has identified potential functional niches whereby γδ T-APCs may direct 

CD4+ T cell responses towards effector phenotypes, distinct from those induced by 

other APC subsets. These γδ T-APCs likely cooperate with multiple different APC 

subsets such as DCs to facilitate suitable adaptive immunity to pathogens, and may 

also contribute to immune pathologies under appropriate circumstances. While 

much attention has focused on the role of γδ T-APCs and IL-22 in intestinal 

immunity, there are alternative scenarios where this interaction may be observed 

under physiological conditions. A potential role in skin immunity appears likely, as 

both Vγ9Vδ2 T cells291 and IL-22359 appear to be involved in the pathogenesis of 

psoriasis. Further to this, expanded γδ T-APCs are currently being considered for 

treatment of certain cancers304,325, and given the data presented in this study, IL-22 

responses could be induced by these cells. IL-22 itself has been identified in the 

regulation of tumour growth, and as such the knowledge that IL-22 responses may 

be increased in treated patients is a valuable insight for future γδ T cell treatments. 

While γδ T-APC research may be lagging 30 years behind that of dendritic cells, 

evidence has shown these novel APCs are an important component of immune 

responses.  
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