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Abstract. The workflow satisfiability problem (WSP) is a planning
problem. Certain sub-classes of this problem have been shown to be
fixed-parameter tractable. In this paper we develop an implementation
of an algorithm for WSP that has been shown, in our previous paper,
to be fixed-parameter for user-independent constraints. In a set of com-
putational experiments, we compare our algorithm to an encoding of
the WSP into a pseudo-Boolean SAT problem solved by the well-known
solver SAT4J. Our algorithm solves all instances of WSP generated in
our experiments, unlike SAT4J, and it solves many instances faster than
SAT4J. For lightly constrained instances, SAT4J usually outperforms
our algorithm.

1 Introduction

It is increasingly common for organizations to computerize their business and
management processes. The co-ordination of the steps that comprise a computer-
ized business process is managed by a workflow management system. Typically,
the execution of these steps will be triggered by a human user, or a software
agent acting under the control of a human user, and the execution of each step
will be restricted to some set of authorized users. In addition, we may wish to
constrain the users who execute sets of steps (even if authorized). We may, for
example, require that two particular steps are executed by two different users,
in order to enforce some separation-of-duty requirement.

We assume the existence of a set U of users and model a workflow as a set S
of steps; a set A = {A(u) : u ∈ U} of authorization lists, where A(u) ⊆ S denotes
the set of steps for which u is authorized; and a set C of (workflow) constraints.
A constraint is a pair c = (L,Θ), where L ⊆ S and Θ is a set of functions from L
to U : L is the scope of the constraint and Θ specifies those assignments of steps
in L to users in U that satisfy the constraint. Given a workflowW = (S,U,A, C),
W is said to be satisfiable if there exists a function (called a plan) π : S → U
such that

1. for all s ∈ S, s ∈ A(π(s)) (each step is allocated to an authorized user);
2. for all (L,Θ) ∈ C, π|L = θ|L for some θ ∈ Θ (every constraint is satisfied).
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Evidently, it is possible to specify a workflow that is not satisfiable. Equally, an
unsatisfiable workflow is of no practical use. Hence, it is important to be able
to determine whether a workflow is satisfiable or not. We call this the workflow
satisfiability problem. This problem has been studied extensively in the security
community [2, 5, 16] and more recently as an interesting algorithmic problem [4,
7].

The workflow satisfiability problem (WSP) is known to be NP-hard [16]
(and is easily shown to be NP-hard even if restricted to separation-of-duty con-
straints). Wang and Li [16] observed that, in practice, the number k of steps
is usually significantly smaller than the number n of users and, thus, suggested
to parameterize WSP by k. Wang and Li [16] showed that, in general, WSP is
W[1]-hard, but it is fixed-parameter tractable (FPT) for certain classes of con-
straints (i.e., it can be solved in time O∗(f(k)), where f is an arbitrary function
of k only and O∗ suppresses not only constants, but also polynomial factors;
we call algorithms with such running time fixed-parameter). For further termi-
nology on parameterized algorithms and complexity, see monographs [8, 11, 14].
Crampton et al. [7] extended the FPT classes of [16] and obtained significantly
faster algorithms.

Cohen et al. recently designed a generic WSP algorithm and proved that the
algorithm is fixed-parameter for WSP restricted to the class of user-independent
constraints [4]. Informally, a constraint c is user-independent if, given a plan π
that satisfies c and any permutation φ : U → U , the plan π′ : S → U , where
π′(s) = φ(π(s)), also satisfies c. Almost all constraints studied in [7, 16] and
other papers are user-independent (since the separation-of-duty constraints are
user-independent, WSP restricted to the class of user-independent constraints is
NP-hard).

It is well known that the gap between traditional “pen and paper” algo-
rithmics and actually implemented and computer-tested algorithms can be very
wide [3, 13]. In this paper, we demonstrate that the algorithm of Cohen et al. is
not merely of theoretical interest by developing an implementation that is able to
outperform SAT4J in solving instances of WSP. In a set of computational exper-
iments, we compare performance of our implementation with performance of the
well-known pseudo-Boolean satisfiability solver SAT4J [12]. Unlike SAT4J, our
implementation solves all instances of WSP generated in the experiments and
usually solves the instances faster than SAT4J. However, for lightly-constrained
instances, SAT4J usually outperforms our implementation.

