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Abstract

It is essential to understand the molecular processes underlying long-term memory to provide therapeutic targets of
aberrant memory that produce pathological behaviour in humans. Under conditions of recall, fully-consolidated memories
can undergo reconsolidation or extinction. These retrieval-mediated memory processes may rely on distinct molecular
processes. The cellular mechanisms initiating the signature molecular events are not known. Using infusions of protein
synthesis inhibitors, antisense oligonucleotide targeting brain-derived neurotrophic factor (BDNF) mRNA or tPA-STOP (an
inhibitor of the proteolysis of BDNF protein) into the hippocampus of the awake rat, we show that acquisition and
extinction of contextual fear memory depended on the increased and decreased proteolysis of proBDNF (precursor BDNF)
in the hippocampus, respectively. Conditions of retrieval that are known to initiate the reconsolidation of contextual fear
memory, a BDNF-independent memory process, were not correlated with altered proBDNF cleavage. Thus, the processing
of BDNF was associated with the acquisition of new information and the updating of information about a salient stimulus.
Furthermore, the differential requirement for the processing of proBDNF by tPA in distinct memory processes suggest that
the molecular events actively engaged to support the storage and/or the successful retrieval of memory depends on the
integration of ongoing experience with past learning.
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Introduction

Transcriptional and post-translational molecular events are

required for the consolidation of information into long-term

memories and are thought to lead to the synaptic structural

changes that maintain the memory [1,2]. Originally described by

Pavlov (1927), extinction occurs when a conditioned stimulus (CS)

is presented without reinforcement of a biologically salient

unconditioned stimulus (US), manifesting as a weakening of the

conditioned response. Although historically extinction has been

viewed as unlearning [3,4,5], it is currently viewed as the

generation of a new memory about a CS [6]. The extinction

memory competes with the original memory for control of

behaviour. The protein synthesis-dependent nature of extinction

[7] perhaps further emphasises that extinction is a long-lasting

memory that is independently acquired and stored.

The molecular mechanisms underlying the formation of long-

term fear memory [8,9,10] share a remarkable similarity with

those required for the primary model of memory formation in

neuronal circuits, long-term-potentiation [11]. The activation of

these particular molecules may contribute to the enhancement of

synaptic strength in the hippocampus and amygdala observed

upon the encoding of fear memory [12,13]. Similar plasticity-

related molecular processes maybe required for consolidation and

extinction [14,15,16,17]. However, reports indicating that activa-

tion of CB1, calcineurin and PI3K-dependent signalling pathways

are selectively required for the extinction of fear memory

[18,19,20], not only suggest that the molecular processes of

extinction dissociate from those of consolidation but may more

closely correlate with the plasticity processes of long-term

depression or depotentiation [21,22,23].

We have recently shown in vivo that the activity of the secreted

neurotrophin, brain-derived neurotrophic factor (BDNF) in the

hippocampus is required for the consolidation of hippocampal-

dependent contextual fear memory [24]. We also showed that

reconsolidation, the restabilisation of the labile memory following

the recall by a brief exposure to a reminder stimulus, was not

dependent on BDNF. More specifically, we showed that consoli-

dation was critically dependent on the mature form of the

neurotrophin, mBDNF. mBDNF is generated by the proteolytic

cleavage of the precursor, proBDNF, by protease tissue plasmin-

ogen activator (tPA)-mediated activation of plasmin [25,26]. Studies

in in vitro preparations have compellingly shown the requirements

for mBDNF and proBDNF for hippocampal LTP and LTD

respectively [27,28]. Here using a strategy of independently

manipulating two fear memories in the same animal, and using

temporally and regionally restricted manipulations of BDNF levels,

we show that the processing of proBDNF is positively correlated

with the acquisition but negatively correlated with extinction.

Materials and Methods

Subjects
The subjects were adult male Lister hooded rats weighing 280–

350 g. They were housed in pairs, in holding rooms maintained at

21uC on a reversed-light cycle (12 h light/dark; lights on at 10:00
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P.M.). All experiments were conducted in the dark period of the

rats. Food and water were freely available throughout the

experiment. All procedures were conducted in accordance with

local Cardiff University Ethical Committee approval and the

United Kingdom 1986 Animals (Scientific Procedures) Act

(Project license PPL 30/2236).

Surgery, ODN, ANI and tPA STOP infusions, and

histological assessment of cannula placement. Performed

as described by [24] with the exception that the rats were

anaesthetised using isoflurane [flow rates: -oxygen; 0.8 liter/

minute, NO2; 0.4 litre/minute] and were implanted with

stainless steel double guide cannulae (Plastics One, 22 gauge,

3.8 mm centre-to centre, 3 mm below pedestal) aimed at the

dorsal hippocampus (AP -3.50, relative to bregma). Stainless steel

double cannulae 1 mm longer than guide cannulae was inserted

into the guide cannulae to maintain patency during recovery.

Subsequent histological analysis revealed accurate placements in

all cannula-implanted rats (data not shown). Infusions were carried

out using a syringe pump, connected to injectors (28 gauge,

projecting 1 mm beyond the guide cannulae) by polyethylene

tubing. ODNs were PAGE-purified phosphorothioate end-capped

18-mer sequences, resuspended in sterile PBS to a concentration of

1 nmol/ml: BDNF antisense ODN, ASO, 59-TCT TCC CCT

TTT AAT GGT-39; BDNF missense ODN, MSO, 59-ATA CTT

TCT GTT CTT GCC-39. All ODN sequences were subjected to

a BLAST search on the National Center for Biotechnology

Information BLAST server using the Genbank database.

Antisense sequences had positive matches only for their target

mRNA sequences, and no other rat or human coding sequences.

