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Abstract 
 
The aim of this thesis is to compare effects of respiratory distress syndrome (RDS) on 

the myocardial function of newborn preterm infants and the later effects of chronic lung 

disease of prematurity on pulmonary artery stiffness in school age children.  

 

The first study in this thesis compared global and regional myocardial function in 

preterm infants with respiratory distress syndrome (RDS) with preterm and term-born 

controls (30 with RDS, 30 preterm control ≤34 weeks, 60 term control) using 

conventional and tissue Doppler echocardiography at birth, at term, one month, and one 

year of age. The second study compared the pulmonary artery stiffness, an early 

preclinical marker of pulmonary hypertension, in children (aged 8-12 years) who had 

chronic lung disease of prematurity (CLD) with preterm and term-born controls. 

Pulmonary artery pulse wave velocity (PA PWV) was assessed in 59 children: 13 with 

CLD, 21 preterm (≤ 32 weeks gestation) and 25 term controls) using velocity encoded 

MRI technique while breathing room air and after 20 minutes of breathing 12% oxygen. 

 

At birth, infants with RDS had lower pulmonary artery AT:ET (p<0.001), long axis 

shortening (p<0.01), RV systolic velocity (p<0.001) and higher TR (p<0.01) compared 

to preterm and term control groups. The preterm groups was also noted to have diastolic 

dysfunction (lower mitral E:A) at birth (p<0.001). At term corrected age, pulmonary 

artery AT:ET was still lower in the RDS group but no differences detected in TR 

between the groups. There were no differences in all parameters measured between the 

groups at one month and one year.  
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PA PWV was similar in all three groups at baseline when assessed at school age. 

However, following hypoxic challenge, PA PWV in children who had CLD increased 

significantly compared to preterm (p=0.025) and term controls (p=0.042). 

 

The findings in this thesis suggest that infants with RDS had mildly elevated pulmonary 

arterial pressure as a result of milder respiratory disease with improvement in antenatal 

and neonatal care. The RV global dysfunction in infants with RDS resolved with 

resolution of the respiratory condition. Both preterm groups underwent postnatal 

maturation of myocardial function and caught up with the term control group by one 

month corrected age. At school age, children who had CLD displayed increased 

pulmonary vascular reactivity to hypoxia and are at greater risk of developing 

pulmonary hypertension earlier. 

(Word count: 381) 
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Chapter One:  

General Introduction 
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My thesis focused on the effects of neonatal lung disease secondary to surfactant 

deficiency as a result of extreme prematurity on the cardiovascular system during the 

neonatal period, in infancy and later on at school age. In my studies, I used conventional 

and the novel myocardial velocity imaging to assess the effects of respiratory distress 

syndrome on the myocardial function and pulmonary pressure in preterm infants. In 

addition to using echocardiography, I have also used velocity-encoded magnetic 

resonance imaging to study the stiffness and reactivity of the pulmonary artery in 

children aged 8-12 years who had chronic lung disease of prematurity. 

 

Therefore, discussed below are the developments of the cardiorespiratory systems, 

haemodynamic changes following delivery, effects of preterm births on the 

cardiorespiratory systems, review of different echocardiographic parameters and the use 

of magnetic resonance imaging in the assessment of pulmonary hypertension. 
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1.1 Development of the cardiopulmonary system 

 

1.1.1 Lung growth and development 

The human lungs go through five different stages in their developments (Table 1.1); 

embryonic (3-7 weeks), pseudoglandular (7-16 weeks), canalicular (16-26 weeks), 

saccular (26-36 weeks) and alveolar (36 weeks to 2 years) (Burri 1984, Zeltner 1987). 

The primary respiratory acini consisting of respiratory bronchioles, alveolar ducts and 

rudimentary alveoli develop during the late canalicular stage of lung development. 

During the saccular stage, the airspaces branch and expand to form saccules, surfactant 

is synthesized by type II cells and capillaries becomes closely associated with type I 

cells. Alveolar formation, maturation and proliferation occur during the alveolar stage 

resulting in a significant increase in the surface area for gas exchange (Zeltner 1987, 

DiFiore 1994).  

 

The formation of primary respiratory acini is the critical period of lung development 

when gas exchange can occur and determines the limit of viability of preterm birth. 

Infants born extremely preterm (≤28 weeks gestation) are at the late canalicular or early 

saccular stages of lung development, where gas exchange is inefficient, and are at risk 

of dysregulated alveolarisation. Antenatal corticosteroids administration accelerates 

lung maturation and increases surfactant production (Ballard 1972, Liggins 1972) but 

caution is required for their long term consequences on lung growth and 

neurodevelopment especially after repeated courses of treatment antenatally (Johnson 

1981).  
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Table 1.1 - Stages of lung growth  

Stage Time Events 

 

Embryonic 0-7 wks Formation of trachea, right and left main bronchi 

and segmented bronchi; vasculogenesis around 

airway buds 

 

Pseudoglandular 7-17 wks Differentiation of epithelial cells, formation of 

conduction airway and terminal bronchioles, 

formation of pulmonary arteries and veins 

 

Canalicular 17-26 wks Formation of respiratory bronchioles, alveolar 

ducts and primitive alveoli, differentiation of type 

I and type II pneumocytes and formation of 

alveolar capillary barrier 

 

Saccular 26-36 wks Increment in gas exchange areas, further 

differentiation of type I and type II cells  

 

Alveolar 36 wks- 2 yrs  Septation and multiplication of alveoli  

   

Microvascular  Birth to 2-3 yrs  Fusion of double alveolar capillary network into

  single layer  

 

(Joshi 2007) 
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1.1.2 Development of the heart and pulmonary vessels 

The heart and the two great vessels develop from the third week of conception and are 

fully formed by week ten of pregnancy. The fetal heart first develops as a tubular 

structure before undergoing morphological changes to form the final four chamber 

structure and the inflow and outflow tracts (Moorman 2003). By week five of 

pregnancy, the fetal heart begins to beat.  

 

The developing tubular heart consists of three areas; the cranial, caudal and bulbus 

cordis, which develop into different parts of the aorta and the ventricles (van den Hoff 

2001). As the heart rapidly expands, it assumes an S shape as it loops over on itself and 

bends to the right, known as d-looping, creating a primitive area where the ventricle will 

grow (van den Hoff 2001). In the two-chambered stage, the endocardial cushion acts as 

a valve between the atria and ventricular areas. The atria, which are formed from the 

dilation of the heart tube, divide first, creating a three-chambered heart consisting of 

two atria, the top chambers and one ventricle, the lower chamber (Anderson 1999). By 

week ten of pregnancy, the heart has formed, with two atria and two ventricles and two 

great blood vessels to carry the blood from the heart, the aorta and pulmonary artery. 

 

The pulmonary vessels develop at the same time as the airways and grow by outgrowth 

from the existing vessels, a process called angiogenesis (Hislop 2002). Around each 

lung bud there is a capillary network that connects cranially to the aortic sac of the heart 

and caudally to the prospective left atrium (deMello 1997). The peripheral arteries grow 

along the newly formed airways by new vessel formation or vasculogenesis in the 

pulmonary mesenchyme (Hislop 2005). The increase in cell multiplication within the 
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mesenchyme is influenced by the growth factor, vascular endothelial growth factor 

(VEGF).  

 

Animal studies have shown that VEGF, an angiogenic growth factor that is essential for 

vascular development, plays an important role in normal alveolar development (Jakkula 

2000). Decreased levels of VEGF protein have been found in lung tissues of infants 

who died from chronic lung disease of prematurity (CLD) but not consistently (Bhatt 

2001b, Currie 2001, Lassus 2001b). These findings lead to the hypothesis that 

disruption of normal lung angiogenesis may contribute to dysregulated alveolarisation 

as observed in CLD; the “vascular hypothesis” of lung development (Abman 2001).  

 

During the canalicular phase of lung development, the mesenchyme around the airways 

thins and the capillaries become closely or intimately apposed to the epithelium, which 

will later differentiate into type I and II pneumocytes (DiFiore 1994). This reduction in 

distance between the future air-blood interfaces is vital for gas transfer postnatally. 

During the alveolar development, alveoli are formed from the developing septa within a 

double capillary network which then coalesce to form a single capillary sheet (DiFiore 

1994). This process continues postnatally and can continue well into childhood, albeit at 

a decreased rate. Once the capillary network fuses into a single layer, new alveoli 

cannot be formed.  

 

There are other factors that influence the pulmonary vessel development. Besides 

VEGF, other angiogenic growth factors and cytokines such as transforming growth 

factor β1, connective tissue growth factor, interferon-γ, platelet endothelial cell 

adhesion molecule-1, interleukin-6 and interleukin-8 can either suppress or promote 
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pulmonary vessel and alveolar development (Chakraborty 2010). Hyperoxia and 

pulmonary inflammation have been found to influence the abnormal alveolar 

development in preterm infants developing CLD (Jobe 1999).  

 

1.1.3 Myocardial development during the second and third trimester  

After the formation of the heart by the tenth week of pregnancy, the heart grows in 

weight and size through hyperplasia of the myocytes. A study of sheep showed that the 

normal growth of the fetal heart is accomplished by hyperplasia as the increase in 

myocardial mass was associated with minimal increase in myocyte diameter (Smolich 

1989). This is in stark contrast to the increase in myocardial mass that is achieved 

exclusively by hypertrophy during the postnatal period (Smolich 1989). There is little 

evidence for myocyte hyperplasia beyond the first month of life (Oparil 1984). A 

preterm infant would have less myocytes, the contractile elements of the heart, at birth 

compared to the term infant (Friedman 1972). During the postnatal myocardial 

development of a preterm infant, if the heart weight increases normally in relation to the 

body weight, the increase in myocardial mass would be the result of a greater increase 

in hypertrophy of the myocytes than normal (Rudolph 2000). If the myocytes were 

already hypertrophied, there would be a limitation in the reserve for further increase in 

myocyte size in response to stimuli, such as increased pulmonary or systemic vascular 

resistance and increased volume load, which would invoke cardiac hypertrophy 

(Rudolph 2000).  

 

The neonatal heart is less compliant compared to the adult heart. This is due to the 

relatively high content of total collagen in relation to the myocytes and also the 

increased ratio of type I collagen to type III collagen within the heart (Marijianowski 
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1994). This combination results in a more rigid and a less compliant ventricle in 

immature and preterm infants (Marijianowski 1994). In view of this, preterm infants are 

less able to cope with excessive volume load as the ventricles are not able to stretch and 

accommodate the extra volume, predisposing them to heart failure (Marijianowski 

1994).  

 

The combination of reduced myocyte numbers and decreased compliance of the preterm 

infants heart predisposes them to impaired cardiac function should they encounter the 

complications of extreme prematurity such as RDS, PDA, sepsis and intraventricular 

haemorrhage.  

 

As the fetus approaches term, the overall amount of collagen decreases in relation to the 

total heart mass (Marijianowski 1994). The ratio of type I to type III collagen within the 

myocytes also decreased with gestation although the ratio does reach adult level until 

the age of 12 years (Marijianowski 1994).  

 

1.2 Haemodynamic changes from fetal to neonatal life 

 

1.2.1 Haemodynamics in fetal life 

In the fetus, gas exchange occurs in the placenta. Deoxygenated blood from the fetus 

arrives at the placenta via the umbilical arteries and the umbilical vein carries oxygen 

rich blood back into the fetal circulation. The fetal circulation has multiple adaptations 

to divert the oxygenated blood from the less functioning organs such as lungs, liver, 

kidney and intestine as the placenta performs their functions, to the brain and heart. This 
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is achieved through the three vascular shunts within the fetal cardiovascular system and 

a tissue flap known as the Eustachian valve.  

 

Approximately 50-60% of the oxygen rich blood from the placenta is diverted from the 

liver circulation into the inferior vena cava (IVC) via the ductus venosus (Bellotti 

2000). In the IVC oxygenated blood from the umbilical vein (80-90% oxygen 

saturation) and the desaturated blood (25-40% oxygen saturation) from the lower limbs 

and abdominal organs including the liver stream separately towards the right atrium 

(RA) (Dawes 1954). At the junction of the IVC and the RA, the Eustachian valve 

directs the more oxygenated blood that was streaming in the dorsal aspect of the IVC 

across the foramen ovale into the left atrium (LA) (Edelstone 1979). This blood is 

mixed with deoxygenated blood from the lung circulation in the LA and the oxygen 

saturation is around 65% (Dawes 1954). The blood then enters the left ventricle (LV) to 

be ejected into the ascending aorta. The brain and heart receive the majority of the blood 

from the LV. The preferential shunting via the foramen ovale ensures oxygen rich blood 

is delivered to the vital organs.  

 

The desaturated blood from the IVC and superior vena cava flows into the RA and is 

directed into the right ventricle (RV) through the tricuspid valve (Dawes 1954). The 

pulmonary circulation only receives 12% of the blood ejected out from the RV due to 

the high pulmonary vascular resistance (PVR) (Rudolph 1979). The high muscle resting 

tone and low oxygen tension within the collapsed alveoli all contribute to the high PVR. 

The remaining RV output is shunted across the ductus arteriosus into the descending 

aorta to supply relatively desaturated blood to the lower half of the body and eventually 

return to the placenta (Rasanen 1996, Mielke 2001). (Figure 1.1)  
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The fetal circulation is capable of transporting oxygen at lower saturation levels due to 

the presence of high levels of fetal haemoglobin (HbF) (Rudolph 1979). Fetal 

haemoglobin has a greater affinity for oxygen than normal haemoglobin.  This leftward 

shift of the oxygen dissociation curve enhances oxygen uptake despite low placental 

oxygen levels. In addition to the presence of HbF, the fetus also has a high haemoglobin 

concentration, between 16 – 18 g/dL at term to ensure maximum oxygen carrying 

capacity. 
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Figure 1.1 - The fetal circulation 
 
 

 

 

The fetal circulation – this diagram shows the circulation of the fetus highlighting 
oxygen rich blood delivered from the umbilical vein into the right atrium via the ductus 
venosus. The numbers within the vessels represent the estimated oxygen saturations of 
the blood within the blood vessels 

 
(Murphy 2005) 

(Reprinted with permission of Oxford University Press) 
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1.2.2 Transition from fetal circulation to neonatal circulation 

Several cardiovascular adaptations have to occur as the fetus begins the transition into 

postnatal life. The fetal lungs have to take over the gas exchange role from the placenta, 

the fetal circulatory shunts must close and the left ventricular output must increase. At 

birth, the placental circulation is interrupted with the clamping of the umbilical cord. As 

a result, blood flow through the ductus venosus falls dramatically and the ductus 

eventually closes within one week after birth. The venous return to the RA is reduced 

significantly as a result.  

 

The lungs become expanded and aerated with the first breath and these result in a 

dramatic fall in PVR with up to ten-fold increase in pulmonary blood flow (Saunders 

1978, Hooper 2005). The fall in PVR is attributed to lung expansion opening up 

pulmonary vessels and reversal of pulmonary vasoconstriction due to improved 

oxygenation of the neonatal blood (Teitel 1990, Hooper 2005, te Pas 2008). The 

increase in pulmonary blood flow leads to an increase venous return to the LA (Rudolph 

1979). The concurrent rise in LA pressure and fall in RA pressure described above leads 

to a physiological closure of the foramen ovale within minutes to hours after birth 

(Rudolph 1979). The anatomical closure occurs later via fusion of the septum primum 

and septum secundum. 

 

As a result of the fall in PVR, flow across the ductus arteriosus becomes bi-directional. 

The high oxygen tension in the neonatal blood and the fall in placental produced 

prostaglandin results in smooth muscle constriction within the duct. Similar to the 

foramen ovale, the functional closure of the ductus arteriosus occurs by 96 hours and 
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anatomical closure occurs later through endothelial and fibrous proliferation. (Figure 

1.2) 

 

However, in the event where the ductus fails to close as seen in up to 50% of extremely 

low birth weight infants (Schmidt 2001b), the direction of shunting of blood between 

the systemic and pulmonary circulations depends on the size of the duct and the 

differences in the pressures and impedances of the respective circulations. Data indicate 

that a large ductal diameter is associated with decreased SVC flow at 5 hours of 

postnatal life; however, this effect is no longer observed at 24–48 hours after delivery 

(Kluckow 2000b). To compensate for the decreased systemic blood flow resulting from 

the left-to-right shunting via the PDA, the preterm myocardium adapts with a limited 

increase in contractility and left ventricular output (LVO). Due to the limited 

compensatory increase in LVO, decreased systemic perfusion in the lower body, 

indicated by reversed diastolic flow in the descending aorta, has been demonstrated in 

preterm neonates with a large PDA (Groves 2008). This effect was observed starting at 

4 hours after delivery, with nearly half of the neonates being affected by 24 hours of 

age. Similar findings were reported in preterm neonates with RDS (Shimada 2003). As 

discussed in previously, the preterm ventricle is not very compliant and therefore, will 

not be able to increase the left ventricular end-diastolic volume significantly to 

compensate for the increased venous return from the pulmonary circulation (Schmitz 

2004a). Consequently, the left atrial pressure increases with subsequent increase in 

pulmonary venous pressure.  

 

The increased shunting of blood from the systemic circulation to the pulmonary 

circulation would increase the right ventricular afterload. This would have a detrimental 
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effect on the right ventricle of the preterm infant with RDS as this would have increased 

the workload of an already strained ventricle.   
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Figure 1.2 - The neonatal circulation 
 

 

 

The neonatal circulation – this diagram shows the postnatal circulation highlighting the 
change from a paralell to serial circulation as a result of the closure of the three vascular 
shunts that were present in-utero.  
 

(Murphy 2005) 
(Reprinted with permission of Oxford University Press) 
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1.2.3 Failure of postnatal adaptation in preterm infants 

 

1.2.3.1 Haemodynamics in postnatal life of preterm infants 

In a healthy term infant, the pulmonary vascular resistance normally falls precipitously 

during the first day after birth (Skinner 1991). This coincides with the significant 

increase in systemic vascular resistance following clamping of the umbilical cord, 

disconnecting the placenta from the circulation. These infants do not have any 

significant right to left ductal shunt after 12 hours of age (Walther 1992) and 

physiological closure of the duct occurs at 24 hours of age (Walther 1993). The left 

ventricular output peaks between 30 minute and 2 hours after birth as a result of 

increased pulmonary blood flow. After peaking at 2 hours, the left ventricular output 

then decreases steadily and stabilizes at 8 hours postnatally (Walther 1993) to 

approximate the values seen in one week old term infants (Walther 1985). 

 

In the preterm infants, the time taken to transition between fetal to postnatal circulation 

varies and differs from those of healthy term infants. The timing for ductus arteriosus 

constriction and subsequent closure also varies. The ductus remains open for longer in 

the majority of preterm infants and during the early postnatal period, the ductus actually 

increases in size in infants following surfactant treatment (Sehgal 2010). The increase in 

ductal shunting results in increased pulmonary blood flow, pulmonary oedema, 

increased ventilatory requirements and an increase in systolic but a reduction in 

diastolic blood pressure (Kluckow 2000a). 

 

Preterm infants are particularly susceptible to haemodynamic instability and 

hypotension in the first 24 hours postnatally, in addition to the reduction in systemic 



19 
 

blood pressure secondary to ductal shunting (Kluckow 2000a). The immature 

myocardium of preterm infants has very limited capacity to increase ventricular output 

due to decreased compliance of the ventricle and decreased proportion of contractile 

elements (Friedman 1972).    

 

1.2.3.2 Postnatal adaptation failure in preterm infants 

Newborn infants undergo significant haemodynamic changes during the transition from 

fetal to neonatal life. At birth, the aeration of the lungs and improved oxygenation of 

neonatal blood result in a dramatic fall in pulmonary vascular resistance (Rudolph 

1979). The pulmonary vascular resistance in preterm infants with neonatal or respiratory 

distress syndrome (RDS) remains elevated and there is evidence of right to left shunting 

across the ductus arteriosus (Walther 1992). Preterm neonates with severe respiratory 

disease have near systemic pulmonary artery pressures, reduced lung vascular perfusion 

and large right-to-left shunts at 12 hours of age. For those with mild to moderate RDS, 

the pulmonary pressure falls following surfactant therapy with improvement of 

pulmonary blood flow at 24 hours following birth (Walther 1992).  

 

Preterm infants have a higher surface area to body mass ratio and are at higher risk of 

developing hypothermia. Hypothermia, along with hypoxia, hypercarbia, acidosis, and 

failure of lung expansion, will disrupt or reverse the normal transition from fetal to 

neonatal circulation (Toubas 1978, Abman 1989, Cornish 1994). Surfactant deficiency 

and immature pulmonary parenchyma and vessel development will exacerbate the 

situation. Failure of this postnatal adaptation of the circulation can lead to pulmonary 

arterial hypertension with echocardiographic evidence of right to left shunting across 

the ductus arteriosus and foramen ovale, severe tricuspid regurgitation, inter-ventricular 
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septal bowing at systole and an enlarged right ventricular chamber (Galie 2009). The 

decreased pulmonary blood flow results in shunting of deoxygenated blood back into 

the systemic circulation creating a vicious cycle of worsening hypoxia, acidosis and 

eventual cardiac failure. 

 

In the systemic circulation, preterm infants are also susceptible to haemodynamic 

instability and low systemic blood flow in the first 24 hours postnatally (Kluckow 

2000b). The inability of the immature myocardium to cope with the sudden increase in 

peripheral vascular resistance of the extrauterine circulation during the transition period 

is associated with low systemic and cerebral blood flow, intraventricular haemorrhage 

and adverse neurodevelopmental outcome (Osborn 2003, Hunt 2004). In addition to the 

above, low systemic blood flow which is associated with low gestational age, can be 

secondary to patent ductus arteriosus, high ventilation pressure resulting in reduced 

preload, peripheral vasodilatation in infants born to mothers with chorioamnionitis, 

sepsis and relative adrenal insufficiency.  
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1.3 Preterm births, respiratory distress syndrome, chronic lung disease of 

prematurity and pulmonary hypertension 

 

1.3.1 Neonatal or respiratory distress syndrome 

1.3.1.1 Introduction 

RDS of the newborn is an acute lung disease which presents at birth and is most 

common in preterm infants. RDS is manifested by an increased respiratory rate (>60 

breaths/min) and heart rate (>150 beats/min), chest wall retractions (subcostal, 

intercostal and sternal recessions), expiratory grunting, nasal flaring and cyanosis 

(Northway 1967). The incidence and severity of RDS are related inversely to the 

gestational age of the newborn infant. The incidence of RDS is around 60-80% in 

infants born at 26-28 weeks gestation whereas only 15-30% of those born at 32-36 

weeks have RDS (Stoelhorst 2005, Ventolini 2008). Male infants are more likely to 

develop RDS compared to female infants (male:female ratio = 1.3:1) and this is thought 

to be due to the androgen hormone acting on type II pneumocytes resulting in delayed 

production of mature surfactant (Nielsen 1985). Other predisposing factors for the 

development of RDS include Caucasian race, elective Caesarean section, intrapartum 

asphyxia, hypothermia, maternal diabetes, twin pregnancy, intra-uterine growth 

retardation and genetic defects affecting production of different components of 

surfactant. Table 1.2 show a more extensive list of risk factors for RDS.  

 



22 
 

Table 1.2 - Risk factors for respiratory distress syndrome 

Maternal factors   Infant factors 

 
Multiple pregnancy Prematurity 

Elective Caesarean section Male gender 

Gestational diabetes         Familial predisposition 

Gestational intrahepatic cholestasis        Hypothermia 

           Caucasian ethnicity 

           Intrapartum asphyxia 

           Pulmonary infections 

           Pulmonary haemorrhage 

           Meconium aspiration syndrome 

           Congenital diaphragmatic hernia 

           Pulmonary hypoplasia 

 

(Pickerd 2009) 
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1.3.1.2 Pathophysiology and pathology of RDS 

RDS is caused by developmental insufficiency of surfactant production and function, as 

well as by structural immaturity of the lungs (Avery 1959). Surfactant is a complex 

system of lipids, proteins and glycoproteins which are produced by type II pneumocytes 

during the canalicular stage of lung development at around 24 weeks gestation (Yu 

1990).  Surfactant decreases surface tension and prevents the alveoli from completely 

collapsing on exhalation (Baum 1971). In addition, the decreased surface tension allows 

re-opening of the alveoli with a lower amount of force. However, in infants born 

extremely preterm (≤28 weeks gestation), the amount of surfactant produced by the 

immature lungs (with reduced numbers of type II pneumocytes) is insufficient to lower 

the surface tension within the alveoli causing them to collapse (Baum 1971). This gives 

a typical chest radiograph appearance of uniform "ground glass" appearance, air 

bronchograms and in severe cases, a 'white-out' appearance (Reynolds 1970). Structural 

immaturity, as manifested by a decreased number of gas-exchange units and thicker 

walls, also contributes to the disease process. 

 

Macroscopically, the surfactant deficient lung is poorly inflated, and submerges under 

water (Avery 1959). Microscopically, alveolar epithelial necrosis develops within half 

an hour of birth. The epithelial cells become detached from the basement membrane 

leaving patches of hyaline membrane on the denuded area (Avery 1959). Hyaline 

membranes, composed of fibrin, cellular debris, neutrophils and macrophages, line and 

fill up the alveolar spaces, affecting gas exchange (Reynolds 1970). After 24 hours, the 

repair phase begins with macrophages appearing within the airways. After 5-7 days, the 

repair is complete with resolution of the hyaline membrane and normalisation of the 

lung architecture (Reynolds 1970). However, the inflammatory process is often 
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prolonged or the course is usually complicated by infection, prolonged mechanical 

ventilation, pulmonary oedema secondary to patent ductus arteriosus in infants born 

extremely preterm and the disease may progress to chronic lung disease of prematurity 

(Northway 1967). 

 

1.3.1.3 Cardiovascular consequences of RDS 

Respiratory distress syndrome is the commonest cause of respiratory failure and 

pulmonary hypertension in extremely preterm infants. The pulmonary arterial (PA) 

pressure usually falls with the improvement of respiratory function. Surfactant 

administration, optimal ventilation management and maintenance of good alveolar and 

arterial oxygenation are essential in the management of acute RDS (Jobe 1987), also 

resulting in decreased PA pressure. Hypoxia, sepsis, pneumonia, hypothermia, 

pulmonary oedema secondary to patent ductus arteriosus or fluid overload are among 

other risk factors can trigger a pulmonary hypertensive crisis in these infants (Toubas 

1978, Skinner 1992).   

 

Preterm lambs exposed to intrauterine infection have vascular dysfunction as a result of 

the loss of the pulmonary vasodilator response to inhaled nitric oxide, which is 

attributed to diminished abundance of endothelial nitric oxide synthase (MacRitchie 

2001) and soluble guanylate cyclase (Bland 2003) in the pulmonary circulation 

(Kallapur 2004). The resultant increase in pulmonary vascular resistance and pressure 

increases the workload (afterload) of the right ventricles. As elucidated in section 1.1.3 

discussing fetal myocardial development, the preterm myocardium has reduced 

contractile units and therefore will be less able to cope with the increase in afterload 

seen in RDS (Reiser 1994). The increase in afterload decreases the velocity and amount 
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of muscle shortening (Friedman 1972). The decreased myocyte cross-sectional area of 

the immature myocardium shortens more slowly and by a smaller amount than the adult 

myocardium when both are subjected to the same afterload (Anderson 1996). The right 

and left ventricles are affected in a different manner by afterload (Thornburg 1983, 

Thornburg 1986).The right ventricle is less able to cope with the increased afterload as 

compared to the left ventricle due to the difference in ventricular geometry and larger 

end-diastolic volume (Friedman 1972). In addition to the impaired contractility, infants 

with continuing RDS have significant increase in troponin T levels suggesting a level of 

myocardial damage that may further affect the contraction and relaxation of their heart 

(Trevisanuto 2000). 

 

The increase in pulmonary vascular resistance causes a reduction in pulmonary blood 

flow with right to left shunting of blood at the ductus arteriosus level and in severe 

pulmonary hypertension, at the foramen ovale. The complications from the acute 

increase in right ventricular workload and the resultant hypoxaemia include impairment 

of the left and right cardiac output. Additionally, the increased PAP and PA resistance 

leads to higher right ventricular diastolic pressure which in turn reduces the left 

ventricular filling pressure due to ventricular interaction (Romero 1972, Bove 1981, 

Slinker 1986). The impediment of left ventricular filling and increased left atrial 

pressure leads to decreased left ventricular stroke volume and left ventricular output.  

 

1.3.2 Chronic lung disease of prematurity 

1.3.2.1 Introduction 

Chronic lung disease of prematurity (CLD), often also called bronchopulmonary 

dysplasia (BPD), is one of the most common sequelae in preterm births. Despite the 
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improvements in neonatal care, the incidence of CLD has remained unchanged, 

although the incidence of severe CLD has decreased (Smith 2005). It has been reported 

that up to a fifth of infants born ≤ 32 weeks gestation progress to develop CLD (Zeitlin 

2008). The incidence of CLD is up to 40% of very low birth weight survivors and the 

incidence increases with decreasing birth weight affecting especially those born at less 

than 1 kg in birth weight (Darlow 2003, Farstad 2011). 

 

The definition of BPD has continued to evolve since Northway et al first reported lung 

damage as a result of prolonged mechanical ventilation in preterm infants with severe 

RDS in 1967 (Northway 1967). Subsequent definitions of clinical CLD have included 

supplemental oxygen requirement at 28 days postnatal age (Sinkin 1990) and 36 weeks 

postmenstrual age (Marshall 1999). The National Institutes of Child Health and Human 

Development (NICHD) workshop established the diagnostic criteria for CLD in 2001 

that included the gestational age and the disease severity (Jobe 2001) (Table 1.3). Using 

this definition, the incidence of CLD in infants born preterm was reported to be around 

23% (Lemons 2001). 
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Table 1.3 - Diagnostic criteria for CLD 

Gestational age      <32 weeks                                                 >32 weeks 

TPA                       36 wks PMA or discharge to home,          > 28 days but <56 days PNA or 

                               whichever comes first                              discharge home, whichever  

                                                                                                comes first 

 

Treatment with oxygen >21% for at least 28 days plus 

 

Mild CLD Breathing room air at TPA Breathing room air at TPA 

Moderate CLD  Need for <30% Oxygen at TPA Need for <30% Oxygen at TPA 

Severe CLD Need for ≥ 30% Oxygen and/or Need for ≥ 30% Oxygen and/or 

                               positive pressure, (PPV or CPAP) positive pressure, (PPV or 

                               at TPA CPAP)  at TPA 

 

 
TPA=Time point of assessment, PMA= Post menstrual age, PNA= Post natal age, PPV= 
Positive pressure ventilation, CPAP= Continuous positive pressure ventilation 

 
(Jobe 2001) 
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1.3.2.2 Pathology of CLD 

When Northway and colleagues first described CLD in 1967, the infant population 

describe was very different from the current infant population. These pre-surfactant era 

infants were born moderately preterm and were exposed to aggressive mechanical 

ventilation and high concentrations of oxygen (Northway 1967). Histological 

characteristics of this classic or old CLD were alternating areas of atelectasis and 

hyperinflation, severe airway epithelial lesions with squamous metaplasia, airway 

smooth muscle hyperplasia, prominent pulmonary vascular hypertensive lesions, 

extensive fibroproliferation and decreased internal surface area and total number of 

alveoli (Coalson 2003). 

 

The introduction of surfactant treatment has improved the survival of smaller and more 

preterm infants and changed the pathology and clinical course of CLD (Jobe 2001). In 

post mortems of infants born in the surfactant era, an impairment of acinar development 

as evidenced by fewer and larger alveoli seen on examination has been described 

(Husain 1998). 

