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This paper uses 2D and high-quality 3D seismic reflection data to assess the geometry and kinematics of the Sam-
son Dome, offshore Norway, revising the implications of the new data to hydrocarbon exploration in the Barents
Sea. The study area was divided into three (3) zones in terms of fault geometries and predominant strikes.
Displacement-length (D-x) and Throw-depth (T-z) plots showed faults to consist of several segments that
were later dip-linked. Interpreted faults were categorised into three families, with Type A comprising crestal
faults, Type B representing large E-W faults, and Type C consisting of polygonal faults. The Samson Dome was
formed in three major stages: a) a first stage recording buckling of the post-salt overburden and generation of
radial faults; b) a second stage involving dissolution and collapse of the dome, causing subsidence of the overbur-
den and linkage of initially isolated fault segments; and c) a final stage inwhich large fault segments were devel-
oped. Late Cretaceous faults strike predominantly to the NW, whereas NE-trending faults comprise Triassic
structures that were reactivated in a later stage. Our work provides scarce evidence for the escape of hydrocar-
bons in the SamsonDome. In addition, fault analyses based on present-day stress distributions indicate a tenden-
cy for ‘locking’ of faults at depth, with the largest leakage factors occurring close to the surface. The Samson Dome
is an analogue to salt structures in the Barents Seawhere oil and gas exploration has occurredwith varied degrees
of success.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Faults and fractures constitute evidence for tectonic movements dur-
ing crustal deformation, being important in the entrapment and migra-
tion of fluids (Aydin, 2000; Biddle, 1985; Childs et al., 1997; Knipe,
1997; Knipe et al., 1998; Smith et al., 1990; Walsh et al., 1998). In such
a context, deformation during regional extensional or shortening events
is favoured in sedimentary basins with thick evaporite accumulations,
as compared to basins lacking salt (Hudec and Jackson, 2007; Vendeville
and Jackson, 1992; Vendeville, 2002; Stewart, 2006). Halokinesis can
lead to the development of complex families of faults, which will form
structural compartments, or act as fluid pathways in reservoir and seal
units (Alves et al., 2009; Carruthers et al., 2013; Gamboa et al., 2010;
Stewart, 2006; Talbot et al., 1991). These fault-bounded compartments
have a crucial impact on the volume of trapped subsurface hydrocarbons
and, if not assessed in the early stages of the reservoir evaluation, may re-
sult in the early abandonment of otherwise viable fields (Caine et al.,
1996; Jolley et al., 2010; Knipe, 1997; Knipe et al., 1998).
.

. This is an open access article under
The Barents Sea is a region where hydrocarbon potential is larger in
basins associated with salt tectonics (Bugge et al., 2002; Chand et al.,
2008; Henriksen et al., 2011a,b; Koyi et al., 1993; Nilsen et al., 1995;
Perez-Garcia et al., 2013; Stoupakova et al., 2011). However, halokinetic
structures in the region are poorly studied due to the sparse availability
of high-resolution data. So far, most published studies on the Barents
Sea used 2D seismic data of regional extent and limited resolution
(Breivik et al., 1995, 1998; Faleide et al., 1993; Gabrielsen et al., 1990;
Gabrielsen, 1984; Gernigon and Brönner, 2012; Glørstad-Clark et al.,
2010; Gudlaugsson et al., 1998). This relative absence of high-quality
3D seismic data has led to incomplete structural interpretations in areas
where salt tectonics is an important control on Late Palaeozoic and
Early Mesozoic reservoir compartmentalisation, as shown in this paper.

The present study is focused on the Samson Dome (Fig. 1), a struc-
tural high located in the Ottar Basin (Breivik et al., 1995). The Ottar
Basin comprises itself a Permian depocentre developed on the
Bjarmeland Platform (Gabrielsen et al., 1990). The anticlinal structure
that forms the Samson Dome is thought to result from the Middle to
Late Triassic halokinesis (Breivik et al., 1995, 1998; Gabrielsen et al.,
1990). Furthermore, Vadakkepuliyambatta et al. (2013) found shallow
gas and widespread evidence for fluid leakage through faults in the
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Samson Dome. This leakage zone, with approximately 141 km2, was
considered as one of the largest fluid-flow features in the western Ba-
rents Sea (Vadakkepuliyambatta et al., 2013).

This paper uses 3D and 2D seismic data to reassess the geometry
and kinematics of the Samson Dome, Barents Sea, and includes an
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evaluation of the timing of salt growth, collapse and associated
fault formation. In summary, this work aims to address the following
questions:

a)What is the history of fault growth and propagation in the Samson
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Fig. 1. a) Location map of the Barents Sea and its main structural boundaries. The Barents Sea is limited to the west by the Norwegian Sea, to the north by the Svalbard Archipelago
(Norway) and Franz Josef Land (Russia), to the east by the Novaya Zemlya and to the south by the Norwegian Mainland and the Kola Peninsula. b) Detailed map of the Barents Sea
highlighting main structures at a regional scale. The location of the 3D seismic cube and 2D seismic line used in this work are shown on the map. c) Interpreted regional seismic section
of the Bjarmeland platform, indicating the location of the SamsonDome andNyslepp Fault Complex.Wells 7224/7-1 and 7214/3-1 are located along this seismic profile. Themap in b)was
modified after the Norwegian Petroleum Directorate FactMaps (2015).
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b) Is there late strike-slip reactivation affecting the Samson Dome
during the Late Mesozoic?

c) How does the current stress regime of the Barents Sea control
fluid flow and trapping in the study area?

d) How can the Samson Dome provide insights into the Mesozoic–
Cenozoic evolution of the Barents Sea, contributing to the analysis of
seal unit competence and fluid migration in regions with similar
halokinetic structures?

This study is the first to test previously published 2D structural
models for the SamsonDome byusing a 3D seismic dataset. Stratigraph-
ic and structural features are enhanced in the interpreted 3D seismic
volume, allowing a more detailed evaluation of the dome as a potential
fluid-flow and seepage zone. The new data not only provide an insight
into the Mesozoic–Cenozoic evolution of the Barents Sea, but also con-
tributes to the analysis of seal unit competence and timings of fluid mi-
gration in areas with similar halokinetic structures.

2. Geological setting

The Barents Sea is an epicontinental sea located in northernmost
Europe, with an area of ~1.3 million km2 and an average water depth
of 300 m (Doré, 1995). The northern limits of the Barents Sea are the
Svalbard Archipelago and Franz Josef Land, and its eastern boundary is
Novaya Zemlya (Fig. 1a). To the south, the Barents Sea is bounded by
the Norwegian Mainland and the Kola Peninsula (Barrère et al., 2009;
Doré, 1995; Faleide et al., 1984, 1993; Henriksen et al., 2011a; Vorren
et al., 1991) (Fig. 1a).

The Barents Sea comprises several platforms, structural highs, and
basins, formed at different stages during the Late Palaeozoic and Meso-
zoic (Doré, 1991; Gabrielsen, 1984; Nøttvedt et al., 1993; Ritzmann and
Faleide, 2007). One of these basins, the Ottar Basin, comprises a 170 km-
long and 50–80 km-wide depocentre developed during Late Devonian–
Middle Carboniferous rifting (Breivik et al., 1995; Gudlaugsson et al.,
1998; Dengo and Røssland, 2013; Jensen and Sørensen, 1992). The
Ottar Basin is bounded by the Norsel High to the east and by the Ham-
merfest Basin to the southwest (Fig. 1b). Its northwest limit coincides
with the Loppa High, theMaud Basin, and theMercurius High, whereas
the Ottar Basin is bounded by the Nordkapp Basin to the northeast
(Fig. 1b). The Ottar Basin comprises the Swaen Graben and two salt
structures, the Norvarg and Samson Domes (Gudlaugsson et al., 1998).

In map view, the Samson Dome has been described as having an el-
liptic to circular geometry, with a diameter of ~18 km. It exhibits a radial
fault pattern generated due to the extension of post-salt Mesozoic se-
quences (Gabrielsen et al., 1990), and was later reactivated during the
Late Cretaceous and Early Tertiary (Breivik et al., 1995). Data in
Breivik et al. (1995) and Gabrielsen et al. (1990) show a lenticular evap-
orite body at depth, with a maximum thickness of 3.5 km and an esti-
mated volume of 500–600 km3 (Fig. 2). Breivik et al. (1995) suggested
that the primary reason for the very moderate salt movement in the
Samson Dome was the presence of thick and competent overburden
rocks (i.e., Lower Permian carbonates and Upper Permian silicified stra-
ta) above Upper Palaeozoic evaporites.