Control missense sequences, which included the same 18

nucleotides as the ASO but in a scrambled order, did not

generate any full matches to identified gene sequences in the

database. Anisomycin (ANI, 80 mg/ml, Sigma) and tPA-STOP

(4 mM, ADI) was dissolved in sterile PBS. The PBS vehicle was

used for habituation infusions in all rats 1 day before conditioning

and to act as control infusions on the day(s) of training. ODNs

(1.0 ml per side; 0.125 ml/min) or tPA-STOP (1.5 ml per side;

0.125 ml/min) were infused 90 min prior to conditioning or

context reexposure, and ANI (1.0 ml per side; 0.5 ml/min) were

infused immediately after context reexposure.

On completion of the behavioural testing, the rats were killed by

CO2 asphyxiation, and the brains removed and fixed in 4% fresh

paraformaldehyde in 0.1 M phosphate buffered saline for at least

48 hours before being transferred to 20% sucrose in PBS solution

for cryoprotection. Forty-micrometer coronal sections through the

dorsal hippocampus were cut on a freezing microtome, mounted

onto gelatine-coated slides and Nissl-stained with thionin. The

sections were examined under a light microscope and the subjects

were only included if the infusion cannulae tracts terminated

bilaterally in the hippocampus and there was no damage to

adjacent brain structure or gross ventricular enlargement.

Subsequent histological analysis revealed accurate placements in

all cannula-implanted rats (data not shown).

SDS-PAGE and Western Blotting. Following fear

conditioning/retrieval test rats were sacrificed by carbon dioxide

inhalation. The rats were decapitated and the brain was rapidly

removed and placed on ice. The hippocampal dentate gyrus/CA3

and CA1 regions were microdissected and frozen on dry ice prior to

storage at 280uC. Tissue lysates and Western blotting were

performed essentially as previously described [24]. Proteins (4–

10 mg) were separated on 16.5% Tris-Tricine gels at a constant

voltage of 80 V and then transferred to Hybond-P PDVP

membranes (Amersham Biosciences) at a constant voltage of

100 V for 1 hr. Blots were blocked in 5% non-fat in 0.01 M Tris-

buffered saline solution containing 1% Tween 20 (TBST), and this

TBST solution was used for all subsequent washes. Primary and

secondary antibodies were diluted in TBST containing 0.5% Tween

20 and were used at the following concentrations: Arc (H-300 Santa

Cruz), 1:10000; BDNF (AP1779SP, Chemicon), 0.1 mg/ml, b-actin

(AbCam), 1:20 000; goat anti-rabbit and goat anti-mouse IgG

(whole-molecule)-peroxidase conjugates (Sigma), 1:10 000). Blots

were developed using ECL Advance detection (Amersham

Biosciences) and opposed to autoradiographic film.

Autoradiographs of each Westerns blot were developed to be

linear in the range used for densitometry for each protein target and

for b-actin. Autoradigraphic images were captured on a Sharp

JX330 Scanner using Labscan v2.0 (Pharmacia Biotech) and

quantified using ImageMaster 1D Prime v.3.0 (Amersham

Pharmacia Biotech). For analysis, optical density (OD) values and

the band areas were obtained for each microdissected hippocampal

sample for both the target protein (Arc/Arg3.1, BDNF) and the b-

actin loading control to derive an amount figure. Averaging the

amount of b-actin across samples on each Western blot and deriving

a normalization factor for each sample corrected loading variation.

Contextual Fear Conditioning in Two Contexts. Each rat

received two conditioning trials in two different contexts separated

by 24 hours. Individually, rats were first pre-exposed for 3 d to

two experimental chambers (contexts) for 20 min/d. These

contexts were designed to differ in a number of features

including size, spatial location, odor, and lighting. In addition, to

further distinguish the two contexts, exposure to each chamber

was separated by a minimum of 4 hours. The first conditioning

trial was given 24 hours later. Conditioning consisted of the rats

being placed individually in a chamber for 3 min. After 2 min a

single scrambled footshock (0.5 mA for 2 s) was delivered. After

24 hours the rats were returned to the other conditioning chamber

for 3 min and they received a single scrambled footshock (0.5 mA

for 2 s) after 2 min. The order of the contexts that the rats were

conditioned to was counterbalanced in each experiment. Extinction

training: Each rat received two extinction training trails in the two

different conditioned contexts separated by 24 hours. One or two

days after contextual fear conditioning, rats were re-exposed to

one of the conditioned contexts either for 2 or 10 min. 24 hours

later the rats were exposed to the other conditioned training

contexts for either 2 min or 10 min. The order of the conditioned

contexts that the rats were exposed to during extinction training

was counterbalanced. Retrieval tests: Four or five days, and

sometimes 14 days, later each rat was given two contextual fear

memory retrieval tests (T1 and T2, respectively) separated by

24 hours. The rats were placed into one of the conditioned

contexts for 2 min and the following day they were exposed for

2 min to the other conditioned context. The order to which each

rat was exposed to the two contexts during the retrieval trails was

the same as during the conditioning training.

Contextual Fear Conditioning in a Single

Context. Where indicated, rats were habituated to handling

by placing them for 20 min in one of two distinct conditioning

contexts for 3 d (for details see above), the final habituation session

preceding conditioning by 24 hrs. During a 3 min conditioning

training trial, rats received a single scrambled footshock (0.5 mA

for 2 s) 2 min after being placed into the conditioning context.

Extinction training 3 d later consisted of exposing rats to the

conditioned context for either 2 min or 10 min.