The paper is organized as follows. In Section 2, we describe how WSP for the
family of instances we are interested in can be formulated as a pseudo-Boolean
SAT problem. We also describe our fixed-parameter algorithm and discuss its
implementation. Section 3 describes test experiments we have conducted with
synthetic data to see in which cases our implementation is more efficient and
effective than SAT4J. Finally, Section 4 provides conclusions and discusses plans
for future work.
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2 Methods of Solving WSP

In this paper we seek to demonstrate that (i) our algorithm can be implemented
in such a way that it solves certain instances of WSP in a reasonable amount
of time; (ii) our implementation can have better performance than SAT4J on
the same set of instances. In this section we describe concisely how WSP can
be encoded as a pseudo-Boolean SAT problem, how our algorithm works, and
the heuristic speed-ups that we have introduced in the implementation of our
algorithm.

2.1 WSP as a Pseudo-Boolean SAT Problem

Pseudo-Boolean solvers are recognized as an efficient way to solve general con-
straint networks [12]. Due to the difficulty of acquiring real-world workflow in-
stances, Wang and Li [16] used synthetic data in their experimental study. Wang
and Li encoded WSP as a pseudo-Boolean SAT problem in order to use SAT4J
to solve instances of WSP. Their work considered separation-of-duty constraints,
henceforth called not-equals constraints, which may be specified as a pair (s, t)
of steps; a plan π satisfies the constraint (s, t) if π(s) 6= π(t). Wang and Li con-
sidered a number of other constraints in their work, which we do not use in our
experimental work since they add no complexity to an instance of WSP. In the
experiments of Wang and Li, SAT4J solved all generated instances, and each of
them quite efficiently. We test SAT4J on a set of WSP instances of a different
type than in [16]. By varying the relevant parameters, we can make our instances
more difficult for SAT4J to solve, as we show in the next section.

For a step s, let A(s) = {u ∈ U : s ∈ A(u)}. For their encoding, Wang and Li
introduced (0,1)-variables xu,s to represent those pairs (u, s) that are authorized
by A. That is, we define a variable xu,s if and only if s ∈ A(u). The goal of the
SAT solver is to find an assignment of values to these variables (representing a
plan) where xu,s = 1 if and only if u is assigned to step s. These variables are
subject to the following constraints:

– for every step s,
∑

u∈A(s) xu,s = 1 (each step is assigned to exactly one user);

– for each not-equals constraint (s, t) and user u ∈ A(s)∩A(t), xu,s+xu,t 6 1
(no user is assigned to both s and t).

We use not-equals constraints and some relatively simple counting constraints:
“at-most-3” and “at-least-3” with scopes of size 5. The former may be repre-
sented as a set (T,6), where T ⊆ S, |T | = 5, and is satisfied by any plan that
allocates no more than three users in total to the steps in T . The latter may be
represented as (T,>) and is satisfied by any plan that allocates at least three
users to the steps in T . For convenience and by an abuse of notation, given a
constraint c of the form (T,≥) or (T,≤), we will write s ∈ c to denote that
s ∈ T.

We encode “at-least-3” and “at-most-3” constraints as part of the pseudo-
Boolean SAT instance in the following way. For each “at-least-3” constraint c
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and user u, we introduce a (0,1)-variable zu,c. The variables zu,c will be such that
if zu,c = 1 then u performs a step in c, and will be used to satisfy a lower bound
on the number of users performing steps in c. For each “at-most-3” constraint
c and user u, we introduce a (0,1)-variable yu,c. The variables yu,c will be such
that if u performs a step in c then yu,c = 1, and will be used to satisfy an upper
bound on the number of users performing steps in c.

The variables are subject to the following constraints:

– for each “at-least-3” constraint c and user u: zu,c ≤
∑

s∈c∩A(u) xu,s;

– for each “at-least-3” constraint c:
∑

u∈U zu,c > 3.
– for each “at-most-3” constraint c, s ∈ c and u ∈ A(s): xu,s ≤ yu,c;
– for each “at-most-3” constraint c:

∑

u∈U yu,c 6 3.

It is possible to prove the following assertion. The proof is omitted due to
the space limit.

