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Abstract 

This study focussed on the treatment of stormwater runoff using constructed 

wetlands (CWs): man-made systems engineered to replicate the treatment processes 

in natural wetlands. The main aims were to design and assess a novel configuration 

of CWs for stormwater treatment, while contributing to the further understanding of 

pollutant removal in CWs through the development of models to explain internal 

processes and predict performance. A vertical tidal-flow CW operational regime was 

applied to target enhanced nitrogen removal while maintaining high removal rates a 

range of high priority urban stormwater pollutants. Eight pilot-scale CW models 

were built to investigate the effect of key design and operational variables: substrate 

media, wetland surface area, and wetting and drying regimes.  

The performance of the systems was considered successful when compared to results 

of similar pilot-scale CWs that operated without tidal flow. Results show that all 

eight models effectively reduced concentrations of solids and metals, with load 

reductions generally in excess of 90%. Nutrient removal – particularly nitrogen - was 

heavily affected by design and operation variables. Significantly, nitrogen removal in 

the systems outperformed similar pilot-scale CWs with alternative hydraulic 

operating conditions. Understanding of the internal CW treatment processes were 

backed up through statistical analysis and numerical modelling. These techniques 

highlighted important mechanisms such as the biological transformation of nitrogen 

and the importance of TSS removal to heavy metals reduction. 

Overall, results show that the CW design has great potential for reduction of solids, 

metals and nutrients in stormwater. Further research at a field scale would better 

represent the performance of the systems in practice, and closer monitoring of 

dissolved oxygen and redox potential would enhance understanding of internal 

processes, particularly regarding nutrient behaviour. Results of this study can 

contribute to future CW research and design, through increased understanding of 

long-term pollutant removal in these types of system. In time, this may result in the 

wider application of CWs for stormwater treatment to make human water use more 

sustainable and better protect the environment. 
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1. Introduction 

1.1. Drivers of sustainable water management 

In recent years there has been a growing global realisation that drastic changes are 

required in the way that water resources are managed. The Institution of Civil 

Engineers (ICE) reported in 2012 that “water scarcity is upon us”, and that water can 

no longer be considered a readily available resource to suit our desires in the UK 

(ICE, 2012). In the face of population increase and climate change, it is clear that 

human water use needs to adapt to become more sustainable. Freshwater resources 

must be sustained and safeguarded against pollution and we can no longer afford to 

waste potable water on non-potable uses in the manner that we have for so many 

years.  

This issue has been identified and reflected in UK and European legislation. 

Concerning pollution, the European Union Water Framework Directive was 

published in 2000 after a poll of European countries revealed that 47% of 

respondents listed water pollution as a major concern in their country (European 

Commission, 2012). The Directive placed a large emphasis on dealing with diffuse 

pollution, which concerns runoff from roads and housing areas (Ellis et al., 2003). 

Article 1 of the Directive contains details of the ways in which urban surface 

drainage is to be targeted. Relevant objectives outlined include the banning of the 

direct discharge of urban runoff to groundwaters and the encouragement of 

sustainable water use. 

The Flood and Water Management Act, passed in the UK in 2010, called for a 

change of approach in combating floods: to improve flood risk management rather 

than building flood defences (Butler et al., 2010). Drainage systems in new 

developments now must be approved by authorities after consultation with any 

bodies likely to be affected by the discharge. The developer no longer has an 

automatic right to send the drainage to the local sewer system, and it is now required 

that sustainable urban drainage systems (SUDS) be used to control surface drainage 

in new developments (Flood and Water Management Act, 2010). 
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“Future Water”, the UK government’s water strategy for England, placed a large 

focus on reducing the demand for water to 130 litres/person/day by 2030, or, as the 

report states “possibly even 120 litres per person per day depending on new 

technological developments and innovation” (DEFRA, 2008). The strategy points 

out the potential for rainwater harvesting in England and encourages the use of 

SUDS facilities to capture rainfall before it runs to water courses, thereby attenuating 

peak flows and preventing potential detriment to quality (Butler et al., 2010). 

Thus, a strong emphasis on sustainable water management has been developed 

through legislation in the UK, resulting in a need for stormwater treatment solutions 

that will help to improve effluent drainage quality and potentially produce re-usable 

water to ease the pressure on freshwater resources. 

1.2. Constructed wetlands for stormwater treatment 

Stormwater treatment and reuse can provide a sustainable water supply which boosts 

domestic supplies while protecting local watercourses from contaminants transported 

by stormwater runoff. One sustainable way of attenuating and treating stormwater is 

through the use of constructed wetlands (CWs). Natural wetlands can treat water 

through a variety of physical, chemical and biological processes, but there is such a 

large degree of variability in their functional components that it is extremely difficult 

to predict the quality of treated water that can be achieved (Brix, 1993). CWs are 

man-made systems specifically designed and engineered to replicate the natural 

pollutant treatment processes exhibited in natural wetlands, with the added benefit of 

increased control over the operational conditions (Vymazal and Kröpfelová, 2008). 

These aesthetically pleasing treatment systems have very low energy input 

requirements since the pumping of water is either not required at all or is only 

required in very small measure. CWs have been used to successfully treat many 

types of wastewater such as domestic wastewater, minewater discharge and 

industrial and agricultural effluents (Cooper, 2007; Gottschall et al., 2007; 

Langergraber et al., 2010; Soda et al., 2012). CWs have also been successfully used 

for the treatment of stormwater runoff from roads, urban areas, and agricultural and 

industrial catchments (Vymazal, 2009; Idris et al., 2012). 
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There are several types of CW configurations. Horizontal and Free-Water Surface 

CWs require relatively large areas of land for operation, as the water flows 

horizontally across the system. Vertical-flow (VF) CWs have smaller surface area 

requirements, as the water flows either downwards or upwards through the system. 

With the limited land space available in the UK, VF CW treatment systems are more 

suitable for implementation. VF CWs have been successfully used to treat 

stormwater (Li & Davis, 2009; Feng et al., 2012), but traditionally have limited 

nitrate removal ability. This is due to high oxygen levels within the system, which 

inhibit dentitrification processes. This means that total nitrogen removal is inhibited, 

and in some cases VF CWs leach nitrates (Bratieres et al., 2008). To date, there has 

been no research carried out that directly addresses the limitations in nitrate removal 

by stormwater VF CWs. This study theorised that the application of a “tidal-flow” 

dosing regime to a VF CW would establish set periods of time in which the system is 

inundated with water, creating anoxic conditions in which denitrification processes 

could occur and thus increase nitrate removal. 

The application of a tidal-flow CW for stormwater treatment is thus presented for the 

first time: designed to enhance nitrate removal, and therefore stronger total nitrogen 

removal. The performance of the CW in removing a range of stormwater priority 

pollutants (including solids, heavy metals and nutrients) is investigated to determine 

the overall effectiveness of the system. 

1.3. Aims and objectives 

The project has two main research aims, detailed below along with the relevant 

objectives: 

Aim 1 

To design and assess a vertical flow CW with tidal-flow operation for stormwater 

treatment.  

Objectives:  

1. To conduct a comprehensive literature review to identify the gaps in 

knowledge regarding CWs treating stormwater to date. 
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2. To design a CW system that addresses the findings and knowledge gaps 

identified in the literature review. 

3. To determine the stormwater treatment efficiency of the system by assessing 

its general performance and comparing this to existing systems. 

4. To determine the effect of the design and operational variables on the 

treatment efficiency of the system with a view to generating design and 

operational guidelines. 

5. To carry out media characterisation and batch adsorption tests to determine 

the metal uptake capacity of media for use in the CWs and investigate 

influencing factors 

Aim 2 

To develop models to further the understanding and accurately predict the 

performance of the CW system and investigate the processes occurring within. 

Objectives: 

1. To conduct statistical analysis of the performance results of the system in 

order to develop predictive models. 

2. To conduct mechanistic analysis of the performance results of the system 

with the aid of a numerical modelling software package to develop 

mechanistic understanding. 

1.4. Outline of thesis 

A literature review of constructed wetlands and their application for stormwater 

management and treatment in the UK is firstly given in chapter 2, but the research 

presented in this thesis has been carried out primarily through the design, 

construction and long-term operation of eight pilot-scale physical models in the 

School of Engineering, Cardiff University. Influent and effluent analysis was carried 

out over a period of 55 weeks to obtain a comprehensive dataset concerning the 

treatment performance of the CWs, and to determine the effect of the design and 

operation variables. Chapter 3 provides details of the experimental setup and 

procedure used to investigate the performance of pilot-scale tidal-flow CW systems. 
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Characterisation of the substrate media used in the CWs is presented in chapter 4, 

alongside the analysis of their metal adsorption characteristics. The adsorption 

characteristics were investigated to determine the extent to which metal reduction 

was attributable to adsorption in the systems. This was carried out by laboratory 

experiments, principally kinetic and equilibrium analysis.  The performance results 

from the pilot-scale CW experiment are covered in chapter 5, examining the effect of 

the design variables and investigating the internal pollutant removal mechanisms.  

Chapter 6 explores the application of HYDRUS 2D, a software package that 

simulates water, heat and solute transport through variably saturated media. 

HYDRUS was applied to enhance the understanding of the removal processes 

occurring in the CWs, and to aid making long-term performance predictions. 

Statistical analysis was carried out on the acquired data to increase understanding of 

internal CW processes and treatment mechanisms. This aspect of the work focused 

on the use of regression and principal component analysis. Regression models 

(simple and multiple) were then developed for performance prediction and 

comprehensive statistical analysis of the results from the pilot-scale CW systems is 

presented, along with the development of predictive performance models in chapter 

7. Finally, the main conclusions of the project and recommendations for further work 

are presented in chapter 8. 
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2. Literature Review 

2.1. Introduction 

In recognition of the significant opportunity offered by CWs for stormwater 

management in the UK and the acute lack of guidelines and information regarding 

their application, this review aims to provide a concise appraisal of the state of the 

art of application of CWs for stormwater management in the UK, focusing on 

design, performance, retrofit issues, current guidelines, research and background 

knowledge, while drawing comparisons with the rest of the world. Firstly, 

constructed wetland (CW) technology is explored in its various forms and 

applications. This is followed by a novel review of the application of CWs for 

stormwater management in the UK, focusing on design, performance, retrofit issues, 

current guidelines, research and background knowledge, while drawing comparisons 

with the rest of the world. The use of vertical flow CWs for stormwater treatment is 

then investigated, highlighting the gaps in knowledge, research and practice that 

have influenced this project.
1
 

 

2.2. Constructed Wetlands 

2.2.1. Introduction 

 

The use of CWs for wastewater treatment, has grown in recent years due to their 

very effective removal of pollutants, low energy requirements, ease of maintenance 

and relatively cheap construction and operating costs. CWs have been successfully 

used to treat various types of wastewater including domestic wastewater, minewater 

discharge and industrial and agricultural effluents (Cooper, 2007; Gottschall et al., 

                                                 
Part of this literature review has already been published as “Constructed wetlands for 

stormwater management in the UK: A concise review” – Lucas, R., Earl, E.R., Babatunde, 

A.O. and Bockelmann-Evans, B.N., 2015. Civil Engineering and Environmental Systems, 

32(3), 251-268. 
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2007; Langergraber et al., 2010; Soda et al., 2012). They have also been used to treat 

stormwater runoff from roads, urban areas, and agricultural and industrial 

catchments (Vymazal, 2009; Idris et al., 2012). 

There are three main types of CW: free water surface; horizontal subsurface-flow 

and vertical subsurface-flow. These designs are described in the following sections. 

Additionally, the tidal-flow operation method of vertical subsurface-flow CWs is of 

high relevance to this project, so it is described in section 2.2.5. 

2.2.2. Free water surface constructed wetlands 

Free water surface (FWS) CWs are distinguished by an area of open water. 

Vegetation in a FWS CW can be emergent plants, submerged plants, free-floating 

plants or floating-leaved plants (Vymazal and Kröpfelová, 2008). Figure 2-1 shows 

an example of a FWS CW with emergent vegetation.  

 

 

Where rooted macrophytes are incorporated, they grow in soil or an alternative 

media at the base of the CW. Water depths are usually shallow, and this, along with 

the presence of vegetation, helps to control the flow through the CW with the aim of 

creating plug-flow conditions (Reed et al, 1998). Plug-flow conditions (in which the 

water velocity is constant across the cross-section of the CW perpendicular to the 

flow path) serve to maximise contact between the wastewater and the biological 

surfaces on which pollutant removal reactions take place. 

FWS CWs are commonly used to treat less concentrated wastewaters, e.g. effluent 

from secondary or tertiary treatment, and are seldom used for primary treatment due 

to the danger of human exposure to pathogens (US EPA, 2000c). They are the most 

common type of CW utilised for stormwater treatment as they can cope well with the 

Influent Effluent 

Water level control 

Outlet deep zone 

Inlet deep zone 

Emergent vegetation 

Rooting media Impermeable liner 

Figure 2-1 - Typical arrangement of a FWS CW (adapted from Kadlec and Wallace, 2009) 
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stochastic nature of rainfall runoff. They are also commonly used for minewater, 

groundwater and leachate treatment (Kadlec and Wallace, 2009). 

2.2.3. Horizontal subsurface-flow constructed wetlands 

Subsurface-flow CWs differ from FWS CWs in that they do not feature a body of 

water on the surface: all flow moves through the porous substrate media. A typical 

horizontal subsurface-flow (HF) CW is shown in Figure 2-2.  

 

 

Often referred to as “reed beds”, HF CWs are typically constructed using gravel 

and/or soil as substrate media (Kadlec and Wallace, 2009). The bed of the CW is 

slightly inclined (gradient ≤ 1%) to encourage slow water flow from the inlet to the 

outlet (Ellis et al., 2003). The wastewater is treated as it passes through various 

aerobic, anoxic and anaerobic zones (Cooper et al., 1996). Since the system is 

constantly saturated, aerobic zones are confined to the roots of the macrophytes in 

the CW. Thus, oxygen transfer and therefore aerobic treatment processes (e.g., 

nitrification) are limited in HF CWs. 

Since HF CWs contain their flow below the surface, they are suitable for treating 

primary effluent without posing the same level of threat to human health that a FWS 

CW would in that application (see Section 2.2.2). Therefore they are commonly used 

for this purpose. HF CWs are also more suitable for use in cold climates due to the 

Inlet 

Outlet 

Macrophytes 

Inlet stone distributor 
Slope ½ to 1% 

Impermeable liner 

 

Figure 2-2 - Typical arrangement of a HF CW system (adapted from Cooper et al., 1996) 
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natural insulation provided by the media, hence preventing freezing and hydraulic 

failure (Kadlec and Wallace, 2009). 

2.2.4. Vertical subsurface-flow constructed wetlands 

Vertical subsurface-flow (VF) CWs receive influent wastewater in intermittent 

batches, thus they are not constantly saturated as in HF CWs. A typical VF CW is 

shown in Figure 2-3. 

 

 

VF CWs typically consist of layers of sand and gravel, with the wetland vegetation 

planted in the sand at the top of the system (Vymazal and Kröpfelová, 2008). In most 

VF CWs the influent wastewater is dosed at the top of the system, flooding the 

surface and then travelling down through the substrate media before it is collected at 

the bottom of the system from a gravel drainage layer. However, vertical up-flow 

systems also exist, where the wastewater enters the CW at the base of the media and 

is collected just below the surface. See Figure 2-4 for a depiction of how the water 

flows through an up-flow system. 

The intermittent loading that takes place in a VF CW allows for excellent oxygen 

transfer. Between doses, the CW is drained and oxygen can then enter the system, 

providing aerobic treatment to the next batch of wastewater. Therefore, VF CWs are 

often favoured for their nitrification capabilities since nitrification is an oxidation 

process. The oxygen supplied by the rhizomes and roots of plants in VF CWs is 

negligible compared to that retained in the system between doses, and the main 

Influent feed dosed intermittently over whole surface 

Outlet 

1% slope Large stones Perforated pipe Impermeable liner 

Coarse 

gravel 

Medium 

gravel 

  Pea 

gravel 

Sharp 

sand 

Figure 2-3 - Typical arrangement of a downflow VF CW system (adapted from Cooper et 

al., 1996) 
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reason for the inclusion of plants is to aid the hydraulic conductivity of the system. 

BOD5 and COD removal efficiencies are high, but, because of the strong aerobic 

qualities found in VF CWs, denitrification is limited. TSS removal is high but not as 

high as in HF CWs, and clogging can become a problem in VF systems (Vymazal 

and Kröpfelová, 2008). 

 

 

 

2.2.5. Tidal-flow vertical subsurface-flow constructed wetlands 

Tidal flow CWs are VF systems with alternative hydraulic operating conditions. 

Instead of the influent wastewater simply percolating through the CW and leaving 

the system in one pass, each influent dose of water is held in the system and then 

released after a set period of time. As the CW is filled, influent NH4-N is adsorbed to 

the media and influent organic matter is degraded by the CW biofilm (Kadlec and 

Wallace, 2009). Subsequently, as the water is drained from the CW, it acts as a 

“passive pump”, drawing air into the system (Sun et al., 2005). Atmospheric 

diffusion then causes oxidation of the biofilm, causing nitrification processes (NH4-

N converts to NO2-N and then NO3-N). As the CW is then refilled, the oxidised N is 

then released from the media, because oxidation has transformed the positive NH4
+ 

ion into negative NO2
- 
and NO3

-
 ions, which are repelled by the negative charge of 

the soil media. Influent organic matter provides a C supply for denitrification 

processes to occur in anoxic zones in the inner layer of the CW biofilm, where a high 

Crushed rock 

Gravel 

Soil 

Outlet 

Inflow 

Distribution pipe 

Figure 2-4 - Schematic representation of an upflow VF CW (adapted from Vymazal, 2001) 
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oxygen diffusion resistance allows heterotrophic denitrifiers to survive (Hu et al., 

2014). 

Since TVF CWs are capable of simultaneous nitrification and denitrification (Austin 

et al., 2003, Hu et al., 2014), they provide an advantage over traditional VF and HF 

systems, which can each only perform one of these processes effectively 

(nitrification in VF systems, denitrification in HF systems).  

2.3. Constructed wetlands for stormwater management in the UK 

2.3.1. Introduction 

In the UK, CWs have been used for the treatment of various wastewaters, especially 

tertiary sewage treatment which accounts for 69% of the total number of UK systems 

(Constructed Wetland Association, 2008). However there is an acute lack of 

information regarding the use of CWs for stormwater management in the UK even 

though they have been implemented for the treatment of residential, highway and 

airport runoff (Cooper, 2007; Vymazal, 2009). In the very few cases for which 

details are available, design and operation information have been gleaned from 

general design guidance that is not specifically focussed on CWs for stormwater 

treatment  (e.g., “the SUDS Manual”, Woods-Ballard et al., 2007), and by 

transferring design knowledge from CW systems treating other types of wastewater. 

Furthermore, there are no UK stormwater CW design codes and no performance 

databases to aid in the deployment and assessment of these systems and these are 

important in order to instil confidence in designers and regulatory authorities when 

recommending CWs for stormwater management.  

CWs can benefit the UK as they offer a unique opportunity for improving the 

resilience of the UK water infrastructure, particularly in response to climate change 

effects, water crisis (quality and quantity) and demographic changes. A recent report 

by the Institution of Civil Engineers (ICE) indicates that climate change is set to 

cause both increased rainfall intensity and decreased levels of summer precipitation 

(ICE, 2012), indicating that extended periods of flood and drought are likely to 

become commonplace in the future in the UK. Stormwater CWs can attenuate peak 

flow in times of flood and release the captured water slowly without diverting 
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harmful contaminants directly to local watercourses, while on the other hand 

recycling treated runoff decreases pressure on potable water supplies so that there is 

more water available in times of drought.  Thus, stormwater CWs can be considered 

to offer a significant opportunity to improve stormwater management in the UK. 

2.3.2. Background and state of the art for stormwater management using 

constructed wetlands in the UK 

2.3.2.1. Development of stormwater management policy 

CWs have been used in the UK for nearly thirty years, albeit mainly for the treatment 

of domestic, industrial and agricultural wastewater (Cooper et al., 1996). However, 

the focus on urban stormwaters as a pollution problem in the UK is a relatively new 

one, and it is only through directives and policies established during the last 20 years 

that emphasis has shifted to the problem of urban runoff through the use of 

Sustainable Urban Drainage Systems (SUDS) (Dussaillant, 2012). This began in 

1992 when the United Nations (UN) established AGENDA 21, a global plan for 

sustainable development, which concerns all areas in which humans affect the 

environment (United Nations, 2009).  Since this plan was announced, water security 

and pollution have become more prominent features in European policies and 

recommendations (e.g., the European Union Water Framework Directive in 2000).  

In the UK, the implementation of AGENDA 21 can be seen in the 1997 Environment 

Agency for England and Wales (EA) report “Liaison with Local Planning 

Authorities”, in which the Local AGENDA 21 development was laid out. The report 

promotes the use of sustainable drainage systems such as CWs to target 

contaminated surface water, calling for the use of "soft-engineered" SUDS systems 

(Ellis et al., 2003). The NRA Thames region was one of the first in the country to 

focus on the control of surface water runoff as part of its local AGENDA 21 

development, releasing a policy statement in 1998 entitled “Surface Water Source 

Control”. The statement laid out the plans to convert to the use of sustainable 

surface water storage, attenuation and treatment processes through soft-engineered 

facilities (Ellis et al., 2003), thereby further promoting the use of CW systems. 
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The growing focus on sustainable water use became further evident in 2008 when 

the government unveiled their water strategy for England, named “Future water”.  

The strategy points out the potential for rainwater harvesting in England and 

encourages the use of SUDS facilities to capture rainfall before it runs to water 

courses, thereby preventing flooding and potential detriment to water quality (Butler 

et al., 2010). 

Perhaps the most direct initiative to promote sustainable stormwater management in 

the UK has come in the form of the Flood and Water Management Bill, which was 

presented before parliament in 2009. Amongst other significant improvements, the 

bill called for a change of approach in combating floods: to improve flood risk 

management rather than building flood defences (Butler et al., 2010). The Flood and 

Water Management Act was subsequently passed in 2010. Drainage systems in new 

developments now must be approved by authorities after consultation with any 

bodies likely to be affected by the discharge, such as sewerage undertakers, the EA, 

highway authorities, British Waterways and any other relevant group. The developer 

no longer has an automatic right to send the drainage to the local sewer system, and 

it is now required that SUDS be used to control surface drainage in new 

developments (Flood and Water Management Act, 2010). 

2.3.2.2. Stormwater management in the UK: state of the art 

Going by the findings of the review on the development of stormwater management 

policy in the UK as presented in section 2.3.2.1., it is evident that there is an 

increasing emphasis on sustainable stormwater management in the UK and this 

provides a good opportunity for the use of CWs. According to the Constructed 

Wetland Association’s database, there are about 1021 CWs in the UK with only 67 

of the systems used for treating stormwater. A breakdown of the 67 systems shows 

that 6 systems treat road runoff (all in England), 16 treat surface runoff (7 in 

England, 9 in Scotland), 5 treat storm sewage overflow in a separate storm bed (all in 

England) and 40 treat storm sewage overflow in combined systems which provide 

tertiary treatment (38 in England, 2 in Wales) (Constructed Wetland Association, 

2008). 
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Figure 2-5 shows the general distribution of stormwater CWs across the UK. The 

majority of the systems are located in the English midlands, with several on either 

side of the Anglo-Welsh border and a small concentration in West Lothian, Scotland. 

There is a distinct lack of stormwater CWs in east and south-east England. The exact 

reason for this variation in geographical distribution is not clear, however the lower 

number of CWs in the south-east compared to the rest of UK might be due to its 

dense population concentration and lack of available land space as CWs are 

perceived to be land intensive - even though this is not necessarily true. Furthermore, 

the database indicates that there are no stormwater CWs in Northern Ireland, the 

northern regions of England and the majority of Wales and Scotland. There are well 

over 5.7 million fewer people in these locations compared to the midlands, east and 

south-east of England (Office for National Statistics, 2010), and hence they are more 

sparsely populated. Thus, CWs would be even more ideally suited to these areas. 

Furthermore, the passing of the Flood and Water Management Act and the growing 

focus on sustainable water use in the UK might accelerate the use of CWs for 

stormwater management in these areas. 
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Figure 2-5 - Geographic distribution of CWs treating stormwater in the UK (developed from CWA 

database) 

With the exception of two hybrid systems (treating surface runoff in Pumpherston 

and West Lothian, Scotland), all of the UK stormwater CWs are horizontal 

subsurface-flow systems. Subsurface-flow CWs are very efficient at removing 

suspended solids (SS), contributing to the reduction of other contaminants. 

Generally, horizontal subsurface-flow systems have been in use for much longer than 

vertical subsurface-flow systems. Guidelines published by the Water Research 

Council (WRc) in 1996 give comprehensive information on horizontal subsurface-

flow system design but highlight that, at that time, there was “only a limited amount 

of information” regarding the design of vertical subsurface-flow systems (Cooper et 

al., 1996). This might explain the predominance of horizontal-flow CWs, with 
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designers opting for the tried and tested system design. 

The use of stormwater CW systems in the UK to date has been primarily for 

management of environmental flows (flood reduction and pollutant removal) and 

amenity value. This suggests that the application of CWs to treat water - particularly 

for non-potable uses - has not been explored fully. This is in sharp contrast to 

Australia where stormwater treated in CWs is often used for non-potable uses 

including toilet flushing, firefighting and irrigation (Hatt et al., 2006). 

2.3.2.3. Challenges to the implementation of CWs for stormwater treatment in 

the UK 

A number of challenges to the implementation of CWs for stormwater management 

were identified. These include: (i) a lack of design codes and unified guidelines 

(discussed in section 2.3.4); (ii) the perception of excess land space required 

(discussed in section 2.3.5); (iii) ambiguity over drainage responsibilities and 

problems with developers. Although developers are willing to construct SUDS as 

part of new developments, they are likely to have purchased the land before they 

consult with the EA, and they will want to maximise the number of houses/buildings 

within the purchased area. Thus the developers are keen to avoid implementing 

SUDS measures that will reduce the potential number of houses they can build. In 

Scotland this issue is targeted by a cooperative system between developers, the 

Scottish Environment Protection Agency (SEPA) and water authorities which 

encourages the early consideration of SUDS in the development proposal (Shutes 

and Raggatt, 2010). Furthermore, developers have also expressed concerns on the 

lack of clear design guidelines; more so as there are no UK design codes for SUDS – 

particularly CWs. In addition, it is noted that there are so few experts available for 

consultation on construction that they have insufficient guidance to incorporate 

sustainable stormwater management systems into their developments (Ellis et al., 

2003). This problem has been addressed to an extent by the Construction Industry 

Research and Information Association (CIRIA) publication “The SUDS Manual” 

(Woods-Ballard et al., 2007), which offers design methods for a range of SUDS. 

Despite this, the information provided for stormwater CWs in the manual is very 

limited.  
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In terms of highway drainage, there is unresolved confusion between the water 

companies and the highway authorities over the ownership of highway drains, and 

thus there is confusion over who takes responsibility for the discharge (Ellis et al., 

2003). In 2011 the Department for Environment, Food and Rural Affairs (DEFRA) 

attempted to allocate drainage responsibilities by defining a SUDS as “those parts of 

a drainage system that are not vested in a sewerage undertaker”. In response to this a 

survey of SUDS development groups was undertaken. The survey found that many 

felt that highways drainage is still not accounted for in this definition and thus the 

issue is still ongoing (DEFRA, 2012). These issues need to be addressed to ensure 

the successful application of CWs for stormwater management in the UK.  

2.3.3. Priority pollutants 

A combined list of stormwater “priority” pollutants in the UK and Europe and their 

removal efficiencies in stormwater CWs is presented in Table 2-1. This list is a 

combination of the results of research by Mitchell (2005, for UK priority pollutants) 

and Eriksson et al. (2007, for priority pollutants in European Countries), in which 

contaminants were designated as being priority pollutants based on the likelihood of 

their presence in stormwater, their effects on aquatic organisms in surface waters and 

their indirect effects on humans. 

Table 2-1 shows that stormwater CWs have the capability to efficiently remove 

priority pollutants and achieve low effluent concentrations, thus improving runoff 

water quality. However, there were variations in removal efficiency and effluent 

pollutant concentrations, indicating that the pollutants have been more successfully 

removed in some CW systems than in others. For example, the highest BOD5 

effluent concentration level found was an extremely large value of 388 mg/l (Adeola 

et al., 2009). BOD5 concentrations in stormwater runoff are usually quite low, 

especially in urban and road runoff. The high BOD5 concentration in this case was 

found at a CW in Heathrow Airport, London, during the winter when de-icing fluids 

are used. De-icing fluids contain propylene glycol, which causes high levels of 

BOD5. The large quantities of de-icing fluids required at the airport during winter 

caused an overload of BOD5 in the CW (Adeola et al., 2009). Thus, while the CW 

may operate efficiently throughout the rest of the year, its inability to cope with the 
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BOD5 overload has resulted in the high effluent concentration shown in Table 2-1. It 

should be noted that this is an exception and typical expected levels are 18 mg/l and 

below (e.g., Pontier et al., 2001). 

Due to the limitations of the desk study, performance data has not been included for 

the removal of several of the priority pollutants (mostly pollutants which are not 

prioritised in the UK). However, these pollutants can be removed by treatment 

processes exhibited in CWs, such as microbial degradation (for Di(2-

ethylhexyl)phthalate and Pentachlorophenol (Nakamiya et al., 2005; Rahman and 

Anuar, 2009)) and sorption (for herbicides, Di(2-ethylhexyl)phthalate, 2,4,4’-

Trichlorobiphenyl and Pentachlorophenol (Nakamiya et al., 2005; Gregoire et al., 

2009; Rahman and Anuar, 2009; Swires, 2009)). Platinum is removed by the same 

means as other heavy metals; sedimentation, filtration, adsorption and plant uptake 

(Walker and Hurl, 2002). The removal of oil and grease is usually carried out by 

separate units; the water flowing through these units to effectively remove oil and 

grease before entering the CW. Where oil or grease is an issue in a specific 

catchment, these units can be installed (as exhibited in Hares and Ward, 2004). Thus, 

CWs have the capability to effectively treat stormwater for most of the priority 

pollutants targeted in the UK. 

2.3.4. Design and treatment performance 

Formal design codes do not exist for the design of stormwater CWs in the UK, 

however recommendations for the design of stormwater CWs exist in the form of 

guidance manuals and technical reports. The most comprehensive of these is 

Constructed Wetlands with Links to Sustainable Drainage Systems (Ellis et al., 

2003). The authors reflect on the difficulties in wetland design and state that design  
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Table 2-1 - Combined list of stormwater priority pollutants in UK and Europe 

Pollutant Group Pollutant UK Priority (Mitchell, 2005) EU Priority (Eriksson et al., 2007) Removal Efficiency (%) Effluent Concentration (mg/l) Refs 

Basic 

Parameters 

5-day Biochemical Oxygen Demand  (BOD5) 

Chemical Oxygen Demand (COD)  

Suspended Solids (SS) 

pH 

Phosphorus (P) 

Nitrogen (N) 

Kjehldal-Nitrogen (KN) 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

24 - 76 

39 - 54 

18 - 94 

na 

39 - 70 

59 - 70 

58  

0.6 – 388 

1 – 135 

2 – 172 

- 

0.2 - 7.7 

0 - 4.47 

0.74 - 2.18 

1,2,
3,4,

5,6 

Metals Cadmium (Cd) 

Chromium (Cr) 

Copper (Cu) 

Iron (Fe) 

Lead (Pb) 

Mercury (Hg) 

Nickel (Ni) 

Platinum (Pt) 

Zinc (Zn) 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

10 – 99 

53 - 84 

32 - 97 

10 

44 - 97 

86* 

22 - 77 

- 

10 – 99 

<0.01 

0.001 

BDL - 0.224 

0.4 – 4.3 

BDL – 1.2 

- 

BDL – 0.219 

- 

0.003 – 0.5 

1,3,

4,5,

7,8, 
9,10 

PAH Benzo[a]pyrene 

Naphthalene 

Pyrene 

 
 
 

 
 
 

63 

71 

71 

0.00001 – 0.00176 

0.00013 – 0.01701 

0.00013 – 0.01701 

3 

Herbicides Terbutylazine 

Pendimethalin 

Phenmedipham 

Glyphosate 

 
 
 
 

 
 
 
 

- 

58  

- 

77– 90 

- 

<0.00001 

- 

<0.00003 – 0.00057 

11, 

12 

Misc. Nonylphenol ethoxylates and  

   degradation products 

Di(2-ethylhexyl)phthalate 

2,4,4’-Trichlorobiphenyl  

   (Polychlorinated biphenyl 28) 

Methyl tert-butyl ethyr 

Pentachlorophenol (PCP) 

Oil and Grease 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

-  

 

- 

- 

 

16 - 93** 

- 

47 

- 

 

- 

- 

 

- 

- 

Up to 13.6 

13 

* Hg removal in a CW treating outfall discharge, to which stormwater contributes - Nelson et al., 2006.  

** MTBE removal in a pilot-scale CW treating groundwater contaminated by gasoline – Chen et al., 2012 
1Scholes et al. (1999), 2Adeola et al. (2009), 3Terzakis et al. (2008), 4Birch et al. (2004), 5Kao et al. (2001), 6Pontier et al., (2001), 7Meiorin (1989), 8Shutes et al (2001), 9Shutes (2001), 

10Bulk & Slak (2003), 11Miller et al. (2002), 12Maillard et al. (2011), 13Schaad et al. (2008) 

 = priority pollutant,  = not a priority pollutant, BDL = below detection limit (reported in reference as 0) 
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rules for CWs are usually developed from empirical methods. However, reports such 

as this endeavour to provide as much design guidance as possible, and in this section 

this advice is reviewed and compared to design recommendations provided in other 

parts of the world. 

2.3.4.1. Sizing 

Several methods are suggested for sizing stormwater CWs in the UK. Some general 

CW design approaches are employed and applied to stormwater CWs, such as 

kinetic design methods based on first order reaction rates. Here, the CW size and 

retention time required to effectively reduce specific pollutant concentrations are 

calculated in equations such as Equation 2.1, which has been taken from UK 

guidelines (Ellis et al., 2003). This equation was developed empirically, assuming 

plug flow in the CW. 

       
  

 
    

       
  

      
 
 
                 (2.1) 

where:    = CW surface area (m²)  

   = pollutant decay rate constant (m/day)  

   = inflow rate (m³/day)  

     = inflow pollutant concentration (mg/l)  

      = target outflow pollutant concentration (mg/l) 

    = background pollutant concentration in CW (mg/l).  

Values for   and    are dependent on the pollutant and the type of CW (e.g., sub-

surface flow or surface flow), and recommended values are available in literature 

(e.g., Kadlec and Wallace, 2009). The   value used is often that representing BOD5 

reaction rates. BOD5 decays in the CW very slowly, and thus using a BOD5   will 

result in conservative CW dimensions. This can lead to the oversizing of CWs, 

especially in the case of urban stormwater CWs, as the influent contains very low 

concentrations of BOD5 compared to CWs treating other wastewater types, such as 

sewage. Stormwater CWs primarily target contaminants like SS and heavy metals. 
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Another issue with using a design approach such as this is the use of average flow 

rate and contaminant concentration values, as this does not accurately represent the 

stochastic nature of stormwater inflows and the variable incoming pollutant 

concentrations. Also, k values widely vary from one CW to another (Ellis et al., 

2003). Therefore, while this approach is useful as an initial estimate for the 

dimensions of a CW, it should not be relied upon for the sizing process. 