 

Animal studies have shown that vascular endothelial growth factor (VEGF), an 

angiogenic growth factor that is essential for vascular development, plays an important 

role in normal alveolar development (Jakkula 2000, Le Cras 2002). Decreased levels of 

VEGF protein have been found in lung tissues of infants who died from CLD but not 

consistently (Bhatt 2001a, Currie 2001, Lassus 2001a). These findings lead to the 

hypothesis that disruption of normal lung angiogenesis may contribute to dysregulated 

alveolarisation as observed in CLD; the “vascular hypothesis” of lung development 

(Abman 2001). The impairment of angiogenesis results in a reduction in the number and 
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size of intra-acinar pulmonary arteries and total cross-sectional area of the pulmonary 

vascular bed, thus increasing pulmonary vascular resistance (Bush 1990, Stenmark 

2005). In addition, there is also evidence of increased muscularisation of the pulmonary 

arteries, along with a reduction of alveoli numbers, in infants who died from CLD 

(Hislop 1990, Margraf 1991). Extremely preterm infants are at high risk of developing 

pulmonary arterial hypertension (PAH) due to the combination of an increase in 

pulmonary arterial medial thickness and pulmonary vascular resistance as a result of 

dysregulated angiogenesis. 

 

1.3.2.3 Factors contributing to the development of CLD 

CLD is a complex disorder with multiple factors contributing to the onset and 

progression of the disease. In a prospective study of 86 infants with birth weights less 

than 1500g, Cunha and colleagues found that prematurity, birth weight, high oxygen 

requirement, high peak inspiratory pressure (≥ 21cmH2O), fluid overload and the 

presence of patent ductus arteriosus are associated with an increased risk of CLD 

(Cunha 2005).  

 

Prolonged exposure to high oxygen concentration leads to reduction of alveolar 

formation with structural changes (Hislop 1987). Oxygen toxicity is mediated through 

reactive oxygen species which have potent pro-inflammatory effects on the alveoli 

(Rozycki 2002, Wagenaar 2004). Preterm infants are more susceptible to volutrauma 

due to their compliant chest wall which allows uncontrolled expansion from mechanical 

ventilation. Repeated expansion and collapse of the alveoli causes shear stress resulting 

in injury with disruption of structural elements leading to release of inflammatory 

mediators with subsequent pulmonary inflammation and macrophage infiltration 
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(Muscedere 1994, Kotecha 1996a, Tremblay 1997). Infants who develop CLD have 

elevated levels of interleukin-8 and several other neutrophil chemoattractants (Groneck 

1995, Kotecha 1995). There are suggestions from a rat lung model that moderate 

volume ventilation with high PEEP causes significantly less production and release of 

pro-inflammatory cytokines compared to high volume ventilation without PEEP 

(Muscedere 1994).  

 

Antenatal exposure to chorioamnionitis (Young 2005) and postnatal infection with 

cytomegalovirus (Sawyer 1987), Ureaplasma urealyticum (Benstein 2003), and 

Mycoplasma (Bhandari 1998) are associated with a significant risk of developing severe 

CLD. Chorioamnionitis and postnatal infections have been found to amplify the 

inflammatory response of the preterm lung to ventilation as reflected by a marked 

infiltration of inflammatory cells and increased expression of pro-inflammatory 

chemokines (Schmidt 2001a, Speer 2006). It has been reported that neonatal neutrophils 

have a prolonged survival due to suppression of natural apoptosis (Kotecha 2003, 

Koenig 2005). These activated neutrophils adheres to the endothelium of the pulmonary 

vascular system thereby initiating a sequence of injurious events and causes 

extravasation of neutrophils and macrophages into the alveolar spaces leading to 

pulmonary oedema (Speer 2006). The injury to the pulmonary capillary endothelium 

promotes neutrophil and platelet activation to induce pulmonary as well as systemic 

inflammation and activation of the clotting system (Sitaru 2005). In addition, vasoactive 

prostaglandin mediators released during sepsis prevent patent ductus arteriosus closure 

or induce re-opening of the duct leading to increased risk of developing pulmonary 

oedema and affecting gas exchange (Gonzalez 1996). In addition to the lung 

parenchymal effects, circulating pro-inflammatory cytokines, IL-6 and TNF-, can 
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affect myocardial function. IL-6 has been shown to depress papillary muscle contraction 

and is negatively inotropic in cardiomyocyte cultures (Joulin 2007). TNF- induces a 

relatively short duration of early positive inotropic effect followed by a delayed and 

prolonged phase of profound systolic and diastolic dysfunction (Murray 1996). 

 

Inflammation-induced tissue injury is normally followed by a phase of repair (Grande 

1997). Transforming growth factor- (TGF-) plays a key role in mediating tissue 

remodelling and repair (Bartram 2004). In preterm infants with BPD, increased 

concentration of TGF- has been detected in the airways resulting in exaggerated repair 

and lung fibrosis (Kotecha 1996b). The combination of over-expression of TGF- and 

suboptimal pulmonary and vascular growth factors contribute to the dysmorphic 

microvasculature and disrupted alveolarisation (Abman 2001, Bhatt 2001a, Lassus 

2001a).  

 

1.3.2.4 Cardiovascular consequences of CLD 

Infants with CLD are at risk of developing pulmonary arterial hypertension (PAH) due 

to disruption of the pulmonary vasculature and a rise in pulmonary vascular resistance 

due to alveolar injury and inadvertent periods of hypoxia. PAH is defined as a mean PA 

pressure ≥ 25 mmHg at rest measured by cardiac catheterization or an estimated systolic 

PA pressure ≥ 40 mmHg on echocardiography (Haworth 2008). Although the true 

prevalence of PAH in infants with CLD is unknown, a range between 17% - 25% has 

been reported in individual studies (An 2010, Bhat 2012). 

 

Supplemental oxygen reverses hypoxic pulmonary vasoconstriction, improving oxygen 

saturation, decreasing pulmonary vascular resistance and improving right ventricular 
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performance (Kotecha 2002). Long term supplemental oxygen therapy is considered the 

standard treatment for PAH associated with CLD (Stenmark 2005). It is assumed that 

the gradual fall in PA pressure in CLD infants is reflected indirectly by the gradual 

weaning of supplemental oxygen, guided by oxygen saturation monitoring and that PA 

pressure normalises once the infants are successfully weaned to breathing in room air. 

Evans and Archer refuted this assumption by showing that up to a third of preterm 

infants recovering from hyaline membrane disease when discharged home in air had 

evidence of raised PA pressure as assessed by Doppler echocardiographic (Evans 

1991b). Another study noted that PA pressure in infants with CLD remained 

persistently raised until the end of the first year of life using Doppler-derived pulmonary 

arterial flow acceleration time to ejection time ratio (PA AT:ET ratio) (Subhedar 2000). 

 

Fitzgerald et al studied the PA pressure of survivors of CLD (defined as oxygen 

dependence at 28 days with or without chest radiograph abnormalities in the study) in 

early childhood by measuring the PA AT:ET ratio (Fitzgerald 1994). They noted that 

nearly one quarter of CLD survivors had raised PA pressure, which was demonstrated 

across the range of severity of CLD children in early childhood. These survivors of 

CLD from the pre-surfactant era with raised PA pressure often did not exhibit any 

clinical features of PAH; hence they may have been exposed to subclinical hypoxaemia. 

This study also noted an improving PA AT:ET ratio with increasing age in these 

children, suggesting improvement during childhood. Another study of CLD in the pre-

surfactant era of children less than 2.5 years of age showed that up to one third of 

children have raised PA pressure assessed using PA AT:ET ratio and TR jet velocity, 

which were found to be inversely correlated (Benatar 1995). Eight of 11 subjects with 

PAH responded to oxygen challenge with a decrease in PA pressure by at least 5 mmHg 
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and it was postulated that increased muscularisation of the pulmonary arterioles may be 

the cause for the lack of response to the oxygen challenge (Abman 1985). 

 

Pre-school survivors of CLD from the post-surfactant have been noted to have higher 

PA pressures, estimated by TR jet velocity, compared to control subjects (30.4±6.9 

mmHg vs 23.3±5.3 mmHg) (Gurses 2013). In the same study, CLD survivors had 

subclinical ventricular dysfunction using the myocardial performance index (also 

known as Tei index). A Finnish study on school-aged CLD survivors from the 

surfactant era did not find any evidence of raised PA pressure using echocardiographic 

Doppler assessment of the TR jet and the PA AT:ET ratio when compared to the term 

and preterm controls without CLD (Korhonen 2005). The findings from this study 

suggest that the increased pulmonary vascular resistance associated with CLD resolved 

by school age.  

 

Although pulmonary vascular resistance and PA pressures in CLD survivors appear to 

normalise by school age, pulmonary vascular reactivity to changes in oxygen tension 

and inhaled nitric oxide may persist into adolescence (Mourani 2004) (Figure 1.3). 

Sartori et al found that term-born adults who were diagnosed with transient perinatal 

hypoxic pulmonary hypertension have significantly greater increases in their PA 

pressures at high altitude when compared to normal controls (Sartori 1999) but it is 

unknown whether children who had CLD in infancy have similar PA hyper-reactivity. 

Mourani et al found that acute hypoxia increased mean pulmonary artery pressure by 

more than 20% suggesting that the risk for pulmonary vasoconstriction due to hypoxia 

persist in children older than 5 years of age who had severe CLD (Mourani 2004). In 

these children, inhaled nitric oxide significantly augmented the vasodilator response of 
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the PA to oxygen suggesting a marked reversible component (Figure 1.3). The 

responsiveness to inhaled nitric oxide may indicate a likely response to a 

mechanistically similar agent such as sildenafil in the treatment of pulmonary artery 

hypertension associated with CLD (Mourani 2009b, Farquhar 2010). 
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Figure 1.3 - Individual effects of hypoxia (A), hyperoxia (B), hyperoxia + iNO (C), and 
calcium channel blockers (CCB) (D) on mean pulmonary artery pressure (PAP) 
compared with normoxic baseline measurements in children with CLD.  
 

 

The mean pulmonary arterial pressure (PAP) increased and decreased significantly (p<0.01) in 
response to hypoxia and hyperoxia + iNO, respectively, from normoxic baseline value. There 
was no change in mean PAP to either oxygen alone or CCB.  
 
Light dashed lines represent measurements made in individual patients. The solid line displays 
mean values for the study group. 

 
(Mourani 2004) 

(Reprinted with permission of the American Thoracic Society. Copyright© American 
Thoracic Society) 
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1.4 Echocardiography in the assessment of pulmonary hypertension 

The gold standard method for evaluating pulmonary haemodynamics and the 

measurement of pulmonary arterial pressure is invasive right heart catheterisation. 

However, this procedure carries significant risk to sick ventilated preterm infants or 

infants with CLD. Echocardiographic signs such as right atrial enlargement, right 

ventricular hypertrophy and/or dilatation, septal flattening and pulmonary dilatation can 

also be used qualitatively to detect PAH but their predictive values are relatively poor 

(Mourani 2009a). Other echocardiographic indices have been explored to measure 

pulmonary arterial pressure quantitatively and are discussed below. 

 

1.4.1 Pulsed Doppler methods 

1.4.1.1 Tricuspid regurgitation peak velocity 

Systolic pulmonary artery pressure (sPAP) is considered equal to right ventricular 

systolic pressure in the absence of pulmonary valve stenosis or outflow obstruction 

(Galie 2009). Right ventricular systolic pressure can be determined by addition of the 

right atrial pressure to the pressure gradient between the right chambers. Therefore, 

sPAP can be estimated from the tricuspid regurgitant (TR) jet velocity, measured by 

continuous wave Doppler ultrasound, by using the modified Bernoulli equation (4 x TR 

jet peak velocity2 + right atrial pressure). The European guidelines for the diagnosis and 

treatment of PAH consider the echocardiographic diagnosis of PAH „likely‟ when the 

TR jet velocity is >3.4 m/s (or sPAP >50 mmHg) and „possible‟ when the TR jet 

velocity is between 2.9 and 3.4 m/s (or sPAP between 37 and 50 mmHg) (Galie 2009). 
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This technique has been validated against right heart catheterisation in both adults and 

children. Skjaerpe and Hatle measured pulmonary arterial pressure using the TR jet in 

70 adults and found sPAP to correlate well with catheter measurements (r=0.97) 

(Skjaerpe 1986). In infants with congenital heart disease, the TR jet velocity appears to 

have a high correlation with cardiac catheterization (r=0.95) (Skinner 1993).  

 

However, estimation of sPAP from TR jet flow is not always possible as only between 

44% and 61% of infants and young children respectively with CLD have a measurable 

TR jet (Benatar 1995, Mourani 2008). The precision of sPAP estimation using TR jet 

velocity has been questioned in studies comparing echocardiographically estimated 

values and true values measured by right heart catheterisation where the mean 

difference between the two methods ranged from 3 to 38 mmHg and sPAP was 

underestimated by the echocardiographic method by >20 mmHg in 31% of all patients 

studied (McGoon 2004). In view of its poor precision, TR jet velocity is not suitable to 

be used as a diagnostic tool in asymptomatic PAH (Galie 2009). Despite the above, TR 

jet velocity measurement remains a feasible and reliable screening method for suspected 

PAH.  

 

1.4.1.2 Pulmonary regurgitation end diastolic velocity 

End diastolic pulmonary regurgitant flow measurement using pulsed-wave or 

continuous-wave Doppler echocardiography enables the calculation of the pressure 

gradient between the right ventricle and the pulmonary artery at end diastole using the 

modified Bernoulli equation. The calculated pressure gradient added to right atrial 

pressure estimates diastolic pulmonary arterial pressure. This method has a high 

correlation with invasive diastolic and mean pulmonary arterial measurements (r=0.94 
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for both measurements) in the adult population (Masuyama 1986, Ge 1992). Similar to 

TR jet flow, pulmonary regurgitation flow was only successfully obtained in 18 of the 

21 patients with pulmonary hypertension and in 13 of the 24 patients without pulmonary 

hypertension (Masuyama 1986). 

 

1.4.1.3 Right ventricular systolic time intervals 

Right ventricular systolic time intervals, along with TR jet velocity, are the most studied 

surrogate markers of PAH in preterm infants and infants with CLD. The pulmonary 

blood flow is visualised using a pulsed-wave Doppler signal. The pulmonary arterial 

flow acceleration time (AT) is defined as the time interval from the onset of forward 

flow in the pulmonary artery to the peak velocity of this flow and ejection time (ET) is 

measured from the onset to the end of systolic pulmonary flow. (Figure 3.9) Good 

quality pulsed-wave Doppler signals of the right ventricular outflow tract or pulmonary 

artery can be measured in the vast majority of patients, unlike TR and pulmonary 

regurgitant flows.  

 

In 1983, Kitabatake et al reported that AT or the ratio of AT to ET measured from the 

pulsed-wave Doppler signal in the right ventricular outflow tract decreased with 

increases in mean pulmonary artery pressure in adults. A very strong inverse correlation 

between AT:ET ratio and log mean pulmonary artery pressure was found (r = -0.90) 

(Kitabatake 1983). A similar study performed on older infants and children by Akiba et 

al also showed a close negative correlation between AT:ETc and directly measured PAP 

(Akiba 1988). The lower limit of AT:ETc corresponding to normal PAP is 0.54 (Akiba 

1988). AT:ETc is calculated by dividing AT:ET by the square root of the R-R interval 
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from a simultaneous electrocardiogram tracing. The reason Akiba and others used a 

corrected ratio is AT, ET and AT:ET are all shortened as heart rate increases.  

In a study involving children with congenital cardiac disease, Kosturakis et al noted a 

good correlation between the AT:ET ratio and mean PAP (r = -0.76) (Kosturakis 1984). 

This group also defined the normal values for healthy paediatric patients where an 

AT:ET ratio of 0.35 approximates to a mean PAP of 20 mmHg and a ratio of 0.25 

approximates to a mean PAP of 50 mmHg. Fitzgerald et al measured PAP in 76 

children aged 1-7 years (mean age 4 years) with CLD along with 21 sibling controls and 

found that 24% of children who had CLD had subclinical PAH (Fitzgerald 1994). This 

group defined an AT:ET ratio of ≥0.35 as normal, between 0.31 and 0.35 as possibly 

low and <0.31 as definitely low ratio suggesting increased PAP (Fitzgerald 1994). 

 

1.4.2 Myocardial velocity imaging / Tissue Doppler methods 

Myocardial velocity imaging (MVI) is now established as a tool for quantifying 

regional myocardial function in adults. The technique has been validated and 

established in children, infants, and neonates (Harada 2000, Kapusta 2000, Frommelt 

2002, Mori 2004, Nestass 2009, Pena 2009). Reference values of parameters measured 

using MVI in healthy children and neonates have been published (Weidemann 2002, 

Ekici 2007, Roberson 2007). MVI has also been used to assess regional myocardial 

function in different neonatal conditions (Patel 2009, Wei 2009). It has been shown to 

be both feasible and reproducible in preterm infants (Joshi 2010), thus permitting the 

assessment and monitoring of regional myocardial function which can be affected by 

various respiratory and congenital cardiac conditions prevalent in preterm-born subjects.  
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MVI allows the measurements of velocities at any point in the ventricular wall during 

the cardiac cycle. Myocardial strain (ε), a measure of local contractile function, is a one-

dimensional measurement of relative deformation of myocardial fibres. Strain rate is the 

rate by which deformation occurs and this is derived from the instantaneous velocity 

gradient between adjacent points of the myocardium. The instantaneous data on 

deformation (or ε) are then obtained by integrating the strain rate curve with time 

(Marwick 2006) (Figure 3.13 and Figure 3.14) 

 

1.4.2.1 Right ventricular relaxation time (IVRT) 

Myocardial pulsed Doppler imaging of the tricuspid annulus can be used to measure RV 

relaxation time (IVRT). In adults, IVRT correlates well (r = 0.74 - 0.87) with 

simultaneously measured PAP by RV catheterization (Lindqvist 2006, Bréchot 2008). 

RV relaxation time was longer in patients with PAH, compared to those who did not 

have PAH. RV relaxation time „IVRT‟ ≤ 40 ms has been shown to exclude PAH with 

100% negative predictive value (Bréchot 2008). Although prolonged IVRT is 

suggestive of elevated PAP, this cannot confirm the diagnosis of PAH by itself. At 

present, there is a lack of normal values and validation of this technique in infants and 

children. Joshi et al showed poor inter-observer reproducibility in measuring IVRT in 

term and preterm infants (Joshi 2010), thus suggesting using IVRT as a surrogate 

marker of elevated PAP in this cohort may not be appropriate for the time being. 

 

1.4.2.2 Right ventricular systolic strain and strain rate 

Strain is the percent magnitude of myocardial deformation during the cardiac cycle. 

Systolic strain is the percentage shortening of myocardium within a region of interest 

during systole (Figure 3.13). Strain rate represents the rate of myocardial deformation. 
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Longitudinal ventricular strain rate assessment gives a negative value when the ventricle 

shortens at systole and a positive value when the ventricle lengthens at diastole due to 

directional changes (Figure 3.14). RV systolic strain and strain rate have been explored 

as a promising new technique for the diagnosis of PAH. RV systolic strain had a 

significant correlation with PAP (r = 0.59; p<0.001) and pulmonary vascular resistance 

(r = 0.6; P< 0.001), giving it the potential to be a surrogate marker of PAH 

(Rajagopalan 2008). Lopez-Candales et al studied 111 patients with PAH and 35 

controls using both tissue Doppler myocardial imaging and cardiac catheterization and 

reported that RV systolic strain of less than -20% has a sensitivity of 60% and a 

specificity of 87% to predict PAP of > 40 mmHg (Lopez-Candales 2008). RV systolic 

strain rate also had a significant correlation with mPAP (r = 0.57; p=0.001) and 

pulmonary vascular resistance (r = 0.62; P< 0.001) (Naderi 2013). Both RV systolic 

strain and strain rate are powerful predictors of outcome in adult patients with known or 

suspected pulmonary hypertension (Sachdev 2011, Fine 2013). In view of these 

promising results in the adult population, RV systolic strain and strain rate may be 

useful surrogate markers for the diagnosis of PAH in infants and children as well. 

Normal values for RV strain and strain rates have been described in children 

(Weidemann 2002, Kutty 2008) but the studies included children from 1 year up to 16 

years. Although strain and strain rate imaging has been proved to be feasible and 

reliable in infants (Nestaas 2007) and preterm infants (Joshi 2010), there are only a few 

small studies assessing strain and strain rates using tissue Doppler echocardiography in 

healthy newborn infants (Nestass 2009, Pena 2009) and in infants who suffered 

perinatal asphyxia (Nestaas 2011, Nestaas 2012). The inter-observer reproducibility of 

myocardial deformation imaging in the neonatal population is 30% (Joshi 2010) 

compared with 10 – 15% in children (Weidemann 2002) and adults (Serri 2006). This is 
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likely caused by the size of the heart in this population which presents additional 

technical challenges in the acquisition and analysis of myocardial deformation images. 

 

1.5 Magnetic Resonance Imaging (MRI) in the assessment of pulmonary 

hypertension 

Cardiac MRI (CMRI) has been used routinely for non-invasive assessment of 

ventricular volumes, mass, function and flow with high accuracy and repeatability. 

Recent interest in arterial stiffness and compliance has resulted in the development of 

CMRI techniques that allow non-invasive measurements of distensibility, stiffness 

index and pulse wave velocity (PWV) of both major pulmonary and systemic arteries 

thus providing detailed information on physiological arterial function and subsequent 

effects on ventricular loading conditions.     

  

1.5.1 Relationship between pulmonary artery compliance and resistance 

Lankhaar et al have reported an inverse relationship between resistance and compliance 

from which the RC-time can be calculated (Lankhaar 2008). It characterises the decay 

of pulmonary artery pressure in diastole. RC-time is the same in patients with and 

without pulmonary hypertension implying that resistance and compliance are inversely 

related as shown in Figure 1.4 (Lankhaar 2008). Resistance is calculated as the ratio of 

mean pulmonary artery pressure and mean flow and compliance as the ratio of stroke 

volume and pulse pressure. For RC-time it then holds: 

RC-time = R x C = mPAP – PCWP x SV = T (mPAP – PCWP) 

                                                            SV/T             PP                  PP 
 
T = heart period, SV = stroke volume, mPAP= mean pulmonary artery pressure, PCWP = pulmonary 
capillary wedge pressure, PP = pulmonary artery pulse pressure 

(Lankhaar 2008) (Reprinted with permission of Oxford University Press) 
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Thus, an inverse relationship implies that loss of pulmonary arterial compliance (or 

increased pulmonary arterial stiffness) is an early sign of pulmonary hypertension. A 

new screening method in assessing pulmonary arterial compliance non-invasively offers 

the opportunity to detect pulmonary arterial hypertension or even detect changes of 

pulmonary arterial compliance well before clinical and echocardiographic features 

manifest.  

 
 
 
 
 
Figure 1.4 - The graph showing the constant relationship between compliance and 
resistance 
 

 

 

The consequence of a constant RC-time t during therapy for patients A and B. At baseline, 
patient A has a low resistance R (mild PH) and patient B a high resistance (severe PH). If the 
RC-time is constant, patients will always move along the dashed line and a change in resistance 
ΔR will be accompanied by a change in compliance ΔC. If the resistance R of both patients 
decreases with the same amount ΔR, patient A will improve much more in compliance than 
patient B. Thus, patient A will improve substantially in both steady and pulsatile afterload, 
while patient B will improve in steady afterload only. 
 

(Lankhaar 2008) 
(Reprinted with permission of Oxford University Press) 
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1.5.2 MRI assessment of PA compliance, distensibility, stiffness 

Velocity-encoded phase-contrast MRI can be used to study haemodynamic changes 

associated with pulmonary arterial hypertension reliably and with good reproducibility, 

by estimating PWV in the main pulmonary artery (Peng 2006). In adult patients with 

pulmonary arterial hypertension, mean pulmonary artery peak flow velocity, pulmonary 

artery blood flow, and pulmonary distensibility/compliance were noted to be 

significantly lower than in matched volunteers (Ley 2007). Sanz et al compared right 

heart catheterisation and phase-contrast MRI and showed a strong correlation between 

average blood velocity and mean PAP and pulmonary vascular resistance index (r = -

0.73 and -0.86, respectively; p<0.001), thus potentially allowing non-invasive diagnosis 

of pulmonary arterial hypertension (Sanz 2007). 

 

Vulliémoz et al proposed a MRI technique to measure PWV in aorta non-invasively 

without the need to measure arterial pulse pressure by proposing the complex 

calculation of obtaining PWV value from local arterial early systolic flow and cross 

sectional area, derived from the Bramwell-Hill equation  (Vulliémoz 2002). This is 

shown in Figure 1.5 below. Peng et al then applied the QA method to measure PA PWV 

and compared PA PWV of patients with pulmonary hypertension against normal 

subjects (Peng 2006). The PA flow is calculated by multiplying the vessel cross-

sectional area by the mean velocity inside the vessel cross section, which is performed 

by the analysis software. A line is then fitted to the flow versus area data during early 

systole using the least-squared error method, from which PWV is calculated (Peng 

2006). As shown in the derivation of PWV in Figure 1.5, PWV is associated with PA 

resistance and flow. As this is a novel method, there are no studies on correlating PA 

PWV with PA pressure, compliance or resistance as yet.   
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Figure 1.5 – The derivation of PWV as demonstrated by Vulliémoz  

                        

                      

                    

(Vulliémoz 2002) 
(Reprinted with permission of John Wiley & Sons, Inc.) 
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1.5.3 PA stiffness and mortality in PAH patients 

Chronic PAH is associated with loss of elasticity in the pulmonary vascular bed. 

Stiffening of the vasculature results in greater reflection of pressure waves from 

bifurcations in the pulmonary vessels during pulsatile ejection of blood from the right 

ventricle. In a study involving 70 patients with PAH and 16 non-PAH controls, Gan et 

al reported that the proximal PA of patients with PAH are more distended, less 

distensible and have a small relative area change during the cardiac cycle compare to 

healthy controls. Relative area change showed an inverse curvilinear relation with mean 

pulmonary artery pressure (R2 = 0.47) (Gan 2007). During the 48 months follow up 

period, patients with a relative area change value ≤16% were more likely to die from 

cardiopulmonary causes (Gan 2007). The authors concluded that non-invasive 

measurement of PA relative area change, a marker of arterial stiffness, using MRI is a 

good predictor of mortality in patients with PAH.  

 

Mahapatra et al studied the relationship between pulmonary arterial capacitance and 

mortality in patients with idiopathic PAH (Mahapatra 2006). Pulmonary arteriolar 

capacitance measures how much the total pulmonary arteriolar tree will dilate with each 

contraction of the right ventricle. During the four year follow-up study, 21 out of 104 

patients died and it was noted that the capacitance index was a strong independent 

predictor of mortality in patients with idiopathic PAH (Mahapatra 2006).  
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1.6 Cardiopulmonary effects of hypoxia 

1.6.1 Hypoxic effects of altitude 

The percentage of oxygen in inspired air is constant at different altitudes, which is 21% 

of dry air. The fall in atmospheric pressure at higher altitude decreases the partial 

pressure of inspired oxygen and hence the driving pressure for gas exchange in the 

lungs. The weight of air above us up to 10000 metre high is responsible for the 

atmospheric pressure, which is normally about 100 kPa at sea level. This atmospheric 

pressure is the sum of the partial pressures of the constituent gases, oxygen and 

nitrogen, and also the partial pressure of water vapour (6.3 kPa at 37°C). As oxygen is 

21% of dry air, the inspired oxygen pressure is 0.21×(100−6.3)=19.6 kPa at sea level 

(Peacock 1998).  

 

Atmospheric pressure and inspired oxygen pressure fall roughly linearly with altitude. 

At 3500m and 5500m, the inspired oxygen is equivalent to 13% oxygen and 10% 

oxygen at the sea level respectively. A fall in inspired oxygen pressure reduces the 

driving pressure for gas exchange in the lungs and causes the effects of hypoxaemia. 

The use of air travel for business and leisure purposes is progressively increasing. 

Similarly, as society becomes more affluent, increasing number of healthy lowland 

adults and children are holidaying in high altitude skiing resorts or hiking up the high 

mountains (Yaron 2008). Many of these resorts are about 8000ft / 2438m above sea 

level. The once remote Everest base camp is 5500m where only few non-natives would 

visit has become increasingly more accessible. Many adults, children and infants are 

exposed to the risk of hypoxia and its consequences in this modern lifestyle. 
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Commercial airlines fly at high altitude of 30,000 to 40,000ft to avoid turbulence and 

minimize fuel costs. The partial pressure of oxygen at such high altitudes is <5kPa, 

which is lethal. Commercial aircrafts are pressurized to an altitude of 8000ft / 2438m, 

which is equivalent to breathing 15% oxygen at sea level (Samuels 2004). There are 

limited reports of the hypoxic response of healthy children to air travel. In a study 

measuring the oxygen saturations of 80 healthy children aged 0 – 15 years in an eight to 

ten hours flight from Taiwan to Hawaii, the mean oxygen saturations fell to 95.7% (± 

1.7%) after 3 hours and 94.4% (± 1.8%) after 7 hours of flight (Lee 2002). A similar 

study that included 10 healthy children found that five children desaturated to <94% 

during flight (Humphreys 2005). Although oxygen saturations decrease in healthy 

children and adults at cruising altitudes, the desaturations are not thought to result in 

clinically relevant hypoxia unless there is an underlying disease that compromises 

respiratory or cardiovascular reserve (Dillard 1989, Samuels 2004, Bossley 2008, Coker 

2008, Winck 2008). 

 

1.6.2 Hypobaric versus normobaric hypoxia 

Two methods used in flight simulation testing to predict hypoxic response at altitude are 

hypobaric hypoxic chambers and inhalation of diluted gas mixture. Whilst a hypobaric 

hypoxic chamber is ideal to simulate the conditions of aircraft cabin pressure and 

oxygen tension, the limited availability of this facility limits it use. Therefore, the 

commonest method used for pre-flight hypoxic challenge is the normobaric hypoxia test 

using a 15% oxygen nitrogen admixture delivered by face mask or body box.  

 

The Young Everest Study compared oxygen saturations of nine healthy children aged 6-

13 years (median 8 years) during a normobaric hypoxic challenge breathing 15% 
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oxygen for 20 minutes (via a modified body plethysmograph) against hypobaric 

hypoxia during flight and at high altitude (2500m) (Scrase 2009). The mean oxygen 

saturations decreased from 98.5% at sea level down to 93% in all three hypoxic 

conditions. The oxygen saturation at normobaric hypoxic challenge was 93.4% (SD 1.7) 

versus 93.2% (SD 2.2) at 2600m. The exact oxygen saturation value for in-flight testing 

was not reported. There are no paediatric studies comparing PaO2 between normobaric 

and hypobaric hypoxic challenges and there are conflicting reports on the measured 

PaO2 between these two methods in the adult population. In a study on adult patients 

with chronic obstructive airway disease comparing PaO2 15% normobaric hypoxia 

inhalation test against hypobaric hypoxia delivered by hypoxic chamber at 2438m, there 

was no difference in the PaO2 relationships between the two methods (Dillard 1995). 

However, when healthy adults were subjected to more significant hypoxic challenge at 

12% oxygen, oxygen saturations and PaO2 was found to be significantly lower 

following hypobaric hypoxia challenge (4500m) compared to normobaric hypoxic 

challenge (12% oxygen) (Sartori 1999, Savourey 2003). Despite this, the use of the 

normobaric hypoxia inhalation test is still a good method to simulate hypobaric 

hypoxia. 

 

1.6.3 Hypoxic pulmonary vasoconstriction 

Hypoxic pulmonary vasoconstriction is an adaptive mechanism in which pulmonary 

arteries constrict in the presence of hypoxia without hypercapnia, redirecting blood flow 

to alveoli with a higher oxygen content, thereby optimizing the ventilation-perfusion 

match and thus reducing shunting. The effect of global hypoxia on the pulmonary 

circulation is dramatic resulting in pulmonary hypertension caused by an increase in 

pulmonary vascular resistance. The onset has been shown in man to be very rapid, 
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reaching a maximum within 5 minutes (Talbot 2005). Zhao et al demonstrated that 

breathing 11% oxygen for 30 minutes increased mean pulmonary artery pressure by 

56%, from 16 to 25 mmHg in healthy volunteers (Zhao 2001). In another study, 

inhalation of 12.5% oxygen at sea level has been shown to decrease systemic PaO2 to 

below 50 Torr (6.6kPa) and increase of pulmonary vascular resistance by 100% -150% 

in normal adult volunteers (Naeije 1987). The mechanism of pulmonary artery 

vasoconstriction following acute exposure of hypoxia has been shown to involve 

inhibition of O2 sensitive K+ channels leading to depolarization of pulmonary artery 

smooth muscle cells and activation of voltage gated Ca2+ channels. This causes Ca2+ 

influx and vasoconstriction (Moudgil 2005). This process is immediately reversed by 

breathing oxygen. Hypoxia also invokes a hyperventilation response attempting to 

improve oxygenation by increasing minute volume (Scrase 2009). 

