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An intriguing property of afterimages is that conscious
experience can be strong, weak, or absent following
identical stimulus adaptation. Previously we suggested
that postadaptation retinal signals are inherently
ambiguous, and therefore the perception they evoke is
strongly influenced by cues that increase or decrease the
likelihood that they represent real objects (the signal
ambiguity theory). Here we provide a more definitive
test of this theory using two cues previously found to
influence afterimage perception in opposite ways and
plausibly at separate loci of action. However, by
manipulating both cues simultaneously, we found that
their effects interacted, consistent with the idea that
they affect the same process of object interpretation
rather than being independent influences. These findings
bring contextual influences on afterimages into more
general theories of cue combination, and we suggest
that afterimage perception should be considered
alongside other areas of vision science where cues are
found to interact in their influence on perception.

Introduction

Our perception of afterimages seems to depend
greatly on the conditions under which they are
experienced. This interesting feature renders them an
excellent tool to probe the general question of how
early sensory signals are interpreted in the light of other
available evidence to determine what is perceived and

what is not perceived. A curious property of afterim-
ages is that we do not perceive them as frequently—or
for as long, as we ought to—based purely on the degree
of adaptation. Indeed, if our perception of afterimages
correlated perfectly with the adaptation that produces
them, we would perceive them very often in the real
world, whereas in reality we perceive them rarely.
Furthermore, they would not fluctuate in and out of
awareness as they often do (Comby, 1909; Wade, 1978).
This perceptual instability is reminiscent of the
alternating perceptual interpretations observed during
binocular rivalry or when viewing bistable figures.
Further, the tendency of the visual system to prefer-
entially allow meaningful information to reach aware-
ness is evident in the quick fading of stabilized images
that are artefacts of the retina (Coren & Porac, 1974)
and our propensity to discount the by-products of
lighting conditions such as shadows (Rensink &
Cavanagh, 2004).

Afterimages have been studied for over two centuries
by philosophers and scientists and they remain of
interest to vision researchers today (e.g., Anstis, Geier,
& Hudak, 2012; Aristotle, trans. 1910; Bessero & Plant,
2014; Darwin & Darwin, 1786; Hazenberg & van Lier,
2013; Sperandio, Chouinard, & Goodale, 2012; Sper-
andio, Lak, & Goodale, 2012; van Lier, Vergeer, &
Anstis, 2009; Wade, 2000). We now know that they are
probably generated from adaptation of cells in early
visual pathways (Bachy & Zaidi, 2014; McLelland,
Ahmed, & Bair, 2009; Zaidi, Ennis, Cao, & Lee, 2012).
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Afterimages can either be of the same or complemen-
tary color/luminance to the adapting patch, depending
on the intensity of the adapter stimulus and whether the
afterimage is viewed in the light or the dark.

Factors such as attention and eye movements during
adaptation can influence the resultant perception of
afterimages (Bachy & Zaidi, 2014; Lak, 2008; Suzuki &
Grabowecky, 2003; van Boxtel, Tsuchiya, & Koch,
2010). However, our interest here is in the perception of
afterimage percepts following the adaptation stage.
Previous research found afterimage saturation to be
increased by surrounding luminance edges (Daw, 1962;
van Lier et al., 2009), and we have shown this increase
to be greater for afterimages than for real stimuli of
similar appearance (Powell, Bompas, & Sumner, 2012).
Thus, although the enhancement effect of edges on
afterimages and real-colored stimuli likely share some
common mechanisms (Francis, 2010; Horwitz, Chi-
chilnisky, & Albright, 2005), the extra enhancement of
afterimages suggests that there is something inherently
different about postadaptation signals. We also con-
firmed sporadic reports that saccadic eye movements
after the adaptation phase decrease the duration of
weak afterimages and reduce the probability of
perceiving them at all (Ferree, 1908; Friedman &
Marchese, 1978; Helmholtz, 1962; Powell, Sumner, &
Bompas, 2015).

One theory—hereafter referred to as the signal
ambiguity theory—to explain the effect of these cues is
that postadaptation signals are inherently ambiguous
because both the temporal properties of the signals and
their distribution across cortical areas are not like those
from real objects. In line with Bayesian perspectives, we
would expect ambiguous signals to be particularly
influenced by other information: cues that increase or
decrease the likelihood the signal represents a real
object (Powell et al., 2012; Powell et al., 2015; also
recently echoed by Lupyan, 2015). Surrounding lumi-
nance edges may increase the likelihood that the signal
is interpreted as a real object rather than as an
irrelevant by-product of the visual system because
luminance edges often frame the boundaries of real
world objects (Fine, MacLeod, & Boynton, 2003;
Hansen & Gegenfurtner, 2009; Sharman, McGraw, &
Peirce, 2013; Zhou & Mel, 2008). On the other hand,
saccadic eye movements may decrease this likelihood
because they cause the signal to move around in the
world in a way that is unlike a real object. Indeed,
afterimages are stabilized on the retina and so their
movement during saccades is perfectly correlated with
the movement of the eyes, which is unlike the
movement of any real world object (Coren & Porac,
1974; Exner, 1890). Relatedly, afterimages will not
produce the strong edge-transients that typically occur
when the eyes move across a visual scene containing
sharp edges (Ennis, Cao, Lee, & Zaidi, 2014), which

could provide further evidence against an afterimage
representing a real object.