Lemma 1. A WSP instance has a solution if and only if the corresponding
pseudo-Boolean SAT problem has a solution.

2.2 Fixed-Parameter Algorithm

We proceed on the basis of the assumption that the number k of steps is signifi-
cantly smaller than the number n of users. Any function π : T → X with T ⊆ S
and X ⊆ U , is called a partial plan. We order the set of users and incrementally
construct “patterns” for partial plans that violate no constraints for the first i
users. At each iteration we assign a set of steps (which may be empty) to user
i + 1. An assignment is valid if it violates no constraints and extends at least
one existing pattern for users 1, . . . , i. Under certain conditions, we dynamically
change the ordering of the remaining users.

Patterns are encodings of equivalence classes of partial plans and are used to
reduce the number of partial plans the algorithm needs to consider. In particular,
we define an equivalence relation on the set of all possible plans. This equivalence
relation is determined by the particular set of constraints under consideration [4].
In the case of user-independent constraints, two partial plans π : T → X and
π′ : T ′ → X ′ are equivalent, denoted by π ≈ π′, if and only if T = T ′ and for all
s, t ∈ T , π(s) = π(t) if and only if π′(s) = π′(t).

A pattern is a representation of an equivalence class, and there may be
many possible patterns. In the case of ≈, we assume an ordering s1, . . . , sk
of the set of steps. Then the encoding of an equivalence class for ≈ is given
by (T, (x1, . . . , xk)), where T ⊆ S and, for some π in the equivalence class, we
define

xi =











0 if si 6∈ T ,

xj if π(si) = π(sj) and j < i,

max {x1, . . . , xi−1}+ 1 otherwise.

We must ensure that there exist efficient algorithms for searching and inserting
elements into the set of patterns. Cohen et al. [4] show that such algorithms exist
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for user-independent constraints, essentially because the set of patterns admits
a natural lexicographic order.

The overall complexity of the algorithm is determined by k, n, and the num-
ber w of equivalence classes for a pair (Ui, T ), where Ui denotes the set of the
first i users considered by the algorithm. Cohen et al. show that the algorithm
has run-time O∗(3kw logw) [4, Theorem 1]. Thus, we have an FPT algorithm
when w is a function of k. For user-independent constraints, w 6 Bk, where Bk

is the kth Bell number; Bk = 2k log k(1−o(1)) [1].

2.3 Implementing the Algorithm

In this section, we describe our algorithm in more detail, via a pseudo-code
listing (Algorithm 1), focusing on the heuristic speed-ups we have introduced in
our implementation. The algorithm iterates over the set of users constructing
a set Π of patterns for valid partial plans (that is partial functions from S to
U that violate no constraints or authorizations). For each user u, we attempt
to find the set Πu of valid plans that extend a pattern in Π and assign some
non-empty subset of unassigned steps to u.

We assume a fixed ordering of the elements of S and that the users are
ordered initially by the cardinality of their respective authorization lists (with
ties broken according to the lexicographic ordering of the authorized steps). The
ordering we impose on the set of users allows us to introduce a heuristic speed-
up based on the idea of a useless user. A user v is useless if there exists a user
u such that A(v) ⊆ A(u), u has already been processed, and Πu = ∅. Each
iteration of the algorithm considers assigning steps to a particular user u and
constructs a setΠu of extended plans that includes this user. If, having examined
all patterns in Π, we have Πu = ∅, then there is no subset of steps (for which u
is authorized) that can be added to Π without violating some constraint. Since
all constraints are user-independent, we may now remove all useless users from
the list of remaining users.

Much of the work of the algorithm is done in line 8. The time taken to
check the validity of a plan can be reduced by considering the constraints in
the following order: (1) not-equals constraints; (2) at-most-3 constraints; (3) at-
least-3 constraints. The intuition underlying this design choice is that we should
consider constraints that violate the most plans first. In line 8 we consider a plan
with a prescribed pattern and test whether its extension (by the assignment of
steps in T ′ to user u) is valid. In line 12 we have to compute the pattern for the
extended plan and add it to the list Πu of extended plans. As we noted in the
previous section, results by Cohen et al. [4] assert that these subroutines can be
computed efficiently.