Analysis and Statistics. Freezing behavior served as a

measure of conditioned fear to the contexts during the

conditioning, extinction training and retrieval tests of the

behavioural procedures. This was video-recorded and quantified

by an observer blind to the experimental group. One unit of

BDNF and Memory
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freezing was defined as a continuous absence of movement other

than that required for respiration in 1 s sampled every 10 s. Data

are presented as the Mean6S.E.M. percentage time spent

freezing. Freezing behaviour was analyzed in a repeated

measures analysis of variance (repeated measures ANOVA) with

test as a within-subjects factor or by ANOVA. For repeated

measures ANOVA, Mauchly’s Test of Sphericity was applied. If

the sphericity assumption was not met, the Greenhouse-Geisser

correction was applied. Post-hoc planned comparisons were made

using repeated measures ANOVA and the P value constrained by

the number of comparisons made. ANOVA was applied to data

from Western blot experiments. Tukey’s test was then used for post

hoc analysis to determine the sources of significance (P,0.05,

P,0.01 and P,0.001).

Results

Contextual fear memories can be independently
manipulated by context exposure

A powerful method of measuring the effects of experimental

manipulations on memory stability after recall would be to show

that the manipulation selectively impacted on a recalled memory

but would leave a non-recalled memory intact. Therefore, we first

established a behavioural protocol by which two different

hippocampal–dependent contextual fear memories (CFM) could

be separately retrieved and manipulated by the duration of the

exposure to the conditioned context during extinction training

(Fig. 1). Firstly, rats were fear conditioned to two different contexts

(A and B) by presenting a short unsignalled footshock in each of

the contexts on consecutive occasions. During extinction training

each rat simply received a 2 min exposure to one of the

conditioned contexts and a 10 min exposure to the other

conditioned context. The exposures to the contexts during the

behavioural training sessions were counterbalanced across the

experiment. The effect of extinction training on conditioned

freezing behaviour (an index of fear memory) was also measured

during two series of context re-exposure recall tests 5 and 14 days

later. This protocol is illustrated in Fig. 1. Rats showed a robust

conditioned freezing behaviour in the two contexts during the first

2 min of each extinction training session indicating CFM had been

established for both contexts. During the recall test 5 days later

(LTM1), rats characteristically showed less freezing in the context

in which they had received a 10 min exposure during extinction

training (A) than in the context they were exposed to for 2 min

during extinction training (B, Fig. S1). We showed in a similar

contextual fear conditioning procedure that a 2 min exposure to a

conditioned context engaged reconsolidation processes which

stabilise or maintain the fear memory for subsequent recall, as

measured by high levels of conditioned freezing at all recall tests

[24]. Here likewise, the maintenance of high levels of freezing in

context B at LTM1 suggest reconsolidation of the fear memory for

context B was induced by brief exposure to this particular context

during extinction training. In the same animals, a longer 10 min

exposure to context A at extinction training induced the extinction

of fear memory for context A. Thus, two separate CFM could be

independently modified by their context-selective recall and the

conditions (duration of context re-exposure) of recall. There was

no recovery of the extinguished fear memory at the second recall

test, LTM2, 19 days after extinction training.

The extinction of contextual fear memory is dependent
on protein synthesis in the hippocampus.

To determine whether the extinction of contextual fear memory

was dependent on the hippocampus, and more specifically

required protein synthesis in this brain region, we used a similar

behavioural training procedure to the previous experiment except

that during extinction training each rat received a 10 min

exposure to both of the conditioned contexts. The protein

synthesis inhibitor, ANI, and PBS were infused into the

hippocampus immediately after extinction training sessions E1

and E2 (Fig. 2). Infusions were administered in a counterbalanced

fashion such that half the rats received ANI at E1 and PBS at E2,

and vice versa for the remaining rats. There were significant effects

of the training and test phases on freezing behaviour (F (3.130,

40.691) = 11.990, P = 0.000, e = 0.447, repeated measures ANOVA).

These were characterised by freezing behaviour in the condition-

ing context only after footshock presentation (C1 and C2), and by

conditioned freezing behaviour during the first 2 min of the two

extinction trials (E1 and E2). Rats froze significantly less in the

context paired with PBS infusions during extinction than in the

context paired with ANI during the recall test (LTM). Thus, ANI

attenuates the apparent loss of freezing behaviour produced by a

Figure 1. 10 min exposure to a conditioned context induced
the extinction of a selectively recalled fear memory. Repeated
measures ANOVA revealed significant effects of the training and test
phases on freezing behaviour (F (4.329, 47.618) = 11.355, P = 0.000,
e = 0.481). Rats (n = 12) presented with a single footshock (US) in two
distinct contexts (A and B) 24 hrs apart (C1 and C2) showed robust
freezing behaviour in the post US period and during the first 2 min of
exposure to the conditioned contexts during the two extinction
training sessions (E1 and E2) two days later. All rats experienced a 2 min
re-exposure to one of the conditioned contexts and a 10 min exposure
to the other conditioned context in a counterbalanced manner. Rats re-
exposed to the conditioned contexts 5 days later (LTM 1) showed less
freezing in the context in which they experienced a 10 min exposure
(A), than in the context that they had been exposed to for 2 min (B)
during extinction training. At a further test 3 weeks after conditioning
(LTM 2) the rats showed low levels of conditioned fear in both contexts.
Results are presented as the Mean6S.E.M. * P,0.05, ** P,0.01,
*** P,0.001.
doi:10.1371/journal.pone.0003248.g001
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prolonged 10 min exposure to a fear-conditioned context. This

indicates that extinction of CFM was dependent on protein

synthesis in the hippocampus. The within-subjects design of this

experiment again demonstrates that two different fear memories

can be independently modulated.

Extinction is correlated with increased proBDNF and
decreased Arc/Arg3.1 in CA1

To assess whether the extinction of contextual fear memory

required BDNF in the hippocampus, ASO targeting BDNF

mRNA was infused into the hippocampus 90 min prior to

extinction training in one of the two conditioning contexts.