During real life viewing, the visual scene is usually
rich with contextual information and we make saccades
several times a second (Findlay & Walker, 1999), so eye
movements and inconsistent contours will both be
present most of the time; indeed, eye movements will
normally be what produce a change in local context
(Coren & Porac, 1974). According to the signal
ambiguity theory, this would explain why, even though
adaptation occurs in everyday viewing, it leads only to
rare afterimage experiences. Our only occasional
perception of postadaptation signals despite available
evidence against them being a real object could be
attributed to the fact that calibration to the natural
statistics of the world is not always complete (Bompas,
Powell, & Sumner, 2013).

However, there are other potential mechanisms that
might be sufficient to explain the effect of context and
eye movements individually, without the need for the
common process described in the ambiguity theory.
The contextual influence could be a low-level effect of
shared receptive field properties for contours and color
in V1 (see Powell et al., 2012 for discussion). On
patterned backgrounds, the edge-related activity asso-
ciated with eye movements (Ennis et al., 2014) may
shift the response range of neurons so that the
afterimages are more difficult to distinguish from the
background. On homogeneous backgrounds, where
contextual changes and local edge-related activity are
absent, eye movements may affect after images because
perception can be biased towards the hue of the
postsaccadic location (usually the background gray) via
trans-saccadic integration mechanisms (Melcher, 2007;
also see Powell et al., 2015 for a full discussion).

Employing the classic approach of testing for
interactions, these separate accounts would predict
additivity between the two effects (Figure 1C). How-
ever, an interaction between the two would suggest that
the influence of contours and saccades partly occurs at
the same level of visual processing and so would
support the signal-ambiguity theory (see Figure 1A, B).
To date, the effects of context and eye movements have
been studied in isolation; studying how these two cues
are combined provides both a more direct test of the
signal-ambiguity theory and also brings the study of
afterimage perception in line with the wider cue
combination literature.

In the present experiments we aimed to test these two
hypotheses by measuring afterimage perception during
fixation and saccades and in the presence or absence of
a luminance contour. Observers reported whether they
had seen an afterimage at all, and if they had, they
reported its duration. Although previous studies have
mainly relied on afterimage duration, this is only valid
if the proportions of trials where an afterimage is seen
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are comparable across conditions. Furthermore, it
could be argued that percentage of afterimages seen is
more representative of everyday afterimage experience,
because in the real world we often adapt long enough to
generate afterimages and yet very rarely see them at all.
However, the advantage of using both measures is that
we may be able to explore how any interaction might
change over time, assuming that the likelihood of
afterimage perception reflects the initial representation
strength of the afterimage, whereas the duration of the
subset of ‘‘seen’’ trials reflects how perception evolves
over a longer time frame of a few seconds.

Observers completed the experiment twice, once with
short adaptation durations (1.5 s) and again with long
adaptation durations (3 s). Pilot studies demonstrated
that in order to ensure similar alignment of contours with
postadaptation signals in both fixation and eyemovement
conditions, it was important to employ gaze-contingent
contours rather than simply positioning a contour around
the expected end point of an instructed saccade.

Methods

Two pilot studies: Luminance edge
misalignment during saccades

An initial pilot study suggested that the contour
increased afterimage duration less in the saccade
condition than in the fixation condition. However, the
contour moved with the fixation dot during saccades,

and analysis of the eye movement data revealed greater
deviation from the fixation point in the saccade
condition than in the fixation condition. This means that
the retinal position of the contour, and the extent to
which it was aligned with the afterimage, was less
accurate in the saccade than in the fixation condition,
which would explain the finding. Further, the visual
system would expect sharp transients following an eye
movement to a new object (Ennis et al., 2014), and
afterimage perception may be further hampered if this
transient is not aligned with the edges of the afterimage.
The importance of contour alignment with the afterim-
age to produce the contour effect was confirmed in a
second pilot experiment, in which we used individual eye
movement data from the saccade condition in the first
pilot to simulate in the fixation condition the degree of
contour misalignment that occurred in the saccade
condition. Thus, the contour movement on the retina
was now equated in the fixation and saccade conditions.
The contour effect was reduced in the fixation condition
to the same degree as in the saccade condition.

Therefore, in the main experiment we employed a gaze
contingent edge to ensure equally good alignment of the
contour with the afterimage in the fixation and saccade
conditions. Eyemovements were recorded online, and the
contour position was continually adjusted so it remained
in the center of gaze position. Thus, the only time atwhich
the edge was not aligned with the afterimage in the
saccade condition is during the saccade itself. We
switched off the contour during these periods, and yoked
these durations to insert into future fixation trials. A
potential consequence of using a gaze contingent design is

Figure 1. Three predictions for how context (luminance contour) and saccadic eye movements could combine to influence afterimage

perception. In (A–B) the contour and saccade cues interact so that the likelihood of perceiving an afterimage is not fully predictable

from the effect of each cue in isolation: Their influence is not additive, but interactive. In (A), the saccadic influence is reduced or

eradicated by the presence of the contour. The signal ambiguity theory could readily explain this pattern because the correlated

movement of the contour and the postadaptation signal provides strong evidence that the signal represents a real object. In (B), the

contour effect is reduced or eradicated by the saccade. This could occur simply because the contour is misaligned with the afterimage

during saccades due to inaccurate fixation. Alternatively, if the contour is made to be gaze contingent to counteract this problem, its

effect may be reduced by the saccade because it now moves ‘‘unnaturally’’ with the eyes, thus producing the opposite effect as in (A).