2.1. Palaeozoic tectono-stratigraphic setting of the western Barents Sea

The Caledonian Orogeny deformed the crystalline basement of the
Barents Sea from the Late Silurian to Early Devonian (Faleide et al.,
1984; Gernigon and Brönner, 2012; Gudlaugsson et al., 1998). Compres-
sion during the Caledonian Orogeny was followed by rifting in the Me-
sozoic, and continental breakup of the Northern Atlantic margins in
Norway and Greenland during the Cenozoic (Faleide et al., 2008;
Gabrielsen et al., 1990; Gee et al., 2008; Gernigon et al., 2014;
Glørstad-Clark et al., 2010). The Caledonian Orogeny played a signifi-
cant role in influencing the location and orientation of sedimentary ba-
sins in the Barents Sea (Breivik et al., 2002; Faleide et al., 1993; Gernigon
and Brönner, 2012; Gudlaugsson et al., 1998; Ritzmann and Faleide,
2007; Worsley, 2008). Extension, rifting and plate separation marked
the early stages of the Caledonide Orogen in Scandinavia during the
breakup of Rodinia in the Neoproterozoic (Cocks and Torsvik, 2005;
Soper et al., 1992; Torsvik et al., 1996).

The Caledonide Orogen resulted in the subduction of the Iapetus
Ocean margins during the Late Cambrian-Early Ordovician
(Finnmarkian event; Roberts, 2003). Orogenesis continued during the
Early Ordovician, and recorded the obduction of ophiolites in Central
Norway (Trondheim event). The Taconian event, dated as Middle to
Late Ordovician, marked the beginning of anticlockwise rotation of
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Fig. 2. Interpretation of a SW–NE seismic line across the SamsonDome showing the bottomdepth of this salt anticline at a depth of ~8.5 km. This salt structure has been interpreted as a salt
body with a maximum thickness of 3.5 km and an estimated volume of 500–600 km3. The estimated p-wave velocity of the salt body is ~4.5 km/s. Figure modified from Breivik et al.
(1995).
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Baltica away from Siberia. This was followed by the Scandian event,
whichwitnessed the closure of the Iapetus Ocean in theMiddle Silurian
to Early Devonian (Faleide et al., 1984; Gee et al., 2008; Gudlaugsson
et al., 1998; Ritzmann and Faleide, 2007; Roberts, 2003; Soper et al.,
1992).

From Early toMiddle Devonian, gravitational collapse of the Caledo-
nian Mountains Chain resulted in widespread extension in the western
Barents Sea (Faleide et al., 1996; Roberts, 2003;Worsley, 2008). Despite
the lack of information regarding the development of sedimentary ba-
sins at this stage (Gabrielsen et al., 1990; Gudlaugsson et al., 1998),
the western Barents Sea suggestively acted as a transfer zone linking
Norway and Greenland during this first episode of Atlantic rifting
(Doré, 1991; Gudlaugsson et al., 1998).

From Late Devonian to Middle Carboniferous, the western Barents
Sea recorded multiple episodes of extension, a character leading to the
development of a complex system of rift basins limited by structural
highs (Dengo and Røssland, 2013; Faleide et al., 1984; Gabrielsen
et al., 1990; Nøttvedt et al., 1993). In particular, Middle Carboniferous
rifting was accompanied by important strike-slip tectonics, and several
NE-trending basins were developed above NE-trending horsts and gra-
bens that followed the structural fabric of the Caledonian basement
(Gudlaugsson et al., 1998; Worsley, 2008). Large-scale basins, such as
the Nordkapp, Bjørnøya, Tromsø, Hammerfest, Maud and Ottar Basins,
were generated at this time (Fig. 1) (Dengo and Røssland, 2013;
Faleide et al., 1993; Gabrielsen et al., 1990; Gudlaugsson et al., 1998).

An expansion in the sea area occurred in the Late Carboniferous, but
tectonic activity diminished soon after until the Early Permian. In such a
setting, the deposition of evaporitesmarks the end of rifting and the be-
ginning of thermal subsidence in the region (Dengo and Røssland,
2013). As the Barents Seamoved further north during theMiddle Perm-
ian, within a semi-arid climatic belt, it favoured the development of a
post-rift carbonate platform dominated by warm-water limestones
and evaporites (Elvebakk et al., 2002; Faleide et al., 1984;
Gudlaugsson et al., 1998; Johansen et al., 1993; Stemmerik, 2000). The
closure of the Uralian Sea during the Late Permian, however, affected
the entire Barents Shelf by increasing subsidence rates and changing de-
positional stacking patterns from carbonates and evaporites to clastic,
organoclastic and cherty sediments (Alves, 2016; Johansen et al.,
1993;Worsley, 2008). Late Permian subsidence, togetherwith the influ-
ence of extensional events in the western Barents Sea, resulted in the
full establishment of the area currently denoted as the Bjarmeland Plat-
form (Breivik et al., 1995).
2.2. Mesozoic–Cenozoic evolution of the western Barents Sea

During the Mesozoic, the Barents Sea was affected on its northern
and western borders by the break-up of the Laurasian supercontinent,
with subsequent opening of the Eurasian Basin and Norwegian-
Greenland Sea (Faleide et al., 1993). The climate became humid,
resulting in the deposition of large amounts of non-marine, nearshore
and shallow-marine sediments derived from the Uralian Orogen
(Glørstad-Clark et al., 2010; Johansen et al., 1993; Smelror et al.,
2009). Strata in the western Barents Sea were, at this time, deposited
during successive episodes of transgression and regression in sea
level.

Tectonic activity in thewestern Barents Sea was relatively moderate
during the Triassic, and the region became a shallow-water siliciclastic
shelf at this time (Klausen and Mørk, 2014; Klausen et al., 2015; Mørk
and Elvebakk, 1999). The first salt movements in the Ottar Basin took
place from Middle Triassic to Late Triassic, resulting from gravitational
instability generated by: a) loading gradients imposed by an NW-
prograding shelf, and b) the reactivation of basement faults (Breivik
et al., 1995). Passive margin subsidence, active faulting along the west-
ern margin of the Barents Sea (including the Bjarmeland Platform), and
variations in the sedimentary supply affected the relationship between
sedimentary infill and accommodation space during the Triassic
(Gabrielsen et al., 1990; Glørstad-Clark et al., 2010; Klausen et al.,
2015; Smelror et al., 2009). The Middle Triassic in the western Barents
Sea was characterised by a central marine shelf where organic-rich
mudstone accumulated in restricted anoxic conditions (Smelror et al.,
2009). In the Late Triassic, another extensional event took place in the
Barents Sea, resulting in the formation of an extensive coastal plain
(Faleide et al., 1984; Glørstad-Clark et al., 2010; Smelror et al., 2009;
Klausen and Mørk, 2014).

The Jurassicwasmarked by amajor rifting episode. Early Jurassic de-
position in the Ottar Basin started with sandstones and subordinated
shales (Tubåen Formation) in a high-energy (transitional) marine set-
ting (Dalland et al., 1988; Smelror, 1994). Depositional environments
evolved from tidal flats to floodplains in the Pliensbachian, as indicated
by the deposition of interbedded siltstones, sandstones, shales and
claystones in the Nordmela Formation. During the Middle Jurassic, the
Atlantic rifting affected the entireNorth Atlantic, opening a largemarine
gateway from the North Sea (and further south) to the study area. This
event is recorded by the deposition of well-sorted and mineralogically
mature sandstones in the Stø Formation (Faleide et al., 2008). The
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Middle and Late Jurassic were dominated by regional extension and de-
velopment of relatively minor strike-slip fault systems. Block faulting
occurred in the Middle Jurassic and increased during the Late Jurassic
and Early Cretaceous, culminating in the formation of large basins
bounded by salt structures and major structural highs (Gabrielsen
et al., 1990).

The Cretaceous started with intense rifting and subsidence in the
western Barents Sea, whereas its eastern part remained quite stable
(Faleide et al., 1993). Rifting resulted in the decoupling of the Harstad,
Tromsø and Bjørnøya basins from the remainder of the Barents Sea
(Smelror et al., 2009). In the Late Cretaceous, rifting in theNorthAtlantic
led to the reactivation of normal faults on the western margin, together
with local compression and uplift on the Svalbard Platform (Faleide
et al., 1984, 1993; Gabrielsen et al., 1990). Tectonic subsidence, howev-
er, continued in other parts of the Barents Sea. The sedimentary infill
came both from the eastern and the northern Barents Sea, which were
uplifted at this time (Johansen et al., 1993; Smelror et al., 2009).