Control MSO was infused before exposure to the other

conditioned context (Fig. 3). During the subsequent LTM recall

test, conditioned freezing behaviour was lower in the context

paired with ASO infusions than in the context paired with MSO

infusions. In addition, less freezing was seen in the ASO context,

but not MSO context, than during extinction training. The

infusion of ASO had no effect on the freezing behaviour during

the extinction training sessions at E1 and E2 (Extinction6ASO6
Freezing, F (1, 41) = 0.313, P = 0.579, e = 1.000 repeated measures

ANOVA), demonstrating the ASO infusions do not alter the

acquisition of extinction nor change hippocampal processing non-

specifically. One interpretation of these data is that MSO

specifically prevents the extinction of contextual fear memory.

However, this is unlikely as a NCBI BLAST search revealed that

the MSO sequence does not show any homology with existing

nucleotide sequences and would not act to prevent translation of

any known transcript. We suggest that ASO targeting BDNF in

the hippocampus promotes the extinction of contextual fear

memory.

To further elucidate the role of BDNF in the extinction of

contextual fear, the levels of the BDNF-precursor, proBDNF and

Arc/Arg3.1 were measured in extracts of CA1 after extinction

training (Fig. 4a). Arc/Arg3.1 is a BDNF-regulated gene

[29,30,31] that is necessary for both LTM and LTP [32,33]. We

previously showed that intrahippocampal infusions of ASO

targeting BDNF prevented the increase in Arc/Arg3.1 protein

associated with contextual fear conditioning and CFM [24]. We

also showed that the inhibitory effects of the ASO on function

were rescued by mBDNF. Recent evidence also shows that

mBDNF-induced LTP in the hippocampus is mediated by Arc/

Arg3.1 synthesis [34]. Together these data demonstrate a

Figure 2. Effect of ANI infusion into the hippocampus on
conditioned freezing. Rats (n = 12) were fear conditioned (C1 and C2)
in two distinct contexts. ANI or PBS were infused into the hippocampus
immediately after extinction training by a 10 min exposure to each of
the conditioned contexts at E1 and E2 such that each rat received ANI
associated with one context and PBS with the other context in a
counterbalanced fashion. ANI prevented the extinction of a selectively
recalled fear memory because conditioned freezing measured at LTM in
the context associated with ANI (E(ANI)) was greater than conditioned
fear measured in the PBS associated context (E (PBS)). Results are
presented as the Mean6S.E.M. *p,0.05, ***p,0.001.
doi:10.1371/journal.pone.0003248.g002

Figure 3. Effect of BDNF ASO infusion into the hippocampus on
conditioned freezing. BDNF ASO and BDNF MSO were infused into
the hippocampus after extinction training by a 10 min exposure to two
fear conditioned contexts (A and B) at E1 and E2 in a counterbalanced
fashion (n = 23). BDNF ASO enhanced the extinction of a selectively
recalled contextual fear memory since less conditioned freezing was
seen during LTM tests in the context associated with BDNF ASO
infusion (E(AS)) than the context associated with BDNF MSO infusion
(E(MSO)). Results are presented as the Mean6S.E.M.. Data for the first
2 min of extinction training during E1 and E2 is shown. (F (5.401, 113.461)

= 31.319, P = 0.000, e = 0.772, repeated measures ANOVA). * P,0.05,
** P,0.01, *** P,0.001.
doi:10.1371/journal.pone.0003248.g003
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requirement for mBDNF regulated Arc/Arg3.1 in the hippocam-

pus for the consolidation of CFM and enduring forms of plasticity.

As such, measuring Arc/Arg3.1 levels in the hippocampus

represents bioassay of mBDNF activity associated with CFM

processing.

Here, 48 hours after rats were conditioned to one context they

underwent recall under conditions that induce either reconsolida-

tion (2 min exposure) or extinction (10 min exposure) of CFM. A

250% increase in proBDNF in CA1 was measured 6 hours after

recall conditions that produce extinction. The increase in

proBDNF levels was accompanied by a 50% decrease in Arc/

Arg3.1. There were no changes in proBDNF and Arc/Arg3.1, 4

or 6 hours after recall in the dentate gyrus (dg, data not shown). This

agrees with cellular and molecular studies at the subregional level

that show a selective role for the CA1 activity after the acquisition

and retrieval of CFM [35,36,37]. Intrahippocampal infusions of

ASO prior to a 10 min extinction trial significantly increased the

levels of proBDNF protein in the CA1 6 hrs after extinction but

had no effect on the decrease in Arc/Arg3.1 (Fig. 4b).

These results show a direct correlation between the levels of

proBDNF in the hippocampus after extinction and the magnitude

of extinction of contextual fear memory. Moreover, the results also

show an inverse correlation between levels of the uncleaved

precursor of BDNF, proBDNF and the activity of mature BDNF in

the CA1 following the extinction of CFM suggesting that

extinction of long-term memories is mediated by the processing

of BDNF in CA1.

