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Abstract: The selective partial oxidation of short chain alkanes is a key challenge within catalysis
research. Direct ethane oxidation to oxygenates is a difficult aim, but potentially rewarding, and it
could lead to a paradigm shift in the supply chain of several bulk chemicals. Unfortunately, low C-H
bond reactivity and kinetically labile products are just some reasons affecting the development and
commercialisation of such processes. Research into direct ethane oxidation is therefore disparate,
with approaches ranging from oxidation in the gas phase at high temperatures to enzyme catalysed
hydroxylation under ambient conditions. Furthermore, in overcoming the barrier posed by the
chemically inert C—-H bond a range of oxidants have been utilised. Despite years of research, this
remains an intriguing topic from both academic and commercial perspectives. Herein we describe
some recent developments within the field of catalytic ethane oxidation focusing on the formation of
oxygenated products, whilst addressing the key challenges which are still to be overcome.

Keywords: catalysis; ethane; partial oxidation; natural gas

1. Introduction

The increasing exploitation of traditional fossil fuels, coupled with their declining reserves has
led to recent instability in the price of crude oil. Modern society is heavily dependent upon such
finite reserves, not only for utilisation as energy sources, but also as feedstocks for both bulk and fine
chemical synthesis. At the same time, added emphasis is being given within the developed world
to environmental conscience, with legislation emerging which seeks to curtail the environmental
impact associated with CO, and methane emissions. Burgeoning demand, coupled with dwindling
oil reserves and more stringent emission controls, has created an incentive for research into the
exploitation of alternate feedstocks for chemicals, with a major field of scientific research being the
valorisation/catalytic upgrading of the components of natural gas.

With estimated global reserves of natural gas exceeding 190 trillion cubic meters, this is an as
yet underutilised resource [1]. Although the exact composition of natural gas varies according to its
source, a typical breakdown is; methane (70%-90%), ethane (1%-10%), propane/butane (1%-10%),
CO;, (0%-8%), nitrogen (0%—-5%), HyS (0%-5%) and oxygen (0%—-0.02%) [2]. Due to the high abundance
of methane in natural gas, and the wide uses of methanol; as a fuel additive, coolant, hydrogen carrier
for fuels cells and chemical feedstock for bulk chemicals such as formaldehyde and acetic acid [3,4],
the direct oxidation of methane to methanol has captivated the scientific community for over 100 years.
Meanwhile, ethane (1%-10% of natural gas) is primarily utilised in the production of ethene through
steam cracking [5]. This, in turn, is used in the production of polyethylene, acetic acid, ethylene oxide,
acetaldehyde, vinyl chloride and ethanol [6,7].
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Scheme 1. A scheme showing key industrial ethane-derived products.
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On-site oxidation of the aliphatic hydrocarbons present within natural gas circumvents the
key limitation to their global distribution and utilisation. Specifically the transportation of large
volumes of flammable gas from their sources, which are nucleated in isolated regions of the world,
incurs significant financial expense. Although developments have been made in the liquefaction and
transportation of natural gas (LNG), the high energy requirements and associated safety concerns
hinder its viability for application on a global scale. Natural gas has been proposed as a transitional fuel
for the 21st century, allowing for continued dependence upon fossil fuels, whilst reducing greenhouse
gas emissions when compared with oil or coal [4,8].

Unfortunately, in spite of the significant desire to selectively oxidise ethane under mild conditions,
progress has been hampered due to its chemical inertness, which results from a high C-H bond strength
of 423.29 kJ- mol ! [9]. Another crucial limitation arises from the fact that the partial oxidation products
of ethane are inherently more reactive, with deep oxidation to COy (CO and CO,) a limiting factor in
the viability of catalytic systems. Hence the direct oxidative conversion remains a major challenge.
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2. Current Industrial Approaches to Ethane Upgrading

As mentioned previously, the main industrial use of ethane is in the production of ethene
through steam cracking over zeolite catalysts [5]. This is the most energy intensive process within
the petrochemical industry, accounting for ca. 40% of the industry’s annual energy consumption,
as well as a major portion of its CO, emissions, to achieve yields of 24%-55% depending on
the gas feed. Considering the commercial uses of ethane, the most important is for production
of polyethylene [10]. Other uses include the production of ethylene oxide and ethylene glycol
(from ethylene oxide), preparation of ethylene dichloride (a precursor to vinyl chloride) and in the
preparation of ethylbenzene, a precursor to styrene [11]. An overview of the key industrial processes
for the upgrading of ethane to value- added products is shown in Scheme 1.

A key product of direct ethane oxidation is acetic acid. Global demand for acetic acid is currently
around 7.8 million tonnes per annum, and growing at 3.5%—4.5% annually [12,13]. Acetic acid is
primarily used as a raw material in the production of; vinyl acetate monomer, acetic anhydride and
as a solvent for the synthesis of purified terephthalic acid (PTA) [13]. Acetic acid production was
first commercialised in 1916 in Germany whereby acetylene was converted to acetaldehyde and
subsequently oxidised through to acetic acid [13]. A number of industrial processes are currently
operated to produce acetic acid through synthetic and enzymatic routes. Principally the BP Cativa
Process which proceeds through methanol carbonylation using a homogeneous Iridium catalyst is one
of the main routes [3]. Prior to the Cativa process, acetic acid was produced through the Monsanto
process. However, due to the expense of the rhodium catalyst used ($5200 per ounce for Rh vs. $300
for Ir), its shorter lifetime, lower solubility and lower activity, which resulted from an oxidative Mel
addition which was 150 times slower than that for the Cativa process, many plants now use the Cativa
process [14]. A number of attempts have been made to immobilise the Rh catalyst of the Monsanto
process, to allow for gas phase operation, thereby negating the solubility issues associated with the
Monsanto catalyst, with activated carbon [15], inorganic oxides [16] and zeolites [17] having been
studied as potential supports. However these showed rates which were lower by 1 or 3 orders of
magnitude when compared with the homogeneous catalyst. Some progress has been reported by
Chiyoda Corp however, with the development of the Acetica process [18-20]. Through complexation
of Rh with a poly-vinyl pyridine ion exchange resin, operation at 160-200 °C and 30-60 bar, with low
water concentrations of 3%—7% has been achieved. The catalyst has been shown to be more stable than
the homogeneous anologue, with no loss in activity over 7000 h on-line and with negligible loss of Rh.