At the Cretaceous-Paleogene boundary, extension between Norway
and Greenlandwas replaced by strike-slip deformation, resulting in the
formation of the Sørvestsnaget Basin (Breivik et al., 1998; Ryseth et al.,
2003). The final stage of lithospheric breakup between Norway and
Greenland occurred at the Paleocene–Eocene boundary, with subse-
quent opening of the Norwegian-Greenland Sea at 55–54 Ma (Faleide
et al., 2008). The opening of the Norwegian-Greenland Sea resulted in
the salt diapirism through normal faults in the Sørvestsnaget Basin
(Perez-Garcia et al., 2013). During the Eocene, deep-marine conditions
predominated in thewestern Barents Sea, as recorded by the deposition
of sands from submarine fans (Safronova et al., 2014). From theMiddle
Miocene to the present day, the Barents Sea was uplifted in its eastern
part (Dengo and Røssland, 2013). This uplift is also associated with gla-
cial erosion of the Barents Shelf during the Plio-Pleistocene (Faleide
et al., 2008).

2.3. In-situ stress conditions in the Barents Sea

At present, regional data record well-defined maximum strike-slip
to compressive NW-trending stresses in the central and the western
parts of the European Plate. The average azimuth of these stresses ap-
proaches 140° (Gölke and Coblentz, 1996; Klein and Barr, 1986;
Müller et al., 1992). Exceptions to this regional stress distribution are
found in Scandinavia (Bungum et al., 1991; Müller et al., 1992; Ranalli
and Chandler, 1975; Stephansson, 1993). Earthquake focal mechanisms
and borehole data from the Finnmark Platform indicate compressional
stress regimes at shallow depths, with reverse faults responding to a
maximum horizontal stress σH trending either N–S or E–W (Fig. 3).

The existence of focal mechanisms for only five (5) earthquakes, the
small seismological coverage and the low number of stress measure-
ments makes it difficult to draw any conclusion about the general stress
orientation and the tectonic regime in the broader Barents Sea (Brudy
and Kjørholt, 2001; Lindholm et al., 1995, 2000). Nevertheless, the anal-
ysis of borehole breakouts (Fejerskov et al., 2000; Gölke and Brudy,
1996), regional earthquake focal mechanisms (Lindholm et al., 2000)
and borehole measurements (Fejerskov et al., 2000) for the broader
western Barents Sea indicate a N–S maximum horizontal stress direc-
tion and a mean σH azimuth of N177.24° ± 46.91°E (Fig. 3). The broad
standard deviation for the average σH azimuth results from the large
scatter of stress data obtained for the region. In-situ stress data indicate
a clockwise rotation of the azimuth fromWNW–ESE in the North Sea, to
NW–SW in the Norwegian Sea and N–S in the Barents Sea (Fig. 3). This
azimuth rotation suggests ridge push to be the principal stress-
generating mechanism in the western Barents Sea (Lindholm et al.,
2000). Another possible explanation for thedifferent stress azimuths re-
corded in Finnmark and Barents Sea, compared to the general NW–SE
trend for Europe, relates to the superposition of local stress sources on
regional stress fields (Gölke and Brudy, 1996). Sources of local stress in-
clude the influence of local structures such as salt anticlines, salt diapirs,
faults and folds, and lateral variations in subsurface rock properties
(Brudy and Kjørholt, 2001; Fejerskov et al., 2000).
3. Data and methods

The interpreted 3D seismic volume covers an area of 1840 km2 on
the Bjarmeland Platform, at a maximum water depth of approximately
296m (Fig. 1). The interpreted seismic data are pre-stack timemigrated
with a 12.5 × 25m line spacing, and were acquired with a 10 × 6000 m
array of streamers, eachwith 480 geophones. The seismic data are in the
time domain, zero-phased, and were processed within a 4 ms vertical
sampling window. The seismic sections are displayed in normal SEG
convention for a zero-phase wavelet such that an increase in acoustic
impedance with depth is a peak or positive reflection. Peaks are black
reflections on seismic sections and relative decreases in acoustic imped-
ance with depth are shown as negative or red seismic reflections
(Figs. 4, 5 and 6).

Data processing included resampling, TAU-P linear noise attenua-
tion, TAU-P domain deconvolution and zero-phase conversions under-
taken prior to the 120-fold stacking of seismic traces. Three-
dimensional pre-stack time migration used the Kirchhoff algorithm. In
addition to 3D seismic data, the regional 2D seismic line SG8737-112
was used to tie the observed structures to the geological context of
the Bjarmeland Platform and surrounding areas (Fig. 1a and b). Wells
7224/7-1 and 7214/3-1 are located along the interpreted 2D seismic
line in Fig. 1c.

Well 7224/7-1 crossed the Samson Dome as a wildcat drilled by Den
Norske Stats Oljeselskap A.S. in 1988. Well 7224/7-1 aimed at evaluat-
ing the reservoir potential of Late Triassic and Early Jurassic sandstones,
and tested previous geophysical and structural interpretations. Thewell
has a total depth of 3067 m (RKB) and penetrates strata from the
Sassendalen Group (Early to Middle Triassic) to the Nordland Group
(Pleistocene-Pliocene) (Fig. 4).

Well 7124/3-1 was a wildcat drilled by Saga PetroleumASA in 1987.
Thiswell penetrated theNyslepp Fault Complex, east of theHammerfest
Basin, and reached a total depth of 4730m. Its primary goalswere to test
hydrocarbons from Middle Jurassic, to investigate the source rock po-
tential of Triassic rocks, and to characterise Upper Carboniferous reser-
voir rocks. Well 7124/3-1 is the reference well for the Bjarmeland
Group and Ørret Formation (Late Carboniferous-Early Permian). Strata
penetrated by this well range from the Late Carboniferous (Ørn Forma-
tion) to the Pleistocene-Pliocene (Nordland Group) (Fig. 1c).

Seismic interpretation included horizon and fault mapping, seismic
attributes and time-depth conversions on Petrel®. For time-depth con-
versions, we used an average p-wave velocity of 5500 m/s TWT ob-
served in strata crossed by well 7224/7-1. As the well 7224/7-1 was
drilled without crossing the Permian strata, we used p-wave velocities
of 5800m/s for Upper Permian strata and6000m/s for theMid Permian,
based on the average velocities on well 7124/3-1 (Alves, 2016). These
velocities were used to convert mapped faults and horizons to depth
and to obtain the true dip values of faults.

Eight (8) key seismic reflections, including the seafloor (Figs. 4, 5
and 6), were mapped every 10 lines (125 m) once well 7224/7-1 was
tied to the seismic data. Smaller line intervals of 2–5 lines (25 to
62.5 m) were used to map the Samson Dome as a discrete structure.
Based on the internal character and the geometry of the interpreted
seismic reflections and on the correlation of these horizonswith the for-
mation tops of well 7224/7-1 (Larssen et al., 2002), the study area was
divided into five stratigraphic units ranging from the Late Palaeozoic
(Unit 1) to the Cenozoic (Unit 5) (Fig. 4). The interpreted stratigraphic
markers include Middle Permian (H1), Late Permian (H2), Early Triassic
(H3), Middle Triassic (horizons H4 and H5), Late Triassic (H6) and Late
Cretaceous (H7) unconformities (Figs. 5 and 6). Structural maps of hori-
zons H1 and H5 complemented the interpretation of seismic horizons
(Fig. 7).
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3.1. Structural data

We mapped one hundred and thirty three (133) faults imaged
on seismic sections and coherence data obtained from Petrel®.
Coherence is a geophysical attribute calculated through the conver-
sion of seismic-amplitude volume into a discontinuity volume. Co-
herence maps highlight the most prominent discontinuities in 3D
seismic volumes, such as faults and fractures (Brown, 2011). Fig. 8
shows a coherence slice at a depth of −980 ms, where
three distinct groups of faults were defined based on their
geometry and orientation. Eight representative faults (F1 to F8)
are highlighted on the coherence slice in Fig. 8 and were later
used to obtain the displacement-length (D-x) and throw-depth
(T-z) data in Figs. 9 and 10.

Displacement data provide insights into themechanism of initiation,
growth and evolution of faults through time (e.g. Cartwright et al.,
1998). Displacement-length analyses consist of plotting the maximum
displacement (Dmax) of faults observed on seismic data relative to the
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length of the fault trace (Chapman and Williams, 1984; Dawers and
Anders, 1995; Muraoka and Kamata, 1983; Nicol et al., 2002; Peacock,
1991; Pollard and Segall, 1987). Resulting D-x plots were created
using Microsoft Excel®, with values converted to metres for both dis-
placement and distance (Fig. 9).