Empirical stormwater CW design methods are popular due to the stochastic nature of 

storm events. One such example is to design the CW to a size capable of retaining 

water volumes that occur during a storm with a selected return period. UK 

recommendations state that an urban stormwater CW should be able to treat storms 

with a 10 year return period as a minimum (Ellis et al., 2003), and in flood prone 

areas the EA recommend designing for a 1:200 year return period flood (Shutes et 

al., 2005). Both UK and US guidelines cite the recommendation of Schueler (1992) 

that stormwater CWs should be able to retain 90% of all storm events producing 

runoff. The US EPA regards this target as “a reasonable and achievable goal” (US 

EPA, 2000a).  

An alternative empirical approach offered in UK guidelines is to size a CW as a 

percentage of the size of the catchment area, using proven wetland to watershed area 

ratio (WWAR) values. UK guidelines recommend a wetland/watershed area ratio 

(WWAR) of 1–5% (Ellis et al., 2003). US guidelines recommend a larger minimum 

WWAR of 2%, an indication of the greater land availability (US EPA, 2000a). 

Figure 2-6 is a plot of catchment area vs. CW surface area for a number of UK 

stormwater CWs for which information is available. 
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Figure 2-6 - Plot of CW surface area vs. catchment area drained for UK stormwater systems (plot based 

on data obtained from Ellis et al., 2003; Adeola et al., 2009) 

Figure 2-6 shows that the majority of the CWs studied have a WWAR of below 1%. 

One CW has a WWAR comfortably within the recommended range of 1-5%. The 

average WWAR of these CWs is 0.71%. In contrast, a survey of US stormwater 

CWs found that the average WWAR was 4.26% (Ellis et al., 2003). This is a 

relatively large WWAR and it may suggest the greater land availability in the USA.  

2.3.4.2. Hydraulic retention time 

Retention time (i.e., the period of time that inflowing water is in the CW system 

before leaving as outflow) is an important parameter in CW treatment systems, since 

shorter hydraulic retention time (HRT) allows less time for wetland treatment 

processes to occur. The desirable HRT depends on which treatment processes are 

occurring in the wetland. For example, 3-5 hours is usually sufficient to allow for 

sedimentation of most coarse solids, but a HRT of more than 24 hours is 

recommended in the UK for the treatment of bacteria, degradable organics and toxic 

species found in finer solids fractions (Halcrow/UPRC, 2000). Reports by CIRIA 

(Martin et al., 2000) and the Highways Agency (Department of Transport, Local 

Government and Regions, 2001) advise a 14 day retention period for UK systems 

during wet times of the year, but this long HRT is generally not required for urban 
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surface runoff, unless full nutrient reduction is required. In most UK urban runoff, 

nitrogen loads have an average of under 9kg/impervious hectare/annum; a 

concentration which does not require full reduction (Shutes et al., 2005). The 

American guidelines (US EPA, 2000a, 2000c) do not give any specific 

recommendations regarding retention time, stating that this is dependent on the needs 

of the regulating body. However, they do say that a shallow marsh system with 

dense vegetation and near-flat gradient can hold shallow depths of water for 

“extended periods” of around 18 to 24 hours (US EPA, 2000a). The recommendation 

of this specific time range suggests that this HRT is regarded by the US EPA as a 

good standard for stormwater CWs, and matches the UK recommendations for the 

treatment of bacteria, degradable organics and toxic species. 

Research conducted on vertical subsurface-flow CWs for combined sewer overflow 

(CSO) treatment in Germany claims that HRT should be restricted to a maximum of 

48 hours, since extended inundation causes long periods of anaerobic conditions 

which hinder degradation processes (Uhl and Dittmer, 2005). It was also found that 

extended HRT can lead to clogging, due to the increased rate of biomass growth in 

the filter during the inundation period. This is likely to be more of a problem to CSO 

CWs than it is to solely stormwater CWs, due to the presence of sewage in CSO 

influent. 

Factors which affect the HRT include the width to length ratio of the wetland, the 

presence of vegetation, the porosity of the substrate, the water depth and the bed 

slope (Ellis et al., 2003). One way of increasing HRT is to increase wetland surface 

area. When dealing with urban stormwater, this is a problem. Due to the built-up 

nature of UK cities, there is a lack of open space in which CWs with large surface 

areas can be located. This issue is explored further in section 2.3.5. The use of a 

tidal-flow operation regime allows for control of the HRT. Thus, the retention time 

can be set to allow for maximum removal in a tidal-flow CW. 

2.3.4.3. Media 

The media chosen for a stormwater CW system is one of the most important 

selections in the design process. The material should ideally be locally and widely 
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available in order to encourage their implementation, and must be able to support 

vegetation. For subsurface-flow systems a hydraulic conductivity of 100-300 mm/hr 

is recommended in a temperate climate such as that of the UK, and the media should 

include some organic matter to increase water retention. The material should 

maintain a high permeability under compaction and should not be hydrophobic 

(FAWB, 2009a). Sand, gravel and loam are typical stormwater CW media choices 

(Hatt et al., 2007a; Adeola et al., 2009) and they are available UK-wide. USA 

recommendations simply state that topsoil or mulch should be used in order to 

support “vigorous” plant growth (New Jersey Department of Environmental 

Protection, 2004). In general, the American guidelines have a very prominent focus 

on the encouragement of biodiversity in stormwater CWs. This is not surprising 

since the systems are so large that there are opportunities to support large 

ecosystems. Alternative engineered media can be used in an attempt to increase 

removal efficiency for certain pollutants, but in terms of UK widespread 

implementation the use of locally available materials is a priority.   

2.3.4.4. Constructed wetland plants 

An important component of CW design is the choice of plants for the system. As 

well as biological processes, plants play a significant role in surface-flow systems as 

they reduce the flow velocity of the water in the wetland to aid sedimentation, which 

is particularly important since sedimentation is a major removal mechanism in 

wetland systems. Also, in subsurface-flow systems, plants help to maintain the 

hydraulic conductivity of the wetland, while heavy metal reduction is achieved by 

accumulation and storage in the rhizospheres of wetland plants (Kadlec and Wallace, 

2009), thus they are instrumental in stormwater treatment. Two of the most 

commonly used plants in CWs, namely Phragmites australis (common reed) and 

Typha latifolia (reedmace), are readily available in the UK and indeed have been 

used in several UK stormwater wetlands (Ellis et al., 2003). There are several 

species of plants that can be used in UK stormwater treatment systems, the most 

recommended being those that can grow quickly and constantly, spread well across 

the CW, absorb or convert pollutants, be easily harvested and look visually appealing 

(Ellis et al., 2003). This is less specific than recommendations by the US EPA, 
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which refer to three species of macrophyte (Saggitaria latifolia, Scirpus americanus 

and Scirpus validus) that establish themselves quickly and spread well, thus 

encouraging biodiversity (US EPA, 2000a).  This is another indication of the focus 

on biodiversity encouraged in US stormwater CWs, an initiative also encouraged in 

Italy for the design of CSO CWs (Meyer et al., 2013). 

2.3.4.5.Operation in cold climates 

One concern over the use of CWs in the UK is their ability to operate in cold 

climates. The UK can be prone to cold temperatures, with extreme cases of less than 

-20°C in Scotland, England and Wales (Met Office, 2011). The main concerns of 

cold conditions are: ice formation, which in turn causes hydraulic issues; and the 

effect of low temperatures on microbiological treatment processes in the CW 

(Wittgren and Mæhlum, 1997). However, CWs have been shown to be fully 

operational and with negligible or no effect on performance in areas with more 

consistently cold climates or harsher winters than the UK, such as Norway (Giæver, 

2003; Mæhlum and Jenssen, 2003) Minnesota (Kadlec et al., 2003) and Switzerland 

(Züst and Schönborn, 2003). Subsurface flow CWs are more desirable than FWS 

systems because the water is below the ground surface and therefore experiences a 

degree of insulation (Werker et al., 2002). Incorporating insulation into the design of 

the CW in the form of extruded polystyrene (XPS) is extremely effective in 

preventing freezing (Wittgren and Mæhlum, 1997), while other methods can be used 

such as straw insulation (Kadlec et al., 2003) or even allowing the top of the water to 

freeze and lowering the water underneath the ice to create an air gap (Giæver, 2003). 

Thus, CWs can be operated in low UK temperatures, providing that those prone to 

freezing include insulation measures in their design.  

2.3.4.6. Additional design features 

 “Constructed wetlands in UK surface drainage systems” contains further guidance 

on the design of CWs in the UK (Shutes et al., 2005), emphasising the importance of 

factors such as designing CWs to exhibit uniform flow characteristics. Uniform flow 

implies that the CW is being run as efficiently as possible, with the whole of the 

system contributing to hydraulic and treatment processes. In Australia this is 
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promoted by recommending that stormwater CWs are designed with a length to 

width ratio greater than 3 to 1 (Wong et al., 1999). Also encouraged is the 

incorporation of facilities to aid treatment in CWs, such as front-end sedimentation 

tanks (Shutes et al., 2005), which can be extremely effective in reducing the SS load, 

thus reducing the risk of clogging and decreasing the concentrations of pollutants 

which attach the SS particles in the CW influent. This is common procedure in 

German CSO CWs (Meyer et al., 2013) and in stormwater CWs in the USA, where 

the design guidelines include sediment forebays as a standard inclusion (US EPA, 

2000a). In fact, the US EPA guidelines describe a very standard footprint for the 

design of stormwater CWs, specifically a shallow surface flow system with a 

sediment forebay at the inlet and a micropool at the exit. There is no mention of 

alternative subsurface-flow designs. This is an indication of the larger availability of 

land area in the USA in comparison to the UK. In the USA, the excessive land 

availability allows a reasonably standard general design for stormwater CWs to be 

recommended, which can be implemented in most places. The shortage of land 

availability in the UK means that CWs require more “tailoring” to their settings. This 

is discussed further in section 2.3.5. UK guidelines could benefit from the inclusion 

of additional features prominent in CSO CWs in other European countries. Reduced 

flow rate outlets are installed in the vertical subsurface-flow CSO CWs used in Italy, 

ensuring a long HRT and initial ponding on the media surface, which promotes good 

water distribution over the surface area so that the entire CW is being used 

efficiently. Meanwhile, in France, a saturated layer of water is standard design 

procedure to support vegetation during dry periods, and an aeration pipe is also 

installed to encourage aeration at these times (Meyer et al., 2013). Studies conducted 

in Australia found that the incorporation of a saturated zone in pilot-scale vertical 

subsurface-flow CWs for stormwater runoff treatment had benefits to the removal of 

metals (Blecken et al., 2009a) and nutrients (Zhang et al., 2011). Information 

gathered from various systems in Germany found that influent arriving from CSO 

pipes directly on to the surface of a vertical subsurface-flow CW can cause erosive 

damage to plants and filter layers, and thus it is recommended that open inflow 

channels used as side weirs are used to reduce the inflow rate (Uhl and Dittmer, 

2005). A reduced inflow rate would also benefit surface-flow CWs for the same 
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reasons, and additionally it would also reduce the amount of turbulence caused by 

inflowing water, thereby reducing the risk of particle re-suspension, which can have 

a negative effect on pollutant removal efficiency (see section 2.3.4.7). 

2.3.4.7. Treatment performance 

In order to review the capability of UK CWs to remove contaminants from 

stormwater runoff, data on the performance of stormwater CWs was collected and 

analysed to examine the range of removal efficiencies. The removal efficiencies for 

the most commonly reported contaminants in UK systems were then compared to 

removal efficiencies reported in systems from countries in continental Europe, Asia, 

Africa, North America and Australasia. The results are shown in Table 2-2. 

Table 2-2 shows that most UK stormwater CWs can remove contaminants efficiently 

to levels comparable to other systems in the world. However, it is noted that 

phosphate removal is generally low (<50%), indicating limited phosphate absorbing 

capacity of the media used in the CW. Despite this, the data shows that the effluent 

phosphate concentrations corresponding to this removal efficiency were still well 

under the limits set for the respective sites (Revitt et al., 1999). The range of removal 

efficiencies is quite wide for most pollutants, indicating a wide variation in the 

removal efficiencies of the systems. This highlights the importance of good system 

design and the need for reliable UK guidelines. Despite this, the performances 

obtained as shown in Table 2-2 are very close to - and in some cases better than - 

those obtained from CWs elsewhere. Negative removal efficiencies (shown as minus 

values) can be seen for both UK CWs and those from the rest of the world. This is 

often due to the re-mobilization of solid particles in CWs during heavy storms. In 

subsurface-flow CWs this may indicate that the system has become saturated or even 

blocked, causing ponding on the surface of the CW and effectively creating a 

surface-flow system, in which re-suspension of solids can occur.  The re-suspension 

of particles increases the concentration of SS and other contaminants, such as heavy 

metals, which may be attached to the particles. This was found to be a consistent 

problem during the monitoring of stormwater CW sites in Brentwood and Dagenham 

(Scholes et al., 1999). This problem can be tackled with a well-designed sediment 

forebay and appropriate measures to reduce flow velocity. Alternatively, a bed of 
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aggregates can be used to prevent sediment re-suspension (Nuttall et al., 1997). 

Table 2-3 shows the pollutant removal information for a selection of UK stormwater 

CWs for which performance information was available in published literature. 

Table 2-2 – Performance and comparison of UK stormwater CWs  

 Removal efficiency (%) 

Pollutant UK Stormwater CWs Rest of the World 

Zn -56 – 99
 

6 – 98
 

Pb 0 – 98
 

28 – 99
 

Cd -89 – 99
 

0 – 99
 

Cu -97 – 97
 

-15 – 94
 

Ni 34 – 85 -76 – 98
 

Cr 24 – 81
 

40 – 84
 

SS -16 – 99
 

-98 – 91
 

BOD5 -63 – 99
 

-26 – 33
 

Faecal Coliforms (FC) 78 – 98
 

83 – 99
 

Nitrate -21 – 66 -13 – 88
 

Phosphate -18 – 48
 

17 – 51 

Data from: Meiroin (1989), Revitt et al. (1999), Scholes et al. (1999),  

Carleton et al. (2001), Kao et al. (2001), Shutes (2001),
 
Shutes et al. (2001), 

Bulc & Slak (2003), Ellis et al. (2003), Birch et al. (2004), Shutes et al. (2005),  

Terzakis et al. (2008)  

Negative values represent negative removal efficiencies, normally due  

to re-suspension of particles in the CW 

 

Table 2-3 - Pollutant removal efficiencies of a selection of UK stormwater CWs 

Name WWAR (%) Pollutant Removal Efficiency (%) Refs 

SS Pb Zn Cu Cd BOD5 FC 

Anton Crescent 1 56 7 37 - - - 78 1 

Great  Notley 

Garden 

0.42 - 89-97 10-99 94-97 10-99 - - 1,2 

Brentwood  0.005 -4-18 30-40 19-55 -15-39 -4-33 17-26 - 1, 3 

Newbury Bypass - 40-75 0-98 -56-76 -97-83 -89-99 -63-64 - 1, 4, 5 

Hopwood Park 1 - 95-99 - - - - 95-99 - 1 

Hopwood Park 2 - 97 - - - - 89 - 1 

Dagenham 0.04 -16-35 37-69 31-71 23-66 48-72 -23-24 - 1, 6 

Welsh Harp - 97 - - - -  - 85 1, 2 

Heathrow surface 

flow 

- - - - - - 18 97 1 

Heathrow 

subsurface flow 

- - - - - - 22 98 1 

1
Ellis et al, 2003;

 2
Shutes, 2001; 

3
Revitt et al., 1999; 

4
Shutes et al., 2001; 

5
Shutes et al., 2005; 

6
Scholes et al., 1999  

Negative values represent negative removal efficiencies, normally due to re-suspension of particles in 

the CW 
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Table 2-3 shows varying degrees of pollutant removal efficiencies across the 

systems. The removal efficiencies obtained for the Brentwood system are relatively 

low and this is likely due to the small WWAR value of 0.005%. The CWs at Great 

Notley Garden and Dagenham both produce impressive removal efficiencies for 

several pollutants despite their small WWAR values (both values are below the 

recommended value of 1%). It should be noted that both of these CWs are in the 

south-east of the UK, which is relatively drier than the rest of the country. Therefore 

the reduced rainfall in this area may have allowed for efficient CW treatment 

performance despite the low WWAR values. The removal efficiencies at the 

Hopwood Park CWs are very high for both SS and BOD5. Hopwood Park is a 

service station and is therefore unlikely to be a very large area. So it is probable that, 

with two CWs receiving runoff from the area, the WWAR value is relatively high, 

thus increasing treatment efficiency.  

The information in Table 2-3 shows that CWs are capable of treating stormwater 

effectively in the UK; however there is a lack of consistency in their performances. 

This can be improved upon with the provision of unified and clear design guidance. 

Furthermore, due to the fact that land is at a premium in the UK, CWs for 

stormwater management tend to have WWAR values below the recommended 

minimum of 1% and this may affect the performance of the systems (although this 

warrants further investigation). Alternative design techniques that may be used to 

manage stormwater effectively in spite of the low land availability are discussed in 

section 2.3.5. 

2.3.5. Implementation and retrofitting 

Despite the increased use of CWs for stormwater treatment in the UK in recent 

years, there is a lack of performance data and monitoring results. This is probably 

due in part to the fact that CWs for stormwater management are likely to be 

implemented as part of a SUDS treatment train rather than as stand-alone treatment. 

Therefore direct performance monitoring of CW systems is generally not carried out; 

rather the treatment performance of the SUDS train as a whole will be determined.  
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In contrast, performance data is more widely available in countries like the USA, 

where there are far more CWs operating as stand-alone treatment systems (Moore 

and Hunt, 2012). As mentioned earlier in section 2.3.2.2, nearly all UK stormwater 

CWs are horizontal subsurface-flow systems. Horizontal flow systems are very land 

intensive, and it appears that vertical-flow systems (which generally have a smaller 

footprint) have been ignored as a design option. The CWA database lists 51 vertical 

down-flow CWs operating in the UK; 23 of which are used for tertiary treatment of 

sewage. 

An alternative technique used to maximise treatment efficiency in areas of restricted 

land availability is effluent recycling. This method is used in the subsurface-flow 

CW at Heathrow Airport, London during winter periods when excess BOD5 levels 

are caused by a significant increase in the use of anti-icing glycols. Longer retention 

times are required to reduce the BOD5 levels and so the runoff is recycled back 

through the system to double the retention time (Adeola et al., 2009).  

Another method recommended in the UK to maximise HRT in CWs with low space 

availability is to increase the length of flow paths by introducing baffles (Woods-

Ballard et al., 2007). As water flows from the inlet to the outlet, it must flow down 

underneath the baffle and back up again, thus extending the flow path significantly 

and allowing more removal processes to occur. 

Although SUDS implementation is being highly encouraged in new developments, 

most diffuse urban pollutants that discharge to surface waters originate from existing 

developments (Mitchell, 2005). Retro-fitting CWs is one way to utilise their 

treatment capabilities without having to find additional space to accommodate them. 

Retro-fitted CW systems are normally sited in existing structures such as a balancing 

pond or other flood attenuation systems. Indeed, the retro-fitting of SUDS in general 

is a practice that the UK should look to adopt if it is to effectively tackle urban 

stormwater pollution. The disadvantage of retro-fitting a CW is the lack of flexibility 

in sizing the system, since it must fit within the existing footprint. Therefore some 

sites may not be suitably sized to provide the surface area required for effective 

stormwater treatment, particularly since vegetation and substrate media has to be 

added to the existing area. It is also important to note that, since the retro-fitted 
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system will be built in place of an existing structure, there are many stakeholders to 

satisfy, such as local residents and their representatives, planning authorities, 

regulatory bodies and landowners (Ellis et al., 2003). 

Despite these issues, retro-fitting CWs is a technique that has already proven 

successful both in the UK (such as the former retention basin in Anton Crescent, 

Surrey, that has been converted into a CW treating runoff from a residential and light 

commercial catchment area (Ellis et al., 2003)) and abroad (such as a retention basin 

in Slovenia which was converted into a CW that effectively removes solids and 

metals from highway runoff (Bulc and Slak, 2003)). The demonstrated success of 

these retro-fitted systems should encourage their further implementation in the UK.  

 

2.4. Vertical-flow subsurface constructed wetlands for stormwater 

treatment 

Based on the findings of section 2.3, the use of VF CWs should be a strong focus for 

further research. Firstly, it is important to investigate the use of VF systems for 

stormwater treatment. 

Considerable research has been carried out in this field. Through various 

experimental investigations on pilot-scale systems, the research carried out has 

allowed for design optimisation in several areas, including plant choice, media depth, 

media choice and surface area sizing (Hatt et al., 2007c; Bratieres et al., 2008; Zhang 

et al., 2011; Feng et al., 2012). The literature shows high removal rates of heavy 

metals (Blecken et al., 2009b; Feng et al., 2012), TSS and phosphorus (Bratieres et 

al., 2008). However, the research confirms that traditional VF CW operating 

conditions have limited N removal abilities due to their inability to denitrify. This is 

evident in Bratieres et al. (2008), where the systems leached nitrates and TN into the 

effluent, resulting in negative removal efficiencies. While nitrate concentrations 

increased, ammonia removal was consistently high, thus indicating the strong 

nitrification abilities of VF CWs. With nitrates not readily absorbent to soil due to 

their anionic form (Henderson et al., 2007), denitrification is required to convert 

nitrates to N2 gas. Unfortunately, traditional VF CW design does not allow for the 
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anoxic conditions required in which denitrification can occur (Kim et al., 2003; 

Davis et al., 2006; Vymazal and Kröpfelová, 2008). 

Several modifications to the traditional VF CW design have been investigated, such 

as the introduction of a permanently saturated zone at the bottom of the CW (Zinger 

et al., 2007; Blecken et al., 2009a) to provide partial anaerobic conditions. An 

alternative technique explored by Scholz and Hedmark (2010) involves nearly 

constant saturation of the VF CW (parts of the CWs became unsaturated during 

release of effluent for 15 minute periods, 3 times per week, but the effluent water 

was then replaced with new influent water). This study found that plant uptake was 

the main removal mechanism for nitrogen removal. This is unsurprising, since the 

constantly saturated conditions mean that there is limited oxygen transfer in the 

system to cause nitrification. This places a heavy reliance on plants, which is 

controversial as some studies have claimed that macrophytes play very insignificant 

roles in pollutant removal (Mays and Edwards, 2001; Baldizón et al., 2002; Scholz 

and Xu, 2002). Furthermore, it has been determined that aerobic treatment processes 

occur mainly during the drained period in VF CWs (Hu et al., 2014); therefore 

constant saturation is not conducive to effective nitrification. 

To date, there has been no investigation into the use of tidal flow CWs for 

stormwater treatment, in which influent stormwater is held in the CW for a set period 

of time to allow removal processes to occur, before being completely drained to 

allow re-entry of air into the system. The potential for improved TN removal is in the 

fixed retention time: during this time, anoxic conditions are developed in the CW 

which aid denitrification (Hu et al., 2014). Additionally, the fixed retention time 

allows for extended contact time for adsorption processes. The application of a tidal 

flow regime to a VF stormwater CW is the main focus of this thesis. 

2.5. Summary 

The literature review found that CWs have the potential to be invaluable for 

stormwater management in the UK, helping to protect local watercourses, attenuate 

flooding and allowing surface runoff to be re-used for non-potable purposes, thus 

reducing the strain on potable water supplies. The review has shown that CWs can 
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be used to treat stormwater for all of the priority pollutants concerning the UK, and 

existing UK CWs have shown their capability at effectively reducing contaminant 

concentrations from stormwater just as well as systems in the rest of the world. 

However, their widespread implementation is hindered by a lack of design codes and 

space restrictions in the UK. To address these issues, unified guidance needs to be 

developed based on further research into the use of CWs to treat urban stormwater, 

and system designs which are less land-intensive should be considered such as the 

use of VF CWs.  However, the traditional VF CW design has limited nitrate removal 

capabilities, which affects the reduction of TN, a priority pollutant in stormwater. 

These findings were the main drivers behind this thesis: to develop a VF CW design 

that can effectively treat stormwater for nitrate removal and a range of priority 

pollutants and to understand the internal processes that contribute the reduction of 

these contaminants. In doing so, this study will contribute to the body of research 

devoted to understanding stormwater treatment through CWs and hopefully lead to 

the availability of improved guidance on their implementation in the UK. 
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3. Materials and Methods 

3.1. Experimental set-up: pilot-scale constructed wetlands 

Eight pilot-scale CWs were constructed using structured-wall high-density 

polyethylene (HDPE) pipes. Figure 3-1 shows a photograph of the setup at the 

School of Engineering, Cardiff University. The CWs were operated as vertical 

down-flow systems, and different operating conditions were applied depending on 

the variables that each individual unit was being used to investigate. 

 

 

Figure 3-1 - Experimental set-up of the pilot-scale CW systems 

The structured-wall HDPE pipes which housed the CWs were manufactured by 

Asset International Ltd. Each pipe had an internal diameter of 400 mm (minimum 

diameter available) and a height of 1000 mm. The pipes were sealed off at one end 

with HDPE plastic, thus providing the base of the CW. A main outlet tap was fitted 

on the base of the CW in the centre of this sealed end, An additional tap was fitted 

for overflow, but was not required. A typical pilot-scale CW unit, built from a single 

pipe length, can be seen in Figure 3-2. 
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Figure 3-2 - Pilot scale CW housed in HDPE pipe 

3.1.1. Media and plants 

Sand and gravel are typical media used in vertical subsurface-flow stormwater CW 

systems. Similar stormwater treatment systems using sand-based CW media have 

shown good heavy metals removal (Hatt et al., 2007a; Li and Davis, 2009), and 

heavy metals are one of the main pollutants of concern in stormwater runoff. 

Guidelines produced by the Facility for Advancing Water Biofiltration (FAWB) 

recommend the use of loamy sand in stormwater biofiltration treatment systems due 

to its high permeability under compaction, its organic matter content (which 

increases water holding capacity), its low nutrient content and its ability to support 

vegetation well (Blecken et al., 2009a; FAWB, 2009a). Loamy sand was therefore 

selected as the main media in 6 out of the 8 CW units (units 1, 3, 4, 5, 6 and 7). 

Gravel is cheap and readily available, and its use as CW media has been effective in 

suspended solids and heavy metal removal (Hatt et al., 2007c). Unit 2 was therefore 
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constructed with a media arrangement where graded gravel is the predominant media 

in order to assess its performance. 

Blast furnace slag (BFS) is an industrial by-product which has been shown to exhibit 

high adsorptive capacity for heavy metals and phosphorus (Grüneberg and Kern, 

2001; Taylor, 2006; Korkusuz et al., 2007). Heavy metals and phosphorus are 

priority pollutants in stormwater treatment, and the utilisation of a by-product makes 

BFS a potentially valuable and sustainable material for use in CWs. Therefore, 

granulated BFS (diameter 4 – 12.5 mm) was selected as the main media in unit 8 

(see Figure 3-3). 

 

Figure 3-3 - Granulated BFS in CW unit 8 

Each unit contained a drainage layer of fine gravel (6 mm diameter) and all systems 

(apart from unit 2, in which all layers are gravel) contained a transition layer 

consisting of sharp sand to ensure that none of the primary media is transported to 

the drainage layer. In unit 2, medium gravel (10 mm diameter) was placed as the 

transition layer and coarse gravel (20 mm diameter) made up the drainage layer.  

Each CW unit was planted with Typha latifolia plants (density = 64 plants/m
2
, see 

Figure 3-4). Typha has several benefits: it is found all over the world, is effective in 
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metals removal and it is renowned for its suitability for treating surface runoff (Ellis 

et al., 2003).  

 

Figure 3-4 - Typha latifolia prior to planting (left, centre) and immediately after planting in CW unit 2 

Each CW consisted of a primary layer of substrate media (depth 450 mm), a 

transition layer (100 mm) and a drainage layer (50 mm). Table 3-1 details the 

operating conditions of all the pilot-scale units and shows the media configuration 

for all units. Figure 3-5 shows cross sections of the CWs in which the media 

composition can be viewed. The media of units 1,3,4,5,6 and 7 was loamy sand with 

a sand transition layer and gravel drainage layer. This media arrangement is 

recommended by the FAWB (2009a). The gravel layer structure of unit 2 is “typical” 

of a downflow vertical flow CW system as described in Cooper et al. (1996). The 

configuration of unit 8 is similar to that recommended by the FAWB, but with loamy 

sand replaced by BFS. 

3.1.2. Sizing 

3.1.2.1. Surface area 

Under field conditions, the surface area of the CW would be determined by the size 

of the catchment that it is located in. The surface area is determined as a percentage 

of the size of the watershed area, and this is known as the wetland/watershed area 

ratio (WWAR). To clarify, a CW with a WWAR value of 5% would mean that the 

surface area of the CW is equal to 5% of the total catchment surface area. The design 

of CWs for stormwater treatment is so variable (due to the unpredictable nature of 

rainfall and the differing treatment requirements in different catchments) that there 

are no design codes specifying a WWAR value which should be used; instead the 
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value is usually taken from guidelines and recommendations. For example, Ellis et 

al. (2003) state that values of 1-5% are typical, and suggest using a WWAR of 2-3%. 

Ideally the WWAR value should be as small as possible to minimise land uptake 

without compromising treatment. This is especially important for retrofitting CW 

systems, which was identified in the literature review as a key process to increase the 

use of CW systems for stormwater treatment. 

In this design the sizing method has effectively been reversed. The CW surface area 

is limited by the fact that the minimum available diameter of HDPE pipes (400 mm) 

was used for the pilot scale systems. Rather than starting with a watershed area and 

calculating the CW surface area, the CW area itself is known and the representative 

area of the catchment that can be treated by the system is determined. First, the 

surface area of the CW was determined based on a circular cross-sectional area. For 

all eight CWs, a diameter of 0.4 m gives a cross-sectional area of 0.126 m². 

Three separate values of WWAR were used in the experiment to determine the 

performance of the system under different loading conditions. These values were 

1.5%, 2.5% and 5%. 2.5% was the control WWAR, since it is within the 2-3% 

recommendation by Ellis et al (2003). This WWAR value was applied to units 1, 2, 

3, 4, 6 and 8. Unit 5 had a 5% WWAR to investigate the extent to which pollutant 

removal is improved by increasing the representative surface area of a CW. Unit 7 

had a 1.5% WWAR to determine if the CW system can exhibit efficient pollutant 

removal while only taking up a very small area of the catchment. Table 3-1 details 

the operating conditions of all the pilot-scale units, and shows which CW units were 

used to investigate WWAR value and the WWAR value for each unit. Any observed 

contrast in performance between the three different WWAR values should allow for 

an ideal WWAR value to be determined for this system design.  

Representative catchment areas treated by the systems are calculated as follows: 

For a 1.5% WWAR:       
   

    
       

   

   
          

For a 2.5% WWAR:       
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For a 5% WWAR:       
   

 
             

3.1.2.2. Media depth 

The pilot-scale CWs have a total media depth of 0.6 m, which reflects values found 

in literature and reports from other studies. The 0.6 m depth is 100 mm deeper than 

the depth determined by Feng et al. (2012), but with the inclusion of a recommended 

150 mm deep transition/drainage layer, it was decided that an extra 100 mm of total 

depth would be beneficial to ensure that the primary media was able to provide 

plenty of surface area for adsorption and other pollutant removal processes. UK 

vertical-flow CWs have traditionally been constructed to a depth of 0.5–0.8 m 

(Cooper et al., 1996). These typical depths are chosen to provide adequate hydraulic 

residence time (HRT) for traditional vertical-flow CWs to provide efficient 

treatment. Several studies of a similar pilot-scale set-up to this experiment use 0.8 m 

deep cells (Scholz, 2004; Blecken et al., 2009a; Blecken et al., 2010). Hatt et al. 

found that a gravel filter of depth 0.5 m was suitable for removing sediment and 

heavy metals (Hatt et al., 2007c), and it has been recommended that 0.5 m is a 

sufficient depth for a stormwater infiltration treatment system (Feng et al., 2012). 
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Figure 3-5 - Cross-section of loamy sand, gravel and BFS CW units 
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Table 3-1 - Variables matrix 

 CW unit 

1 2 3 4 5 6 7 8 

WWAR (%) 2.5 2.5 2.5 2.5 5 2.5 1.5 2.5 

Wetting/drying 

regime 

Wet 

conditions 

Wet 

conditions 

Partially dry 

conditions 

Wet 

conditions 

Wet 

conditions 

Extended dry 

conditions 

Wet 

conditions 

Wet 

conditions 

Media 

composition 

(by depth) 

0 – 

450 

mm 

Loamy sand Fine gravel Loamy sand Loamy sand Loamy sand Loamy sand Loamy sand Blast 

furnace slag 

450 – 

550 

mm 

Sand Med gravel Sand Sand Sand Sand Sand Sand 

550 – 

600 

mm 

Fine gravel Coarse gravel Fine gravel Fine gravel Fine gravel Fine gravel Fine gravel Fine gravel 

Variable Investigated (Control 

unit) 

Media type Wetting and 

drying regime 

(Control 

duplicate) 

WWAR (5%) Wetting and 

drying regime 

WWAR 

(1.5%) 

Media type 

*Fine gravel = 6 mm diameter; Med gravel = 10 mm diameter; Coarse gravel = 20 mm diameter 
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3.1.3. Semi-synthetic stormwater 

Semi-synthetic stormwater was used in the experiment, rather than natural 

stormwater or fully synthetic stormwater. Natural stormwater was not available in 

the required quantities on site and it can also introduce a high degree of 

inconsistency in inflow concentrations and attributes, while 100% synthetic 

stormwater is less representative of real runoff. Semi-synthetic stormwater is a 

compromise which allows an ideal degree of control over inflow concentrations 

while simultaneously representing natural runoff better as it has been produced from 

stormwater sediment. 

The semi-synthetic stormwater was produced by mixing real stormwater sediment 

with dechlorinated tap water, and adding laboratory-grade chemicals to achieve 

elevated pollutant concentrations where required. Stormwater sediment was 

collected from two locations: initially from a stormwater runoff pond in Nant y 

Briwnant, north Cardiff; then from gully pots in the car park of the School of 

Engineering, Cardiff University. The reason for the change of location after 3 

months of operation was the unreliable access to the pond: at times of high rainfall 

the (normally subsurface) pond would flood and it was impossible to collect the 

sediments required.  

 

 

 

 

 

 

The collected sediment was wet-sieved through a 1 mm sieve. This upper limit for 

the solids particle size is recommended by FAWB (2009) to replicate runoff that has 

not passed through a pre-treatment facility. The wet-sieving procedure produces 

slurry: a high concentration mixture of solids with water. The total suspended solids 

  Figure 3-6 - Stormwater pond at Nant y Briwnant, Cardiff: flooded conditions shown on right 
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(TSSs) concentration of this slurry was then determined by standard methods (APHA 

et al., 2012). A sample of the slurry was analysed in Cardiff University’s CLEER 

(Characterisation Laboratories for Environmental Engineering Research) laboratory 

to determine the existing concentration of each of the contaminants listed in Table 

3-2 (see section 3.1.7 for analysis procedures). Where pollutant concentrations were 

found to be lower than target inflow values, laboratory grade chemicals were added 

to the slurry to meet these targets (see section 3.1.4 for more detail). Equation 3.1 

was used to determine the volume of slurry required for the desired total volume of 

semi-synthetic runoff. 