Aside from the homogeneous Cativa and Monsanto systems, acetic acid may also be derived from
acetaldehyde, at 150-160 °C and 80 bar, over either cobalt or manganese acetate [13]. An additional
halide- free route to acetic acid synthesis is the carbonylation of dimethyl ether over Brensted acidic
zeolite catalysts [21-24]. This reaction yields methyl acetate, which can be hydrolysed to yield methanol
and acetic acid. High methyl acetate selectivity (>99%) and appreciable rates have been reported at
relatively low reaction temperatures of ca. 150-190 °C when compared with methanol carbonylation
processes [22]. This is because the catalytic cycle in methanol carbonylation requires water, which might
competitively adsorb at CO binding sites, whereas dimethyl ether carbonylation is operated under
anhydrous conditions and does not generate water [21,23]. This is a promising route to acetic acid
synthesis, though it has been noted that reaction rates do not currently meet commercial targets [22].

3. Partial Oxidation of Ethane

The low reactivity and high stability of the C—H bond in ethane, second only to that of methane
has hindered development of a viable process for the partial oxidation of ethane under mild conditions.
This is further complicated by the fact that one must not only activate the relatively inert alkane
substrate, but also minimise subsequent oxidation of desirable products to deep oxidation products
such as formic acid and CO,.
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3.1. High Temperature Approaches

Many approaches have attempted gas phase catalytic selective oxidation of ethane at elevated
temperature, and these have been reviewed extensively elsewhere [25]. Perhaps the most widely
adopted approach has been the oxidative dehydrogenation of ethane to ethene [26], however, there are
also a number of studies that have targeted the formation of oxygenated products. Just some example
studies are highlighted here.

Following the pioneering work of Thorsteinson et al. Mo-V-Nb catalysts [27], specifically
Moy 61Vo31Nbg s and variations thereof have been reported as active for the selective oxidation
of ethane to ethene and acetic acid using molecular oxygen [28-38]. Indeed, a process for the direct
conversion of ethane to acetic acid using molybdenum-mixed metal oxide catalysts has also been
described [39,40]. In 2001 SABIC announced their plans to build a 30,000 tonne/annum plant in
Saudi Arabia, using a Mo-V-Ln-Nb-Pd-X (X = Al, Ga, Ge and/or Si) catalyst for the oxidation of
ethane to acetic acid in O, or air at operating temperatures of between 150 and 450 °C. Their patent
claims the ability to oxidise ethane (C;Hg:02:Ny:H,O (40:8:32:20) P(total) = 13.8 bar, T = 280 °C) at
10% conversion, with 85% selectivity to acetic acid [30]. Such a direct oxidation of ethane (EDO) to
acetic acid has been shown to be an economically and energetically viable alternative to methanol
carbonylation as an industrial route to acetic acid production, with feasibility increasing from 50 kt to
200 kt/annum [41]. A cost analysis based upon a model 76.1% acetic acid selectivity (C;Hg:02:CO,
in the ratio 0.73:0.12:0.15, 16 bar total, 242 °C) showed the direct oxidation process to be favourable
to current industrial practices. This is because direct ethane oxidation uses a cheaper feedstock. The
product stream requires fewer separation steps and capital costs are lower, as methanol carbonylation
reactors must me composed of Hastelloy to avoid corrosion, whereas ethane oxidation may be operated
in stainless steel reactors [41]. These benefits offset the costs implied by the need to recirculate the
ethane/CO, effluent in an oxidation system, which typically operates at low conversion.

Through a number of studies, a system was developed whereby; Moy 61V 31Nbg 08O/ TiO2
afforded 5.4% ethane conversion to ethene (58%), acetic acid (35%) and CO, (7%) whilst addition of
0.01 wt % Pd led to slightly lower ethane conversion (5.1%) to ethene (1%), acetic acid (82%) and CO,
(17%). In the latter system, an unprecedented acetic acid productivity of 13.8 mol,cetic acid- Kgcat ~-h ™
was achieved [38]. Due to the array of phases present within such Mo-V-Nb oxides, elucidation of
the specific function of each component has limited the system’s development [37]. Kinetic studies
showed that the C-H bond activation in ethane by the oxygen-saturated catalyst surfaces is the rate
limiting step [37]. The initial step, ethane oxidative dehydrogenation, arises due to the interaction
of ethane with lattice oxygen, which is associated with an oxidation state change in the vanadium
component [32]. Through precipitation with TiO,, leading to increased dispersion of the active mixed
oxide component, a 10 fold increase in reaction rate was reported. Niobium promotes the formation
and stabilisation of Mo5014 and VMo4014 in preference to MoOj3, which can catalyse total oxidation to
CO; when present [36]. It has been shown that ethene inhibits ethane oxidation through depletion
of lattice oxygen (O*). The consecutive oxidation of ethene to acetic acid is itself catalysed by the
palladium oxide in a heterogeneous analogue of the Wacker process [32]. The Pd?* species is proposed
to bind hydroxyl groups, thereby providing a site for the conversion of ethene to acetic acid [32]. Water
is also believed to increase acetic acid selectivity by promoting the desorption of acetate species as
acetic acid [37]. A number of patents have been filed for this family of catalysts, for application in direct
ethane oxidation [30,33,34,42,43]. One such reported that a 1:9 ethene:ethane feed could be oxidised
to acetic acid (63%) and ethene (14%) at 3% ethane conversion, over a vanadium, molybdenum,
niobium, antimony, calcium catalyst supported on an LZ-105 molecular sieve at 255 °C. This system
showed bifunctionality to (a) partially oxidise the methyl group and (b) hydrate the ethene to ethanol
or acetaldehyde.

Whilst the productivities shown by the Pd/Mo-V-Nb for acetic acid are impressive, the high CO,
selectivities shown and complex nature of the active sites present are key limitations.

Numerous other solid catalysts have been reported as active for the direct oxidation of ethane
(EDO) in the gas phase. Unsupported heteropoly compounds (both free acids and caesium salts)
containing molybdenum and vanadium anions have been reported for oxydehydrogenation of ethane
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to ethene (60%) and COy [44]. Oxidation of ethane to acetaldehyde (ca. 25% selectivity), in addition
to ethene (47%) and COy (18%) was reported by Moffat et al., who used silica- supported HPMo
at 540 °C, however, conversion was limited to 3% and no acetic acid was observed [45]. Sopa et al.
furthered this work by supporting Keggin molybdo (vanado) phosphoric heteropolyacid (HPMoVy)
on oxide supports (SiOp, TiO, and Al,O3) [46]. Activity was shown at 250-400 °C under atmospheric
pressure (CoHg:O:HyO:Nj of 2:1:8:4). Alumina, silica and titania- supported HPAs showed acetic acid
selectivities of 28%, 22% and 25% respectively at 250 °C. However the alumina and silica supported
catalysts gave low ethane conversion (0.4%), increasing to 3% for titania-supported HPA. HPA/SiO,
showed high selectivity to ethene (67%) leaving acetic acid (22%) and CO; (11%) as minor products [46].
Higher conversions (22%) were attainable at higher temperatures (400 °C) however this was associated
with decreased acetic acid selectivity (5%) compared with ethene (50%) and CO; (45%). Vanadium
ions were shown to be integral for ethane conversion, with acetic acid selectivity limited to <56% in
their absence. Silica and titania were shown to preserve the Keggin structure in situ, due to their acidic
surface functionality, whilst the basic centres present in alumina led to decay of the Keggin structure
thereby impairing activity [46].