In (C), the effect of the context and the saccades are additive—the contour increases afterimage strength, while the saccade

concurrently decreases it. This pattern of results would be expected if the saccade and contour cues exert their influence via

completely separate mechanisms.
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that the contour and the afterimage may be grouped
together because they share a common fate—we know
that objects that move in synchrony together are grouped
together (Wertheimer, 1923). This common fate grouping
is likely to be stronger in the saccade condition than the in
fixation conditions because fixational jitter is much
smaller in amplitude and duration than the larger
saccadic eye movements we used, and it is known that
common fate grouping is influenced by such factors
(Uttal et al., 2000).

Main experiment

Observers

Eight observers (seven naive, one author; five males,
three females; average age: 24 years, 3 months)
participated. All had normal color vision and normal or
corrected-to-normal visual acuity. The observers were all
experienced in psychophysical experiments and so
followed fixation and eye movement instructions well.

Apparatus

Stimuli were generated by a PC running OpenGL,
and presented on a 19 in. Viewsonic P225F monitor
(100 Hz refresh rate). Observers were tested in a dark
laboratory, and sat at a viewing distance of 70 cm with
head movements stabilized using a chin rest. Eye
movements were recorded at a rate of 1000 Hz with an
Eye Link 2000.

Drift correction

Each observer was calibrated with the eye tracker at
the beginning of the experiment. In order to ensure
continuous accurate gaze contingency throughout the
experiment, a short drift correction was conducted at the
beginning of each trial. A red (CIE coordinates: x¼
0.621, y¼ 0.34, Y¼ 5.6) 0.18 dot placed 628 from the
center of a screen was displayed for 500 ms. If 95% of the
eye trace samples within this period were within 0.38 of
the mean gaze location, fixation was accepted. Observers
were informed with a beep and a 2.58 cross on the screen
when fixation was unaccepted, and were required to
repeat the procedure until fixation was accepted.

Stimuli and procedure

The trial sequence is shown in Figure 2. Observers
completed two sessions of the experiment, one with a

short adaptation duration of 1.5 s and another with a
longer adaptation duration of 3 s, in order to explore
the effect of the cues at two levels of afterimage
strength. The order of these sessions was counterbal-
anced across observers. All stages of the experiment
were conducted on a homogenous gray background
(CIE coordinates: x ¼ 0.288, y ¼ 0.303, Y ¼ 8.5).
Observers first adapted to a pink (CIE coordinates: x¼
0.279, y¼ 0.147, Y¼ 9) or green (CIE coordinates: x¼
0.289, y¼ 0.609, Y¼ 9) 38 circle, presented 48 to left or
right of center. The adapting colors were therefore
equivalent in luminance and saturation and directly
opponent in Macleod and Boynton color space. A 0.18

gray dot (CIE coordinates: x¼ 0.346, y ¼ 0.301, Y ¼
2.7) was presented in the middle of the adaptation circle
to maintain fixation, and this dot remained after the
adaptation circle was turned off to begin the afterimage
measurement phase. During fixation trials, the dot
remained in the same screen location throughout the
trial. During saccade trials, the dot alternated between
48 on the left and right of the screen at a frequency of
1.67 Hz. Observers pressed one response key when they
perceived that the afterimage had completely faded and
a separate response key if they had not seen an
afterimage at all.

During the afterimage measurement phase, gaze
location was recorded online and on half of the trials a
gray (CIE coordinates: x¼ 0.289, y¼ 0.302, Y¼ 7.5) 38

circular contour (0.158 wide) was presented so that it
was continually centered on gaze direction (i.e., gaze
contingent). Saccades were detected using a speed
detector based on the difference between the current
and previous eye tracker sample with a velocity
criterion of 208/s. During saccade trials, the contour
was not presented during samples that were detected as
saccades. During fixation trials, the saccade durations
were yoked from the saccade trials and the contour was
turned off during these intervals. This method required
that the first trial for each observer was always a
saccade trial. The contour was turned off during
saccades and for saccade-length intervals during
fixation to equate saccadic suppression of the contour
between fixation and saccade conditions (i.e., by
eliminating it in the saccade condition). Trials ended
with a 600 ms animated mask consisting of multiple 38

circles randomly changing position and chromaticity at
100 Hz, to reduce carryover effects.

Long and short adaptation sessions were run
separately. Within each session, there was a total of
four conditions in a 2 (contour present/absent) 3 2
(saccade/fixation) within subjects design. Observers
received 16 repetitions for each condition in a
pseudorandomized order. Adaptation color (green/red)
and adaptation side (left/right) were also equated and
pseudorandomized across trials.
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Despite drift correcting at the beginning of each trial,
the accuracy of the calibration did occasionally slip,
resulting in a small displacement of the contour from
gaze direction. In order to reduce this shift, an
algorithm was employed to carry out a continuous drift
correction throughout the trial. When gaze direction
was within 28 of the fixation dot, we assumed that the
observer was foveating the dot accurately. Therefore,
the difference between the sample and the fixation
target was assumed to reflect an error between the gaze
location and the eye-tracker output. This discrepancy
was subtracted from the subsequent sample in order to
try and recreate veridical gaze location.

Eye movement analysis

Trials that contained blinks and fixation trials that
contained saccades were discarded. Saccades were
detected by calculating the ‘‘jerk’’ at each point, which
corresponded to the derivative of the eye acceleration

(Wyatt, 1998). Samples were recorded as a saccade if
the ‘‘jerk’’ value exceeded a criterion of 308/s3. All eye
movement traces and the output of the analysis were
visually checked. Overall, very few trials were discarded
because they contained saccades (less than 5%).