Finally, we are able to propagate information about the current state of any
at-most-3 constraints. Suppose ℓ steps from the 5 steps in an at-most-3 constraint
(T,6) have been assigned to two distinct users, where ℓ ∈ {2, 3}. Then the
remaining 5 − ℓ steps must be assigned to a single user. Hence we may discard
the pattern immediately if there is no user that is authorized for all the 5 − ℓ
remaining steps in T . Similarly, if there are any not-equals constraints defined on



6 D. Cohen, J. Crampton, A. Gagarin, G. Gutin, and M. Jones

Algorithm 1: Algorithm for WSP with user-independent constraints

begin1

Initialize the set Π of patterns to the zero-pattern (∅, (0, . . . , 0))2

foreach u ∈ U do3

Initialize Πu = ∅;4

foreach pattern p = (T, (x1, . . . , xk)) in Π do5

Tu ← A(u) \ T ;6

foreach ∅ 6= T ′ ⊆ Tu do7

if plan π ∪ (T ′ → u) is valid (where π is a plan with pattern p)8

then

if T ∪ T ′ = S then9

return SATISFIABLE and π ∪ (T ′ → u);10

end11

Compute the pattern for π ∪ (T ′ → u) and add it to Πu if12

not present in Π;
end13

end14

end15

if Πu = ∅ then16

Remove useless users17

else18

Π ← Π ∪Πu19

end20

Re-order the list of remaining users according to propagation of21

at-most-3 constraints;
end22

return UNSATISFIABLE;23

end24

any pair of the 5− ℓ remaining steps in T , then we know the pattern (encoding
a partial plan) cannot possibly generate a total valid plan, and we may discard
it at that point. Moreover, in an effort to determine whether the constraint can
be satisfied as quickly as possible, we identify users who are authorized for all
the 5 − ℓ remaining steps in T and move one such user to the beginning of the
list of remaining users at the end of each iteration accordingly (line 21). This
determines a dynamic ordering of users.

3 Experiments

We used C++ to write an implementation of our algorithm for WSP with user-
independent constraints. We then generated a number of instances of WSP and
compared the performance of our implementation with that of SAT4J when
solving those instances. All our experiments used a MacBook Pro computer
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having a 2.6 GHz Intel Core i5 processor, 8 GB 1600 MHz DDR3 RAM1 and
running Mac OS X 10.9.2.

3.1 Testbed

Based on what might be expected in practice, we used values of k = 16, 20, 24,
and set n = 10k. The number c1 of at-most-3 constraints plus the number c2 of
at-least-3 constraints was set equal to 20, 40, 60, and 80 (for k = 24, we did not
consider c1 + c2 = 20 as the corresponding instances are normally easy to solve
by SAT4J). We varied the “not-equals constraint density,” i.e. the number of
not-equals constraints as a percentage of

(

k
2

)

(the maximum possible number),
by using values in the set {10, 20, 30}. We also assumed that every user was
authorized for at least one step but no more than k/2 steps; that is, 1 6 |A(u)| 6
k/2. While not-equals constraints and authorizations were generated for each
instance separately, the at-most-3 constraints and at-least-3 constraints were
kept the same for the corresponding three different values of densities of not-
equal constraints and the same value of k.

We adopt the following convention to label our test instances in Tables 1
and 3: c1.c2.d denotes an instance with c1 at-most-3 constraints, c2 at-least-3
constraints and constraint density d. Informally, we would expect the difficulty
of solving instances c1.c2.d for fixed k, c1 and c2 would increase as d increases
(as the problem becomes “more constrained”). Similarly, at-most-3 constraints
are more difficult to satisfy than at-least-3 constraints, so, for fixed k and d,
instances c1.c2.d will become harder to solve as c1 increases. We would also
expect that the time taken to solve an instance would depend on whether the
instance is satisfiable or not, with unsatisfiable instances requiring all possible
plans to be examined.

Assuming the number c2 of at-least-3 constraints does not influence satis-
fiability too much (c2 ≤ 80), we varied c1 trying to generate WSP borderline
instances, i.e. instances which have a good chance of being both satisfiable and
unsatisfiable. Some instances we generated are lightly constrained, i.e. have a
relatively large number of valid plans, while others are highly constrained, i.e.
unsatisfiable or have a relatively small number of valid plans. The minimum and
maximum values of c1 used in the experiments to generate Tables 1–4 correspond
to instances which we view as mainly borderline. In other words, we started with
instances that are experimentally not clearly lightly constrained and stopped at
instances which are likely to be highly constrained as the corresponding three
instances for the same values of k, c1, c2 are unsatisfiable.