Partial oxidation systems based upon silica-supported vanadium oxide catalysts were reported
by Erdohelyi ef al. with low ethane conversion (3%), but high selectivity towards acetaldehyde (45%)
at 550 °C using RbVO3/SiO; with N,O as oxidant [47]. The same group later showed Rb,MoO,/5iO;
to give higher conversion (8.9%) under the same conditions, this time affording high ethene selectivity
(45.7%) and lower acetaldehyde selectivity (7.3%) [48].

Bodke et al. reported impressive ethane conversion (73%) to ethene (83%) using a Pt-Sn/alumina
catalyst at 900-950 °C [49]. By introducing H; into the gas feed to give a 2:1:2 ratio for C;Hg:O;:H,,
deep oxidation to CO, was largely suppressed (from 20% to 5% selectivity), as H, was preferentially
oxidised, to H,O. Unfortunately, safety considerations limited these system’s viability upon scale up.

3.2. Low Temperature Approaches

3.2.1. Homogeneous Catalytic Approaches

Whilst a number of homogeneous catalytic systems have been reported for the activation of
methane, the catalytic oxidation of ethane using homogeneous catalysts has rarely been studied [50-65].

Fujiwara et al. showed the conversion of ethane to N,N-dimethylpropylamine through reaction
with N,N-triethylamine and N-oxide, catalysed by Cu(OAc), [66]. Although not direct oxidation,
this system was a major development in the C-H activation of ethane, as it avoided the use of
highly acidic environmentally non-benign media often associated with electrophilic alkane activation.
Shortly thereafter Stiss-Fink et al. reported the selective oxidation of ethane in acetonitrile using
[PMo;7,VO40]*~ and [PMogV50s9]*~ in their tetra-n-butylammonium salts using HyO,. They reported
TOFs of 1.4 h~! for the former at 60 °C, with selectivity favouring ethylhydroperoxide (CH;CH,OOH)
as major product and ethanol and acetaldehyde as minor products [67]. Analogous tests under aqueous
conditions gave productivities towards ethanol, acetaldehyde and acetic acid, which failed to exceed
those of blank reactions. It was concluded that this process proceeded through formation of hydroxyl
radicals upon interaction with a V (V) species. It was then postulated that the radical species went
on to activate ethane, and a range of substrates, to form their alkylperoxide product. In spite of the
selectivity shown, this system was limited by low activity and a dependence on complex organic salts.
Nevertheless, it was an important development in low temperature activation of ethane, given its
60 °C operating temperature. However, a lack of analysis of the gas effluent products for COy raises
questions as to the true selectivity of the reaction.

Shul’pin et al. later reported the efficient low temperature selective oxidation of ethane using
H,0; or ter-BuOOH in acetonitrile, catalysed by the complex manganese (IV) salt [Lo,MnyO3](PF)2
where (L = 1,4,7-trimethyl-1,4,7-triazacyclononane) [68]. The activity of the system was dependent
upon addition of a carboxylic acid to the reaction solution (typically acetic acid), with only
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non-productive H,O, decomposition to O, observed in the absence of additional acid. As with the
vanadium salt catalysed system described by Stiss-Fink et al., the primary product was believed to be
ethylhydroperoxide, with acetaldehyde and ethanol shown to be secondary oxidation products. For 2 h
tests a TOF of 180 h~! was observed at 20 bar ethane, 25 °C, 1 M H,O, with propionic acid added (0.25 M).
Under these conditions, selectivities to ethylhydroperoxide (39%), acetaldehyde (33%) and ethanol (28%)
were reported. At lower temperatures (5 °C) and longer reaction times (75 h) the ethylhydroperoxide
selectivity reached 65% with TOFs of 5.3 h~! [68]. As with previous studies, selectivity towards CO, was
not reported. Whether this is due to the lack of deep oxidation, or of gas analysis is not stated, however,
the latter is most likely given the precedent for CO, formation in systems containing H,O, [7,69]. Shul pin
et al. also reported that chromic acid catalyses the oxidation of ethane using H,O; in acetonitrile [70],
with high rates of 620 moleghane converted* MOlehromic acid -~} observed at a 60 °C reaction temperature.
As with their previous studies with manganese salts, reaction selectivity favoured primary reaction
products, with acetaldehyde and ethylhydroperoxide as major products (52% and 23% selectivity
respectively) [70]. As with previous studies by the same authors, potential formation of gaseous carbon
oxide products was not explored. This trend continued when Shul’pina reported partial oxidation of
ethane over NaVOj3; + H,SO4 and HyO, in acetonitrile [71]. Hydroxyl radical attack was found to attack
the alkane in solution, to form alkyl radicals, which reacted rapidly to generate alkyl peroxy radicals
and subsequently the alkyl hydroperoxide (ethylhydroperoxide). This undergoes facile conversion to
oxygenated products [71]. High rates of ethane oxidation (47.5 molethane converted" molnavoz - h 1) were
achieved at the low temperature of 30 °C, with reaction selectivity favouring ethanol (51% selectivity),
acetaldehyde (32%) and acetic acid (17%).