Results and discussion

In two previous studies (Powell et al., 2012, 2015)
with the same adaptation patches we found no
differences between the pink and green adapting
stimuli, and so we collapsed across these trials. Figure
3A and B shows the percentage of trials where an
afterimage was seen for both the long (A) and short (B)
adaptation sessions. For both saccade and fixation
conditions, the contour significantly increased the
likelihood of perceiving an afterimage [main effect of
contour: long adaptation, F(1, 7) ¼ 21.09, p , 0.01;
short adaptation, F(1, 7)¼ 40.20, p , 0.001]. The main

Figure 2. Trial sequences across conditions. (A) Fixation/no contour condition: The observers fixate a colored patch presented on the

left or right for either short adaptation (1.5 s) or long adaptation (3 s). The patch is then removed and replaced by a fixation point

presented at the same position. The observers indicate when the afterimage has faded or if they had seen an afterimage at all.

Following their response, the trial ends with a cycling colored mask to reduce carry over adaptation effects. (B) Fixation/contour

condition: Trial sequence runs as in (A), but a luminance contour is presented in the center of gaze position during the duration

measurement phase. This contour is contingent on eye position and so moves around to remain in the center of the gaze. The contour

is also removed at intervals yoked to the saccade durations in the saccade conditions. (C) Saccade/no contour condition: Trials

sequence is the same as the fixation/no contour, but the fixation point jumps to the left and right of the screen at a rate of 1.67 Hz.

(D) Saccade/contour condition. Trial is identical to saccade condition/no contour but this time a contour is presented in the center of

gaze location when the observers are fixating the dot. The contour is removed for the short interval during the saccades.
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effect of saccades was not significant (long adaptation,
p¼ 0.34, n.s.; short adaptation, p ¼ 0.86, n.s.).

Most importantly, we observed a significant contour
3 saccade interaction on the percentage of seen
afterimages in both long and short adaptation sessions,
F(1, 7) ¼ 20, p , 0.01 and F(1, 7)¼ 9.75, p , 0.05,
respectively. This interaction, replicated across adap-
tation durations, is sufficient to support to the idea that
the contour and saccade cues are processed together at
some level of the visual system. The pattern of results
suggests that the presence of a contour eliminates the
effect of the saccade cue on afterimage perception (or
that the presence of a saccade boosts the contour
effect). This pattern could occur if the correlated
movement of the contour and the afterimage signal is
taken as even stronger evidence that the signal
represents a real object.

Figure 3C and D show the perceived duration for
long and short adaptation sessions. Note that although
all observers perceived at least one afterimage in all
conditions, some observers perceived very few after-
images in some conditions (particularly no-contour
saccade), making afterimage duration less reliable than
the proportion of afterimages seen (which contains all
the trials). The contour significantly increased the

average afterimage durations in both the long and short
adaptation session [main effect of contour: Figure 3C,
long adaptation: F(1, 7) ¼ 6.45, p , 0.05; Figure 3D,
short adaptation: F(1, 7)¼ 6.34, p , 0.05] in agreement
with previous findings (Powell et al., 2012). Further-
more, saccades significantly reduced the duration of
afterimages relative to fixation condition [main effect of
saccade: long adaptation: F(1, 7) ¼ 13.03, p , 0.01;
short adaptation F(1, 7)¼ 22.45, p , 0.05], which also
confirms findings from past research (Powell et al.,
2015).

We did not observe a significant contour 3 saccade
interaction on afterimage duration in either the long or
short adaptation sessions (long adaptation, p ¼ 0.50;
short adaptation, p¼ 0.52). This may have been due to
removing trials where no afterimages were seen, which
as discussed above, were more numerous in some
conditions than others. However, replacing the trials
where an afterimage was not seen with either the
minimum afterimage duration in that condition, or a
zero value, and then including these trials in the
analysis did not result in a significant contour3 saccade
interaction either (replaced with minimum afterimage,
p¼ 0.52; zero value p ¼ 0.12). Normalizing the
duration of afterimages on the no-contour fixation

Figure 3. Long adaption (3 s) shown in (A) and (C), short adaptation (1.5 s) shown in (B) and (D). (A–B) The percentage of trials where

an afterimage is seen is increased by the contour relatively more in the saccade than the fixation conditions. (C–D) For long

adaptation durations, afterimage duration is increased additively by the contour in both fixation (black) and saccade (gray)

conditions. Error bars show, for each condition, the 95% confidence intervals of the differences from each participant’s mean, and

thus represent the error that is meaningful to a within-subjects analysis (Loftus & Masson, 1994).
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baseline condition did not change the additive pattern
either. Taken together, these findings indicate that the
difference between the two measures may be genuine
and suggests that the nature of the contour/saccade
interaction could change over time. Initially, the
contour appears to reduce the relative efficiency of the
saccade cue to influence afterimage perception and/or
the saccade cue boosts the contour effect. After this, the
two cues contribute additively to influence how long
the afterimage is perceived.

Discussion

Previously we proposed that postadaptation signals
may be fundamentally ambiguous because the nature
of their responses is different to signals arising from
real objects. This ambiguity leads them to be particu-
larly influenced by prior expectations and knowledge
about the representation and behavior of real objects—
the signal ambiguity theory of afterimage perception
(Powell et al., 2012, 2015). The experiments reported
here provide a more direct test of this theory by
exploring how context and eye movement cues combine
to influence afterimage perception. We found an
interaction between the cues whereby the effect of
saccades was reduced in the presence of a contour, that
is, the number of afterimages that were seen became
similar for both the saccade and fixation conditions
when a contour was also presented. This pattern was
replicated for long and short adaptation conditions.
This interaction between the cues supports the signal
ambiguity theory because it suggests the cues might be
processed together at the same level of the visual
system.