Throw-depth profiles are helpful to estimate whether a fault
has been reactivated (Baudon and Cartwright, 2008a, 2008b;
Cartwright and Mansfield, 1998; Mansfield and Cartwright, 1996).
In throw-depth profiles, reactivated faults show abrupt variations
in throw gradients and magnitudes, whereas non-reactivated faults
denote minor changes in their profiles and show comparatively
smaller throw values (Baudon and Cartwright, 2008b). Throw-
depth relationships were measured considering the difference
between correlative seismic reflections on the hanging-wall and
footwall of faults, in seismic sections orthogonal to the fault strike
(Baudon and Cartwright, 2008b; Cartwright and Mansfield, 1998;
Mansfield and Cartwright, 1996; Omosanya and Alves, 2014;
Omosanya et al., 2015). Values for T-z plots were displayed in two-
way travel time (ms TWTT) (Fig. 10).

Furthermore, the interpreted faults were imported to Midland
Valley's Move® as 3D-mesh surfaces and filtered for edge triangles.
Key attributes such as the true dip and azimuth for each fault vertex
were created onMove® through the Attribute Analyser Toolbar. Because
azimuth was calculated, the strike was also automatically calculated for
each fault. The fault surfaces were then individually imported into 3D
Stress® for stress modelling.

Fault analyses were performed to assess the orientation and the
distribution of tectonic stresses across the study area (Morris et al.,
1996). After mapping 133 faults, the stress inversion method devel-
oped by McFarland et al. (2012) was used to determine the principal
paleostress tensors associated with these same faults. In this meth-
od, a fault is likely to slip when the shear stress is equal or greater
than the normal stress acting on a fault surface (Morris et al.,
1996). McFarland et al. (2012) indicate two important criteria that
need to be taken into account to assess the quality of fit for stress ten-
sors. They are: a) an expected positive relationship between slip
tendency and displacement, and b) the small displacements with
large slip tendency being more plausible than large displacements
with small slip tendency i.e., surfaces may have started slipping at
different points in time in this example.

We went a step further by modelling the tendency of faults to slip
and leak fluids (Figs. 11 and 12). The Stress Analysis Module allows the
colour-scaled 3D visualisation of the fault planes that are more likely
to reactivate and leak. The workflow followed to obtain 3D models for
slip tendency (Fig. 11) and leakage factor (Fig. 12) utilised the magni-
tudes and azimuths of present-day stresses for the Finnmark Platform
provided by the World Stress Map (Heidbach et al., 2008). Data from
the World Stress Map indicate compressional regimes at shallow
depths, giving σ1 as σHmax, σ2 as σhmin, and σ3 as σv for present-day
stress conditions in the study area (Fig. 3).

Slip tendency (Τs) comprises the likelihood that a faultwill slip, com-
puted as the ratio of shear (τ) to normal (σn’) stresses on a fault plane,
as shown in Eq. (1) (Morris et al., 1996). Slip tendency has no units and
mathematically denoted as:

Ts¼ τ=σn’: ð1Þ

Slip tendency depends on the stress field and orientation of a fault
surface. A fault will slip depending on the cohesive strength of the sur-
face and the coefficient of static friction (μ). For a cohesionless fault sur-
face, a slip will occur when the resolved shear stress (τ) is equal or
surpasses the frictional resistance to sliding (F), as shown in Eq. (2)
(Morris et al., 1996):

F ≤τ ¼ μσn ð2Þ

Leakage factor (L) allows the quantitative modelling of the fluid
transmissivity of faults, identifying faults that either constitute migra-
tion conduits for sub-surface fluid or, instead, act as local seals. The like-
lihood for cohesive surface to transmit fluids is defined as the ratio of
the fluid pressure (Pf), considered to be hydrostatic and obtained
through vertical stress data (Zoback, 2010), to the difference between
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the normal stress (σn’) and the tensile strength (T) of a fault zone (Mid-
land Valley, 2014) such as:

L ¼ Pf= σn’‐Tð Þ ð3Þ

The workflow to obtain the leakage factor values in the Stress Analy-
sis Module is similar to the workflow for slip tendency. The magnitudes
and azimuths from present stress data for the Finnmark Platform
(Heidbach et al., 2008) were used together with a fluid pressure (Pf)
value of 11 MPa, obtained considering the depth of borehole breakouts
(1108 m) and the water column (296 m) above the seafloor (Fig. 12).
The data in Figs. 11 and 12 show normalised slip tendencies (τ/τmax)
and leakage factors (L/Lmax) so that calculated values fall within a
range of 0.0 to 1.0.

4. Seismic interpretation

The eight (8) seismic horizons interpreted in this study are shown in
Fig. 4 and Table 1. These horizons correspond to the tops of the Lower
Triassic Havert and Klappmyss Formations, the Upper Triassic
Fruholmen Formation, the Upper Jurassic Hekkingen Formation, the
Upper Cretaceous Kolmule Formation and the Pleistocene Nordland
Group in well 7224/7-1. Furthermore, the eight horizons were grouped
into five sedimentary units from the Permian (Unit 1) to the Paleogene-
Quaternary (Unit 5), according to their internal character and the
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geometry of the seismic reflections. The Middle and Late Permian hori-
zonsH1 andH2were not intersected bywell 7224/7-1. Hence, theywere
picked based on their acoustic impedance contrast and data from previ-
ous workers in the area such as Alves (2016); Breivik et al. (1995);
Ehrenberg et al. (1998); Glørstad-Clark et al. (2010); Larssen et al.
(2002) andNilsen et al. (1993). Younger Permian stratawere correlated
with regional unconformities crossed bywell 7124/3–1 (Figs. 1c, 4 to 6).

4.1. Unit 1 (Permian)

Unit 1 comprises two sub-units (1a and 1b) bounded by Mid Perm-
ian (H1) and Late Permian (H2) unconformities (Figs. 4–6). The Mid
Permianhorizon (H1) ismarked by a high-amplitude, positive reflection
at a depth of approximately 4230 m (Fig. 4, Table 1). Strata in sub-unit
1a consist of grainstones and packstones rich in foraminifera and algae
(Ehrenberg et al., 1998). Carbonate buildups occur in sub-unit 1a and
are shown as high-amplitude wavy reflections. These structures are
also observed on the thickness map in Fig. 7a. Carbonate build-ups
were deposited in relatively shallow basinal environments together
with variable amounts of anhydrite (Nilsen et al., 1993). Below the
build-ups, a lenticular structure observed both in section (Figs. 5 and
6) and map view (Fig. 7a) consists of an evaporitic body recognised
due to the loss of internal seismic reflections. The Mid Permian sub-
unit 1a corresponds to the boundary between Seismic Units II and III
of Nilsen et al. (1993) and to the boundary between the Early Sakmarian
unit L7 and the Late Sakmarian–Late Artinskian unit L8 of Ehrenberg
et al. (1998). Sub-unit 1a is deformedover themain lenticular, evaporite
body that forms the base of the Samson Dome (Fig. 7a).

The Late Permian horizon H2 comprises a medium amplitude, posi-
tive seismic reflection (Figs. 5 and 6). This horizon is continuous and
marked by the presence of a small amount of offsetting faults
(Figs. 6a–c). Horizon H2 coincides with the top of sub-unit 1b, which
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comprises calcareous silt shales, calcareous spiculites with clay matrix
and shale lenses (Ehrenberg et al., 1998). Sub-unit 1b correlates with
Seismic Unit IV of Nilsen et al. (1993) and to the Kungurian–Late Perm-
ian unit L9 of Ehrenberg et al. (1998).

4.2. Unit 2 (Triassic)

The lower boundary of Unit 2 coincideswithH2 (Figs. 4, 5 and 6) and
comprises distinct Early Triassic (2a and 2b), and Late Triassic (2c) sub-
units. Horizon H3 coincides with the top of the Lower Triassic Havert
Formation (Fig. 4, Table 1). This is the deepest horizon drilled by well
7224/7-1, at a depth of 2663 m (Figs. 4 and 5). Horizon H3 is a negative
seismic reflection with high amplitude. In areas surrounding the Sam-
sonDome it is possible to observe a loss of continuity, probably resulting
from a lower seismic resolution, as a small number of faults offsets ho-
rizon H3 (Figs. 5 and 6). The 865 m-thick sub-unit 2a shows no major
thickness variations throughout the study area, and consists of medium
to dark-grey shales with minor intervals of pale grey siltstones and
sandstones (Dalland et al., 1988; Larssen et al., 2002). Sub-unit 2a corre-
sponds to seismic sequence S1 in Glørstad-Clark et al. (2010).