Shul’pin et al. later reported that a range of iron (III) species are active for the activation of ethane
with HyO, using acetonitrile as solvent. These include iron(Ill) chloride, iron(Ill) perchlorate and
iron(III) acetate [72], with the latter two showing TOFs of 23 h—! and 6 h™! respectively, at 27 bar
ethane and 25 °C with HyO; (0.6 M). The most active Iron (III) perchlorate catalyst gave high
selectivity towards ethylhydroperoxide (88%) with minor products ethanol (3%) and acetaldehyde (9%).
The reactions for iron perchlorate and iron acetate were shown to proceed through a hydroxyl radical
oxidant, whereas the activity of iron (III) chloride was attributed, at least partially, to the formation
of a ferryl ion (Fe!¥ = 0)2* [72]. Such ferryl species may arise as a result of interactions between
H;,0,, hydroperoxy radicals (- OOH) [73]. More recently Yuan et al. have shown a variety of transition
metal chlorides to be active for the selective oxidation of ethane to oxygenates with H,O, in aqueous
conditions [74]. A broad range of metal chlorides were evaluated with activity for ethane oxidation
following the order: HyPtClgy < PACl, < FeClz < HAuCly < OsCl3. The most active, OsCl3, showed a
TOF of 40.8 h~! for ethane oxidation at 30 bar ethane, 0.5 M H,O, and 90 °C. Of the homogeneous
systems cited, this was the first to quantify CO,, with selectivities to ethanol, acetaldehyde and CO; of
21%, 64% and 15% respectively, at 0.56% conversion [74]. Mechanistic and radical scavengers studies
showed ethane oxidation to proceed via the formation of hydroxyl and hydroperoxy radical species
generated from H,O, by the catalyst, as opposed to electrophilic activation of ethane.

Partial oxidation of ethane over non- heme [Fe=O] was reported by Tse et al. Using
[Fe'(Mestacn)(Cl-acac)Cl]* type catalysts, and oxone (KHSOs) as oxidant. Using different
bidentate and tridentate ligands to stabilise the active site, high C, oxygenate selectivity was
achieved (typically 80% acetic acid, 20% ethanol). The most active catalyst [Fe''(Tp),]ClO,
(Tp = hydrotris (1-pyrazolyll)-borate) showed a TOF of 12.0 molgthane converted" molcatalyst h~! at
room temperature [75].

The conversion of ethane to ethyl- esters has been recently reported by Periana and
co-workers [76-78] who adopt an electrophilic activation approach, at temperatures of ca. 180 °C.
Ethane is activated by M™*(TFA),, where M = (Pb!V or TI'l) at 180 °C with product yields of 90% and
75% for Pb'V and TI' respectively. These reactions yield the ethyl- ester products; EtTFA and EG(TFA),
at selectivities of ca. 70% and 30% respectively [76,78] with the TI process proceeding according to
Equation (1).

Et —H + TI"(TFA); — TI'(TFA) + TFAH + Et — TFA 1)
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These products would of course require additional workup steps to yield the desired oxygenated
products [76]. The same group also reported a high yield of EtTFA (73% yield, 91% selectivity) at a
reaction temperature of 150 °C when using a perfluoroarene iodine (III) complex in TFAA /HTFA as
solvent (Equation (2)) [77].

CeFsI"(TFA), + Et — H— C¢FsI' + EtTFA + 1,2 — Et(TFA), (2)

Whilst homogeneous catalysts have been shown to be active for the selective oxidation of ethane
to oxygenated products under mild, aqueous conditions, a general dependence upon additives coupled
with low turnover frequencies and the inherent disadvantages of homogeneous catalysts mean that
heterogeneous catalysts are often more favourable for downstream industrial applications.

3.2.2. Enzymatic Approaches

Methane mono-oxygenase of Methylococcus capsulatus (MMO) is a nonspecific oxygenase, which
is capable of catalysing the oxidation of a range of C;—Cg n-alkanes to corresponding primary and
secondary alcohols in air at ambient conditions [79]. Colby et al. showed that the soluble form (sMMO)
(2 mg) in a solution of KCN (0.5 nM) was active for the selective oxidation of ethane to ethanol yielding
ethanol (1.64 pmol) in the presence of NADH cofactor over 12 min [79]. Tonge et al. later showed that
purified Methylosinus trichosporium could catalyse the stoichiometric oxidation of ethane to ethanol at
productivities of 50 umol (ethanol) min~! mg (protein) ~! lending it the descriptor monooxygenase [80].
Crucially, sSMMO was able to avoid production of deeper oxidation products acetic acid and CO;.
Key to the activity of sMMO is the proposed diiron p-oxo active site (Figure 1) [81]. More recently
Meinhold et al. have shown engineered variants of P450 BM3 to be active for the fast oxidation
of ethane to ethanol, with turnover frequencies molgihanol- molprotein_l- h~! of 500 reported, at an
NADPH oxidation rate of 31,200 h—! [82]. The active site for P450 is shown in Figure 2.

Figure 2. The active site of P450 [81].
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In such systems, catalysed by heme- dependent monooxygenase P450 enzymes, the cofactor
(NADPH) is required to donate two electrons to activate oxygen in order to generate a [(Porphyrin)*
Fe!lV = O] intermediate which attacks the C—-H bonds (Scheme 2) [83]. Feng et al. also showed selective
oxidation of ethane to ethanol exclusively, with H,O, and NADH with higher turnover frequencies of
up to 4692 h—! at an NADH oxidation rate of 44,460 h~! reported [65,83]. The catalytic cycle proposed
for P450 catalysed alkane oxidation with O, is shown in Scheme 2.

RH
RGH [Fe (porphyrin)] \R

[Fe"" (porphyrin)(RH)]

[Fe'V (porphyrin)(RH)(O)]+

H [Fe" (porphyrin)(RH)]

2H+ [Fe“<porphyﬁn)(RH)<02)]¥/{
-

0,

Scheme 2. The proposed catalytic cycle for alkane oxidation by O, catalysed by P450 [83].

Firstly the substrate (RH) coordinates to iron (III) centre. The iron (III) is then reduced and
subsequently an O, molecule is coordinated, to form an iron (II) peroxo species. This species is then
oxidised by the enzyme system to form an oxoiron (IV) radical cation [(Porphyrin)(RH) FelV=0l*.
The C-H bond in RH is then cleaved, and oxygen extracted from the iron oxo species, thereby reforming
P450 and generating ROH [65].

Kawakami ef al. also reported a Cytochrome P450 BM3 enzyme system to be active for the
hydroxylation of ethane to ethanol. A high reaction rate of 40 molcthane converted* molenzyme*L h~!
and 100% ethanol selectivity was achieved through use of a perfluorocarboxylic acid decoy molecule
(PFC10) and NADPH cofactor [84]. Total selectivity towards ethanol was also reported by Chen et al.
who evolved a mutant form of Cytochrome P450 BM3 with the aim of achieving a high affinity for short
chain alkane binding [85]. Using iodosylbenzene, hydrogen peroxide or 3-chloroperoxybenzoic acid as
oxidant, respective ethane turnover frequencies of 15.0, 1.4 and 2.0 molethane converted molpysp~!-h™1
were achieved [85].