   
        

    
                 (3.1) 

where: VS = volume of slurry (L) 

 TSST = target TSS concentration (mg/L) 

 VST = volume of semi-synthetic stormwater (L) 

 TSSS = slurry TSS concentration (mg/L) 

After VS was determined, this volume was added to dechlorinated tap water (volume 

VST). The tap water was dechlorinated by the addition of sodium thiosulphate (0.1 g 

per 100 L of tap water, as recommended by FAWB, 2009). The mixture was then 

stirred continuously for 10 minutes to achieve uniform distribution of sediment in 

the water and adsorption of contaminants to the solids particles. 

3.1.4.  Pollutant concentrations 

Inflow pollutant concentrations were representative of urban areas. The priority 

stormwater pollutants in UK and European urban areas were identified in the 

literature review (see Table 2-1). 

The most up-to-date extensive study of urban stormwater pollutant concentrations 

worldwide is Urban Stormwater Quality: A Statistical Overview, by Duncan (1999). 

The report lists typical stormwater contaminants and their average concentrations in 

different types of catchment. The catchment type of interest to this experiment is 

“high urban” (highly urbanised catchments). The average concentration values from 
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Duncan (1999) were compared to those found in the literature review and adjusted 

where necessary.  

Several pollutants have not been selected for the experiment due to the lack of data 

regarding their typical concentrations in urban stormwater. The selected 

contaminants are shown in Table 3-2, along with their target influent concentration 

values and the laboratory grade chemical that would be added to achieve the required 

concentration for each pollutant.  

Table 3-2 - Target inflow contaminant concentrations and chemicals used to achieve them 

Pollutant Target 

concentration 

(mg/l)  

Chemical added to produce semi-synthetic 

stormwater 

TSS 180 - 

TP 0.45 di-Potassium hydrogen phosphate (K2HPO4)  

and 

di-Sodium hydrogen phosphate (Na2HPO4) 

PO4-P - - 

TN 3 Ammonium chloride (NH4Cl) 

NH4-N - - 

NO2-N - - 

NO3-N - - 

Pb 0.16 Lead nitrate (Pb(NO3)2) 

Zn 0.35 Zinc sulphate heptahydrate (ZnSO4.7H2O) 

Cu 0.07 Copper (II) chloride dihydrate (CuCl2.2H2O) 

Cd 0.005 1000 mg/l standard solution 

Cr 0.025 Chromium nitrate (Cr(NO3)3) 

Ni 0.04 Nickel (II) chloride hexahydrate (NiCl2.6H2O) 

Fe 2.9 Iron (II) Chloride tetrahydrate (FeCl2.4H2O) 

 

3.1.5. Hydraulic loading 

3.1.5.1.  Average rainfall 

In the case of stormwater treatment, the hydraulic loading volume (HLV) is based on 

rainfall patterns. Predictions for rainfall in a certain catchment are made based on 

past precipitation data from the area. The size of a catchment and the amount of 

precipitation are the two influential factors in determining the HLV.  

Average annual rainfall (AAR) values were based on Met Office data from a range 

of stations located in urban areas across the UK from 1978 – 2011. This time range 
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was the widest available for the number of stations used, and it is a long enough 

period to provide reliable averages. The stations from which the data was obtained 

are listed below: 

 Armagh, Northern Ireland 

 Bradford, England 

 Cambridge, England 

 Cardiff, Wales 

 Durham, England 

 Heathrow (London) England 

 Oxford, England 

 Paisley, Scotland 

 Sheffield, England 

The distribution of these stations across the UK is shown in Figure 3-7. At least one 

station for each country in the UK provides rainfall data for an urban area, and the 

distribution is spread well across the map. 

 

Figure 3-7 - Locations of weather stations (denoted by red markers) from which rainfall data was collected 

Rainfall values (in mm) are provided for every month of every year at each station. 

These figures were totalled for each year in order to give an annual rainfall value, 

and then an AAR value was calculated for 1978 to 2011, inclusive. The AAR values 
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for each of the 9 stations were then averaged to give an AAR figure for UK urban 

areas (see Table 3-3). 

The number of “rainy days” is counted as the number of days with >1 mm rainfall. 

The Met Office provides monthly and annual figures for the number of rainy days 

recorded in the following UK districts: 

 North Scotland 

 East Scotland 

 West Scotland 

 East and north-east England 

 North-west England and north Wales 

 Midlands 

 East Anglia 

 South Wales and south-west England 

 South-east and central south England 

 Northern Ireland 

The AAR values recorded at each of the stations were matched up with their 

corresponding district figures for average number of rainy days experienced per year 

(1978-2011) in that area. 

Table 3-3 - UK urban rainfall data, 1978-2011 (Met Office) 

Station Corresponding District Average Annual 

Rainfall, 1978 – 2011 

(inclusive) (mm) 

Average annual number of 

days with >1 mm rain, 1978 

– 2011 (inclusive) 

Armagh Northern Ireland 816 178 

Bradford NW England & N 

Wales 

873 166 

Cambridge East Anglia 561 115 

Cardiff S Wales & SW England 1143 156 

Durham E & NE England 663 131 

Heathrow, 

London 

SE & Central S 

England 

600 121 

Oxford Midlands 653 130 

Paisley West Scotland 1250 194 

Sheffield Midlands 833 130 

 UK Average  821.33 146.78 
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The data is collated in Table 3-3, and gives an AAR value of 821 mm for UK urban 

areas, along with a corresponding value of 147 rainy days, from 1978 to 2011. 

3.1.5.2. Runoff entering CW system 

The average depth of rainfall for each event (an event = 1 rainy day) is calculated as 

below: 

                            
                       

                
 

   

   
                                

Representative sizing values were determined for 1.5%, 2.5%, and 5% WWARs in 

Section 3.1.2.1. An 80% impervious catchment is assumed, following guidance from 

the SUDS Manual (Woods-Ballard et al., 2007). Thus, the influent dose volumes 

were determined as below: 

For a 2.5% WWAR: 5.59 L/m² x 5.04 m² x 0.8 = 22.5 L per event 

The influent dose volumes (per rainfall event) are summarised in Table 3-4. 

The number of rain events per week is calculated as the number of rainy days 

divided by the number of weeks in a year, so: 

147/52 = 2.83 = 3 events per week 

Therefore, the weekly influent volumes were calculated as follows: 

For a 2.5% WWAR: 3 x 22.5 L = 67.5 L/week 

The weekly influent volumes (per rainfall event) are summarised in Table 3-4. 

Table 3-4  - Influent volumes for each WWAR value 

WWAR value (%) Catchment area (m²) Influent dose volume 

per event (L) 

Weekly influent 

volume (L) 

1.5 8.40 37.6 112.8 

2.5 5.04 22.5 67.5 

5 2.52 11.3 33.9 
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There were five separate inflow regimes, as detailed in Table 3-5. 

The decision to keep regimes 1, 2 and 3 constant throughout the entirety of the 

experiment was based on investigation of the number of rainy days experienced per 

month in each of the districts given in the Met Office data. Data is shown in Table 

3-6. Rainfall is distributed in each district relatively evenly throughout the year, and 

thus the inflow of regimes 1, 2 and 3 consist of the same dosage volume every week 

during the experiment. 

Table 3-5 - Loading regimes (WC = wet conditions; PDC = partially dry conditions; EDC = extended dry 

conditions) 

Loading 

regime 

WWAR Wetting/drying 

regime 

Dosing patterns 

1 2.5% WC 3 x 22.5 L per week 

2 5% WC 3 x 11.3 L per week 

3 1.5% WC 3 x 37.6 L per week 

4 2.5% PDC 3 x 22.5 L for 1 week, followed by dry week, repeat cycle 

5 2.5% EDC 3 x 22.5 L for 1 week, followed by 4 weeks dry, 3 x 5 

week cycles 

 

3.1.5.3.Wetting and drying periods 

Inflow regime 4 (see Table 3-5) consisted of intermittent wet (3 doses per week) and 

dry weeks (0 doses per week). The pattern was: 1 week wet; 1 week dry; 1 week wet; 

1 week dry etc. The purpose of this arrangement was to replicate short-term dry 

weather spells and determine their effect on the performance of the CWs. This also 

gives some representation of the changeable weather in the UK, where rainfall 

patterns can be more stochastic in nature compared to other countries that experience 

annual monsoon seasons. This flow regime was named as “partially dry conditions”, 

or PDC. 

Inflow regime 5 (see Table 3-5) consisted of an arrangement of both wet weeks and 

dry weeks. The purpose of this arrangement is to analyse the performance of the CW 

system when it experiences long periods of reduced rainfall/drought. This regime 

was named as “extended dry conditions”, or EDC. The ratio of wet weeks to dry 

weeks was based on the reduced rainfall experienced in East Anglia in spring 2011, a 
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three-month period that the Met Office recognises as particularly warm and dry. The 

region experienced only 2.1 days of rain > 1 mm in March 2011, followed by 1.8 

days in April and 4 days in May. This is a total of 8 rainy days in 3 months. The 

wetting and drying regime was based on this statistic, and was calculated as follows: 

1. The period March-May consists of 13 weeks, which, according to the 

established dosing regime of 3 doses per week, totals 39 wet days. 

2. In the 2011 drought, there were only 8 wet days, which leaves a ratio of 8 wet 

days: 31 dry days. 

3. 31/8 = 3.9 ≈ 4, therefore wet to dry ratio is taken as 1:4. 

4. As this experiment is carried out in weeks, regime 3 had a single wet week 

followed by 4 dry weeks in one cycle.  

5. There were 3 full cycles in each “dry season” to represent an extended period 

of drought. In between “dry seasons” the CW system received inflow regime 

1. 

Table 3-1 shows which CW units were used to investigate the effect of different dry 

periods and the wetting/drying regime of the units. 

3.1.6. Systems operation 

Influent doses were administered to the pilot-scale CWs 3 times per week, according 

to the inflow regimes described in Table 3-5. The semi-synthetic stormwater was 

transported from the mixing tank to the CWs in a 10 L bucket. To achieve uniform 

influent concentrations across the units, the stormwater was applied in a series of 3 

passes (4 for unit 7, which had a larger inflow volume). 

Each dose of stormwater was retained in the CWs for 24 hours. This value is 

recommended to allow sufficient time for treatment of bacteria, degradable organics 

and toxic species found in finer solids fractions (Halcrow/UPRC, 2000).  

Exactly 24 hours after the inflow dosing, the water was released from the bottom of 

the CWs via the outlet tap. 
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3.1.7. Sampling and processing 

Inflow sampling was conducted three times per week (once for each dose), while 

outflow sampling was limited to once per week due to analytical cost restraints. 

Weekly outflow sampling was sufficient to conduct a comprehensive analysis due to 

the extensive period of time over which the experiment was run. Inflow samples 

were taken from the feed tank immediately after the semi-synthetic stormwater had 

been mixed, prior to the dose. Outflow samples were taken from the outlet at the 

bottom of each CW unit, at the time of outflow release after the 24 hour retention 

period. For those units experiencing dry weeks, samples were only taken during wet 

weeks.  

Table 3-6 - Average number of rainy days per month, 1978-2011 (Met Office) 

 

District Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

 

Min 

 

Max 

Max 

-Min 

N Scotland 

 

20.2 16.8 19.6 14.6 13.7 13.6 14.9 16.0 17.6 20.2 19.9 19.5 13.7 20.2 6.5 

E Scotland 

 

15.5 12.6 14.3 11.2 11.9 11.9 12.0 12.8 12.9 15.4 15.3 15.0 11.2 15.5 4.3 

W 

Scotland 

 

19.1 15.3 17.6 13.2 12.8 13.2 14.4 15.7 16.5 19.1 18.7 18.2 12.8 19.1 6.3 

E & NE 

England 

12.8 10.5 11.3 9.7 9.7 10.2 9.7 10.6 9.7 11.8 12.7 12.8 9.7 12.8 3.1 

NW Eng & 

N Wales 

16.2 12.5 14.6 11.7 11.7 11.9 11.8 13.5 12.9 16.2 16.5 16.5 11.7 16.5 4.8 

Midlands 

 

12.6 10.3 11.5 10.0 10.0 9.8 9.2 10.0 9.5 11.8 12.2 12.6 9.2 12.6 3.4 

East 

Anglia 

 

11.4 9.3 10.2 9.0 8.5 9.3 8.5 8.5 8.3 9.9 10.6 11.2 8.3 11.4 3.1 

S Wales & 

SW Eng 

16.1 12.6 13.9 11.2 11.0 10.2 10.6 11.4 11.5 15.4 15.7 16.1 10.2 16.1 5.9 

SE & Cent 

S Eng 

12.4 9.9 10.8 9.3 9.1 8.7 8.2 8.4 8.7 11.4 11.6 12.2 8.2 12.4 4.2 

N Ireland 

 

17.2 13.7 16.2 12.6 13.0 12.6 13.8 14.5 14.4 16.6 16.8 16.7 12.6 17.2 4.6 
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The parameters measured were total suspended solids (TSS), total nitrogen (TN), 

ammonium-nitrogen (NH4-N), nitrite-nitrogen (NO2-N), nitrate-nitrogen (NO3-N), 

total phosphorus (TP), orthophosphate (PO4-P), total Fe, Zn, Pb, Ni, Cd, Cr, Cu, pH, 

temperature and electrical conductivity (EC). For a seven week period during the 

experimental run, the dissolved metal concentrations were also determined. This 

additional analysis was not run over the entire period of the project due to time and 

budget restraints, so serves as a supporting analysis to the main experiment. 

In-situ measurements were taken for pH, temperature and EC in both influent and 

effluent water, while all other pollutant concentrations were determined in the lab 

using the samples taken at the time of dosing (for influent) or release (for effluent). 

Samples were collected in 300 ml polyethylene bottles. For metal analysis, 40 mL 

volumes were acidified with nitric acid and stored at <4°C, as recommended in 

standard methods (APHA et al., 2012). TSS measurements were taken immediately 

after sample collection, so there were no further storage requirements. 

Measurements for pH, temperature and EC were recorded using a HANNA HI 

991301 probe.  Heavy metal and TP concentrations were determined using an 

Optima 210 DV ICP OES (inductively coupled plasma optical emission 

spectrometer, Perkin Elmer). The ICP limits of detection are shown in Table 3-7. 

TN, NH4-N, NO2-N, NO3-N, PO4-P and TSS concentrations were measured with a 

Hach Lange DR3900 benchtop spectrophotometer. The spectrophotometer limits of 

detection are shown in Table 3-8. TN, and PO4-P were measured using Hach 

Lange’s cuvette tests, for which all required analytical reagents are provided, along 

with vessels for analysis. Digestion at 100°C was required for TN prior to testing, 

and this was achieved with the use of the Hach Lange LT-200 thermostat. NH4-N 

concentrations were determined using the “Nessler” method, which requires the 

addition of nessler liquid reagent prior to analysis. NO2 and NO3-N were determined 

using powder pillow reagents (diazotization and cadmium reduction methods, 

respectively).  
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Table 3-7 - ICP-OES limits of detection 

Parameter Lower concentration 

detection limit (mg/L) 

Fe 0.0055 

Zn 0.0064 

Pb 0.0195 

Cd 0.0013 

Ni 0.0051 

Cr 0.0010 

Cu 0.0013 

TP 0.0445 

 

Table 3-8 - Hach Lange DR3900 benchtop spectrophotometer limits of detection 

Parameter Lower concentration 

detection limit (mg/L) 

TSS 5 

TN 0.1000 

NH4-N 0.0212 

NO2-N 0.0020 

NO3-N 0.010 

PO4-P 0.05 
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4. Characterisation and Metal Adsorption 

Characteristics of Primary Media 

4.1. Introduction 

This chapter investigates the properties of the loamy sand and BFS used in the pilot-

scale experiment. The elemental composition of the two types of media is 

determined and their suitability for adsorption of selected heavy metals that have 

been highlighted as priority pollutants in stormwater runoff (i.e. zinc (Zn), copper 

(Cu), lead (Pb), cadmium (Cd), chromium (Cr), nickel (Ni) and iron (Fe)) is 

investigated. Adsorption is a known cause of metal removal in CWs, but it is not 

possible to ascertain whether adsorption is taking place in a CW simply from 

measuring influent and effluent concentrations because metals can be removed in 

other ways such as sedimentation, precipitation and plant uptake. Thus, the primary 

substrate media materials of loamy sand and BFS were further scrutinised in order to 

determine their capacity for adsorption. The purposes of the experiments described 

in this chapter were: 

1) To undertake physicochemical characterization of selected media for the removal 

of heavy metals in stormwater 

2) To investigate the kinetics of heavy metal adsorption to loamy sand and BFS and 

the influencing factors  

3) To determine the adsorption capacities of loamy sand and BFS for selected heavy 

metals. 

Characterisation of media was carried out through elemental composition analysis, 

which provides valuable data regarding the constituents of both the loamy sand and 

BFS, and helps to understand some of the pollutant removal patterns discussed in 

chapter 5.  

The batch adsorption technique - a commonly used, simple and reliable technique 

(Potgieter et al., 2006) - was implemented to generate data for kinetic models and 
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adsorption equilibrium isotherms. Adsorption isotherms describe the way in which 

pollutants interact with the adsorbent material. This is essential to understand the 

adsorption capacity of the adsorbent and for optimisation of adsorption mechanism 

pathways (Foo and Hameed, 2010). Kinetic models describe the rate of the 

adsorption reaction and provide an insight to the possible mechanism of adsorption 

(Gupta and Bhattacharyya, 2011). 

4.2. Materials and methods 

4.2.1. Characterisation of media 

Samples of loamy sand media and BFS were taken from the pilot-scale CWs (at the 

beginning of the experiment) for use in the characterisation and batch adsorption 

experiments. Elemental composition of both materials was carried out with the use 

of an inductive coupled plasma-optical emission spectrophotometer (Perkin Elmer 

ICP-OES 2100 DV). Samples were air-dried for 2 weeks, and the BFS was 

subsequently ground to particle size <2 mm. 0.1 g samples of each material were 

inserted to vessels along with a digestion solution of concentrated hydrofluoric acid 

(HF). The final volume was 50 mL. The samples were then digested using low 

volume microwave digestion and then analysed for the concentrations of Al, Ca, Fe, 

Mg, Mn, Pb, Si and Zn using the ICP. 

4.2.2. Synthetic metal solution 

Stock metal solutions were prepared by dissolving laboratory grade chemicals in 

deionised water. Solutions were kept air-tight and stored, refrigerated, in the 

laboratory for no more than 2 weeks prior to use. Metal solutions for each 

experiment were prepared by diluting the appropriate stock solutions with deionised 

water to the desired concentrations. 

4.2.3. Metal adsorption experiments 

A series of batch adsorption experiments was carried out to determine the optimum 

adsorbent dosage, equilibrium time of adsorption, kinetic parameters and equilibrium 

adsorption parameters. These experiments are detailed in the following sections. All 

experiments were carried out in a laboratory with a constant temperature of 19°C. 
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4.2.3.1. Optimum dosage experiment 

Three different masses of both adsorbents were investigated to determine the 

optimum dosage for the batch adsorption experiments. The mass values were 0.05 g, 

0.1 g and 0.5 g. The adsorbents were added to 100 mL of each metal solution, 

contained in 200 mL bottles. The initial concentrations of the metal solutions were 

intended to be representative of the influent concentrations in the semi-synthetic 

stormwater used in the pilot-scale CWs. The initial adsorbate concentrations for the 

batch adsorption experiments are shown in Table 4-1.  

The bottles were placed on a rotary shaker and shaken for a predetermined time of 

48 hours. After 48 hours, the bottles were removed from the shaker and a 40 mL 

sample was taken from each mixture. Each sample was filtered using standard 

vacuum filtration, preserved with nitric acid and stored at a temperature of <4°C, as 

recommended in standard methods (APHA, 2012). The samples were then analysed 

for the metal of concern using an Optima 210 DV ICP OES (Perkin Elmer). 

Table 4-1 - Initial adsorbate concentrations for all batch adsorption experiments 

 

 

4.2.3.2. Equilibrium time experiment 

The second phase of the batch adsorption experiments was carried out to determine a 

general equilibrium time, in order to plan the sampling times and maximum time to 

be used in the equilibrium tests. The optimum dosage of each adsorbent for each 

metal was determined in the first phase of the experiments (see section 4.2.3.1), and 

 Initial adsorbate concentration in each test (mg/L) 

Metal Optimum 

dosage test 

Equilibrium 

time test 

Kinetic test 

Fe 3.163 5.141 4.947 

Zn 0.52 0.447 0.471 

Pb 0.145 0.167 2.288 

Ni 0.094 0.052 0.867(LS)/0.053(BFS) 

Cd 0.275 0.273 0.261 

Cr 0.084 0.083 0.998 

Cu 0.073 0.107 0.119 
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these masses were used for the equilibrium time phase. Again, the adsorbents were 

added to 100 mL of metal solution in 200 mL bottles (initial concentrations 

corresponding to Table 4-1) and placed on the rotary shaker. 

10 mL samples were taken from each mixture at the following time steps: 1, 6, 24, 

48 and 72 hours. Each sample was filtered, preserved, stored and analysed as 

described in section 4.2.3.1.  

4.2.3.3. Kinetic testing 

The third phase of the batch adsorption experiments was carried out to determine the 

rate of the adsorption reactions (i.e. to obtain data to fit into kinetic models). The 

optimum dosage of each adsorbent for each metal was determined in the first phase 

of the experiments (see section 4.2.3.1). This time, due to the increased number of 

samples required (due to additional sampling time steps), the adsorbents were added 

to 200 mL of metal solution in 200 mL bottles (initial concentrations corresponding 

to Table 4-1). Therefore, the adsorbent masses were doubled to ensure that the 

optimum dosage (in g/L) was maintained. Note that initial concentrations were 

increased significantly for Pb, Ni and Cr (for loamy sand), as the first tests conducted 

with the original lower concentrations of these metals did not produce detectable 

results. The samples were again placed on the rotary shaker. 

10 mL samples were taken from each mixture at the following time steps: 5, 15, 30, 

60, 120, 360 and 1440 minutes (the maximum time was determined from the second 

phase of the batch adsorption tests, see section 4.2.3.2). Each sample was filtered, 

preserved, stored and analysed as described in section 4.2.3.1. 

4.2.3.4. Adsorption capacity 

The fourth phase of the batch adsorption experiments was carried out to obtain data 

for input to adsorption isotherms. If an isotherm fits the data well, it allows 

adsorption capacity information to be determined. The optimum dosage of each 

adsorbent for each metal was determined in the first phase of the experiments (see 

section 4.2.3.1). For each adsorbent, five different adsorbate concentrations were 

produced (target concentrations were 1.0, 5.0, 10.0, 25.0 and 50.0 mg/l). The initial 
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concentrations for each metal are shown in Table 4-2. The adsorbents were added to 

100 mL of each concentration of metal solution in 200 mL bottles and placed on the 

rotary shaker. 

After 24 hours (maximum time determined in section 4.2.3.2), the bottles were 

removed from the shaker and a 40 mL sample was taken from each mixture. Each 

sample was filtered, preserved, stored and analysed as described in section 4.2.3.1. 

Table 4-2 - Initial metal solution concentrations for adsorption capacity experiment 

 Target concentration (mg/L)  

Adsorbent Metal 1 5 10 25 50 

Loamy 

sand 

Fe 0.786 4.78 7.694 20.02 43.21 

Zn 1.053 7.294 11.84 36.54 49.19 

Pb 0.67 3.31 8.235 18.69 39.49 

Ni 0.946 4.621 10.23 23.57 47.62 

Cd 0.953 4.741 9.493 24.73 48.87 

Cr 1.032 4.766 9.905 23.41 45.91 

Cu 1.18 5.13 10.36 26.42 53.38 

BFS Fe 0.786 5.149 10.15 19.13 47.53 

Zn 2.337 7.676 14.03 36.5 53.32 

Pb 0.827 4.094 8.426 21.79 38.77 

Ni 1.019 5.209 10.18 23.37 47.92 

Cd 0.975 4.606 9.557 24.7 47.36 

Cr 1.009 4.744 9.9 22.15 47.09 

Cu 1.094 4.498 13.03 27.54 47.66 

 

4.2.4. Kinetic models  

The data from the tests described in section 4.2.3.3 was fitted to the pseudo-first-

order and pseudo-second-order models in order to assess the kinetic characteristics 

of the metal adsorption. Their equations are described in the following sections. 

4.2.4.1. Pseudo-first-order equation 

The pseudo-first-order equation is given in Equation 4.1 (Ho and McKay, 1999). 

   

  
                          (4.1) 
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where: qt = mass of adsorbate adsorbed per unit of adsorbent at time t (mg/g) 

 K1 = pseudo-first-order rate constant (min
-1

) 

 Qe = adsorption capacity at equilibrium (mg/g) 

 t = contact time (mins) 

The equation can be written after integration and the application of initial conditions 

(qt = 0 at t = 0 and qt = qt at t = t) as in Equation 4.2. 

                 
  

     
               (4.2) 

The plot of log(qe – qt) versus t can then be used to provides values for K1 and qe. 

The gradient of the linear trendline is equal to -K1/2.303 and the intercept of the 

log(qe – qt) axis is equal to log qe.  

4.2.4.2. Pseudo-second-order equation 

Kinetic data is also fitted to the pseudo-second-order equation, shown in Equation 

4.3 (Vadivelan and Kumar, 2005). In the pseudo-second–order model the rate-

controlling mechanism is chemisorption taking place at the adsorbent surface, where 

the removal of metal from a solution occurs through physicochemical interactions 

between the two phases (Robati, 2013). 

   

  
          

                 (4.3) 

where: K2 = pseudo-second-order constant (g/mg.min) 

The equation can be written after integration and the application of initial conditions 

(qt = 0 at t = 0 and qt = qt at t = t) as in Equation 4.4. 

 

  
 

 

    
   

 

  
                    (4.4) 

If the pseudo-second-order model is suitable, the plot of t/qt versus t produces a 

straight line from which K2 and qe can be determined. The gradient of the linear 

trendline is equal to 1/qe and the intercept of the t/qt axis is equal to 1/(K2qe²). 
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4.2.5. Adsorption isotherms 

The theoretical adsorption capacities of the two adsorbents were calculated by fitting 

the experimental data obtained from the experiment described in section 4.2.3.4 with 

the Langmuir, Freundlich, Temkin and Harkins-Jura isotherms.  

4.2.5.1. Langmuir isotherm 

The Langmuir isotherm is one of the most commonly used adsorption isotherm 

equation (Liu, 2006). Use of the Langmuir model assumes that maximum adsorption 

occurs when a saturated monolayer of solute molecules on the adsorbent surface has 

been achieved (Sekar et al., 2004). The isotherm is expressed as in Equation 4.5. 

   
     

     
                 (4.5) 

where: qe = mass of metal adsorbed per unit mass of adsorbent (mg/g) 

 Ce = equilibrium concentration of metal ions in solution (mg/L) 

 Q0 = maximum adsorption capacity (mg/g) 

 b = Langmuir adsorption constant (L/mg) 

The Langmuir adsorption constant (b) can be taken as a measure of the affinity of the 

metal for the adsorbent. Q0 and b can be determined from a Ce/qe versus Ce plot, 

using the linearised form of Equation 4.5, shown in Equation 4.6. 

  

  
 

 

   
 

 

  
                  (4.6) 

Thus, the gradient of the linearised Langmuir isotherm plotted on a Ce/qe versus Ce 

chart is equal to 1/Q0, and the intercept on the Ce/qe axis is equal to 1/Q0b. 

4.2.5.2. Freundlich isotherm 

The Freundlich adsorption isotherm is based on the relationship between the amount 

of metal that has been adsorbed per unit mass of the adsorbent and the remaining 

concentration of the metal in solution at equilibrium (Sekar et al., 2004). The 

equation is shown in Equation 4.7. 

       
   

                 (4.7) 
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where: Kf = Freundlich constant (L/g) 

 1/n = heterogeneity factor 

The degree of non-linearity between metal solution concentration and adsorption is 

indicated by the value of n. If n = 1, adsorption is linear; if n < 1, the adsorption 

process is described as chemical; and if n > 1, the adsorption process is described as 

a favourable physical process. Kf and n can be determined from a log qe versus log 

Ce plot, using the linearised form of Equation 4.7, shown in Equation 4.8. 

            
 

 
                    (4.8) 

Thus, the gradient of the linearised Freundlich isotherm plotted on a log qe versus log 

Ce chart is equal to 1/n, and the intercept on the log qe axis is equal to log Kf. 

4.2.5.3. Temkin isotherm 

The Temkin isotherm assumes that the heat of sorption of all molecules in a single 

layer decreases linearly rather than logarithmically with coverage (Dada et al., 

2012). The isotherm is shown in Equation 4.9. 

   
  

  
                         (4.9) 

where: R = gas constant (8.31 J/mol K) 

 T = absolute temperature (K) 

 bT = heat transfer (J/mol) 

 KT = equilibrium binding constant (L/mg) 

Equation 4.9 can also be expressed as in Equation 4.10. 

                            (4.10) 

where B1 relates to the heat of adsorption and is equal to (RT)/b. 

B1 and KT can be determined from a qe versus ln Ce plot, using the linearised form of 

Equation 4.10, shown in Equation 4.11. 

                             (4.11) 
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Thus, the gradient of the linearised Temkin isotherm plotted on a qe versus ln Ce 

chart is equal to B1, and the intercept on the qe axis is equal to B1ln KT. 

4.2.5.4. Harkins-Jura isotherm 

The Harkins-Jura model regards the adsorbed layer as a two-dimensional liquid 

(Tóth, 2002). The model describes multilayer adsorption and the existence of 

heterogeneous pore distribution on the adsorbent surface (Ogbonna et al., 2014). The 

isotherm is shown in Equation 4.12. 

 

  
   

 

 
   

 

 
                    (4.12) 

where A and B are constants. 

A and B can be determined from a (1/qe²) versus log Ce plot. The gradient of the plot 

is equal to (1/A), and the intercept on the (1/qe²) axis is equal to (B/A). 

  

4.3. Results and Discussion 

4.3.1. Elemental composition results 

The results of the ICP analysis provided the concentration of each element in the HF 

acid. The values have been converted into masses and are presented in Table 4-3. 

The sample mass of the loamy sand used was 0.1053 g, and the mass of the BFS 

sample was 0.1011 g. Figure 4-1 presents each element mass as a percentage of the 

adsorbent sample mass. 

Table 4-3 – Mass (mg) of elements in digested sample of adsorbate 

Adsorbent 

material 

Mg Ca Fe Al Pb Mn Zn Si 

Loamy sand 0.490  28.736  1.186 1.545  0.007  0.039 0.010  6.040  

BFS 3.853  24.725  0.229  8.067  0.002  0.247  0.009  15.032  

 

As the results show, the element with the largest presence in both materials is Ca, 

making up 27.3% of the loamy sand and 24.5% of the BFS. This is particularly 

significant with respect to chemical precipitation of PO4-P (see chapter 5). There is 
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also a significant presence of Si in both materials. The BFS contains approximately 

8% Al, significantly greater than the 1.5% Al in the loamy sand. Similarly, the BFS 

contains an elevated percentage of Mg (3.8%) in comparison to the loamy sand 

(0.5%). 

 

Figure 4-1 - Elements as percentage of adsorbent sample 

4.3.2. Optimum dosage results 

The results of the optimum dosage tests are shown in Figure 4-2. It was found that 

maximum removal of all metals was achieved at a loamy sand dosage of 0.05 g/L. At 

this dosage, final solution concentrations were below detection limits for all metals 

except Cr, of which 95% of the initial concentration was removed.  Figure 4-2 shows 

that maximum removal of Fe, Pb, Cd, Cr and Cu was achieved at a BFS dosage of 

0.5 g/L. Maximum removal of Zn and Ni was achieved at BFS dosages of 5 g/L and 

1 g/L, respectively. The pH of the solutions is shown in Table 4-4. 

Table 4-4 - pH values of metal solutions 

Metal 

solution 

Fe Zn Pb Ni Cd Cr Cu 

pH  3.33 5.8 5.02 4.34 3.82 4.35 4.87 
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Figure 4-2 - Removal of metals per weight (expressed as percentage of initial concentration) in optimum 

dosage tests for (a) loamy sand and (b) BFS 

4.3.3. Equilibrium time results 

The results of the equilibrium time tests are shown in Figure 4-3. It was found that 

the majority of all metals were adsorbed to both the loamy sand and the BFS within 

6 hours. To ensure sufficient time for any further adsorption, an equilibrium time of 

24 hours was chosen for the kinetic and adsorption capacity tests. 
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Figure 4-3 - Removal of metals at each sampling time step (expressed as percentage of initial 

concentration) in equilibrium time tests for (a) loamy sand and (b) BFS 

4.3.4. Kinetic testing results 

4.3.4.1. Loamy sand  

The loamy sand results from the kinetic testing experiment are shown in Figure 4-4. 

The initial rate of reaction is rapid: the rate of removal of all metals is highest during 

the first 5 minutes of the experiment. The reaction then slows towards equilibrium 

for Pb, Cr, Fe, Zn and Cd. However, as Figure 4-4 shows, the experiment may have 

benefitted from a longer running time for the sake of Cu and Ni, which appear to 

have still been reacting after 24 hours. The high initial rate is attributable to the large 

65 

70 

75 

80 

85 

90 

95 

100 

M
et

al
 r

em
o

va
l (

%
) 

a 

65 

70 

75 

80 

85 

90 

95 

100 

1 6 24 48 72 

M
et

al
 r

em
o

va
l (

%
) 

Time (hours) 

b 
Fe 

Zn 

Pb 

Ni 

Cd 

Cr 

Cu 



Characterisation and Metal Adsorption Characteristics of Primary Media 

 

65 

 

surface area of the loamy sand particles and availability of accessible macropores at 

the beginning of the test, while the rate decrease during the latter stages is due to 

adsorption sites becoming exhausted (Yu et al., 2000; Babatunde and Zhao, 2010). 

 

Figure 4-4 - Change in metal concentration over time for loamy sand samples 

The loamy sand pseudo-first- and second-order models for all metals (based on the 

results found at time steps of 5, 15, 30, 60, 120 and 1440 mins) are shown in Figure 

4-5 and Figure 4-6. From the slopes of the straight-line plots, the values of the rate 

constants of adsorption (K1 and K2) were determined. These are presented in Table 

4-5 along with R² values to indicate the quality of the fit of the models to the data. 