Horizon H4 correlates with the top of the Klappmyss Formation, and
occurs at a depth of 2222 m in well 7224/7-1 (Figs. 4 and 5). This hori-
zon shows low amplitude and negative positive polarity and, similarly
to horizon H3, loses its continuity in areas close to the Samson Dome
(Figs. 5 and 6). Below H4, sub-unit 2b comprises a 441 m-thick strati-
graphic interval with regular thickness, offset by faults around the Sam-
son Dome (Figs. 5 and 6). However, faults are also observed away from
this structure. Sub-unit 2b consists of dark-grey shales grading upwards
into interbedded shales, sandstones and siltstones (Dalland et al., 1988).
This sub-unit correlates with the Olenekian seismic sequence S2 of
Glørstad-Clark et al. (2010) (Table 1).

One of the strongest negative reflections in Unit 2 is horizon H5,
which marks the top of Upper Triassic strata (Figs. 4 and 5). In well
7224/7-1, this reflection correlates with the top of the Fruholmen For-
mation, and occurs at a depth of 931 m (Fig. 4a). Horizon H5 marks
the top of the 1291 m-thick sub-unit 2c, which includes the Fruholmen
(97m thick), the Snadd (614m thick) and the Kobe Formations (580m
thick) (Figs. 4–6). The lithology of these three formations is similar,
comprising grey to dark shales grading upwards into interbedded sand-
stones, shales, siltstones and coal (Dalland et al., 1988; Larssen et al.,
2002). The Fruholmen Formation shows no discernible thickness varia-
tions (Figs. 5 and 6). Sub-unit 2c is mainly faulted over the salt dome,
but faults are also observed away from this structure. A small number
of bright spots are observed in sub-unit 2c (Fig. 6). This sub-unit is
equivalent to the top of the Upper Triassic S5 unit of Glørstad-Clark
et al. (2010) (Table 1).

4.3. Unit 3 (Jurassic)

Unit 3 has an upper boundary at the top of the Late Jurassic horizon
H6, which coincides with a reflection of negative amplitude (Figs. 4 to
6). In well 7224/7-1, this reflection corresponds to the top of the
Hekkingen Formation and occurs at a depth of 792 m (Fig. 4). Unit 3 is
an interval comprising brownish grey to dark grey shales and claystones
with minor thin amounts of limestone, dolomite, siltstone and sand-
stone (Dalland et al., 1988). This thin (139 m) interval has a regular
thickness and is markedly faulted (Figs. 5 and 6). Faulting causes this
horizon to be discontinuous around the Samson Dome (Figs. 5 and 6).

4.4. Unit 4 (Cretaceous)

Unit 4 is bounded at its base by horizon H6 and at its top by horizon
H7, a Late Cretaceous unconformity occurring at a depth of 401mbelow
the seafloor in well 7224/7-1 (Fig. 4). Horizon H7 is a positive and high-
amplitude reflection, which coincides with the top of the Kolmule For-
mation (Fig. 4a). The horizon is truncated over the crest of the Samson
Dome (Figs. 5 and 6) and, comprises the most faulted seismic-
stratigraphic marker in the study area (Fig. 7b). A few distinctive bright
spots occur close to the top of Unit 4 (Fig. 6b). Inwell 7224/7-1, the Unit
4 thickness reaches 391 m and includes the Knurr and Kolmule
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Formations (Fig. 4). The Lower Cretaceous Knurr Formation, 30m thick,
comprises dark-grey shales and red to yellow-brown claystones at its
top (Larssen et al., 2002). In parallel, the Kolmule Formation is about
361 m-thick and is composed of brownish grey to dark grey shales, in-
terbedded with occasional intervals of siltstone and sandstone
(Dalland et al., 1988; Larssen et al., 2002). The Kolmule Formation is
Early to Late Cretaceous in age.
4.5. Unit 5 (Paleogene — Quaternary)

On the interpreted seismic sections, the top of Unit 5 coincides with
the modern seafloor (Fig. 4). This Paleogene to Quaternary unit is
108 m-thick and shows continuous and high-amplitude reflections at
its base and top. Low-amplitude and discontinuous reflections are ob-
served in Unit 5, hindering themapping of faults in its interior. Discrete
high-amplitude anomalies are observed on seismic data and are
interpreted as bright spots (Figs. 5 and 6).

Unit 5 comprises the Nordland and Sotbakken Groups (Fig. 4). The
Nordland Group consists of marine sand and clays grading to sand-
stones and claystones (Dalland et al., 1988; Glørstad-Clark et al.,
2010). Clays are grey to greyish green, blocky, locally silty and non-
calcareous. The softness of the clays from Nordland Group is a distinc-
tive feature when comparing to the claystones from the underlying
Sotbakken Group (Dalland et al., 1988) (Fig. 4).
5. Fault distribution on the Samson Dome

The structural interpretation of a coherence slice from a depth of
−980 ms resulted in the sub-division of the study area into three dis-
tinct zones (Fig. 8). The sub-division is done based on the density, ge-
ometry, and orientation of the interpreted faults. Fault density is
greater over the Samson Dome (Zone 2) and decreases towards the
southeast and northwest in Zones 1 and 3 (Fig. 8). Most faults devel-
oped away from the SamsonDome are restricted to Unit 4 (Cretaceous).
However, a considerable number of faults also extend into the Triassic
Unit 2 (Figs. 5 and 6).

5.1. Zone 1

Zone 1 occurs to the northwest of the Samson Dome (Fig. 8). The
mean strike direction for the 21 faults mapped in this zone is ENE,
with the largest faults striking E (see rose diagram in Fig. 6). Zone 1 is
not located on the SamsonDome, but this broad anticline still influences
its structural configuration (Fig. 6). Small-scale bright spots were also
identified below horizon H5 (Fig. 6).

One of the distinctive features in Zone 1 is the presence of a vertical
fault segment offsetting Triassic strata, in which a SW-dipping fault seg-
ment (F1) is visible (Fig. 6a). In Fig. 6b, a small vertical fault segment is
also interpreted within Upper Triassic strata. Apart from this latter fault
types, no other evidence for vertical faults indicating strike-slip move-
ments was found in Zone 1. With the exception of fault F1 the deepest
offsetting faults in Zone 1 dip all to the NE. Faults that occur at Creta-
ceous level (Unit 4) dip both to the SW and NE (Figs. 6 and 8).

5.2. Zone 2

Zone 2 is located in the central part of the study area and comprises
faults developed on the crest of the Samson Dome (Fig. 7). Zone 2 is the
most deformed of the three interpreted zones and includes deeply
seated faults such as F5, which offset Upper Permian to Upper Creta-
ceous strata (Fig. 6). Significantly, the top of Upper Cretaceous strata
shows evidence of erosional truncation (Figs. 5 and 6).

In Zone 2, the predominant strike for faults is NW-SE. However, NE–
SW striking faults are also interpreted (Fig. 6). Close to the Samson
Dome, sub-units 2b, 2c, Unit 3, and Unit 4 are highly faulted with a suc-
cession of tilt-blocks (Figs. 6a and 6b). These structures are asymmetric
and limited by synthetic and antithetic faults (Fig. 6). Relatively large
tilt-blocks are observed in Fig. 6b. The tilted blocks are delimited by F4
to the NE and by other fault segments to the SW. These fault segments
extend from the top of the Lower Triassic to the top of Upper Cretaceous
strata (Figs. 5 and 6). Away from the SamsonDome, it is possible to see a
large tilt-block where all the faults located to the right of the seismic
section dip to NE (Fig. 6c). Faults located on the left of this section dip
to the SW (Fig. 6c).

In addition, bright spots were interpreted in Zone 2 below horizon
H5 (Fig. 6a). In Fig. 6b, the bright spots occur in Upper Cretaceous strata
near the base of Unit 5.

5.3. Zone 3

Zone 3 is located in the southernmost part of the study area and
comprises large faults that offset sub-unit 2b to Unit 4 (Fig. 8). Most of
the faults in this zone are, however, contained within Upper Cretaceous
strata in Unit 4. Faults in Zone 3 strike in an E-W direction (Fig. 6). As
faults predominantly dip to the SW, the main distinctive feature of
Zone 3 is the occurrence of a NE-dipping segment between horizons
H4 and H7 (Fig. 6c). Two faults within Unit 4 intersect this latter fault
segment. Relative to the other two zones, Zone 3 show little connection
to the Samson Dome. Several bright spots are also observed below hori-
zon H5 and close to the seafloor in this zone (Fig. 6).
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6. Fault displacement analyses

6.1. Main fault families

The interpreted faults are divided into distinct families; named types
A to C. Type A faults are crestal faults located on the crest of the Samson
Dome (Fig. 6a). They form small-scale graben, half-graben and horst
structures, and show predominant NW to ENE strikes and an average
dip of 39°. Faults F4 to F8 are examples of faults in this category. Type
A faults chiefly occur in Zone 2 where the Samson Dome is located,
but they may also extend to Zone 1 e.g., faults F7 and F8 (Fig. 8).
These faults are among the deepest in the study area, occurring from
Lower Triassic to Upper Cretaceous strata (Fig. 6).