 

1.6.4 Hypoxic effects on children with neonatal hypoxic pulmonary arterial 

hypertension 

I have discussed the acute effects of hypoxia causing pulmonary vasoconstriction and 

pulmonary hypertension. However, there is little evidence to prove that hypoxia in the 

perinatal period leads to susceptibility for hypoxic pulmonary arterial hypertension 

(PAH) in childhood and adulthood. Mourani et al assessed pulmonary arterial pressure 

(PAP) and other parameters on 10 patients with bronchopulmonary dysplasia (BPD) age 

between 4 months – 27 years via right heart catheterisation (Mourani 2004). The PAP at 

baseline for the group was 34.1 mmHg (SE 2.6). Following hypoxic challenge, 16% 

oxygen for non-oxygen dependent subjects and room air for oxygen dependent subjects, 

PAP and pulmonary to systemic vascular resistance ratio (PVR/SVR) increased by 50 ± 

8% and 82 ± 14% respectively (p<0.01). Hyperoxia and inhaled nitric oxide given 
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together decreased PAP and PVR/SVR by 29 ± 5% (p < 0.01) and 45 ± 6% (p < 0.05) 

from baseline values, respectively (Mourani 2004). 

 

In a separate study, Sartori et al measured systolic PAP by echocardiography on 15 

adults (mean age 21 years), who had transient hypoxic pulmonary hypertension in the 

first week of life (Sartori 1999). These volunteers had their systolic PAP measured at 

sea level and then at a high altitude research laboratory at 4559m (4600 m ~ inhalation 

of 12% oxygen at sea level). They also had their PAP measured after inhalation of nitric 

oxide for 20 minutes at high altitude. The results were compared with that of 10 healthy 

volunteers who were born at full term and had a normal perinatal period. The results 

showed that at sea level, PAP between the two groups was similar but 24-36 hours after 

arrival at 4559m, the mean increase in PAP in the group who had neonatal pulmonary 

hypertension was significantly higher compared to the control group (p< 0.01). In this 

experiment, the decrease in PAP after inhalation of nitric oxide at high altitude was also 

significantly higher in the neonatal pulmonary hypertension group compared to the 

control group. The group also found that hypoxic breathing at low altitude (12% oxygen 

for 20 minutes) increased PAP similarly in patients and controls; at the end of hypoxic 

breathing the values for systolic PAP were 50.2 mmHg (5.6) and 47.6 mmHg (7.9), 

respectively. 

 

Post mortem studies on infants who died from neonatal chronic lung disease showed 

thickening of the pulmonary vascular smooth muscle (Bush 1990, Margraf 1991). 

Similar findings were also noted in those infants who died from pulmonary 

hypertension (Haworth 1988, Stenmark 1988). Whether this early life pathology persists 
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in children who survive neonatal chronic lung disease is not known. If it does, it could 

predispose to an exaggerated vasoconstrictor response to acute hypoxia.  

 

In view of the observations made by Sartori et al, it would be prudent to look for 

evidence of pulmonary arterial hypertension in response to acute hypoxia in the 

surviving children with chronic lung disease of prematurity. It is also not known if 

children with CLD of prematurity are at risk of developing subclinical right ventricular 

dysfunction and pulmonary arterial hypertension secondary to impaired lung function, 

especially if they are exposed to hypoxic conditions. 
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1.7 Hypothesis and study aims 

1.7.1 Hypotheses 

Since preterm infants with RDS are at risk of raised PAP, I hypothesised that the global 

and regional myocardial function of both left and right ventricles in preterm infants with 

RDS: 

1a. are impaired compared with healthy term and preterm infants without RDS at birth 

 

1b. will mature and improve during the first year of life of the preterm infants  

 

School-aged children who had chronic lung disease of prematurity in infancy would 

have: 

2a. Reduced pulmonary artery compliance compared to healthy term controls and 

preterm controls who did not have CLD in infancy at baseline 

 

2b. An exaggerated response (more dramatic increase in pulmonary artery stiffness) to 

hypoxia (12% oxygen) compared to term and preterm controls who did not have 

CLD in infancy 

 

1.7.2 Specific aims 

My specific aims were: 

1a. to assess longitudinal global and regional myocardial function of both ventricles 

using new echocardiographic parameters in ventilated preterm infants with RDS, in 

preterm infants without RDS and healthy term infants. 
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1b. to assess the changes in longitudinal global and regional myocardial function of 

both ventricles using new echocardiographic parameters during the first year of life 

in ventilated preterm infants with RDS, in preterm infants without RDS and healthy 

term infants. 

 

2a. to measure pulmonary arterial stiffness (PWV) using velocity-encoded MRI at 

baseline in children who had chronic lung disease of prematurity in infancy, healthy 

term controls and preterm controls who did not have CLD in infancy. 

 

2b. to measure pulmonary arterial stiffness (PWV) using velocity-encoded MRI under 

hypoxic condition (12%) in children who had chronic lung disease of prematurity in 

infancy, healthy term controls and preterm controls who did not have CLD in 

infancy. 

 

 



55 
 

Chapter Two: 

Optimisation of myocardial deformation imaging in term and 

preterm infants – a technical study 
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2.1 Introduction 

The assessment of regional myocardial function using myocardial velocity imaging 

(MVI) has been validated in children, infants, and neonates (Harada 2000, Kapusta 

2000, Frommelt 2002, Mori 2004, Nestass 2009, Pena 2009). This technique has been 

used to assess regional myocardial function in different neonatal conditions (Patel 2009, 

Wei 2009) and shown to be both feasible and reproducible in preterm infants (Joshi 

2010).   

 

MVI allows the measurement of local contractile function using strain and strain rate. 

The relationship between these two parameters has been discussed previously in the 

Introduction section. The accuracy of these parameters depends on the technical settings 

used in the post-processing analysis but there is only one study using MVI to assess 

myocardial function in the preterm population (Joshi 2010).Using inappropriate 

computational distances, region of interest size and placement or inadequate frame rates 

would affect the measurements. 

 

The distance between two adjacent points used to calculate the velocity gradient is 

known as the computation distance (CD). A shorter CD is associated with greater noise 

since the gradient is estimated from fewer velocities. Regional ε is the average ε from 

all the points within a sample area or the region of interest (ROI). A larger ROI will 

include more points within that area to be averaged. Therefore, a longer CD and a larger 

ROI will give a better signal-to-noise ratio, hence a more consistent ε estimation.   

 

There are only two published studies on the technical aspects of offline tissue Doppler 

deformation analysis in the neonatal population (Nestaas 2007, Nestaas 2008). Nestaas 
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et al (Nestaas 2007) recommended the ROI size of 1mm long by 3mm wide with a 

strain length (or CD) of 10mm in a two-segment ε analysis of the term neonatal 

population. Pena et al (Pena 2009), who used a computation length of 6mm, suggested 

measuring ε in the middle segment of each wall as an initial screening parameter of 

local systolic function in the neonatal population but no data are available for preterm 

infants. 

 

The inter-observer coefficient of variation (CV) of myocardial deformation 

measurements in the neonatal population is 30% (Joshi 2010) compared with 10 – 15% 

in children (Weidemann 2002) and adults (Serri 2006). Joshi et al (Joshi 2010) used a 

CD of 10mm for their population that consist of both term and preterm neonates. This 

could be the reason for their high inter-observer CV in myocardial deformation 

measurements. The reproducibility of myocardial deformation measurement would need 

to be improved considerably if it was to be used in the clinical setting. However, the 

size of the heart in this population presents additional technical challenges in the 

acquisition and analysis of myocardial deformation images. 

 

The aim of the study was to establish the parameters that improve the reproducibility of 

measuring ε in both term and preterm infants. 

2.2 Methods 

The myocardial deformation data from infants who were recruited for the main study 

„Regional and global myocardial assessment in preterm neonates with respiratory 

distress syndrome at birth and maturation of myocardial function during the first year‟ 

were used for this study. Fifty eight healthy term infants (≥38 weeks gestational age) 

(Group A), 24 preterm infants (≤34 weeks gestational age) without respiratory distress 
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syndrome (Group B), and 26 preterm infants with respiratory distress syndrome (Group 

C)] had been recruited from the postnatal wards and the Neonatal Unit of University 

Hospital of Wales when this technical study was conducted. The echocardiograms were 

performed by Mrs Julie M Edwards (JME) and Dr Suchita Joshi (SJ), who started this 

research project prior to my taking over the study. 

 

The study was approved by the South East Wales Regional Ethics Committee (REC 

reference number: 07/WSE02/80) and Cardiff and Vale NHS Trust Research and 

Development department (R&D study reference: 07/RPM/3992). Written informed 

consent was obtained from parents. 

 

All infants were scanned within 72 hours after birth. The infants were screened for 

congenital cardiac defects and excluded from the study if there was any abnormality 

other than patent ductus arteriosus or patent foramen ovale.  

 

Out of 108 sets of digitally stored echocardiographic images, 20 recent sets of images 

[recorded in 7 healthy term infants (Group A), 7 preterm infants without respiratory 

distress syndrome (Group B), and 6 preterm infants with respiratory distress syndrome 

(Group C)] were studied. It was felt that 20 sets of images (a total of 60 wall segments) 

with almost equal numbers from each group would be sufficient to examine the effect of 

heart size, the image quality and the frame rates of the image acquisitions. As this was 

sole a study to examine the reproducibility of repeated measures of strain using different 

computational distance and not comparing the strain between the groups, a formal 

sample size calculation was not performed. Details of the infants are given in Table 2.1. 
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2.2.1 Echocardiographic protocol 

Images were obtained from infants in a supine or left lateral position using a standard 

commercial ultrasound machine (Vivid 7, GE Vingmed Ultrasound AS, Horten, 

Norway) with a 10 MHz or a 7.0 MHz transducer by a single operator (JME). 

 

Pulsed Doppler recordings of flow in the left ventricular outflow tract (LVOT) and the 

proximal pulmonary trunk were acquired from apical 4-chamber and parasternal short-

axis views, and used to determine the timing of the opening and closure of the aortic 

and pulmonary valves. Ventricular chamber lengths were measured from the apical 

four-chamber image. 

 

Colour tissue Doppler images of the left ventricle (LV), right ventricle (RV) and septum 

were acquired separately using the apical four-chamber view. The sector width and 

depth of each image were adjusted to obtain for the highest frame rate possible with the 

optimum Nyquist limit to avoid aliasing. All images were stored as three-beat loops on 

magneto-optical disks for post-processing. 

 

2.2.2 Offline analysis 

Images were analysed using the commercial EchoPac software (GE Vingmed 

Ultrasound EchoPac 7.00, Horten, Norway) by the same operator (CYP). The heart 

rates and frame rates of each loop were recorded. The LV and RV chamber lengths in 

end-diastole and end-systole were measured from the midpoint of each atrioventricular 

junction (between the lateral mitral or tricuspid annulus and the septum) to the apex of 

the left or right ventricular cavity respectively (Figure 3.6).  
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Myocardial longitudinal strain (ε) was measured in the middle segment of the LV and 

RV free walls and the septum (Figure 2.1). Maximal negative ε during systole was 

measured, using the timings of opening and closure of the aortic and pulmonary valves 

(Figure 3.13). All parameters were measured in three beats and averaged, unless the 

signal from an individual beat was too noisy, in which case only two beats were 

averaged. Linear drift compensation and the default 40ms Gaussian smoothing were 

used for all ε analyses. 

 

In order to test the optimal technical settings for measuring  in term and preterm 

infants, the maximal end-systolic ε was analysed using five different computational 

distances (CDs) (also called strain length) (2mm, 4mm, 6mm, 8mm, and 10mm) with 

the same ROI size (10 x 5mm), in two ways. First, the stored loop from each subject 

was analysed by positioning the ROI within the middle segments of the septum, LV and 

RV free walls, at sites that gave similar strain waveforms for each beat. This process 

was performed for all subjects, using the same CD for all walls, and then repeated in all 

subjects using the other CDs; the order in which the CDs were tested was determined 

randomly. In the second method, a CD of 10mm was used while selecting the position 

within the middle segment of the RV free wall that gave the least noisy strain curve. 

The maximal ε for this CD was determined. Without changing the ROI position, the CD 

was then reduced to 8mm, 6mm, 4mm, and 2mm and the maximal end-systolic 

longitudinal ε for the different CDs were documented. The same process was repeated 

separately on the LV free wall and septal wall. These methods were used in all subjects, 

twice, at an interval of 2 weeks. 
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Table 2.1 – Subject demographics, heart rate, frame rate and ventricular chamber lengths 

Variable 
 

Group A (Term 
infants) 

Group B (Preterm 
infants without RDS) 

Group C (Preterm 
infants with RDS) 

P value 
 

Number of infants 7 7 6  

Gestational age (wk) 40.04  0.83 33.02  0.57 26.98  2.65 p§ = <0.001*, +, # 

Birth weight (kg) 3.67  0.31 1.87  0.23 1.06  0.37 p‡ = <0.001*, 0.001+, 0.005# 

Heart rate (beats/min) 120  10 113  24 144  11 p§ = 0.703*, 0.046+, 0.009# 

Frame rate (frames/sec) 201  56 219  53 256  72 p‡ =  0.097*, 0.022+, 0.073# 

Ventricular length (mm)     

LV at systole 21.7  2.3 16.7  1.8 13.2  2.5 p§ = <0.001*, +, 0.025# 

LV at diastole 29.6  3.0 22.8  2.1 17.5  2.4 p§ = <0.001*, +, 0.004# 

RV at systole 20.3  2.5 13.9  2.2 12.4  2.3 p§ = <0.001*, +, 0.467# 

RV at diastole 27.5  2.7 19.3  1.8 16.3  2.5 p§ = <0.001*, +, 0.082# 

 
Data expressed as numbers or as mean  standard deviation.  
RDS=respiratory distress syndrome, LV=left ventricle, RV=right ventricle 
§Denotes ANOVA test and ‡denotes Mann-Whitney U-test. 
* A vs B; + A vs C; # B vs C 
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Figure 2.1 - Comparison of longitudinal strain in midwall sites. 
 

  
Position of the ROI in the middle segments of each wall displaying the ε curves of each wall. 
Note the heterogeneity in the ε between the walls. 
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2.2.3 Statistical analysis 

Data were analysed using SPSS version 16.0 (SPSS Inc., Chicago, IL, USA). Values are 

presented as mean  2 SD. The Shapiro-Wilk test was used to test the normality of the 

measured parameters. Measurements between the three groups were compared by one-

way ANOVA for normally distributed parameters and Tukey HSD was used for post-

hoc multiple comparison.  For parameters that were not normally distributed, 

measurements between the groups were compared by the Mann-Whitney U-test.  

 

Two sets of longitudinal ε measurements on 20 sets of images were obtained on all three 

walls using five different CD by each method. The two methods were analysed 

separately. For each method, the mean ε, standard deviation (SD) and coefficients of 

variation (CV, in %) were calculated for each CD. The CV was calculated using the 

formula: CV = (SD / arithmetic mean of measurements) x 100, where SD is the standard 

deviation of the differences between the two sets of measurements. The CD with the 

smallest CV represents the highest reproducibility between measurements. ANOVA test 

was not used to compare the different CD because the objective was to check for the 

most reproducible strain results using different CD rather than comparing the results 

between the different CD. Therefore, CV was used instead. 

 

The influences of other parameters such as frame rate, birth weight, and heart size 

(measured as ventricular length) on the reproducibility of measurements were also 

analysed by one-way ANOVA, where the means between groups were compared. 
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2.3 Results 

As expected, infants who were born at an earlier gestational age weighed less at birth 

and had smaller hearts (Table 2.1). With increasing prematurity, there was a trend for 

the echocardiographic colour tissue Doppler loops to be recorded at higher frame rates, 

but the number of frames per heart beat was relatively constant (Group A 100 

frames/beat, Group B 116 frames/beat, and Group C 107 frames/beat). 

 

A total of 59 segments (20 RV free wall, 20 LV free wall, and 19 septum) were 

analysed, excluding only the septum in one infant in Group C. Measurements of these 

segments were averaged from three successive beats except for 7 / 59 (11.9%) (3 LV 

free wall, and 4 septum).  

 

Systolic ε was highest in the RV free wall, followed by the LV and then the septum, in 

all 20 infants. Longitudinal ε increased proportionally with the size of the infants: the 

average ε values for Group A (mean birth weight 3.7kg), Group B (1.9kg), and Group C 

(1.1kg) were -23.5  5.6%, -20.4  7.4% and -14.4  5.8%, respectively, at CD of 6mm 

(Table 2.2).  

 

Using the first method (resampling the colour tissue Doppler loop for each 

measurement, to optimize each trace), the CD that gave the lowest CV was 6mm (CV 

11.7%). The least reproducible CD was 2mm (CV 18.3%). Using the second method 

(when the ε measurements were done by reducing the CD without altering the position 

of the ROI within each wall, and without resampling the colour tissue Doppler loop), 

the differences in CV were minimal from CD of 2mm to 10mm (13.7 and 12.6%, 
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respectively). Further analyses were done using data obtained by the first method as this 

is a more realistic test of repeated measurements in clinical practice.  
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Table 2.2 - Reproducibility of longitudinal systolic strain with each computation distance resampled within each wall 

Computation 
distance 

 

RV LV Septum Combined (LV, RV, Septum) 

Mean ε  SD  

(%) 

CV  

(%) 

Mean ε  SD  

(%) 

CV  

(%) 

Mean ε  SD  

(%) 

CV  

(%) 

Mean ε  SD  

(%) 

CV  

(%) 

All groups       
2mm -21.4  6.3 10.9 -21.1  9.6 22.5 -18.7  6.7 15.7 -20.4  7.7 18.3 
4mm -22.2  5.8 8.8 -19.8  8.5 19.3 -18.6  7.0 11.7 -20.2  7.2 14.0 
6mm -21.6  5.3 9.8 -19.3  9.1 15.1 -18.3  6.8 6.3 -19.6  7.2 11.7 
8mm -21.7  5.4 8.8 -18.4  8.6 16.5 -17.9  6.3 14.5 -19.3  7.0 13.8 
10mm -21.1  5.3 10.7 -17.0  7.7 13.6 -17.4  6.2 12 -18.5  6.6 12.9 

Group A (Term infants)       
2mm -25.3  6.8 12.2     - 26.7  11.6 22.8 -22.5  5.9 11.4 -24.8  8.2 20.0 
4mm -25.8  5.5 11.5 -24.6  6.7 25.4 -22.9  5.5 6.3 -24.4  5.8 17.1 
6mm -24.5  5.2 12.8 -23.9  6.8 19.5 -22.0  5.3 7.4 -23.5  5.6 14.8 
8mm -25.2  5.3 11.3 -23.4  6.1 16.7 -21.6  4.8 12.2 -23.4  5.4 14.2 
10mm -24.7  5.3 12.0 -22.8  5.5 15.0 -21.3  5.1 8.4 -22.9  5.3 13.2 

Group B (Preterm infants without RDS)      
2mm -21.0  5.3 9.8 -21.4  6.1 20.7 -19.2  6.7 20.7 -20.5  5.8 17.5 
4mm -21.8  4.6 3.2 -21.1  9.0 8.2 -18.8  7.3 17.7 -20.6  6.9 10.5 
6mm -21.4  4.7 5.0     -20.7  10.1 9.7 -19.0  7.3 4.8 -20.4  7.4 8.2 
8mm -21.1  4.4 6.2 -19.5  9.1 16.3 -18.1  6.8 19.6 -19.5  6.8  15.6 
10mm -20.6  5.3 9.1 -16.9  6.6  11.2 -17.4  6.6 17.3 -18.3  5.8 13.6 

Group C (Preterm infants with RDS)      
2mm -17.3  4.5 10.4 -14.2  6.6 5.6 -12.6  3.5 17.0 -14.8  5.2 11.2 
4mm -18.3  5.3 8.4 -12.8  5.9 4.6 -12.5  4.1 8.3 -14.7  5.6 7.3 
6mm -18.4  4.9  3.0 -12.2  6.4 3.9 -12.2  3.8 4.9 -14.4  5.8 3.6 
8mm -18.3  4.8 4.2 -11.3  6.2 5.0 -12.5  3.3 5.9 -14.1  5.7 4.9 
10mm -17.3  4.6 9.5 -10.4  6.1 8.0 -12.2  3.1 9.6 -13.4  5.5 9.2 

RV=right ventricle, LV=left ventricle, ε=strain, SD=standard deviation, CV=coefficients of variation, RDS=respiratory distress syndrome
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2.3.1 Influence of computation distance (CD)  

When the measurements were analysed collectively, ε was most reproducible when the 

CD was 6mm. In the analysis between groups, a CD of 10mm gave the most 

reproducible measurements (with CV 13.2%) in the infants who were heaviest at birth 

and had the largest ventricular chambers (Group A). In the preterm infants (Groups B 

and C), the ε measurements were most reproducible using a CD of 6mm (CVs 8.2% and 

3.6%, respectively). In the preterm groups, the poorest reproducibility was observed 

using CDs of 2mm and 10mm (Figure 2.2). 

 

2.3.2 Influence of frame rate  

In order to examine the influence of frame rate on the reproducibility of ε 

measurements, the data were sorted according to tertiles of frame rate, and within each 

tertile the CV for each CD was calculated. The average frame rate for all loops recorded 

in our study was 223  63 frames per second (fps) and the mean for each group was 

>200 fps. There was an inverse relationship between frame rates and CV which 

decreased from 17.3% in the lowest tertile to 11.7% in the middle and 9.6% in the 

highest tertile (one-way ANOVA) (Table 2.3).  At rates above 179 fps, in the middle 

and upper tertiles, repeated measurements of ε using a CD of 6mm gave CVs of only 

7.0% and 8.0%, respectively. 

 

2.3.3 Influence of heart size (diastolic ventricular length) 

The longitudinal ε measurements obtained from images with frame rates >180 fps were 

sorted according to tertiles of diastolic length of the respective ventricles where each ε 

measurement was derived. Repeated measurements of systolic ε were most reproducible 

for infants in the first, second, and third tertiles of diastolic ventricular lengths (smallest, 
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average, and biggest hearts respectively) using CDs of 4mm (5.8%), 6mm (4.8%) and 

8mm (8.4%) (Table 2.4). 

 

 

 

 

 

Figure 2.2 - Reproducibility of longitudinal strain for different computation distance. 

 

Graph of coefficients of variation (CV) versus computation distance (CD) according to groups. 
Computational distance of 6mm was the most reproducible for the preterm infant groups and 
10mm in the larger term infants. However, the difference in CV between 6mm or 10mm in the 
term infants group is very small. 
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Table 2.3: Reproducibility of longitudinal strain sorted according to tertiles of frame rate 

 1st (135 – 178 fps) 2nd (179 – 247 fps) 3rd (248 – 423 fps) 

Computation 
distance 

Mean ε  SD 
(%) 

CV         
(%) 

Mean ε  SD 
(%) 

CV       
(%) 

Mean ε  SD 
(%) 

CV     
(%) 

2mm -23.3  8.6 22.2 -17.1  5.6 16.4 -20.5  7.4 11.0 

4mm -22.7  7.6 17.5 -18.1  6.6 10.7 -19.7  7.0 9.5 

6mm -22.4  7.8 15.3 -17.2  6.2 7.0 -19.4  6.9 8.0 

8mm -21.7  7.3 16.6 -17.2  6.0 11.6 -18.9  7.1 9.7 

10mm -20.4  6.4 14.9 -16.5  5.8 12.8 -18.5  7.4 10.0 

      Mean CV  17.3  2.9*  11.7  3.4  9.6  1.1 

 

fps=frames per second, ε=strain, SD=standard deviation, CV=coefficients of variation 
* p < 0.05 ANOVA test, first vs. second tertiles and first vs. third tertile
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Table 2.4 – Reproducibility of longitudinal strain sorted according to tertiles of diastolic ventricular length (FR>180fps) 

 1st (13.0 – 17.4mm) 2nd (17.5 – 23.0mm) 3rd (23.1 – 31.7mm) 

Computation 
distance 

Mean ε  SD 
(%) 

CV      
(%) 

Mean ε  SD 
(%) 

CV       
(%) 

Mean ε  SD 
(%) 

CV        
(%) 

2mm -16.0  5.1 12.6 -18.5  6.1 10.3 -25.0  5.7 9.2 

4mm -16.5  6.2 5.8 -18.8  6.4 7.9 -24.8  4.2 9.6 

6mm -16.0  6.4 6.6 -17.9  6.4 4.8 -23.8  4.1 9.8 

8mm -15.7  6.8 13.2 -17.4  6.0 10.9 -24.0  4.9 8.4 

10mm -14.8  6.6 10.9 -16.5  5.8 12.0 -23.5  4.8 10.0 

       Mean CV  9.8  3.4  9.2  2.9  9.4  0.6 

 

n = 25. No statistical differences between all three mean CV on ANOVA testing. 
FR=frame rate, fps=frames per second, ε=strain, SD=standard deviation, CV=coefficients of variation 
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2.4 Discussion 

I have confirmed that myocardial strain imaging is both feasible and reproducible even 

in preterm neonates. The overall CV of 11.7% for repeated measurements of ε in this 

study compares very well with the intra-observer reproducibility in another study (Joshi 

2010).  

 

The heterogeneity in the ε values seen between the three walls in our study is very 

similar to other studies (Nestass 2009, Pena 2009), albeit the mean RV ε values are 

lower. This may be explained by the inclusion in our study of preterm infants with 

respiratory distress syndrome, in whom RV function may be impaired.  

 

I used two different methods to test the reproducibility of different CDs for measuring 

systolic ε in neonatal hearts. In the first method, repeated measurements were made by 

the same observer who resampled the same digitally stored myocardial velocity loops; 

each new measurement was made using slightly different data because of the slightly 

different sampling site (or ROI) as well as the altered CD. The second method was 

employed with the aim to eliminate the intra-observer‟s inconsistencies of placing the 

ROI in different positions for the best ε curve. The differences in the measured ε values 

in the second method were related only to variations in the CD, and showed that there 

were no consistent variations resulting from the processing algorithm. In this study, a 

total of 590 offline measurements were taken, consisting of 295 paired measurements 

from 59 different segments in 20 infants, repeated 2 weeks apart, and used to test the 

reproducibility of five different computational distances.   
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This study did not test the variability of repeated acquisitions or measurements by 

different observers, nor did it consider the variability that can occur if different 

machines or echocardiographic systems were used. Each of these factors in clinical 

practice introduces more variability.  

 

2.4.1 Determinants of the reproducibility of myocardial strain 

I have found that 6mm is the most appropriate CD to be used when measuring 

myocardial longitudinal ε in preterm infants. Shorter CDs gave worse reproducibility, 

probably because of increased noise in the signals. Longer CDs were expected to be 

more reproducible because of more averaging and smoothing, but they gave poorer 

reproducibility in repeated measurements, probably because the ROI included adjacent 

structures such as the papillary muscles, the mitral and tricuspid annuli and atria (Figure 

2.3). In the larger term infants with a mean birth weight 3.7kg, increasing the CD to 

10mm improved the reproducibility between measurements. This suggests that the CD 

to be used for measuring ε should be tailored to the size of the ventricle or infant.  

 

Nestaas et al (Nestaas 2007) investigated the influence of different strain lengths (or 

CD) and ROI on two-segment ε and strain rate measurement in neonatal hearts. They 

found that the ROI size of 1mm long by 3mm wide with a CD of 10mm have the lowest 

beat-to-beat variation in a two-segment analysis of infants born at term. This is in 

keeping with our findings in the term infants. However, in the smaller preterm infants, 

6mm would be the optimal CD to be used in a single segment longitudinal ε analysis. 
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Figure 2.3 - Variation of strain by sampling sites. 

 

(A) Examples of strain curves obtained at different sampling sites, all using a strain length 
(computation distance) of 6mm. At site (i), longitudinal strain is positive because of the 
influence of the lateral wall of the right atrium, which elongates during systole. Sites (iii) and 
(iv) in mid and apex of the right ventricular free wall respectively, give good-quality traces, 
whereas a sampling site at the base of the right ventricular wall (ii) show an intermediate pattern  
presumably because of contributions from both atrial and ventricular myocardium. (B) A good-
quality strain curve obtained from the middle portion of the right ventricular free wall, as used 
in this study. 
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I have shown conclusively that the reproducibility of repeated measurements improved 

with higher frame rates, across all the CD tested. I think this is the most likely 

explanation for improvements in the reproducibility of measurements in the smaller 

ventricles seen in my study as images were acquired from the smaller infants at higher 

frame rates. I recommend acquiring tissue Doppler images at frame rates >180 fps, in 

order to optimize the reproducibility of myocardial deformation imaging, in keeping 

with the general consensus that frame rates ≥200 fps help reduce the random noise 

component of the post-processing of myocardial strain and strain rate (Sutherland 

2004). It is particularly important to obtain high frame rates in neonates whose heart 

rates are higher than in the children and adults. The average frame rates in other 

neonatal myocardial deformation studies were between 190 fps and 300 fps (Nestaas 

2007, Pena 2009). 

 

In conclusion, myocardial deformation imaging is a practical and reproducible 

echocardiographic technique for assessing regional longitudinal LV and RV function in 

both term and preterm neonates. I recommend using a CD (strain length) of 6mm for the 

off-line analysis of segmental strain in preterm infants. In term infants with larger 

hearts, although CD of 10mm is most reproducible, using a CD of 6mm in this 

population is also appropriate given the small difference in CV between the two CDs. 

All myocardial velocity loops should be acquired at frame rates above 180 fps.  

 

This study has been published in European Journal of Echocardiography (Poon 2011) 

(Appendix H1) The above recommendations were used in the main study described in 

the next chapter. 
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Chapter Three 

Regional and global myocardial assessment in preterm 

neonates with respiratory distress syndrome at birth 

and maturation of myocardial function during the first 

year (Neonatal TDi study) 
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3.1 Introduction 

Myocardial velocity imaging (MVI) or tissue Doppler imaging (TDI) allows assessment 

of regional and global left and right ventricular function and thus helps detection of sub-

clinical ventricular dysfunction. MVI has also been used to assess regional myocardial 

function in different neonatal conditions (Patel 2009, Wei 2009). Many studies assessed 

myocardial velocities or deformation separately and performed these either on term or 

preterm infants but did not compare with preterm infants with RDS (Schmitz 2004b, 

Ekici 2007, Pena 2009, Ciccone 2011). Negrine et al measured the left and right 

ventricular myocardial velocities using TDI in the first 24 hours of life in term, preterm 

and very preterm neonates (Negrine 2012). The group did not assess the myocardial 

deformation or study the effects of RDS on myocardial function. Table 3.1 summarises 

the MVI or TDI studies performed on neonates up to 2012. 

 

In this chapter, I assessed for evidence of increased PAP in ventilated preterm infants 

with RDS and also assessed new TDI parameters (myocardial velocities, systolic strain 

and strain rate) in detecting the regional myocardial functions of both ventricles in three 

different groups of infants; ventilated preterm infants with RDS, preterm infants without 

RDS and term controls and compared them with established conventional global 

myocardial function. In addition to this, I have also assessed the changes in regional and 

global myocardial functions during the first year of life in these infants. 