Counting constraints were generated by first enumerating all 5-element sub-
sets of S using an algorithm from Reingold et al. [15]. We then used Durstenfeld’s
version of the Fisher-Yates random shuffle algorithm [9, 10] to select indepen-
dently at random c1 constraint sets for at-most-3 constraints and c2 constraint
sets for at-least-3 constraints, respectively. The random shuffle algorithm was

1 Our computer is more powerful than the one used by Wang and Li [16].
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also used to select steps for which each user is authorized (the list of authoriza-
tion sets was generated randomly subject to the cardinality constraints above).
Finally, the random shuffle was used to select steps for each not-equals constraint.

3.2 Results

In our experiments we compare the run-times and performance of SAT4J and
our algorithm. For the number k of steps equal to 20 and 24, we provide Tables
1 and 3, respectively, which give detailed results of our experiments. We record
whether an instance was solved, and the response if it was solved. Thus, we report
‘Y’, ‘N’, or ‘?’, indicating, respectively, a satisfiable instance, an unsatisfiable
instance, or an instance for which the algorithm terminated without reaching
a decision. Note that our algorithm reached a conclusive decision (‘Y’ or ‘N’)
in all cases, whereas SAT4J failed to reach such a decision for some instances,
typically because the machine ran out of memory. For Algorithm 1, we record the
number of patterns generated before a valid plan was obtained or the instance
was recognized as unsatisfiable, as well as the number of users considered before
the algorithm terminated. We also record the time taken for the algorithms to
run on each instance.

For lightly constrained instances, SAT4J performs better than our algorithm.
This is to be expected, because many of the (large number of) potential pat-
terns are valid. Thus, the number of possible patterns explored by our iterative
algorithm is rather large, even when the number of users required to construct a
valid plan is relatively small. In contrast, SAT4J simply has to find a satisfying
assignment for (all) the variables. The tables also exhibit the expected correla-
tion between the running time of our algorithm and two numbers: the number of
patterns generated by the algorithm and the number of users considered, which,
in turn, is related to the number of constraints and constraint density.

However, the situation is rather different for highly constrained instances,
whether they are satisfiable or not. For such instances, SAT4J will have to con-
sider very many possible valuations for the variables and the running times
increase dramatically as a consequence. In contrast, our algorithm has to con-
sider far fewer patterns and this more than offsets the fact that we may have
to consider every user (for those cases that are unsatisfiable). Table 2 shows the
summary statistics for the running times in Table 1 (to two decimal places).
The statistics are based on running times for instances where both algorithms
were able to return conclusive decisions. Note that the average time taken by
our algorithm for satisfiable and unsatisfiable instances is of a similar order of
magnitude; the same cannot be said for SAT4J. Note also the variances of the
running times for the two algorithms, indicating that the running time of SAT4J
varies quite significantly between instances, unlike our algorithm.

In Table 4, we summarize the results of our algorithm and SAT4J for all
three values of k. As k increases, SAT4J fails more frequently, and was unable
to reach a conclusive decision for over half the instances when k = 24. This is
unsurprising, given that the number of variables will grow quadratically as k
and n (which equals 10k) increase. In Table 4 we report the average run-times
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for those instances in which both algorithms were able to reach a conclusive
decision. We also report (in brackets) the average run-time of our algorithm
over all instances. For k = 16, the average run-time of our algorithm was two
orders of magnitude better than that of SAT4J. As for the other values of k,
our algorithm was much faster than SAT4J for unsatisfiable instances. However,
for satisfiable instances, the picture was often more favourable towards SAT4J.
Overall, for larger values of k, the average run-time advantage of our algorithm
over SAT4J decreases, but the relative number of instances solved by SAT4J
decreases as well.