On the subset of trials on which the afterimage
signal was perceived, the contour and saccade effects
combined additively. Consistent with previous find-
ings from studying the cues in isolation, the contours
increased afterimage perception (Daw, 1962; Powell et
al., 2012; van Lier et al., 2009), while the saccades
decreased it (Friedman & Marchese, 1978; Kennard,
Hartmann, Kraft, & Boshes, 1970; Powell et al., 2015).
This suggests that the interaction between the saccade
and contour cue may not remain stable over time.
Again, a similar pattern was replicated over the two
sessions that used different adaptation durations.
However, this second conclusion is more tentative,
whereas an interaction in one measure is sufficient to
support the main conclusion that the two cues
influence aftereffects—at least in part—within the
same process.

The signal ambiguity theory has recently been
echoed by a predictive-coding account of afterimage
perception (Lupyan, 2015). In essence, both theories

suggest that prior knowledge and expectations are
particularly influential because postadaptation signals
are ambiguous. We (Powell et al., 2012) and Lupyan
(2015) also both speculate that the source of this
ambiguity may lie in the exponential decay of
adaptation signals, which creates a neural signal
unlike the response to a real object. A further possible
reason is that the spatial distribution of signal
strengths across the cortex is not alike for real objects
and postadaptation signals. Our perspective, there-
fore, is that afterimages are akin to phenomena such
as bistable figures and shadows and reflections, as
other examples of how the visual system arrives at
perceptual decisions when faced with ambiguous low-
level information.

Cue interactions

On the surface, an interaction between the contour
and saccade cues could be viewed as surprising given
they are likely to be subserved by different systems in
the brain. However, it is possible to consider a number
of reasons why an interaction might not be unexpected.

In our experiments, the contour (a real object) was
gaze contingent and so moved around with the eyes and
with the afterimage. The very fact that a real object was
moving with the eyes provides evidence against the
hypothesis that real objects do not move with the eyes.
We, and others (Fiorentini & Mazzantini, 1965), have
argued that it is this very hypothesis that explains why
saccades reduce afterimage perception. Thus, the
relative efficiency of the saccade cue could be reduced
by the presence of the contour because the movement
of the contour provides evidence that real objects can
move with the eyes sometimes. Indeed, the combined
movement of the afterimage signal and the contour in
the world leads to a stronger interpretation that they
are a composite object because they share a ‘‘common
fate’’ (Wertheimer, 1923).

Of course, the exact opposite argument could also be
predicted—the saccade cue could decrease the efficien-
cy of the contour cue because the contour is now
moving unlike a real object (Coren & Porac, 1974).
However, the pattern of our results is consistent with
the first explanation, which may suggest that the prior
for objects surrounded by edges is more influential than
the prior for real objects to change retinal positions
when the eyes move. Perhaps this is unsurprising given
there are examples of when patches of color remain
fixed on the retina across eye movements, for example
during smooth pursuit, when saccading across a large
uniform object, or when saccading between two objects
of similar appearance.

These explanations could help us to understand why
initially the contour cue has more of an influence over
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after image perception than the saccade cue. However,
for our longer term duration measure we found an
additive pattern of contour and saccade effects. Why
might the cue interaction change over time? One
tentative posthoc explanation could be that the saccade
cue builds up over time as more saccades are
performed, and the evidence accumulates that the
afterimage signal does not behave like a real object.

One possible alternative explanation that could be
suggested is that the two processes occur separately and
sequentially if eye movements only influence weak
afterimages. If the contour acts first to change the
strength of the afterimage signal, and then the eye
movement influences weak signals more than strong
ones, this condition could produce a pattern like the
interaction we observe. However, this would also
predict a different effect of eye movements in the short
and long adaptation sessions that generated weak and
strong afterimages respectably, and this we did not
observe. Indeed, the likelihood of perceiving an
afterimage in the long adaptation condition without a
contour was similar to the likelihood of perceiving an
afterimage in the short adaptation condition with a
contour (compare Figure 3A and B); however, the
effect of saccades is clearly different between the two.
Therefore, although we cannot definitely reject this
possibility, we have no evidence to support the idea
that the effect of eye movements is driven by signal
strength alone, and the most likely explanation for the
behavioral interaction remains that there is a process-
ing interaction between the cues.

A possible methodological explanation for our
findings is that the contour flashing on and off in the
fixation condition led to a reduction in the contour
effect during fixation. We introduced this to mimic
periods during a saccade where saccadic suppression
will reduce intensity of the contour representation,
and the actual onsets and offsets were yoked from
saccade trials for each participant. This explanation
seems unlikely, however, because it would be more
likely to predict an interaction in the duration
measure, where more flashes occur, than in the
number of afterimages seen. Further, pilot studies
revealed that the contour effect is reduced in the
saccade condition relative to the fixation condition if
the degree of contour alignment is not equated
between the conditions. A possible reason for this is
that the visual system expects sharp transients
following eye movements (Ennis et al., 2014) and these
would not occur for an afterimage on its own. When
the contour and the afterimage are perfectly aligned
(i.e., contour is gaze-contingent), sharp transients will
be produced by the composite contour-afterimage
signals. However, when the afterimage is misaligned
with the contour, the contour will produce transients

but the afterimage will not, thus potentially providing
another cue that the afterimage is illusory.