Whilst the selective oxidation of ethane to ethanol under ambient conditions with molecular
oxygen is an attractive prospect, a dependence on dilute aqueous environments, need for expensive
cofactors and sensitivity to higher temperatures limits the feasibility of enzyme- catalysed ethane
oxidation as an industrial process. Unfortunately, synthetic homologues of these structurally complex
active enzymes and their active sites have not yet been realised, and a suitable organism for an
optimised commercially applicable biocatalytic process has not yet been found.

3.2.3. Biomimetic Approaches

Due to the expense of NADH cofactors and difficulties associated with enzyme isolation, MMO
and P450 are not considered to be viable for commercial ethane oxidation processes. Therefore in light
of the high selectivity towards primary oxidation products afforded by enzyme catalysts, a number of
approaches have been taken to synthesise biomimetic catalysts, often seeking to mimic the binuclear
Felll active site (Fep(u-O),) found within methane monoxygenase.
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Wang et al.  reported that FePO, catalyses the oxidation of ethane at a rate of
0.059 molathane converted kgcafl h~!in a C,Hg:H,:0; feed to yield ethanol (22.5% selectivity) at 350 °C
via a redox mechanism involving a diferric active site (Scheme 3) [86]. Whilst a higher productivity
(9.8 MOlgghane converted” Kgcat - h 1) was attainable upon increasing the reaction temperature to 422 °C,
resulting in ethanol selectivity decreasing to 8.7%, suggesting that lower temperature systems may
further favour ethanol selectivity [86].

< (0] O, O, (0]
Ao g N N H
Fe P\ /FQ
o o0 00" o
CoHs
I
o’ o, 0 O HO_ OH O
N\l 1 O‘/\ﬁl \II\/ I/I
/F\ /P /Fq /Fe /P /Fq
O 00 00 O O 00 00 O
C,Hs T l/‘oz
|
o 0,

o HO O, O 0 \*HO~—OH 0
N\ m\/\ 1/11 \\ H_l\/ ﬁ
/Fe\ /P\ /FQ /Fe\ /P /Fe\
O 00 00 O O \00o 00 /O

-
2
o (0-0) o o
\F i "P+/ \F m
s /N s b
C,Hs O 00 00 O H,0

Scheme 3. Mechanism for the ethane oxidation proposed by Otsuka et al.

Hydrogen was shown to reduce the catalyst surface to generate Fe (II) and H* which is absorbed
by a neighbouring phosphate group. Oxygen is activated by accepting electrons from Fe (III) to form a
peroxide species. This adsorbed peroxide may be formed using a gas feed comprising of either H,-O,
or N>O. Formation of ethanol from the ethoxide intermediate occurs due to the proximity of the iron
sites to acidic phosphate groups which allows rapid protonation of the ethoxide, thereby preventing
decomposition to COy [86]. When compared with earlier studies, whereby the same conditions and
catalyst were used in methane oxidation, rates were 7-8 times higher [86,87].

Also seeking to emulate the diiron active site of sMMO, Nizova et al.  prepared
and tested [Fe,(HPTB)(u-OH)(NOj3),]1(NO3),- CH3;0H- 2H,0O where HPTB = N,N,N’,N’-tetrakis(2-
benzimidazolylmethyl)-2-hydroxo-1,3-diaminopropane) [88]. Although inactive itself, addition of
pyrazinic acid led to catalytic activity when H,O, was used as the oxidant. This system showed a TOF
of 3.5 mOlathane converted molcatalyst_l- h~! at the low temperature of 25 °C, with ethylhydroperoxide
(82% selectivity) and acetaldehyde (17%) as the major products in a free- radical driven catalytic
system [88].

Having the target to emulate Cu- active sites found within membrane-bound particular pMMO,
Nagababu et al. studied tricopper [Cu! Cu' Cu! (7-N-Etppz)]'* (7-N-Etppz = 3,3'-(1,4-diazepane-1,4-
diyl)bis[1-(4-ethyl piperazine-1-yl)propan-2-ol) [89]. Operating at ambient temperature, in acetonitrile,
this catalyst produced ethanol (100% selectivity) at a rate of 11.0 molethanol converted: MOl catalystil' h!
using H,O, as the oxidant [89]. The authors later discuss an intention to encapsulate this catalyst
within a mesoporous material, with the aim of developing a 100% selective heterogeneous catalyst for
ethane hydroxylation.

A biomimetic system for alkane oxidation in the gas phase was reported by Xiao et al., who
employed N,O as the oxidant for ethane conversion, catalysed by the metal organic frameworks
Fey(dobdc) and Fey1Mg9(dobdc) where dobdc*~ = 2,5-dioxido-1,4-benzenedicarboxylate [90].
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Reaction of the high spin iron (II) centres within Fe;(dobdc) with N,O was proposed to form a transient
iron (IV) oxo intermediate. In the absence of alkane substrate, this decayed to form Fe;(OH),(dobdc).
Using a gas composition containing NyO:CoHg:Ar (10:25:65) and reaction temperature of 75 °C,
Fe,(dobdc) produced the oxygenated products; ethanol, acetaldehyde and diethyl ether, in addition to
other ether oligomers under both flow and closed batch conditions [90]. Meanwhile, under the same
conditions, the solid solution catalyst Fej ;Mg 9(dobdc) yielded ethanol and acetaldehyde in 10:1 and
25:1 ratios under flow and batch conditions respectively, with products being solvent- extracted from
the catalyst post-reaction. The authors did not discount potential retention of additional products
within the MOF framework.

3.2.4. Heterogeneous Approaches

Despite significant interest within the scientific community towards the oxidation of lower alkanes,
there are relatively few reports regarding the low temperature, heterogeneously catalysed selective
oxidation of ethane. In 1992 Lin et al. reported ethane oxidation over 5% Pd/Carbon and 5% Pt/Carbon
catalysts [91]. They reported yields of 0.54 M acetic acid with 0.05 M mmol formic acid as a by-product
under the following conditions; 24 h, 100 °C, 40 mg 5% Pd/C, 5 mL 0.1 M DCl, ethane (35 bar), oxygen
(7 bar) and CO (7 bar). The assigned reaction scheme is shown in Scheme 4.

Cco Co, CoHg
[Pd] [Pd]
H,0 H H,0
2 % 2 CH,COOH + H,0
[Pd]
Oy

Scheme 4. Partial oxidation over Pd/C [91].