Type B faults are located away from the SamsonDome and consist of
near-parallel faults with predominant E-W strikes and dips ranging
from 33° to 48°. In the study area, Type B faults show no evidence for
strike-slip movement. Faults F1 to F3 are examples of Type B faults
(Figs. 6 and8). Fault F3 is the largest fault in the study area,with a length
of around 20,000 m (Fig. 8). This fault offsets Upper Triassic to Upper
Cretaceous strata i.e. from horizons H4 to H7 (Fig. 6b). F3 also delimits
a bright spot in Zone 1 (Figs. 6a and b).

Coherence data in Fig. 8 show Type C follow a pattern that resembles
polygonal fault systems (Cartwright, 1996; Lonergan et al., 1998). Type
C faults are observed within Cretaceous strata (Unit 4) and have a
predominant strike direction to the NW (Figs. 3 and 6). Faults striking
NE are also found. The dips for these faults are variable, ranging from
29° to 52°.

Time-structure data for horizon H5 (Fig. 7b) and the profiles in
Fig. 10 show that interpreted faults can display average throw values
ranging from 12 to 33 ms on the Samson Dome. The greatest throw
values occur for fault F5, where a throwmaximum of 68ms is observed
(Fig. 10). Seismic profiles, however, do not exhibit significant thickness
variations along most of the interpreted horizons (Fig. 6). Only strata
older than the Late Cretaceous Unit 4 show significant thickness
variations.

6.2. Interpretation of displacement-length (D-x) plots

Fig. 9 shows displacement-length (D-x) plots for the eight represen-
tative faults. The shapes ofD-x plots relate to the observed displacement
variations. For a single and isolated fault, D-x profiles will exhibit trian-
gular or flat-topped shapes representing a near-symmetric slope with
gentle variations in displacement (Childs et al., 1995; Muraoka and
Kamata, 1983; Nicol et al., 1996; Peacock and Sanderson, 1991). These
are the C-type faults of Muraoka and Kamata (1983) and represent de-
formation in soft, homogeneous layers. Faults with abrupt variations in
displacement indicate linkage of individual fault segments through the
displacement minima (Nicol et al., 1996; Walsh et al., 2003). Their
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corresponding profiles show a broad central section with no significant
slope variations, and flanking portions with an abrupt displacement
change, thus resulting in a marked asymmetric character. These struc-
tures are classified as M-type faults, reflecting deformation in rigid
units (Muraoka and Kamata, 1983).
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Table 1
Seismic character and lithologies of the seismic units interpreted in the study area. Correspondence of the seismic units in this work with the seismic sequences in the literature:
a(Glørstad-Clark et al., 2010); b(Ehrenberg et al., 1998); c(Nilsen et al., 1993).

Epoch
Seismic

unit
Seismic

sub–unit
Horizon

Thickness
(m)

Internal character, geometry and terminations
Lithology

(Larssen et al., 2002; Dalland et al., 1988)

Seismic
sequences in
the literature

Pleistocene 5

Seafloor

H7

H6

H5

H4

H3

H2

H1

108
Discontinuous reflections close to the seafloor. No

mapped faults in this unit. Occurrence of bright spots
is frequent.

Sands and clays grading into sandstones and
claystones

Late
Cretaceous

4 391

Strong amplitude and high–frequency positive
reflections. Horizon H7 is truncated on the crest of
the Samson Dome. Large and shallow amplitude

anomaly cut by faults.

Brownish grey to dark grey shales and claystones
interbedded with occasional limestone, siltstone and

sandstone

Late
Jurassic

3 139
Strong amplitude and high–frequency negative

seismic reflections. Offset by faults. Discontinuous
reflections on the Samson Dome.

Basal and top shales interbedded with siltstones and
sandstones

Late
Triassic

2

2c 1291
Strong to moderate and high to medium frequency
negative reflections. Offset by faults. Discontinuous

reflections on the Samson Dome.

Basal grey to dark shales grading upwards into
interbedded sandstones, shales and coals

S5
a

Early
Triassic

2b 441
High amplitude and positive reflections. Constant

thickness throughout the study area. Offset by faults
on the Samson Dome and away from this structure.

Dark grey shales grading upwards into interbedded
shales, sandstones and siltstones S2

a

2a 1537
High amplitude negative reflection. Loss of seismic

resolution close to the dome. Seismic reflections
offset by faults on the Samson Dome.

Medium to dark grey shales with minor intervals of
siltstones and sandstones

S1
a

Late
Permian

1

1b 4200
Low–to moderate–amplitude internal and positive

reflections. Continuous over the study area. Not
intersected by faults.

Calcareous silty shales, calcareous spiculites with
clay matrix and shale lenses (Ehrenberg et al., 1998)

L9
b

Unit IV
c

Middle
Permian

1a 5500

Strong amplitude and positive reflections. Wavy
towards the top of the unit. Loss of seismic

resolution close to the dome. Not intersected by
faults.

Carbonates interbedded with the evaporitic
(lenticular) body

L7–L8
b

Unit II–Unit 
III

c
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and F6 are skewed to the right (Fig. 9). Fault F5 is a combination of two
distinct C-type profiles. Fault F4 include anM-type profile to the left and
a C-type to the right (Fig. 9). Fault F2 displays themost complicated D-x
profile with combination of several types of C-, M- and skewed-type
profiles. The complex D-x profile points to lateral segmentation of the
faults (Muraoka and Kamata, 1983; Nicol et al., 1996), an evidence
that these faults were not isolated during their propagation and growth.
For example, Fault F5 developed by combination or linkage of two dis-
parate and initially isolated faults (cf. Childs et al., 1995; Peacock and
Sanderson, 1991). Hence, the most laterally segmented fault is F3,
with twelve (12) segments, followed by F2 with ten (10) segments.
Fault F8 and F4 have six (6) segments each, whereas faults F6 and F7
have five (5) segments. Fault F1 consists of four (4) segments and the
least segmented fault is F5, with two (2) segments (Fig. 9).

Apart from fault segmentation, the representative faults also have
variable maximum displacement (dmax) and fault length (Fig. 9). Dmax

ranges from 81 m (F5) to 23 m (F2), while fault length varies from
about 2.8 km (F6) to 20 km (F3). The point of maximum displacement
for a fault may coincide with their point of nucleation (cf. Barnett
et al., 1987; Nicol et al., 1996;Walsh andWatterson, 1987), but this as-
sertion will only be true for isolated blind faults or faults that show less
segmentation. In terms of their connection to the Samson Dome, the
Type A faults (crestal) have length that are lesser than those of Type B.
The longest faults are located on themargin of the Samson Dome. How-
ever, Type A faults have higher Dmax relative to the Type B faults.
6.3. Interpretation of throw-depth (T-z) plots

The throw-depth (T-z) plots for the eight representative faults are
shown in Fig. 10. These profiles include C-type (F1, F6 and F7), skewed
M-type (F3 and F4), M-type (F2 and F8) and skewed C-type profiles
(F5). Although the profiles can also be grouped into simpler types
e.g., the profile for fault F1 is classified as an M-type, whereas F1 is
interpreted here as a combination of two Type C profiles (Fig. 10).
Throw values generally increase with depth for faults F1, F3 and F4
(Fig. 10). A different geometry is observed for faults F2, F5 and F7,
whose throws increase from their upper tips to a depth of about
700 ms. Displacement minima are recorded at 800 ms for faults F2
and F5, and at 900 ms for fault F5. The maximum throw occur at
~1200 ms towards the lower tip in faults F5 and F7, and at ~1400 ms
in fault F2 (Fig. 10). Throw-depth plots for all the faults show that the
maximum displacement occurs within Upper Triassic strata (Fig. 10).
The T-z plots signify the complex vertical segmentation of the faults
and likelihood of fault reactivation through dip linkage. This aspect is
discussed further in Section 8.2.