Also presented in Table 4-5 are the qe values calculated from the models for 

comparison to the experimental values as further indication of how well each rate 

model represents the adsorption of each metal to loamy sand. 
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Table 4-5 – Adsorption rate constants, R² and qe values obtained from kinetic models for loamy sand 

 Pseudo-first-order Pseudo-second-order  

Metal K1  

(min
-1

) 

R² qe 

(mg/g) 

K2 

(g/mg.min) 

R² qe 

(mg/g) 

qe (mg/g) 

experimental 

Fe 0.0111 0.4928 0.091 0.6075 1 9.671 9.668 

Zn 0.0085 0.9058 0.105 0.4979 1 0.883 0.882 

Pb 0.0081 0.94 0.671 0.0712 1 4.158 4.150 

Ni 0.0078 0.5446 0.072 0.6787 1 1.735 1.734 

Cd 0.0099 0.5911 0.080 0.5210 1 0.493 0.492 

Cr 0.0071 0.8146 0.413 0.1034 1 1.651 1.646 

Cu 0.0028 0.5736 0.068 0.2930 0.9985 0.212 0.212 

 

As the results presented in Table 4-5 show, the pseudo-second-order model was a far 

better fit to the data compared to the first-order model, with a near perfect fit for all 

metals. Predictably, an improved data fit produces more accurate qe predictions, with 

the qe values calculated from the second-order model proving to be extremely 

reliable when compared to the experimental values. The qe values calculated from 

the first-order model are unreliable for all metals, even when the R² value is high 

(e.g., for Zn and Pb). Several other studies have also found the pseudo-second-order 

model to be the best representation of metal adsorption (Parab et al., 2006; 

Nehrenheim, 2008; Demirbas et al., 2009). This suggests that chemisorption controls 

the rate of adsorption of these metals to loamy sand and therefore the chemical 

reaction is the key mechanism in the process (Ho and McKay, 1999). 
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Figure 4-5 - Pseudo-first-order model for all metals (loamy sand) 
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Figure 4-6 - Pseudo-second-order model for all metals (loamy sand) 
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Figure 4-7 - Change in metal concentration over time for BFS samples 
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Figure 4-9. From the slopes of the straight-line plots, the values of the rate constants 
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with R² values to indicate the quality of the fit of the models to the data. Also 

presented in Table 4-6 are the qe values calculated from the models for comparison 

to the experimental values as further indication of how well each rate model 

represents the adsorption of each metal to BFS. 

Table 4-6 - Adsorption rate constants, R² and qe values obtained from kinetic models for BFS 

 Pseudo-first-order Pseudo-second-order  

Metal K1  

(min
-1

) 

R² qe 

(mg/g) 

K2 

(g/mg.min) 

R² qe 

(mg/g) 

qe (mg/g) 

experimental 

Fe 0.0117 0.9418 0.278 0.1941 1 9.662 9.662 

Zn 0.0039 0.9657 0.021 1.0166 0.9998 0.090 0.090 

Pb 0.0044 0.7603 0.198 0.1387 1 4.299 4.296 

Ni 0.0055 0.7814 0.012 2.2209 0.9999 0.038 0.038 

Cd 0.0055 0.8370 0.246 0.0831 0.9997 0.469 0.462 

Cr 0.0090 0.7069 0.185 0.2471 1 1.837 1.834 

Cu 0.0064 0.7626 0.031 1.1329 1 0.188 0.188 
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As the results presented in Table 4-6 show, the pseudo-second-order model was a 

much better fit to the data compared to the first-order model, with a near perfect fit 

for all metals. Predictably, an improved data fit produces more accurate qe 

predictions, with the qe values calculated from the second-order model proving to be 

extremely reliable when compared to the experimental values. The qe values 

calculated from the first-order model are unreliable for all metals, even when the R² 

value is high (e.g., for Fe and Zn). Several other studies have also found the pseudo-

second-order model to be the best representation of metal adsorption (Parab et al., 

2006; Nehrenheim, 2008; Demirbas et al., 2009). This suggests that chemisorption 

controls the rate of adsorption of these metals to BFS and therefore the chemical 

reaction is the key mechanism in the process (Ho and McKay, 1999).   

 

Figure 4-8 - Pseudo-first-order model for all metals (BFS) 
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Figure 4-9 - Pseudo-second-order model for all metals (BFS) 
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also given in Table 4-7. The Harkins-Jura plots were used to determine A and B, also 

given in Table 4-8. 

Table 4-7 - Results of all four tested adsorption isotherms for loamy sand 

 Langmuir Freundlich 

Metal Q0 (mg/g) b (L/mg) R² Kf  (L/g) n R²
 

Fe 60.976 4.5556 0.9994 31.5200 2.6532 0.6025 

Zn 10.7875 0.2114 0.9777 2.8041 2.9291 0.9868 

Pb 34.8430 11.0385 0.9999 21.4882 2.7218 0.7822 

Ni 9.6339 0.0666 0.5993 1.7147 3.1230 0.8651 

Cd -4.1600 -0.0095 0.0714 2.8714 2.9274 0.1709 

Cr 5.4201 -0.5062 0.9516 5.0153 7.3910 0.7422 

Cu 10.0400 0.2214 0.9855 2.3708 2.5974 0.9504 

 Temkin Harkins-Jura 

Metal B1 KT (L/mg) R² A B R² 

Fe 7.5801 239.1532 0.8624 14.0845 0.2761 0.2453 

Zn 1.5517 8.8868 0.9344 6.2972 1.4049 0.8597 

Pb 4.2561 511.6472 0.7809 8.3056 0.2143 0.4894 

Ni 1.1492 4.4560 0.5702 4.1929 1.6059 0.9838 

Cd 0.6961 1.1864 0.3220 0.2061 4.0161 0.0237 

Cr 0.5971 2.6756 0.5245 18.9394 1.5284 0.9168 

Cu 1.6461 5.0698 0.9870 4.7847 1.3531 0.7314 

 

As shown by the high R² values in Table 4-7, the Langmuir isotherm was found to 

give the best representation of Fe, Zn, Pb, and Cr adsorption. Ni was best represented 

by the Harkins-Jura isotherm, having an R² value of 0.98. The Freundlich isotherm 

gave the best representation of Zn, at R² = 0.99. Cu was best represented by the 

Temkin isotherm, at R² = 0.99. None of the isotherms were suitable for 

representation of Cd.  

The high Q0 value of 61 mg/g, obtained from the Langmuir isotherm, shows Fe 

adsorbs well to loamy sand. This value significantly outperforms Q0 values 

associated with alternative adsorbent materials found in literature (e.g., Karthikeyan 

et al., 2005; Nieto et al., 2010; Rose and Rajam, 2012). The relatively large value of 

b = 4.6 L/mg also implies that loamy sand has an affinity for Fe. The loamy sand 
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also had a good capacity for Pb, with Q0 = 34.8 mg/g and b = 11 L/mg. This 

significantly outperforms several studies with alternative adsorbent materials (e.g., 

Ricordel et al., 2001; Sekar et al., 2004; Jeyakumar and Chandrasekaran, 2014). The 

Cu adsorption capacity of 10 mg/g is also significantly higher than Q0 values 

reported in other studies using alternative adsorbents (e.g., Artola et al., 2000; Yu et 

al., 2000, Demirbas et al., 2005). The Cr Q0 value was generally lower than values 

reported in literature (e.g., Dantas et al., 2001; Kobya et al., 2004; Parab et al., 

2006). Of the metals that are best represented by the Langmuir isotherm, it can be 

said that the adsorption capacities rank in the order Fe > Pb > Cu > Cr. 

Since the Zn adsorption process is well represented by the Freundlich isotherm, it 

can be said that it is a physical process as n > 1. An n value of between 1 and 10 

indicates effective adsorption (Tryball, 1980), thus it can be said that the loamy sand 

was an effective adsorbent for Zn.. The KF constant is indicative of the adsorption 

capacity of the adsorbent (Demirbas et al., 2009) and the Zn KF value of 2.8 L/g 

exceeds those found in similar studies investigating alternative adsorbents (e.g., 

Ricordel et al., 2001; Vinod et al., 2012) with the exception of carbon-based 

adsorbents, which appear to outperform the rest of the field (e.g., Ramos et al., 2002; 

Lu and Chiu, 2006).  

The Temkin modelling of Cu adsorption to loamy sand gives a positive value for B1, 

which means that bT > 0. This indicates an exothermic process (Patrulea et al., 2013). 

Since Ni is best described by the Harkins-Jura isotherm, it may be said that 

multilayer adsorption is occurring in the reaction between Ni and the loamy sand. 
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Figure 4-10 - Linearised Langmuir isotherm plots for all metals (loamy sand) 
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Figure 4-11 - Linearised Freundlich isotherm plots for all metals (loamy sand) 
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Figure 4-12 - Linearised Temkin isotherm plots for all metals (loamy sand) 
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Figure 4-13 - Harkins-Jura isotherm plots for all metals (loamy sand) 
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to determine B1, KT and R² values, also given in Table 4-8. The Harkins-Jura plots 

were used to determine A and B, also given in Table 4-8. 

Table 4-8 - Results of all four tested adsorption isotherms for BFS 

 Langmuir Freundlich 

Metal Q0 (mg/g) b (l/mg) R² Kf  (L/g) n R²
 

Fe 67.1141 1.5684 0.9989 26.0256 1.9592 0.8917 

Zn 2.1533 0.2913 0.6984 1.1880 7.0771 0.3570 

Pb 55.8659 2.9344 0.9935 26.8164 2.8563 0.6828 

Ni 2.8653 0.0821 0.9408 0.2787 1.6790 0.0537 

Cd -15.9744 -0.0063 0.0131 0.2154 1.1776 0.7190 

Cr 9.1266 0.0487 0.4525 1.8655 4.6318 0.4883 

Cu 11.9761 0.6827 0.9428 4.5709 3.3434 0.7374 

 Temkin Harkins-Jura 

Metal B1 KT (L/mg) R² A B R² 

Fe 8.8927 59.2172 0.9034 8.2372 0.2290 0.5868 

Zn 0.1585 17309.15 0.2166 0.9553 1.6475 0.6699 

Pb 6.5784 265.8192 0.9576 18.7617 0.6473 0.2131 

Ni 0.5171 1.4728 0.8986 0.0856 1.3204 0.7541 

Cd 1.7484 0.6377 0.6799 0.1338 1.5176 0.6949 

Cr 0.7883 11.5497 0.4292 8.0257 2.5024 0.45 

Cu 2.1352 21.5413 0.4431 11.4286 1.3086 0.8495 

 

As the results in Table 4-8 show, the adsorption of Fe, Pb, Ni, Zn and Cu were best 

represented by the Langmuir isotherm. Cd was best represented by the Freundlich 

isotherm (R² = 0.72), whereas none of the isotherms adequately represented Cr 

adsorption. 

The BFS’s adsorption capacity for Fe and Pb was found to be high, at 67.1 mg/g and 

55.9 mg/g respectively. These values significantly exceed those found in other 

studies using alternative adsorbent materials for both Fe (e.g., Nieto et al., 2010; 

Rose and Rajam, 2012; Karthikeyan et al., 2013) and Pb adsorption (e.g., Ricordel et 

al., 2001; Sekar et al., 2004; Jeyakumar and Chandrasekaran, 2014). Compared to 

loamy sand, the lower b values show that BFS has a lower affinity for these two 

metals. The Cu adsorption capacity of 12 mg/g is also significantly higher than Q0 
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values reported in other studies using alternative adsorbents (e.g., Artola et al., 2000; 

Yu et al., 2000; Demirbas et al., 2005). The Ni Q0 value of 2.9 mg/g is generally 

lower than those found in other studies (e.g., van Hullebusch et al., 2005; 

Vijayaraghavan et al., 2005; Parab et al., 2006), while the value for Zn (2.2 mg/g) 

was comparable with literature values (e.g., Demirbas et al., 2005; Jordao et al., 

2009; Choi, 2012). Of the metals that are best represented by the Langmuir isotherm, 

it can be said that the adsorption capacities rank in the order Fe > Pb > Cu > Ni > Zn. 

The KF value of 0.2 L/g for Cd was generally exceeded by those values reported in 

the literature for alternative adsorbents (e.g., Ricordel et al., 2001; Mathialagan and 

Viraraghavan, 2002; Pandhare et al., 2013). Its corresponding n value is 1.67, which 

suggests that effective adsorption took place (since 1 > n > 10). 
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Figure 4-14 - Linearised Langmuir isotherm plots for all metals (BFS) 
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Figure 4-15 - Linearised Freundlich isotherm plots for all metals (BFS) 
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Figure 4-16 - Linearised Temkin isotherm plots for all metals (BFS) 
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Figure 4-17 - Harkins-Jura isotherm plots for all metals (BFS) 
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The adsorption rate of all metals to both adsorbents was quick, with the majority of 

the reaction taking place in the first 5 minutes of the experiment. The pseudo-

second-order model was an extremely accurate representation of the dynamics of the 

metal adsorption process, with a near-perfect fit to the data for all metals and 

adsorbents. The well-fitting model therefore produced extremely reliable calculated 

qe values when compared to the values determined from experimentation. The good 

fit of the model suggests that chemisorption controlled the rate of the adsorption of 

all metals to both adsorbents. 

The adsorption capacities of loamy sand and BFS were determined for each metal 

through the application of adsorption isotherms to data obtained from the adsorption 

equilibrium experiments. Of the isotherms applied, the Langmuir isotherm was the 

better representation of loamy sand’s capacity for of Fe, Zn, Pb, and Cr, while its 

capacity for Ni was best represented by the Freundlich isotherm. The Temkin 

isotherm was the best representation of Cu, while Ni was best represented by the 

Harkins-Jura model. Cd adsorption to loamy sand was not adequately represented by 

any isotherm. The Langmuir isotherm was the better representation of BFS’s 

capacity for Fe, Zn, Pb, Ni and Cu, while the Freundlich isotherm better represented 

its capacity for Cd. Cr adsorption to BFS was not adequately represented be either 

isotherm. 

The loamy sand had a particularly high capacity for adsorption of Fe, Pb and Cu, 

significantly higher than alternative adsorbents reported in literature. The loamy 

sand’s adsorption capacity for Zn also exceeded many alternative adsorbents, 

although was outperformed by carbon-based materials. The loamy sand had a lower 

capacity for Cr and Ni when compared to values reported in the literature. The BFS 

also had a particularly high adsorption capacity for Fe, Pb and Cu, and exceeded the 

loamy sand’s capacity for these metals. However, despite its increased capacity, BFS 

has a lower affinity for Fe and Pb as determined by its lower b values. BFS’s 

capacity for Zn adsorption was found to be comparable to literature values, while its 

capacity for Ni and Cd was generally lower than alternative adsorbents in similar 

studies. 
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The experiments were carried out using a single metal adsorbate solution in each 

case. Thus, it is possible that different results may have been produced with the use 

of a multi-metal adsorbate solution. This would have been more representative of the 

semi-synthetic stormwater used in the pilot-scale CW inflow, but was not 

investigated due to time and financial restraints. 
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5. Pilot-Scale Experiment Results 

5.1. Introduction 

This chapter is an analysis of the performance of the pilot-scale stormwater CWs. 

The effects of the three main design variables are studied and the pollutant removal 

proceses of the systems are investigated. The three main design variables were: 

1. The primary media 

2. The wetland to watershed area ratio (WWAR) 

3. The wetting and drying regime 

Each pollutant group (TSS, heavy metals and nutrients) is considered and the effect 

of the three variables on pollutant reduction is analysed. The alternative physical and 

chemical properties brought about by a change in the CW media can affect such 

features as the level and sustainability of suspended solids and particulate pollutant 

removal, adsorption capacity, the pH in the system and the ability of the CW to 

support macrophytes. The WWAR determines the hydraulic and pollutant loading 

and therefore, it can impact on system hydraulics, which in turn can have an effect 

on pollutant removal performance and plant activity. Drying and subsequent re-

wetting of soils can affect factors such as the chemical phase distribution of metals, 

soil structure (e.g., increased porosity, occurrence of fissures due to drying) and plant 

activity (Blecken et al., 2009). 

The objectives of this chapter are: 

 To determine the pollutant removal performance of the 8 pilot-scale systems 

and compare with similar studies and systems to determine how effective the 

CWs were, relative to previously tested configurations.  

 To determine the reasons why the key variables and operating conditions 

affect treatment performance, identifying any additional influencing factors 

(e.g., pH, temperature, time) 
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 To interpret the results of the experiment in order to determine the most 

effective configuration of the pilot-scale stormwater CW for treatment of 

TSS, heavy metals and nutrients 

In order to determine whether each variable had a statistically significant effect on 

the treatment performance of the CWs, single-factor analysis of variance (ANOVA) 

tests were carried out on removal efficiency results for each contaminant (when 

possible) at a significance level of 0.05. 

For most parameters (apart from TSS), data has not been displayed or analysed for 

the first few weeks of the experiment. It took some time to stabilise the operation of 

the system, thus the early period of results was not very reliable for metal and 

nutrient analysis. This is the reason that these early results have been omitted. 

Therefore, the data displayed gives the best representation of the performance of the 

pilot-scale stormwater CWs. 

Where a significant relevant trend of change in contaminant concentration over time 

was identified, mean values of removal efficiency/effluent concentration have been 

compared between the first 10 weeks and the final 10 weeks of data recording. The 

reason that a period of 10 weeks was selected was the desire to use mean values over 

a significant period of time (> 2 months) to show that the CW was giving regular 

results that indicated a significant change in treatment performance. 

In order to gain an appreciation of the quality of the treated stormwater and hence 

the performance of the CW systems, effluent pollutant concentrations were 

compared to water quality guidelines published by the UK Technical Advisory 

Group (TAG) regarding the Water Framework Directive (UK Technical Advisory 

Group on the Water Framework Directive, 2008). These are the standards used in the 

UK, but they do not specify limits for discharge, such as the effluent of CWs. This is 

because discharge pollutant limits are based on the watercourse into which they are 

discharged. The values of the upper pollutant concentrations in the pilot-scale CW 

effluent were thus calculated as those that meet the criteria for a watercourse with 

“good” ecological status. For each pollutant, several different limit values may exist 

depending on the type of watercourse, and so the lowest (and therefore the strictest) 
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value was used in this project in order to be conservative. For example, the lowest 

upper limit for Zn concentration in a watercourse with “good” ecological status is 

0.008 mg/L. In order to comply with the standards, the discharge from the CWs must 

not increase the Zn concentration of the watercourse to > 0.008 mg/L. As all rivers 

are different, flow rates had to be assumed, and the values chosen for this study were 

extremely conservative. 

Firstly, an extremely low flow rate was selected for the receiving watercourse, of 

1000 m³/d. This is conservative as a low flow rate such as this would cause less 

dilution of the CW effluent. Secondly, the CW effluent flow rate was calculated by 

assuming that the entire volume of treated water exits the system within 15 minutes 

(this is also conservative). For the sake of these calculations, the maximum volume 

used in the 1.5% CW was used: 37.6 L. Discharged over 15 minutes, this produces a 

flow rate of 3.61 m³/d. These values were then used in the mass balance Equation 5.1 

in order to determine the maximum allowable concentration for each pollutant in the 

CW discharge that would maintain “good” watercourse quality. 

                                    (5.1) 

where: Qw = discharge flow rate (m³/d) 

 Cw = discharge pollutant concentration (mg/L) 

 Qus = upstream flow rate (m³/d) 

 Cus = upstream pollutant concentration (mg/L) 

 Qds = downstream flow rate (Qw + Qus) (m³/d) 

 Cds = downstream pollutant concentration (mg/L) 

Rearranging Equation 5.1 into Equation 5.2 allows calculation of the upper limit of 

concentration for each contaminant: 

   
             

  
                (5.2) 

The final assumption made for each pollutant was that the upstream concentration 

was 90% of the upper limit for “good” ecological status. Thus, for Zn: 
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This method was applied to establish conservative upper limits of concentration for 

TSS, Zn, Cu, Pb, Cd, Cr, Ni, Fe, NH4-N and PO4-P. The UK TAG limits were used 

for Cw in all cases apart from TSS, for which the old freshwater fish directive limit of 

25 mg/L was used (European Union, 2006). This value was chosen upon the 

recommendations of Natural Resources Wales, a branch of the UK Environment 

Agency.  All limit values are shown in Table 5-5. 

5.2. Inflow pollutant concentrations in semi-synthetic stormwater 

Table 5-5 shows the target concentrations of the pollutants and the achieved 

concentrations. It was found that, for most pollutants, the addition of the natural 

sediment to dechlorinated tap water produced concentrations higher than the target 

values. Therefore, the only pollutant concentrations that required the addition of 

laboratory grade chemicals were Cd, Cr and Ni. It was therefore possible to achieve 

average inflow concentrations relatively close to the target values for these three 

pollutants. Average TSS inflow concentration is also close to the target value, as this 

was controlled by the addition of the appropriate amount of sediment to the inflow 

water volume in order to obtain the desired TSS value. 

Filtered samples from the CW inflow and outflow were also analysed over a 7 week 

period during the experimental time frame. These results were then compared to the 

total metal concentration results in order to determine whether the metals were 

predominantly particulate or dissolved in nature. It was found that Cu, Cd, Cr and Fe 

were entirely particulate-associated in the inflow. A fraction of the total Zn 

concentration was dissolved (9% on average), as was the case with Ni (16% on 

average). Pb inflow was entirely particulate in most cases, apart from several cases 

where an extremely low dissolved concentration was detected (usually only 2-3% of 

the total Pb concentration).  
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Table 5-1 - Target and achieved inflow pollutant concentrations 

Pollutant Target inflow 

concentration 

(mg/L) 

Mean achieved 

inflow concentration 

(mg/L) 

TSS 

Zn 

Cu 

Pb 

Cd 

Cr 

Ni 

Fe 

TN 

NH4-N 

NO2-N 

NO3-N 

TP 

PO4-P 

180 

0.35 

0.07 

0.16 

0.005 

0.025 

0.04 

2.9 

3 

- 

- 

- 

0.45 

- 

179.5 

0.54 

0.15 

0.21 

0.004 

0.03 

0.09 

3.88 

5.49 

1.27 

0.001 

0.18 

1.05 

0.90 

5.3. ANOVA results 

The results of the ANOVA tests have been compiled into 3 tables, one for each 

variable. These are presented as tables 5-2, 5-3 and 5-4. 

Table 5-2 - ANOVA results for media comparison 

 Significance (for each contaminant) 

Media comparison TSS Zn Pb Fe TN PO4-P 

CW1:CW4 (both LS) p < 0.01 ns ns p < 0.01 ns ns 

CW1(LS):G p < 0.01 p < 0.01 p < 0.05 ns p < 0.01 p < 0.01 

CW1(LS):BFS p < 0.01 p < 0.01 ns ns ns p < 0.01 

CW4(LS):G ns p < 0.01 p < 0.05 p < 0.01 p < 0.01 p < 0.01 

CW4(LS):BFS ns p < 0.01 ns ns ns p < 0.01 

G:BFS p < 0.05 p < 0.01 p < 0.05 p < 0.01 p < 0.01 ns 

* ns denotes “no significance”, i.e. p > 0.05 
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Table 5-3 - ANOVA results for WWAR comparison  

 Significance (for each contaminant) 

WWAR comparison TSS Zn Fe PO4-P 

CW1:CW4 (both 2.5%) p < 0.01 ns p < 0.01 ns 

CW1(2.5%):5%  p < 0.01 ns ns p < 0.01 

CW1(2.5%):1.5% p < 0.01 p < 0.05 p < 0.01 ns 

CW4(2.5%):5% p < 0.05 ns p < 0.05 p < 0.01 

CW4(2.5%):1.5% ns p < 0.05 ns ns 

5%:1.5% p < 0.05 p < 0.05 p < 0.01 p < 0.01 

* ns denotes “no significance”, i.e. p > 0.05 

 

 

Table 5-4 - ANOVA results for wetting/drying regime comparison  

 Significance (for each contaminant) 

WWAR comparison TSS Zn Fe 

CW1:CW4 (both WC) p < 0.01 ns p < 0.01 

CW1:PDC ns p < 0.01 ns 

CW1:EDC p < 0.01 p < 0.01 p < 0.01 

CW4:PDC p < 0.01 p < 0.01 p < 0.01 

CW4:EDC ns p < 0.01 ns 

PDC:EDC p < 0.01  ns ns 

* ns denotes “no significance”, i.e. p > 0.05 

 

5.4. TSS 

Table 5-5 summarises the effluent concentrations and removal efficiencies achieved 

in all eight CW units. The results show that a good level of TSS removal was 
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achieved in all eight units, with average removal efficiencies in the range 85-94%. 

This level of TSS removal is comparable to other studies, with similar CW 

configurations, in which TSS reduction was considered successful (Blecken et al., 

2011; Scholz, 2003).  

Figure 5-1 gives an indication of the variation in TSS removal efficiencies measured 

over the duration of the experiment. It should be noted that much of this variability is 

due to a gradual improvement in TSS removal over time. Overall, the variation in 

results of each CW within the 25
th 

and 75
th

 percentiles is relatively limited and the 

values of the results within these limits compare well to other studies with similar 

CW configurations (Blecken et al., 2011; Scholz, 2003). 

 

Figure 5-1 - Boxplot of TSS removal in all 8 CWs. Black diamonds represent mean removal efficiencies 

 

5.4.1. Effect of CW media on TSS removal 

Single factor ANOVA tests determined significant differences in TSS removal 

caused by the change in primary media (see Table 5-2). Also, importantly, there was 

a significant difference found between the results of the two loamy sand CWs. The 

two loamy sand units experienced significantly different mean removal efficiencies 

of 85% (unit 1) and 92% (unit 4). However, as both units’ performances improved 

over time (see Figure 5-2), their removal efficiencies began to show signs of 
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convergence: the mean TSS removal efficiencies for the last 10 weeks of data 

recording were 93% and 97% for unit 1 and unit 4, respectively. Should the 

experiment have run for longer, it is possible that further convergence may have 

occurred. Nonetheless, it shows that variation in TSS removal efficiencies is possible 

between CWs with the same configuration and loading patterns. 

The highest performing of the 8 CWs in terms of average TSS removal was unit 8, 

the BFS unit, with 94% removal efficiency and the lowest mean effluent 

concentration of 11.2 mg/L. As shown in Figure 5-2, the BFS CW achieved 

relatively consistent removal efficiencies over the length of the experiment, whereas 

there was a general improvement with the other three CWs. 

The average removal efficiency of the gravel CW (unit 2) was 90%, with a mean 

effluent concentration of 18.5 mg/L. As was the case with the loamy sand CWs, the 

gravel unit’s removal performance improved over time (see Figure 5-2). Over the 

final 10 weeks of data recording, its mean removal efficiency had increased to 97%.  

 

Figure 5-2 - TSS removal over time in units 1, 2, 4 and 8 

 

30 

40 

50 

60 

70 

80 

90 

100 

0 10 20 30 40 50 60 

TS
S 

re
m

o
va

l (
%

) 

Week 

Unit 1 (LS) 

Unit 2 (G) 

Unit 4 (LS) 

Unit 8 (BFS) 



Pilot-Scale Experiment Results 

 

94 

 

Table 5-5 – Average pollutant concentrations and removal efficiencies 

 Mean influent 

concentration 

(mg/L) 

Upper 

discharge 

limit (mg/L) 

Mean effluent concentration (mg/L) and (mean removal efficiency) 

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 

TSS 179.5 

 

717.5 27.4 

(85%) 

18.5 

(90%) 

25.5 

(86%) 

15.3 

(92%) 

18.8 

(90%) 

15.4 

(92%) 

11.6 

(94%) 

11.2 

(94%) 

Zn 0.54 0.230 0.125 

(76%) 

0.026 

(96%) 

0.074 

(85%) 

0.121 

(77%) 

0.106 

(80%) 

0.071 

(87%) 

0.078 

(86%) 

<0.006 

(>99%) 

Cu 0.15 0.029 <0.0015 

(>99%) 

<0.005 

(>96%) 

<0.0014 

(>99%) 

<0.001 

(>99%) 

<0.001 

(>99%) 

<0.0015 

(>99%) 

<0.0013 

(>99%) 

<0.001 

(>99%) 

Pb 0.21 0.207 <0.019 

(>91%) 

<0.027 

(>87%) 

<0.019 

(>91%) 

<0.019 

(>91%) 

<0.019 

(>91%) 

<0.019 

(>91%) 

<0.019 

(>91%) 

<0.019 

(>91%) 

Cd 0.004 0.002 <0.0013 

(>68%) 

<0.0013 

(>68%) 

<0.0013 

(>68%) 

<0.0013 

(>68%) 

<0.0013 

(>68%) 

<0.0013 

(>68%) 

<0.0013 

(>68%) 

<0.0013 

(>68%) 

Cr 0.03 0.098 <0.001
 

(>96%) 

<0.002 

(>94%) 

<0.001
 

(>96%) 

<0.001
 

(>96%) 

<0.001
 

(>96%) 

<0.001
 

(>96%) 

<0.001
 

(>96%) 

<0.001
 

(>96%) 

Ni 0.09 0.574 <0.005 

(>94%) 

<0.005 

(>94%) 

<0.005 

(>94%) 

<0.005 

(>94%) 

<0.005 

(>94%) 

<0.005 

(>94%) 

<0.005 

(>94%) 

<0.005 

(>94%) 

Fe 3.88 28.701 0.219 

(95%) 

0.293 

(94%) 

0.189 

(96%) 

0.090 

(98%) 

0.130 

(97%) 

0.106 

(97%) 

0.053 

(99%) 

0.051 

(99%) 

TN 5.49 - 1.41 

(73%) 

2.65 

(52%) 

1.63 

(69%) 

1.27 

(76%) 

1.85 

(64%) 

1.93 

(63%) 

1.23 

(78%) 

1.38 

(74%) 

NH4-N 1.27 9.184 0.20 

(84%) 

0.12 

(91%) 

0.25 

(80%) 

0.15 

(88%) 

0.15 

(89%) 

0.18 

(84%) 

0.20 

(84%) 

0.08 

(94%) 

NO2-N 0.001 - <0.002  

(-) 

<0.002  

(-) 

<0.002  

(-) 

<0.002  

(-) 

<0.002  

(-) 

<0.002  

(-) 

<0.002  

(-) 

<0.002  

(-) 

NO3-N 

 

0.18 - 0.85  

(-) 

1.01  

(-) 

0.71  

(-) 

0.71  

(-) 

1.16  

(-) 

0.64  

(-) 

0.70  

(-) 

0.90  

(-) 

TP 1.05 - 0.25 

(77%) 

0.31 

(71%) 

0.24 

(78%) 

0.24 

(77%) 

0.18 

(83%) 

0.24 

(77%) 

0.24 

(77%) 

0.30 

(72%) 

PO4-P 0.90 1.148 0.15 

(83%) 

0.22 

(77%) 

0.16 

(82%) 

0.16 

(82%) 

0.11 

(88%) 

0.14 

(85%) 

0.17 

(82%) 

0.23 

(75%) 
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5.4.2. Effect of change in wetland-watershed area ratio on TSS removal 

Single factor ANOVA tests found significant differences between TSS reduction for 

all configurations apart from unit 4 and the 1.5% WWAR CW (see Table 5-3). The 

1.5% WWAR CW achieved a mean removal efficiency of 94%, outperforming the 

2.5% WWAR CWs. The 5% WWAR CW achieved a mean removal efficiency of 

90%.  

The two 2.5% WWAR units experienced rather different mean removal efficiencies 

of 85% (unit 1) and 92% (unit 4). However, as both units’ performances improved 

over time, their removal efficiencies began to show signs of convergence: the mean 

TSS removal efficiencies for the last 10 weeks of data recording were 93% and 97% 

for unit 1 and unit 4, respectively. Nonetheless, it shows that variation in TSS 

removal efficiencies is possible between CWs with the same configuration and 

loading patterns. 

 

Figure 5-3 - TSS removal over time in units 1, 4, 5 and 7 
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found that the 5% WWAR CW was now the poorest performing unit with a value of 

92%. This is in comparison to a value of 95% for the 1.5% WWAR unit and values 

of 93% and 97% for the 2.5% WWAR CWs (units 1 and 4, respectively). 

5.4.3. Effect of drying on TSS removal 

Single factor ANOVA analysis (Table 5-4) found statistically significant differences 

between the effluent TSS concentrations of different wetting and drying regimes, 

although no significant differences could be found between units 1 (WC) and 3 

(PDC), nor between units 4 (WC) and 6 (EDC).  

The two WC CWs experienced rather different mean removal efficiencies of 85% 

(unit 1) and 92% (unit 4). However, as both units’ performances improved over time, 

their removal efficiencies began to show signs of convergence: the mean TSS 

removal efficiencies for the last 10 weeks of data recording were 93% and 97% for 

unit 1 and unit 4, respectively. Nonetheless, it shows that variation in TSS removal 

efficiencies is possible between CWs with the same configuration and loading 

patterns. The variation between the two WC CWs complicates comparisons with the 

PDC and EDC CWs and no clear advantage/disadvantage of the wet conditions can 

be identified as a result of this. 

The improvement in TSS removal over time was evident in all units. The PDC CW 

averaged a TSS removal efficiency of 94% over the final 10 weeks of data recording, 

and the EDC CW averaged 93%. 
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Figure 5-4 - TSS removal over time in units 1, 3, 4 and 6 

5.4.4. Discussion – TSS Removal 

There are several factors which may contribute to improved TSS removal over time 

in the loamy sand CWs. To appreciate these, it is important to understand the 

dominant solid removal mechanism in VF CWs with fine sand bed media: filtration 

(Kadlec and Wallace, 2009). Filtration is considered a combination of straining, 

sedimentation and adsorption processes. Straining involves the physical prevention 

of particles from travelling through the CW by the media, and is dependent on both 

the size of the pores and the suspended solids. Sedimentation is the process of solids 

travelling downwards via gravity and settling on a surface. Adsorption affects only 

very small solid particles near the substrate media. The solids are attracted to the 

media by electrostatic attraction, Van der Waals forces or bonding to zoogloeal film 

on sand particles (Woodward and Ta, 1988). Due to the fact that the primary media 

in the loamy sand units consists mainly of sand particles, it is reasonable to suggest 

that straining and sedimentation play major roles in TSS removal in these systems. 

Adsorption may affect smaller particles, but this will not have a major effect on the 

overall TSS removal efficiency.  

Given the knowledge of these solids removal mechanisms, several reasons are 

suggested for the improvement in TSS removal in the loamy sand CWs. Blecken et 

al. (2010) propose that “repacking and settling” of the CW media (caused by the 
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repeated loadings) would decrease pore sizes and hence improve solids retention. 

Higher early effluent TSS concentrations tend to be experienced as the CWs wash 

out fines from the media (Hatt et al., 2007b). This may also explain the difference in 

results between the two loamy sand CWs. Despite best efforts to achieve a complete 

duplicate, it is possible that there was a greater percentage of fines present in the 

volume of loamy sand placed in unit 1 compared to unit 4. The loamy sand batch 

was mixed as well as possible, but this is something that was difficult to control. Hatt 

et al. (2007c) cites aggregation of solids over time as one way that resuspension of 

sediments can become reduced. Also, the authors report that previously settled solids 

can produce more adhesive surfaces on which incoming solids may be deposited.  

The latter reason may also be relevant to the improvement in the performance of the 

gravel CW over time. The gravel CW was the only CW configuration in which the 

transition layer was also gravel instead of sand. The larger pore volume in the gravel 

transition layer is likely to have allowed more fine influent solids to pass through the 

system in the early stages of the experiment, and the build-up of solids over time was 

likely a factor in improving its TSS removal performance via the two mechanisms 

previously mentioned. Sedimentation is likely a major solids removal mechanism in 

the gravel CW. This would have occurred during loading as the water is moving 

down through the media, and also during the 24 hour flooded period. The long 

retention time with no flow allows plenty of time for suspended particles to settle on 

to the nearest surface. 