As shown in Scheme 4, the reaction proceeds through three catalytic steps and requires an acidic
medium (DCl) and water due to the initial water gas shift reaction. It was also shown that through
charging the system with Hj (7 bar), O, (7 bar) and ethane (34 bar), a 0.002 M concentration of H,O,
could be prepared in situ. This utilised a non-aqueous environment comprising methylnitrate and
trifluoroacetic acid, with acetic acid (0.1 M) and formic acid (0.05 M) formed after 12 h at 85 °C. It was
also reported that the oxidation of ethane to ethanol and consecutive oxidation to acetic acid, formic
acid and CO, occurred [91].

Shul’pin et al. later reported that TS-1 catalysed the partial oxidation of ethane with HyO,, via the
formation of a reactive Ti-OOH species [92]. They reported partial oxidation to acetaldehyde (0.028 M)
and ethanol (0.017 M) using H,O, at 30 bar ethane, 12 h and 60 °C [92].

Another class of catalysts which have been reported as active for the partial oxidation of short
chain alkanes with Hy,O, are iron phthalocyanine complexes [50,51,93,94]. Whilst to date most research
has focussed upon the partial oxidation of methane, Sorokin and co-workers have recently reported
that the SiO, supported phthalocyanine (FePc),N/SiO, shown in Figure 3 affords high reaction yields
(34%) with appreciable acetic acid selectivity (69%) in the aqueous phase at the low temperature
of 60 °C [95]. This equated to a TON of 37 molacon- molcatalyst_l whilst the other major product,
HCOOH, was obtained at a TON of 33 [95].
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Figure 3. The p-ntirido diiron phthalocyanine complex used by Sorokin and co-workers.

R

A number of studies have recently reported the selective oxidation of ethane by H,O, in the
aqueous phase using the MFI-type zeolite ZSM-5 [7,69,96,97]. This was first reported by Rahman et al.,
who showed the direct oxidation of ethane to acetic acid and formic acid using ZSM-5 (1.5 g), aqueous
H,0; (4 M), 30 bar ethane, 120 °C, 2 h with 0.3 g of PPhj as an additive. Under these conditions they
showed 35.1% ethane conversion with major product selectivities of acetic acid (48.5%), formic acid
(36.3%) and CO; (11.9%) [69]. A positive effect upon ethane conversion and acetic acid selectivity
was reported at increasing SiO,/Al,O3 ratios, with a ratio of 23.8 shown to be the most active
catalyst, giving a total productivity of 6.81 molethane converted: kgcat_l- h~1 [69]. Based upon these data,
Rahman et al. attributed catalytic activity to the Bronsted acidic AlO,~ sites present within ZSM-5,
although the nature of the active site was not extensively discussed. Based upon EPR radical trapping
studies, - OH radicals were implicated in the proposed transformations.

C,Hg + 4-OH — CH;CHO + 3H,0 3)

CH;CHO + %0, — CH;COOH @)

Studies of the temporal evolution of products led the authors to conclude that Equations (3)
and (4) dominate, with CH3OOH the major initial product [69]. Meanwhile, low selectivity towards
CH3CH,OH was attributed to the competing minor reaction pathways shown in Equations (5) and (6).

C,Hg + -OH — C,HsOH (5)

C,HsOH + O, - CH3COOH + H,O (6)

The authors also studied H* 3-Zeolite, the heteropolyacid HyPVMoOyg and TS-1 under the same
conditions. TS-1 showed the lowest catalyst productivity but highest acetic acid selectivity (84%),
indeed total C; selectivity was higher than the other, more Breonsted acidic catalysts in the study [69].

In 2013, Forde et al. also reported that ZSM-5 catalysts are effective, reusable catalysts for
the oxidation of ethane with H,O, [7]. The system required lower operating temperatures than
those reported by Rahman et al., at 50 °C, lower HyO, concentrations of ca. 0.5 M and there
was no requirement for a PPh; additive. In line with analogous studies of the ZSM-5 catalysed
oxidation of methane within the same group [98], the catalytic conversion of both ethane and
H,O, was attributed to extraframework iron sites. Indeed, whilst H-ZSM-5 (30) showed a rate
of 2.8 molathane converted kgcafl- h—1, post synthesis deposition of 1.1 wt % Fe increased the rate to
47.1 molethane converted kgcat_l- h~! under the same conditions [7]. This constituted a decrease in TOF,
from 1211.4 moleghane converted MOlFe ~1-h ™1 t0 137.2 MOleghane converted MOlge ~ - h ™! [7]. Comparatively
low TOFs (12.9 and 66.5 moleghane converted: MOlge - h™1) were observed for catalysts comprising of Fe
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impregnated onto amorphous SiO, and the alumina-free MFI zeolite Silicalite-1 respectively. It was
therefore determined that Fe/ZSM-5 catalysts derived their activity, to varying degrees, from multiple
iron species including; extraframework dimeric pu- oxo- hydroxo species, highly dispersed surface
iron species and iron species within the zeolite pores [7]. The speciation of iron sites was determined
to effect catalytic activity to a greater extent than total iron loading, therefore justifying the trends
in TOFE. Process optimisation using a 2.5 wt % Fe/ZSM-5 (30) catalyst led to productivities of up to
65 MOlehane converted” K&eat - h ™! at 56% ethane conversion, with acetic acid the major product (70%
selectivity, 39.1% yield) [7]. Consistent with the studies of Rahman ef al. EPR radical trapping studies
showed - OH radicals in solution, however mechanistic studies showed the reaction scheme to differ
significantly from that previously reported, being more in line with homogeneous studies discussed in
Section 3.2.1. Three primary products were observed; ethanol, ethene and ethylhydroperoxide. Ethanol
and ethylhydroperoxide were shown to undergo consecutive oxidations through acetaldehyde to acetic
acid, with catalytic C—C scission reactions yielding C; products (methylhydroperoxide, methanol,
formic acid and COy). Meanwhile, ethene was shown to undergo oxidation to acetic acid and C;
products as shown in Scheme 5 [7].

C, oxygenated products

H o
H%—GOOH —_— HH R H
H H H

. l termination with “‘OH and ‘OOH
AN

0 o H H
0=C=0
H H H o\ H OH
OH H H OH H =0

€| oxygenated producis

H H
>_<

H H

Scheme 5. Proposed reaction scheme for ethane oxidation using ZSM-5 catalysts based on mechanistic
studies [7].