7. Stress distribution, slip tendency and leakage factors for faults in
the Samson Dome area

The styles of deformation in the Samson Dome area reflect a
complex stress distribution. Stress inversions for all the faults
indicate paleostress conditions similar to the initially expected,
considering the high standard deviation for stress azimuths
gathered from the literature. We, nevertheless, estimated a sub-
horizontal σ1, plunging 12° along a N130° azimuth. The orientation
of σ3 is sub-vertical, plunging 77.5° along an N298.4° azimuth.
Earthquake focal mechanisms from the Finnmark Platform, located
339 km from the Samson Dome, also favour a compressional stress
regime with a σ3 plunging 70° along an N25° azimuth. The orienta-
tion of σ1 is, based on focal data, sub-horizontal, plunging 5° along a
N281° azimuth (Fig. 3).

Normalised slip tendency values for faults in the study area vary
from 0.0 to 0.6 (Fig. 11). Most faults in Zones 1 and 3 (Type B and C
faults) show slip tendency values between 0.3 and 0.5. Faults in Zone
2 (Type A faults) have the highest slip tendency values. In Fig. 11, one
can note that some faults on the Samson Dome show a decrease in
slip tendency from their lower to upper tips. Normalised Leakage factors
were also calculated considering present-day stress states for Finnmark
and a fluid pressure of 11 MPa, based on vertical stress measurements.
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In this case, the leakage factor values obtained for the study area range
from 0.20 to 0.85, with the most faults in the southern and northern
parts of the study area showing leakage factors varying from 0.50 to
0.70 (Fig. 12). An interesting pattern is observed in Zone 2; some of
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8. Discussion

8.1. Structural evolution of the Samson Dome and timing of faults

A conceptual model for the evolution of the Samson Dome is pre-
sented in Fig. 13. At a regional scale, the first halokinetic movements
in the Ottar Basin took place from Middle to Late Triassic, resulting
from differential loading imposed by NW-prograding shelf deposits
and by the reactivation of basement faults (Breivik et al., 1995;
Klausen and Mørk, 2014). However, considering that NW-prograding
strata arrived to the Samson Dome area relatively late in the Triassic,
and that thick carbonates cover the Upper Palaeozoic evaporites in the
study area,we suggest thatMiddle to Late Triassic halokinesis barely de-
formed the post-salt overburden around the Samson Dome. The only
evidence for important Middle to Late Triassic tectonics is the occur-
rence of a few NE-trending faults at the level of H4 and H5 (Figs. 5 and
13a–b). Examples of these NE-trending faults that reach the Triassic ho-
rizons are faults F5, F6 and F8 (Type A faults). These representative
faults comprise maximum and minimum throw displacements be-
tween the Triassic Horizons H4 and H5, indicating that these fault seg-
ments were reactivated.

The interpreted 3D seismic cube indicates that the bulk of
halokinetic movements occurred in the Late Mesozoic-Early Cenozoic.
Faults formed during the Late Cretaceous in the Ottar Basin trend pref-
erentially to theNW,whereasMiddle to Late Triassic NE-trending faults
were reactivated later. Extension in the Barents Sea, related to the open-
ing of the North Atlantic Ocean, is likely to have caused themobilisation
of salt in the Ottar Basin and the subsequent reactivation of NE-trending
faults (Faleide et al., 1993; Gudlaugsson et al., 1998; Safronova et al.,
2014). Evidence for this salt mobilisation includes the generation of a
broad anticline deforming the Late Cretaceous strata (Fig. 13a–h). Faults
surrounding the dome area offset Upper Triassic, Jurassic and Creta-
ceous strata. Conversely, faults are scarce in Lower Triassic and Permian
strata imaged over the Palaeozoic evaporites (Figs. 5 and 6).

The coherence map at Z = −980 ms shows a circular geometry
in map view, with a radial fault pattern limited to the Samson Dome
(Fig. 8). This radial fault pattern reflects extension on the crest of the
dome (Schultz-Ela, 1993; Withjack and Scheiner, 1982; Yin and
Groshong, 2007). Similar radial fault patterns are found in many other
geological structures resembling salt domes, such as igneous plutons
and calderas (Acocella et al., 2004; Chadwick and Dieterich, 1995;
Holohan et al., 2008; Walter and Troll, 2001); gneissic domes (Yin,
2004); mud volcanoes (Neurauter and Roberts, 1994) and mud diapirs
(Hansen et al., 2005). On 3D seismic data the Samson Dome ismarkedly
arched, with most faults offsetting the youngest Mesozoic horizons
(Fig. 6). The Samson Dome, therefore, can be geometrically
characterised as an open anticline. This type of structure favours buck-
ling of the post-salt overburden forming broad structures with 4-way
dip closures (Carter et al., 1982). The evolution of the Samson Dome
comprises three distinct stages.

The first stage occurred during the Late Mesozoic (Fig. 13c–d). The
growth of the Samson Dome resulted in the formation of an arched
roof above Upper Palaeozoic evaporites, with associated radial faults
and graben structures — including an apical block at the dome crests.
The limits of the dome, as well as the radial faults, are indicated in
Fig. 8. Faults crossing Upper Triassic to Upper Cretaceous strata follow
the NW–SE trend of the Ottar Basin, whereas olderMiddle to Late Trias-
sic (NE-trending) faults in the study area were formed early in the evo-
lution of the Samson Dome and were reactivated later, as indicated by
cross-cut relationships between faults and their corresponding throw-
depth profiles (Fig. 10). In a second stage, the cessation of salt growth
resulted in local dissolution of the dome (Fig. 13e–f). Dissolution was
most likely initiated at the crest of the Samson Dome, evidenced by
the lenticular geometry of the salt body (Figs. 5 and 6). The removal of
the buried salt initiates and tends to be greater at the top and in more
elevated parts of the diapir where the salt rises faster (cf. Ge and
Jackson, 1998; Seni and Jackson, 1984). The third stage is associated
with the collapse of the dome (Fig. 13g–h). Salt dissolution and loading
imposed by post-salt overburden units is one of the main mechanisms
to form collapse structures such as the one observed in the Samson
Dome area (e.g., Clark et al., 1999; Ge and Jackson, 1998; Gutiérrez,
2004; McDonnell et al., 2007). Most faults in the study area are located
on the Samson Dome and are underlain by Upper Palaeozoic evaporites,
suggesting that these structures are related to salt removal and crestal
collapse, with the uppermost Mesozoic layers being particularly affect-
ed by the development of Types B and C faults.

The model proposed here bears some similarity to data in Walter
and Troll (2001) addressing the formation of volcanic calderas by dom-
ing and collapse (Fig. 13).Walter and Troll (2001) consider the inflation
of volcanic chambers as capable of generating radial opening cracks that
lead to their subsequent collapse - usually caused by later magmawith-
drawal from an underlying chamber. The collapse of calderas results in
roof subsidence and closure of previously formed radial faults, and is ac-
companied by the formation of periphery en-echelon fractures with
variable dips. Evidence for collapse of faults similar to those found on
volcanic calderas are found in the interpreted seismic volume, where
no substantial height differences are observed among tilted blocks at
the crest of the Samson Dome. The greatest fault displacements occur
for fault segments located close or above the salt dome (Fig. 9). As
with volcanic calderas, dome collapse has resulted in maximum dis-
placements of ~80 m in fault segments located on the crest of the Sam-
son Dome. Displacement maxima tend to be of smaller magnitude in
faults located distally from the dome. The rise and collapse of the anticli-
nal structure caused initially isolated segments to link, forming the radi-
al fault pattern observed in the study area (Fig. 13).

Away from the Samson Dome, the seismic horizons seem to be flat
and undisturbed by halokinesis. Nevertheless, the occurrence of Type
C faults (Figs. 5 and 6) and small-scale fractures offsetting Cretaceous
strata highlight the importance of the Late Cretaceous tectonics in the
study area (Fig. 8). From key seismic lines and well 7224/7-1, it is
clear that horizon H7 is the only surface denoting significant erosion,
being thinner at the top of the Samson Dome (Fig. 6). Away from the
Samson Dome, thickness variations are not observed. These thickness
variations are probably associated with Late Cretaceous-Paleogene ero-
sion, which removed part of the Upper Cretaceous overburden that was
uplifted and folded on top of the Samson Dome (Fig. 13).
8.2. Mechanism of fault linkage and reactivation

Displacement plots in Section 6.2 and 6.3 provide insights into the
mode of propagation and linkage of faults around the Samson Dome.
The observed fault geometries, and cross-cutting relationships, are
also important clues to understand the evolution of the study area. For
most representative Types A and B faults, throw-depth (T-z) data
show maximum displacement close to horizon H5 (Middle Triassic).
Type A faults generally consist of either two or three segments and, in
map view, radiate out from the Samson Dome (Fig. 8). The collapse of
the salt dome is likely to have caused the individual fault segments to
link, following a geometry akin to caldera-collapse structures, as
discussed in Section 8.1 (Fig. 13). Lateral segmentation and linkage in
Type A faults is presumably associated with the growth and collapse
of the Samson Dome. For Type B faults, dome uplift is considered an im-
portant factor influencing their lateral and vertical propagation.