The presence of a sand transition layer in the BFS CW may explain its superior 

performance over the gravel CW: despite both systems having similarly sized 

granular media, the sand transition layer helped to remove more solids than a gravel 

layer due to its larger surface area, thus producing a more consistent TSS removal 

performance over the duration of the experiment.  

Overall, the BFS CW appears to be the most successful for TSS removal due to the 

slag’s lower fines content than loamy sand, and the sand transition layer which 

helped to remove more influent fines than in the gravel CW. Therefore, because the 

BFS CW did not release or let through fine solids in the early stages of the 

experiment, it did not experience the “settling period” that the other configurations 
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required to develop their TSS removal mechanisms. However, it should be noted that 

the BFS CW did not perform statistically significantly better than unit 4, a loamy 

sand CW.  Despite this, the fact that the BFS CW did not require time to mature and 

maintained high removal efficiencies over the course of the experiment makes it the 

most suitable media choice for TSS removal. 

Prior to the start of the experiment it was expected that the loamy sand units would 

outperform the granular media units to due to the smaller pore space in the loamy 

sand CWs, causing additional straining of solids. The likely reason that the media 

types are more closely matched in their removal performances is the 24 hour 

retention period. This allows additional time for suspended solids in all units to settle 

on to the nearest surface. 

The reason that the 1.5% WWAR CW was the best performing configuration in this 

experiment may be due to the fact that, because it receives larger inflow volumes, it 

receives greater loads of incoming TSS. Therefore, more solids aggregate in the CW 

in a shorter period of time, thus reducing resuspension in the CW and providing 

adhesive surfaces on which incoming solids may be deposited (as reported by Hatt et 

al., 2007c). Also, Blecken et al. (2010) propose that repeated loadings cause 

“repacking and settling” of the CW media, which decreases pore sizes and improves 

solids retention. The larger inflow volumes in the 1.5% WWAR CW may increase 

this effect. 

Overall, the most suitable choice for TSS removal in terms of WWAR value was the 

1.5% WWAR CW, as it matured more quickly than the other CWs and therefore 

produced a more consistent performance. All WWAR configurations improved with 

time and by the end of the experiment they were all performing at a high standard. 

A direct comparison cannot be made between the WC CWs and the two CWs with 

enforced dry conditions. However, a comparison can be made between those two 

drier regimes, as a statistically significant difference was identified in the results of 

their effluent TSS concentrations. The PDC CW achieved a mean removal efficiency 

of 86%, while the EDC CW achieved a mean removal efficiency of 92%. It can also 

be observed in Figure 5-5 that the EDC CW achieved a higher TSS removal 
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efficiency in most effluent samplings over the lifetime of the experiment. Therefore 

extended drying conditions produced better TSS removal than partially dry 

conditions.  

It is not possible to say which set of wetting/drying conditions is the most desirable 

for TSS removal. It was shown that extended drying conditions produced better TSS 

removal than partially dry conditions, but the variance in results of the two WC CWs 

means that a relationship between dry conditions and TSS removal cannot be 

determined. 

 

Figure 5-5 - TSS removal over time in units 1, 3, 4 and 6 
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5.5. Heavy metals 

Table 5-5 summarises the average effluent concentrations and removal efficiencies 

achieved in all eight CW units. The results show that high heavy metal removal 

efficiencies were achieved in all units. The metal reductions are comparable to other 

studies with similar CW configurations in which metal reduction was considered 

highly successful (Blecken et al., 2009b; Feng et al., 2012). For Cu, Pb, Cd, Cr and 

Ni, the effluent concentrations were regularly too small to detect, and considered to 

be zero in these cases. Zn and Fe effluent concentrations were more consistently 

detectable and therefore easier to compare to other studies. 

Mean Zn removal efficiencies ranged from 76% to above 99%, with mean effluent 

concentrations ranging from below the detection limit of 0.0064 mg/L to 0.12 mg/L. 

This compares well with previous laboratory-scale experiments (Hatt et al., 2007a; 

2007b; 2007c), and also matches other pilot-scale experiment results (Blecken et al., 

2009a; 2009b; 2011; Feng et al., 2012) when taking the two highest removal 

efficiencies from this experiment (i.e. 96% and >99%). In general however, the 

mean Zn removal efficiencies are not quite as high as those values reported in the 

literature for similar pilot-scale sized stormwater CWs. All CWs successfully 

lowered Zn effluent concentrations to below the calculated discharge limit of 0.23 

mg/L. 

Mean Fe removal efficiencies are high, in the range 94-99%, and mean effluent 

concentrations range from 0.05-0.29 mg/L. This compares favourably with the 

results of similar pilot-scale stormwater CWs tested by Feng et al. (2012), in which 

the range of mean Fe removal efficiencies was 81-97% and the range of mean 

effluent concentrations was 0.25-1.2 mg/L. All CWs successfully lowered Fe 

effluent concentrations to below the calculated discharge limit of 28.7 mg/L. 

5.5.1. Effect of CW media on heavy metal removal 

As can be seen in Table 5-2, the experimental output showed that CW media had 

significant effects on Zn, Pb and Fe reduction. All Cd and Ni effluent concentrations 

were below the detection limits shown in Table 3-7, Effluent Cu and Cr 

concentrations were only detected at the beginning of the experiment in the gravel 
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CW unit. After 8 weeks of data recording, the gravel media CW stabilised and 

effluent Cu and Cr concentrations were typically below detection limits thereafter. 

The increase in removal efficiency in the gravel unit is attributed to its improved 

TSS removal over time.  

5.5.1.1.  Zinc 

ANOVA test results (Table 5-2) show that there were significant differences 

between the 3 CW media types in terms of Zn removal. 

Zn removal was successful in the BFS CW (unit 8), with all effluent concentrations 

being below the detection limit of 0.0064 mg/L. Unit 8 was indeed the highest 

performing CW throughout the duration of the experiment. This is unsurprising, as 

the influent Zn was mostly particulate in form and unit 8 successfully removed TSS 

to a high degree throughout the experiment. 

Zn removal in the gravel unit (unit 2) was high, with a mean removal efficiency of 

96% and mean effluent concentration of 0.03 mg/L. Removal efficiency stabilised in 

the gravel CW and showed improvement as the experiment progressed: developing 

from a mean removal efficiency of 91% in the first 10 weeks of data recording to 

98% in the final 10 weeks. 

Mean Zn removal efficiencies in the loamy sand CWs were 76% (unit 1) and 77%, 

and removal patterns became inconsistent during a certain period of the experiment. 

As Figure 5-6 shows, Zn removal efficiencies in loamy sand units decreased from 

week 25 onwards, before appearing to steadily increase again from week 45 for the 

remainder of the experiment. The horizontal dashed line shows the minimum 

removal efficiency achieved by either of the granular media CW units (value of 83% 

from the gravel media CW). Note that the removal efficiencies of the loamy sand 

CWs regularly drop below this value from week 29 onwards. Meanwhile, the other 

CWs are unaffected, with the gravel unit’s performance improving over time.  
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Figure 5-6 - Zn removal efficiency over time in units 1, 2, 4 and 8. Horizontal dashed line represents 

minimum removal efficiency achieved by any granular media unit 

5.5.1.2.  Lead 

ANOVA tests found significant variations in Pb removal performance between the 

gravel and the other CW media (see Table 5-2). All Pb concentrations were below 

the detection limit (0.0195 mg/L) in the outflow of the loamy sand and BFS CWs. 

Low Pb concentrations were regularly detected in the effluent of the gravel CW for 

the first few weeks of the experimental run, but the number of detectable 

concentrations decreased over time and by the last 10 weeks of the experiment there 

were no detectable results. Therefore the performance of the gravel CW improved 

with time. This can attributed to its improvement in TSS removal over time, as the 

Pb entering the system was almost entirely particulate in form.  

5.5.1.3. Iron 

The results of the ANOVA tests (Table 5-2) show that the choice of CW media had a 

significant effect on Fe removal. Correlation analysis found strong positive 

correlations between TSS effluent concentrations and Fe effluent concentrations in 

all four CWs (R = +0.92 for unit 1, R = +0.96 for unit 2, R = +0.93 for unit 4 and R 

= +0.80 for unit 8). Figure 5-7 shows the strong similarities in effluent TSS and Fe 

concentration trends. As discussed in section 5.4.4, the Fe entering the units was 

almost entirely particulate in form, and the strong correlations between effluent Fe 
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and TSS suggests that this is also the case in the outflow. Therefore, Fe removal 

performance is dependent on TSS removal performance and thus it is unsurprising 

that unit 8 was the best remover of Fe (mean 98.7% removal efficiency) as it was 

also the best remover of TSS.  

Fe removal in the loamy sand CWs was good, with mean removal efficiencies of 

94.6% (unit 1) and 98.6% (unit 4) and corresponding effluent concentrations of 0.22 

mg/L and 0.01 mg/L. The mean unit 1 Fe effluent concentration over the last 10 

weeks of data recording was 0.08 mg/L. The difference in removal performance 

between unit 1 and its duplicate, unit 4, was attributed to unit 4’s higher TSS 

removal performance. 

The average Fe removal efficiency in the gravel media CW was 93.8%, with a mean 

effluent concentration of 0.29 mg/L. These average figures were affected by 

relatively high effluent concentrations from the beginning of the experiment, which 

reduced over time. These high concentrations can be attributed to the early high TSS 

effluent concentrations in the gravel unit. The average gravel CW effluent 

concentration from the first 10 weeks of data recording was 0.81 mg/L (85.3% 

removal efficiency), but this reduced to a mean value of 0.03 mg/L (98.7% removal 

efficiency) for the final 10 weeks. The increase in removal efficiency in the gravel 

unit is attributed to its improved TSS removal over time.  
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Figure 5-7 - Effluent TSS and Fe concentrations over time in (a) unit 1 (loamy sand), (b) unit 2 (gravel), (c) 

unit 4 (loamy sand), (d) unit 8 (BFS) 

5.5.2. Effect of change in wetland-watershed area ratio on heavy metal 

removal 

As can be seen in Table 5-3, the experimental output showed that WWAR had 

significant effects on Zn and Fe reduction. All Pb, Cd and Ni effluent concentrations 

were below the detection limits shown in Table 3-7. Effluent Cu and Cr 

concentrations were rarely detected, preventing any conclusions to be drawn on the 

effect of WWAR on their removal.  

5.5.2.1. Zinc 

The results of the single-factor ANOVA tests (Table 5-3) show that there were 
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in Figure 5-8, all four CWs in question experienced inconsistency in removal with a 

period of elevated effluent from week 29 to week 45, after which there appeared to 

be a steady improvement.   

 

Figure 5-8 - Zn removal efficiency over time in units 1, 4, 5 and 7 
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mg/L. The mean unit 1 Fe effluent concentration over the last 10 weeks of data 

recording was 0.08 mg/L. The difference in removal performance between unit 1 and 

its duplicate, unit 4, was attributed to unit 4’s higher TSS removal performance. 

 

Figure 5-9 - Effluent TSS and Fe concentrations over time in (a) unit 1 (2.5% WWAR), (b) unit 4 (2.5% 

WWAR), (c) unit 5 (5% WWAR), (d) unit 7 (1.5% WWAR) 
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the effect of WWAR on their removal.  

5.5.3.1. Zinc 

The ANOVA test results (presented in Table 5-4) show that there was a significant 

difference in Zn removal efficiency results that arose from the WC CWs in 

comparison to the other two configurations. The EDC CW was the highest performer 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

Fe
 (

m
g/

L)
 

TS
S 

(m
g/

L)
 

a 
TSS Eff 

Fe Eff 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

Fe
 (

m
g/

L)
 

TS
S 

(m
g/

L)
 

b 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0 

10 

20 

30 

40 

50 

60 

70 

80 

10 30 50 

Fe
 (

m
g/

L)
 

TS
S 

(m
g/

L)
 

Week 

c 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0 

5 

10 

15 

20 

25 

30 

35 

40 

10 30 50 

Fe
 (

m
g/

L)
 

TS
S 

(m
g/

L)
 

Week 

d 



Pilot-Scale Experiment Results 

 

108 

 

in terms of Zn removal, with a mean removal efficiency of 87%. The PDC CW 

achieved a mean Zn removal efficiency of 85%, making it the second highest 

performer over the course of the experiment. The WC CWs produced the lowest 

mean removal efficiencies: 76% for unit 1 and 77% for unit 4. As can be seen in 

Figure 5-10, both of these units suffered a period of reduced removal efficiency as 

effluent Zn concentrations elevated between weeks 29 and 45, before appearing to 

re-stabilise for the remainder of the experiment. The horizontal dashed line shows 

the minimum removal efficiency achieved by either of the CW units with added dry 

periods (value of 72% from the PDC CW). Note that the removal efficiencies of both 

of the WC CWs regularly drop below this value between weeks 29 and 45. The CWs 

experiencing dry periods do not appear to have been affected to any significant 

extent during this same period.  

 

Figure 5-10 - Zn removal efficiency over time in units 1, 3, 4 and 6. Horizontal dashed line represents 

minimum removal efficiency achieved by any unit with added dry periods 
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R = +0.83 for unit 6). Figure 5-11 shows the strong similarities in effluent TSS and 

Fe concentration trends. As discussed in section 5.2, the Fe entering the units was 

almost entirely particulate in form, and the strong correlations between effluent Fe 

and TSS suggests that this is also the case in the outflow. Therefore, Fe removal 

performance is reflective of TSS removal performance. Fe removal was successful in 

the EDC CW. It exhibited a mean removal efficiency of 97.4% and mean effluent 

concentration of 0.11 mg/L. Its results were also relatively consistent over time. The 

average Fe removal efficiency in the PDC CW was 95.5%, with a mean effluent 

concentration of 0.19 mg/L. Fe removal in the WC CWs was good, with mean 

removal efficiencies of 94.6% (unit 1) and 98.6% (unit 4) and corresponding effluent 

concentrations of 0.22 mg/L and 0.01 mg/L. The mean unit 1 Fe effluent 

concentration over the last 10 weeks of data recording was 0.08 mg/L. The 

difference in removal performance between unit 1 and its duplicate, unit 4, was 

attributed to unit 4’s higher TSS removal performance. 

 

Figure 5-11 - Effluent TSS and Fe concentrations over time in (a) unit 1 (WC), (b) unit 3 (PDC), (c) unit 4 

(WC), (d) unit 6 (EDC) 
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5.5.4. Discussion – Heavy metals removal 

In general, it is theorised that solids removal mechanisms were extremely important 

in the reduction of heavy metals in the pilot-scale CWs. As the influent Zn was 

mostly particulate in form, or associated with solid particles (90% of influent Zn as 

determined by partioning analysis), it is likely that the solids removal processes 

described in section 5.4.4 are the dominant Zn removal mechanisms in the CWs. 

This was determined to be in the main Zn removal mechanism in several other 

similar studies where influent Zn was mainly particulate (e.g., Blecken et al., 2009b; 

Blecken et al., 2011). It was found that all effluent Zn was dissolved in form; 

therefore the systems were extremely effective in removing particulate Zn.  

There is a strong correlation between effluent TSS and Fe evident in all eight units 

(R
2
 values in the range 0.64 to 0.92, see chapter 7), and this is typical of the 

relationship between these parameters in all eight units (see Figure 5-12 for the 

relationship between effluent TSS and Fe in units 1 and 2). Coupled with the fact 

that the influent Fe is entirely particulate in form, it is reasonable to suggest that 

typical solids removal mechanisms (settling, trapping, filtration and interception) are 

the main processes for Fe removal.  

 

Figure 5-12 - Relationship between effluent TSS and Fe concentrations in effluent from units 1 and 2 
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the TSS removal performance of each media type. The major exception to this was 

Zn, where it was clearly identified that there was a lapse in performance in the loamy 

sand units over a period of 20 weeks. 

The difference in Zn removal may be attributed to each media’s ability to remove 

dissolved Zn. Partitioning analysis over a 7 week period from weeks 21 to 27 

(inclusive) found that dissolved Zn concentrations increased from the influent to the 

effluent in all loamy sand CWs, but was reduced in the gravel media CW and 

completely removed in the BFS CW (see Figure 5-13).  

Dissolved Zn is typically removed in CWs of this type via adsorption and microbial 

uptake in soils and organic matter, as well as plant uptake, precipitation and 

complexation by the media (Blecken et al., 2009b; Feng et al., 2012; Rieuwerts et 

al., 1998). Batch adsorption analysis (see chapter 4) found that influent Zn, with the 

typical concentration used in this experiment, is adsorbed relatively quickly to loamy 

sand media (99.90% of original Zn concentration removed after 15 minutes) and 

BFS (99.82% of original Zn concentration removed after 15 minutes). Therefore 

both the loamy sand and BFS media have the demonstrated ability to effectively 

remove the majority of dissolved Zn by adsorption. 

 

 

Figure 5-13 - Dissolved Zn concentrations vs time 
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and thus it can then be effectively removed via the solids removal mechanisms that 

the BFS exhibited so successfully. Calcium (Ca) and magnesium (Mg) are 

recognised to be very effective adsorbents for heavy metals in neutral and alkaline 

conditions (Kim et al., 2008), and elemental composition analysis of the BFS 

determined that it contained 24% Ca and 4% Mg (see chapter 4 for further details). 

Furthermore, the presence of sulphur in the BFS composition (≈1%) may have 

contributed to its successful dissolved Zn removal, since Zn forms very insoluble 

compounds with sulphide and thus precipitates (Kadlec and Wallace, 2009). 

Therefore, it is unsurprising that the BFS unit was the best remover of dissolved Zn. 

 

Figure 5-14 - Effluent Zn and water temperature over time in unit 1 

It is important to note the timing of the increase in effluent Zn from the loamy sand 

CWs. The main dip in performance occurs from week 25 to 45 (see Figure 5-6). 

Week 25 began on the date 11/05/14 and week 45 on 19/10/14. This period is the 

British summertime, so it was considered that temperature may have contributed to 

the reduced Zn removal efficiencies. A relationship between effluent Zn 

concentration and effluent water temperature was thus identified, with a correlation 

coefficient of R = +0.74. Figure 5-14 shows the similarity in behaviour between 

these two components. Higher temperatures increase biological activity. Blecken et 

al. (2011) reported that, in stormwater CWs, higher biological activities occur at 

20°C and above and therefore there is a higher turnover and decomposition of 
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outflow of the CW. Metals sorbed to organic matter in CW systems are not 

permanently immobilised (LeFevre et al., 2014), and the release of DOM from the 

media will result in the release of associated sorbed metals. Martinez et al. (2003) 

report that Zn forms complexes with DOM and that increased temperature causes 

breakdown of DOM and increases the mobility of Zn in soil. This reason has been 

cited for the release of other metals which also bind to organic matter, in similar 

pilot-scale CW set-ups (e.g., Blecken et al., 2011). 

Figure 5-14 shows that Zn effluent concentrations are at their highest during the 

period of time when temperatures regularly reached 20°C. The increase in biological 

activity in the loamy sand CWs is evident from the plant growth experienced over 

this warm period. The Typha latifolia began to show the first visible signs of growth 

on 17/03/14 in the loamy sand CWs, before establishing themselves well during the 

spring and summertime (see Figure 3-1). During October 2014 there were visible 

signs that the plants were dying ahead of the winter (Figure 5-15), and by November 

they had turned completely brown (Figure 5-16). 

The behaviour of the Typha latifolia in this period reflects the increase in biological 

activity in the loamy sand CWs, and therefore suggests that the release of DOM with 

associated sorbed Zn may be the source of the elevated Zn effluent concentrations. 

The BFS and gravel CWs did not successfully support the Typha, and do not contain 

high organic matter content within their media materials. Therefore, they would not 

have experienced the same increase in turnover and decomposition of organic matter 

that was experienced in the loamy sand CWs. This may explain why they did not 

experience the elevated effluent Zn concentrations. 

Another factor in the increased Zn concentrations in the outflow of the loamy sand 

CWs may be directly related to the plant growth. Rieuwerts et al. (1998) reported 

that plant roots can slowly discharge organic substances which can act as 

complexing agents for metals, bringing adsorbed metals into solution. Therefore, 

previously adsorbed metals may have become mobilised when the plants were at 

their most active and thus ended up in the CW effluent. However, this would have 

been reflected in a change in pH, which was not identified. It is possible that the 
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effect was localised around the plant roots, but it is not possible to ascertain for 

certain in the experiment whether this was the case or not. 

 

 

 

 

 

Figure 5-15 - Visible evidence of plant die off on 27/10/14 

Figure 5-16 - Further visible plant die off on 18/11/14 
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The choice of WWAR value did not have a significant effect on the removal 

efficiency of most of the metals. The metals in the semi-synthetic stormwater were 

mainly particulate in form or bound to particles, so they were removed effectively by 

the physical mechanisms exhibited in the CWs, at which all four CWs performed 

well. The exception to the trend was Zn, where the 1.5% WWAR CW was clearly 

the strongest performer, but it is thought that this may be due to the fact that it had 

not been in operation as long as the other CWs, due to unforeseen operational 

difficulties delaying the commissioning of the CW until week 24 of the experiment. 

Week 24 began at the end of spring/start of summer. Therefore the 1.5% WWAR 

CW did not have as long as the other loamy sand CWs to grow its biological 

community. As explained above, this may have caused reduced release of DOM and 

therefore reduced release of associated dissolved Zn in the effluent (compared to the 

other CWs). Figure 5-8 shows that there was reduced Zn removal efficiency from the 

1.5% WWAR during the summer period (suggesting that biological activity did 

increase), but that the removal did not drop as low as the other two CWs. This may 

have been due to reduced biological activity in comparison to the other CWs, caused 

by the late commissioning of the 1.5% WWAR.  

The only significant effect on metals removal caused by drying was improved 

consistency of Zn removal during dry periods. The elevated effluent Zn 

concentrations exhibited in the WC CWs between weeks 29 and 45 did not occur in 

either of the units that were subjected to additional dry periods. Again, this is 

thought to be attributable to reduced biological activity occurring within the CWs 

due to their reduced intake of semi-synthetic stormwater and its nutrient content, 

which contributes to the biological community. Otherwise, metal removal patterns 

followed TSS removal patterns. 

5.6. Nutrients 

In order to fully understand the N transformation processes occurring within the 

pilot-scale CWs it is necessary to examine results for NH4-N, NO2-N and NO3-N. 

The total of these concentrations is the inorganic fraction of TN. Therefore, 

subtracting this total from the TN values gives us the organic fraction of TN (see 

Equation 5.3). As mentioned earlier, inflow and outflow concentrations of NO2-N 
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were typically below the detection limit of 0.002 mg/L. Therefore there is not a 

section devoted to it in this chapter, but the fact that NO2-N concentrations were 

typically zero is still considered and used to bolster the understanding of the N 

transformation process in conjunction with the data for NH4-N, NO3-N and organic 

N. 

Organic N = TN – (NH4-N + NO2-N + NO3-N)            (5.3) 

Total nitrogen removal improved over the duration of the experiment. The range of 

average removal efficiencies from the last 10 weeks of data recording of all units is 

63-94%, with some units maturing more slowly than others. This compares 

favourably with the results of similar pilot-scale stormwater CWs, some of which 

experience an increase in TN concentrations in the effluent water. Zhang et al. 

(2011) report a range of 62-93% mean removal efficiencies, while the systems tested 

by Bratieres et al. (2008) produced a mean removal range of -241-79%. 

NH4-N removal was good in all units, with relatively consistent removal efficiencies 

and effluent concentrations experienced. Mean removal efficiencies of 80-94% were 

recorded, with mean effluent concentrations ranging from 0.08-0.25 mg/L. These 

values compare well with results of a similar pilot-scale CW tested by Zhang et al. 

(2011), who recorded mean removal efficiencies of 81-95%. The results from this 

experiment also compare favourably with those reported by Nanbaksh et al. (2007), 

who tested pilot-scale systems with a turf substrate. Mean NH4-N removal 

efficiencies ranged from 81-89% in that experiment. 

Increased NO3-N concentrations from inflow to outflow are a common feature for 

VF CWs due to their excellent oxygen transfer efficiency, hence producing 

conditions that favour nitrification but not denitrification (which requires anoxic 

conditions to convert NO3-N to N2 gas by removing its oxygen components). Also, 

NO3-N is very mobile in CW conditions, and thus is not easily sorbed to soil media 

(Li and Davis, 2014). Negative removal efficiencies have been found in many 

similar pilot-scale studies (e.g., Blecken et al., 2010; Bratieres et al., 2008; 

Nanbaksh et al., 2007; Zhang et al., 2011).  
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Mean TP removal efficiencies were in the range 71-83%, with effluent 

concentrations of 0.18-0.31 mg/L. The mean removal efficiencies compare well with 

results of a similar pilot-scale configuration reported by Bratieres et al. (2007), 

although some units in that study achieved TP removal of over 90% in a single 

instance. This was attributed to the use of Carex appressa as the CW plants, as it 

features an extensive root system plus small root hairs which provide extra surface 

area for adsorption. The CWs in this experiment are outperformed in terms of mean 

TP removal efficiency and mean effluent concentration by similar configurations set 

up by Blecken et al. (2010) and Zhang et al. (2011), although it is worth noting that 

a higher mean influent concentration was used in this experiment in comparison to 

those two, so a direct comparison cannot be made. 

Influent analysis shows that 86% of influent P is in the dissolved inorganic PO4-P 

form. Therefore TP is mostly dissolved, suggesting that solids removal mechanisms 

do not play the dominant role in its removal. However, the TSS removal mechanisms 

as discussed in section 5.4.4 played a part in removing the particulate fraction of TP 

which was identified during partitioning analysis.  

Since the dissolved PO4-P component of TP was the largest and most influential on 

its behaviour a focus is placed on this component to understand P removal in this 

chapter. 

The PO4-P removal efficiencies compare well to other similar pilot-scale systems 

reported by Bratieres et al. (2008) and Scholz & Hedmark (2010). There is much less 

variability in the range of removal efficiencies in the results of this experiment in 

comparison to the aforementioned papers. As with TP, the systems tested by Zhang 

et al. (2011) outperform this experiment, with a mean PO4-P removal efficiency of 

99%. All effluent PO4-P concentrations were below the calculated discharge limit of 

1.148 mg/L. 

5.6.1. Effect of CW media on nutrient removal 

5.6.1.1. Nitrogen 

Single factor ANOVA tests identified significant differences in TN removal 

efficiency caused by the use of gravel CW media (see Table 5-2). No significant 
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difference was found in the performances of the loamy sand and BFS CWs. Total 

nitrogen removal improved over the duration of the experiment for all CWs, 

although it was a much slower improvement for the gravel media unit. Figure 5-17 

shows the pollutograph of the influent N composition, and figures 5-19 to 5-22 show 

the corresponding effluent N composition pollutographs of the four CWs. The 

pollutographs show the change in TN concentrations and also the change in N 

composition from influent to effluent. It is apparent that there is an increasing TN 

removal efficiency as units 1, 4 (loamy sand) and 8 (BFS) mature. It can also be seen 

that there is an improvement in TN reduction in unit 2 (gravel), but that it is much 

slower than the other CWs and does not achieve the same removal performance by 

the end of the experimental run.  

 

Figure 5-17 - Pollutograph showing influent N composition 
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Figure 5-18 - Pollutograph showing N composition of unit 1 (loamy sand, 2.5% WWAR, WC) effluent 

 

Figure 5-19 - Pollutograph showing N composition of unit 2 (gravel, 2.5% WWAR, WC) effluent 
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Figure 5-20 - Pollutograph showing N composition of unit 4 (loamy sand, 2.5% WWAR, WC) effluent 

 

 

Figure 5-21 - Pollutograph showing N composition of unit 8 (BFS, 2.5% WWAR, WC) effluent 

The initial effluent concentrations of the CWs were relatively similar. The mean TN 
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CW. There was therefore no obvious advantage to the use of any of the media types 

over the others during this start-up period.  

As time passed it there was an improvement in the loamy sand and BFS CWs that 

was not being matched by the gravel CW. The mean TN removal efficiencies over 

the final 10 weeks of data recording were 94% (unit 1) and 94% (unit 4) for the 

loamy sand CWs, 62% for the gravel unit and 93% for the BFS CW. So the loamy 

sand and BFS units reached a very similar standard of removal, but the gravel CW 

clearly performs less effectively.  

5.6.1.2. Phosphorus 

Mean removal efficiencies in Table 5-5 give some indication of PO4-P removal 

between different media, with loamy sand outperforming gravel and BFS on 

average. Single factor ANOVA test results also highlight the significant differences 

in PO4-P removal efficiency between the loamy sand CWs and the gravel and BFS 

CWs (see Table 5-2). 

There was an improvement in PO4-P removal over time in the loamy sand CWs, with 

a particularly notable increase in removal efficiency between weeks 33 and 42, as 

can be seen in Figure 5-22.  

 

Figure 5-22 - PO4-P removal efficiencies over time for units 1, 2, 4 and 8 
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5.6.2. Effect of change in wetland-watershed area ratio on nutrient removal 

5.6.2.1. Nitrogen 

TN removal improved in all four WWAR CWs over the duration of the experiment. 

Since removal increased over time, the mean removal values in Table 5-5 are not 

very representative of the behaviour of the systems with regards to N.  

Figure 5-17 shows the pollutograph of the influent N composition, and figures 5-19, 

5-21, 5-24 and 5-25 show the corresponding effluent N composition pollutographs of 

the four CWs. The pollutographs show the change in TN concentrations and also the 

change in N composition from influent to effluent. It is apparent that there is an 

increasing TN removal efficiency as the units mature over time. 

 

Figure 5-23 - Pollutograph showing N composition of unit 5 (5% WWAR, loamy sand, WC) effluent 
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Figure 5-24 - Pollutograph showing N composition of unit 7 (1.5% WWAR, loamy sand, WC) effluent 

The mean removal efficiencies from the final 10 weeks of data recording were 94% 

for both 2.5% WWAR CWs and the 5% WWAR CW, and 84% for the 1.5% 

WWAR. Thus it would appear that the 2.5% WWAR and 5% WWARs outperform 

the 1.5% WWAR CW by 10% removal effciency. However, it should be noted that 

the 1.5% WWAR CW had not been in operation as long as the other CWs, due to 

unforeseen operational difficulties delaying the commissioning of the CW until week 

24 of the experiment. Despite this, the CW was not at a disadvantage in comparison 

to the 5% WWAR CW, as the 1.5% WWAR CW’s first TN removal efficiency 

reading was actually higher than the corresponding 5% WWAR CW result. 

However, this does not mean that the development of the biological community in 

the 1.5% WWAR CW was more advanced than in the 5% WWAR. Unfortunately, 

due to time restrictions, it was not possible to extend the running time to determine 

whether the 1.5% WWAR CW would eventually match the N removal performance 

of the other three systems. Single factor ANOVA tests found no significant 

difference in TN removal efficiencies between the three WWAR configurations, 

which suggests that WWAR did not significantly affect TN removal. 

5.6.2.2. Phosphorus 

Mean removal efficiencies in Table 5-5 give some indication of PO4-P removal 

between different WWAR values, with the 5% WWAR performing best on average. 

Single factor ANOVA tests identified significant differences in PO4-P removal 
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efficiency between the 5% WWAR CW and both other CWs, whereas no significant 

difference was found between the 2.5% and 5% WWAR CWs (see Table 5-3). To 

characterise these differences, it is necessary to examine how removal performances 

changed over time. All four CWs improved over time in terms of PO4-P removal, 

with a particularly notable increase in removal efficiency for the 1.5% and 2.5% 

WWAR CWs between weeks 33 and 42, as can be seen in Figure 5-25. The 

performance of the 5% WWAR CW was more constant, performing at a high level 

(88% mean removal efficiency ± 3% standard deviation) throughout the experiment. 

The 5% WWAR CW was not only the highest performer over the length of the 

experiment (see Table 5-5), but also during the final 10 weeks, achieving a mean 

PO4-P removal efficiency of 92% in this period.  

 

Figure 5-25 - PO4-P removal efficiencies over time for units 1, 4, 5 and 7 

The improvement undergone by the 1.5% WWAR CW did not match that of the 

2.5% WWAR CWs. Despite relatively similar mean removal efficiencies from the 
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weeks of data recording show that the 1.5% WWAR CW could not reduce PO4-P to 

the same level as the 2.5% WWAR CWs at the end of the project. In this 10 week 

period, the 1.5% WWAR CW was producing a mean PO4-P effluent concentration of 

0.12 mg/L, whereas both 2.5% WWAR CWs produced mean concentrations of 0.09 

mg/L.  
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5.6.3. Effect of drying on nutrient removal 

5.6.3.1. Nitrogen 

TN removal improved in all four CWs. Since removal increased over time, the mean 

removal values in Table 5-5 are not entirely representative of the performance of the 

systems, although the order of relative performances between systems is correct (i.e., 

the WC CWs were the strongest performers and the EDC CW was the poorest 

performer). Single factor ANOVA tests found that there was no significant 

difference between the TN removal efficiencies produced by the three wetting/drying 

regimes. 

Figure 5-17 shows the pollutograph of the influent N composition, and Figure 

5-18Figure 5-20Figure 5-26Figure 5-27, show the corresponding effluent N 

composition pollutographs of the four CWs. The pollutographs show the change in 

TN concentrations and also the change in N composition from influent to effluent. It 

is apparent that there is an increasing TN removal efficiency as the units mature over 

time. 

 

Figure 5-26 - Pollutograph showing N composition in unit 3 (PDC, loamy sand, 2.5% WWAR) effluent 
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Figure 5-27 - Pollutograph showing N composition in unit 6 (EDC, loamy sand, 2.5% WWAR) 

The mean TN removal efficiencies from the final 10 weeks of data recording were 

94% for both WC CWs, 89% for the PDC CW and, and 80% for the EDC CW. 

Examination of the mean effluent NO3-N concentrations for the final 10 weeks of 

data recording shows that significantly more NO3-N was present in the EDC CW 

outflow (0.24 mg/L) compared to the PDC (0.09 mg/L) and WC CWs (0.05 mg/L 

and 0.04 mg/L for units 1 and 4, respectively). There was also significantly more 

organic nitrogen remaining in the EDC effluent (0.57 mg/L) compared to the PDC 

(0.36 mg/L) and WC CWs (0.24 mg/L for both units).  

5.6.3.2. Phosphorus 

Mean removal efficiencies in Table 5-5 give some indication of PO4-P removal 

between different drying regimes (the EDC CW performing best on average) but 

there were changes in removal performances over time.  

Single factor ANOVA tests found that there were no significant differences in PO4-P 

removal efficiency caused by a change in wetting/drying regime. Figure 5-28 shows 

how closely matched the CWs were in terms of PO4-P removal, particularly at the 

end of the experiment. 
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Figure 5-28 - PO4-P removal efficiencies over time for units 1, 3, 4 and 6 

5.6.4. Discussion – Nutrient removal 

5.6.4.1. Nitrogen 

The reason for the use of a tidal-flow regime in this experiment was to improve the 

denitrification ability of a VF CW system. At first, it seemed that denitrification was 

either unsuccessful or limited (due to the increased NO3-N concentrations in the 

outflow), but the systems matured over time and NO3-N effluent concentrations 

decreased, suggesting that the denitrification capabilities of the systems improved. 