 

I hypothesised that the regional and global myocardial function of both ventricles in 

preterm infants with RDS: 

(a) are impaired compared with healthy term and preterm infants 

(b) would mature and improve during the first year of life  
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Table 3.1 Summary of literature review on tissue Doppler, myocardial velocity and deformation imaging in neonates (term and preterm) 
Reference Study population 

(N) 
Age Methods & Parameters 

measured 
Results 

Negrine, 
Birmingham, UK 
ADCFN 
2012;97:F304-306 

Very preterm 
(VPT), <30wks (15) 
Preterm (PT), 30-36 
(12) 
Term (16) 

Day 1 of life PWD – MV, TV inflow 
velocity 
TDi – LMA, LTA 
ANOVA, t test used 

HR decreased with increasing gestation. Trans-tricuspid E and A - 
NS between groups. 
Significant difference between groups – trans-mitral E (T52.8, PT56, 
VPT 40.5) and A flow (T47.3, PT58.6, VPT51.7) 
Mitral E/A ratio increased with increasing gestation. 
In all groups – higher velocities in RV than LV, and S‟ & E‟ 
increased with increasing gestation (p<0.0001) 
RV & LV E/E‟ ratio decreased with increasing gestation. 
 

Schmitz, Berlin, 
Germany 
Pediatr Cardiol 
2004;25:482-491 

Healthy infants 
(280) 

1day – 2yrs 
Cross-sectional 
study 

LV filling - Doppler flow 
parameters 
 

MV E & A peak velocities climax within 2 months after birth. 
E – 46.1(wk1) – 63.1(wk3-4) – 82 (mth 2) 
A – 42.1(wk1) – 57.3 (wk3-4) – 70 (mth2) 
Conclusion – maturation process in diastolic function mainly 
completed by 3 months of age. 
 

Ciccone, Bari, Italy 
Early Hum Dev 
2011 

Term (33) 
Preterm, 31-36wks 
(20) 

Within 3-4 days 
of life 

PWD – MV, TV inflow vel 
TDi – LMA, LTA 
Myocardial tissue vel – LV, 
RV, IVS 

Mitral E – T53.4, PT 45.3 (<0.01), Mitral A – T46.7, PT45.6 (NS) 
Mitral E/A – T 1.16, PT 1 (<0.01) 
LV Vs – T5.0 v PT4.1 (<0.01), LV Ve – T6.8 v PT5.8 (<0.01), LV 
Ve/Va – T1.2 v PT0.9 (<0.05)  
RV Vs – T7.2 v PT6.6 (<0.05), RV Ve – T7.9 v PT7.1 (<0.05), RV 
Ve/Va – T0.9 v PT0.7 (<0.05)  
 

Ekici, Turkey 
Echocardiography 
2007;24:61-67 

Term (50) 
Children (54) 

1 – 5 days 
5 – 16 yrs 

TDi – MMA, MLA, LVLW, 
IVS 

LVLW (mid) – Vs4.8, Ve6.5, Va 6.0, IVS (mid) Vs4.3, Ve5.9, 
Va5.6cm/s 
MLA – S‟6.6, E‟8.2, A‟8.6cm/s, MMA – S‟6.1, E‟6.8, A‟8.2cm/s 

Pena & Sutherland, 
Brazil &UK 
J Am Soc Echocard 
2009;22:369-375 

Term neonates (55) Within 24 hours  CDMI – LV, RV Strain and 
SR (base, mid, apex) 
300±50fps  
Longitudinal and radial ε 

RV longitudinal deformation inhomogeneous – significant difference 
between basal and apical segments. Longitudinal ε higher in RV 
compared to LV. 
Mid segment LV ε -24.36%, LV SRs -1.67, SRe 2.96, SRa 2.04/s 
Mid segment RV ε -33.2%, RV SRs -1.91, SRe 3.00, SRa 2.57/s 
Recommend measuring SR and ε in each wall‟s middle segment as 
screening parameter. 
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Pena & Sutherland, 
Brazil &UK 
J Am Soc Echocard 
2010;23:294-300 

Term neonates (30) 
 

Within 24 hours 
and 31 days old 
 

CDMI – LV, RV Strain and 
SR (base, mid, apex) 
Longitudinal and radial ε 

LV longitudinal peak systolic ε decreased at 1mth scan c.f. 1st scan. 
LV SRs, SRe, SRa - no difference. 
LV ε -25.58% vs -23.1% (<0.001), LV SRs -1.9 vs -1.85, SRe2.97 vs 
3.29, SRa 2.16 vs 2.62/s 
RV systolic SR and ε significantly higher at 1 month. 
RV ε -33.21 vs -42.56 (<0.001), RV SRs -1.95 vs -2.25 (p=0.002), 
SRe 3.07 vs 5.03 (<0.001), SRa 254 vs 3.94 (<0.001) 
LV ε decrease at 1 month due to afterload increase and decrease in 
preload 

Nestaas & Stoylen, 
Oslo, Norway 
Pediatr Res 
2009;65:357-362 

Term neonates (48) First 3 days 
(scanned every 
day) 

CDMI – LV, RV, IVS Strain 
and SR 
Multiple segments, multiple 
walls 

High variations within segments, between segments and bet 
individuals – feasible to measure between segment groups and patient 
groups. 
Values highest in RV, intermediate in LV and lowest IVS. 
Basal left ε (D1-D3) -20.5% vs -18.6% vs -21.1 
Basal anterior IVS ε (D1-D3) -14.5% vs -16.3% vs -13.2% 
Basal right lateral ε (D1-D3) -22.0% vs -26.0% vs -24.4% 
 
Basal LV SRs (D1-D3) -1.68/s vs -1.41/s vs -1.62/s 
Basal RV SRs (D1-D3) -1.85/s vs -2.26/s vs -2.33/s 
 

Pauliks,  
Boston, USA 
Abstract (poster) 

Preterm, 28 wks 
(12) 
Fetus, 25 wks (13) 

4.5 ± 5.2 days Colour myocardial Doppler 
imaging – Myocardial IVS 
peak systolic velocity, peak 
systolic SR 

Similar S velocities – 2.2±0.6cm/s (PT) vs 2.0±0.5cm/s (Fetus). 
S velocity correlated with gestational age and septal length (R=0.89; 
p<0.001). 
SR similar -1.7±0.4/s (PT) vs -1.7±0.3/s (Fetus). 
Suggests somatic growth a major determinant of myocardial 
velocities early in life 
 

Chan, HK, China 
Am Heart J 
2005;150:750-755 

302 fetus 19 – 37 
weeks 

- Peak myocardial velocities – 
systolic (Sm), early diastole 
(Em) and late diastole (Am) 
PWD – MV, TV inflow vel  

Sm, Em, Am, Em/Am, MV E/A and TV E/A all increased with 
increasing gestation. 
Fetal diastolic function predominantly contributed by atrial 
contraction at mid trimester. Ventricular relaxation becomes more 
mature with increasing gestation 
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3.2 Methods 

A total of 120 infants were recruited into the study from the postnatal wards and the 

Neonatal Unit of the University Hospital of Wales. Sixty healthy term infants (≥37 

weeks gestational age) (Group A - Term control), 30 preterm infants (≤34 weeks 

gestational age) without respiratory distress syndrome (Group B – PT Control), and 30 

preterm infants with respiratory distress syndrome (Group C – PT RDS) were studied 

and followed up until one year of age.  

 

The following criteria were used for selecting subjects for the different groups: 

a) Term Control (Group A) – Healthy newborn infant born at term (≥37 weeks 

gestation) 

b) PT Control (Group B) – preterm infant born ≤34 week gestation who did not have 

any clinical signs respiratory disease and did not require any respiratory support at 

first echocardiographic assessment 

c) PT RDS (Group C) – preterm infant born ≤34 week gestation who has clinical and 

radiological evidence of respiratory distress syndrome and required mechanical 

ventilation support at first echocardiographic assessment. 

 

Prior to contacting the parents for the 3-6 weeks and 1 year follow up studies, the 

infant‟s General Practitioner was contacted by letter or telephone by JME to ensure 

suitability of the infant for the follow up studies. 

 

The study was approved by the South East Wales Regional Ethics Committee (REC 

reference number: 07/WSE02/80) and Cardiff and Vale NHS Trust Research and 
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Development department (R&D study reference: 07/RPM/3992). Written informed 

consent was obtained from parents. 

3.2.1 Demographics and clinical observation data collection 

The history proforma used is shown in Appendix B1.1. The clinical details, 

anthropometric data and clinical data (baseline pulse oximetry, heart rate and blood 

pressure measurements, invasive if available) were gathered by both JME and CYP, in 

addition to a cardiovascular examination by CYP.   

 

3.2.2 Echocardiographic assessment 

All infants were scanned within 72 hours after birth, at corrected term age for the 

preterm infants, at one month post term and at one year corrected age. The infants were 

screened for congenital cardiac defects and excluded from the study if there was any 

abnormality other than patent ductus arteriosus or patent foramen ovale. Images were 

acquired as 3-beat loops using a standard commercial ultrasound machine (Vivid 7, GE 

Vingmed Ultrasound AS, Horten, Norway) with a 10 MHz or a 7.0 MHz transducer. 

The echocardiograms were performed by Mrs Julie M Edwards (JME) and Dr Suchita 

Joshi (SJ). 

 

A baseline echocardiography was performed to rule out structural cardiac defects prior 

to assessment of left and right ventricular function. Blood flow and tissue Doppler 

images were also acquired to measure the surrogate markers of pulmonary hypertension. 

The echocardiography acquisition protocol is given in Appendix A1.2.  
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A 2-D image of the long axis view of the LVOT was obtained to measure the LVOT 

diameter (Figure 3.3). Pulsed wave Doppler of the left ventricular outflow tract (LVOT) 

in the apical 4-chamber view was acquired to measure the LVOT velocity time integral 

(Figure 3.4). Conventional pulsed wave Doppler of mitral (Figure 3.5) flow was 

acquired from the apical 4-chamber view whereas pulmonary flow (Figure 3.9) and 

patent ductus arteriosus flow, if present, were acquired from the parasternal short axis 

view. The LV and RV chamber lengths in end-diastole were measured from the apical 

4-chamber view (Figure 3.6).  

 

Continuous wave Doppler image of the tricuspid flow (Figure 3.7) and pulsed wave 

Doppler of the pulmonary flow (Figure 3.8) were acquired to measure tricuspid 

regurgitation systolic velocity and pulmonary regurgitation end-diastolic velocity 

respectively, if present.  

 

For lateral and medial mitral annular velocities (Figure 3.10) real-time pulsed tissue 

Doppler velocity profiles were acquired from the mitral annulus. Colour tissue Doppler 

images were acquired separately of the septum, left and right ventricles. The Nyquist 

limit was optimised to avoid aliasing, and the depth of imaging and the sector angle 

were adjusted to obtain high frame rates. The Nyquist limit, which is 50% of the 

sampling frequency, is the highest frequency that can be coded at a given sampling rate 

in order to be able to fully reconstruct the signal.  

 

All images were stored as 3-beat loops in magneto-optical disks for post- processing. 
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Figure 3.1 Photograph of GE Vivid 7 equipment used in the study 
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Figure 3.2 Photographs of infants having echocardiography at birth and at one year of age 

 

 

(Informed consent was obtained for the reproduction of this photograph in this thesis) 
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3.2.3 Analysis of the echocardiography images 

Images were analysed solely by CYP using commercially available EchoPac software 

(GE Vingmed Ultrasound EchoPAC 7-00, Horten, Norway). Images were stored only 

with coded identity so that I was blinded to the clinical status of the subjects while 

analysing the images. 

 

Forty parameters (Tables 3.2 and 3.3) were measured from each study, including 11 

blood flow Doppler parameters, 2 tissue Doppler parameters from real-time tissue 

Doppler images and 24 post-processed parameters from LV and RV tissue Doppler 

loops.  

 

Left ventricular pre-ejection period (PEP) was measured as the time interval between 

the onset of the QRS complex and the onset of the left ventricular outflow (Figure 3.4). 

 

The velocity time integral of LV outflow (VTI) (Figure 3.4), the mitral E and A 

velocities (Figure 3.5), tricuspid regurgitation (Figure 3.7) and pulmonary regurgitation 

(Figure 3.8) velocities, patent ductus arteriosus flow velocity, and the pulmonary artery 

acceleration time (Figure 3.9) were measured conventionally from blood pool Doppler.  

 

The area of the LV outflow tract was calculated as πr2 where r is the radius of the LV 

outflow tract (r = diameter of LV outflow tract/2) (Figure 3.3). Stroke volume was 

calculated by multiplying the velocity time integral (VTI) by LV outflow tract area. 

Multiplying stroke volume by heart rate yields cardiac output (Thomas 2006). In order 

to correct cardiac output for body size, cardiac index (CI) was calculated as cardiac 
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output (L/min)/(length in m)2. The LV and RV chamber lengths in end-diastole were 

measured from the apical 4-chamber view (Figure 3.6). 

 

Right ventricular pre-ejection period (PEP) was measured as the time interval between 

the onset of the QRS complex and the onset of the right ventricular outflow. Pulmonary 

artery acceleration time (AT) was measured as the time interval between the onset of 

flow to the peak velocity and the ejection time (ET) was measured as the time interval 

between the onset of pulmonary flow to the end of flow (Figure 3.9). The ratio of the 

acceleration time to the ejection time (AT:ET) was calculated.  

 

The mitral annular early diastolic velocity (Ve‟) was measured at both the medial and 

lateral mitral annulus (Figure 3.10) and averaged.  

 

Myocardial systolic velocity (Vs), early diastolic velocity (Ve) and diastolic velocity 

during atrial contraction (Va) were measured at the basal segments (Figure 3.11) of the 

septum, LV and RV lateral walls. The cursor was positioned within each segment so 

that it did not encroach upon the annulus during systole. When myocardial Ve and Va 

were fused due to rapid heart rate, a single diastolic velocity was recorded and noted as 

Ve.  

 

Annular displacement (Ds‟) was measured at the mitral (medial and lateral) and 

tricuspid valves using tissue tracking (Figure 3.12). 

 

Longitudinal peak systolic strain at end-systole (S or ε) was measured within the middle 

segment of the septum, left and right ventricular walls (Figure 3.13). For computation, 
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strain length or computational distance of 6 mm was used as this was found to be the 

most reproducible strain length in this population as described in the previous chapter. 

Using the same sample area or region of interest (ROI) of 6mm x 3mm, systolic, early 

diastolic and late diastolic strain rates were measured for the septum, left and right 

ventricles (Figure 3.13). Myocardial systolic strain rate (SRs), early diastolic strain rate 

(SRe) and diastolic strain rate during atrial contraction (SRa) were measured within the 

middle segment of the septum, left and right ventricular walls (Figure 3.14). To ensure 

correct measurements of end-systolic strain during systole and the strain rate values, 

event timing was superimposed from left ventricular outflow tract and right ventricular 

outflow tract blood flow Doppler recordings for the LV and RV respectively. 

 

All of the above parameters were measured in 3 beats and averaged. 
 

Appendix A1.3 shows the analysis protocol and proforma used in this study.  
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Figure 3.3 2-D image of the left ventricular outflow tract diameter 

 

2-D parasternal long axis view of the left ventricular outflow tract. The vertical white line 
shows the measurement of the left ventricular outflow tract diameter when the aortic valve is 
open. 
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Figure 3.4 Pulsed wave velocity of the left ventricular outflow tract, LVOT 

 

A. LV Pre-ejection period, PEP is the interval between the beginning of QRS complex and 
the start of left ventricular outflow. 

B. Enhanced view of the left ventricular outflow velocity with thick tracing of the LVOT 
flow to measure the velocity time integral, VTI. 

 

 

Figure 3.5 Pulsed wave Doppler of the mitral valve showing early (E) and late (A) 
diastolic velocities 

 

1, 2, & 3 = Mitral early diastolic velocity, E; 4, 5, & 6 = mitral late diastolic velocity during 
atrial contraction, A 
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Figure 3.6 Left ventricular chamber length measurement 

 

The chamber length, 2 is measured from the midpoint of atrioventricular junction (between 
the lateral mitral or tricuspid annulus and the septum) to the apex of the left or right 
ventricular cavity respectively. 
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Figure 3.7 Continuous wave Doppler of the tricuspid valve showing tricuspid 
regurgitation  

 

The marker, 1 marks the peak tricuspid regurgitation velocity  
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Figure 3.8 Pulsed wave Doppler of the pulmonary valve showing pulmonary 
regurgitation 

 

The marker, 1 marks the pulmonary regurgitation end-diastolic velocity 
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Figure 3.9 Pulsed wave Doppler of the pulmonary valve illustrating measurements of 
acceleration time and ejection time 

 

1, 2, & 3 = Right ventricular pre-ejection period, RV PEP, measured as the interval between 
the beginning of QRS complex and the start of right ventricular outflow. 

4, 5, & 6 = Pulmonary arterial acceleration time, AT, measured as the interval between the 
onset of flow and the peak flow. 

7, 8, & 9 = Pulmonary arterial ejection time, ET, measured as the interval between the onset 
of flow and the end of flow. 
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Figure 3.10 Real time pulsed tissue Doppler at the lateral mitral annulus  

 

1, 2, & 3 mark the lateral mitral annular early diastolic velocity (Ve‟). Ve‟ was measured at 
lateral and medial mitral annulus and the mean Ve‟ is reported. 
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Figure 3.11 Example of a myocardial velocity trace at the basal segment of the left 
ventricular free wall  

 

Figure showing the post-processed regional myocardial velocities of the left ventricle. A 
circular sample volume is placed at the base of the lateral wall.  

AVO= Pulmonary valve opening and AVC= Pulmonary valve closure. AVO and AVC were 
measured from blood-flow Doppler traces of pulmonary flow. 

MVO= Mitral valve opening and MVC= Mitral valve closure. MVO and MVC were 
measured from blood-flow Doppler traces of mitral flow. 

1, 2, &3 = Peak systolic velocity (Vs); 4, 5, &6 = Early diastolic velocity (Ve); 7, 8, & 9 = 
Late diastolic velocity due to atrial contraction (Va). 
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Figure 3.12 Illustration of annular displacement at the lateral mitral annulus 

 

Figure showing the measurement of left ventricular annular displacement using tissue 
tracking. The numbers 1, 2, & 3 point to the annular displacements measured in millimetres. 
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Figure 3.13 Illustration of strain imaging at the middle segment of the left ventricular 
free wall 

 

Figure showing left ventricular systolic strain at the middle segment of the left ventricle. 
AVO = Aortic valve opening, AVC = Aortic valve closure, MVO = Mitral valve opening 
and MVC = Mitral valve closure. Aortic valve closure marks the end of systole. 

The numbers 1, 2, &3 point to the end-systolic strain. 
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Figure 3.14 Illustration of strain rate imaging at the middle segment of the left 
ventricular free wall 

 

Figure shows the post-processed regional myocardial strain rates of the left ventricle. An 
elliptical sample volume is placed at the middle segment of the lateral free wall.  

AVO= Pulmonary valve opening and AVC= Pulmonary valve closure. AVO and AVC were 
measured from blood-flow Doppler traces of pulmonary flow. 

MVO= Mitral valve opening and MVC= Mitral valve closure. MVO and MVC were 
measured from blood-flow Doppler traces of mitral flow. 

1, 2, &3 = Peak systolic strain rate (SRs);  
4, 5, & 6 = Early diastolic strain rate (SRe);  
7, 8, & 9 = Late diastolic strain rate due to atrial contraction (SRa). 
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3.2.4 Echocardiographic indices of left and right ventricular function 

The echocardiographic indices that were used to assess left and right ventricular 

function are summarised in Table 3.2. Both systolic and diastolic function were assessed 

using 2-D, conventional blood flow Doppler and tissue Doppler methods also known as 

myocardial velocity imaging.  

 

Cardiac index and LV pre-ejection period (LV PEP) were used as markers of LV 

systolic function. The ratio of the mitral inflow velocities E:A was measured to assess 

the LV filling pattern and diastolic function. The mitral annular Ve‟ velocity measured 

by myocardial velocity imaging was used to calculate E:Ve‟ ratio, which gives an 

estimate of mean LV filling pressure.  

 

Myocardial velocity imaging was used to quantify both LV and RV global and regional 

long-axis function. Mitral and tricuspid annular displacements (Ds‟) are annular 

excursions, which in turn correlate with the left and right global myocardial systolic 

function, respectively. Ventricular long axis shortening, another measure of global 

myocardial function and presented as a percentage (%), was calculated from respective 

left and right annular displacements (Ds‟) divided by respective left and right end-

diastolic ventricular chamber lengths multiplied by 100. The myocardial function at the 

basal segments of the septum, LV and RV lateral walls were quantified by myocardial 

systolic velocity, Vs, early diastolic velocity, Ve, and the late diastolic velocity, Va. RV, 

LV and septal systolic strains are indices of regional myocardial deformation. 

 

Echocardiographic evidence of increased pulmonary arterial pressure (PAP) was also 

assessed using standard blood-flow Doppler methods and myocardial velocity imaging 
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as summarised in Table 3.3. Standard Doppler methods were used to measure tricuspid 

regurgitant velocity, and RV systolic pressure was calculated by applying the modified 

Bernoulli equation (ΔP= 4V2).  

 

Pulmonary arterial acceleration time, AT, and ejection time, ET, and the ratio of AT: 

ET, were also used to assess pulmonary arterial systolic pressure.  

 

RV free wall strain was measured as a surrogate of PA hypertension (Dambrauskaite 

2007). 

 

3.2.5 Statistical Analysis 

Evans et al found the ratio of pulmonary artery time to peak velocity to right ventricular 

ejection time (another nomenclature for PA AT:ET) in infants with RDS to be 

significantly lower than the infants without lung disease (Evans 1991a). The mean PA 

AT:ET ratio for infants with RDS and the control group were 0.26 and 0.35 

respectively. This gives an approximately 30% difference in PA AT:ET ratio, a 

surrogate marker of PAP, between the groups. Based on this data, I calculated that I 

would need to study at least 30 children in each arm to be 90% certain of a difference of 

30% in pulmonary arterial pressure at a p < 0.05 between the groups. 

 
Data were analysed using SPSS version 16.0 (SPSS Inc, Chicago, IL, USA). Results are 

presented as mean  2 SD. The Shapiro-Wilk test was used to test the normality of the 

measured parameters. For parameters that were not normally distributed, measurements 

between the groups were compared by the Mann-Whitney U-test. One-way ANOVA 

with Tukey HSD post-hoc multiple comparisons was used for normally distributed 
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parameters to test the differences between the three groups at individual time points. 

Since the term control group only had three echocardiographic assessments while the 

preterm groups had four assessments, it would be inappropriate to use repeated 

measures ANOVA to compare the differences in parameters across time as well. I am 

also aware of the possibility of a high dropout rate in follow up which may further 

influence the results from the repeated measures ANOVA test. P<0.05 will be 

considered significant. 
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Table 3.2 Echocardiographic markers of left and right ventricular function 

Markers of LV function Markers of RV function 

Pulsed-Doppler parameter 

LV velocity time integral (VTI) 

LV pre ejection period (LV PEP)  

Mitral early diastolic velocity (E) 

Mitral late diastolic velocity (A) 

Real-time annular myocardial velocity imaging 

Medial mitral annular velocity (MMA Ve‟) 

Lateral mitral annular velocity (LMA Ve‟)  

Colour processed myocardial velocity imaging 

LV annular displacement (LV Ds‟)      RV annular displacement (RV Ds‟) 

LV basal systolic velocity (LV Vsbl)      RV basal systolic velocity (RV Vsbl) 

LV basal e velocity (LV Vebl)       RV basal e velocity (RV Vebl) 

LV basal a velocity (LV Vabl)       RV basal a velocity (RV Vabl) 

LV peak systolic strain (LV Ss)                   RV peak systolic strain (RV Ss) 
 
LV peak systolic strain rate (LV SRs) RV peak systolic strain rate (RV SRs) 
 
LV early diastolic strain rate (RV SRe)      RV early diastolic strain rate (RV SRe) 
           
LV late diastolic strain rate (RV SRa)      RV late diastolic strain rate (RV SRa) 
           
Septal annular displacement (LV Ds‟) 
 
Septal systolic velocity (LV Vsbs) 
 
Septal basal e velocity (LV Vebs) 
 
Septal basal a velocity (LV Vebs) 
 
Septal end systolic strain (Sep Ss)  
 
Septal end systolic strain rate (Sep SRs) 
 
Septal early diastolic strain rate (RV SRe) 
 
Septal late diastolic strain rate (RV SRa) 
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Table 3.3 Surrogate markers of pulmonary arterial pressure 

 
Blood pool Doppler markers    Tissue Doppler markers 

Tricuspid regurgitation velocity (TR)  RV systolic strain (RV Ss) 

Pulmonary regurgitation end-diastolic velocity (PR)  

Pulmonary artery acceleration time (AT) 

Pulmonary artery ejection time (ET) 

Pulmonary AT:ET ratio 
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3.3 Results 

3.3.1 At birth (within 72 hours old) 

3.3.1.1 Demographics and general characteristics 

General characteristics of the infants including baseline heart rate, blood pressure and 

ventricular end-diastolic lengths are summarised in Table 3.4. As expected, the preterm 

RDS group had the lowest gestation, birth weight and body surface area. Their smallest 

size is also reflected by having the shortest left and right ventricular chamber lengths. 

Term controls had the highest systolic and diastolic blood pressures; whereas preterm 

RDS group‟s systolic and diastolic blood pressures were the lowest. The opposite was 

true with regards to heart rate. 

 

3.3.1.2 Left ventricular global systolic and diastolic functions 

Table 3.5 and 3.6 summarise the echocardiographic parameters of left ventricular global 

systolic and diastolic functions between the groups. LV outflow tract diameter (LVOT 

d), LV outflow tract velocity time integral (LVOT VTI), stroke volume (SV), cardiac 

output (CO) and cardiac index (CI) were highest in the term group compared to the two 

preterm groups. Both LV basal lateral and basal septal annular displacements were 

highest in the term group compared to the preterm groups. However, LV pre-ejection 

period (LV PEP) and LV long axis shortening was only significantly different between 

the term group and the preterm RDS groups. 
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Mitral early diastolic flow velocity, mitral E:A ratio and mitral annular velocity were 

highest in the term group compared with the preterm groups. However, there were no 

differences in mitral late diastolic flow velocity and mitral E:Vé between the groups. 

Table 3.4: General characteristics and clinical data at birth 

 

 

Term Control 

(A) 

PT Control 

(B) 

PT RDS  

(C) 

ANOVA 

p value 

     

     

Demographics     
Male : Female 31:29 18:12 21:9 - 
Gestation (wks) 39.8 (1.2) 32.7 (1.4) 28.2 (2.7) <0.001§, §§, §§§ 

Birth wt (kg) 3.4 (0.5) 1.8 (0.4) 1.2 (0.4) <0.001§, §§, §§§ 

BSA (m2) 0.21 (0.22) 0.15 (0.02) 0.11 (0.03) <0.001§, §§, §§§ 

     
Physiological measurements    
Heart rate (/min) 115 (19) 136 (15) 143 (16) <0.001§§, §§§ 

Systolic BP (mmHg) 66.9 (11.7) 65.1 (10.8) 49.3 (7.8) <0.001§, §§ 

Diastolic BP (mmHg) 41.3 (9.9) 37.1 (7.8) 30.8 (7.5) <0.001§§, † 

Oxygen saturation (%) 98.9 (1.8) 99.1 (1.1) 96.1 (3.0) <0.001§, §§, §§§ 

     

End-diastolic ventricular chamber lengths 
LV length (cm) 2.8 (0.3) 2.1 (0.2) 1.8 (0.3) <0.001§, §§, §§§ 

RV length (cm) 2.7 (0.3) 2.0 (0.2) 1.8 (0.3) <0.001§, §§, §§§ 

     

Ventilation / respiratory parameters   
Highest peak pressure (cmH20)              - - 21.8 (3.9) - 
Duration of ventilation (days)                - - 14.0 (17.5) - 
Duration of O2 dependency (days)         - - 57.9 (83.6) - 
Chronic lung disease (n)              - - 10 - 
    
Patent ductus arteriosus (n) 27 7 19 - 
     

Results are presented as mean (SD). 
§ p <0.001 (PT RDS V PT control), §§

 p <0.001 (PT RDS V Term control), §§§ p <0.001 (PT control V 
Term control), † p <0.05 (PT RDS V PT control) 
Chronic lung disease definition used – oxygen dependency at 36 weeks corrected gestational age 
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Table 3.5: LV global systolic function at birth 

 

 

Term Control 

(A) 

PT Control 

(B) 

PT RDS  

(C) 

ANOVA 

p value 

     

     
LVOT d (cm) 0.66 (0.07) 0.53 (0.06) 0.45 (0.08) <0.001§, §§, §§§ 

LVOT VTI (cm) 12.5 (2.4) 10.2 (2.3) 8.6 (2.5) <0.001†, §§, §§§ 

Stroke volume (ml) 4.3 (1.2) 2.3 (0.8) 1.4 (0.6) <0.001‡, §§, §§§ 

Cardiac output (L/min) 0.49 (0.13) 0.31 (0.11) 0.19 (0.08) <0.001‡, §§, §§§ 

Cardiac index (L/min/m2) 2.23 (0.55) 2.09 (0.61) 1.82 (0.61)   0.002 ‡‡ 

PEP (ms) 55.1 (10.7) 50.7 (10.9) 47.9 (14.0)   0.018 ‡‡ 
PEP:ET ratio 0.27 (0.06) 0.26 (0.05) 0.26 (0.09)   0.725 
LV Ds‟bl (mm) 4.6 (1.0) 3.4 (0.8) 2.6 (1.0) <0.001‡, §§, §§§ 

LVbl long axis shortening (%) 16.3 (3.6) 15.7 (3.5) 14.0 (5.1)   0.047†† 
LV Ds‟bs (mm) 5.2 (0.8) 4.1 (0.8) 3.1 (0.9) <0.001§, §§, §§§  

LVbs long axis shortening (%) 18.6 (3.4) 19.0 (3.8) 17.3 (5.5)   0.249 
     

Results are presented as mean (SD). 
§ p <0.001 (PT RDS V PT control), §§

 p <0.001 (PT RDS V Term control), §§§ p <0.001 (PT control V 
Term control), ‡ p <0.01 (PT RDS V PT control), ‡‡ p <0.01 (PT RDS V Term control), † p <0.05 (PT 
RDS V PT control), †† p <0.05 (PT RDS V Term control) 

 

 

Table 3.6: LV global diastolic function at birth 

  

 

Term Control 

(A) 

PT Control 

(B) 

PT RDS  

(C) 

ANOVA 

p value 

     

     
Mitral E (m/s) 0.64 (0.12) 0.52 (0.11) 0.47 (0.14) <0.001§§, §§§ 

Mitral A (m/s) 0.57 (0.11) 0.56 (0.11) 0.52 (0.13) 0.081 
Mitral E:A 1.13 (0.23) 0.95 (0.18) 0.92 (0.22) <0.001§§, §§§ 

LMA Vé (cm/s) 7.9 (1.5) 6.9 (1.1) 5.0 (1.0) <0.001 
MMA Vé (cm/s) 6.6 (1.5) 5.6 (1.1) 5.1 (1.4) <0.001 
Mitral Vé (cm/s) 7.3 (1.3) 6.3 (0.9) 5.1 (0.9) <0.001§, §§, §§§ 

Mitral E:Vé 9.0 (1.8) 8.4 (1.9) 9.3 (2.5) 0.226 
     

Results are presented as mean (SD). 
§ p <0.001 (PT RDS V PT control), §§

 p <0.001 (PT RDS V Term control), §§§ p <0.001 (PT control V 
Term control) 
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3.3.1.3 Left ventricular regional function 

Left ventricular myocardial systolic and early diastolic velocities were highest in the 

term group and lowest in the preterm RDS group (Table 3.7). This was seen in both 

basal lateral and basal septal walls. LV basal lateral myocardial late diastolic velocity 

was higher in the term compared to the preterm RDS group (p=0.004). The LV basal 

septal myocardial late diastolic velocity was lowest in the preterm RDS group compared 

to the term and preterm control groups, p=0.02 and p=0.03 respectively.  

 

Myocardial peak systolic strains of both septal and lateral free walls were lowest in the 

preterm RDS group compared to term and preterm groups. The strain measurements in 

both walls were similar between the two control groups.  