Other factors that influence afterimage
perception not studied here

We have studied two key influences on afterimage
perception, but there are likely other factors that are
also important, particularly during natural viewing.
For example, there will be additional effects when eye
movements occur on patterned backgrounds than on
the homogenous gray backgrounds that we used in the
present experiments. Stationary edges in the scene will
cause transient activity (Ennis et al., 2014) and may
shift the responses of neurons to a range where the
edges of the afterimage are more difficult to distinguish
from the background. If this effect is much more
transient than the adaptation underlying an afterimage,
then this could explain why after images are sometimes
reported to re-emerge gradually following a saccade.
Saccades on patterned backgrounds will also change
the local contours around the afterimage, and thus be
the cause of a contour effect. This could explain reports
that afterimage perception can be ‘‘refreshed’’ if gaze is
directed back to the original location (Daw, 1962).

Furthermore, we may not perceive afterimages most
of the time because we simply do not attend to them
although, somewhat counterintuitively, attention to-
wards an afterimage has been shown to reduce its
duration (Lou, 2001). Tse, Kohler, and Reavis (2010)
demonstrated that perception of two afterimage
patterns that are superimposed in a rectangular-cross
formation and surrounded by their own framing
perpendicular contours, will alternate (or ‘‘rival’’) based
on which contour attention is directed towards. This
suggests that attention towards the surrounding con-
text is more important in determining afterimage
perception than attention towards the afterimage itself.
Note we do not expect that attention could have
influenced our findings because if attention were to
have an effect, it would actually be in the opposite
direction to the one we observed. If we assume less
attention towards the afterimage and contour in the
saccade conditions (because attention moves before the
saccade), then an attention explanation predicts that
afterimage perception is enhanced during saccades
relative to fixation and that the contour cue during
saccades is less effective.

Objects and contours: An art history perspective

A perceptive reviewer asked us to consider why
expressionist artists tended to demarcate the objects in
their paintings with dark contours. The work of Paul

Journal of Vision (2016) 16(7):16, 1–11 Powell, Sumner, Harrison, & Bompas 8

Downloaded From: http://arvojournals.org/ on 07/29/2016



Cézanne is an excellent example of this (Figure 4). The
thick, dark contours surrounding the peaches and
apples create an impression of intensified solidity. One
might infer from this that Cézanne understood, at least
implicitly, the statistical frequency of sharp luminance
edges surrounding objects and our visual system’s
tendency to prioritize them, and sought to amplify
them for artistic effect. In other words, he may have
been working with a theory akin to the signal
ambiguity theory addressed in this paper: Objects
without clear edges will be perceived less strongly or as
less real; if you want the visual system to perceive an
object strongly, emphasize its edge. Note, artists such
as Cézanne did not just use strong contours to
exaggerate the solidity of shapes, they also utilized
color contrast: The edges surrounding the orange
peaches are tinged blue. What would such an artist’s
representation of an afterimage be? We speculate they
would be merged into the colorful swirls of a van Gogh
sky rather than demarcated by thick contours on a
Cézanne tabletop. Furthermore, based on Ennis et al.
(2014), we would expect these types of painting to elicit
very strong transient responses as the eye moves over
the contours, which is perhaps a mechanism through
which the visual experience is boosted.

Conclusion

We explored how luminance edges and saccadic eye
movements influence the perception of afterimages
when both are present. Our results indicated that at
first the two cues interact. Later the two cues appeared
to be combined additively—the contour increased

afterimage duration by around the same amount as the
saccadic eye movements decreased it. The presence of
an interaction between the two cues suggests that they
do not operate independently and are in part processed
at the same level of the visual system. These findings
place the study of afterimage perception within the
wider cue integration literature. Our novel perspective
is that afterimages should sit beside other topics of
study such as depth perception, bistable percepts, and
perceptual constancies (e.g., color constancy and
lightness constancy) as tools to probe how the visual
systems comes to perceptual decisions in the face of
ambiguous information.

Keywords: afterimages, eye movements, context,
conscious awareness

Acknowledgments

We would like to thank the anonymous reviewers for
their helpful comments on this article. We also thank
Tom Freeman for advice on eye movement analysis.
This work was supported by a BBSRC PhD student-
ship and an ESRC grant (ES/K002325/1).

Commercial relationships: none.
Corresponding author: Georgie Powell.
Email: powellG7@cardiff.ac.uk.
Address: School of Psychology, Cardiff University,
Cardiff, Wales, UK.

References

Anstis, S., Geier, J., & Hudak, M. (2012). Afterimages
from unseen stimuli. i-Perception, 3(8), 499.

Aristotle (1910). The works of Aristotle (Vol. 3; W. D.
Ross, & J. A. Smith, trans.). Oxford, UK:
Clarendon Press.

Bachy, R., & Zaidi, Q. (2014). Factors governing the
speed of color adaptation in foveal versus periph-
eral vision. Journal of the Optical Society of
America A, 31(4), A220–A225.

Bessero, A.-C., & Plant, G. T. (2014). Should ‘visual
snow’ and persistence of after-images be recognised
as a new visual syndrome? Journal of Neurology,
Neurosurgery & Psychiatry, doi:10.1136/
jnnp-2013-306827.

Bompas, A., Powell, G., & Sumner, P. (2013).
Systematic biases in adult color perception persist
despite lifelong information sufficient to calibrate
them. Journal of Vision, 13(1):19, 1–19, doi:10.
1167/13.1.19. [PubMed] [Article]

Figure 4. Still Life with Apples and Peaches, Paul Cezanne, c.1905.

Reprinted from the National Gallery of Art, Open Access.