The variables investigated did not provide any alternative removal mechanism 

pathways for N, but they did affect how long it took for the systems to mature and 

hence affected the long-term reduction rates of N. There was therefore no obvious 

advantage to the use of any of the media types over the others during this start-up 

period (when NO3-N removal was negative in all units). This would suggest that the 

differing physical properties of the CW media did not affect N removal at this stage, 

supporting the theory that biological removal was the main mechanism for N 

reduction in the CWs. As time passed it became obvious that there was an 

improvement in the loamy sand and BFS CWs that was not being matched by the 

gravel CW. Nitrification has been successful in the gravel unit (since NO3-N 

concentrations have increased from influent to effluent), but denitrification is limited 

in comparison to the other CWs. It is no surprise that nitrification has been 

successful, as the granular nature of the gravel allows more air to enter the CW via 
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the larger pore space in the media. Overall, the gravel CW did not achieve any 

reduction in NO3-N effluent concentrations over time, which suggests that the CW 

was unable to provide the anoxic conditions required for denitrification processes. 

No significant conclusions can be drawn on the fact that the 1.5% WWAR CW 

produced poorer results in comparison to the other CWs since it was not running for 

the same length of time as them. Thus, they did not have equal lengths of time to 

mature. Single factor ANOVA tests found no significant difference in TN removal 

efficiencies between the three WWAR configurations, which suggests that WWAR 

did not significantly affect TN removal. 

Taking a general view of the N removal patterns across all 8 CW units helps to 

understand the internal CW processes. Organic N was successfully reduced in the 

CWs, with removal efficiencies increasing over time. Taking unit 1 (see Figure 5-18) 

as an example: the average removal rate of organic N increased from 49% over the 

first 10 weeks of data recording to 95% over the final 10 weeks. Ammonification is 

the process by which organic N is mineralised and biologically transformed to NH4-

N. Thus, the ammonification capabilities of the CWs improved over time. 

Ammonification can occur under both aerobic and anaerobic conditions (Reddy and 

Patrick, 1984), so it was expected that the pilot-scale CWs would successfully reduce 

organic N concentrations. The organisms thought to be involved in ammonification 

are heterotrophic (U.S. EPA, 1993), stripping carbon from the organic N. 

The improvement in organic N removal over time may be attributed to the increasing 

biological communities establishing themselves within the CWs as they mature.  

Thus, there is an increasing availability of heterotrophic microorganisms which 

increase the organic nitrogen removal efficiency. The increase in biological activity 

in the CWs benefits both ammonification and denitrification simultaneously 

(facultative heterotrophs also perform denitrification). This would explain the results 

from the wetting/drying regime tests, in which the main influence of drying 

conditions on nutrient removal is regarding the development of the biological 

communities in the pilot-scale CWs. Longer dry periods reduce the growth rate (due 

to decreased influent organic material), which causes less ammonification and 
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denitrification, thus contributing to a lower TN removal efficiency in comparison to 

systems experiencing more regular wet conditions.  

Nitrification is the process by which NH4-N is converted to oxidised N. It is 

described by van de Graaf et al. (1996) as the biological formation of nitrate or 

nitrite from compounds which contain reduced nitrogen with oxygen as the terminal 

electron acceptor. Successful nitrification was indicated by the successful and 

consistent removal of NH4-N along with the increase in NO3-N concentrations from 

influent to effluent. This was expected prior to the beginning of the experiment, due 

to the tidal-flow dosing regime of the VF CW, which allows for good entry of air 

into the system between doses. This provides oxygen to the bed media ready to 

nitrify the NH4-N concentration present in the next dose. 

 

Figure 5-29 - pH values of influent stormwater and effluent from each unit 
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of the CWs (see Figure 5-30). When oxidation of NH4-N occurs, H
+
 ions are 

produced, causing a decrease in pH (Lee et al., 2009). The reason that this is not 

observable in the unit 8 effluent is probably due to the BFS media, which causes a 

highly alkaline effluent, despite the nitrification occurring. 

The NH4-N concentrations remaining in the effluent may indicate that the systems do 

not have the ability to nitrify all the incoming NH4-N. However, another contribution 

to the presence in the outflow may be due to the release of cell-bound nitrogen 

(NH4
+
) from bacteria that die while the CWs are drying out between doses (Scholz et 

al., 2002). 

The increase in NO3-N concentrations from inflow to outflow (along with the 

decrease in NH4-N concentrations and lack of NO2-N concentrations in the outflow) 

shows that the nitrification process has been very effective in the pilot-scale CWs. 

As the systems mature over time, the growth of the biological community within the 

CWs is the likely reason behind the improvement in denitrification. Facultative 

heterotrophs perform denitrification: organisms that can use either nitrate or oxygen 

as terminal electron acceptors (Kadlec and Wallace, 2009). Thus, as the biological 

community increases there is a greater availability of facultative heterotrophs for 

denitrification. The growth of biofilm in the CW over time provides more anoxic 

zones in the inner biofilm layer where a high resistance to oxygen diffusion allows 

the heterotrophs to survive (Hu et al., 2014). 

The influence of the increasing biological activity in the systems can be observed in 

the results for the organic N and NO3-N removal, both of which improve over time. 

When organic N is ammonified it leaves a carbon molecule (Kadlec and Wallace, 

2009). Carbon is a requirement for the denitrification process (Reddy and Patrick, 

1984), so this molecule can now be used in the final phase of N reduction. 

By the end of the experiment effluent NO3-N concentrations were extremely low for 

most loamy sand units and the BFS CW. For example, the last 10 weeks of data 

recording saw an average effluent concentration of 0.05 mg/L in unit 1, comparing 

favourably to other pilot-scale VF CWs which do not use a tidal-flow hydraulic 

regime (e.g., Blecken et al., 2010; Bratieres et al., 2008). 
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5.6.4.2. Phosphorus 

Dissolved forms of P can be removed from stormwater by a range of mechanisms 

including plant uptake, sorption to substrate media, precipitation and microbial 

uptake (U.S. EPA, 2000b; Shenker et al., 2005). Microbial uptake was not measured 

in the pilot-scale CWs. Plant uptake was unlikely to have had a strong contribution 

to the granulated media (gravel and BFS) CWs, as the plants struggled to establish 

themselves in these systems. This was apparent from visual observations, as the 

plants did not grow any larger than their original planting sizes, and lost their green 

colour and decreased in size over time. The plants established well in the loamy sand 

units, but died during the winter. Despite this, the PO4-P removal efficiencies 

continued to improve, which suggests that one or more other removal mechanisms 

were dominant.  

Adsorption of PO4-P in CWs is usually associated with acidic conditions and the 

presence of oxyhydroxides of Fe and Al (Reddy and D’Angelo, 1997). None of the 

CWs exhibited acidic conditions over the duration of the experiment, and the Fe 

content of the loamy sand and BFS was low (4% and 2%, respectively). The BFS 

contained a considerable percentage of Al in its elemental composition (17%), but 

the alkaline conditions exhibited in the BFS CW makes it highly unlikely that PO4-P 

was adsorbed to Al in that unit. It was therefore considered that adsorption was not a 

major P removal mechanism in the pilot-scale CWs. 

The presence of calcium (Ca) in the CW media may have been a key factor in PO4-P 

removal. The Ca contents of the loamy sand and BFS were high with respect to the 

content of other elements, at 27% and 24% respectively (see chapter 4 for details). 

Reddy and D’Angelo (1997) state two potential pathways of P removal, based on the 

type of soil in the CW. They state firstly that, in soils mainly formed of iron oxides, 

P can be readily immobilised via sorption and precipitation with ferric oxyhydroxide, 

and formation of ferric phosphate in the oxidised zones of the soil-water interface. 

They state secondly that, in calcareous CWs (such as the LS and BFS units), P can 

be precipitated as Ca mineral-bound phosphorus. This would suggest that, since the 

substrate media in the pilot-scale CWs features a large percentage of Ca, that 

precipitation is a dominant PO4-P removal mechanism. Richardson and Craft (1993) 



Pilot-Scale Experiment Results 

 

132 

 

state that precipitation as insoluble Ca-phosphates is the dominant P transformation 

in CW soils at pH greater than 7. Mean effluent pH values for the loamy sand CWs 

were 7.0 for units 1, 3, 4 and 7 and 7.1 for units 5 and 6. The mean pH values of the 

gravel CW and BFS CW effluent were 7.6 and 8.9, while mean influent pH was 7.7. 

Thus, the high availability of Ca and the pH conditions suggest that chemical 

precipitation of PO4-P with Ca ions is a dominant removal mechanism in the pilot-

scale CWs.  

This theory is backed up by the decrease in PO4-P removal performance of the BFS 

CWs over time. A decrease in pH over time was also observed in the effluent of the 

BFS CW effluent (this corresponded with a decrease in influent pH over time), and a 

negative correlation between effluent PO4-P and pH was identified (R = -0.84). 

Figure 5-30 shows the similarity in behaviour between these two components 

(unfortunately, effluent pH data was unavailable from weeks 15 to 20). The high pH 

conditions produced by the use of BFS, along with its high Ca content (24%, see 

chapter 4), enhances soluble P precipitation processes (particularly at pH above 9.0 – 

Kadlec and Wallace, 2009). Therefore, a decreasing pH over time may have resulted 

in decreasing precipitation of PO4-P, thus increasing effluent concentrations.  

 

Figure 5-30 – PO4-P removal efficiency and effluent pH over time in unit 8 (BFS) 
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increased level of consistency offered by the high-performing 5% WWAR CW; and 

the reduced level of improvement over time of the 1.5% WWAR CW. Bratieres et 

al. (2008) also found that larger WWAR values produced better P removal. They 

proposed that, because the volume of flow through the larger surface area system (in 

this case the 5% WWAR CW) is smaller than the other CWs, a larger proportion of 

the water being washed through in any one dose is made up of water that had been 

retained in the CW soil from the dose before. Therefore, this water will have had a 

longer retention time, which may have enhanced P reduction. In this case, a larger 

proportion of the outflow will have received additional P reduction in comparison to 

the other CWs, thus reducing its overall P concentration.  

Drying was not found to significantly affect P removal. 

5.7. Summary 

Table 5-6 shows the selection of the best performing variable for each different 

category of pollutant removal: TSS, heavy metals and nutrients. Where a dash is 

present, this indicates that there was no significant advantage found by using one 

particular configuration/set of operating conditions. 

It is evident from the comparison of CW media that gravel is the least desirable 

option, as it is outperformed in both metal and nutrient removal (particularly the 

latter), and offers no significant advantage in terms of TSS removal. BFS was the 

ideal choice for TSS removal because there was no “settling period” associated with 

it, and it produced high TSS removal efficiency results from the beginning and 

throughout the experiment. Loamy sand is the best performer in terms of nutrient 

removal due to its advanced biological activity. However, this also appeared to lead 

to a release of DOM which caused a temporary increase in Zn effluent 

concentrations during warm temperatures. This effect was not experienced by the 

BFS and it effectively and consistently removed metals throughout the experiment. It 

should be emphasised at this point that both the loamy sand and BFS CWs 

performed well overall, and therefore the choice of media when designing a 

stormwater CW should be tailored to the pollutant which is considered to be of 
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greater threat in the target catchment, i.e., a BFS CW is more reliable for heavy 

metal removal, whereas a loamy sand CW will produce higher nutrient removal. 

Table 5-6 - Best performing variable for each category of pollutant removal 

 Media WWAR Wetting/drying regime 

TSS removal BFS 1.5% WWAR - 

Heavy metal removal BFS (1.5% WWAR) PDC and EDC 

Nutrient removal Loamy sand 5% WWAR WC 

 

The comparatively higher performance of the 1.5% WWAR at heavy metals removal 

should be taken with caution, as it is believed that the reduced release of Zn may 

have been due its shorter life span and hence its reduced maturation compared to the 

other CWs. However, its TSS removal was the most successful, likely due to the 

quicker aggregation of solids in the system due to higher inflow volumes. 

Meanwhile, the 5% WWAR CW was the best performer in terms of P reduction. 

However, by the time all CWs had matured, the difference in removal performance 

in terms of both TSS and P reduction was not significant, so it can be said that all 

WWAR values tested in this project are viable options for CW design. 

The release of dissolved Zn experienced during the summertime in loamy sand CWs 

was not experienced in the CWs that underwent drying regimes. Therefore, their 

overall Zn removal was superior to the WC CWs. However, it was found that drier 

conditions caused N removal to suffer. Thus, drying negatively affects the nitrogen 

removal performance of this CW design. But it should be noted that a good standard 

of N removal was still achieved in the EDC CW, and that its drought periods were 

quite extreme, much drier than would be expected in a real-life situation over this 

length of time. Therefore, it can be said that this CW design performs relatively well 

under dry periods and theoretically should be able to deal with periods of drought 

without a great negative impact on performance. 

In conclusion, based on the results presented in this chapter, the most effective 

configuration of the pilot-scale systems for pollutant removal is a BFS CW that 
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receives regular inflow (wet conditions). The effect of the WWAR value was found 

to be of little importance overall. 
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6. Mechanistic Modelling Using HYDRUS CW2D 

6.1. Introduction 

This chapter focuses on the application of a numerical model for analysis of the 

constructed wetland systems. Black-box empirical models are often used to simulate 

CW systems of this type, but their validity is restricted to the values to which they 

have been calibrated for, and they cannot be used to investigate alternative events 

(Fournel et al., 2013). Mechanistic models allow further investigation with 

alternative variables to occur, and also offer the benefit of allowing the 

determination of key CW components and processes that influence the model output. 

This is particularly relevant to the pilot-scale experiment in this project, since an 

understanding of the internal processes of the CWs is difficult to gain simply from 

influent and effluent data. Thus, this chapter details the application of a mechanistic 

model for analysis of the pilot-scale CWs with the aid of the HYDRUS CW2D 

wetland module. The main aims were: 

 To test and validate a numerical model of the constructed wetland systems 

with emphasis on nutrient prediction 

 To further the mechanistic understanding of the processes responsible for 

nutrient transformations in the CW and to aid future design by identifying the 

key parameters 

 To investigate the effect of alternative variables that were not studied in the 

main experiment, using the numerical model 

To the author’s knowledge, since this type of CW operating regime has not been 

applied for stormwater treatment before, HYDRUS has not been used to model this 

type of system before either. This was reflected in the problem faced that HYDRUS 

is unable to simulate the fill and drain nature of the CW dosing regime in a single 

model, due to its inability to change boundary conditions over time. This part of the 

modelling was therefore approached manually, as explained in section 6.3.5.2. A 

further problem that had to be overcome was obtaining accurate soil hydraulic 

parameters for input to the numerical model without disrupting the pilot-scale CWs, 
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which were still running while the work of this chapter was being undertaken. This 

was achieved through a combination of careful sampling procedures and the 

construction of a small replica CW which was subjected to pre-conditioning in order 

to simulate the soil conditions of the pilot-scale CWs accurately, as described in 

section 6.3.3. 

6.2. HYDRUS 

The software selected to develop the numerical model was HYDRUS 2D. HYDRUS 

is a software package that is capable of simulating water, heat and solute transport in 

variably-saturated porous media. The package uses computational finite element 

models to simulate two-dimensional flow movement. The program numerically 

solves the Richards equation for saturated-unsaturated water flow and convection-

dispersion type equations for heat and solute transport. HYDRUS was originally 

developed and released by the U.S. Salinity Laboratory in co-operation with the 

University of California Riverside, the International Groundwater Modeling Center 

(IGWMC), and PC-Progress Inc. HYDRUS was selected because of its ability to 

simulate variably-saturated media, its parameter optimisation algorithm for inverse 

estimation of soil hydraulic properties and, importantly, because of the availability of 

a special wetlands add-on module (CW2D), which allows for the simulation of 

aerobic and anoxic transformation processes for organic matter, nitrogen and 

phosphorus. 

The water flow and solute transport capabilities of HYDRUS were utilised for this 

project and the governing equations through which the program carries out the 

modelling processes are described in the following sections, along with descriptions 

of the numerical analysis techniques adopted by HYDRUS and the components and 

processes of the CW2D module. 

6.2.1. Water transport in HYDRUS 

The governing equation for transient variably saturated flow used in the CW2D 

module is based on the modified Richards equation (Equation 6.1), which assumes 

isothermal uniform Darcian flow through rigid porous media, with insignificant 

influence from the air phase of the liquid flow.  
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                  (6.1) 

where: θ(h) = Volumetric water content or soil water retention (L
3
/L

3
) 

 h = Pressure head (L) 

 S = Source/sink term (L
3
/
3
T

-1
) 

 xi = Spatial coordinates (i = 1,2), (L) 

 Kij
A
 = Components of the dimensionless anisotropy tensor K

A
. For an  

  isotropic medium the diagonal elements of Kij
A
 are one and the off- 

  diagonal elements are zero. 

 t = Time (T) 

 K(h) = Unsaturated hydraulic conductivity function (L/T) 

 L = Length unit after preference 

 T = Time unit after preference 

HYDRUS uses van Genuchten’s analytical models (1980) to calculate the 

unsaturated soil hydraulic properties θ(h) and K(h) for Equation 6.1. These are 

shown in Equations 6.2 and 6.3. 

      
   

     
          

    

      

               (6.2) 

         
         

 

  
 

                (6.3) 

where: 

   
    

     
                 (6.4) 

    
 

 
                    (6.5) 

Ks = saturated hydraulic conductivity. The following parameters are the van 

Genuchten (1980) parameters: 
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θr = Residual water content (L
3
/L

3
) 

θs = Saturated water content (L
3
/L

3
) 

α = Inverse of air-entry value or bubbling pressure (L
-1

) 

n = Pore size distribution index 

l = Pore connectivity parameter 

 

6.2.2. Solute transport in HYDRUS 

Solute transport in the HYDRUS CW2D model is based on the theory that the 

internal processes are similar to that of an activated sludge reactor. Thus, the 

mathematical structure of the CW2D multi-component solute transport model is 

based on the structure of activated sludge models proposed by Henze et al. (2000). 

Solute transport is described using the advection-dispersion equation (Equation 6.6), 

assuming constant pH, constant coefficients in the rate equations and constant 

stoichiometric factors.  

  

  
   

  

  
                                        (6.6) 

where: i = 1, 2, 3,…etc: No. of components 

 ci = Concentration in the liquid phase (M/L
3
) 

 si = Concentration in the solid phase (M/M) 

 ρ = Soil bulk density (M/L
3
) 

 Di = Effect dispersion tensor (L
2
) 

 q = Volumetric flux density (L
3
/L

2
T) 

 cS,i = Concentration of source/sink (M/L
3
) 

 ri = Reaction time (M/L
3
T) 

 M = Mass unit after preference 
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6.2.3. Numerical solution to governing flow and solute equations 

HYDRUS solves the governing water flow and solute transport equations (equations 

6.1 and 6.6) numerically via Galerkin-type finite element techniques. Depending on 

the size of the problem and the type of matrix utilised from the discretisation of the 

governing equations, solutions are obtained through the use of either the Gaussian 

elimination method, the conjugate gradient method or the ORTHOMIN method 

(Mendoza et al., 1991). 

6.2.4. CW2D solute transport: components and processes 

There are 12 components (pollutants and bacteria) and 9 processes (biochemical 

transformations and degradation processes) that can be simulated in the CW2D 

module. Tables 6-1 and 6-2 list the components and processes (respectively). Note 

that organic P and N are accounted for in the COD components. 

Table 6-1 - Components simulated in CW2D mulit-component solute transport 

HYDRUS 

Code 

Component (measured in mg/L) 

SO Dissolved oxygen (O2) 

CR Readily biodegradable soluble COD 

CS Slowly biodegradable soluble COD 

CI Inert soluble COD 

XH Heterotrophic bacteria 

PO4P Orthophosphate-phosphorus (PO4-P) 

XANb Autotrophic nitrite oxidising bacteria (Nitrobacter spp) 

XANs Autotrophic ammonia oxidising bacteria (Nitrosomonas spp) 

NO2N Nitrite nitrogen (NO2-N) 

NO3N Nitrate nitrogen (NO3-N) 

N2 Elemental nitrogen (N2) 

NH4N Ammonium nitrogen (NH4-N) 
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Table 6-2 - Processes simulated in CW2D mulit-component solute transport 

1. Hydrolysis: conversion of CS into CR 

2. Aerobic growth of XH on CR (mineralisation of organic matter) 

3. Anoxic growth of XH on CR (denitrification of NO2N) 

4. Anoxic growth of XH on CR (denitrification of NO3N) 

5. Lysis of XH 

6. Aerobic growth of XANs on NH4N (ammonium oxidation) 

7. Lysis of XANs 

8. Aerobic growth of XANb on NO2N (nitrite oxidation) 

9. Lysis of XANb 

 

6.3. Materials and Methods 

6.3.1. Physical models 

2 of the 8 pilot-scale CWs were selected as the physical models which would be 

simulated by HYDRUS. These units 1 and 4 and were chosen because they were the 

control units (with standard configuration) in the experiment. Further details on the 

dimensions, configuration, components and loading regimes of the systems can be 

found in chapter 3. 

6.3.2. Initial modelling considerations 

In order to model CWs to analyse nutrient behaviour, HYDRUS requires two sets of 

input data: hydraulic properties and solute transport parameters.  

Hydraulic parameters include the inflow volume, inflow rate and hydraulic 

properties of the CW media. The media hydraulic properties were obtained by 

laboratory tests (hydraulic conductivity, saturated water content) and the use of the 

HYDRUS module Rosetta Lite, which uses pedotransfer functions based on neural 

networks to provide soil hydraulic property estimates from its soil library based on 

inputs of alternative, easier to measure properties obtained from further laboratory 

tests (particle size distribution, bulk density and moisture content).  

Calibration of the hydraulic values was possible with the use of the HYDRUS 

inverse solution function, which uses a “black-box” approach to provide soil 
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hydraulic parameter values based on measured influent and effluent flow rates.  This 

was achieved with the aid of a “mini CW”, a small-scale model of the pilot-scale 

CWs using the same primary media in order to accurately determine hydraulic 

properties. The mini CW was required to avoid interrupting the operation of the 

pilot-scale CWs, since this procedure required the inflow water to run straight 

through the CW to outflow without being retained for 24 hours. The influent and 

effluent flow rates to the mini CW were measured, and the mini CW was modelled 

in HYDRUS, where the inverse solution tool was applied. The calibrated hydraulic 

parameters were then transferred to the HYDRUS model of the pilot-scale CWs. 

Solute transport parameters include the pollutant concentrations of the inflow semi-

synthetic stormwater and the background concentrations of the same pollutants in the 

CW. The inflow solute concentrations were obtained from the measurements taken 

from each inflow dose of semi-synthetic stormwater, carried out over the length of 

the experiment. The background concentrations were established by running the 

HYDRUS model through a large number of iterations. The first iteration used 

arbitrary values for the background solute concentrations, and the dosing regime was 

applied through the iteration cycles (one configuration for dosing and retention and a 

separate configuration for drainage and “rest” period, see section 6.3.5.2) until the 

background concentrations stabilised after the model had been subjected to a long 

period of dosing. 

6.3.3. Soil laboratory tests and mini CW 

Two of the most important soil hydraulic parameters, saturated hydraulic 

conductivity (KS) and  saturated water content (θS), were obtained from laboratory 

tests carried out on the loamy sand. Further laboratory tests were carried out to 

obtain input parameters for Rosetta Lite, which in turn provided estimated values for 

the rest of the soil hydraulic parameters. Calibration of soil properties in HYDRUS 

required accurate influent and effluent flow rates, which were also measured in the 

laboratory with the use of a specially constructed “mini CW”, described in section 

6.3.3.1. 
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Figure 6-1- Extraction of soil samples from pilot-scale CWs 

In-situ samples of the loamy sand from units 1 and 4 were extracted using a 

“category A” sampling method as outlined in BS EN ISO 22475-1:2006. This 

ensured minimal disturbance of the soil structure during sampling and handling. A 

thin-walled open-tube sampler was used, in accordance with section 6.4.2.3 of BS 

EN ISO 22475-1:2006. Initial observations indicated the accumulation of organic 

matter on the CW surfaces. Thus, the top 50 mm of top soil was removed prior to 

sample extraction. All handling, transport and storage of samples was carried out in 

accordance with clause 11 in BS EN ISO 22475-1:2006. 

The wet sieve method was used to determine the particle size distribution (PSD) of 

the loamy sand samples and also a sample of excess loamy sand which was left over 

from the construction of the pilot scale CWs (adhering to 9.1 in BS 1377-2:1990). 

Samples were prepared according to 7.3 and 7.4.5 in BS 1377-1:1990. 

The “linear measurement method” was adopted to determine the bulk density (ρ) of 

the in-situ loamy sand samples, adhering to BS 1377-2:1990. This method introduces 

a risk of human error in the physical measurement of sampling tube dimensions 

(necessary to determine the dimensions of the soil sample), thus an uncertainty of ± 

2 mm was applied. This uncertainty equates to an approximate error of ± 0.05 g/cm³ 

in the final values of ρ. A mean value from six readings was taken in order to 

minimise the effect of the error. The mean value was also taken due to natural 

variance in ρ within the pilot-scale CWs. 

Water moisture content (w) values of the in-situ loamy sand samples were 

determined using pressure plates in accordance with ASTM C1699-09 (“Standard 

Test Method for Moisture Retention Curves of Porous Building Materials Using 
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Pressure Plates”). Water was added to the samples until their saturated water content 

was exceeded by 10%. They were then subjected to 33 kPa of pressure for several 

days until equilibrium mass was reached. The w value of each sample was then 

determined as described in clause 3 of BS 1377-2:1990. 

The saturated hydraulic conductivity (Ks) value of the loamy sand was determined by 

undertaking a permeability test using the constant head method in accordance with 

clause 5 of BS 1377-5:1990. Since the volume of soil required for the test was too 

great to remove from the pilot-scale CWs, the test was carried out on a sample of the 

excess loamy sand that was left over from the construction of the CWs.  

It should be noted that PSD analysis had found this soil to contain a greater 

percentage of fines in comparison to the in-situ soil; therefore, before the excess 

loamy sand sample was tested, it was subjected to a hydraulic loading regime of its 

own to wash away its finer particles. The aim was to give the excess soil sample a 

more similar PSD to that of the in-situ soil. Therefore, the sample was loaded until 

the effluent ran clear (judged visually). Furthermore, in order to ensure that the void 

ratio of the excess soil sample was reflective of the in-situ CW soil, calculations 

were carried out to determine the compaction required to ensure that the excess soil 

sample had the same bulk density as the in-situ CW soil. 

The Ks value was calculated using 4 different flow rates and their respective 

hydraulic gradients. A mean value was then taken to increase the accuracy of the 

result. 

In order to calculate the θs value of the loamy sand, the dry density (ρd) and average 

particle density (ρs) were required. ρd was calculated from ρ and w using Equation 

6.7 (equation 2.2.17 of BS 1377-1:1990). 

   
    

     
                 (6.7) 

ρs was determined via a small pyknometer test on a sample of the extracted in-situ 

CW soil (according to clause 8, BS 1377-5:1990).  

Knowledge of ρd and ρs allowed for the calculation of the soil’s void ratio, e, by 

Equation 6.8 (equation 2.2.28 in BS 1377-1:1990). 
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                   (6.8) 

The void ratio was then used to calculate θs via Equation 6.9 (equation 2.2.31 in BS 

1377-1:1990). 

     

  
                   (6.9) 

6.3.3.1. Mini CW flow rates 

The mini CW was constructed from the same loamy sand used in the construction of 

the pilot-scale CWs. It was constructed in the soil laboratory using a hydraulic 

consolidation cell, as described in clause 5 of BS 1377-5:1990. The dimensions of 

the cell are shown in Figure 6-2. A 6 cm gravel drainage layer was included. A 2 mm 

mesh was also placed between the gravel and the loamy sand to act as a transition 

layer, preventing large particles from washing through the system. Experience 

dictated that both the gravel and the 2 mm mesh would have significantly higher 

permeability values than that of the loamy sand and thus they would not have a 

significant effect on the results of the flow test. 

 

Figure 6-2 - Mini CW 

The soil conditions of the in-situ pilot-scale CWs were replicated by compacting the 

loamy sand in the conductivity cell to the appropriate density (determined from the 

16 cm 

6 cm 

 

7.3 cm 

 

2 mm mesh 
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results of the bulk density test). The mini CW was also subjected to a pre-testing 

loading regime in order to wash away finer particles contained in the loamy sand, so 

that its PSD was more similar to that of the in-situ loamy sand. 

Three effluent flow rate tests were carried out on the mini CW in order to obtain a 

mean cumulative effluent flow graph for comparison to the results of the HYDRUS 

model.  The top 6 cm of the consolidation cell contained no loamy sand, to allow for 

ponding of inflow. The mini CW inflow volume was calculated based on the 

maximum volume of water that the consolidation cell could hold during a dosing 

event without overflowing. This volume was found to be 0.25 L. 

In each effluent flow rate test, 0.25 L of inflow was applied and cumulative effluent 

measurements were taken every 5 seconds. 

Influent flow rate measurements were also carried out on the mini CW. The time 

between the application of the 0.25 L inflow dose and the complete drainage of the 

ponding volume into the mini CW media was measured. Three influent flow rate 

tests were carried out in order to achieve a mean value. 

6.3.4. Influent pollutant concentrations 

Influent pollutant concentration values of the semi-synthetic stormwater were 

measured throughout the experiment. These concentrations were thus available as 

input values for HYDRUS.  

The CW2D module models 12 components in its solute transport equations. These 

are shown in Table 6-1. Values for all 12 components are required prior to running 

the model. Of the 12 components, NH4-N, NO2-N, NO3-N, and PO4-P were 

measured in the pilot-scale CW experiment. The mean influent concentrations of 

NO2-N, NO3-N and N2 were < 0.002 mg/L, < 0.01 mg/L and 0 mg/L respectively, so 

the HYDRUS input parameters of NO2N, NO3N and N2 were set as 0. Influent and 

effluent concentrations of NH4-N and PO4-P were consistently detectable and 

therefore provided weekly removal efficiencies, so these two parameters were the 

focus of the investigation. 
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Figure 6-3 - Removal efficiency of NH4-N and PO4-P in pilot scale CWs 1 (a) and 4 (b) 

Removal rates of NH4-N and PO4-P varied over the course of the experiment, but 

graphical analysis (see Figure 6-3) found that they appeared to stabilise between 

weeks 44 and 54, particularly in unit 4. Therefore it was decided that the NH4-N and 

PO4-P removal efficiencies obtained from the HYDRUS model would be validated 

against the removal efficiency values obtained from these 11 weeks, given in Table 

6-3. 

Table 6-3 - NH4-N and PO4-P removal rates in units 1 and 4 (weeks 44-54) 

 NH4-N PO4-P 

Unit 1 Unit 4 Unit 1 Unit 4 

Average influent (mg/L) 1.113 0.997 

Unit average removal rate (%) 89.97 94.01 90.36 91.02 

Average removal rate (%) 91.99 90.69 

 

Concentrations of SO, CR, CS, CI, XH, XANs and XANb (see Table 6-1) were not 

recorded in the pilot-scale experiment. Influent concentrations of heterotrophic (XH) 

and autotrophic (XANs and XANb) bacteria were set to zero, as HYDRUS assumes 

that they are immobile. It is recommended to set the influent dissolved oxygen (SO) 

concentration to 1 mg/L (Simunek et al., 2014) because dissolved oxygen levels 

quickly stabilise within the model to their saturated value of 9.08 mg/L.  

Values for CR, CS and CI were estimated from literature. Ghunmi (2011) states that 

BODu (ultimate) can be assumed to equal total biodegradable soluble COD and, 
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therefore, equals the sum of CS and CR. Ghunmi also states that BODu can be 

determined by dividing BOD5 by 0.7. Karlsson (2012) assumes that CR can be 

substituted for BOD5, CS can then be calculated if COD is known and also that CI 

can be calculated from subtracting CR and CS from total COD. Thus, according to 

the literature, influent CR, CS and CI can all be determined from COD and BOD5 

values. Since neither of these parameters were measured in the semi-synthetic 

stormwater, literature values were obtained from Duncan (1999). As detailed in 

chapter 3, this study is the most up-to-date extensive study of urban stormwater 

pollutant concentrations worldwide, and thus it was the most suitable reference for 

estimating these parameters. These values were then used to calculate the CR, CS 

and CI input values for HYDRUS.  

The full list of CW2D solute transport components and the selected input values is 

shown in Table 6-4. 

Table 6-4 - CW2D solute transport component input concentrations 

Component Input 

concentration 

(mg/L) 

SO 1 

CR 18 

CS 7.714 

CI 82.286 

XH 0 

PO4P 0.997 

XANb 0 

XANs 0 

NO2N 0 

NO3N 0 

N2 0 

NH4N 1.113 

 

6.3.5. HYDRUS modelling 

Modelling in HYDRUS was conducted in 3 stages. These were: 
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1. Simulation of the mini CW. Model calibration through the use of HYDRUS’s 

inverse solution to estimate improved values of the loamy sand hydraulic 

properties. 

2. Simulation of the pilot-scale CWs. Firstly hydraulically only, then with the 

addition of the CW2D wetland module to simulate nutrient (NH4-N and PO4-

P) removal efficiencies and validate against real data. 

3. Use of the validated model to test further variables to determine their effect 

on removal rates. 

6.3.5.1. Mini CW simulation 

A 2D axisymmetrical vertical-flow loamy sand profile was constructed in HYDRUS 

to the dimensions of the mini CW (described in section 6.3.3.1). The model was run 

over a 24 hour simulation period. Water flow parameters were initially calculated by 

inserting the results of the PSD, bulk density and moisture content tests into Rosetta 

Lite, which gave input values for θr, θS, α, n, KS and l. The Rosetta values for θS and 

KS were then replaced with the values obtained from experiments to increase model 

accuracy. 

The influent flow rate (as determined in section 6.3.3.1) was converted to a 

precipitation rate: 132.738 cm/hr applied over 2.7 minutes over the surface of the 

mini CW model. “Precipitation” in HYDRUS simply refers to the inflow on the 

surface of a soil profile, when that surface is set as an “atmospheric” boundary. 

Thus, the upper boundary of the mini CW profile was designated an “atmospheric” 

boundary condition; the vertical sides of the profile had “no flux” conditions; and the 

lower boundary was designated as “free drainage” to simulate the conditions of the 

mini CW. 

Finite element mesh discretisation was set to 10 in the horizontal direction and 20 in 

the vertical direction. In order to account for the high-magnitude changes in water 

pressure that were expected at the top of the mini CW profile, a scaling factor 

distribution was applied to the model so that the vertical mesh discretisation was 

finer with increasing height. This can be seen in Figure 6-4. The mesh discretisation 

of 10x20 was deemed suitable to produce quality output while preventing extremely 
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long run times that would have been caused by further discretisation. A similar mesh 

arrangement was used for a much larger sized CW in a similar study by Langergaber 

and Simunek (2005), so the discretisation was deemed appropriate. 

 

Figure 6-4 - Finite element mesh as displayed in HYDRUS 

The initial water content was set to an arbitrary value of 8% in the model. The initial 

water content value specification is unimportant as it is merely a starting point, and 

the model adjusts the water content value when the inflow is applied. The model was 

run for a simulated time of 24 hours, with the inflow being applied at time t = 0. 

After the simulation, the final modelled water content values throughout the mini 

CW were saved and imported into a duplicate model as the initial water content 

values. This duplicate model was then run with the same flow parameters as the 

original and its final water conditions were saved and imported into a second 

duplicate model. The process was repeated until the model’s initial water content had 

stabilised. 