Extinction is correlated with Decreased Processing of
BDNF in CA1

To test the hypothesis that the extinction of fear memories is

mediated by the proteolytic processing of proBDNF, the synthetic

competitive inhibitor of tPA, tPA-STOP (2,7-bis-4(amidino-

benzylidene)-cycloheptanone-1-dihydochloride) [38] was infused

into the hippocampus prior to extinction training. We predicted

that preventing the cleavage of proBDNF to mBDNF with tPA-

STOP during extinction training would promote the extinction of

contextual fear memory. Again we conditioned individual rats so

Figure 4. Extinction training-induced changes in proBDNF and Arc/Arg3.1 protein in the CA1 of hippocampus. (a) Rats showed robust
conditioned freezing during the first two min re-exposure to the training context (E) 3d after a single fear conditioning trial (C). n = 20 at C, and n = 16
at E. Following recall there was a change in proBDNF in the CA1 (F (4,14) = 8.961, P = 0.000, ANOVA). ProBDNF levels more than doubled in CA1 6 hrs
after a 10 min exposure to the conditioned context (E). No changes were seen after a 2 min exposure to the fear-conditioned context (R). Arc/Arg3.1
protein in CA1 decreased 6 hrs after a 10 min exposure (E) but not following a 2 min exposure (R) to the conditioned context. (b) High levels of
conditioned freezing were seen in rats administered intrahippocampal infusions of ASO and MSO 90 min before extinction training. There was no
difference in the levels of freezing between the ASO and MSO administered rats at E (F (1, 7) = 4.202, P = 0.080, ANOVA). However, proBDNF levels in
CA1 were altered after extinction (F (2, 9) = 6.974, P = 0.015, ANOVA) and were greater in the ASO administered when compared to control and MSO
administered rats 6 hours after extinction. In the same rats, protein levels of Arc/Arg3.1 were also regulated in CA1 (F (2, 9) = 23.742, P.0.000, ANOVA),
but were decreased in both MSO and ASO groups. Rats in the control group were fear conditioned at C, but were killed 3 d later. n = 4 for all groups in
Western blot measurements. Results are the Mean6S.E.M. *P,0.05, **P,0.01, ***P,0.001 compared to control unless otherwise marked.
doi:10.1371/journal.pone.0003248.g004
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that they formed two independent CFM’s. The extinction of one

CFM occurred after intrahippocampal infusions of tPA-STOP

(Fig. 5). There was no effect of tPA-STOP on the conditioned

freezing behaviour during the two extinction training phases

(comparing the behaviour between the first and last two minutes of

E1 with the same epochs in E2) of the experiment (Free-

zing6Epoch6tPA-STOP, F (1, 18) = 2.165, P = 0.158, ANOVA;

Freezing6tPA-STOP interactions, F (1, 18) = 0.004, P.0.950,

ANOVA). Thus suggesting that tPA-STOP has no effect on the

performance during extinction training and the acquisition of

extinction. However during the LTM recall tests, conditioned

freezing was significantly less in the tPA-STOP-associated

extinction context than in the vehicle-associated context. These

results show tPA-STOP potentiated the extinction of CFM. This

effect of tPA-STOP cannot be attributed to a general amnesic of

the tPA inhibitor because all rats were administered tPA-STOP,

but its effects on CFM were limited to the memory recalled during

extinction. Furthermore, there were no affects on long-term

hippocampal function because there was no evidence of a

spontaneous recovery of the memory when measured one week

later and ability to support a new CFM was not compromised

when rats were subsequently reconditioned (Supplementary Informa-

tion, Fig. S2).

In addition to being an upstream activator of proBDNF

cleavage, tPA has other molecular targets that may underlie the

effect of tPA-STOP on extinction we report. For example, the

tPA-mediated degradation of the NR1 subunit of the NMDA

receptor and the extracellular matrix, as well as tPAs interaction

with the low-density lipoprotein receptor related protein have been

reported to influence plasticity processes in the brain

[39,40,41,42]. To assess whether tPA-STOP regulates proBDNF

processing in extinction, proBDNF and Arc/Arg3.1 levels in CA1

were measured after extinction training (10 min recall test)

following the intrahippocampal administration of tPA-STOP.

Although there was a significant effect of conditioning and

extinction (TEST PHASE) on freezing behaviour (F

(2.079,20.788) = 45.965, P = 0.000, e = 0.693, repeated measures

ANOVA), there was no tPA-STOP X TEST PHASE interaction

(F (2.079,20.788) = 0.509, P = 0.679, e = 0.693, repeated measures

ANOVA, Fig. 6a). tPA-STOP had no effect on the decrement in

the fear response measured between the first and last two minutes

of extinction training (‘‘within-session’’ extinction of freezing). This

again illustrates that tPA-STOP has no effect on the performance

during extinction training, or on the acquisition of extinction.

There was a significant effect of tPA-STOP on CA1 proBDNF

after extinction (Fig. 6b). This was characterised by an increase in

levels compared to the No Ext control rats that was further

increased by tPA-STOP. Hence tPA activity regulates proBDNF

levels in CA1 during the extinction of CFM. Arc/Arg3.1 was

unaffected by tPA-STOP after extinction (F (2,15) = 0.562,

P = 0.581, ANOVA; Levels (% No Ext); No Ext = 100622.7, Ext-

PBS = 71.3618.4, Ext-tPA-STOP = 81.4616.5). The increased

ratio of proBDNF: Arc/Arg3.1 in CA1 under conditions of

extinction further indicates decreased proBDNF processing by tPA

after extinction.

Reconsolidation of CFM was not associated with the regulation

of hippocampal BDNF or Arc/Arg3.1 levels (Fig. 4), nor requires

BDNF [24]. Therefore, the long-term loss of freezing responses

associated with tPA-STOP administration at recall is likely to

directly reflect the impact on BDNF-mediated cellular signalling

mechanisms underlying extinction rather than reconsolidation.