 

There were no differences in the myocardial strain rate measurements in both septal and 

lateral free walls between the groups.  
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Table 3.7: LV regional function at birth 

 

 

Term Control 

(A) 

PT Control 

(B) 

PT RDS  

(C) 

ANOVA 

p value 

     

     

Basal myocardial velocity    

Vsbl (cm/s) 3.0 (0.8) 2.1 (0.7) 1.7 (0.8) <0.001§§,§§§ 

Vebl (cm/s) 4.5 (1.1) 3.5 (1.1) 2.52 (1.2) <0.001‡,§§,§§§ 

Vabl (cm/s) 3.7 (1.4) 3.1 (1.1) 2.8 (1.2) 0.003‡‡ 

Vsbs (cm/s) 3.0 (0.7) 2.6 (0.8) 1.9 (0.6) <0.001‡,§§,††† 

Vebs (cm/s) 3.8 (0.9) 3.4 (1.5) 2.8 (1.0) <0.001
§§

 

Vabs (cm/s) 3.7 (1.1) 3.8 (0.8) 3.1 (0.9) 0.016†,†† 

     
     
Mid-segment myocardial peak systolic longitudinal strain 

Ssl (- %) 22.8 (3.9) 21.2 (3.8) 18.9 (4.9) <0.001§§ 

Sss (- %) 19.8 (3.8) 19.5 (3.2) 17.5 (3.9) 0.027†† 

     
     
Mid-segment myocardial strain rate    

SRsl (/s) 2.2 (0.8) 1.9 (0.5) 2.0 (0.8) 0.116 
SRel (/s) 2.7 (0.9) 3.1 (0.9) 2.6 (0.9) 0.172 
SRal (/s) 2.4 (1.0) 2.5 (0.8) 2.8 (0.9) 0.188 
SRss (/s) 2.0 (0.7) 2.0 (0.6) 2.0 (1.0) 0.952 
SRes (/s) 2.2 (0.7) 2.1 (0.6) 2.3 (0.9) 0.6 
SRas (/s) 2.0 (0.7) 2.3 (0.9) 2.6 (0.8) 0.014†† 
     

Results are presented as mean (SD), (- %) negative value of peak systolic strain denotes longitudinal 
shortening of myocardial fibres 
 
SRsl = systolic strain rate of the lateral free wall, SRel = early diastolic strain rate of the lateral free wall, 
SRal = diastolic strain rate during atrial contraction, SRss = systolic strain rate of the septal wall, SRes = 
early diastolic strain rate of the septal wall, SRas = diastolic strain rate during atrial contraction 
 
 
§§

 p <0.001 (PT RDS V Term control), §§§ p <0.001 (PT control V Term control), ‡  p <0.01 (PT RDS V 
PT control), ‡‡  p <0.01 (PT RDS V Term control), † p <0.05 (PT RDS V PT control), †† p <0.05 (PT RDS 
V Term control), ††† p <0.05 (PT control V Term control) 
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3.3.1.4 Right ventricular global and regional function 

Table 3.8 summarises the echocardiographic parameters of right ventricular global and 

regional functions. Right annular displacements were highest in the term group 

compared to the preterm groups. Right ventricular long axis shortening was lowest in 

the preterm RDS group compared to both term and preterm control groups.  

 

Myocardial systolic and early diastolic velocities were highest in the term group and 

lowest in the preterm RDS group. Late diastolic velocity and peak systolic strain were 

lowest in the preterm RDS group compared to both term and preterm groups. The peak 

systolic, early and late diastolic strain rates were similar between the groups.  

 

3.3.1.5 Surrogate markers of PA pressure 

Table 3.9 summarises the results of surrogate markers of PA pressure at birth. Tricuspid 

regurgitation was present in 25/30 (83.3%) preterm infants with RDS, 12/30 (40%) 

preterm controls, and 29/60 (48.3%) term controls. Pulmonary regurgitation end-

diastolic velocity was measurable in 8 (26.7%) in the RDS, 12 (40%) in the preterm 

control and 8 (13.3%) in the term control groups. The non-measurable TR and PR jets 

were assumed to be zero in the analysis.  

 

There was no difference in PR end-diastolic velocity between the groups. RV pre-

ejection period and PA ejection time were longest in term group. Maximum TR jet 

velocity was highest in the preterm RDS group along with the shortest PA acceleration 

time and lowest PA acceleration ejection time ratio compared to the control groups 

indicating highest PA pressure in the preterm RDS group at birth. 
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Table 3.8: RV global and regional function at birth 

 

 

Term Control 

(A) 

PT Control 

(B) 

PT RDS  

(C) 

ANOVA 

p value 

     

     

Global function     

RV Ds‟ (mm) 7.6 (1.3) 5.9 (1.1) 4.4 (1.3) <0.001§, §§, §§§ 

RV long axis shortening (%) 28.7 (4.5) 29.2 (4.4) 25.1 (6.6) 0.003‡,‡‡ 

     
     
Regional function (Myocardial velocities, strain and strain rate) 
RV Vsbl (cm/s) 4.3 (0.9) 3.7 (0.8) 2.7 (0.8) <0.001§,§§,‡‡‡ 

RV Vebl (cm/s) 6.1 (1.8) 4.4 (1.8) 4.3 (2.3) <0.001§§,§§§ 

RV Vabl (cm/s) 5.7 (1.2) 5.3 (1.2) 4.5 (1.4 0.002‡‡ 

RV Ss (- %) 27.6 (5.8) 25.0 (5.5) 23.2 (6.7) 0.004‡‡ 

RV SRs (/s) 2.4 (0.7) 2.3 (0.7) 2.2 (0.8) 0.49 
RV SRe (/s) 2.7 (0.9) 2.4 (0.8)  2.8 (1.2) 0.182 
RV SRa (/s) 2.9 (0.9) 3.1 (0.8) 3.0 (1.3) 0.556 
     

Results are presented as mean (SD), (- %) negative value of peak systolic strain denotes longitudinal 
shortening of myocardial fibres 
 
§ p <0.001 (PT RDS V PT control), §§

 p <0.001 (PT RDS V Term control), §§§ p <0.001 (PT control V 
Term control), ‡ p <0.01 (PT RDS V PT control), ‡‡  p <0.01 (PT RDS V Term control),  ‡‡‡  p <0.01 (PT 
control V Term control) 

 

 

Table 3.9: Surrogate marker of PA pressure at birth 

 
 

Term Control (A) PT Control (B) 

PT RDS  

(C) 

ANOVA 

p value 

     

     
TR (m/s) [n/total] 1.0 (1.1) [29/60] 0.8 (1.1) [12/30] 1.7 (1.0) [25/30] 0.005‡,†† 

PR (m/s) [n/total] 0.1 (0.2) [8/60] 0.3 (0.5) [12/30] 0.2 (0.3) [8/30] 0.008‡‡‡ 

RV PEP (ms) 53.7 (13.1) 46.2 (12.3) 45.7 (12.4) 0.005††,††† 

PA AT (ms) 70.3 (11.9) 64.2 (15.1) 52.6 (11.3) <0.001‡,§§ 

PA ET (ms) 224.6 (20.7) 208.2 (19.7) 198.1 (26.3) <0.001§§,‡‡‡ 

AT:ET ratio 0.31 (0.04) 0.31 (0.06) 0.27 (0.04) <0.001‡,§§, 

     
Results are presented as mean (SD) 
§§

 p <0.001 (PT RDS V Term control), ‡ p <0.01 (PT RDS V PT control), ‡‡‡ p <0.01 (PT control V Term 
control), †† p <0.05 (PT RDS V Term control), ††† p <0.05 (PT control V Term control),  
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3.3.2 At term, 3-6 weeks and 1 year follow up 

3.3.2.1 Demographics and general characteristics 

At term, a total of 41 preterm infants (22 preterm controls, 19 preterm with RDS) were 

studied. 77 infants (45 term controls, 17 preterm controls, 15 preterm with RDS) and 67 

infants (33 term controls, 18 preterm controls, 16 preterm with RDS) were studied at the 

planned follow-up at one month corrected age and one year corrected age respectively.  

 

Infants in the preterm groups were assessed at a slightly younger age compared to their 

term counterparts at term, one month and one year corrected age. Correspondingly, 

infants weight, LVOT d and ventricular chamber lengths of the preterm groups were 

significantly smaller compared to the term control group at term. All infants cardiac size 

increased (measured in ventricular chamber lengths and LVOT d) along with their body 

weight with time. However, differences in infants weight, LVOT diameter and 

ventricular chambers lengths between the groups disappeared at one month and one year 

follow up, with only a difference in weight between preterm infants with RDS and term 

control noted at one year corrected age. (Table 3.10 and Figure 3.14) 

 

Blood pressure of the preterm RDS group was significantly lower than the control 

groups at birth and at term gestational age. However, the differences disappeared at one 

month and one year corrected age.  
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Table 3.10: Subject characteristics at follow up scans  

 

 

Term Control 

(A) 

PT Control 

(B) 

PT RDS  

(C) 

ANOVA 

p value 

     

     

Numbers     
      Birth 60 30 30 - 
      At term " 22 19 - 
      1 month 45 17 15 - 
      1 year 33 18 16 - 
     
Age (wks)     
      Birth -0.2* (1.2) -7.3* (1.4) -11.8* (2.7) <0.001§, §§, §§§ 

      At term " -2.7* (1.9) -3.3* (1.4) <0.001§§, §§§ 
      1 month 5.3 (1.0) 4.6 (1.8) 3.8 (1.6) 0.002‡‡ 

      1 year 53 (2.3) 51.9 (3.5) 49.2 (4.2) 0.001§§, §§§ 

     

Weight (kg)     
      Birth 3.4 (0.5) 1.8 (0.4) 1.2 (0.4) <0.001§, §§, §§§ 

      At term " 2.5 (0.7) 2.3 (0.4) <0.001§§, §§§ 
      1 month 4.5 (0.6) 4.3 (0.8) 4.1 (0.5) 0.064 
      1 year 9.8 (1.1) 9.5 (1.2) 8.8 (1.4) 0.041†† 
     
Systolic BP (mmHg)     

      Birth 66.9 (11.7) 65.1 (10.8) 49.3 (7.8) <0.001§, §§ 

      At term " 65.8 (10.1) 49.1 (6.7) <0.001§, §§ 
      1 month 95.6 (14.0) 95.3 (14.5) 99.1 (20.7) 0.765 
      1 year 106.3 (21.2) 107.8 (18.7) 92.2 (14.1) 0.058 
     

Diastolic BP (mmHg)     
      Birth 41.3 (9.9) 37.1 (7.8) 30.8 (7.5) <0.001†,§§ 

      At term " 37.2 (8.3) 29.1 (6.0) <0.001†, §§ 
      1 month 60.7 (11.0) 57.7 (13.4) 58.6 (13.3) 0.688 
      1 year 70.1 (14.4) 71.5 (13.3) 61.5 (10.9) 0.095 
     
End-diastolic left ventricular chamber lengths (cm) 
      Birth 2.8 (0.3) 2.1 (0.2) 1.8 (0.3) <0.001§, §§, §§§ 

      At term " 2.5 (0.4) 2.6 (0.4) <0.01††,‡‡‡ 
      1 month 3.1 (0.2) 3.1 (0.2) 3.0 (0.2) 0.263 
      1 year 4.0 (0.2) 3.9 (0.3) 3.9 (0.2) 0.340 
     

End-diastolic right ventricular chamber lengths (cm) 
      Birth 2.6 (0.3) 2.0 (0.2) 1.8 (0.3) <0.001§, §§, §§§ 

      At term " 2.3 (0.4) 2.4 (0.3) <0.001‡‡,‡‡‡ 
      1 month 3.0 (0.2) 3.1 (0.3) 2.9 (0.2) 0.420 
      1 year 3.9 (0.2) 3.9 (0.3) 3.8 (0.2) 0.636 
     

Results are presented as mean (SD) 
* negative value denotes number of weeks before due date at term (40 weeks gestation) 
§ p <0.001 (PT RDS V PT control), §§

 p <0.001 (PT RDS V Term control), §§§ p <0.001 (PT control V 
Term control), ‡ p <0.01 (PT RDS V PT control), ‡‡  p <0.01 (PT RDS V Term control), ‡‡‡  p <0.01 (PT 
control V Term control), †† p <0.05 (PT RDS V Term control), 
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3.3.2.2 Left ventricular global systolic functions 

LVOT VTI at birth was significantly different between the groups at birth. However, 

this difference disappeared when the preterm groups were assessed at term, at one 

month and one year. LVOT d was significantly smaller in the preterm RDS group at 

term compared to the term group; hence LV SV is also significantly lower. LV SV 

increased with age and growth within the groups as expected. There was no difference 

in LV SV between preterm controls and term control and preterm RDS groups at the 

term scan. There was no difference in LV SV between the groups at one month and one 

year follow up except between preterm RDS group and term control group at year 

follow up (p<0.05).  

 

Cardiac output increased from 0.31 ± 0.11 L/min and 0.19 ± 0.08 L/min at birth to 0.62 

± 0.20 L/min and 0.54 ± 0.14 L/min in preterm control and preterm RDS groups 

respectively at term. The cardiac output of the preterm groups was significantly lower 

than term control group at birth but when these were assessed at term, their cardiac 

output was significantly higher than the term control group‟s at birth. Cardiac output 

within the groups increased with age when assessed at one month and one year but there 

were no differences between the groups at these two time frames. Similar changes were 

seen in cardiac index in the groups where CI increased from birth to peak at one month 

and decreased at one year.  

 

LV PEP decreased from 50.7 ± 10.9 ms and 47.9 ± 14.0 ms at birth to 42.4 ± 8.2 ms and 

44.7 ± 7.9 ms at term corrected age in preterm control and preterm RDS groups 

respectively. LV PEP in the preterm groups was significantly lower when compared to 

term infants LV PEP at birth. However by one month corrected age, LV PEP is only 
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significantly different between term control and preterm RDS groups (43.2 ± 7.2 ms vs 

49.1 ± 9.0 ms, p<0.05). At one year old corrected, there was no difference in LV PEP. 

Similar findings were observed in LV ET except that there were no differences in LV 

ET between the groups at one month and one year corrected age. (Table 3.11) 

 

Left ventricular basal lateral and basal septal systolic displacements (LV Ds‟bl and LV 

Ds‟bs of the preterm groups were significantly lower than the term control group at 

birth. However, the preterm groups‟ LV Ds‟bl and LV Ds‟bs at term were significantly 

higher than those of the term control group‟s displacement at birth. Both LV Ds‟bl and 

LV Ds‟bs in all groups increased at one month and one year with the term control 

group‟s systolic displacements found to be significantly higher than the preterm groups. 

LVbl and LVbs long axis shortening is the normalised value of LV Ds‟bl and LV Ds‟bs 

(divided by LV chamber length). There was no difference in both LVbl and LVbs long 

axis shortening at birth. LVbl and LVbs long axis shortening values increased from 

birth and peaked at one month. (Table 3.12). 

 

In summary: 

 Global systolic function (LVOT d, LVOT VTI, LV SV, cardiac output, cardiac 

index, LV Ds‟bl and LV Ds‟bs) was lowest in the smallest and lowest gestation 

infants at birth. This increased with increasing age and by 1 month and 1 year, 

there was no difference between the groups. 

 LV PEP was highest in the term control group and lowest in PT RDS group. LV 

PEP decreased with age and at one year, there was no difference detected 

between the groups. 
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Table 3.11 Left ventricular global systolic parameters at follow up scans 

 

 

Term Control 

(A) 

PT Control 

(B) 

PT RDS  

(C) 

ANOVA 

p value 

     

     

LVOT d (cm)     
      Birth 0.66 (0.07) 0.53 (0.06) 0.45 (0.08) <0.001§, §§, §§§ 

      At term " 0.62 (0.06) 0.58 (0.06) <0.001§§ 
      1 month 0.77 (0.07) 0.75 (0.06) 0.73 (0.07) 0.109 
      1 year 0.98 (0.07) 0.96 (0.07) 0.92 (0.08) 0.097 
     
LVOT VTI (cm)     
      Birth 12.5 (2.4) 10.2 (2.3) 8.6 (2.5) <0.001†, §§, §§§ 

      At term " 12.7 (2.9) 13.2 (2.0) 0.583 
      1 month 13.9 (2.2) 15.0 (2.0) 14.5 (1.6) 0.206 
      1 year 17.2 (1.7) 16.9 (2.0) 16.8 (2.8) 0.870 
     

Stroke volume (ml)     
      Birth 4.3 (1.2) 2.3 (0.8) 1.4 (0.6) <0.001‡, §§, §§§ 

      At term " 2.5 (0.7) 2.3 (0.4) 0.014†† 
      1 month 4.5 (0.6) 4.3 (0.8) 4.1 (0.5) 0.314 
      1 year 9.8 (1.1) 9.5 (1.2) 8.8 (1.4) 0.043†† 
     
Cardiac output (L/min)     
      Birth 0.49 (0.13) 0.31 (0.11) 0.19 (0.08) <0.001‡, §§, §§§ 

      At term " 0.62 (0.20) 0.54 (0.14) <0.01††,‡‡‡ 
      1 month 0.99 (0.25) 1.07 (0.25) 0.91 (0.15) 0.151 
      1 year 1.60 (0.29) 1.59 (0.26) 1.42 (0.22) 0.081 
     

Cardiac index (L/m2/min)     
      Birth 2.28 (0.54) 2.09 (0.60) 1.82 (0.61) 0.002 ‡‡ 

      At term " 3.52 (0.82) 3.22 (0.75) <0.001§§, §§§ 
      1 month 3.69 (0.80) 4.27 (0.94) 3.72 (0.51) 0.036††† 
      1 year 3.55 (0.58) 3.58 (0.55) 3.38 (0.50) 0.529 
     
LV PEP (ms)     

      Birth 55.1 (10.7) 50.7 (10.9) 47.9 (14.0) 0.018 ‡‡ 

      At term " 42.4 (8.2) 44.7 (7.9) <0.001§§, §§§ 
      1 month 43.2 (7.2) 47.9 (7.1) 49.1 (9.0) 0.012†† 
      1 year 46.1 (9.1) 44.7 (7.2) 44.5 (9.0) 0.777 
     

LV PEP:ET     

      Birth 0.27 (0.06) 0.26 (0.05) 0.26 (0.09) 0.725 
      At term " 0.24 (0.05) 0.24 (0.04) 0.041 
      1 month 0.23 (0.04) 0.26 (0.05) 0.27 (0.05) 0.008††,††† 
      1 year 0.21 (0.05) 0.21 (0.04) 0.21 (0.04) 0.643 
     

Results are presented as mean (SD) 
§ p <0.001 (PT RDS V PT control), §§

 p <0.001 (PT RDS V Term control), §§§ p <0.001 (PT control V 
Term control), ‡  p <0.01 (PT RDS V PT control), ‡‡  p <0.01 (PT RDS V Term control),  ‡‡‡  p <0.01 (PT 
control V Term control), †† p <0.05 (PT RDS V Term control), ††† p <0.05 (PT control V Term control), 
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Table 3.12 LV Ds‟bl, LV Ds‟bs, LVbl and LVbs long axis shortening at follow up scans 

 

 

Term Control 

(A) 

PT Control 

(B) 

PT RDS  

(C) 

ANOVA 

p value 

     

     

LV Ds’bl (mm)     
      Birth 4.6 (1.0) 3.4 (0.8) 2.6 (1.0) <0.001‡, §§, §§§ 

      At term " 5.8 (1.3) 5.0 (1.1) <0.001†,§§§ 
      1 month 7.5 (1.2)  7.2 (0.8) 6.6 (0.9) 0.037†† 
      1 year 9.5 (1.2) 8.7 (1.1) 8.5 (1.0) 0.007††,††† 

     
LVDs’bs (mm)     
      Birth 5.2 (0.8) 4.1 (0.8) 3.1 (0.9) <0.001§, §§, §§§ 

      At term " 6.2(0.9) 5.9 (0.9) <0.001‡‡,§§§ 
      1 month 7.2 (1.0) 7.1 (0.6) 7.2 (0.7) 0.949 
      1 year 9.3 (0.8) 8.5 (1.0) 8.4 (0.7) <0.001‡‡,‡‡‡ 

     

LVbl long axis shortening (%) 
      Birth 16.3 (3.6) 15.7 (3.5) 14.0 (5.1) 0.047†† 

      At term " 22.6 (3.0) 18.8 (3.1) <0.001‡,††,§§§ 
      1 month 23.7 (3.8) 23.0 (2.6) 21.9 (2.6) 0.200 
      1 year 24.0 (3.0) 22.2 (2.3) 21.9 (2.3) 0.022†† 

     
LVbs long axis shortening (%) 
      Birth 18.6 (3.4) 19.0 (3.8) 17.3 (5.5) 0.249 
      At term " 24.4 (3.1) 22.8 (2.9) <0.001§§,§§§ 
      1 month 22.9 (3.1) 22.8 (2.2) 23.7 (2.6) 0.552 
      1 year 23.6 (2.0) 21.8 (1.8) 21.8 (1.4) 0.001‡‡,‡‡‡ 

     
Results are presented as mean (SD) 
§ p <0.001 (PT RDS V PT control), §§

 p <0.001 (PT RDS V Term control), §§§ p <0.001 (PT control V 
Term control), ‡ p <0.01 (PT RDS V PT control), ‡‡  p <0.01 (PT RDS V Term control), ‡‡‡  p <0.01 (PT 
control V Term control), † p <0.05 (PT RDS V PT control), †† p <0.05 (PT RDS V Term control), ††† p 
<0.05 (PT control V Term control) 
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3.3.2.3 Left ventricular global diastolic functions 

The mitral early diastolic flow velocity (mitral E) in the preterm groups was 

significantly lower than the term control group at birth but when assessed at term, this 

was significantly higher in the preterm groups compared to the term control group‟s 

value at birth. By one month and one year, mitral E was very similar between the 

groups. Similar changes were observed in the mitral late diastolic flow velocity (mitral 

A) at term, one month and one year. Mitral E in all groups increased from birth to the 

highest at one year of age, whereas mitral A peaked at one month. Mitral E:A was 

significantly higher in the term control group at birth. This difference disappeared when 

the groups were assessed at term and at one month of age. At one year, mitral E:A ratio 

of the preterm RDS group was highest but the difference was only significant between 

the preterm RDS and preterm control group (p=0.024). The mitral E:A increased with 

postnatal age in all groups. 

 

Mitral annular early diastolic velocity (Vé) was highest in the term control group 

followed by preterm control group and lowest in the preterm RDS group at birth. At 

term, mitral Vé of the preterm was noted to be higher than term control group at birth. 

Mitral Vé of the preterm control group was significantly higher than the term control 

and preterm RDS groups. By one month and one year, the mitral Vé were similar 

between the groups. Mitral Vé increased with postnatal age in all groups with the 

highest values seen at one year. 

 

There was no difference in mitral E: Vé ratio between the groups at birth. The mitral E: 

Vé was highest in the preterm RDS group followed by the preterm control group at term 

and both were significantly higher than the term group at birth. The difference in mitral 
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E: Vé between the groups narrowed at one month where only the preterm RDS group 

was significantly higher than the term group and by one year, there was no difference 

between the groups. 

 

In summary: 

 Preterm infants (both PT control and PT RDS groups) had diastolic dysfunction at 

birth which improved and attained the values similar to the term control group at 

one month and one year old.  
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Table 3.13 Left ventricular global diastolic parameters at follow up scans 

 

 

Term Control 

(A) 

PT Control 

(B) 

PT RDS  

(C) 

ANOVA 

p value 

     

     

Mitral E (m/s)     
      Birth 0.64 (0.12) 0.52 (0.11) 0.47 (0.14) <0.001§§, §§§ 

      At term " 0.96 (0.24) 0.94 (0.20)         <0.001§§, §§§ 
      1 month 1.04 (0.21) 1.08 (0.18) 1.09 (0.16)         0.649 
      1 year 1.18 (0.15) 1.16 (0.19) 1.11 (0.09)         0.271 
     
Mitral A (m/s)     
      Birth 0.57 (0.11) 0.56 (0.11) 0.52 (0.13) 0.081 
      At term " 0.92 (0.22) 0.91 (0.15)          <0.001§§, §§§ 
      1 month 0.90 (0.20) 1.00 (0.22) 0.94 (0.14)        0.270 
      1 year 0.88 (0.16) 0.92 (0.18) 0.79 (0.19)         0.106 
     

Mitral E:A     
      Birth 1.13 (0.23) 0.95 (0.18) 0.92 (0.22) <0.001§§, §§§ 

      At term " 1.03 (0.13) 1.02 (0.21)        0.054 
      1 month 1.14 (0.18) 1.06 (0.18) 1.10 (0.17)         0.293 
      1 year 1.36 (0.22) 1.23 (0.21) 1.44 (0.22)        0.030† 
     
Mitral Vé (cm/s)     
      Birth 7.3 (1.3) 6.3 (0.9) 5.1 (0.9) <0.001§, §§, §§§ 

      At term " 9.2 (2.1) 7.9 (1.3)         <0.001†,§§§ 
      1 month 11.7 (2.5) 11.0 (2.1) 10.5 (1.4)         0.215 
      1 year 14.9 (2.9) 13.7 (2.7) 13.1 (2.2)         0.284 
     

Mitral E:Vé     
      Birth 9.0 (1.8) 8.4 (1.9) 9.3 (2.5) 0.226 
      At term " 10.8 (3.2) 12.1 (2.3)        <0.001§§, §§§ 
      1 month 9.11(1.9) 10.1 (1.9) 10.6 (2.5)         0.031†† 

      1 year 8.2 (1.9) 8.9 (3.0) 8.0 (1.1)         0.432 
     

Results are presented as mean (SD) 
§ p <0.001 (PT RDS V PT control), §§

 p <0.001 (PT RDS V Term control), §§§ p <0.001 (PT control V 
Term control), † p <0.05 (PT RDS V PT control), †† p <0.05 (PT RDS V Term control) 
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3.3.2.4 Left ventricular regional function 

Left ventricular basal lateral and basal septal systolic myocardial velocities (LV Vsbl 

and LV Vsbs) were lowest in the preterm RDS group and highest in the term control 

group at birth. The left ventricular velocities of the preterm groups increased when 

assessed at term compared to their velocities at birth. LV Vsbl and LV Vsbs of the 

preterm groups at term scan were higher than the term control group at birth but only 

LV Vsbs was significantly different. By one month there was no difference in LV Vsbl 

and LV Vsbs between the groups and by one year, LV Vsbs of the preterm RDS group 

was found to be significantly lower than the term control group. In all groups, LV Vsbl 

increased from birth until the last follow up scan at one year. LV Vsbs peaked at one 

month in the preterm groups but was found to be highest in the term group at one year 

(Table 3.14). 

 

Left ventricular early and late diastolic myocardial velocities, both basal lateral and 

basal septal, were highest in the term control group and lowest in the preterm RDS 

group. The diastolic velocities in both walls of the left ventricle of the preterm groups 

increased significantly by the time they reached term corrected age and were 

significantly higher than the term control group at birth. However, by one month and 

one year corrected age, the diastolic velocities of the term control group were highest 

between the groups although the differences were not statistically significant. Both LV 

Vebl and LV Vebs increased from the lowest values at birth to the highest at one year. 

The LV Vabl and LV Vabs in the preterm groups were highest at term corrected age and 

then decreased with age, whereas in the term control group, the late diastolic velocities 

were highest at one month corrected age (Table 3.14). 

 



120 
 

Table 3.14 LV regional myocardial velocities at follow up scans 

 

 

Term Control 

(A) 

PT Control 

(B) 

PT RDS  

(C) 

ANOVA 

p value 

     

     

LV Vsbl (cm/s)     
      Birth 3.0 (0.8) 2.1 (0.7) 1.7 (0.8)  <0.001§§,§§§ 

      At term " 3.4 (0.8) 3.1 (1.0)         0.121 
      1 month 4.3 (0.9) 4.3 (1.2) 3.9 (1.1)         0.481 
      1 year 4.8 (1.0) 4.7 (1.0)  4.7 (0.7)         0.861 
     
LV Vebl (cm/s)     
      Birth 4.5 (1.1) 3.5 (1.1) 2.52 (1.2) <0.001‡,§§,§§§ 

      At term " 6.8 (1.5) 5.9 (1.9)          <0.001§§,§§§ 
      1 month 9.1 (2.4) 8.3 (2.6) 8.2 (2.5)        0.292 
      1 year 11.7 (2.1) 11.0 (1.9) 10.8 (1.2)         0.190 
     

LV Vabl (cm/s)     
      Birth 3.7 (1.4) 3.1 (1.1) 2.8 (1.2) 0.003‡‡ 

      At term " 4.9 (1.0) 4.2 (0.9)        0.015††† 
      1 month 5.2 (1.1) 4.8 (1.2) 4.0 (1.9)         0.178 
      1 year 3.7 (1.6) 3.6 (1.0) 3.4 (0.8)        0.850 
     
LV Vsbs (cm/s)     
      Birth 3.0 (0.7) 2.6 (0.8) 1.9 (0.6) <0.001‡,§§,††† 

      At term " 3.8 (0.6) 3.7 (0.7)         <0.001§§,§§§ 
      1 month 4.2 (0.7) 4.3 (0.6) 4.3 (0.6)         0.831 
      1 year 4.6 (0.8) 4.1 (0.6) 3.8 (0.7)         0.007‡‡ 

     

LV Vebs (cm/s)     
      Birth 3.8 (0.9) 3.4 (1.5) 2.8 (1.0) <0.001§§ 

      At term " 6.6 (1.7) 6.0 (2.1)        <0.001§§, §§§ 
      1 month 8.6 (2.2) 7.8 (1.5) 8.1 (1.8)         0.308 
      1 year 9.0 (2.0) 8.2 (1.8) 8.0 (1.8)         0.119 
     
LV Vabs (cm/s)     

      Birth 3.7 (1.1) 3.8 (0.8) 3.1 (0.9) 0.016†,†† 

      At term " 5.0 (1.1) 5.0 (1.1) <0.001‡‡,‡‡‡ 
      1 month 5.6 (1.7) 4.6 (0.8) 4.4 (0.6) 0.123 
      1 year 4.4 (1.2) 4.2 (1.0) 3.7 (1.1) 0.236 
     

Results are presented as mean (SD) 
§§

 p <0.001 (PT RDS V Term control), §§§ p <0.001 (PT control V Term control), ‡ p <0.01 (PT RDS V PT 
control), ‡‡  p <0.01 (PT RDS V Term control), ‡‡‡  p <0.01 (PT control V Term control), † p <0.05 (PT 
RDS V PT control), †† p <0.05 (PT RDS V Term control), ††† p <0.05 (PT control V Term control) 
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Peak systolic strain of the left ventricular lateral and septal walls (LV Ssl and LV Sss) 

were lowest in the preterm RDS group at birth but at term, LV Ssl increased to a similar 

value as the term control group and LV Sss increased significantly higher than the 

control group. The LV Ssl and LV Sss of the preterm control group were similar to the 

term control group at birth but these increased significantly by the time they reach term 

corrected age. By one month and one year corrected age, there were no differences in 

the LV Ssl and LV Sss between the groups. In all groups, the LV peak systolic strain in 

both walls increased with age; lowest at birth and peaking at one year (Table 3.15). 

 

Left ventricular systolic strain rate in both lateral and septal walls (LV SRsl and LV 

SRss) were similar between the groups at birth. At term, there was no difference in LV 

SRsl between the groups but LV SRss in both preterm groups were significantly higher 

than the term control group at birth. At one month corrected age, there was no 

difference in both LV SRsl and LV SRss between the groups. At one year of age, the 

only difference in LV systolic strain rates between the groups was found in LV SRss 

between the term control group and preterm RDS group (p=0.043). Both LV SRsl and 

LV SRss in all groups increased with age (Table 3.16). 

 

In summary: 

 LV regional myocardial systolic velocities (LV Vsbl and LV Vsbs) and early 

diastolic velocity at the basal lateral wall were lowest in the preterm RDS group at 

birth suggesting some element of LV regional myocardial systolic and diastolic 

dysfunction at birth. These velocities increased with age and attained the velocities 

of their term counterparts by one month of age. 
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 LV regional systolic strain was lowest in preterm RDS group at birth but this was 

only significantly different compared to the term control group. By one month and 

one year of age, the LV regional systolic strain was similar between groups. 