HYDRUS’s inverse solution function was then used to calibrate the water flow 

parameters in the model. The data obtained from effluent flow rate measurements of 
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the mini CW (section 6.3.3.1) was used to calibrate the model. This was carried out 

stage by stage, first adjusting the van Genuchten parameter, l, then α and n, then θr 

and θs and then KS. 

6.3.5.2. Pilot-scale CW simulation 

A 2D axisymmetrical vertical-flow loamy sand profile was constructed in HYDRUS 

to the dimensions of the pilot-scale CWs (dimensions described in chapter 3). Since 

HYDRUS does not have the capability to simulate a boundary condition that 

changes at a certain point in time (e.g., from “no flux” to “free drainage” to represent 

the opening of a tap after a certain period of time), two separate model 

configurations were required to adequately represent the pilot-scale CWs. In the first 

configuration (A), an “atmospheric” condition was applied to the upper boundary of 

the profile, while the lower boundary was given a “no flux” condition. In the second 

configuration (B) the lower boundary was assigned a “free drainage” condition. 

Thus, the configuration A was used to represent the dosing and retention period, and 

ran for a simulated time of 24 hours, while configuration B was used to simulate the 

release period and time between doses of 24 hours, in which time the physical CWs 

were left to drain. In order to simulate the pilot-scale CWs, configuration A was first 

run to simulate a dose and the 24-hour retention period, and then its final water 

content and solute concentration values were manually imported into a separate 

model running configuration B. Then the final values of the drainage period 

simulated by configuration B were imported into another configuration A model, to 

simulate the second dose. This cycle was carried out manually until the flow and 

solute transport results stabilised. This was an extremely time-consuming process 

due to the manual work required, but it was the only way in which to simulate the 

tidal flow dosing regime of the pilot-scale CWs. 

Calibrated hydraulic properties of the loamy sand (as determined from the method in 

section 6.3.5.1) were applied to the pilot-scale CW. The 22.5 L inflow volume was 

simulated by applying an initial precipitation event of 132.738 cm/hr across the CW 

surface over 0.135 hours to model configuration A.  
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As with the mini CW, a 10 x 20 finite element mesh was applied to the model (both 

configurations), with discretisation finer towards the atmospheric boundary. 

Preliminary simulations found problems with overflow errors, due to the fact that 

only the loamy sand layer of the pilot-scale CW was being modelled. In the physical 

models, the sand transition layer and the gravel drainage layer provided additional 

water retention capacity. Since these layers were not modelled in HYDRUS (due to 

the lack of supporting hydraulic data for each material), there was insufficient 

volume in the model to hold the full 22.5 L of inflow. A temporary “virtual” layer 

with estimated hydraulic parameters was created to solve this problem hydraulically, 

but it was discovered during the solute transport modelling that the virtual layer was 

not a sufficiently accurate representation of the sand and gravel used in the physical 

models. Time restrictions meant that it was unfeasible to carry out full analysis of the 

hydraulic parameters of the gravel and sand used in the physical models (as had been 

done for the loamy sand), so the decision was taken to remove the virtual layer from 

the HYDRUS model and reduce the inflow volume to 10 L. This then prevented the 

overflow error. 

Initial water content conditions were determined by the same method as outlined in 

section 6.3.5.1. This same iterative process was used to establish the initial 

background solute concentrations in the model media. In the first iteration, the 

pollutant concentrations were set to the concentrations found in the semi-synthetic 

stormwater. Initial immobile heterotrophic and autotrophic bacteria concentrations 

were set to 1 mg/L as recommended in the HYDRUS User Manual (Simunek et al., 

2014). 

6.3.5.3. Use of validated model to test further variables 

Results of the validated HYDRUS simulation of the pilot-scale CW (see section 

6.4.2.2) influenced the selection of which further variables to test using the model. It 

was found that, during the final 12 hours of retention, NH4-N reduction was 

minimal. Results indicated that 92% NH4-N removal was achieved in 24 hours, but 

that 80% removal may still be possible in half the retention time, potentially 

increasing the overall efficiency of the CW by enabling it to treat greater quantities 
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of stormwater in a given time period. Therefore the focus on further testing was 

placed on the potential reduction of treatment cycle time through reduced retention 

time and drainage time.  

The two different retention periods investigated were 6 hours and 12 hours. 

Unfortunately, due to time restrictions, it was not possible to investigate any more 

retention times because of the excessive time required to manually carry out the 

model iterations. 6 hours was chosen as the results in 6.4.2.2 show that, after 6 hours, 

the majority of NH4-N had been removed from the CW (86%). 12 hours was chosen 

as the results in 6.4.2.2 show that minimal further reduction in NH4-N was observed 

in the final 12 hours of retention (>2%). 

The new drainage time values were based on the cumulative effluent volumes of the 

6-hour and 24-hour retention time models. It was deemed reasonable to assume that 

once 95% of the original inflow had drained from the CW then it would be able to 

receive a new load. Therefore, the new drainage times were the approximate time it 

took for 95% of the original inflow volume to drain from the model. 

Initial water content and background solute concentration conditions were set as the 

final values obtained from the 24 hour retention time model developed in section 

6.3.5.2. This was deemed suitable as the model had run for 45 iterations and 

represented a 90 day mature wetland. Thus, it was expected that background solute 

concentrations in the 6- and retention time simulation would stabilise more quickly 

using the mature wetland’s final conditions rather than restarting with the original 

initial background solute concentrations that were applied in the 24-hour retention 

time model. For the 12-hour model, the final water content and background solute 

concentration conditions of the 6-hour retention model were used as initial 

conditions. 

6.4. Results 

6.4.1. Results of soil laboratory tests 

PSD test results for both the in-situ loamy sand sample from the pilot-scale CW and 

the excess loamy sand are shown in Table 6-5. 
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The in-situ CW soil contained approximately 0.8% fines, compared to the excess 

soil’s 2.3%. This is likely due to the smaller particles being washed out of the CW 

during the experiment. The PSD results of the in-situ soil were used as input to 

Rosetta Lite. 

The results of PSD analysis showed that, for the excess soil to be used in the mini 

CW configuration, it first had to undergo a loading regime of its own to wash away 

its fine particles. This would give the excess soil sample a more similar PSD to that 

of the in-situ soil. Therefore, the mini CW was loaded until the effluent ran clear 

(judged visually).  

Table 6-5 – PSD results: percentage of sample (%) passing through sieve 

 Sample 

Sieve size 

(mm) 

Excess loamy sand In-situ pilot-scale 

CW loamy sand 

2 59.5 61.2 

1.18 46.6 42.5 

0.6 31.1 22.6 

0.425 22.4 13.7 

0.3 15 7.5 

0.212 9.8 4.2 

0.15 6.9 2.7 

0.063 2.3 0.8 

 

Results from the bulk density tests are shown in Table 6-6. In order to minimise the 

effect of human error, numerous identical  tests were run concurrently and the mean 

value was taken as the final value. There was enough equipment available to conduct 

6 tests. The values are generally in the range expected for sandy soils (1.3-1.8 g/cm³ 

(Cresswell and Hamilton, 2002)) The mean value of ρ = 1.67 g/cm
3
 was used for 

input to Rosetta Lite. 
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Table 6-6 - Bulk density of in-situ CW soil from units 1 and 4 

Sample no. Bulk density 

(g/cm
3
) 

1 1.73 

2 1.88 

3 1.50 

4 1.70 

5 1.65 

6 1.58 

Mean 1.67 

 

Results of the water moisture content analysis of the in-situ CW soil are shown in 

Table 6-7. In order to minimise the effect of human error, numerous identical tests 

were run concurrently and the mean value was taken as the final value. There was 

enough equipment available to conduct 3 tests. Results were relatively consistent 

across all three samples. The mean value of w = 7.36 % was used for input to Rosetta 

Lite. 

Table 6-7 - Moisture content of in-situ CW soil samples at 33 kPa 

Sample no. Moisture content (%) 

at 33 kPa 

1 7.37 

2 6.91 

3 7.81 

Mean 7.36 

 

The saturated hydraulic conductivity analysis gave a result of Ks = 4.5 x 10
-4

 m/s. 

Dry density was calculated as ρd = 1.36 and average particle density was found to be 

ρs = 2.61 for the in-situ CW soil. The void ratio was thus calculated as 0.92 as per 

Equation 7.8. 
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Saturated water content was thus calculated to be θs = 35.2% as per Equation 6.9. 

   
     

  
 

        

    
        

The influent flow rate to the mini CW was measured as 5555.6 cm
3
/hr. 

The cumulative effluent flow was recorded (mean values taken from 3 runs) for 

comparison to the HYDRUS model output. This can be observed in Figure 6-5. 

6.4.2. HYDRUS modelling results 

6.4.2.1. Mini CW simulation results 

 

Figure 6-5 - Cumulative effluent flow from mini CW physical and numerical models 

The cumulative effluent flow results from the mini CW HYDRUS model are shown 

in Figure 6-5 plotted alongside the measured cumulative flow from the physical 

model. The graph shows that the effluent flow rate of the HYDRUS model was not 

as high as that of the physical model. Thus, it was apparent that calibration of the 

hydraulic parameters of the model loamy sand was required through the use of 

HYDRUS’s inverse solution function (as explained in section 6.3.5.1).  
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Figure 6-6 - Cumulative effluent flow results of measured data (red) and HYDRUS mini CW model 

output, per calibrated parameter 

The results of the step-by-step adjustment through the use of the inverse solution are 

shown in Figure 6-6. Initially the van Genuchten parameter l was calibrated, 

increasing the effluent flow rate as desired, but also increasing the cumulative 

effluent flow volume too much, exceeding the 250 mL inflow volume. As a result, 

weighting factors were applied to the cumulative effluent data used in HYDRUS’s 

inverse solution so that the program would treat any data after 2.7 mins as more 

significant than any previous data. It was predicted that this would prevent the 

HYDRUS model’s cumulative flow results from exceeding 250 mL. This worked 

partially, as when α, n and l were calibrated next, there was a significant 

improvement observed between the calibrated and measured data. 

When θr and θs were calibrated, the cumulative effluent results showed a greater 

difference to the measured results (as shown in Figure 6-6). The final parameter to 

be calibrated was KS, a critical parameter for model accuracy (Simunek et al., 2014). 

Given the importance of KS, it was decided to re-calibrate the previous van 

Genuchten parameters after KS had been calibrated. The cumulative effluent flow 

results for the final calibrated model can be seen in Figure 6-6, showing a significant 

improvement on the results obtained using the original hydraulic input parameters. 

Table 6-8 shows both the original and calibrated model loamy sand hydraulic 

properties.  
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Table 6-8 - Initial and calibrated hydraulic parameters of loamy sand 

 

 

6.4.2.2. Pilot-scale CW simulation results 

Background concentration and effluent removal efficiency results for NH4-N and 

PO4-P obtained from the HYDRUS model of the pilot-scale CW are shown in Figure 

6-7 and Figure 6-8. The removal efficiency values are compared to the average 

removal efficiency value for both contaminants.  

 

Figure 6-7 - Stabilisation of background NH4-N and PO4-P concentrations 

 

Figure 6-8 - Stabilisation of NH4-N and PO4-P removal efficiencies – red line denotes average removal 

efficiency measured in physical models 
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Background contaminant concentrations (Figure 6-7) and removal efficiencies 

(Figure 6-8) stabilised after 45 iterations. The change in removal between iterations 

40 and 45 was < 0.1% for both contaminants.  

NH4-N removal stabilised at 91.87%, compared to the average measured value of 

91.99%, demonstrating a very successful valid model in terms of simulation of NH4-

N removal. PO4-P removal stabilised at -27.99%, compared to the average measured 

value of 90.69%, thus demonstrating an unsuccessful model in terms of simulation 

of PO4-P removal. 

Figure 6-9 shows the distribution of NH4-N concentrations in the modelled pilot-scale 

CW over the duration of a single 24 hour retention period. It can be observed that the 

highest concentrations are observed just after loading (0.01 - 0.06 hours) and over 

time these concentration reduce due to oxidation (transforming the NH4-N into 

oxidised N). It can be observed that, by 6 hours, NH4-N concentrations have reduced 

significantly. Also, there is no clear visual difference in NH4-N concentrations 

between 12 hours and 24 hours. Therefore, the majority of the NH4-N oxidation has 

occurred within the first 6 hours after dosing, and very little takes place during the 

final 12 hours. These visual observations influenced the decisions taken in section 

6.3.5.3 to investigate 6-hour and 12-hour retention times.

 

Figure 6-9 - NH4-N concentrations in the modelled pilot-scale CW over the duration of a retention period 
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6.4.2.3. Use of validated model to test further variables – results 

The 6-hour retention time HYDRUS model took 45 iterations for solute 

concentrations to stabilise and the NH4-N removal efficiency to reach a constant rate, 

while the 12-hour model took 35 iterations.  

Table 6-9 shows the results of the retention time tests. The results show that the 

majority of NH4-N is removed in the first 6 hours of retention (86.08%), while very 

little is removed in the final 12 hours (1.08%). This suggests that retaining influent 

stormwater in a CW for a set period of time is beneficial to NH4-N reduction, but 

that the retention time need not exceed 6 hours. 

Table 6-9 - NH4-N removal efficiency achieved at different retention times 

Retention time (hours) NH4-N removal (%) 

6 86.08 

12 90.79 

24 91.87 

 

Figure 6-9 shows the cumulative outflow (expressed as a percentage of inflow) of 

the HYDRUS models over time during a single drainage period. It can be observed 

that, after approximately 7.5 hours, 95% of the inflow volume has drained from the 

system. Thus, the new drainage time applied to the 6- and 12-hour retention time 

HYDRUS models was 7.5 hours, with a view to shortening the turnaround between 

dosing events. 
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Figure 6-10 - Cumulative effluent of HYDRUS over the course of a drainage period 

Table 6-10 shows the results of the optimisation of the 6- and 12- hour retention time 

models. The results show that, of the retention and drainage times investigated, the 

shorter the time used, the greater the NH4-N removal rate, with the theory being that 

shorter overall cycle times allow for more cycles to take place, thus increasing the 

NH4-N removal achievable in a given time period. 

Table 6-10 - Retention/drainage time optimisation results 

Retention 

time (hrs) 

Drainage 

time (hrs) 

Total cycle 

time (hrs) 

Influent 

NH4-N 

(mg/L) 

Removal 

efficiency 

(%) 

NH4-N 

removed 

(mg/L) 

NH4-N 

removal rate 

(mg/L/hr) 

24 24 48 1.13 91.87 1.023 0.021 

24 7.5 31.5 1.13 91.87 1.023 0.032 

12 7.5 19.5 1.13 90.79 1.010 0.052 

6 7.5 13.5 1.13 86.08 0.958 0.071 

 

6.5. Discussion 

Results from the soil laboratory tests provided the necessary input data required to 

create a good hydraulic model of the pilot-scale CWs using HYDRUS. This was 

aided by the use of HYDRUS’s inverse solution function, which increased the 

accuracy of the model during calibration.  
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The model was then run with solute transport, using influent contaminant 

concentration values from the physical pilot-scale CW experiment along with 

literature values as input values. This provided results which indicated a successfully 

validated model in terms of NH4-N removal, but not in terms of PO4-P. 

The success in creating a valid model for NH4-N removal suggests that the main 

processes responsible for NH4-N reduction in the pilot-scale CWs are those that are 

simulated in HYDRUS, specifically the oxidation of ammonium by the autotrophic 

bacteria, Nitrosomonas spp (process 6 in Table 6-2). The model could then be used 

to determine the benefits of a tidal-flow regime to NH4-N removal and to optimise 

the retention and drainage times. 

There are several reasons which may account for the lack of accuracy in the 

prediction of PO4-P removal. Nutrient removal in CWs is achieved through physical, 

chemical and biological processes, but HYDRUS does not model physical processes. 

It was identified in chapter 5 that precipitation processes are likely to play a 

significant role in the removal of PO4-P in the pilot-scale CWs, but this cannot be 

modelled in HYDRUS because the formed precipitates that are subsequently 

removed by physical processes cannot be simulated. This is thought to be a major 

reason for the lack of model accuracy in terms of PO4-P removal. 

Adsorption was also identified as a PO4-P removal mechanism in chapter 5. 

HYDRUS has the ability to model adsorption processes, but due to the unavailability 

of adsorption coefficient data for the loamy sand, this was not included in the model. 

However, two checks were run using estimated adsorption coefficient values. The 

first set of values was obtained from washed sand (0-4 mm). It was found that the 

inclusion of these adsorption coefficients had no effect on effluent PO4-P 

concentrations. The second set of values were exaggerated coefficient values, simply 

used to check whether the inclusion of adsorption coefficient values in the modelling 

process would have any effect on the effluent PO4-P concentration results. It was 

found again that there was no effect on the effluent values.  

Plant uptake has some contribution to PO4-P reduction in many CWs, but plants 

were not modelled in the HYDRUS model. The reason that plants were not included 
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in the model is that, during the time period being investigated (weeks 44-54), the 

plants in the pilot-scale CWs were dead. Therefore, it is assumed that plant uptake in 

the physical models did not provide the difference in removal efficiencies. It is 

possible that the dead plant roots and matter provide additional surface area for 

adsorption processes, but there is no way to quantify this contribution. 

It should also be noted that heat transport has not been simulated in the HYDRUS 

model. Heat can affect adsorption and precipitation processes (Kadlec and Wallace, 

2009), so neglecting its effect may have had an influence on the PO4-P results. 

The results of the retention/drainage time optimisation for NH4-N removal through 

the use of the validated HYDRUS model showed that a higher removal rate could be 

achieved with a 6-hour retention time and 7.5 hour drainage time (total cycle time of 

13.5 hours). Rainfall is stochastic, so the volume of stormwater entering the CW in 

practice is entirely dependent on the depth of rainfall in a given time period. 

Therefore, it is unrealistic to propose a continual recurring treatment cycle of 13.5 

hours. However, the results do show that, in times of heavy rainfall, the retention 

time can be shortened to as little as 6 hours, and drainage time minimised to 7.5 

hours in order to treat greater quantities of incoming stormwater via more cycles in a 

short period with little negative effect on removal efficiency.  

It should be recognised that these results apply only to the pilot-scale CWs 

investigated, and that field conditions cannot be predicted from this study alone. 

Nevertheless, the findings have value in that it has furthered understanding of the 

general relationship between retention time and NH4-N removal in a tidal-flow 

stormwater CW of this type. Also, the study has demonstrated the major role played 

by autotrophic bacteria (Nitrosomonas spp.) in NH4-N removal in CWs of this type 

and the potential importance of physical processes – such as precipitation - to PO4-P 

reduction in tidal-flow stormwater CWs. 

6.6. Summary 

In conclusion, a valid model was created for the simulation of NH4-N reduction in 

the pilot-scale stormwater CWs. This confirmed that the oxidation by autotrophic 

bacteria (Nitrosomonas spp.) was the main removal mechanism of NH4-N reduction 
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in the pilot-scale CWs.  The model demonstrated that retaining stormwater in a CW 

enhances NH4-N reduction, and allowed further investigation of optimal retention 

and drainage times that can increase the NH4-N removal efficiency in times of large 

demand for stormwater treatment (e.g., extended rainfall periods). The optimum 

retention time was found to be 6 hours, while the optimum drainage time was found 

to be 7.5 hours. 

The model could not be validated for PO4-P reduction. This was due to the fact that 

it was not possible to simulate the PO4-P reduction processes occurring in the pilot-

scale CWs in HYDRUS, based on the data that was available. 
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7. Statistical Analysis and Predictive Model 

Development for Stormwater Constructed 

Wetlands 

7.1. Introduction 

This chapter details the use of statistical analysis to identify influential factors and 

important relationships between parameters in the pilot-scale stormwater CWs and 

the development of regression models for CW performance prediction. Stormwater 

treatment in CWs involves a combination of complex physical, chemical and 

biological processes, and thus it is difficult to determine exactly what mechanisms 

are occurring within the systems. Statistical analysis is an excellent way of 

identifying significant relationships between pollutants and environmental conditions 

in CWs. This provides knowledge of the key parameters that influence the internal 

water quality treatment processes in the systems. Given the large range of parameters 

investigated, and the overall size of datasets due to the length of the project and 

number of CW units, the process of investigating the effect of the parameters one at 

a time is time-consuming and may also result in the overlooking of certain 

relationships due to the scale of the work and the variety of parameters involved.  

Multivariate statistical analysis can be used as a tool to identify relationships within 

large amounts of data and is therefore an excellent adjunct to general performance 

investigations. PCA can highlight non-hypothesized relationships between variables. 

Specifically, the use of PCA means that researchers are not limited to investigating 

processes they had predicted, and can further increase their understanding of 

pollutant behaviour in CWs.   

The use of regression models for performance prediction requires the knowledge of a 

range of parameters from the CWs. However, many important priority pollutants in 

stormwater are relatively expensive or difficult/time consuming to measure, 

requiring laboratory work involving the addition of reagents, digestion procedures, 
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preservation and other such measures. This causes strains on both time and budget 

when trying to analyse the performance of a stormwater treatment system. Therefore, 

the regression models described in this chapter were designed to predict values of 

parameters that are difficult/expensive to measure from known values of parameters 

that are considered easier/relatively inexpensive to measure. Large amounts of 

influent and effluent data from the pilot-scale CWs were subjected to principal 

component analysis (PCA), simple linear regression and multiple regression analysis 

(MRA). The main objectives of this chapter were: 

 To identify, through the use of PCA, statistically significant relationships 

between stormwater parameters that are deemed expensive/difficult to 

measure and those that are deemed inexpensive/easier to measure 

 Develop simple linear regression models that can be used for the prediction 

of expensive/difficult to measure parameters based on known values of 

inexpensive/easier to measure parameters and analyse the quality of models 

produced 

 Develop multiple regression models that can be used for the prediction of 

expensive/difficult to measure parameters based on known values of 

inexpensive/easier to measure parameters and analyse the quality of models 

produced 

 Use the identified relationships and models produced to further 

understanding of pollutant behaviour in tidal-flow stormwater CWs 

The development of mathematical models such as those described in this chapter is 

of paramount importance to ensure cost-effective characterisation of controlling 

processes in stormwater CWs. The results can help to reduce costs and sampling 

efforts dramatically. Models designed specifically for wetland-type ecosystems such 

as the (k-C)* model (Kadlec and Knight, 1996), Monod-type models (Mitchell and 

McNevin, 2001) and the activated sludge-based model used in HYDRUS CW2D 

(Langergraber, 2006 – see chapter 6) are extremely useful tools to predict and 

understand CW behaviour, but are often complicated and require both specific 

software and the measurement of a great deal of variables in order to produce 
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reliable predictions. In recent years, several studies have adopted regression 

modelling as a simple way of simulating dependencies between variables in CWs 

(e.g., Scholz, 2003; Tomenko et al., 2007; Hijosa- Valsero et al., 2011), with notable 

success. For example, Tomenko et al., produced a multiple regression model capable 

of predicting effluent BOD concentration with a model fit of R² = 0.89 (i.e., a model 

that explains 89% of the entire dataset).  

PCA is an exploratory data analysis method that uses the correlation structure 

between multiple constituents to produce a small number of new variables that 

contain most of the information in the original dataset (Olsen et al., 2012). PCA is 

often applied to water sample datasets in order to determine the influencing factors 

on the water quality. For example, Mendiguchía et al. (2004) used PCA to improve 

the understanding of the physico-chemical characteristics of the Guadalquivir River 

in Spain, finding that the river could be split into four different zones with separate 

water quality characteristics. Olsen et al. (2012) conducted PCA on a collection of 

surface water samples in the Illinois River watershed in order to pinpoint the main 

sources of contamination in the watershed. This was achieved by comparing the 

groupings of samples by certain contaminants in the PCA and comparing the 

samples to their geographic distance downstream of known potential polluting 

sources (e.g., runoff from fields with applied poultry waste). Thus, when applied 

with a good understanding of water contaminants and typical influential factors, 

PCA can be a useful tool to understand the particular relationships occurring in a 

system. 

7.2. Materials and methods 

7.2.1. Data and variable selection 

Data was obtained from the pilot-scale stormwater CWs as detailed in chapter 3. 

Effluent concentrations of TSS, TN, NH4-N, NO3-N, NO2-N, TP, PO4-P, Fe, Zn, Pb, 

Ni, Cd, Cr and Cu were used for both PCA and regression analysis, alongside 

effluent values for pH, temperature and EC. Time (measured in weeks) was also 

considered in the regression analysis (see section 7.3.3). Furthermore, influent 
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concentrations were used to provide removal efficiency values for TSS, nutrient and 

metal reductions, which were also incorporated into the regression analysis. 

Regression modelling uses one or more “predictor” variables to predict the value of a 

“response” variable (Draper and Smith, 1998). Thus, with a good model, you can 

predict the value of one parameter if you know the value of another. In addition to 

developing understanding pollutant removal processes in stormwater CWs, one of 

the aims of the modelling process was to create models that use predictor variables 

that are easy or relatively inexpensive to measure, to predict values for those 

variables which may be more difficult or expensive to measure. Thus, the parameters 

chosen for the predictor variables were TSS, pH, temperature, EC and time. TSS can 

be measured via standard methods (APHA et al., 2012) with relatively basic 

equipment and does not require digestion or the addition of reagents, etc., thus it is 

inexpensive to determine. pH, temperature and EC can all be measured easily at the 

influent/effluent point in a stormwater CW, using a hand-held probe. 

The response variables were therefore TN, NH4-N, NO3-N, NO2-N, TP, PO4-P, Fe, 

Zn, Pb, Ni, Cd, Cr and Cu. All of these parameters required ICP analysis or the 

addition of reagents to determine their values, with some also requiring preservation 

with acid, which also required neutralising the sample prior to analysis. These 

reasons were sufficient to categorise these parameters as more difficult or expensive 

to measure. 

7.2.2. Principal component analysis 

The PCA process involves reducing the dimensionality of a dataset which contains a 

large number of interrelated variables, without the loss of important information in 

the dataset. Thus, most of the variation in the dataset is retained. The information is 

transformed into a number of principal components (PCs): a new, uncorrelated set of 

variables which are put in order so that the first few explain most of the variation that 

was present in all of the original variables (Joliffe, 2002). The first PC (PC-1) 

explains the maximum variance of the dataset, and the explained variance associated 

with each PC decreases from PC-1 to the last significant PC (Adams, 2004; Settle et 

al., 2007). 
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The minimum number of PCs that should be selected to analyse the PCA output is 

dependent on the amount of explained variance that the researcher wants to account 

for. It is recommended that the number of PCs selected should explain > 70% of the 

variance in the dataset (Joliffe, 2002). Thus, this minimum value was used in the 

analysis. 

For PCA, a dataset must be prepared as a matrix consisting of variables represented 

by columns and objects by rows. PCA was conducted on each CW unit in this 

project and thus the effluent samples were designated as the rows for the matrix. The 

columns were the variables TSS, pH, temperature, EC, TN, NH4-N, NO3-N, NO2-N, 

TP, PO4-P, Fe, Zn, Pb, Ni, Cd, Cr and Cu. PCA requires a full dataset to work, 

which posed a problem since there was missing pH and EC data for weeks 15-20 

(inclusive). Thus, for each CW, PCA was carried out twice. The first run 

incorporated all of the previously mentioned variables but excluded the sample 

results from weeks 15-20. This allowed for relationships involving pH and EC to be 

identified. The second PCA run then allowed for relationships between other 

variables to be identified based on the maximum amount of available data. 

Some of the variables used in this study were measured in different units to the 

others, or varied in magnitude. For example, a typical TSS value was 15-30 mg/L, 

whereas a typical Fe value was >0.1 mg/L, while EC was measured in mS and 

temperature is measured in °C. Thus, the data had to be subjected to pre-treatment 

before analysis in order to eliminate scale effects. For data of this type, a 

combination of two common transformation techniques is recommended. The first is 

standardisation, in which the values in one column (i.e. the array of values of one 

variable) are divided by the standard deviation of the column, thus giving all 

variables equal weighting by adapting their standard deviation to 1.0 (Kokot et al., 

1998). The second technique is mean centering, in which the mean value of each 

variable is subtracted from each value in its column. This ensured that the PCA was 

not affected by the scale of the variables, and focussed only on their variance. 

PCA was carried out on the computer software package The Unscrambler X 10.3, 

produced by CAMO software. The program gave useful visual output in the form of 
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two main graphs: scores plots and loadings plots. This is one of the most useful 

aspects of PCA: the ability to visually interpret the output information. The scores 

plot shows the PCA output arrangement of the objects (samples) relative to the PCs, 

and can be displayed in a number of ways to show how the objects are affected by 

the variables (see section 7.3.1.2 for an example of this). The loadings plot shows the 

relationships between variables, and can be viewed alongside to the scores plot to 

understand where certain objects may have been affected by certain variables. In a 

loadings plot, the angle between variable vectors indicates the strength of correlation 

between them. A more acute angle indicates positive correlation, whereas a more 

obtuse angle indicates negative correlation. Thus, a 90° angle indicates zero 

correlation. The numerical values of the loadings for each variable are also 

paramount, as the higher the loading value the more effect that variable is having on 

the dataset. Thus, for a significant relationship to be occurring between variables, 

they must both have adequate loading value. The loadings and scores plots can also 

be combined in a biplot. 

PCA allowed the identification of potentially significant relationships between 

variables. A list of these relationships was the product of PCA, and the relationships 

were subsequently subjected to correlation analysis to determine whether they could 

be deemed statistically significant. Further information on PCA can be found in 

useful publications such as Davis (2002), Jackson (2003) and Shaw (2003).  

7.2.3. Correlation and regression analysis 

Correlation analysis was carried out on the raw data in order to identify relationships 

between variables that the PCA had identified as carrying potential significance. This 

was done with the use of Microsoft Excel: variables were plotted against one another 

on a scatter graph and the coefficient of determination (R²) was determined from the 

linear trendline of the plot. The R² value is a measure of the strength and direction of 

the linear relationship between the two variables, so it is an indicator as to whether a 

significant linear relationship exists (Dobson, 2002). R² values range from 0 to 1: the 

closer to 1 the R² value is, the stronger the linear relationship, with R² = 0 denoting 

no linear relationship. An R² value of above 0.59 was considered a valid linear 
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relation in this project (as in Scholz, 2003), and so those variable pairs that produced 

this value were selected for outlier elimination and modelling. The scatter plots were 

arranged so that the predictor variable (in this case, the cheaper/easier/quicker to 

measure parameter) was plotted on the x-axis and the response variable (more 

expensive/difficult/time-consuming parameter) on the y-axis. This ensured that the 

plots were ready for linear regression analysis. 

The scatter graphs were used to visually identify any obvious outlying data points. 

This is a subjective process, based on distance from the linear best-fit trendline of the 

scatter graph. Data was only eliminated when it was judged that a single point was 

clearly an outlier. An example of this is shown in Figure 7-1. It can be seen that the 

circled data point in graph (a) is a clear outlier, and thus it was removed. Note the 

improvement in R² value with the elimination of the outlier. 

 

 

Figure 7-1 - Elimination of outlier: (a) shows identification of outlying data point, (b) shows the chart with 

the outlier eliminated, improving the R2 value of the trendline 
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Both simple and multiple regression analysis (MRA) was conducted on the data. 

Simple regression analysis is a statistical process which describes the relationship 

between a dependent “response” variable and a single independent “predictor” 

variable. A simple regression model aids the understanding of how the response 

variable is affected by variation in the predictor variable. The equations of the linear 

trendlines in those relationships with the desired R² values were used to determine 

the constants for the simple regression models, which took the form of the straight-

line equation, shown in Equation 7.1: 

                       (7.1) 

where: y = response variable 

 a = predictor variable constant (gradient of linear trendline) 

 x = predictor variable 

 b = model constant (y-axis intercept) 

Multiple regression is simply a regression problem where the number of parameters 

is greater than or equal to 2, and is not simple linear regression (Christensen, 1987). 

Models with multiple predictor variables are in the form shown in Equation 7.2. 

                                  (7.2) 

where: n = number of predictor variables 

 an = constant for predictor variable xn 

 xn = predictor variable n 

MRA was conducted using the regression function in Microsoft Excel’s Data 

Analysis Toolpak. If more two or more predictor variables were found to have 

significant R² values in correlation with the same response variable, they were 

incorporated into the MRA. A 95% confidence interval was applied in the analysis. 

Thus, the significance of the F value for each model was checked to ensure that it 

was below 0.05 (for 95% confidence) to ensure that the model represented a 

statistically significant relationship. The F value is given as part of the output of the 
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regression function in Microsoft Excel. The P values of each predictor value are also 

given, and these were checked to determine the significance of each variable in the 

model. Again, if any predictor variable’s P value exceeded 0.05 then it was not 

deemed statistically significant, and so it was omitted from the model. The adjusted 

R² value for a multiple regression model is also given in the regression function in 

Microsoft Excel, and this was taken as an indication of the fit of the model to the 

data.  

7.3. Results and discussion 

7.3.1. Principal component analysis 

PCA was successfully applied to the datasets and provided very useful output. 

Examples of the loadings and scores plots used to identify potentially significant 

relationships between variables are displayed and discussed in sections 7.3.1.1 and 

7.3.1.2, and the selected variable relationships for each CW unit are given in section 

7.3.1.3. 

The number of PCs that explained >70% of variance in the dataset for units 2, 3, 5, 

6, 7 and 8 was three, while PC-4 also required examination for unit 1. Only the first 

two PCs were required to explain > 70% of variance in unit 4. For example, for the 

second PCA run of the unit 2 dataset: PC-1 explained 53% of variance; PC-2 

explained 14% of variance; and PC-3 explained 11% of variance. Thus, the total 

explained variance was 78% and analysis of these three components was required to 

identify significant relationships. 

7.3.1.1. Loadings plots 

Figure 7-2 shows an example of two loadings plots identical to those produced from 

Unscrambler X, but recreated on Microsoft Excel for formatting reasons. Plot (a) 

shows the loadings plot for the first PCA run on unit 8 (including variables pH and 

EC, excluding weeks 15-20). It can be seen that there is a general grouping between 

TSS, NH4-N and Fe, which indicates acute angles between these vectors (as shown) 

and suggests there is a potentially significant relationship between these variables. 

Since neither pH nor EC feature in this variables group, it was checked in the second 
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PCA run (plot (b) in Figure 7-2) with the benefit of all the available valid data for 

those variables. There is also a grouping between pH, NO3-N and TN. Furthermore, 

significantly obtuse angles between this group and both PO4-P and TP suggest that 

there may be a relationship between these variables also. Note also a grouping in plot 

(b) of TN, NO3-N and NO2-N, that was ignored because there was no predictor 

variable present in this group. The loadings of the variables in these selected groups 

are high enough (relative to the rest of the loadings) to suggest that the relationships 

may be significant, and thus they are selected for correlation analysis. All loadings 

plots for the first two principal components are available in Appendix 1. 

7.3.1.2. Scores plots 

Figure 7-3 shows two versions of the same scores plot for the unit 8 dataset. The 

loadings plot for the same unit is shown in Figure 7-2b, and it was suggested in the 

previous section that a significant relationship between TSS and Fe might be present, 

due to the close proximity of these variables on the loadings plot and their relatively 

high loading values. Thus, the scores plot can be arranged to show how these 

variables may show their similarities across the samples from the original dataset. 