As for fault reactivation, themultiple displacementminima in F2 and
F3 indicate that Type B faults consist of multiple overlapping fault seg-
ments (Figs. 9 and 10). For the majority of Type A and B faults, throw
minima occur in Unit 3 (Late Jurassic) and in Unit 4 (Cretaceous). Re-
ductions in fault throw observed for individual fault segments suggest
reactivation along dip or dip linkage (Baudon and Cartwright, 2008b;
Omosanya et al., 2015).We therefore propose that important fault reac-
tivation took place in the SamsonDome area during the Cretaceous (e.g.
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Faleide et al., 1993). A supporting evidence for reactivation in the Creta-
ceous is the generation of a third fault family, Type C, at this time.

8.3. Implications for petroleum systems in the Samson Dome and Ottar
Basin

The interpreted seismic data provide little evidence for the presence
of large-scale dim-spots. Vadakkepuliyambatta et al. (2013) considered
the Samson Dome to form a large fluid-seepage structure based on the
presence of an extensive area of dimmed strata on 2D seismic data.
However the interpreted 3D seismic volume, which denotes a dramatic
improvement in the quality of the seismic signal, does not image a
dimmed zone. Our seismic cubemakes it possible to delineate horizons
and interpret faults with a great level of certainty, and bright reflections
were only found at shallow depths above the Samson Dome. The largest
bright spots are observed in Zone 2, which is located farther from the
Samson Dome. Bright spots occur close to faults formed below horizons
H5 and H7 in Zones 1 to 3, respectively. Some of these faults have their
upper tips close to the seafloor (Figs. 8 and 12). A plausible argument
is that the associated hydrocarbons or fluidsmigrated or leaked through
the faults from deeper source rocks into shallow stratigraphic units.

The area where Zone 2 faults occur records a major erosional event
at the transition between the Mesozoic to Cenozoic. We suggest that
erosion of Upper Cretaceous strata in Unit 4 resulted in a reduction in
the overburden stresses and, consequently, in migration and surface
leakage of fluids towards the surface. This assumption is in agreement
with previous data from other parts of the Barents Sea such as the
Loppa High and Hammerfest Basin (Chand et al., 2008, 2012; Doré,
1995; Faleide et al., 1996; Ohm et al., 2008; Ostanin et al., 2012; Rajan
et al., 2013). A similar fluid migration pattern is observed in the Loppa
High, where shallow gas escapes to the water column through open
faults (Chand et al., 2012). Fluid also migrates into shallow sediments
and escapes at the seafloor through polygonal faults in the Hammerfest
Basin (Ostanin et al., 2012), as shown by amplitude anomalies in the
hanging-wall of the faults and shallow bright spots. It is important to
notice, however, that evidence for sub-surfacemigration and fluid leak-
age in the Samson Dome area occurs only locally in the form of a few
bright spots observed on the 3D seismic volume, and not through a
large area as suggested by regional 2D data.

Leakage factor calculations indicate values ranging from 0.5 to 0.7 as
the average for all the faults in the Zones 1 and 3, a character suggesting
the likelihood of failure of seal units across the Samson Dome, and con-
sequently a greater potential to leak fluids (Fig. 12). It must be noted
that Zones 1 and 3 comprise large faults, offsetting horizons H4 (Early
Triassic) to H7 (Late Cretaceous), but they also show small-scale faults
within Unit 4. Fault F3 cuts a bright spot in section view, and could con-
stitute a possible pathway for fluid migration in Zone 1 (Fig. 6). In Zone
3, bright spots in Unit 4 are intersected by Type-C faults, indicating the
possibility of fluid migration to the surface. Zone 2, corresponding to
the Samson Dome per se, shows NW-striking faults with higher leakage
factors towards the surface, above the Late Cretaceous horizon (H7). In
contrast, they present relatively low leakage factors at depth.

Based on our results, we propose the lower leakage factor values at
depth to relate to the geometry of collapse of this structure under its
own weight. Despite consisting of multiple segments, faults in Zone 2
occur in a continuous plane, a character increasing the sealing capacity
of these faults (Leveille et al., 1997). Considering that faults in Zone 2
show relatively larger values of slip tendency and lower leakage factors
at depth relative to Zones 1 and 3, we propose that the stresses towhich
these faults are subjected at depth result in a tendency to ‘lock’ or close
the faults, with subsequent generation of structural compartments ca-
pable of retaining fluids below the depth of Cretaceous-Jurassic strata.

An important implication of this work to the remainder of the Ba-
rents Sea is that the sealing capacity of faults on salt anticlines such as
the Samson Dome increases with depth. Therefore, the trapping styles
of hydrocarbons in salt structures across the Barents Sea exhibit greater
variability than previously assumed. This is particularly noted in the
largest branches of faults cross-cutting the Samson Dome, where stress
analyses show leakage factor to be very high towards the surface, but
decreasing significantly at depth below a neutral surface in which ex-
tension changes to compressional stresses at depth (e.g. Cosgrove and
Ameen, 1999; Yeats, 1986) (Fig. 12). In such a setting, our Midland Val-
ley Move® results not only provide evidence for decreasing leakage
‘risk’ with depth but also show that unravelling the evolution of struc-
tures such as the Samson Dome is key to understanding if Upper
Palaeozoic strata are capable of accumulating economical volumes of
hydrocarbons in the whole of the Barents and Arctic Seas.
9. Conclusions

The difficulty in dating halokinetic structures in the Barents Seamo-
tivated the analysis of the Samson Dome as a case study applicable to
other areas of the Arctic Sea, where salt tectonics exerts an important
control on fault geometry and fluid flow. In parallel, this work aimed
to evaluate the possibility of a late strike-slip reactivation affecting the
Samson Dome area. However, no structural evidence to corroborate
this eventwas found. This area wasmost likely subjected to extensional
events, as revealed by paleostress analyses. Themain conclusions of this
work can be summarised as follows:

a)We divided the study area into three different zones with respect
to the predominant strike of the faults. Type A faults are crestal faults
that predominate in Zone 2; Type B are E-trending faults abundant to
the northwest of the SamsonDome; Type C are small-scale faults gener-
ated at shallow levels around the Samson Dome.

b) Zone 1 is located to the north of the Samson Dome and comprises
major E-trending andminor NW and NE-trending faults. Faults of types
B and C predominate in Zone 1. Slip tendency values for these faults are
relatively low but leakage factors are high, indicating a low sealing com-
petence. A feature of interest is the occurrence of bright spots within
Upper Triassic strata. These anomalies are intersected by Fault F3,
which acted as a focused conduit for fluids in Zone 1.

c) Zone 2 is located over the Samson Dome. Acoustic anomalies in
this zone are foundbelowhorizonH5 (Middle Triassic) and between ho-
rizon H7 (Late Cretaceous) and the seafloor. This zone is the most
faulted, with Type A and C faults predominating with a prominent NW
strike. Leakage factor values are higher towards the upper tip of faults.
The leakage factor of faults decreases significantly with depth, indicat-
ing these faults may act as a barrier to fluids in clayey Triassic
successions.

d) Zone 3 occurs to the south of the Samson Dome and is
characterised by the occurrence of Type C faults, although in a smaller
number than in Zones 1 and 2. The mean strike direction is NW and E.
Reactivated NE–SW faults are also found in Zone 3. This zone shows
small slip tendency values and a relatively high leakage factor. Acoustic
anomalies around faults (bright spots) are found below horizon H5 and
near the seafloor.

e) The evolution of the Samson Dome as a salt anticline started dur-
ing the Middle-Late Triassic, as recorded by deep-seated faults striking
NE–SW at this same stratigraphic level. Pre-existing faults were
reactivated during the Late Cretaceous, a period commonly regarded
as reflecting tectonic quiescence in the Barents Sea. Locally, however,
this was a tectonically active period associated with extension in the
North Atlantic Ocean.

f) The study area was uplifted during a regional phase of Late Creta-
ceous extension; this event resulted in halokinesis in the Samson Dome
region. Salt dissolution led to the collapse of the dome under its own
weight.

g) Slip tendency and leakage factor analyses indicate the Samson
Dome to be a smaller seepage structure than previously proposed. The
variable stresses to which faults in the Samson Dome are subjected at
depth result in a tendency to ‘lock’ and close the faults, with the
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subsequent generation of structural compartments capable of retaining
fluids below Jurassic and Cretaceous strata.
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