 There was no difference in LV regional SR between the groups at birth, one month 

and one year of age. 

 

 

 

 

Table 3.15 Left ventricular mid-segment myocardial peak systolic longitudinal strain at 

follow up scans 

 

 

Term Control 

(A) 

PT Control 

(B) 

PT RDS  

(C) 

ANOVA 

p value 

     

     
LV lateral wall mid-segment longitudinal peak systolic strain, Ssl (- %) 
      Birth 22.8 (3.9) 21.2 (3.8) 18.9 (4.9) <0.001§§ 

      At term " 25.5 (5.1) 22.8 (4.7) 0.041††† 
      1 month 27.7 (5.3) 27.2 (3.1) 27.5 (4.7) 0.928 
      1 year 31.7 (4.0) 31.0 (3.6) 29.1 (3.2) 0.079 
     
LV septal wall mid-segment longitudinal peak systolic strain, Sss (- %) 
      Birth 19.8 (3.8) 19.5 (3.2) 17.5 (3.9) 0.027†† 

      At term " 25.2 (5.5) 24.6 (4.2) <0.001§§,§§§ 
      1 month 24.0 (3.8) 25.9 (4.0) 25.3 (3.5) 0.154 
      1 year 30.3 (2.6) 28.8 (1.9) 28.5 (3.1) 0.034 

     
Results are presented as mean (SD), (- %) negative value of peak systolic strain denotes longitudinal 
shortening of myocardial fibres 
§§

 p <0.001 (PT RDS V Term control), §§§ p <0.001 (PT control V Term control††, p <0.05 (PT RDS V 
Term control), ††† p <0.05 (PT control V Term control) 
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Table 3.16 Left ventricular mid-segment myocardial strain rate at follow up scans 

 

 

Term Control 

(A) 

PT Control 

(B) 

PT RDS  

(C) 

ANOVA 

p value 

     

     

LV SRsl (/s)     
      Birth 2.2 (0.8) 1.9 (0.5) 2.0 (0.8) 0.116 
      At term " 2.4 (0.7) 2.3 (0.9) 0.758 
      1 month 2.5 (1.1) 2.9 (0.6) 2.4 (1.0) 0.370 
      1 year 3.4 (1.2) 3.1 (1.0) 3.3 (1.1) 0.627 
     
LV SRel (/s)     
      Birth 2.7 (0.9) 3.1 (0.9) 2.6 (0.9) 0.172 
      At term " 4.5 (1.4) 3.8 (1.3) <0.001§§,§§§ 
      1 month 5.0 (1.3) 4.6 (1.2) 5.4 (1.2) 0.178 
      1 year 6.0 (1.5) 5.6 (1.1) 5.1 (0.7) 0.068 
     

LV SRal (/s)     
      Birth 2.4 (1.0) 2.5 (0.8) 2.8 (0.9) 0.188 
      At term " 3.0 (0.8) 2.9 (1.1) 0.123 
      1 month 3.5 (1.2) 3.1 (1.4) 2.9 (1.3) 0.394 
      1 year 2.7 (1.1) 2.3 (0.7) 2.1 (0.7) 0.135 
     
LV SRss (/s)     
      Birth 2.0 (0.7) 2.0 (0.6) 2.0 (1.0) 0.952 
      At term " 2.6 (0.6) 2.4 (0.6) 0.001††,‡‡‡ 
      1 month 2.5 (0.9) 2.7 (0.8) 2.6 (0.8) 0.677 
      1 year 3.2 (0.7) 2.8 (0.5) 2.7 (0.6) 0.027 

     

LV SRes (/s)     
      Birth 2.2 (0.7) 2.1 (0.6) 2.3 (0.9) 0.6 
      At term " 3.3 (1.2) 3.0 (1.3) <0.001‡‡,‡‡‡ 
      1 month 3.7 (1.2) 3.5 (1.1) 3.3 (1.2) 0.471 
      1 year 4.5 (1.1) 3.9 (1.0) 4.2 (1.5) 0.229 
     
LV SRas (/s)     

      Birth 2.0 (0.7) 2.3 (0.9) 2.6 (0.8) 0.014†† 

      At term " 3.0 (1.1) 2.8 (1.0) <0.001‡‡,‡‡‡ 
      1 month 3.0 (1.6) 2.3 (0.5) 2.7 (0.8) 0.385 
      1 year 2.4 (0.8) 2.4 (0.7) 2.1 (0.5) 0.390 
     

Results are presented as mean (SD). 
§§

 p <0.001 (PT RDS V Term control), §§§ p <0.001 (PT control V Term control), ‡‡  p <0.01 (PT RDS V 
Term control), ‡‡‡  p <0.01 (PT control V Term control), †† p <0.05 (PT RDS V Term control). 



124 
 

3.3.2.5 Right ventricular global function 

Tricuspid annular systolic excursion was highest in the term control and lowest in the 

preterm RDS groups at birth. However, the tricuspid annular systolic excursion of the 

preterm groups increased when they reached a corrected gestational age at term. The 

values were higher than the term control group‟s value at birth but these were not 

significant. At one month and one year corrected age, the tricuspid annular systolic 

excursion was similar between the groups. 

 

The right ventricular global function was assessed by dividing tricuspid annular systolic 

excursion by right ventricular chamber length to reflect the right ventricular longitudinal 

axis shortening presented as a %. I found the RV longitudinal axis shortening was 

lowest in the preterm RDS group compared to the two control groups (p=0.003) at birth. 

The difference between the preterm groups disappeared by term age (preterm RDS 

group 35.7 ± 6.8 vs. preterm control group 35.6 ± 4.3) but were significantly higher than 

the term control group at birth (28.7 ± 4.5), p < 0.001. Although the difference between 

the preterm groups and term control group persisted until one month of age, this was not 

statistically significant. At one year of age, the RV longitudinal axis shortening was 

similar between the groups (Table 3.17). 

 

In summary: 

 The preterm RDS group had RV global systolic dysfunction at birth with the lowest 

RV Ds‟ and RV long axis shortening. The RV global systolic dysfunction resolved 

by term corrected age and there was no difference in the RV systolic function at one 

month and one year of age. 
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Table 3.17 Right ventricular global function at follow up scans 

 

 

Term Control 

(A) 

PT Control 

(B) 

PT RDS  

(C) 

ANOVA 

p value 

     

     

RV Ds’ (mm)     
      Birth 7.6 (1.3) 5.9 (1.1) 4.4 (1.3) <0.001§, §§, §§§ 

      At term " 8.4 (1.7) 8.4 (1.2) 0.030 
      1 month 9.6 (1.4) 10.4 (1.7) 10.2 (1.3) 0.119 
      1 year 14.4 (1.8) 14.6 (2.0) 13.4 (2.0) 0.113 
     
RV long axis shortening (%) 
      Birth 28.7 (4.5) 29.2 (4.4) 25.1 (6.6) 0.003‡,‡‡ 

      At term " 35.6 (4.3) 35.7 (6.8) <0.001§§, §§§ 
      1 month 31.9 (4.3) 34.1 (3.6) 34.6 (3.8) 0.037 

      1 year 37.0 (4.9) 37.6 (3.6) 34.8 (4.6) 0.169 
     

Results are presented as mean (SD). 
§ p <0.001 (PT RDS V PT control), §§

 p <0.001 (PT RDS V Term control), §§§ p <0.001 (PT control V 
Term control), ‡ p <0.01 (PT RDS V PT control), ‡‡  p <0.01 (PT RDS V Term control), ‡‡‡  p <0.01 (PT 
control V Term control), † p <0.05 (PT RDS V PT control), †† p <0.05 (PT RDS V Term control), ††† p 
<0.05 (PT control V Term control) 
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3.3.2.6 Right ventricular regional function 

Right ventricular regional function was assessed using myocardial velocity 

measurements, myocardial longitudinal deformation (also known as myocardial strain) 

and myocardial strain rate. Both regional systolic and diastolic functions were assessed.  

 

RV myocardial systolic and diastolic velocities were measured at the base of the right 

ventricular free wall. The RV systolic velocity (RV Vsbl) was lowest in the preterm 

RDS group and highest in the term control group at birth. By the time the preterm 

groups reach term corrected gestational age, their RV Vsbl had increased to become 

similar to the term control group‟s value at birth. RV Vsbl continued to increase with 

age within the groups and the highest values were seen at one year corrected age but 

there was no difference between the groups at one month and one year of age (Table 

3,18).  

 

RV early diastolic velocity (RV Vebl) was lowest in the preterm groups at birth 

compared to the term control. By term corrected age, RV Vebl was highest in the 

preterm control group and was significantly higher than the term control group at birth. 

RV Vebl continued to increase with age within the groups until follow up at one year. 

There was no difference in RV Vebl between the groups at one month and at one year. 

RV Vabl was lowest in the preterm RDS group at birth and was only significantly lower 

than term control group, 5.7 ± 1.2 vs 4.5 ± 1.4 respectively. RV Vabl in the preterm 

groups increased significantly at term corrected age but there was no difference between 

the groups at term. RV Vabl seemed to plateau at term and the values at one month and 

one year were similar within the groups and between groups (Table 3.18).  
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Right ventricular peak systolic longitudinal strain (RV Ss) was lowest in the preterm 

RDS group at birth and this was significantly lower than the term control group, p<0.01. 

RV Ss in the preterm groups increased significantly from birth to term corrected age and 

this was significantly higher than term control at birth. RV Ss continued to increase with 

time to reach their maximum values at one year of age. There was no difference in RV 

Ss between the groups at one month and one year.  

 

There was no difference in right ventricular systolic strain rate (RV SRs) between the 

groups at birth. RV SRs of the preterm groups increased significantly from birth to term 

and were significantly higher when compared to the term group at birth. RV SRs only 

increased modestly with time with no difference noted between the groups at one 

month. At one year, RV SRs of the preterm RDS group was found to be lower than the 

preterm control group only.  

 

The right ventricular early and late diastolic strain rates (RV SRe and SRa respectively) 

were similar at birth. At term, RV SRe and RV SRa in the preterm groups were 

significantly higher than the term group at birth. There was no difference in RV SRe 

and RV SRa between the groups at one month and one year. RV SRe increased with 

time and was highest at one year in all groups whereas RV SRa was highest in the 

preterm groups at term and highest in the term control group at one month of age.  

 

In summary: 

 The only RV regional function parameter to show a significant difference between 

the groups at birth was RV myocardial systolic velocity; suggesting possible RV 

regional systolic dysfunction in the preterm RDS group at birth. However, RV 
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systolic strain was similar between the groups at birth. There was no difference in 

RV regional function in all parameters at other time frames except when compared 

to the control groups at term. 
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 Table 3.18 Right ventricular regional function at follow up scans 

 

 

Term Control 

(A) 

PT Control 

(B) 

PT RDS  

(C) 

ANOVA 

p value 

     

     
RV Vsbl (cm/s)     

      Birth 4.3 (0.9) 3.7 (0.8) 2.7 (0.8) <0.001§,§§,‡‡‡ 

      At term " 4.9 (1.5) 4.7 (1.1) 0.059 
      1 month 5.4 (1.3)  6.0 (1.1) 5.8 (1.1) 0.283 
      1 year 7.7 (1.9) 7.9 (2.0) 7.2 (1.9) 0.525 
     
RV Vebl (cm/s)     

      Birth 6.1 (1.8) 4.4 (1.8) 4.3 (2.3) <0.001§§,§§§ 

      At term " 8.9 (3.8) 7.4 (3.0) <0.001§§§ 
      1 month 11.2 (4.2) 9.7 (3.1) 12.1 (4.9) 0.257 
      1 year 12.9 (4.0) 11.2 (3.2) 12.6 (4.4) 0.331 
     
RV Vabl (cm/s)     

      Birth 5.7 (1.2) 5.3 (1.2) 4.5 (1.4 0.002‡‡ 

      At term " 7.0 (2.1) 6.1 (1.8) 0.030 
      1 month 5.3 (1.7) 6.5 (2.0) 5.5 (1.0) 0.238 
      1 year 6.4 (2.5) 7.0 (2.4) 6.3 (1.4) 0.627 
     
RV Ss (- %)     

      Birth 27.6 (5.8) 25.0 (5.5) 23.2 (6.7) 0.004‡‡ 

      At term " 34.2 (5.1) 34.9 (5.6) <0.001§§,§§§ 
      1 month 34.2 (4.4) 34.2 (3.7) 34.4 (5.3) 0.989 
      1 year 40.9 (3.9) 40.3 (3.2) 39.1 (4.5) 0.315 
     

RV SRs (/s)     

      Birth 2.4 (0.7) 2.3 (0.7) 2.2 (0.8) 0.490 
      At term " 3.4 (0.8) 3.5 (0.6) <0.001§§,§§§ 
      1 month 4.1 (0.9) 3.9 (1.0) 3.5 (0.9) 0.095 
      1 year 4.4 (1.0) 4.5 (1.0) 3.7 (0.9) 0.032† 
     
RV SRe (/s)     

      Birth 2.7 (0.9) 2.4 (0.8)  2.8 (1.2) 0.182 
      At term " 5.0 (1.6) 3.9 (1.7) <0.001†,‡‡,§§§ 
      1 month 5.8 (1.9) 5.0 (1.6) 5.5 (1.9) 0.359 
      1 year 6.2 (1.2) 6.1 (1.5) 5.4 (1.1) 0.113 
     
RV SRa (/s)     

      Birth 2.9 (0.9) 3.1 (0.8) 3.0 (1.3) 0.556 
      At term " 5.4 (1.1) 4.2 (0.9) <0.001‡,§§,§§§ 
      1 month 4.6 (1.7) 3.5 (1.0) 3.6 (1.6) 0.062 
      1 year 3.9 (1.3) 3.4 (1.4) 2.9 (0.9) 0.077 
     

Results are presented as mean (SD). 
§ p <0.001 (PT RDS V PT control), §§

 p <0.001 (PT RDS V Term control), §§§ p <0.001 (PT control V 
Term control), ‡ p <0.01 (PT RDS V PT control), ‡‡  p <0.01 (PT RDS V Term control), ‡‡‡  p <0.01 (PT 
control V Term control), † p <0.05 (PT RDS V PT control), †† p <0.05 (PT RDS V Term control), ††† p 
<0.05 (PT control V Term control) 
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3.3.2.7 Surrogate markers of PA pressure 

Tricuspid regurgitation (TR) was highest in the preterm RDS group at birth. By term 

corrected age, TR in the preterm RDS group was similar to those in the preterm control 

group. A TR jet was only detected in approximately 38% (range 30% – 48%) in the 

term control group, 25% (range 11% - 40%) in the preterm control group and 53% (26% 

- 83%) in preterm RDS groups (Table 3.19) in the whole study from birth to one year 

follow up. There was no difference in TR jet detection rate between groups at one 

month and one year.  

 

Pulmonary regurgitation was only detected in small number of subjects in each group in 

all scans. The numbers were small and although ANOVA analysis showed some 

significant differences between the groups, it is difficult to interpret the significance of 

the mildly raised diastolic pulmonary pressure. 

 

Right ventricular pre-ejection period (RV PEP) was longest in the term control group 

compared to the preterm groups at birth (p=0.005). This difference is more marked 

when the preterm groups were assessed at term (p<0.001). However, by one month of 

age, RV PEP in the term control group was found to be lower than the preterm groups. 

By one year of age, there were no differences between the groups. 

 

Pulmonary artery acceleration time (PA AT) (also known as time to peak velocity in the 

pulmonary blood flow) was shortest in the preterm RDS group at birth and at term 

compared to the control groups. By one month, PA AT in the preterm groups was lower 

than the term control group and by one year, there were no differences between the 

groups. Pulmonary ejection times (PA ET) of the term control were longer than the 
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preterm groups at birth and at term. By one month and one year, PA ET was similar 

between the groups. The PA AT:ET ratio was noted to be the lowest in the preterm RDS 

group at birth compared to the control groups. This difference persisted at term 

corrected age. By one month of age, the PA AT:ET ratio of the preterm RDS groups 

was still significantly lower than that of the term control. By one year of age, the PA 

AT:ET ratios were similar between the groups.   

 

In summary: 

 The preterm RDS group had increased PA pressures at birth as noted by their 

significantly higher TR and significantly lower PA AT:ET.  

 

 

 

Table 3.19 Tricuspid regurgitation and pulmonary regurgitation at follow up scans 

 

 

Term Control (A) PT Control (B) 

PT RDS  

(C) 

ANOVA 

p value 

     

     
TR (m/s) (assuming TR=0 if not detected) 
      Birth [n/total] 1.0 (1.1) [29/60] 0.8 (1.1) [12/30] 1.7 (1.0) [25/30] 0.005‡,†† 

      At term [n/total] " 0.5 (0.8) [6/22] 0.5 (0.9) [4/19] 0.042 
      1 month [n/total] 0.6 (1.0) [14/45] 0.2 (0.7) [2/17] 1.0 (1.1) [7/15] 0.084 
      1 year [n/total] 0.6 (1.0) [10/33] 0.2 (0.7) [2/18] 1.0 (1.2) [7/16] 0.079 
     
PR (m/s) (assuming PR=0 if not detected) 
      Birth [n/total] 0.1 (0.2) [8/60] 0.3 (0.5) [12/30] 0.2 (0.3) [8/30] 0.008‡‡‡ 

      At term [n/total] " 0.2 (0.4) [4/22] 0.2 (0.5) [4/19] 0.187 
      1 month [n/total] 0.1 (0.3) [3/45] 0.5 (0.6) [7/17] 0.4 (0.6) [5/15] 0.002‡‡‡ 

      1 year [n/total] 0.2 (0.3) [ 7/33] 0.5 (0.5) [ /18] 0.3 (0.6) [ /16] 0.031††† 

     
Results are presented as mean (SD). 
‡ p <0.01 (PT RDS V PT control), ‡‡‡  p <0.01 (PT control V Term control), †† p <0.05 (PT RDS V Term 
control), ††† p <0.05 (PT control V Term control) 
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Table 3.20 Surrogate markers of PA pressure at follow up scans 

 

 

Term Control 

(A) 

PT Control 

(B) 

PT RDS  

(C) 

ANOVA 

p value 

     

     

RV PEP (ms)     
      Birth 53.7 (13.1) 46.2 (12.3) 45.7 (12.4) 0.005††,††† 

      At term " 36.7 (9.5) 40.0 (10.0) <0.001§§,§§§ 

      1 month 36.9 (7.4) 45.0 (8.7) 45.6 (7.4) <0.001‡‡,‡‡‡ 

      1 year 41.7 (8.2) 41.6 (10.6) 40.8 (8.7) 0.939 
     
PA AT (ms)     
      Birth 70.3 (11.9) 64.2 (15.1) 52.6 (11.3) <0.001‡,§§ 

      At term " 57.3 (10.2) 49.5 (11.2) <0.001§§,§§§ 

      1 month 61.1 (8.9) 54.8 (6.5) 54.2 (7.6) 0.005††,††† 

      1 year 79.5 (10.9) 83.1 (10.4) 84.7 (15.8) 0.316 
     

PA ET (ms)     
      Birth 224.6 (20.7) 208.2 (19.7) 198.1 (26.3) <0.001§§,‡‡‡ 

      At term " 197.4 (15.9) 202.0 (15.8) <0.001§§,§§§ 

      1 month 199.2 (16.0) 193.8 (14.9) 197.4 (13.5) 0.479 
      1 year 236.3 (20.2) 234.6 (19.0) 238.3 (24.5) 0.874 
     
PA AT:ET ratio     
      Birth 0.31 (0.04) 0.31 (0.06) 0.27 (0.04) <0.001‡,§§, 

      At term " 0.29 (0.06) 0.25 (0.06) <0.001†,§§ 

      1 month 0.31 (0.05) 0.28 (0.03) 0.27 (0.03) 0.015†† 

      1 year 0.34 (0.05) 0.35 (0.03) 0.35 (0.05) 0.287 
     

Results are presented as mean (SD). 
§§

 p <0.001 (PT RDS V Term control), §§§ p <0.001 (PT control V Term control), ‡ p <0.01 (PT RDS V PT 
control), ‡‡  p <0.01 (PT RDS V Term control), ‡‡‡  p <0.01 (PT control V Term control), † p <0.05 (PT 
RDS V PT control), †† p <0.05 (PT RDS V Term control), ††† p <0.05 (PT control V Term control) 
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3.4 Discussion 

3.4.1 All scans (at birth, at term, one month and one year) 

3.4.1.1 Demographics and general characteristics 

This is the first large study that has evaluated the global and regional myocardial 

function of preterm infants with RDS compared to preterm infants without RDS and 

term controls to determine the usefulness of tissue Doppler parameters such as 

myocardial velocities, strain and strain rate. I recruited 120 infants (60 term control, 30 

preterm control, and 30 preterm RDS) into the study and assessed their cardiac function 

at birth (within 72 hours) until they reached one year of age with one additional scan at 

term corrected age for the preterm groups and another at one month corrected age for all 

groups. I have managed to preserve the 2:1:1 ratio between the groups throughout the 

study period with a dropout rate of fewer than 50%. At the last assessment at one year, 

there were 33 term controls, 18 preterm controls and 16 preterm RDS subjects assessed.  

 

Preterm RDS subjects were born at an earlier gestation compared to the control groups 

and was therefore also smaller compared to the control groups. Despite my best efforts 

to study the subjects at a similar time frame, the preterm RDS group was assessed at an 

earlier age at term, one month and one year compared to the control groups. The 

preterm RDS group weighed least compared to both control groups and this persisted at 

term and at one year assessments. There was no difference in weight between the 

groups at one month. Correspondingly the preterm groups‟ ventricular chamber lengths 

(a measurement of cardiac size) were smaller compared to the term control group. I am 

uncertain of how the difference in ventricular size would affect the results of the 

measured parameters especially the values of myocardial velocities. Ventricular size 
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would not have any effects on the measurements of myocardial strain and strain rate 

since these parameters are measured as a relative change in deformation or rate of 

deformation within a small sample area of the ventricles. 

 

Systolic and diastolic blood pressures in the preterm RDS group were significantly 

lower than the control groups at birth and at term. By one month corrected age, there 

was no difference in both systolic and diastolic blood pressures between the groups, 

which persisted until one year of age.  

 

3.4.1.2 Left ventricular global function 

The LV stroke volume and left ventricular output increased with age as the LVOT 

diameter increased with growth along with higher LVOT VTI with time. The marked 

difference seen in stroke volume and cardiac output were most likely due to the 

difference in cardiac size (LVOT d and larger LV chamber). Oberhänsli et al also noted 

the increase in LV diameter soon after birth due to increased blood flow into the left 

atrium and subsequent increases in LV chamber associated with increased body weight 

(Oberhänsli 1980). LV PEP:ET were highest at birth and decreased at term and 

continued to decrease to become lowest at one year follow up. This was consistent with 

the results reported by Oberhänsli et al, where it was postulated to be due to a sudden 

increase in systemic vascular resistance following the exclusion of placental circulation 

as a result of clamping of the umbilical cord (Oberhänsli 1980). The increase in LV 

afterload, pulmonary blood flow and LV preload are most likely to be responsible for 

changes in the LV systolic time intervals. 
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LV Ds‟bl and LV Ds‟bs were highest in the term control group at birth and this was 

thought to be an effect secondary to differences in LV size. When the peak systolic 

displacement (or excursion) was divided by the LV chamber length, which is 

represented by the longitudinal axis shortening parameter, the differences disappeared 

except in the LV basal lateral longitudinal axis shortening between term control and 

preterm RDS groups, p<0.05. The differences in LV Ds‟ and LV longitudinal axis 

shortening between the preterm groups at term and term group at birth are largely due to 

the transition of the postnatal circulation observed in the term group soon after birth. 

The preterm groups had undergone weeks of postnatal adaptation which would have 

changed the LV mechanics and function which were not afforded to the term group at 

birth. The differences seen at term disappeared at one month after the term infants had 

undergone their postnatal adaptation and changes in the LV mechanics. It is interesting 

to note that at one year follow up, the LV global function parameters were found to be 

significantly higher in the term control groups than the preterm groups both in the 

systolic displacement of the mitral annulus and the „corrected‟ LV longitudinal axis 

shortening. This could not be explained by differences in preload and afterload seen in 

the preterm groups as ventricular filling and both the systolic and diastolic blood 

pressures were similar in all groups.  

 

Left ventricular filling pattern (E:A) reflects early diastolic changes and the ratio of 

early diastolic mitral inflow velocity to early diastolic velocity of the mitral annular 

motion, E:Ve‟ has been shown to correlate well with mean ventricular filling pressure. 

This has been validated in adults as a useful tool to assess LV diastolic function in 

adults (Sohn 1997, Ommen 2000). In one adult study, E:Ve‟ >10 was shown to correlate 

with raised filling pressure when lateral Ve‟ was used (Nagueh 1997) whereas another 
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study has shown that E:Ve‟ ratio of >15 correlated with elevated filling pressure when 

medial Ve‟ was used (Ommen 2000). As it is not yet clear whether the medial or the 

lateral mitral annular velocity is more useful for diagnosing diastolic dysfunction, I 

opted to measure both medial and lateral mitral annular velocities and used the average 

of the medial and lateral mitral annular e‟ velocities as mean Ve‟ to calculate the ratio 

E:Ve‟. Mitral E was lowest at birth in all groups and increased with time within the 

groups with a significant difference seen between the groups at birth and at term. Mitral 

E was highest at the one year assessment and this finding is consistent with those 

reported by Schmitz et al (Schmitz 2004c). In another longitudinal study over the first 

three months of life comparing small for gestational age against appropriately grown 

infants, similar observations were seen in mitral E in the appropriately grown infants 

although their mitral E values were lower than ours (Gurses 2013). Elkiran et al 

investigated infants of different age groups from 36-37 weeks gestation up to 3 months 

old infants, they found mitral E increased with increasing age with the highest mitral E 

velocity in the 3 months old group (Elkiran 2013). My finding of mitral A velocity 

increasing from birth and peaking at one month old in all groups has also been reported 

by the above studies (Elkiran 2013, Gurses 2013).  

 

Mitral E:A in the preterm infant groups were significantly lower than their term 

counterparts. A similar finding had been report in a study on left ventricular filling 

patterns in fetuses of different gestations (Harada 1997, Chan 2005). This could be due 

to the less compliant left ventricle as a result of relative higher content of collagen 

within the myocytes and the higher ratio of type I to type III collagen resulting in a 

more rigid, less compliant heart in neonates (Marijianowski 1994). By the time the 

preterm groups reach term corrected age, mitral E:A were similar to the term group. 
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Mitral E:A continue to increase with age until the last follow up at one year. My 

findings are in agreement with a study by Schmitz et al who looked into the diastolic 

LV function in preterm infants <1500g comparing with term infants (Schmitz 2004b). 

The changes seen in the improvement of diastolic functions of the left ventricle with age 

is due to a combination of improvement in left ventricular compliance and relaxation 

(Kozák-Bárány 2000, Kozák-Bárány 2001).  

 

Mitral E:Ve‟ peaked at term corrected age in the preterm infant groups and at one 

month in the term group. After this, mitral E:Ve‟ decreased and was similar between the 

groups at one year of age. The decrease in the E:Ve‟ ratio with age was primarily a 

result of increased early diastolic DTI velocity during the study period. Eidem et al 

found in their study that mitral E:Ve‟ was to be significantly associated with age, heart 

rate, LV end-diastolic dimension and LV mass (Eidem 2004). Following multiple 

regression analysis, only LV end-diastolic dimension and LV mass correlated 

independently with mitral E:Ve‟ (Eidem 2004).  

 

3.4.1.3 Left ventricular regional function 

I have found LV systolic and diastolic myocardial velocities, in both lateral and septal 

walls, to be lowest in the preterm RDS group, which was also the most preterm and had 

the smallest ventricular chamber length amongst the groups. The LV systolic and 

diastolic myocardial velocities increased with increasing gestation. A similar result was 

reported in other neonatal and fetal studies (Chan 2005, Ciccone 2011). Chan et al noted 

a 1.6-1.8 fold increase in systolic myocardial velocity and a 1.5-2 fold increase in early 

diastolic myocardial velocity from mid-trimester to term, in their study of 302 normal 

fetal hearts from 19 to 37 weeks gestation (Chan 2005). This suggests the LV systolic 
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function and ventricular relaxation improve with fetal maturity. I found that LV systolic 

and diastolic function continue to improve postnatally, especially in the preterm groups 

where both LV systolic and diastolic velocities caught up with the term control group at 

one month and one year corrected age despite being significantly lower at birth. Klitsie 

el al also reported a significant increase in LV systolic and diastolic TDi parameters 

from 1-3 days of life to 6-7 weeks after birth in term infants (Klitsie 2013). They 

suggested continued improvement of LV performance and cardiac growth as possible 

causes for the increase in the TDi parameters.  

 

LV myocardial strain was lowest in the preterm RDS group at both the lateral and septal 

walls. The LV longitudinal strain values in my study is comparable to those reported by 

de Waal et al (LV Ssl 18.9% ± 4.9% vs 15.7% ± 4.3%; LV Sss 17.5% ± 3.9% vs 16.2% 

± 3.5%) although they used speckle tracking echocardiography to measure the 

longitudinal strain (de Waal 2014). All of my RDS subjects were ventilated while most 

of de Waal‟s subjects (81%) were on CPAP. The lower systolic strain in the preterm 

RDS group could be due to reduced preload secondary to pulmonary disease. There was 

no evidence of increased afterload in the preterm RDS group as their systolic blood 

pressure was significantly lower than the control groups. The term control LV 

longitudinal strain value of 22.8% ± 3.9% is comparable to that reported by other 

studies using TDi in term newborns assessed in the first 3 days of life (Nestass 2009, 

Pena 2009). As the preterm RDS subjects got older, their LV peak systolic strain 

increased and matched those seen in the preterm groups at one month and one year of 

life. It is reassuring that the LV systolic function improves with age and catches up with 

the control groups by one month of age.  
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LV systolic strain rate was similar between the groups. The strain rate did not increase 

significantly up to one month corrected age in all groups. This has led to some authors 

suggesting that strain rate measurements are not affected by cardiac growth and could 

be used for evaluation of LV systolic performance during the neonatal period (Boettler 

2005, Klitsie 2013). In a separate study comparing strain and strain rate measurements 

on healthy newborns and infants (36 weeks preterm neonates to 3 month old infants), 

there was no difference in LV SR between the preterm and 3 month old infants (Elkiran 

2013). This group also concluded that neither strain nor strain rate values were 

markedly affected by volume and pressure loadings during the first month of life. 

 

3.4.1.4 Right ventricular global and regional functions 

RV annular displacement (RV Ds‟) is lowest in the smallest preterm RDS subjects at 

birth. However, the RV long axis shortening, which was corrected for RV size and 

represents RV global function, was still significantly lower than the control groups. 

There was also evidence of regional myocardial dysfunction in the preterm RDS group 

where RV systolic velocity was also lower than the control groups and RV systolic 

strain lower than the term control both reflecting increased afterload in these subjects.  

These differences disappeared by the time the preterm RDS subjects reached term 

corrected age. There was no difference in systolic strain rates between the groups, 

which could suggest preservation of regional contractile function. There is right 

ventricular regional diastolic dysfunction in the preterm groups at birth but by one 

month and one year corrected age the RV regional diastolic function normalised. This 

finding was similar to that in the left ventricle.  
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3.4.1.5 Surrogate markers of PA pressure 

In my study, TR was only detected in 66% of all subjects at birth, with 83% of preterm 

RDS subjects noted to have TR. TR was significantly higher in the preterm RDS group 

compared to the control groups. The proportion of TR detection in all subjects at term, 

one month and one year was low and comparison performed between the groups with 

the relatively small numbers did not show any significant difference. The raised TR in 

the preterm RDS group confirmed raised pulmonary vascular resistance which results in 

higher RV afterload. This is reflected by the lower RV myocardial systolic velocity and 

systolic strain.  