Journal of Vision (2016) 16(7):16, 1–11 Powell, Sumner, Harrison, & Bompas 9

Downloaded From: http://arvojournals.org/ on 07/29/2016

http://www.ncbi.nlm.nih.gov/pubmed/23325346
http://www.ncbi.nlm.nih.gov/pubmed/23325346


Comby, J. H. (1909). The intermittence of minimal
visual sensations. I. The fluctuation of the negative
after-image. Psychological Bulletin, 6(9), 305–307,
doi:10.1037/h0063993.

Coren, S., & Porac, C. (1974). The fading of stabilized
images: Eye movements and information process-
ing. Perception & Psychophysics, 16(3), 529–534,
doi:10.3758/bf03198582.

Darwin, R. W., & Darwin, E. (1786). New experiments
on the ocular spectra of light and colours. By
Robert Waring Darwin, M. D.; communicated by
Erasmus Darwin, M. D. F. R. S. Philosophical
Transactions of the Royal Society of London, 76,
313–348, doi:10.2307/106628.

Daw, N. W. (1962). Why after-images are not seen in
normal circumstances. Nature, 196(4860), 1143–
1145, doi.org/10.1038/1961143a0.

Ennis, R., Cao, D., Lee, B. B., & Zaidi, Q. (2014). Eye
movements and the neural basis of context effects
on visual sensitivity. The Journal of Neuroscience,
34(24), 8119–8129.

Exner, S. (1890). Das verschwinden der nachbilder bei
augenbewegungen [Translation: The disappearance
of afterimages in eye movements]. Zeitschrift fur
Psychologie und Physiologie der Sinnesorgane, 1,
47–51.

Ferree, C. E. (1908). The intermittence of minimal
visual sensations. Studied from the side of the
negative after-image. I. The fluctuation of the
negative after-image. The American Journal of
Psychology, 19(1), 58–129, doi:10.2307/1412824.

Findlay, J. M., & Walker, R. (1999). A model of
saccade generation based on parallel processing
and competitive inhibition. Behavioral and Brain
Sciences, 22(04), 661–674.

Fine, I., MacLeod, D. I. A., & Boynton, G. M. (2003).
Surface segmentation based on the luminance and
color statistics of natural scenes. Journal of the
Optical Society of America, 20(7), 1283–1291.
Retrieved from http://josaa.osa.org/abstract.
cfm?URI¼josaa-20-7-1283

Fiorentini, A., & Mazzantini, L. (1965). Inhibition of
after-images due to voluntary eye movements. Atti
della Fondazione Giorgio Ronchi, 20(3), 307–320.

Francis, G. (2010). Modeling filling-in of afterimages.
Attention, Perception & Psychophysics, 72(1), 19–
22, doi:72/1/19 [pii] 10.3758/app.72.1.19.

Friedman, A. H., & Marchese, A. L. (1978). Positive
after-image, PAI: Early erasure by saccadic eye
movement or Jendrassik manoeuvre. Cellular and
Molecular Life Sciences, 34(1), 71–73, doi:10.1007/
bf01921909.

Hansen, T., & Gegenfurtner, K. R. (2009). Indepen-
dence of color and luminance edges in natural
scenes. Visual Neuroscience, 26(01), 35–49, doi:10.
1017/S0952523808080796.

Hazenberg, S. J., & van Lier, R. (2013). Afterimage
watercolors: An exploration of contour-based
afterimage filling-in. Frontiers in Psychology, 4,
701.

Helmholtz, H. (1962). Helmholtz’s treatise on physio-
logical optics (Vol. II). New York, NY: Dover
Publications, Inc.

Horwitz, G. D., Chichilnisky, E. J., & Albright, T. D.
(2005). Blue-yellow signals are enhanced by spa-
tiotemporal luminance contrast in Macaque V1.
Journal of Neurophysiology, 93(4), 2263–2278, doi:
10.1152/jn.00743.2004.

Kennard, D. W., Hartmann, R. W., Kraft, D. P., &
Boshes, B. (1970). Perceptual suppression of
afterimages. Vision Research, 10(7), 575–585, doi:
10.1016/0042-6989(70)90051-9.

Lak, A. (2008). Attention during adaptation weakens
negative afterimages of perceptually color-spread
surfaces. Canadian Journal of Experimental Psy-
chology/Revue canadienne de psychologie expéri-
mentale, 62(2), 101–109.

Loftus, G. R., & Masson, M. E. (1994). Using
confidence intervals in within-subject designs.
Psychonomic Bulletin & Review, 1(4), 476–490.

Lou, L. (2001). Effects of voluntary attention on
structured afterimages. Perception, 30(12), 1439–
1448. Retrieved from http://www.perceptionweb.
com/abstract.cgi?id¼p3127

Lupyan, G. (2015). Object knowledge changes visual
appearance: Semantic effects on color afterimages.
Acta Psychologica, 161, 117–130, doi:10.1016/j.
actpsy.2015.08.006.

McLelland, D., Ahmed, B., & Bair, W. (2009).
Responses to static visual images in Macaque
lateral geniculate nucleus: Implications for adap-
tation, negative afterimages, and visual fading.
Journal of Neuroscience, 29(28), 8996–9001, doi:10.
1523/jneurosci.0467-09.2009.