This concurs with studies that suggest BDNF signalling is

necessary for the extinction of fear memory [43,44], but crucially

indicates a role for the processing of proBDNF. Common to a

number of studies that show that the extent of memory

reactivation greatly influences extinction induction [45,46], we

also show that increasing the duration of context reexposure from

2 min to 10 min results in persistent, reduced conditioned freezing

behaviour. It is possible that the extent of proBDNF cleavage is

precisely controlled by the conditions of memory recall and that

higher levels of proBDNF favour extinction as the dominant trace

controlling behaviour after recall by engaging specific downstream

cellular events.

tPA-STOP attenuates consolidation
mBDNF activity in the hippocampus is a prerequisite for the

consolidation of CFM because ASO-mediated amnesia could be

completely rescued by the concurrent administration of the

proteolytically cleaved mBDNF protein [24]. The increased

expression of Arc/Arg3.1 also suggested the activity of mBDNF

was upregulated in CA1 following acquisition. Here we show that

levels of proBDNF were also regulated during the consolidation of

contextual fear memory (Fig. 7). Planned post hoc analyses revealed

Figure 5. Infusions of tPA-STOP into the hippocampus
potentiate extinction of contextual fear memory. Rats (n = 11)
received two 10 min extinction-training trials (E1 and E2 24 hr apart)
3 days after contextual fear conditioning in two distinct contexts (A and
B). Prior to E1 they either received tPA-STOP (n = 6) or PBS (n = 5). The
same rats received these compounds prior to E2 such that each rat was
infused with tPA-STOP in one of the two conditioned contexts and
vehicle in the other during extinction. The rats showed more
conditioned freezing in the context associated with the vehicle PBS
infusions than in the extinction context associated with tPA-STOP
infusions during subsequent long-term memory recall tests (LTM).
Results are presented as the Mean6S.E.M. Data for the first 2 min of
extinction training during E1 and E2 is shown. (F (3.688, 36.88) = 35.063,
P = 0.000, e = 0.0.526, repeated measures ANOVA). **P,0.01,
***P,0.001.
doi:10.1371/journal.pone.0003248.g005
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a 60% decrease in CA1 proBDNF in MSO-infused hippocampus

6 hours after contextual fear conditioning that were further

reduced in ASO-infused hippocampus (Fig. 7b). Intrahippocampal

infusion of ASO targeting BDNF mRNA before conditioning

reduced the levels of Arc/Arg3.1 protein in the CA1 6 hours later

compared to Arc/Arg3.1 measured in vehicle (PBS) and MSO

infused control groups (Fig. 7c). There was no difference between

Arc/Arg3.1 in CA1 in PBS and MSO groups further emphasising

that the MSO used in our studies is biologically inactive. Thus we

show that the levels of proBDNF decreased and the activity of

mature BDNF increased in CA1 after fear conditioning. In

addition, we also show amnesia-promoting ASO administration

down-regulated both proBDNF and Arc/Arg3.1. These data

suggest a correlation between the increased processing of

proBDNF in CA1 in the formation or stabilisation of CFM.

We next investigated whether the proteolytic processing of

proBDNF was causal in the formation of long-term fear memories.

Rats were fear conditioned in two distinct contexts. They received

intrahippocampal infusions of tPA-STOP before conditioning in

one context and PBS vehicle control prior to conditioning in the

other context (Fig. 7d). Half the rats also received tPA-STOP prior

to the recall test at LTM1. During conditioning rats showed less

post US freezing behaviour after tPA-STOP than vehicle infusion.

Pre-recall test tPA-STOP had no effect on freezing behaviour

during LTM1 demonstrating that tPA-STOP did not affect

performance per se (F = 0.122 (1,9) P = 0.735, ANOVA). The rats

also showed less conditioned freezing in the tPA-STOP-associated

context than the vehicle-associated context during recall at LTM1,

which did not recover 7 days later. Together these data

demonstate that the acquisition of CFM is associated with

increased proBDNF processing in the hippocampus.

Although the consolidation of CFM is critically dependent on

the mBDNF in the hippocampus, a role for proBDNF in

consolidation was not previously ruled out [24]. This study shows

that acquisition of CFM was correlated with a decrease in

proBDNF levels in CA1. One interpretation is that decreased

proBDNF-mediated signalling is also a necessary requirement for

the formation of LTM. If proBDNF mediated cellular processes

normally opposed consolidation, then reductions in proBDNF in

the absence of changes in baseline mBDNF activity would be

permissive for consolidation. However, here we show the opposite

effect; infusions of ASO that prevent consolidation [24]. further

reduced proBDNF levels after conditioning, while Arc/Arg3.1

levels were normalised. Thus, results from our studies are entirely

consistent with a selective role for mBDNF-mediated processes in

acquisition of long-term memory.

Discussion

This study provides novel insights into the molecular processes

during the acquisition of long-term fear memories and those

processes triggered by their selective recall. We show that reduced

Figure 6. Infusions of tPA-STOP into the hippocampus potentiate the proBDNF levels in CA1 after extinction. (a) Rats (n = 18) received
a single conditioning trial. 90 min prior to extinction, 3 days later, they either received tPA-STOP (n = 6) or PBS (n = 6). tPA-STOP had no effect on the
decrement in the fear response measured between the first and last two minutes of extinction training. (b) There was a significant effect of tPA-STOP
on CA1 proBDNF after extinction (F (2,15) = 8.003, P = 0.004, ANOVA, Fig. 6b) in the same conditioned rats 6 hr after extinction. Results are presented
as the Mean6S.E.M. *P,0.01, **P,0.001 compared to No Ext group.
doi:10.1371/journal.pone.0003248.g006
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proteolysis of proBDNF in the hippocampus is a key regulator in

protein synthesis-dependent extinction of CFM. Critically, in-

creasing endogenous proBDNF and reducing mBDNF levels in

the CA1 either with BDNF ASO or tPA-STOP, promoted

extinction. Conversely, the acquisition of CFM was correlated

with increased proteolytic processing of proBDNF. The demon-

stration of a role for BDNF in the acquisition of LTM has not been

previously dissected in more chronic transgenic or pharmacolog-

ical animal models. We have previously shown that consolidation

but not reconsolidation of CFM is dependent on hippocampal

BDNF [24]. Here we also show that conditions of recall that

initiate the reconsolidation are not correlated with a change in

proBDNF levels and mBDNF activity in the CA1. Therefore, the

processing of BDNF was associated with the acquisition of new

information and the updating of information about a salient

stimulus that mediate changes in behaviour. These data generate a

complete hypothesis for BDNF-associated signalling in the

currently described component processes of LTM. Thus, BDNF

regulates the acquisition, consolidation and extinction of fear

memory, but not reconsolidation. In addition, the tPA-mediated

proteolysis of proBDNF promotes new learning but opposes the

extinction of established memory.