 

I have also noted a shorter pulmonary artery acceleration time (PA AT) and a lower 

pulmonary artery acceleration time to ejection time ratio (PA AT:ET) in the preterm 

RDS group compared to the control groups. Both these parameters have been shown to 

correlate with increased pulmonary pressures (Evans 1991b, Fitzgerald 1994). This 

confirms the result of the higher TR jet, lower systolic strain and systolic velocity 

values in the preterm RDS group at birth.  

 

It has been shown that PA AT can be significantly affected by changes in heart rate 

without any change in PA pressures (Gardin 1988, Mallery 1991). However, Gardin et 

al found PA AT:ET does not change with alterations in heart rate in his porcine model 

which led him to suggest using PA AT:ET as a more useful measurement for estimating 

PA pressure (Gardin 1988).  

 

The PA AT:ET of the preterm RDS subjects was still significantly lower than the 

preterm control group at term corrected age suggesting the pulmonary arterial pressure 
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had not normalised at that stage. However, there were no differences in other surrogate 

markers of PA pressures between the groups at term.   

 

3.4.1.6 Normalisation of left and right regional myocardial velocities and strain 

There was a correlation between regional myocardial systolic and diastolic velocities 

with infants‟ weight and heart size at birth. I had wondered if the differences seen 

between the groups were due to the effects of ventricular size rather than prematurity 

and / or RDS. I had, therefore, performed a non-standardised normalisation of 

myocardial velocities by dividing the myocardial velocities by the respective ventricular 

chamber length and found that after ventricular length normalisation, the differences in 

myocardial systolic and diastolic velocities and strain in both ventricles noted without 

normalisation had disappeared. This was an interesting finding and raised the question if 

ventricular size does affect myocardial velocities in the preterm population. Similar 

observations were noted on myocardial strain.  

 

I was unable in my study to prove or dispel this effect of heart size on myocardial 

velocities and strain as this was not the main objective of the study nor was it powered 

to investigate this effect. The relatively small sample size in this study was not 

sufficient for me to produce z-scores for myocardial velocities or strain for different 

gestations in the preterm infants. Chan et al reported increased systolic myocardial 

velocity and early diastolic myocardial velocity in normal fetal hearts from 19 to 37 

weeks gestation and suggested that these increments in systolic and diastolic myocardial 

velocities are secondary to normal maturation processes in the fetal heart (Chan 2005).  
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3.4.1.7 Study limitations 

This was a prospective longitudinal study of preterm and term neonates involving 120 

infants at the beginning of the study. The numbers of subjects studied at subsequent 

scans at term, one month and one year fell to just over 50% of the number at the 

beginning of the study. Unfortunately, despite efforts to track and recall subjects for 

follow up scans, the dropout rate was high. In spite of this, the ratio between the groups 

had been maintained at 2:1:1 throughout the different scan times.  

 

I only recruited preterm infants of ≤34 weeks who were ventilated when the first 

echocardiogram was done to ensure infants with significant RDS were studied. 

However, the practice of early use of pulmonary surfactant and antenatal glucocorticoid 

administrations would have reduced the severity of RDS and progression to developing 

bronchopulmonary dysplasia (or chronic lung disease of prematurity). 

 
 
Although myocardial velocity and strain imaging can provide accurate measures of 

regional myocardial function, they are associated with a number of technical problems. 

Strain images may be characterised by signal noise compromising image quality. Strain 

profiles and curves do not always return to baseline at the end of systole. This may be in 

part due to the mathematical integration algorithm, but may also be caused by the fact 

that the wall itself does not return to exactly the same state of deformation at the end of 

the cycle as was the case at the start. This aspect could be related to several factors, 

including normal beat to beat variation in stroke volume. It is also angle dependent and 

tissue direction should be within 30° of the beam for meaningful measurements to be 

made. 
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3.4.1.8 Summary and conclusion 

In summary, preterm infants with RDS have a higher PA pressure at birth as reflected 

by a higher TR jet and a lower PA AT:ET. RV global function (RV longitudinal axis 

shortening) was lower in this group at birth but the only RV regional myocardial 

parameter that was significantly lower compared to other groups was the myocardial 

systolic velocity. LV regional myocardial systolic velocity was lowest in the preterm 

RDS group at birth. Otherwise, there was no difference in LV global and regional 

systolic functions at birth between the groups. Both preterm infant groups have LV 

diastolic dysfunction at birth. These differences noted at birth in the preterm groups 

disappeared by the time they were assessed at term, which indicate postnatal maturation 

of cardiac function. The preterm infants‟ left and right global and regional myocardial 

functions were similar to the term infant group when assessed at one month and one 

year.   

 

PA AT:ET is a good alternative and possibly a more sensitive surrogate marker of PAP 

in the event that TR cannot be measured because this parameter can be easily measured 

in all infants, including extremely preterm infants. Both PA AT:ET and TR jet were 

significantly different in the preterm RDS group compared to the control groups but the 

PAP measured by TR jet showed no evidence of increased PAP in the preterm RDS 

infants. This could suggest milder form of RDS in the preterm RDS group due to 

routine use of antenatal corticosteroid and exogenous surfactant.  

 

There was evidence of RV global dysfunction (RV longitudinal axis shortening) and RV 

regional myocardial dysfunction (RV Vsbl) in preterm RDS infants. The newer TDi 

parameter of RV regional systolic strain and strain rate in the preterm RDS groups was 
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similar to the control groups. I could only postulate that these newer parameters were 

either not sensitive enough to detect this difference in regional myocardial dysfunction 

in the RV of this population or there could be some limitations in applying this 

parameter in this population.  

 

I have shown that preterm infants continue the myocardial maturation postnatally with 

improvement in both systolic and diastolic functions and that this process reflects the 

changes in cardiac haemodynamics associated with ex-utero conditions. The fact that 

the global and regional myocardial function of both ventricles in the preterm infants 

caught up with that of term infants at one month and one year of age shows the 

adaptability of the myocardium to preterm birth provided that there are no significant 

respiratory complications. 

 

3.4.1.9 Recommendations 

 PA AT:ET to be routinely used in the assessment of PAP in both preterm and term 

infants due to the ease of measurement.  

 Longitudinal axis shortening is a sensitive method to assess global dysfunction and 

can be used in addition to the current more established methods. 

 Regional myocardial velocity measurement can be used to assess regional 

myocardial function but care must be taken in interpreting this value between 

subjects with different heart size. The establishment of z-scores for myocardial 

velocities for corrected gestations or infant weight would allow more meaningful 

interpretation of this parameter in the assessment of regional myocardial function. 
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 Preterm or term newborn infants are known to have biventricular diastolic 

dysfunction in the first week of life. An understanding of this fact would avoid 

unnecessary investigations or treatments to be instituted. 

 Even though I have shown the resolution of RV global and regional dysfunction 

along with improvement of neonatal lung disease, there will be a cohort of preterm 

infants who develop severe chronic lung disease of prematurity as a result of RDS 

who may have residual or worsening RV global and regional function. In this cohort 

of patients, it would be prudent to monitor their cardiac status regularly and institute 

therapy should the RV function be significantly affected by their lung disease. 
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Chapter Four 

Feasibility of estimating pulmonary artery pulse wave velocity 

in children using velocity-encoded magnetic resonance 

imaging (MRI Pilot study) 
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4.1 Introduction 

Pulmonary hypertension is the result of failure of the pulmonary circulation to buffer 

the pulsatile flow generated by the right ventricle (RV) leading to high flow and 

pressure from the RV reaching the smaller pulmonary vessels. The loss of pulmonary 

artery (PA) compliance or increased PA stiffness is thought to be the early precursor to 

the development of pulmonary arterial hypertension (PAH). In adults with PAH, 

measures of PA stiffness are increased (Ley 2007) and this is associated with increased 

mortality (Mahapatra 2006, Gan 2007). 

 

As discussed in section 1.5.1, an inverse relationship between resistance and compliance 

of the PA circulation has been reported in subjects with or without pulmonary 

hypertension (Lankhaar 2008). Prompt introduction of targeted therapies can be 

initiated if changes in PA stiffness are detected earlier. Reliable assessment of PA 

stiffness permits treatment planning and monitoring.  

 

Recent developments in cardiac magnetic resonance imaging (MRI) techniques allow 

accurate non-invasive measurements of pulse wave velocity, another measure of arterial 

stiffness, of the PA in adults without the need for invasive right heart catheterization to 

measure PA pressures (Peng 2006, Bradlow 2007). Techniques utilizing the flow area 

(QA) and transit time methods, have been compared showing similar PA PWV values 

(Ibrahim 2011). 

 

Pulmonary hypertension is relatively common in children and causes include PAH 

associated with congenital heart disease, connective tissue disease and lung disease such 

as cystic fibrosis or chronic lung disease of prematurity (Naeije 1987). Early targeted 
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therapy can delay the onset of PAH, thus improving the quality of life and survival of 

these children. Thus far, we are not aware of any studies that measured PA PWV in 

children. 

 

Furthermore, acute exposure to hypoxia causes pulmonary vasoconstriction at the 

arteriolar level, thus increasing pulmonary vascular resistance, PA pressure and 

stiffness. Adults who have suffered transient perinatal hypoxic pulmonary hypertension 

demonstrate significantly higher systolic pulmonary arterial pressure compared to 

controls at high altitudes (Sartori 1999). However, there is very little data on the effects 

of acute hypoxia on large vessel stiffness in normal children or indeed, in vulnerable 

individuals including those with cardiac and respiratory conditions where the risk of 

PAH is high.   

 

The main objective of this study was to establish the feasibility of measuring PA PWV 

in children using the QA MRI method and administering a hypoxic challenge to 

children within the MRI scanner as well as assessing intra- and inter-observer image 

analysis variability in measuring PA PWV values.  

 

4.2 Methods 

In order to establish the feasibility of measuring PA PWV in children, fifteen, 9 – 12 

years old children, who were born between 23 - 42 weeks of gestation, were recruited 

into the study. Written informed consent and assent were obtained from parents and 

children, respectively. The study was approved by the South East Wales Regional 

Ethics Committee (REC reference number: 09/WSE02/31) and Cardiff and Vale NHS 

Trust Research and Development department (R&D study reference: 09/RPM/4554). 
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Details of subjects‟ neonatal and medical histories were obtained from their parents and 

medical records by JME or CYP. Subjects who had patent ductus arteriosus corrected 

by occlusion coils or clips, ventricular septal defects or had any cardiovascular surgery 

to correct any congenital structural cardiac defects were excluded from the study, in 

addition to the other absolute contraindications to having an MRI scan.  

 

4.2.1 Echocardiographic examination 

All subjects underwent echocardiographic examination, performed either by JME or 

CYP, to confirm normality of cardiac structure and function before the MRI scan. The 

standard echocardiographic assessment using subcostal, parasternal short and long axes, 

apical four chamber and suprasternal views were used (Appendix A2.2). Pulmonary 

arterial blood flow acceleration time, ejection time, and tricuspid regurgitation peak 

velocity, if present, were measured to approximate systolic pulmonary arterial pressure, 

using the modified Bernoulli equation (Yock 1984).  

 

4.2.2 MRI scanning setup 

MRI scans were performed using a 3.0T GE Signa HDx MRI scanner with an 8-channel 

phased-array cardiac coil (GE Healthcare, Bucks, UK) located in Cardiff University 

Brain Research Imaging Centre (CUBRIC). Every subject was initially exposed to a 

practice run in a mock MRI scanner lying within the scanner with simulated background 

noise, prior to the actual MRI examination. Each subject was scanned twice to acquire 

cine images of the PA cross section, first while breathing room air and again after 

breathing 12% inspired oxygen (balance nitrogen) for 20 minutes. The subjects 
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continued breathing the hypoxic inspirate during the second MRI scan. Using MRI-

compatible prisms spectacles, subjects were able to watch a film on a projector screen 

during the scanning. Parents were permitted to comfort the child as necessary during the 

scanning after appropriate screening procedures. 

 

4.2.3 MRI protocol 

The protocol included three-plane localizers followed by cine images of the PA in long 

axis and cross-sectional view using a steady-state free precession sequence. 

Retrospective ECG-gated phase-contrast velocity-encoded images were obtained 

approximately 0.5cm above the pulmonary valve using 2-dimension gradient-echo 

sequence. The cine sequence parameters were: slice thickness=7mm, TR=4.7ms, 

TE=2.9ms, number of averages=2, no. of reconstructed phases=65, no. of acquired 

phases between 35 – 58 phases depending on heart rate,   Venc=150 cm/s, acquisition 

matrix=192 x 192, FOV=350 mm, flip angle=20° (Appendix A2.3). The MRI 

examination was performed under free breathing conditions with instructions to 

maintain shallow breathing during image acquisition to minimize translational 

movement of the heart associated with respiration and to obtain normal physiological 

pulmonary arterial blood flow. 

 

4.2.4 Hypoxic challenge 

Premixed cylinders of 12% oxygen/nitrogen mixture and 100% oxygen, situated at the 

MR control room were obtained from British Oxygen Company Limited (BOC, UK). A 

closed respiratory circuit was used to deliver the hypoxic challenge and supplemental 

oxygen. Anaesthetic tubing from these two cylinders formed the inspiratory limbs that 
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delivered humidified gases into a small mixing chamber before being inhaled by the 

subject via an anaesthetic face mask. The excess gases and expired breaths from 

subjects exited the circuit through the expiratory limb, which also acted as a rebreathing 

reservoir necessary for when the peak inspiratory flow instantaneously exceeded the gas 

flow rate. A high flow rate of 20L/min was used to deliver the hypoxic oxygen mixture 

to prevent significant rebreathing of the previous breath.   

 

4.2.5 Monitoring during the MRI scan 

Subjects heart rate, oxygen saturation, inspired oxygen and end-tidal carbon dioxide 

levels were monitored continuously by both JME and CYP, who were both trained in 

basic life support and required to be present during the hypoxic challenge. 100% oxygen 

was titrated into the circuit to maintain the oxygen saturations between 80–85% if 

oxygen saturations decreased to below 80%. Each subject received at least 20 minutes 

of hypoxic challenge before the repeat PWV assessment. 

 

4.2.6 MRI analysis 

The MRI images were anonymised and transferred to a personal computer and analysed 

using the freely available software Segment version 1.8 R1145 

(http://segment.heiberg.se) (Heiberg 2010). The region of interest outlining the PA was 

defined manually on the magnitude images (Figure 4.1). After outlining the PA, the 

software calculated the cross-sectional area of the PA and the flow within the cross 

section from the magnitude and phase (velocity-encoded) images, respectively for each 

acquired phase of the cardiac cycle. Flow rate was plotted against measured cross-

sectional area of the PA during early systole. Pulse wave velocity was derived from the 

http://segment.heiberg.se/
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slope of the line fitted to the flow-area data, which represents the ratio of flow change 

(∆Q) and area change (∆A) during early systole (Peng 2006) (Figure 4.2). 

 

The images were analysed by two different observers (JME and CYP) and repeated by 

one of the observers (CYP), at least two weeks between analyses to measure intra- and 

inter-observer variability and repeatability. The observers were blinded during analysis 

to whether images were acquired during normoxia or hypoxia. 

 

4.2.7 Statistical analysis 

As this was a pilot study carried out to establish the feasibility of obtaining good quality 

MRI images for the measurement of PA PWV in young children, the decision to 

perform on 15 children was to assess the robustness of the MRI acquisition protocol and 

the MRI analysis of PA PWV. I did not aim to compare PA PWV between different 

groups of children examined; therefore, sample size calculation was not considered 

necessary for this study.  

 

Statistical analyses were performed using the Statistics Package for Social Science 

(SPSS) version 16.0 (Chicago, Illinois, USA). The paired Student‟s t-test was used to 

compare parameters before and during hypoxic challenge.  A p-value of less than 0.05 

was considered significant. 

 

Intra- and inter-observer repeatability are reported as the mean coefficients of variation 

(CV, in %) of all subjects, where individual subject CV was calculated using the 

formula: CV = (standard deviation of measurements 1 and 2 / mean of the 
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measurements) x 100. Correlation and Bland–Altman analyses were also used to report 

intra- and inter-observer variability. 
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Figure 4.1 - Magnitude images of main PA during early systole 

 

A succession of cross-sectional images showing main PA (circled in yellow) distending during 
early systole. The vessel cross-sectional area and flow rate are measured at each frame during 
early systole.  
 
PA=pulmonary artery. 
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Figure 4.2 - Derivation of PA PWV from flow rate versus cross-sectional area graph 

 

A line is fitted to the plotted data, where PWV is determined as the line slope (change in flow 
over change in area).  
 
cm3/s=centrimetre3 per second, cm2=centimetre2, PWV=pulse wave velocity. 
 



156 
 

4.3 Results 

Subject characteristics and baseline measurements of vital signs are given in Table 4.1. 

All fifteen subjects (ten males and five females) tolerated and successfully completed 

the MRI scanning and hypoxia challenge. The youngest subject in the study was nine 

years and eight months and the mean (SD) age of the study population was 11.7 (0.9) 

years.  

 

All subjects had normal cardiac structure and function on echocardiogram. None of the 

subjects had evidence of increased right atrial or PA pressure. 11/15 (73%) had 

detectable tricuspid regurgitation with velocities between 1.3 – 2.2 m/s (estimated 

systolic pulmonary arterial pressures 11.8 – 24.4 mmHg). Mean (SD) pulmonary 

acceleration/ejection time ratio was 0.418 (0.044) seconds.  

 

4.3.1 PA PWV measurements using velocity encoded MRI 

The MRI examination lasted approximately 90 minutes including the 20 minutes 

hypoxic exposure. PA PWV measurements were successfully derived from the 15 

children, both in air and during hypoxic challenge. Mean (SD) PA PWV increased 

significantly from 1.32 (0.32) m/s in air to 1.61 (0.58) m/s during hypoxic challenge (p 

= 0.03) (Figure 4.3). Table 4.2 shows PA PWV values in each subject in air and during 

hypoxic challenge. 
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4.3.2 Hypoxic challenge 

Effective hypoxic challenge was successfully delivered to all children with oxygen 

saturations decreasing within 2-3 minutes, reaching a nadir and stabilizing within 10 

minutes of starting the hypoxic challenge. The mean (SD) inspired O2 was 11.2 ± 0.6 % 

and end-tidal CO2 was 4.7 ± 0.6 %. The oxygen saturations decreased significantly from 

a mean (SD) of 98.3% (1.6%) in air to 84.5% (3.6%) after 12% oxygen administration 

(mean difference 13.7%, 95% CI 11 to 16%, p<0.001). The monitored heart rate 

increased by a mean of 17 bpm (95% CI 11 to 23 bpm, p<0.001) during hypoxia from 

baseline (Table 4.3).  

 

4.3.3 Reproducibility and variability 

Intra- and inter-observer CV were 9.0% and 15.6% with good intra- and inter-observer 

correlations between measurements, r=0.92 and r=0.72 respectively (Figure 4.4). Mean 

(95% limit of agreement) intra- and inter-observer disagreement on Bland-Altman 

analysis were -0.02 m/s (-0.41 – 0.38 m/s) and -0.28 m/s (-1.06 – 0.49 m/s) (Figure 4.5).  
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Table 4.1 – Subject characteristics, baseline vital signs and echocardiographic findings 

Parameter Mean ± SD 

Sex  10 males, 5 females 

Gestation (wks) 33.2 ± 5.8 

Birth weight (kg) 2.2 ± 1.1 

Age (yrs) 11.7 ± 0.9 

Weight (kg) 39.3 ± 6.3 

Height (cm) 148.5 ± 9.4 

Heart rate (bpm) 72 ± 10 

Systolic/diastolic blood pressure in air (mmHg) 119 ± 12 / 64 ± 8   

Oxygen saturations (%) 98.3 ± 1.6 

Tricuspid regurgitation jet (m/s) 1.9 ± 0.4 

Pulmonary acceleration time ejection time ratio  0.418 ± 0.044  

 
bpm=beats per minute, cm=centimetre, kg=kilogram, m/s=metre per second, SD=standard 
deviation, wks=weeks, yrs= years 
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Table 4.2– Individual PA PWV values in air and during hypoxic challenge 

Subject Age (yrs) Gestation (wks) PWV in air (m/s) PWV in 12% (m/s) 

Subject 1 11.8 40.0 1.24 1.75 

Subject 2 11.8 40.0 1.19 1.22 

Subject 3 11.6 39.4 0.96 1.45 

Subject 4 11.4 32.0 1.87 1.79 

Subject 5 11.5 31.3 1.45 1.81 

Subject 6 12.5 27.0 0.92 1.04 

Subject 7 10.8 31.6 1.10 1.73 

Subject 8 12.4 30.1 1.98 2.09 

Subject 9 9.8 41.0 1.47 1.26 

Subject 10 11.3 32.0 1.27 2.12 

Subject 11 12.6 42.0 1.27 2.01 

Subject 12 12.3 28.0 1.13 1.36 

Subject 13 10.8 23.0 1.57 2.98 

Subject 14 12.9 31.0 1.30 0.74 

Subject 15 10.9 29.6 0.88 0.81 

 
m/s= metre per second, wks= weeks, yrs= years 
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Table 4.3 - Measurements before and during hypoxic challenge 

Parameters Normoxia 

(Mean ± SD) 

Hypoxia  

(Mean ± SD) 

Heart rate in air (bpm) 73 ± 10 90 ± 12 

Oxygen saturations in air (%) 98.3 ± 1.6 84.5 ± 3.6 

Inspired O2 (%) - 11.2 ± 0.6 

End-tidal CO2 (%) - 4.7 ± 0.6 

 
bpm= beats per minute, SD= standard deviation 
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Figure 4.3 - Change in PA PWV in normoxia and following hypoxic challenge 
 

 

Mean PA PWV increased significantly from 1.32 (0.32) m/s in air to 1.61 (0.58) m/s following 
hypoxic challenge (p = 0.03).  
 
FiO2=inspired oxygen, m/s=metre per second, PA=pulmonary artery, PWV=pulse wave 
velocity, SD=standard deviation. 
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Figure 4.4 - Intra- and inter-observer correlation analysis 

 

Good intra-observer correlation (r=0.92) and reasonable correlation between observers (r=0.72).  
 
m/s=metre per second, PA=pulmonary artery, PWV=pulse wave velocity 
 
 

 

 

Figure 4.5 - Intra- and inter-observer Bland-Altman analysis 

 

Mean (95% limits of agreement) intra- and inter-observer differences were -0.02 (-0.41 – 0.38) 
m/s and -0.28 (-1.06 – 0.49) m/s, respectively. Dashed line is the mean difference and dotted 
lines the 95% limits of agreement.  
 
m/s=metre per second, PWV=pulse wave velocity 
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4.4 Discussion 

This is the first MRI study to successfully measure PA PWV non-invasively in children. 

I have demonstrated that using the QA method, PA PWV can be measured in children 

as young as 9 years of age. The facility for children to watch a film during the MRI scan 

is likely to have contributed significantly to the success in distracting and prevented 

gross movement of the child during the scanning and certainly during the 3 - 5 minutes 

duration of cine imaging of the PA. The ability to perform practice runs in a mock 

scanner was another factor that diminished the fear and anxiety associated with MRI 

scanning.  

 

4.4.1 PA PWV measurements using velocity encoded MRI 

PA PWV was successfully measured in fifteen children in normoxia and after hypoxia. 

The QA method was chosen to measure main PA PWV in children because of the 

smaller size and shorter length of their main PA as the latter may introduce more errors 

if the transit time method had been used. Furthermore, the need for a much longer 

acquisition time, as reported previously (Ibrahim 2011), is highly impractical in young 

subjects.  

 

The PA PWVs measured in all fifteen children, aged between 9 – 12 years were 

between 0.88m/s and 1.98 m/s, with a mean of 1.3 m/s. The PA PWV values were less 

than the 1.96m/s reported by Peng et al in adults without PAH (Peng 2006). The 

difference in the observations in children is likely to be due to the more compliant PA 

than their adult counterparts as has been shown in studies of children and adults 

assessing the arterial stiffness in the systemic circulation. The aortic PWV measured in 
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11 year-old children by McEniery and colleagues was 4.7 m/s (McEniery 2011) and the 

aortic PWV in healthy 26 – 41 years healthy adults studied by Koivistoinen and 

colleague were 7.7 m/s in males and 7.0 m/s in females (Koivistoinen 2007). If the 

arterial stiffness changes with age in the pulmonary circulation were assumed to be 

similar to those in the systemic circulation, then the PA PWV of 1.3 m/s measured in 

this study is likely to be representative in children without pulmonary hypertension.  

 

PA PWV was found to be significantly higher during hypoxic challenge. This is as 

predicted since hypoxia promotes arteriolar vasoconstriction resulting in increased 

pulmonary vascular resistance and decreased pulmonary compliance. The PA PWV 

during hypoxic challenge was noted to be lower than that in air in four subjects. The 

differences between the two measurements in three subjects were 0.06 m/s, 0.07 m/s, 

0.21 m/s and 0.56 m/s. There are several sources of variability in the measurements. The 

manual outlining of the MPA can be subjective and may distort PWV estimations. 

Significant movement of the PA was noted in this young population during scanning 

due to marked cardiac contraction and respiration possibly due to greater heart and 

respiratory rates in children; the PA movements were worse during hypoxia due to 

increased heart and respiratory rate. The heart rate is generally higher in children and 

increased further following hypoxic challenge. The heart would be contracting more 

hyper-dynamically under hypoxic conditions and this would result in lower spatial 

resolution of the PA for manual outlining. It was not possible to avoid the movement 

effects due to respiration as the cine imaging of the PA cross-section takes 3 – 5 minutes 

to complete using our protocol. Despite the above, I obtained excellent R2 values for 

each PA PWV for each child before and after hypoxia challenge as shown in Figure 4.2. 
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4.4.2 Reproducibility and variability 

Despite the above observations, good repeatability in image analysis as reflected by the 

good CV of 9% for intra-observer measurements and low variability as the mean 

difference between measurements was -0.02 m/s (95% CI -0.41 m/s to 0.38 m/s) on the 

Bland-Altman plots with a correlation coefficient, r=0.92. The inter-observer 

repeatability was reasonable with CV of 15.6%. PA PWV measurements obtained by 

JME were generally higher than CYP as the Bland-Altman plots showed the mean 

difference to be -0.28 m/s (95% CI -1.06 m/s – 0.49 m/s), although the PA PWV values 

had relatively good correlation, r=0.72. It is noted that JME generally under-detected 

the change in PA cross-sectional area resulting in a higher PWV value.  

 

An experience echocardiographer (JME) with experience in off-line echocardiographic 

images post-processing but had limited experience off-line post-processing of cardiac 

MRI images was used to compare inter-observer repeatability. Despite receiving 

training on manual outlining of the PA prior to performing the analysis, a higher but 

acceptable variability and CV was observed. This reaffirms the importance of involving 

a highly trained operator in cardiac MRI analysis to analyse the images obtained using 

this technique.  

 

Ibrahim and colleague reported low intra- and inter-observer variability in both transit 

time and QA methods but found the standard deviations of differences between 

measurements in the QA method to be greater than the transit time method, albeit not 

significantly different (Ibrahim 2011). In their study, the MRI images were outlined 

semi-automatically by bespoke computer software after the operator had marked the 

vessel cross-section boundary, thus minimizing errors that may occur after manual 
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delineation of the PA cross-sectional area. Peng and colleagues reported percentage 

inter-scan differences to be around 10% but it is ethically difficult to envisage repeated 

scanning in such a young population (Peng 2006). 

 

4.4.3 Hypoxic challenge 

Normobaric hypoxia was successfully delivered to all children using a 12% 

oxygen/balance nitrogen cylinder mixture via anaesthetic tubing, a small mixing 

chamber and anatomical face mask. A previous study that administered 18% and 15% 

oxygen did not significantly decrease oxygen saturations to below 85%; hence we opted 

to use a 12% hypoxic challenge (personal communication with Professor S Kotecha 

who performed the study in Leicester, unpublished data). This level of hypoxia was 

tolerated well by all the subjects and there were no significant side effects experienced 

except the expected ones of mild dizziness, headache, tachycardia, and tachypnoea. We 

set the lower limit of 80% for oxygen saturations as hypoxemia below this level was 

considered unethical and unacceptable.  

 

The success of the hypoxic challenge was confirmed by the measured inspired oxygen 

of 11.2%. The normal range of end-tidal CO2 recorded in our subjects reassured us that 

the effects observed were due to hypoxia rather than changes in CO2 levels.  

 

In three children oxygen saturations remained above 86% during hypoxic challenge. 

This may have been due to poor fit of the anaesthetic face mask. Nevertheless, the heart 

rate in these subjects increased from the baseline during hypoxia but it is uncertain if the 

PA PWV values were affected. 
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4.4.4 Conclusion 

In conclusion,  I have demonstrated the feasibility of measuring PA PWV in children 

with phase-contrast velocity-encoded MRI using the QA method under normal and 

hypoxic conditions. This method was found to be reproducible with low variation in this 

young population. Phase-contrast velocity-encoded MRI has the potential to detect early 

changes in pulmonary arterial stiffness and can be used to non-invasively screen for 

sub-clinical pulmonary arterial hypertension in children. 

 

This study has been published in the Magnetic Resonance Imaging journal (Poon 

2013a) (Appendix H3). 
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Chapter Five 

Exaggerated pulmonary artery response to hypoxia in 

survivors of chronic lung disease of prematurity  

(MRI Study) 
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5.1 Introduction 

Children born preterm have impaired lung function and increased respiratory morbidity 

that persist into childhood (Fawke 2010, Kotecha 2012b). Few studies have investigated 

the effects of prematurity on the pulmonary circulation, specifically pulmonary vascular 

reactivity and pulmonary artery (PA) compliance beyond infancy (Poon 2013b). One of 

the reasons for this is the need for invasive cardiac catheterisation to assess the PA 

circulation and this limits the procedure to be ethically performed in children born 

preterm with echocardiographic evidence of pulmonary arterial hypertension (PAH). 

 

Acute exposure to hypoxia causes pulmonary vasoconstriction at the arteriolar level, 

thus increasing pulmonary vascular resistance, PA pressure and stiffness. It has been 

shown that in the pulmonary circulation of patients with or without pulmonary 

hypertension there is an inverse relationship between resistance and compliance 

(Lankhaar 2008). However, there are very little data on the effects of acute hypoxia on 

large vessel stiffness in normal children or indeed, in vulnerable individuals including 

those with cardiac and respiratory conditions where the risk of PAH is high. Adults who 

had persistent pulmonary hypertension of the newborn demonstrate significantly higher 

systolic pulmonary arterial pressure, measured by echocardiography, compared to 

controls at high altitudes suggesting the increased pulmonary vascular reactivity persists 

into adulthood (Sartori 1999). Mourani et al studied the acute effects of changing 

oxygen tension in 10 patients (aged 4 months – 27 years, median 5 years) with 

bronchopulmonary dysplasia that underwent cardiac catheterization for evaluation of 

pulmonary hypertension. They reported that mean PA pressure increased by more than 

20% following acute hypoxia, thus suggesting increased pulmonary vascular reactivity 

to hypoxia in this group of patients (Mourani 2004). Both these studies show increased 
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pulmonary vascular reactivity to hypoxia but it is unknown whether children who had 

CLD in infancy have similar PA hyper-reactivity. 

 

Although systolic PA pressure can be estimated from tricuspid regurgitant (TR) jet flow 

by using the modified Bernoulli equation and appears to have a good correlation with 

cardiac catheterization (Skinner 1993), TR jet flow can only be measured in 61% of 

young children with CLD (Mourani 2008). Cardiac MRI offers a highly accurate 

assessment of cardiac structures including ventricular volume, mass, function and blood 

flow through the cardiac valves and major vessels.  MRI-derived average blood velocity 

is strongly correlated to pulmonary pressures (r = -0.73) measured from right heart 

catheterisation (Sanz 2007), thus potentially  allowing non-invasive diagnosis of 

pulmonary arterial hypertension. Capacitance and distensibility, both measures of 

arterial stiffness, when measured using velocity-encoded phase-contrast MRI were 

found to be inversely related to mean pulmonary arterial pressure measured from right 

heart catheterisation in patients with pulmonary arterial hypertension (Mahapatra 2006, 

Sanz 2009)  Unfortunately  the calculation of capacitance and distensibility require 

invasive pressure measurements.  Peng et al used velocity-encoded phase-contrast MRI 

to measure PA pulse wave velocity (PWV), another measure of arterial stiffness, from 

the instantaneous changes in blood flow with cross sectional area of the PA during early 

systole, without the need for invasive pulmonary arterial pressure measurements (Peng 

2006). 