It is interesting to note the way in which the mean running time t̂ varies
with the number of steps. In particular, t̂ for our algorithm grows exponentially
with k (with a strong correlation between k and log t̂), which is consistent with
the theoretical running time of our algorithm (O∗(2k log k)). The running time
of SAT4J is also dependent on k, with a strong correlation between k and log t̂,
which is consistent with the fact that there are O(nk) possible plans to consider.
However, it is clear that the running time of SAT4J is much more dependent
on the number of variables (determined by the number of users, authorizations,
and constraints), than it is on k, unlike the running time of our algorithm.

4 Concluding Remarks

In this paper, we describe the implementation of a fixed-parameter algorithm
designed to solve a specific hard problem known as the workflow satisfiability
problem (WSP) for user-independent constraints. In theory, there exists an algo-
rithm that can solve WSP for user-independent constraints in time O∗(2k log k)
in the worst case. However, WSP is a practical problem with applications in the
design of workflows and the design of access control mechanisms for workflow
systems [6]. Thus, it is essential to demonstrate that theoretical advantages can
be transformed into practical computation advantages by concrete implementa-
tions.

Accordingly, we have developed an implementation using our algorithm as
a starting point. In developing the implementation, it became apparent that
several application-specific heuristic improvements could be made. In particular,
we developed specific types of propagation and pruning techniques for counting
constraints.

We compared the performance of our algorithm with that of SAT4J—an
“off-the-shelf” SAT solver. In order to perform this comparison, we extended
Wang and Li’s encoding of WSP as a pseudo-Boolean satisfiability problem.
The results of our experiments suggest that our algorithm does, indeed, have
an advantage over SAT4J when solving WSP, although this advantage does not
extend to lightly constrained instances of the problem. The results also suggest
that those advantages could be attributable to the structure of our algorithm,
with its focus on the small parameter (in this case the number of workflow steps).

We plan to continue working on algorithm engineering for WSP. In particular,
we plan to continue developing ideas presented in this paper and in [4] to develop
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an efficient implementation of a modified version of our algorithm. We hope to
obtain a more efficient implementation than the one presented in this paper.
We also plan to try different experimental setups. For example, in this paper, we
have used a uniform random distribution of authorizations to users with an upper
bound at 50% of the number of steps for which any one user can be authorized. In
some practical situations, a few users are authorized for many more steps than
others. We have only considered counting constraints, rather than a range of
user-independent constraints. In some ways, imposing these constraints enables
us to make meaningful comparisons between the two different algorithms, but we
would still like to undertake more extensive testing to confirm the initial results
that we have obtained for this particular family of instances of WSP.
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Table 1. Experimental test results for k = 20