The competition between extinction and reconsolidation are

governed by the precise conditions of memory reactivation

[45,46]. Here we show that proBDNF cleavage is selectively

inhibited under conditions of recall that favour extinction (a

prolonged 10 min exposure to the context CS), but not those that

promote reconsolidation (a 2 min CS presentation). This clearly

demonstrates the fine control of cellular responses by ongoing

experience. The differential control of the proteolysis of proBDNF

by salient environmental stimuli in new learning and by learning

anew after recall, also indicates the integration of new and past

experience at the molecular level. Determining the molecular or

cellular mechanism necessary for integrating experience will be an

Figure 7. Fear conditioning-induced changes in proBDNF and Arc/Arg3.1 protein in the CA1 of hippocampus. (a) Rats showed
conditioned freezing at LTM test 24 hrs after a single conditioning trial. n = 15 at C, and n = 3 at LTM. (b) ProBDNF decreased by half in the CA1 6 hrs
after conditioning in the PBS-infused hippocampus. This was further reduced by BDNF ASO (ASO) infusions into the hippocampus prior to
conditioning (F (2, 9) = 12.894, P = 0.002, ANOVA). (c) Arc/Arg3.1 protein in CA1 was selectively decreased in rats receiving BDNF ASO, but not PBS or
BDNF MSO (MSO) infusions prior to conditioning. n = 4 (d) A separate group of rats (n = 11) were fear conditioned to two contexts (A and B), they
received intrahippocampal infusions of tPA-STOP 90 m in before conditioning in one of the contexts and vehicle prior to training in the other. Half
the rats received tPA-STOP or PBS prior to the recall test LTM 1 to determine the effect of tPA-STOP of conditioned freezing. The rats showed less post
US freezing behaviour during conditioning with pretraining tPA-STOP infusions and less conditioned freezing in the drug associated context during
LTM 1 compared to the control PBS context. Results are the Mean6S.E.M. (F (3.022, 30.221) = 28.352, P = 0.000, e = 0.432, repeated measures ANOVA).
** P,0.01 compared to Pre CS, * P,0.01 compared to PBS and MSO groups for unmarked comparisons.
doi:10.1371/journal.pone.0003248.g007
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important endeavour. That an inhibitor of BDNF processing, tPA-

STOP, can attenuate new learning but potentiate extinction,

further emphasises a central role for the integration of new and

past experience at the molecular level in determining future

behavioral responses.

This study indicates that secretion and processing of proBDNF

in the adult hippocampus occurs as a consequence of memory

formation. Firstly, we detected a BDNF-immunopositive signal at

35kDa (the molecular size of proBDNF) in CA1 that is specifically

altered by regional infusions of ASO BDNF. This suggests that the

signal is derived from the Bdnf gene. Indeed studies of CNS

neurons transfected with Bdnf cDNA suggest that proneurotro-

phins account for a significant amount of the total neutotrophins

secreted extracellularly [47,48]. Secondly, the levels of proBDNF

were regulated during consolidation and extinction. Thirdly, we

showed that regional administration of tPA-STOP, an upstream

inhibitor of the extracellular proteolysis of precursor BDNF [38],

attenuated the processing of proBDNF in CA1. Significantly, we

showed that altering the ratio of precursor to mature BDNF levels

with tPA-STOP and ASO BDNF has important functional

consequences for LTM. Our data concurs with other studies that

have shown that several forms of long-term plasticity in the adult

hippocampus were correlated with changes in BDNF processing

by the extracellular protease, tPA [28,49,50]. It should be noted

that a recent study of endogenous BDNF processing in primary

cell culture has shown little, if any, proBDNF is stored and

secreted from hippocampal neurons [51]. However, the failure to

detect proBDNF secreted from neurons derived from embryonic

tissue, in which BDNF expression is comparatively low, may

consequently reflect different dynamic levels of neurortrophin

transport, release and processing mechanisms to those occurring in

adult neurons [26].

The mechanism by which BDNF ASO potentiated the increase

in proBDNF levels after extinction is unknown. It is possible that

these effects may be caused by non-selective off-target, non-

sequence specific effects of infusing oligonucleotides into the brain,

such as the direct interaction with cellular protein or by activating

immune responses [52]. However, this explanation is unlikely

because the manipulation of hippocampal proBDNF protein levels

and extinction of fear memory were selective for ASO and not

MSO. Furthermore, the ASO and MSO had no effect on the

levels of b-Actin, the not regulated reference protein used in the

above experiments (data not shown). We have also previously

reported effects of the BDNF ASO, but not Zif268 ASO or MSO

sequences on mBDNF activity in the CA1 and the consolidation of

CFM [24]. Therefore the behavioural and cellular responses to

ASO are selective and are related to the targeted mRNA

sequence.

Protein noncoding antisense transcripts expressed from human

BDNF gene locus have been identified and may function to

regulate BDNF gene expression in vivo [53]. Therefore, it is

possible that exogenous ASO infusions may interfere with the

mechanism of action of endogenous antisense-BDNF to alter

BDNF levels in the hippocampus. However, this explanation for

the BDNF-ASO potentiated increase in proBDNF we observed is

doubtful because in contrast with the human BDNF gene locus,

rodent Bdnf gene loci do not encode antisense-BDNF mRNA

transcripts [53,54].

Evidence from several elegant studies have suggested that

opposing cellular actions of mBDNF and proBDNF mediate

synaptic plasticity [55]. Namely, the cleavage of proBDNF to

mBDNF by tPA is essential for LTP in the hippocampus [28].