The disparity between reaction schemes proposed by Rahman et al. and Forde et al. is due
to the catalytic nature of consecutive oxidation reactions, and this could be a consequence of the
differing reaction conditions used. Indeed, Forde et al. showed Fe/ZSM-5 catalysed the oxidation of
ethanol under reaction conditions, with acetic acid as the major product (37.5 mol;eqcted- kgcafl- h—1,
17.5% acetic acid yield). The subsequent conversion of acetic acid was then shown to proceed at a far
lower rate (7.5 Moleacted Kgcat - h ™1, 1.6% and 3.4% yield of formic acid and CO; respectively) [7].
Furthermore, the low temperature continuous oxidation of ethane using ZSM-5 catalysts and H,O,
was recently reported by Armstrong et al. Through optimisation of a 0.4 wt % Fe/ZSM-5 (30) catalysed
trickle bed reactor system, 22% ethane conversion to acetic acid (73% selectivity, 16% yield) was
achieved with low selectivity towards carbon oxides (ca. 1%) [96].

3.2.5. Summary of Catalyst Performance

Considering the wide range of catalytic approaches that have been employed for the direct
selective oxidation of ethane, it is interesting and informative to try to summarise the performance of
these catalysts. Furthermore, the wide variety of conditions that have been adopted are also noteworthy.
Table 1 shows a summary of performance of some of the catalysts reviewed in this article.
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Table 1. A summary of the performance of partial ethane oxidation systems.
Entry Catalyst Regime Oxidant Solvent(s) P (C;Hg)/bar T/°C Time/h Major Product Selectivities/% 2/.[3 a::eljs?;:;:;z% TOF " Ref.
1 [Fe!!(Tp),]ClO, © Batch. L/G KHSOs MeCN/H,0 6.9 RT 0.08 CH;COOH (80), EtOH (20) 20.64 12.0 [75]
2 [Fell(L)-(acac)CI]ClO, ¢ Batch. L/G KHSOs MeCN/H,0 6.9 RT 0.5 CH;COOH (83), EtOH (17) 13.01 6.0 [75]
3 [Fe(L)-(3-Cl-acac)Cl]CIO, 4 Batch. L/G KHSOs MeCN/H,0 6.9 RT 0.5 CH3COOH (85), EtOH (15) 13.72 6.8 [75]
4 H,CrOy Batch. L/G H,0, MeCN 30 60 1 CH,3CHO (52), EtOOH (23), EtOH (19) 5253.71 620 [70]
5 NaVO; + H,S0, Batch. L/G H,0, MeCN 30 50 4 EtOH (51), CH;CHO (32), CH3COOH (17) 385.47 475 [71]
6 [PMo11VOy0](BugN)y Batch. L/G H,0, MeCN 30 60 10 CH,3CHO (44), EtOOH (34), EtOH (22) 0.50 14 [67]
7 [L,Mn, O3] (PFg), ¢ Batch. L/G H,0, MeCN 20 25 2 EtOOH (39), CH3CHO (33), EtOH (28) 227.74 180 [68]
8 Fe(ClOy)3 Batch. L/G H,0, MeCN 27 25 3 EtOOH (88), CH;CHO (9), EtOH (3) 64.00 227 [72]
9 Fe(OAC),(OH) + PCA © Batch. L/G H,0, MeCN 27 25 2 EtOH (68), CH;CHO (29), EtOOH (3) 3143 6.0 [72]
10 FeCl3 Batch. L/G H,0, H,0 30 90 1 CH,3CHO (66), EtOH (18), CO, (16) 189.27 30.7 [74]
11 PdCl, Batch. L/G H,0, H,0 30 90 1 CH,3CHO (56), CO, (31), EtOH (13) 170.87 303 [74]
12 0sCly Batch. L/G H,0y H,0 30 90 1 CH,3CHO (56), CO, (26) EtOH (18) 161.17 4738 [74]
13 H,PtClg Batch. L/G H,0y H,O 30 90 1 CH3CHO (67), EtOH (33) 13.18 5.4 [74]
14 HAuCl, Batch. L/G H,0, H,0 30 90 1 CH;3CHO (62), CO, (22) EtOH (15) 94.32 321 [74]
15 - Batch. L/G TI(TFA)3 HTFA 344 180 3 EtTFA (67), EG(TFA), (33) 0.46 ¢ - [76]
16 - Batch L/G Pb(TFA)4 HTFA 344 180 3 EtTFA (70), EG(TFA); (30) 0461 - [76]
17 - Batch. L/G C4FsIM(TFA), TFAA/HTFA 345 150 3 EtTFA (91), 1,2-Et(TFA), (8%) 051 ¢ - [77]
18 Methylococcus capsulatus (sMMO) Batch. L/G 0O,/NADH H,O - 45 0.2 EtOH (100) 4.10 - [79]
19 Cytochrome P450 BM3 Batch. L/G 0,/NADPH H,0 5 20 2 EtOH (100) - 40.0 [84]
20 Cytochrome P450 BM3 mutant Batch. L/G 0,/NADPH H,0 1.38 25 05 EtOH (100) - 24.0 [82]
21 Cytochrome P450.,m mutant Batch. L/G 0O,/NADH H,O - 30 - EtOH (100) - 4700 [83]
22 Cytochrome 450 PMO A6 Batch. L/G PhIO H,0 1.38 25 0.17 EtOH (100) - 15.0 [85]
23 Cytochrome 450 PMO A6 Batch. L/G MCPBA H,O 1.38 25 0.17 EtOH (100) - 2.0 [85]
24 Cytochrome 450 PMO A6 Batch. L/G H,0, H,0 1.38 25 0.17 EtOH (100) - 14 [85]
25 FePO, Flow, G/S 0,/H, - 0.34 400 - CH,3CHO (24), HCHO (18), EtOH (12) 8 420 13 [86]
26 [Cu'Cu'Cu!(7-N-Etppz)]'* " Batch. L/G H,0, MeCN 1.79 RT 1 EtOH (100) 19.06 11.0 [89]
27 Fep1Mg; 9(dobdc) Batch. G/S N,O - 75 75 24 EtOH (96), CH;CHO (4) - 0.07 [90]
23 (Ngf)zz(%gfg)(ggggg\?g& . Batch. L/G H,0, MeCN 30 25 6 EtOOH (82), CH;CHO (17), CH3COOH (1) 328 35 881
29 5% Pd/C Batch. L/G/S H,0, ! DCl/D,0 345 70 24 CH;3COOH (85), HCOOH (10), EtOH (6) 0.65 14 [91]
30 5% Pd/C Batch. L/G/S H,0, ! DCl/D,0 345 85 24 CH;3COOH (78), HCOOH (22) 3.40 7.2 [91]
31 5% Pt/C Batch. L/G/S H,0, ! DCl/D,0 345 95 24 CH;3O0O0H (100) 0.14 05 [91]
32 TS-1 Batch. L/G/S H,0, H,0 30 60 12 CH3CHO (94), EtOH (6) 0.25 - [92]
33 (FePc),N/SiO, Batch. L/G/S H,0y H,O 32 60 20 CH;3COOH (69), HCOOH (31) 0.054 2.7 [95]
33 (FePctBu),N/SiO, Batch. L/G/S H,0, H,O 32 60 20 CH;3COOH (71), HCOOH (29) 0.047 23 [95]
34 TS-1 Batch. L/G/S H,0, PPhs/H,0 30 120 2 CH3COOH (84), CO, (9), HCOOH (4) 953 - [69]
35 H-B Batch. L/G/S H,0, PPhs/H,0 30 120 2 CH3COOH (65), HCOOH (20), CO, (11) 14.09 - [69]
36 5% W/H-ZSM-5 Batch. L/G/S H,0, PPhs/H,0 30 120 2 CH;3COOH (44), HCOOH (38), CO; (16) 13.41 - [69]
37 H4PVMoOyo Batch. L/G/S H,0, PPhs/H,0 30 120 2 CH3COOH (61), HCOOH (19), CO; (12) 15.37 - [69]
38 H-ZSM-5 Batch. L/G/S H,0, PPhy/H,0 30 120 2 CH3COOH (48), HCOOH (36), CO; (12) 17.24 - [69]
39 H-ZSM-5 Batch. L/G/S H,0, H,0 20 50 05 CH;COOH (37), EtOH (26) HCOOH (17) 3.00 12114 7]
40 0.4% Fe/ZSM-5 Batch. L/G/S H,0, H,0 20 50 05 CH;COOH (49), EtOH (19) HCOOH (14) 16.50 2332 7]
41 1.1% Fe/ZSM-5 Batch. L/G/S H,0, H,0 20 50 0.5 CH;3COOH (55), EtOH (23) HCOOH (16) 49.50 251.3 71
4 1.25% Fe 1.25% Cu/ZSM-5 Batch. L/G/S H,0;, H,0 20 50 05 CyHy (34), CH;COOH (31), EtOH (26) 24.00 326 71
43 2.5% Fe/SiO, Batch. L/G/S H,0, H,0 20 50 05 CH3CH300H (34), CH;CHO (33), CH3COOH (13) 450 129 71
44 0.5% Fe-Silicalite-1 Batch. L/G/S H,0, H,O 20 50 05 EtOH (40), CH;COOH (30), HCOOH (14) 6.00 66.5 71
45 1.1% Fe/ZSM-5 ¥ Batch. L/G/S Hy0, H,O 20 50 05 EtOH (33), CH;COOH (44), HCOOH (13) 56.00 2843 [97]
46 0.4% Fe/ZSM-5 Flow. L/G/S H,0, H,0 2 50 0.06! CH,3COOH (73), HCOOH (19), CH;CHO (3) 0.26 3.6 [96]