SAT4J Algorithm 1

Instance Output CPU Time (s) Output CPU Time (s) Users Patterns

15.5.10 Y 0.974 Y 43.853 6 2,204,316
15.5.20 Y 3.888 Y 26.983 16 208,816
15.5.30 N 1,624.726 N 106.959 200 151,646

20.0.10 Y 1.022 Y 23.777 12 244,494
20.0.20 Y 354.240 Y 25.333 64 34,326
20.0.30 N 987.137 N 15.332 200 12,911

15.25.10 Y 1.092 Y 26.167 8 870,082
15.25.20 Y 12.008 Y 68.890 35 257,808
15.25.30 N 1,886.133 N 75.804 200 112,561

20.20.10 Y 3.997 Y 63.146 33 232,886
20.20.20 N 3,014.967 N 38.623 200 34,310
20.20.30 N 178.208 N 12.091 200 6,093

25.15.10 Y 13.425 Y 79.267 34 153,833
25.15.20 N 1,611.904 N 27.582 200 19,332
25.15.30 N 3,157.095 N 16.070 200 8,116

30.10.10 Y 1.244 Y 20.399 21 63,540
30.10.20 N 2,002.985 N 19.225 200 11,279
30.10.30 N 2,413.049 N 8.393 200 3,416

35.5.10 Y 11.363 Y 23.035 32 20,381
35.5.20 ? 2,406.241 N 11.771 200 6,363
35.5.30 N 2,061.416 N 3.409 200 2,107

40.0.10 N 2,734.843 N 28.124 200 13,582
40.0.20 ? 3,720.915 N 6.543 200 3,570
40.0.30 N 844.309 N 3.712 200 1,483

15.45.10 Y 1.039 Y 41.948 10 1,201,221
15.45.20 Y 19.302 Y 109.774 31 512,416
15.45.30 Y 97.056 Y 2.123 10 25,433

20.40.10 Y 218.154 Y 58.158 26 209,141
20.40.20 ? 3,290.306 N 46.538 200 47,382
20.40.30 N 777.610 N 12.490 200 10,165

25.35.10 Y 5.075 Y 37.573 15 119,829
25.35.20 N 1,984.297 N 30.570 200 26,063
25.35.30 N 3,710.115 N 19.508 200 10,332

30.30.10 Y 317.208 Y 52.735 50 57,123
30.30.20 ? 3,514.502 N 14.979 200 8,148
30.30.30 N 489.492 N 7.217 200 5,088

35.25.10 ? 7,099.028 N 24.928 200 13,493
35.25.20 N 2,293.669 N 6.365 200 4,072
35.25.30 N 783.961 N 4.229 200 1,577

15.65.10 Y 2.296 Y 35.941 6 2,305,213
15.65.20 Y 13.504 Y 40.761 12 770,002
15.65.30 N 2,351.671 N 156.593 200 274,532

20.60.10 Y 68.804 Y 51.024 27 209,564
20.60.20 ? 3,380.584 N 82.120 200 94,197
20.60.30 N 1,438.178 N 13.085 200 10,736

25.55.10 ? 3,197.404 N 183.198 200 124,643
25.55.20 N 630.904 N 17.206 200 11,102
25.55.30 N 600.167 N 7.010 200 4,896
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Table 2. Summary statistics for k = 20

SAT4J Algorithm 1

Output Mean Variance Mean Variance

Satisfiable 60.30 11570.72 43.73 585.10
Unsatisfiable 1708.04 896901.01 28.62 1360.75

Table 3. Experimental test results for k = 24

SAT4J Algorithm 1

Instance Output CPU Time (s) Output CPU Time (s) Users Patterns

30.10.10 Y 15.88 Y 1,596.07 35 1,351,463
30.10.20 ? 2,044.95 N 295.33 240 83,153
30.10.30 N 1,406.89 N 122.50 240 23,201

35.5.10 ? 2,867.81 N 2,651.70 240 682,217
35.5.20 ? 2,416.26 N 326.75 240 66,962
35.5.30 N 133.53 N 74.61 240 12,296

40.0.10 Y 42.57 Y 639.62 33 472,122
40.0.20 ? 2,172.18 N 233.77 240 40,080
40.0.30 N 989.68 N 44.69 240 7,646

30.30.10 Y 4.11 Y 2,666.69 41 2,505,089
30.30.20 ? 2,487.96 N 380.47 240 96,073
30.30.30 ? 2,506.33 N 119.31 240 22,237

35.25.10 Y 277.69 Y 842.69 43 493,585
35.25.20 ? 3,307.86 N 369.22 240 78,041
35.25.30 ? 2,782.98 N 85.79 240 14,700

40.20.10 ? 2,610.55 N 1,878.97 240 394,284
40.20.20 ? 2,596.38 N 283.73 240 47,707
40.20.30 N 3,269.74 N 65.44 240 10,521

30.50.10 ? 4,298.72 Y 7,151.83 99 2,582,895
30.50.20 N 197.10 N 604.01 240 175,348
30.50.30 N 1,004.96 N 194.36 240 36,095

35.45.10 ? 3,911.16 N 1,106.80 240 243,817
35.45.20 ? 3,141.84 N 251.76 240 46,863
35.45.30 ? 2,642.05 N 74.00 240 13,959

Table 4. Test results for k ∈ {16, 20, 24}

SAT4J Algorithm 1

Steps k Min c1 Sums c1 + c2 Output Number Mean Time Number Mean Time

16 5, 10 20, 40, 60, 80 Sat 38 3.98 38 1.27
Unsat 28 408.20 28 0.77

20 15 20, 40, 60, 80 Sat 19 60.30 19 43.73
Unsat 22 1,708.04 29 28.62 (34.47)

Unknown 7 0

24 30 40, 60, 80 Sat 4 85.06 5 1,436.27 (2,579.38)
Unsat 6 1,166.98 19 184.27 (482.27)

Unknown 14 0