Whilst proBDNF-mediated signalling facilitates LTD in the

hippocampus via the activation of the p75 neurotrophin receptor

[27]. Our evidence that hippocampal-dependent extinction is

mediated by an increased proBDNF/mBDNF ratio further

suggests that that the synaptic and molecular events underlying

extinction closely resembles LTD [18,20,21,22,23,56]. Our studies

also show dissociable roles for mBDNF and proBDNF in the

consolidation and extinction of hippocampal-dependent fear

conditioning. The close correlation between the control of synaptic

memory and the expression of CFM and extinction by different

translational variants of BDNF, may indicate that different forms

of synaptic plasticity models distinct memory processes. The

precise cellular mechanism that controls the processing of BDNF

by tPA required for the acquisition and extinction of long-term

memory remains to be determined.

The illustration that the proteolysis of proBDNF is a key

regulator of two-hippocampal dependent memory processes

clearly demonstrates the significant role that post-translational

protein modifications (PTM) play in LTM. Recently, a mecha-

nistic model has proposed that PTM of synaptic proteins,

maintained by endogenous brain activity, play an instructive role

for LTM [2]. A consequent prediction in this model is that

manipulations that alter the PTM of proteins crucial for

maintaining LTM cause the loss of the memory. This has recently

been shown for PKMf [57]. The model has some face validity for

our data here because increased proteolysis of proBDNF was

associated with the formation of LTM, while decreased processing

was associated with the apparent loss (extinction) of LTM.

However, we show that experimental interventions that alter the

processing of BDNF are selective for the recently acquired or

recalled memories, the so-called active memory [58]. Non-recalled,

inactive memories were unaffected. This implies that there is a time-

limited role for PTM of BDNF in LTM. In addition, since ASO

targeting BDNF has no effect memory or BDNF processing after

some conditions of recall (reconsolidation) [24], this suggests that

the on-going maintenance of CFM is not dependent on BDNF, or

the post-translational state of BDNF. This implies that BDNF is

permissive for LTM by initiating the PTM of other synaptic

proteins that have an instructive role in LTM, via the activation of

specific signalling pathways. Future experiments are required to

address this possibility.

The requirement of BDNF dependent-processing for the

extinction but not reconsolidation of LTM after recall suggests

that drug or other interventions that directly target the PTM of

BDNF, or the downstream signalling pathways of BDNF variants,

potentially offers the therapeutic control of pathological memory

in humans. For example, the memories that are considered to

underlie phobia, post-traumatic stress disorder and drug addiction.

Targeting BDNF may be particularly useful because only recalled,

active, memories appear to be sensitive to manipulations that

regulate with the cleavage of proBDNF to mBDNF. This has the

advantage of leaving non-recalled memories intact. Furthermore,

inhibiting the processing of proBDNF at recall would additionally

prevent the acquisition of new memories that may be associated

with the therapeutic environment and which may trigger the re-

emergence of the memory by the process of renewal once away

from the extinction environment [6], or cause the sensitization

(augmentation) of the pathological memory [59,60].

Supporting Information

Figure S1 Two separate fear memories can be independently

modulated by extinction training. Five days after extinction

training lower levels of conditioned freezing were measured

during a recall test in the context the rats has been exposed to for

10 min during extinction training, E, than in the context that had
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been associated with a 2 min exposure, R, irrespective of whether

context A (E(A)) or context B (E(B)) was the 10 min extinction

context. Two-way repeated measures ANOVA of the freezing

behaviour during T1 revealed an Extinction Training X Context

interaction (F = 12.476 (1,10), p = 0.005), but no significant effect

of Context (F = 0.024 (1,10), p = 0.897). Results are presented as

the Means.

Found at: doi:10.1371/journal.pone.0003248.s001 (6.01 MB TIF)

Figure S2 Infusions of tPA-STOP into the hippocampus

potentiate extinction of contextual fear memory and have no

long-term effect on hippocampal function. As described previously

(Fig. 5), rats (n = 11) received two 10 min extinction-training trials

(E1 and E2 24 hr apart) 3 days after contextual fear conditioning

in two distinct contexts (A and B). Prior to E1 they either received

tPA-STOP (n = 6) or PBS (n = 5). The same rats received these

compounds prior to E2 such that each rat was infused with tPA-

STOP in one of the two conditioned contexts and vehicle in the

other during extinction. Rats showed more conditioned freezing in

the context associated with the vehicle PBS infusions than in the

extinction context associated with tPA-STOP infusions during

long-term memory recall test (LTM 1) 1 day after extinction.

Additionally, this data showed that there was no spontaneous

recovery of the fear memory measured at a subsequent recall test

7 days later. All rats were re-conditioned in one context (A or B). A

recall test was performed in both the contexts 1-2 days later

(LTM3). At LTM3 rats showed significantly higher levels of

conditioned freezing in the reconditioned context (C3) than in the

context not associated with reconditioning (no C3). This indicates

that (i) tPA-STOP has no long-term affect on hippocampal

function because the rats can support anew a contextual fear

memory for a specific context. (ii) There is no reinstatement of the

extinguished fear memory by exposure to the US (Rescorla and

Heth, 1975) because freezing behaviour was specific to the context

in which the animals were reconditioned. These results demon-

strate that tPA-STOP infused into the hippocampus selectively

attenuates the extinction of contextual fear memory. Results are

presented as the Mean6S.E.M. Data for the first 2 min of

extinction training during E1 and E2 is shown. (F (4.997,

49.970) = 32.047, P = 0.000, e = 0.454, RM ANOVA). *P,0.05,

**P,0.01. Rescorla RA, Heth CD (1975) Reinstatement of fear to

an extinguished conditioned stimulus. J Exp Psychol Anim Behav

Process 1:88-96.

Found at: doi:10.1371/journal.pone.0003248.s002 (6.01 MB TIF)
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