From Figure 7-2b it can be seen that both Fe and TSS are located on the area 

between the negative PC-1 and positive PC-2 axes of the loadings plot. Figure 7-3 

shows that the samples that exhibited the highest values for both parameters are also 

situated in this area. Both parameters also have their lowest values in the area 

between the positive PC-1 and negative PC-2 axes. Thus, the general distribution of 

high to low values for both variables is very similar, suggesting that there may be a 

significant relationship occurring.  

This visual inspection was carried out for all potential relationships after groupings 

had been identified in the loadings plots. As mentioned previously, this is one of the 

main benefits of PCA: the ability to visually interpret the data and identify potential 

patterns in this way. This means that non-hypothesized relationships may be 

discovered in addition to expected relationships. 
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Figure 7-2 - PCA loadings plots for pilot-scale CW 5 (a) including pH and EC, excluding weeks 15-20, (b) 

excluding pH and EC, including weeks 15-20 
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Figure 7-3 - PCA output: scores plots for CW 8, (a) showing effluent TSS ranges in mg/L, (b) showing 

effluent Fe concentration ranges in mg/L 
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Table 7-1 - Variables with potentially significant relationships as identified from PCA of effluent samples, 

in all 8 pilot-scale CWs 

Unit 1 Unit 2 Unit 3 Unit 4 

TSS & Fe 

pH & TN 

pH & Zn 

EC & Zn 

EC & TN 

Temp & Zn 

TSS & Fe 

TSS & Zn 

TSS & Pb 

TSS & Cu 

TSS & NH4-N 

pH & TP 

pH & PO4-P 

TSS & Fe 

TSS & NH4-N 

TSS & NO3-N 

Temp & Zn 

EC & TN 

EC & TP 

EC & PO4-P 

EC & Fe 

TSS & Fe 

TSS & TN 

TSS & NO3-N 

pH & TN 

pH & NO3-N 

pH & Fe 

Temp & NO2-N 

Unit 5 Unit 6 Unit 7 Unit 8 

TSS & Fe 

pH & TN 

pH & NO3-N 

pH & Zn 

EC & NH4-N 

TSS & Fe 

TSS & NH4-N 

TSS & Fe 

TSS & TN 

TSS & NH4-N 

TSS & PO4-P 

 

TSS & Fe 

pH & TN 

pH & NO3-N 

pH & TP 

pH & PO4-P 

 

7.3.1.3. Selected relationships between variables 

The potentially significant relationships identified in the PCA are shown in Table 

7-1. These relationships were then further examined in order to determine their 

statistical significance by correlation analysis (see section 7.3.2). Only relationships 

involving one of TSS, pH, EC or temperature as one parameter and one of TN, NH4-

N, NO3-N, NO2-N, TP, PO4-P, Fe, Zn, Pb, Ni, Cd, Cr or Cu as the other were 

selected, in order to arrange the parameters into predictor and response variables 

ready for regression analysis. 

7.3.2. Correlations 

Those pairs of variables that were found to have a coefficient of determination value 

of R² > 0.59 are shown in Table 7-2, along with their respective R² values. As 

detailed in section 7.2.3, correlations with time and TSS removal efficiency were 

also investigated at this stage, and the results are also given in Table 7-2. Examples 

of selected scatter plots involved in the correlation analysis can be seen in Figure 
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7-4. The scatter plots for all relevant variable pairs (after outlier elimination) are 

presented in Appendix 2.  

The results in Table 7-2 show that several parameters can be predicted using the 

values of alternative cheaper/easier to measure parameters in all 8 pilot-scale 

stormwater CWs. The accuracy with which these parameters varies, with the lowest 

acceptable R² value being 0.51 for effluent NH4-N prediction from effluent EC in 

unit 5, and the highest R² value being 0.92 for effluent Fe prediction from effluent 

TSS concentration in unit 2. 

 

Figure 7-4 - Selected scatter plots showing determination coefficients (R2) and linear regression model 

equations, from (a) unit 1 (b) unit 2 (c) unit 4 (d) unit 8 
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(described in chapter 5) found that heavy metals were predominantly particulate in 

form or associated with particulates, so it is no surprise that their behaviour should 

correlate well with TSS measurements. The reason that Fe and Zn feature more than 

the other heavy metals in the correlation analysis is that for most of the effluent 

readings taken, the concentrations of Pb, Ni, Cd, Cr and Cu had been successfully 

reduced to below detection limits and thus correlations with TSS could not be 

formed. 

The decision to include time as a predictor variable was taken not only due to its ease 

of measurement, but also because of the observation that the behaviour of the 

nutrients in the CW effluent appeared to change over time. In some units, effluent N 

decreased over the duration of the project, whereas in some units effluent P appeared 

to increase over time (full details of nutrient behaviour observations over time can be 

found in chapter 5). Thus, significant relationships were found between time and 

several nutrient forms in CW units 2, 3, 4, 5, 6, 7 and 8. This shows that the systems 

were constantly changing over the length of the experiment and emphasises the 

importance of CW maturation time on nutrient reduction. 

Other notable relationships include that between Zn and temperature in unit 1, which 

is thought to be due to a release of dissolved organic matter containing sorbed Zn 

when temperatures increased during the summer. This is discussed in chapter 5. 

Statistically significant relationships were found between EC and TN, TP and PO4-P 

in unit 3, but it should be noted that there was significantly less data available for 

correlation analysis when dealing with EC, pH or temperature in unit 3. This is due 

to a combination of the fact that effluent sampling was only possible every second 

week in unit 3 (due to the dosing regime) and the fact that pH, EC and temperature 

data was unavailable until week 21. Likewise, it should also be noted that the 

correlations for unit 6 were also performed on a relatively small dataset due to its 

dosing regime (extended dry periods resulting in many weeks without effluent 

sampling). 
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7.3.3. Regression models 

7.3.3.1. Simple linear regression models 

Examples of the results of simple linear regression analysis can be viewed for 

selected pairs of variables in Figure 7-4. Table 7-2 shows the model constants, a and 

b, for all of the simple linear regression models, and selected model-fit diagrams are 

shown in Figure 7-5. In total, 56 simple regression models were produced from the 

analysis. 

Of the simple linear models produced, five have R² values greater than 0.9, denoting 

an excellent fit to the data. Four of these models use effluent TSS concentrations as a 

predictor variable to determine metal concentrations: effluent Fe, Zn and Cu in unit 2 

and effluent Fe in unit 5. This is an unsurprising result, given that partitioning 

analysis determined that, in all CW units, metals were predominantly particulate in 

form or associated with particles. Furthermore, the partitioning analysis found that 

all metals were entirely particulate in form/associated with particles in the effluent of 

unit 2. The other model with R² > 0.9 is the prediction of TN with using time in unit 

3. Again, this was unsurprising as the steady reduction of TN over time was clear to 

see over the course of the experiment. 

Twenty of the simple regression models have R² values of 0.8 < R² < 0.9, 

demonstrating a very good fit to the data. Again, the majority of these models are 

based on the prediction of metals from TSS, and nutrients from time. In unit 7, a 

model for the prediction of TN from pH was developed. This relationship may be 

due to the effect of improved nitrification in the system as the CW matured over 

time, since nitrification has been observed to lower pH (Kadlec and Wallace, 2009). 

Eleven of the simple regression models have R² values of 0.7 < R² < 0.8, 

demonstrating a good fit to the data. Again, these mainly show relationships between 

metals and TSS, and nutrients and time. Relationships between NH4-N and TSS are 

also drawn in units 2 and 3, suggesting that effluent NH4-N may be associated quite 

heavily with particulates. 
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Table 7-2 - Results of simple linear regression analysis: variables, constants and determination coefficients 

CW 

Unit 

y x a b R² CW 

Unit 

y x a b R² 

1 Fe eff TSS 

eff 

0.0112 -0.0799 0.8542 4 Fe eff TSS 

R.E. 

-1.9867 1.9403 0.7755 

Fe eff TSS 

R.E. 

-1.8796 1.8312 0.6274 TN eff TSS 

eff 

0.0786 0.4085 0.6709 

Zn eff Temp 

eff 

0.0196 -0.1993 0.6784 TN eff TSS 

RE 

-14.882 15.281 0.6589 

2 Fe eff TSS 

eff 

0.0298 -0.131 0.9217 TN eff Time -0.0745 3.8377 0.8515 

Fe eff TSS 

R.E. 

-5.1769 5.0724 0.8557 NO3-N 

eff 

TSS 

eff 

0.037 -0.035 0.6282 

Zn eff TSS 

eff 

0.0022 -0.0055 0.9139 NO3-N 

eff 

TSS 

RE 

-7.0171 6.9758 0.6236 

Zn eff TSS 

R.E. 

-0.3839 0.3804 0.8479 NO3-N 

eff 

Time -0.0346 1.5357 0.7183 

Pb eff TSS 

eff 

0.006 -0.0553 0.8830 5 Fe eff TSS 

eff 

0.0086 -0.0423 0.9079 

Pb eff TSS 

R.E. 

-1.061 1.0094 0.8525 Fe eff TSS 

R.E. 

-1.4541 1.4281 0.7917 

Cu eff TSS 

eff 

0.0009 -0.0083 0.9066 NO3-N 

eff 

pH eff 2.0925 -14.317 0.5900 

Cu eff TSS 

R.E. 

-0.1631 0.1556 0.8401 NO3-N 

eff 

Time -0.0495 2.2008 0.7149 

NH4-N 

eff 

TSS 

eff 

0.0034 0.0498 0.8675 6 Fe eff TSS 

eff 

0.0067 -0.024 0.8624 

NH4-N 

eff 

TSS 

R.E. 

-0.6179 0.6703 0.7721 Fe eff TSS 

R.E. 

-1.2556 1.2305 0.8186 

3 Fe eff TSS 

eff 

0.012 -0.1162 0.8582 NH4-N 

eff 

TSS 

eff 

0.0086 0.0437 0.8641 

Fe eff TSS 

R.E. 

-2.1798 2.0689 0.8109 NH4-N 

eff 

TSS 

R.E. 

-1.4743 1.5252 0.8411 

Fe eff EC eff 1.0711 -0.4986 0.7129 7 Fe eff TSS 

eff 

0.0071 -0.0370 0.8878 

TN eff EC eff 13.021 -5.6588 0.7123 Fe eff TSS 

R.E. 

-1.1497 1.1219 0.8393 

TN eff 

 

Time -0.0675 3.9639 0.9046 TN eff pH eff 3.136 -20.269 0.8314 

NH4-N 

eff 

TSS 

eff 

0.0034 0.1082 0.7656 TN eff Time -0.0804 4.6044 0.6203 

NH4-N 

eff 

TSS 

R.E. 

-0.6386 0.7470 0.7592 NH4-N 

eff 

TSS 

eff 

0.0070 0.0507 0.6373 

NH4-N 

eff 

Time -0.0042 0.3388 0.6738 NH4-N 

eff 

TSS 

R.E. 

-1.1811 1.2377 0.6559 

NO3-N 

eff 

TSS 

eff 

0.0205 -0.1087 0.6641 NH4-N 

eff 

Time -0.0052 0.3387 0.6369 

NO3-N 

eff 

TSS 

R.E. 

-3.7298 3.6030 0.6270 8 Fe eff TSS 

eff 

0.0058 -0.0181 0.6974 

NO3-N 

eff 

Time -0.0272 1.2850 0.7438 TN eff pH eff 2.0524 -16.926 0.6084 

TP eff 

 

EC eff 1.167 -0.4093 0.5984 TN eff Time -0.0817 4.238 0.8032 

PO4-P 

eff 

EC eff 0.5167 -0.129 0.6965 TP eff pH eff -0.1689 1.8225 0.6618 

PO4-P 

eff 

Time -0.0024 0.2392 0.8114 PO4-P 

eff 

pH eff -0.1531 1.6063 0.6973 

4 Fe eff TSS 

eff 

0.011 -0.0512 0.8585 PO4-P 

eff 

Time 0.0055 0.0472 0.7601 

Note: “R.E.” denotes “removal efficiency, “eff” denotes “effluent” 
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The remaining twenty simple regression models have R² values of 0.59 < R² < 0.7. 

This indicates that the model has a significant fit to the data, and therefore is useful 

to gain an appreciation of some of the potentially influential parameters in the 

prediction of the response variables. However, it is not recommended to use these 

models for reliable prediction alone. Many of these relationships were found to be 

useful when incorporating a second predictor variable into models for MRA (see 

section 7.3.3.2). 

 

 

Figure 7-5 - Selected examples of model-fit diagrams: (a) Fe eff = 0.0298(TSS eff) - 0.131 (R2 = 0.9217), 

unit 2 (b) PO4-P eff = -0.1531(pH eff) + 1.6063 (R2 = 0.6973), unit 8 

In unit 3, EC was found to be a predictor variable for statistically significant 

relationships with Fe, TN, TP, and PO4-P. However, these four models should not be 
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considered as reliable as the others, due to a combination of the fact that effluent 

sampling was only possible every second week in unit 3 (due to the dosing regime) 

and the fact that EC data was unavailable until week 21. Thus, it is recommended 

that these three models are not treated with the same level of reliability as the others. 

Similar care should be taken when interpreting the models developed from the 

results of unit 6, which also had a significantly reduced dataset due to its dosing 

regime (extended dry periods). 

7.3.3.2. Multiple regression models 

10 multiple regression models were developed from the MRA, producing two model 

structures. The first type uses 2 predictor variables while the second uses 3 

predictors. The variables, model constants and R² values for those models that 

satisfied the F and P value conditions described in section 7.2.1 are given in Table 

7-3 (two predictor variables) and Table 7-4 (three predictor variables).  

Table 7-3 - Variables, constants and R
2
 values for multiple regression models with 2 predictor variables 

CW 

unit 

y x1 x2 a1 a2 b Adjusted R² 

1 Fe eff TSS eff TSS R.E. 0.0164 1.0889 -1.15142 0.8784 

2 Fe eff TSS eff TSS R.E. 0.0480 3.3466 -3.4805 0.9301 

Zn eff TSS eff TSS R.E. 0.0036 0.2516 -0.2573 0.9221 

3 Fe eff TSS eff EC 0.0067 0.3794 -0.2296 0.9530 

4 Fe eff TSS eff TSS R.E. 0.0171 1.1798 -1.2276 0.8649 

5 NO3-N eff Time TSS R.E. -0.0373 0.8033 -3.9263 0.7433 

7 TN eff Time pH -0.0292 2.4410 -14.3239 0.8620 

NH4-N eff Time TSS Eff -0.0033 0.0043 0.2123 0.7795 

8 PO4-P eff Time pH 0.0036 -0.0727 0.7634 0.8118 

 

The inclusion of TSS removal efficiency as a predictor variable was found to 

produce models with improved R² values compared to the simple regression models 

for effluent Fe concentration prediction in units 1, 2, and 4, and effluent Zn 

prediction in unit 2. The inclusion of TSS removal efficiency was in fact initially 

taken with all units, producing improved R² values for Fe predictions, but MRA for 

units 3, 5, 6, 7 and 8 found that the P values for the TSS removal efficiency variables 

exceeded 0.05, so they were not deemed statistically significant for 95% model 

confidence. There were multiple cases for various other parameters where a multiple 
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regression model was created that produced an improved R² value, but P values of 

one or more variables showed them to be statistically insignificant to the model. 

Therefore, many multiple regression models were rejected through the desire to 

achieve 95% model confidence. The F and P values for all multiple regression 

models are shown in Table 7-5. 

The addition of time as a second predictor variable produced four statistically 

significant models with improved adjusted R² values: effluent NO3-N prediction in 

unit 5 from time and TSS removal efficiency; effluent TN prediction in unit 7 from 

time and effluent pH; effluent NH4-N prediction from time and effluent TSS 

concentration; and effluent PO4-P prediction in unit 8 from time and effluent pH. 

Figure 7-6 shows a model-fit chart of PO4-P prediction in unit 8, comparing the 

multiple regression model to the simple model that predicted effluent PO4-P from pH 

alone. The improvement in fit to the measured data can be seen visually with the 

inclusion of time as a second response variable. The production of these models 

highlights the importance of the maturation process in stormwater CWs, showing 

that the systems were constantly changing over the length of the experiment, 

impacting on nutrient effluent concentrations. Therefore, although time is a useful 

predictor variable for these models, it is not possible to foresee what changes in 

nutrient behaviour may arise beyond the timescale of this experiment, as time as a 

factor does not directly influence this and therefore cannot be used to measure 

nutrient fluctuations. 

As was the case with the simple regression models, the model for unit 3 should not 

be regarded to be as reliable as the other multiple regression models, since it was 

developed from significantly less input data. This was due to a combination of the 

fact that the effluent sampling was only possible every second week (due to the 

dosing regime) and the fact that EC data was unavailable until week 21. However, 

the model still highlights important relationships between Fe and the two variables. 

The P-value of effluent TSS (3.66 x 10
-8

) was much lower than that for EC (0.0028), 

which shows that TSS is the most significant influence on the effluent Fe 

concentration by a very large margin. Still, the relationship between effluent Fe and 
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EC may suggest that some of the effluent Fe may have been present in dissolved 

form, since EC measures dissolved solids. Further experimentation to collect a more 

significant volume of data for EC in unit 3 would help to ascertain whether this 

relationship is fully valid or not. 

 

 

Figure 7-6 - Model fit of PO4-P prediction in unit 8 with (a) only pH as a predictor variable (R2 = 0.6973), 

(b) pH and time as predictor variables (adjusted R2 = 0.8118) 

The single model that incorporated three predictor variables used time, effluent TSS 

and TSS removal efficiency to predict effluent NH4-N concentrations in unit 2. As 

mentioned previously, time was identified as having a relationship with effluent 

nutrient patterns in the pilot-scale CWs. The improvement in model fit with the 

combination of effluent TSS, TSS removal and time as predictor variables when 
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compared to the simple model of effluent NH4-N prediction from effluent TSS alone 

can be seen in Figure 7-7.  

Table 7-4 - Variables, constants and R2 values for multiple regression models with 3 predictor variables 

CW 

unit 

y x1 x2 x3 a1 a2 a3 b R² 

2 NH4-N 

eff 

Time TSS 

eff 

TSS 

R.E. 

-0.0010 0.0059 0.5819 -0.4917 0.9285 

Again, several other models with three predictor variables were produced which 

increased R² values in comparison to the simple regression models or two-variable 

models for the same response parameter. However, the P values of one or more 

predictor variables in these models were found to be greater than 0.05, so the models 

were rejected because they did not offer 95% confidence. The F and P values for all 

multiple regression models are shown in Table 7-5. 

Adjusted R² values for the multiple regression models give an indication of the 

quality of the model. For example, the R² value of 0.93 for the model in Table 7-4 

indicates that 92.85% of the variance in results can be described by the model. Thus, 

it is an excellent fit of model.  Three more multiple regression models have excellent 

R² values of above 0.9, while four models have 0.8 < R² < 0.9, showing a very good 

fit. The two remaining multiple regression models have R² values of 0.74 and 0.78, 

which, while they do not match the performance of the other models, still denotes 

good models. It is unsurprising that these models do not describe their relevant 

results as well as some of the other models, because they are used to predict effluent 

NO3-N and NH4-N from time and TSS. Despite the fact that these variables clearly 

have a statistically significant influence on effluent NO3-N and NH4-N 

concentrations, it is also known that other factors - that were unable to be measured - 

are important. Specifically, biological transformation of N is a key process in the 

CWs (see chapters 5 and 6), and so the availability of oxygen and denitrifying 

facultative heterotrophs are both examples of typical variables that would have been 

likely to significantly influence effluent NO3-N and NH4-N concentrations. Had 

these been measured and incorporated into the models, it is likely that the R
2
 values 

would be greater. In contrast, R² values for the prediction of effluent Fe and Zn 
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concentrations in unit 2 were very high, which was also unsurprising due to the fact 

that partitioning analysis determined that these metals were entirely 

particulate/associated with particles in the outflow of unit 2. Despite having the 

highest R² value (0.953), the effluent Fe prediction model for unit 3 should not be 

considered as reliable as the other models as it used significantly less input data. 

However, as the statistical analysis has shown, the model is still good, and can be 

used to get an idea of the system behaviour.  

 

Figure 7-7 - Model fit of NH4-N prediction in unit 2 with (a) only effluent TSS as a predictor variable (R2 = 

0.8675), (b) effluent TSS, time and TSS removal efficiency as predictor variables (adjusted R2 = 0.9233) 

The F-values shown in Table 7-5 confirm that all of the multiple regression models 

presented are statistically significant to 95% confidence, since F < 0.05. 
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Furthermore, the highest F-value is 1.1 x 10
-9

 (for NH4-N prediction in unit 7), an 

extremely low value which adds confidence to the use of these models. 

Similarly, the P-values are extremely low and, in all but three models, all variables 

are statistically significant to a minimum of 99% confidence. In units 2 and 4, TSS 

removal efficiency as a predictor variable is statistically significant to >98% and 

>95% confidence respectively, and in unit 5 pH as a predictor is statistically 

significant to >98% confidence. In each model, one predictor variable is always far 

more statistically significant than the other(s): e.g., effluent TSS always has a much 

lower P-value than TSS removal efficiency for effluent metal concentration 

predictions. Thus the simple regression models that use these predictor variables for 

their respective response variables can be considered very reliable. The MRA has 

simply refined these models to give improved fits to the data. 

Table 7-5 – Statistical significance of multiple regression models and their predictor variables (F and P 

values) 

CW 

Unit 

Response 

variable 

Significance F Predictor 

variables 

P-values 

1 Fe eff 2.3 x 10
-20

 TSS eff 

TSS R.E. 

3.4 x 10
-12

 

0.00212 

2 Fe eff 2.03 x 10
-25

 TSS eff 

TSS R.E. 

1.5 x 10
-8

 

0.009947 

Zn eff 1.96 x 10
-24

 TSS eff 

TSS R.E. 

4.95 x 10
-8 

0.0134 

NH4-N eff 1.6 x 10
-23 

Time 

TSS eff 

TSS R.E. 

0.00012 

4.8 x 10
-9 

0.00032 

3 Fe eff 9.18 x 10
-10

 TSS eff 

EC eff 

3.66 x 10
-8

 

0.002819 

4 Fe eff 2.08 x 10
-19

 TSS eff 

TSS R.E. 

1.55 x 10
-6

 

0.048416 

5 NO3-N eff 8.8 x 10
-12

 Time 

pH 

3.8 x 10
-6

 

0.016 

7 TN eff 6.8 x 10
-12

 Time 

pH 

0.00909 

2.3 x 10
-7

 

NH4-N eff 1.1 x 10
-9

 Time 

TSS eff 

0.00013 

0.00017 

8 PO4-P eff 3.3 x 10
-14

 Time 

pH 

1.5 x 10
-5

 

0.00117 
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7.4. Summary 

It was found that many of the more expensive/difficult to measure parameters 

measured from the pilot-scale stormwater CWs were able to be successfully 

predicted by the development of regression models which required only the 

knowledge of relatively less expensive/easier to measure parameters. 

Potential relationships between these two categories of parameters were identified in 

all eight CWs through PCA and then confirmed through correlation analysis. The 

majority of these relationships involved TSS (particularly with metals), which 

highlights the significant role that sedimentation and filtration plays in pollutant 

removal in stormwater treatment systems of this type. There were also several strong 

relationships identified between nutrient concentrations and time. 

Fifty-six simple regression models were developed based on the significant 

relationships identified in the correlation analysis. Of these, five can be considered 

excellent fits to the data. A further twenty models can be considered as very good fits 

to the data: these twenty-five models are therefore recommended for reliable 

prediction of expensive/difficult to measure parameters in the stormwater CWs. 

These models predict either effluent metal concentrations from TSS data or effluent 

nutrient concentrations from time, with one exception in unit 7: TN prediction from 

pH.  

Ten multiple regression models were developed based on the significant 

relationships identified in the correlation analysis. Of these, four can be considered 

excellent fits to the data. A further four can be considered as very good fits to the 

data. Seven of these eight models are recommended for reliable prediction of 

expensive/difficult to measure parameters in the stormwater CWs. The excluded 

model, which predicts Fe from TSS and EC in unit 3, was based on a smaller dataset 

in comparison to the other models and therefore should not be treated with the same 

level of reliability. The remaining models, with R² values of 0.74 and 0.78, can be 

considered good fits to the data, and can provide adequately approximate predictions 

of effluent NO3-N concentrations in unit 5 and effluent NH4-N concentrations in unit 

7 in order to get an idea of behaviour of these pollutants in the systems. Most of the 
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models predict either metal removal from effluent TSS concentration and TSS 

removal or nutrient removal from time and pH. One multiple regression model was 

developed that incorporates three predictor variables (time, effluent TSS 

concentration and TSS removal efficiency) in order to model effluent NH4-N 

concentrations in unit 2.  

The development of the regression models helped to further understand some of the 

internal processes and mechanisms in tidal-flow stormwater CWs, and this should 

serve as a guide for any future work as to which parameters are important in these 

processes. Firstly, TSS was extremely important for many parameters, particularly 

metals. Effluent metal concentrations were extremely heavily influenced by effluent 

TSS concentrations and TSS removal efficiencies. Therefore, efficient solids 

removal is paramount for the effective removal of heavy metals in this type of 

system. TSS was also found to have a significant influence on effluent 

concentrations of NH4-N and NO3-N in some units, which suggests that, while 

biological transformation is the dominant process governing their behaviour, some of 

these ions can be associated with particulates also. Secondly, time was of large 

significance when modelling nutrient predictions. Effluent nutrient concentrations 

were continually changing over time, and thus it should be noted that these 

parameters need to be regarded carefully when analysing CW behaviour, particularly 

as the CW matures and adapts. Even beyond the initial plant establishment period, 

effluent nutrient concentrations continue to change, e.g., the increase of PO4-P with 

time. The importance of pH should also be noted: in the multiple regression model 

developed for unit 7, pH decrease may reflect the increase in nitrification as the 

system’s biological community develops. Meanwhile, in the model for unit 8, pH 

decrease over time may have caused a decrease in PO4-P removal through 

precipitation, as conditions become less suitable for this process.
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8. Conclusions 

8.1. Summary 

This thesis concerned the design and assessment of novel constructed wetland 

systems for stormwater treatment. The systems were specifically designed with a 

tidal-flow regime in order to target the reduction of nitrate concentrations to a greater 

extent than exhibited in other stormwater CW configurations, while maintaining high 

pollutant removal efficiency capabilities with regard to a range of stormwater 

priority pollutants. The study aimed to assess the effectiveness of the CWs, 

understand the internal CW processes and develop models to demonstrate the 

potential of the system. This was achieved by fulfilling the two main research aims: 

1. Design and assess a novel configuration of vertical flow CWs for stormwater 

treatment. 

2. Develop models to further the understanding and accurately predict the 

performance of the CW system and investigate the processes occurring within.. 

The main conclusions from the research carried out to fulfil these aims are presented 

in the following section. 

8.2. Conclusions 

8.2.1. Design and assessment of pilot-scale CWs 

Eight pilot-scale stormwater CWs were set up at the School of Engineering, Cardiff 

University, to experimentally assess the long-term pollutant removal capabilities of 

the novel tidal-flow CW design. The performance of the systems was considered 

successful when compared to results of similar pilot-scale CWs that operated without 

tidal flow. N removal was enhanced by the system design, after the CWs had 

matured over time. Similarly, TSS, P and metal removal (with the exception of Zn) 

matched or outperformed alternative system designs. The experimental assessment 

identified physical processes, such as straining and sedimentation, as major removal 

mechanisms for TSS and heavy metal reduction. The main pathway of N removal 
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was identified as biological transformation, while chemical precipitation is thought 

to have played a key role in P reduction. 

The three design variables (CW media, WWAR and wetting/drying regime) were 

found to have significant impacts on the removal of different pollutants. BFS was the 

most effective media for the removal of TSS and heavy metals since it did not 

require a settling period, while loamy sand is the preferred material for nutrient 

reduction due to its advanced biological activity. Smaller WWAR values improved 

TSS removal, possibly due to an increased rate of solids aggregation in the system, 

whereas nutrient removal was enhanced by larger values. However, after the CWs 

had matured, all WWAR configurations provided relatively similar results. CWs 

with enforced drought periods showed improved Zn removal, as the release of Zn 

bound to DOM associated with increased biological activity was not evident in their 

effluents. This is likely because the reduced inflow to the systems resulted in reduced 

nutrient intake and thus reduced biological growth. For the same reason, the WC CW 

exhibited the best N removal due to its superior biological development. 

Further understanding of the stormwater CWs was gained by laboratory-based 

analysis of the loamy sand and BFS. Elemental composition analysis showed 

significant fractions of Ca in both materials. This backed the theory that PO4-P was 

likely being reduced in part by chemical precipitation. Furthermore, the presence of 

notable fractions of Mg in the BFS indicates good heavy metal adsorptive capacity 

of the material. Batch adsorption tests determined the metal adsorption 

characteristics of the media, finding that the adsorption rate of all metals to both 

media types was quick with the majority of the reaction taking place within 5 

minutes. The reaction rate was well described by the pseudo-second-order model, 

which indicates that chemisorption was the controlling factor in the adsorption rate 

of all metals to both media types. 

The experimental design and methodology can serve as a blueprint for further 

investigation into the use of tidal-flow CWs for stormwater treatment, hence 

enhancing the body of knowledge for stormwater treatment. 



Conclusions 

 

193 

 

8.2.2. Model development 

The successful application of the mechanistic HYDRUS model deepened 

understanding of the stormwater CWs, confirming that oxidation of NH4-N by 

autotrophic bacteria (Nitrosomonas spp.) was the main removal mechanism for this 

parameter. This confirmed that biological transformation was the biggest influence 

on N behaviour in the systems, and showed that a reliable model can be constructed 

using HYDRUS to predict N behaviour under different conditions. As such, the 

model showed that the retention time for N removal in the systems could be cut to an 

optimum 6 hours, while, if required, the drainage time could also be reduced to 7.5 

hours. The work carried out with HYDRUS also demonstrated how to set up a tidal-

flow wetland regime in the program, by overcoming a limitation of the software: the 

fact that time-variable boundary conditions cannot be established. This model set-up 

can now be used and possibly improved on by future researchers to investigate tidal 

flow CWs for stormwater treatment. 

Statistical analysis of the data gleaned from the pilot-scale stormwater CWs was 

used to develop predictive models for effluent pollutant concentrations. Furthermore, 

the models predict concentrations of more expensive/difficult to measure pollutants 

from the knowledge of relatively less expensive/easier to measure parameter 

concentrations/values. A combination of PCA and correlation analysis identified 

statistically significant relationships and both simple and multiple regression models 

were developed from the data. In total, 56 simple regression models and 10 multiple 

regression models were developed. The relationships between parameters discovered 

in the statistical analysis also further enhanced the understanding of internal CW 

processes. The importance of TSS removal was reinforced, while the effect of pH on 

PO4-P removal was highlighted and pH as an indicator of nitrification in one unit 

was a useful sign of increased biological development. These findings bolstered the 

theories developed from general observation of the pilot-scale CW experiments. 

8.3. Recommendations for further work 

1. With the successful pollutant reduction performance achieved by the pilot-

scale CWs, a field-scale physical model would be the next logical step. A 

HDPE pipe size of 400 mm internal diameter was used for this study, but the 
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same manufacturer produces a range of pipe sizes up to 3500 mm internal 

diameter. A prototype using a unit of this size would better represent field 

conditions, with the application of larger inflows to represent larger 

catchment areas. A long-term study of 2 years would be relatively easy to set 

up having learned the lessons of this study, which was the first of its kind 

conducted at the School of Engineering, Cardiff University. The new study 

may also benefit from the improved understanding of the application of 

HYDRUS to tidal-flow CWs that was presented in this study. This would aid 

experimental design, e.g., implementing the optimum retention and drainage 

times for NH4-N removal. 

2. This study has demonstrated that tidal-flow CWs can be used to effectively 

reduce a range of priority pollutants from stormwater runoff. However, 

stormwater flows are stochastic, so inflow batch doses to the systems cannot 

be expected in such a regime as was exercised in the experimental side of this 

project. Therefore, further research to engineer a way of adapting tidal flow 

CWs to deal with the stochastic nature of rainfall is required. This could 

perhaps be achieved through the design of a forebay to the CW that releases 

the inflow when a certain volume is reached. Whatever design is investigated, 

it would be a crucial step to the implementation of these potentially valuable 

stormwater treatment systems. 

3. Any future experimental work carried out on pilot-scale or field-scale tidal-

flow stormwater CWs would benefit from the continuous measurement of 

dissolved oxygen and redox potential in the systems. It is felt that 

measurement of these parameters would have given a greater understanding 

of the N transformation process in the tidal-flow CWs, indicating the times 

during the inflow/outflow cycle at which oxygen concentrations were 

highest/lowest, impacting on oxidation and nitrification/denitrification 

processes. 

4. The batch adsorption results presented in chapter 4 are based on the use of a 

single metal adsorbate solution in each case. Thus, it is possible that different 

results may have been produced with the use of a multi-metal adsorbate 

solution. This would have been more representative of the semi-synthetic 
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stormwater used in the pilot-scale CW inflow (and indeed real stormwater), 

but was not investigated due to time and financial restraints. Thus a simple 

series of batch adsorption tests using multi-metal adsorbate solution would 

further refine the understanding of metal adsorption to the media used in the 

CWs. 

5. Despite a wide range of stormwater priority pollutants having been addressed 

in this study, stormwater can contain a great deal of alternative pollutants. 

Additional research to determine the capability of the tidal-flow CW design 

to reduce contaminants such as polycyclic aromatic hydrocarbons (PAHs), 

various herbicides and oil and grease would be of great benefit. This research 

is essential if there is to be potential for the wider implementation of tidal-

flow stormwater CWs.  
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Appendix 1 – Loadings plots from PCA analysis 

The numerical output data from Unscrambler X was extracted and used in Microsoft 

Excel to produce these charts. All significant relationships were identified in the 

analysis of the first two principal components, hence only these components are 

displayed here. For each unit, two charts are shown (with the exception of unit 7). 

The first chart shows the results of the first PCA analysis, which used a reduced 

dataset but included pH and EC. The second chart shows the results of the second 

PCA analysis, which used a full dataset for all variables but excluded pH and EC. 

Unit 1 

 

Figure A1.1 - First PCA run, unit 1 

 

 

Figure A1.2 - Second PCA run, unit 1 
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Unit 2 

 

Figure A1.3 - First PCA run, unit 2 

 

Figure A1.4 - Second PCA run, unit 2 
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Unit 3 

 

Figure A1.5 - First PCA run, unit 3 

 

 

Figure A1.6 - Second PCA run, unit 3 
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Unit 4 

 

Figure A1.7 - First PCA run, unit 4 

 

 

Figure A1.8 - Second PCA run, unit 4 
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Unit 5 

 

Figure A1.9 - First PCA run, unit 5 

 

 

Figure A1.10 - Second PCA run, unit 5 
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Unit 6 

 

Figure A1.11 - First PCA run, unit 6 

 

 

Figure A1.12 - Second PCA run, unit 6 
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Unit 7 

 

Figure A1.13 – Unit 7 PCA output 
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Unit 8 

 

Figure A1.14 - First PCA run, unit 8 

 

 

Figure A1.15 - Second PCA run, unit 8 
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Appendix 2 – Scatter plots from correlation analysis 

The scatter plots showing significant relationships between variables in the pilot-

scale CW effluent are given in this section, after outlier elimination. Figures are not 

individually titled as there is sufficient information given by the axes on the charts. 
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Unit 2 
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