Melcher, D. (2007). Predictive remapping of visual
features precedes saccadic eye movements. Nature
Neuroscience, 10(7), 903–907. Retrieved from
http://www.nature.com/neuro/journal/v10/n7/
suppinfo/nn1917_S1.html

Powell, G., Bompas, A., & Sumner, P. (2012). Making
the incredible credible: Afterimages are modulated
by contextual edges more than real stimuli. Journal
of Vision, 12(10):17, 1–13, doi:10.1167/12.10.17.
[PubMed] [Article]

Journal of Vision (2016) 16(7):16, 1–11 Powell, Sumner, Harrison, & Bompas 10

Downloaded From: http://arvojournals.org/ on 07/29/2016

http://www.ncbi.nlm.nih.gov/pubmed/23024354
http://jov.arvojournals.org/article.aspx?articleid=2193769


Powell, G., Sumner, P., & Bompas, A. (2015). The
effect of eye movements and blinks on afterimage
appearance and duration. Journal of Vision, 15(3):
20, 1–13, doi:10.1167/15.3.20. [PubMed] [Article]

Rensink, R. A., & Cavanagh, P. (2004). The influence
of cast shadows on visual search. Perception,
33(11), 1339–1358.

Sharman, R. J., McGraw, P. V., & Peirce, J. W. (2013).
Luminance cues constrain chromatic blur discrim-
ination in natural scene stimuli. Journal of Vision,
13(4):14, 1–10, doi:10.1167/13.4.14. [PubMed]
[Article]

Sperandio, I., Chouinard, P. A., & Goodale, M. A.
(2012). Retinotopic activity in V1 reflects the
perceived and not the retinal size of an afterimage.
Nature Neuroscience, 15(4), 540–542, doi.org/10.
1038/nn.3069.

Sperandio, I., Lak, A., & Goodale, M. A. (2012).
Afterimage size is modulated by size-contrast
illusions. Journal of Vision, 12(2):18, 1–10, doi:10.
1167/12.2.18. [PubMed] [Article]

Suzuki, S., & Grabowecky, M. (2003). Attention during
adaptation weakens negative afterimages. Journal
of Experimental Psychology: Human Perception and
Performance, 29(4), 793–807. Retrieved from http://
www.sciencedirect.com/science/article/
B6X08-49FPG0V-5/2/
0aee73b1aee179bc8bf768f1031f0e5a

Tse, P., Kohler, P., & Reavis, E. (2010). Attention
modulates perceptual rivalry within after-images.
Journal of Vision, 10(7): 194, doi:10.1167/10.7.194.
[Abstract]

Uttal, W. R., Spillmann, L., Stürzel, F., & Sekuler, A.
B. (2000). Motion and shape in common fate.
Vision Research, 40(3), 301–310.

van Boxtel, J. J. A., Tsuchiya, N., & Koch, C. (2010).
Opposing effects of attention and consciousness on
afterimages. Proceedings of the National Academy
of Sciences, USA, 107(19), 8883–8888, doi:10.1073/
pnas.0913292107.

van Lier, R., Vergeer, M., & Anstis, S. (2009). Filling-in
afterimage colors between the lines. Current Biol-
ogy, 19(8), R323–R324, doi:10.1016/j.cub.2009.03.
010.

Wade, N. J. (1978). Why do patterned afterimages
fluctuate in visibility? Psychological Bulletin, 85(2),
338–35, doi:10.1037/0033-2909.85.2.338.

Wade, N. J. (2000). A natural history of vision.
Cambridge, MA: MIT Press.

Wertheimer, M. (1923). Untersuchungen zur Lehre von
der Gestalt II [Translation: Laws of organization in
perceptual forms. A source book of Gestalt
psychology]. Psycologische Forschung, 4, 301–350.

Wyatt, H. J. (1998). Detecting saccades with jerk.
Vision Research, 38(14), 2147–2153.

Zaidi, Q., Ennis, R., Cao, D., & Lee, B. (2012). Neural
locus of color afterimages. Current Biology: CB,
22(3), 220–224. Retrieved from http://linkinghub.
elsevier.com/retrieve/pii/S0960982211013984

Zhou, C., & Mel, B. W. (2008). Cue combination and
color edge detection in natural scenes. Journal of
Vision, 8(4):4, 1–25, doi:10.1167/8.4.4. [PubMed]
[Article]

Journal of Vision (2016) 16(7):16, 1–11 Powell, Sumner, Harrison, & Bompas 11

Downloaded From: http://arvojournals.org/ on 07/29/2016

http://www.ncbi.nlm.nih.gov/pubmed/25814546
http://jov.arvojournals.org/article.aspx?articleid=2278660
http://www.ncbi.nlm.nih.gov/pubmed/23525130
http://jov.arvojournals.org/article.aspx?articleid=2121409
http://www.ncbi.nlm.nih.gov/pubmed/22353777
http://jov.arvojournals.org/article.aspx?articleid=2121204
http://jov.arvojournals.org/article.aspx?articleid=2138271&resultClick=1
http://www.ncbi.nlm.nih.gov/pubmed/18484843
http://jov.arvojournals.org/article.aspx?articleid=2122666

	Introduction
	Methods
	f01
	Main experiment
	Results and discussion
	f02
	f03
	Discussion
	Conclusion
	Anstis1
	Ross1
	Bachy1
	Bessero1
	Bompas1
	f04
	Comby1
	Coren1
	Darwin1
	Daw1
	Ennis1
	Exner1
	Ferree1
	Findlay1
	Fine1
	Fiorentini1
	Francis1
	Friedman1
	Hansen1
	Hazenberg1
	Helmholtz1
	Horwitz1
	Kennard1
	Lak1
	Loftus1
	Lou1
	Lupyan1
	McLelland1
	Melcher1
	Powell1
	Powell2
	Rensink1
	Sharman1
	Sperandio1
	Sperandio2
	Suzuki1
	Tse1
	Uttal1
	vanBoxtel1
	vanLier1
	Wade1
	Wade2
	Wertheimer1
	Wyatt1
	Zaidi1
	Zhou1