@ defined as molahane converted l<gcat_1 -h~1; P defined as molgthane converted - MOlactive site - % € Tp = hydrotris (1-pyrazolyll)-borate; dp = 1,4,7-trimethyl-1,4,7-triazacylononane;
¢ HPTB = N,N,N’,N’-tetrakis(2-benzimidazolylmethyl)-2-hydroxo-1,3-diaminopropane), PCA = pyrazine-2-carboxylic acid; f Molgthane converted MOloxidant —+-h~1; 8 Major products
C,H,, CO, and CO. Partially oxygenated product selectivities shown; ! (7-N-Etppz) = 3,3'-(1 4-diazepane-1,4-diyl)bis[1-(4-ethyl piperazine-1-yl)propan-2-ol]; | H,O, generated in situ.
From H, and O,;] Catalyst calcined in static air, 3 h, 550 °C, 20 °C- min—1; ¥ Catalyst reduced in 5% H,/Ar, 3 h, 550 °C, 20 °C- min~1;! Calculated catalyst bed residence time.
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4. Conclusions and Outlook

It is apparent that partial ethane oxidation is of continued interest to the research community,
in spite of its scientific complexity. However despite this, only one direct oxidation process has been
commercialised; the SABIC process discussed in Section 3.1. Indeed, methanol carbonylation continues
to dominate the current market for acetic acid production. Other alternatives include direct formation
of acetic acid from ethene, as in the Showa Denko process, or a two- step ethene- acetaldehyde- acetic
acid process. However these first require steam cracking of ethane to ethene in order to activate the
alkane substrate. Whilst studies have shown such routes to approach economic equivalence with
methanol carbonylation at comparable levels of scale, direct oxidation of ethane is still preferable as it
circumvents the need for intermediate isolation steps.

The data in Table 1 indicates the wide range of catalyst systems that have been employed for
ethane direct oxidation to oxygenates. None of these have demonstrated performance required
for industrial commercialisation, and significant scope remains for the development of improved
catalysts. Whilst studies within the past decade have advanced the field significantly, with high rates
of ethane activation observed even at low temperatures of <100 °C, process viability is limited due to
a dependence on activated oxidants. Here biological systems serve as a benchmark; affording total
selectivity to ethanol using dioxygen as the oxidant, under ambient conditions. However these require
stoichiometric equivalents of reducing cofactors such as NADPH. In the absence of cofactor some
enzymes catalyse ethane hydroxylation, however these require activated oxidants such as H,O; and
show low reaction rates relative to synthetic analogues.

The prevailing trend in recent years favours low reaction temperatures and H,O, as oxidant.
Unfortunately no study has reported stoichiometric utilisation of H,O,. This is a key economic
concern when working with H,O,, which is expensive relative to dioxygen, and raises doubts as to
the environmental benefit of direct processes over current indirect processes. One possible solution
requires that the H,O; be generated in situ through reduction of dioxygen with Hj, as in the work of
Lin et al. [91] However, the expense of H, would again demand a high efficiency of H,O, formation
and use. Whilst an array of catalyst systems have shown appreciable rates of ethane conversion in
the aqueous phase using H,O,, extraction of dilute concentrations of the target oxygenated products
from the aqueous phase would prove problematic and energy intensive upon scale-up. The challenges
posed by separations might be avoided by operation in the gas phase, however this would most likely
require elevated temperatures, at which further oxidation of the desirable C, oxygenated products to
COy becomes more favourable. This leads to potential limitations on product yields. It is clear that,
at least in the longer term, a key focus should be the design of an efficient catalyst that selectively
partially oxidises ethane with dioxygen at sufficiently mild reaction conditions, so as not to sacrifice C,
product selectivity. It should be noted that selective partial oxidation of ethane is a similar challenge as
the direct catalytic oxidation of methane to methanol, and many in the catalyst community are now
focussed on these major challenges.
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