 

Our department had previously studied a similar group of children on the effects of 

hypoxia (15% and 12% inspired oxygen) on the pulmonary circulation using 

echocardiography (both conventional and myocardial velocity imaging techniques) 
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which did not show any difference in the echocardiographic parameters of PAP before 

or after hypoxia between the groups (Joshi 2014). Since velocity-encoded MRI is more 

sensitive at measuring PA compliance with relatively minor changes in PA resistance, 

this method may be more sensitive at detecting the changes in PA compliance with 

hypoxia challenge in these subjects.  

 

The main objective of this study was to measure PA PWV in normoxia and under 

hypoxic conditions using this novel MRI technique in children born preterm who had 

chronic lung disease of infancy (CLD group) and compare the results against children 

born preterm (Preterm group) and at term (Term group) without lung disease during 

infancy. As this is a follow-on study from the feasibility study, this study included 

subjects from the study described in the previous chapter. I hypothesised that children 

born preterm who had CLD of infancy would have a significant increase in PA PWV 

with hypoxia compared to the two control groups. 

 

5.2 Methods 

5.2.1 Recruitment 

Both Mourani et al and Sartori et al found children who had CLD and adults who 

recovered from transient perinatal hypoxic pulmonary hypertension had exaggerated 

increase in their PAP after a hypoxic challenge compared to the control groups (Sartori 

1999, Mourani 2004). The differences in PAP between the groups were between 20-

33%. Based on their data, I calculated that I would need to study at least 30 children in 

each arm to be 90% certain of a difference of 30% in pulmonary arterial pressure at a p 

< 0.05 between the groups. 
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In this cross-sectional study, sixty seven (15 CLD, 24 Preterm and 28 Term), 9–12 years 

old children, who were born between 23–42 weeks of gestation, responded to the 

invitation and recruited to participate in the study. Preterm-born children who were born 

≤32 weeks gestation were identified from the Cardiff and Vale NHS trust neonatal 

database initially but towards the latter part of the study, recruitment of the preterm-

born children was extended to include those born in Gwent Healthcare NHS trust due to 

poor response from the individuals identified from Cardiff and Vale NHS trust. Preterm 

children who were supplemental oxygen-dependent at 28 days of age or beyond were 

classified into the CLD group. Term-born children (≥37 weeks‟ gestation) were 

recruited from local outpatient clinics and from school friends of included preterm-born 

subjects. Children who had patent ductus arteriosus corrected by occlusion coils or 

clips, ventricular septal defects or had any cardiovascular surgery to correct any 

congenital structural cardiac defects were excluded from the study; in addition to the 

other absolute contraindications to having an MRI scan. All subjects were clinically 

well at the time of study.  

 

The study was approved by the South East Wales Regional Ethics Committee (REC 

reference number: 09/WSE02/31), Cardiff and Vale NHS Trust Research and 

Development department (R&D study reference: 09/RPM/4554) and Gwent Healthcare 

NHS Trust Research and Development department (Reference number: RD/833/10). 

Written informed consent and assent were obtained from parents and children 

respectively. 
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Details of subjects‟ neonatal and medical histories were obtained from their parents and 

medical records by JME or CYP.  

 

5.2.2 Echocardiographic examination 

Echocardiographic examination was performed on all subjects by JME and CYP to 

confirm normal cardiac structure and function prior to the MRI scan. Subjects who had 

patent ductus arteriosus corrected by occlusion coils or clips, ventricular septal defects 

or had any cardiovascular surgery to correct any congenital structural cardiac defects 

were excluded from the study, in addition to the other absolute contraindications to 

having an MRI scan. Pulmonary arterial blood flow acceleration time, ejection time, and 

tricuspid regurgitation peak velocity, if present, were measured to approximate systolic 

pulmonary arterial pressure prior to hypoxia challenge. 

 

5.2.3 Imaging technique 

All MRI scans were performed using a 3.0T GE Signa HDx MRI scanner with an 8-

channel phased-array cardiac coil (GE Healthcare, Bucks, UK). The MRI protocol 

described in section 4.2.3 was used in this study.  

 

Each subject was initially given a practice run in a mock MRI scanner; lying within the 

scanner with simulated noise being played in the background, prior to the actual MRI 

examination (Figure 5.1). Each subject was scanned twice to acquire cine images of the 

PA cross section, first while breathing room air and again after breathing 12% inspired 

oxygen (balance nitrogen) for 20 minutes, using the same scanning protocol. The 

subjects continued breathing the hypoxic inspirate during the second MRI scan. During 
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the whole scanning procedure, subjects were able to watch a film on a projector screen 

within the scanner by wearing MRI-compatible prisms spectacles. The subject‟s parents 

were allowed to stay in the MRI scanner room during the scanning session, after 

appropriate screening procedures. 

 

 
 
 
 
 
Figure 5.1 – Photograph showing subject in the mock MRI scanner 
 

 
 

(Informed consent was obtained for the reproduction of this photograph in this thesis) 
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5.2.4 Hypoxic challenge 

The same protocol and apparatus used in the MRI pilot study described in section 4.2.4 

were used in this study. Figure 5.2 shows the subject wearing the mask connected to the 

oxygen cylinder delivering the hypoxic admixture via the respiratory circuit.   

 

5.2.5 Monitoring during the MRI scan 

The subjects heart rate, oxygen saturation, inspired oxygen and end-tidal carbon dioxide 

levels were monitored continuously during the hypoxic challenge. 100% oxygen was 

titrated into the circuit to maintain the oxygen saturations between 80–85% if oxygen 

saturations decreased to below 80%. Each subject received at least 20 minutes of 

hypoxic challenge before the repeat PWV assessment. CYP and JME were present 

throughout the whole MRI scanning procedure as part of the safety protocol agreed with 

ethics committee and both Cardiff and Vale NHS trust and Gwent Healthcare NHS trust 

research and development departments.  

 

5.2.6 Image analysis 

The images were anonymised and transferred to a personal computer and analysed using 

the freely available software Segment version 1.8 R1145 (http://segment.heiberg.se) 

(Heiberg 2010). The series of both magnitude and phase images showing the magnified 

view of the PA cross section throughout one cardiac cycle were displayed one at a time. 

The region of interest outlining the PA was defined manually on the magnitude images. 

After outlining the PA, the software calculated the cross-sectional area of the PA and 

the flow within the cross section from the magnitude and phase (velocity-encoded) 

images, respectively for each acquired phase of the cardiac cycle. Flow rate was plotted 

http://segment.heiberg.se/
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against measured cross sectional area of the PA during early systole using the data 

generated by the software. Pulse wave velocity was derived from the slope of the line 

fitted to the flow-area data, which represents the ratio of flow change (∆Q) and area 

change (∆A) during early systole (Peng 2006) (Figure 5.3). 

 

The images were analysed by a single observer (CYP), who was blinded to which group 

the images belonged to and whether the images were acquired during normoxia or 

hypoxia. 

 

 
Figure 5.2 – Subject wearing mask and receiving hypoxia mixture from the cylinder via 
respiratory circuit 
 
 

 
 
Respiratory circuit showed in this photograph is a simplified version used for the 
purpose of the practice run and does not represent the actual circuit use in this study 
 

(Informed consent was obtained for the reproduction of this photograph in this thesis)
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Figure 5.3 - Early systolic MRI images shows linear increase in PA flow and PA cross 
sectional area with data plotted onto a graph. 

 

 

A succession of cross-sectional images showing MPA (delineated in yellow) distending during 
early systole. The vessel cross-sectional area and flow are measured at each frame during early 
systole. The graph shows the measured flow rate versus cross-sectional area. A line is fitted to 
the measured data, where PWV is determined as the gradient of the line (change in flow over 
change in area). A very high R2 value showed a good fit of the plots in the linear regression line. 
 
cm3/s=centrimetre3 per second, cm2=centimetre2, PWV=pulse wave velocity. 
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5.2.7 Statistical analysis 

Statistical analyses were performed using IBM SPSS Statistics for Windows, version 

21.0 (Armonk, NY: IBM Corp). The Shapiro-Wilk test was used to test the normality of 

the measured parameters. Paired Student‟s t-test was used to compare PA PWV before 

and during hypoxia within each individual group. A two-tailed one-way ANOVA with 

post-hoc Tukey test was used to compare demographics, echocardiographic and 

physiological data before and after hypoxic challenge between the three groups (P<0.05 

was considered significant). Additional non-parametric bootstrap analysis was 

performed for the non-normally distributed change of PA PWV following hypoxia 

between the three groups. These results are presented as 95% confidence intervals.  

 

5.3 Results 

5.3.1 Subject characteristics and echocardiographic data 

Eight subjects (12%; 2 CLD, 4 Preterm and 2 Term) were unable to complete the MRI 

protocol due to claustrophobia or inability to tolerate the hypoxic challenge. The 

remaining 59 subjects (13 CLD, 21 Preterm and 25 Term) completed both normoxia and 

hypoxia protocols. Subject characteristics and echocardiographic data are given in Table 

5.1 and Table 5.2.  

 

All subjects had normal cardiac structure and function on echocardiogram. None of the 

subjects had evidence of increased right atrial or PA pressure. Tricuspid regurgitation 

was detectable in 10 CLD (77%), 16 Preterm (76%) and 21 Term (84%) subjects with 

estimated mean systolic pulmonary arterial pressures of 22.6 mmHg in all three groups. 
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There were also no differences in pulmonary acceleration/ejection time ratio between 

the groups. 

 

Table 5.1: Subject demographics and respiratory support during neonatal period 

Parameters CLD 

(Mean ± SD) 

Preterm (Mean 

± SD) 

Term 

(Mean ± SD) 

p-value 

Number, n 13 21 25  

Gestation, wks  27.2 ± 1.0 30.5 ± 1.1 40.2 ± 1.2 <0.001 

Birth weight, kg 11.5 ± 1.0 12.0 ± 0.8 11.5 ± 1.0 NS 

Apgar score     

   1 min 5 ± 2 7 ± 2 9 ± 1 <0.001 

   5 min 8 ± 2 9 ± 1 9 ± 1 0.005 

Antenatal steroids, n 12 17 0  

Respiratory support, days 45.9 ± 19.1 3.3 ± 4.6 0 <0.001 

Mechanical ventilation, days 21.8 ± 13.7 1.6 ± 2.8 0 <0.001 

CPAP, days 24.2 ± 10.3 1.3 ± 1.8 0 <0.001 

Oxygen dependency, days 147.5 ± 75.6 6.8 ± 9.5 0 <0.001 

Expressed as mean (SD). wks=weeks, kg=kilograms, n=total number. ANOVA test used for 

gestation, birth weight and Apgar scores. T-test used for respiratory support, mechanical 

ventilation, CPAP and oxygen dependency. 
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Table 5.2: Subject demographics and echocardiographic data at the time of assessment 

Parameters CLD 

(Mean ± SD) 

Preterm (Mean 

± SD) 

Term 

(Mean ± SD) 

p-value 

Number 13 21 25  

Male, number (%) 8 (62%) 10 (48%) 16 (64%)  

Age at study, yrs 11.5 ± 1.0 12.0 ± 0.8 11.5 ± 1.0 NS 

Weight, kg 33.7 ± 4.6 50.2 ± 16.5 44.0 ±13.4 NS 

Height, cm 141.3 ± 5.6 149.6 ±10.3 149.2 ± 10.6 NS 

Systolic BP, mmHg 113 ± 12 113 ± 8.2 109 ± 11 NS 

Diastolic BP, mmHg 70 ± 14 63 ± 6.5 60 ± 14 NS 

Tricuspid jet velocity, m/s 2.1 ± 0.3 2.1 ± 0.3 2.1 ± 0.4 NS 

AT:ET ratio 0.40 ± 0.01 0.41 ± 0.03 0.40 ± 0.04 NS 

 
Expressed as mean (SD). wks=weeks, yrs=years, kg=kilograms, m/s=metre per second;  
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5.3.2 Hypoxic challenge 

Three subjects (1 CLD and 2 Term) were unable to tolerate the hypoxic challenge and 

were excluded from the study. Effective hypoxic challenge was successfully delivered 

to the remaining 59 subjects with oxygen saturations decreasing within 2-3 minutes, 

reaching a nadir and stabilising within 10 minutes of starting the hypoxic challenge. All 

subjects had significant changes in heart rate, respiratory rate and oxygen saturations in 

all three groups (p<0.001). Table 5.3 highlights the changes in measured vital signs 

before and during the hypoxic challenge. Although there was a significant increase in 

respiratory rate following the hypoxic challenge, the normal range of end-tidal CO2 

recorded in my subjects reassured me that the effects observed were due to hypoxia 

rather than changes in CO2 levels.  
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Table 5.3: Measurements before and during the hypoxic challenge 

Parameters CLD 

(Mean ± SD) 

Preterm (Mean 

± SD) 

Term 

(Mean ± SD) 

p-value 

HR in air, bpm 74 ± 7 75 ± 12 82 ± 13 NS 

HR under hypoxia, bpm 88 ± 13 87 ± 14 90 ± 9 NS 

RR in air, /min 19 ± 4 23 ± 4 23 ± 4.4 NS 

RR under hypoxia, /min 23 ± 3 26 ± 5 24 ± 3.1 NS 

Oxygen saturation in air, % 98 ± 2 98 ± 1 98 ± 2 NS 

Oxygen saturation under 

hypoxia, % 

83 ± 2 83 ± 5 85 ± 4 NS 

Inspired O2, % 10.9 ± 1.4 11.3 ± 1.4 11.2 ± 0.7 NS 

etCO2, % 4.4 ± 0.9 4.4 ± 0.7 4.3 ± 0.8 NS 

 
bpm=beats per minute, etCO2=end-tidal CO2  
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5.3.3 PA PWV measurements using velocity encoded MRI 

The MRI examination lasted approximately 90 minutes including the 20 minutes 

hypoxic exposure. Fifty nine subjects successfully completed the MRI protocols in both 

normoxic and hypoxic conditions.  

 

PA PWV measurements were successfully derived from the 59 subjects, both in air and 

during hypoxic challenge. Figure 5.4 shows the PA PWV for individual subjects at 

normoxia and during the hypoxia in all three groups. There were no differences in mean 

PA PWV between the groups breathing air [CLD=1.3 (0.4) m/s, preterm control=1.3 

(0.4) m/s, term control=1.3 (0.3) m/s]. However, PA PWV increased significantly 

following hypoxia in all groups following hypoxia [CLD=1.9 (0.7) m/s, preterm 

control=1.5 (0.6) m/s and term=1.5 (0.5) m/s]. Using non-parametric bootstrap within 

ANOVA with Tukey correction, the mean differences (95% confidence interval) 

between the CLD and the preterm and term control groups were 0.37 (0.08, 0.70) and 

0.34 (0.05, 0.70) respectively suggesting a significant difference in PA PWV changes 

following hypoxia between the CLD group and the two control groups. There was no 

difference in PA PWV change with hypoxia between the two control groups, mean 

difference 0.23 (-0.2, 0.3). 
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Figure 5.4 – PA PWV for individual subjects at normoxia and during hypoxia  

 

 

 
Graph showed PA PWV for individual subjects at normoxia and during hypoxia in the CLD, 
preterm control and term controls. The solid red line shows the mean change in PA PWV before 
and after hypoxia in each group. 
  
 
PA=pulmonary artery, PWV=pulse wave velocity, CLD=chronic lung disease group 
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5.4 Discussion 

I have managed to be the first to apply this new novel MRI technique in the assessment 

of PA PWV (or changes in compliance) in children who suffered CLD of infancy. I 

have successfully measured PA PWV non-invasively and compared PA PWV changes 

with hypoxia in children born preterm who suffered CLD of infancy and preterm and 

term children without CLD of infancy. All subjects were clinically well and did not 

have evidence of pulmonary hypertension at the time of study. Using this MRI 

technique, we were able to measure PA PWV in children as young as 9 years of age. 

 

5.4.1 Hypoxic challenge 

Normobaric hypoxia was successfully delivered to the subjects using a 12% 

oxygen/balance nitrogen cylinder mixture via our specially-designed respiratory circuit. 

12% hypoxia was generally well tolerated by the subjects with no significant side 

effects experienced except the expected ones of mild dizziness, headache, tachycardia, 

and tachypnoea. The three subjects who could not tolerate the hypoxic challenge 

reported difficulty in breathing and chest discomfort and did not want to continue with 

the hypoxic challenge. Interestingly, two of these subjects were from the term control 

group and the desaturations following the hypoxia challenge in these two subjects were 

not greater than the rest of subjects who completed the whole protocol. The remaining 

subject who could not tolerate the hypoxia challenge was from the CLD group and 

complained of difficulty in breathing with chest discomfort during which oxygen 

saturations were in the low 90s. I could only postulate this subject had an exaggerated 

response to hypoxia leading to the symptoms experienced. The lower limit for oxygen 
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saturations was set to 80% as hypoxaemia below this level was considered unethical and 

unacceptable.  

 

5.4.2 PA PWV measurements using velocity encoded MRI 

Mean baseline PA PWV in all three groups were between 1.25 – 1.35 m/s. These values 

were lower than the values (1.96 m/s and 2.3 – 2.8m/s) reported in two other adult 

studies in the literature that used the same technique to measure PA PWV (Peng 2006, 

Ibrahim 2011). The great arteries in the body stiffen with increasing age, therefore, I 

expected the PA PWV in my cohort to be lower than those reported in the other two 

studies. This was illustrated in studies assessing aortic stiffness of children and adults 

(Koivistoinen 2007, Gurses 2013). 

 

Although there was no difference in PA PWV between the groups following hypoxic 

challenge, the change in PA PWV, which reflects on the increase in pulmonary vascular 

resistance as a result of pulmonary vasoconstriction, is marginally greater in the CLD 

group than in the preterm and term control groups. My finding echoes the findings of 

Mourani et al where significant increases in PA pressure and pulmonary vascular 

resistance was found with hypoxia in subjects who suffered from CLD (Mourani 2004); 

thus implying these subjects have increased pulmonary vascular reactivity and are at 

higher risk of developing pulmonary hypertension. Sartori et al reported similar finding 

in young adults who had transient perinatal hypoxic pulmonary hypertension when 

exposed to altitude-induced hypoxaemia (Sartori 1999).  

 

The underlying mechanism of the exaggerated pulmonary vasoconstrictor 

responsiveness in these subjects is unknown. It is hypothesised that there is a disruption 
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of normal lung angiogenesis in preterm infants with CLD that leads to dysregulated 

alveolarisation (Thebaud 2007). The impaired angiogenesis results in a reduction in the 

number and size of intra-acinar pulmonary arteries and total cross-sectional area of the 

pulmonary vascular bed, thus increasing pulmonary vascular resistance (Bush 1990). In 

addition, there is also evidence of increased muscularisation of the pulmonary arteries, 

along with a reduction of alveoli numbers, in infants who died from CLD (Hislop 1990, 

Margraf 1991). Extremely preterm infants with CLD are at high risk of developing 

pulmonary arterial hypertension due to the combination of an increase in pulmonary 

arterial medial thickness and pulmonary vascular resistance as a result of dysregulated 

angiogenesis.  

 

Children who have CLD in infancy, are well-recognised to have dysregulated lung 

growth (Joshi 2007) and lung function abnormalities in childhood and beyond (Joshi 

2013, Kotecha 2013). There is increasing concern that these subjects may be at risk of 

developing future lung disease such as COPD. COPD is closely linked to the 

development of pulmonary hypertension with an estimated 2-6/1000 COPD patients 

with pulmonary hypertension developing cor pulmonale (Naeije 2005). Furthermore, 

COPD is also associated with a higher prevalence of coronary artery disease (33.6% vs 

27.1%) (Maclay 2013). Taken together with the increased respiratory deficits in preterm 

infants especially those with CLD (Kotecha 2013), it will be important to monitor not 

only respiratory function (Kotecha 2012a) but also cardiovascular outcomes in preterm 

infants (McEniery 2011, Bolton 2012). 

 

Study Limitation 
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The number of subjects recruited for the study was less than the intended 30 subjects in 

each group. This is due to the poor response to the invitation to participate in the study. 

In view of the poor recruitment, recruitment of children who were born preterm was 

extended to another NHS trust towards the latter part of the study. Despite this, I still 

could not recruit the intended number of subjects for the study due to time constraints in 

completing my PhD degree and the financial implications for extending this study 

further. The reason for the poor response could be due to subject having moved out of 

the area as the contact details were obtained from admission details 9-12 years 

previously. This less than intended sample size could account for the borderline 

significant results seen in the CLD group.  

 

I used oxygen dependency beyond 28 days postnatal age as the definition of CLD based 

on the current definition as proposed by Jobe and Bancalari and thus included subjects 

with milder forms of CLD / BPD (Jobe 2001). Whether using the CLD definition based 

on oxygen dependency beyond 36 weeks corrected gestation would have shown greater 

differences between the CLD group and the control groups is not known as I had only 

recruited 8 subjects who fulfill the CLD definition of oxygen dependency beyond 36 

weeks corrected gestation but their PA PWV were similar to the others in the CLD 

group. Ideally, I would prefer to have recruited more subjects in the CLD group as the 

number of subjects recruited in the CLD group was less than intended. As such, there 

may be some degree of selection bias as the CLD cohort may have been at the less 

severe end of the disease spectrum. 

 

There was significant movement of the PA in the slice plane between end-diastole to 

end-systole, especially during hypoxic challenge when the heart and respiratory rates 
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increased. This could be a source of error to estimate PA PWV as suggested by Ibrahim 

et al (Lee 2014). Manual outlining of the PA was required in all of the scans in my 

study. Although this can be subjective, I noted good repeatability and low variability in 

my feasibility study (Poon 2013a) and a very high regression value for each PA PWV 

value was obtained for each child.  However, a robust, automated vessel outlining tool 

based on active contouring could possibly minimise this error by avoiding operator 

dependency. 

 

In conclusion, I demonstrated that children born preterm who suffered from CLD in 

infancy have increased pulmonary vascular reactivity to hypoxia using velocity-encoded 

phase-contrast MRI to measure PA PWV. Although these children may be clinically 

well in normoxic conditions, they still have pulmonary vascular hyper-reactivity to 

hypoxia and reduced pulmonary function especially forced expiratory volume in the 

first second (FEV1) (Kotecha 2013) at school age and possibly into adulthood. The 

human lungs continue to form alveoli during childhood and adolescence (Narayanan 

2012) and recently, it has been reported that ex-preterm children with or without CLD 

of infancy also display catch up alveolarisation (Narayanan 2013). However, exposure 

to cigarette smoking, diseases and other environmental toxins may adversely affect 

alveolarisation in later life or even worse, damage normal lung parenchyma leading to 

chronic obstructive pulmonary disease, pulmonary hypertension and eventually right 

heart failure.  
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Chapter Six 

Summary and Conclusions 
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6.1 Overview 

Improvements in antenatal and neonatal care in the last two decades have changed the 

pathology, morbidity and mortality of chronic lung disease of prematurity. With 

increasing numbers of preterm births every decade (Field 2009) and increased survival 

of the extremely preterm population (Costeloe 2008), the proportion of conditions 

related to prematurity treated has increased. It is, therefore, important to detect any 

potential associated cardiac and pulmonary conditions in this population (Kotecha 2013, 

Poon 2013b) and instigate early prevention and /or treatment strategies.  

 

In this thesis, I have presented the optimal technical settings for offline post-processing 

of myocardial longitudinal strain () measurement in term and preterm infants. I have 

also presented the findings of the cardiovascular changes using both conventional and 

tissue Doppler echocardiography in preterm infants with respiratory distress syndrome 

and compared the findings with preterm and term–born control populations at birth until 

one year corrected age. I have also studied the pulmonary arterial stiffness and the 

effects of acute hypoxia on pulmonary vascular reactivity of 8-12 years old children 

who were born preterm and had chronic lung disease of infancy and compared this with 

age matched preterm and term-born control populations using a novel MRI technique. 

All preterm-born infants and children studied in this thesis that required mechanical 

ventilation support received surfactant and therefore, represent the modern or latest 

population of the surfactant era. 
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6.2 Summary of key findings 

6.2.1 Optimisation of myocardial deformation imaging in term and preterm 

infants – a technical study (Chapter 2) 

 In smaller preterm infant with smaller ventricles, using a computational distance or 

strain length of 6mm for the off-line analysis of segmental strain in myocardial 

velocity imaging is most reproducible. 

 In term infants with larger hearts, both computational distances of 6mm and 10mm 

are optimal and similarly reproducible. 

 All myocardial velocity loops should be acquired at frame rates above 180 fps. 

 

 

6.2.2 Regional and global myocardial assessment in preterm neonates with 

respiratory distress syndrome at birth and maturation of myocardial 

function during the first year (Chapter 3) 

 Pulmonary arterial pressure was raised in preterm infants with RDS at birth. 

Pulmonary artery acceleration to ejection time ratio was the most reliable surrogate 

marker of pulmonary arterial pressure as this could be calculated in all infants 

compared to tricuspid regurgitation which could only be measured in 39% of 

subjects. 

 Right ventricular longitudinal axis shortening, a surrogate marker of RV global 

function, and right basal myocardial systolic velocity, a regional myocardial 

parameter were lower in preterm infants with RDS at birth. 
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 There were no differences in LV global and regional function between the groups at 

birth except LV myocardial systolic velocity being lowest in preterm infants with 

RDS.  

 Preterm infants with and without RDS had left ventricular diastolic dysfunction at 

birth, which normalised by the time they reach 36-40 weeks corrected gestational 

age.  

 The differences noted at birth between the groups mostly disappeared by term and 

by one month and one year of age, the regional and global function of both 

ventricles in the preterm infants with RDS had caught up with the control groups. 

This indicated postnatal maturation of cardiac function in the preterm groups, 

especially in those with RDS. 

 

 

6.2.3 Pulse wave velocity in the pulmonary artery measurement and 

response to hypoxia in children who had CLD in infancy (Chapter 4 and 5) 

 In the feasibility study, I have established that PA PWV can be assessed in children 

as young as 9 – 12 years old using velocity-encoded phase contrast MRI. I have then 

successfully applied it to measure PA PWV at baseline and after hypoxia challenge 

in children who had CLD in infancy. 

 At baseline, pulmonary arterial stiffness (as measured by pulse wave velocity) was 

similar in children who had CLD in infancy and the control groups. 

 In response to hypoxia, the pulse wave velocity in the pulmonary artery in all three 

groups of children (age 8-12 years) increased as expected as a result of increased 

pulmonary arterial resistance secondary to pulmonary hypoxic vasoconstriction. 
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 The increase in pulmonary arterial pulse wave velocity in children who had CLD in 

infancy was significantly higher than those of the control groups, thus suggestive of 

increased pulmonary vasoreactivity in this cohort.  

 

6.3 Importance and clinical implications of findings 

6.3.1 Neonatal tissue Doppler study 

At the start of the study, there were limited published studies on using myocardial 

velocity imaging on newborn term and preterm infants (Ekici 2007, Nestass 2009, Wei 

2009, Joshi 2010). These studies assessed different tissue Doppler parameters in the 

newborn term infants and term neonates who suffered asphyxia at birth. There was no 

published study on the optimal settings for assessment of myocardial deformation in the 

preterm population and definitely no publications on the preterm population suffering 

from RDS. Whilst my study was on-going, a few studies with longitudinal follow-up of 

healthy preterm infants were reported (Kozák-Bárány 2001, Eriksen 2013, Gurses 2013, 

Helfer 2014) but none had as large a population as this study or followed the same 

cohort for as long a period of time.   

 

This study confirmed that despite the use of surfactant in preterm infants with RDS, the 

pulmonary arterial pressure was still elevated at birth as evidenced from decreased 

pulmonary artery acceleration to ejection time ratio (PA AT:ET) and increased tricuspid 

regurgitation in this group of infants compared to the controls. Pulmonary artery flow 

time analysis is simple, reproducible and could be reliably measured in most, if not all 

of the subjects compared to tricuspid regurgitation. PA AT:ET can be used to assess 
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raised pulmonary artery pressure in preterm infants with RDS if tricuspid regurgitation 

could not be obtained.  

 

Infants with RDS have reduced RV global function and reduced RV myocardial systolic 

velocity measurement as a result of the raised pulmonary pressure at birth. RV 

longitudinal axis shortening, which is corrected for ventricular size should be used to 

assess global function instead of using isolated tricuspid annular excursion without z-

scores normalised for infants‟ weight. I have found that myocardial systolic velocity is 

more sensitive than myocardial deformation in detecting regional myocardial 

dysfunction in the right ventricle in this cohort of extremely preterm infants with RDS. 

The abnormal RV global and regional parameters in the preterm RDS group at birth 

resolved following resolution of their respiratory condition.  

 

In this study, I have noted both systolic and diastolic myocardial velocities to correlate 

positively to infant heart size. After I normalised the myocardial velocities to the heart 

size by dividing the myocardial velocity values by the chamber size, the difference in 

myocardial systolic velocity between the groups disappeared. This raises the question 

whether myocardial velocity could be influenced by heart size and may influence the 

result of the findings of the study. Producing a z-score for myocardial velocity for this 

cohort of preterm infants of various gestations would resolve this question but I was 

unable to address this issue due to the low number of subjects recruited into the study. 

 

Preterm infants had LV diastolic dysfunction at birth but this normalised by the time 

they reached term. Preterm infants displayed catch up growth in cardiac size and 

maturation of cardiac function postnatally when compared to their term counterparts at 
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one month and one year of age. This can be used to guide or discourage unnecessary 

intervention in view of the natural history of initial diastolic dysfunction in the preterm 

population. 

 

In this study, I have found longitudinal axis shortening and myocardial systolic velocity 

to be the most sensitive parameters among the parameters used in myocardial velocity 

imaging to assess global and regional function, respectively, of infants with RDS. 

Pulmonary arterial flow time analysis used to obtain PA AT:ET still has a role in the 

assessment of pulmonary artery hypertension amidst other new emerging parameters. 

 

6.3.2 Pulmonary arterial pulse wave velocity MRI study 

The evidence of long term respiratory sequelae of CLD in infancy is irrefutable 

(Hennessy 2008, Baraldi 2009, Kotecha 2013). However, the evidence of long term 

consequences of CLD in infancy on the pulmonary artery and its reactivity to hypoxia is 

lacking.  Mourani et al studied the acute effects of oxygen tension in 10 patients (aged 4 

months – 27 years, median 5 years) with bronchopulmonary dysplasia that underwent 

cardiac catheterization for evaluation of pulmonary hypertension (Mourani 2004) and 

another adult study reported the effects of high altitude on  systolic pulmonary arterial 

pressure, measured by echocardiography on those who suffered transient perinatal 

hypoxic pulmonary hypertension (Sartori 1999). Our group has previously studied a 

similar group of children using conventional and tissue Doppler echocardiography to 

detect any long term consequences of CLD on the right heart and pulmonary arterial 

reactivity following hypoxic challenge (Joshi 2014). There was no difference in 

pulmonary arterial pressure using echocardiographic parameters between the groups 

following hypoxic challenge. MRI-based assessments of the right heart and pulmonary 
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artery are increasingly used on adults with pulmonary hypertension (Mahapatra 2006, 

Peng 2006, Gan 2007) and early changes of the pulmonary artery compliance seen in 

pulmonary hypertension could be detected using newer MRI techniques (Lankhaar 

2006) prior to clinical manifestations of pulmonary hypertension.  

 

As expected, the children with CLD in infancy who were clinically well and 

asymptomatic had the same baseline pulmonary arterial stiffness as measured by pulse 

wave velocity estimation on MRI compared to controls, in keeping with the findings by 

Korhonen et al (Korhonen 2005). However, following hypoxic challenge, we found that 

children who had CLD in infancy had a greater increase in pulmonary arterial PWV 

compared to the control groups. This suggests persistence of increased pulmonary 

vascular reactivity to hypoxia in this cohort at the age of 8-12 years. This result also 

suggests MRI is more sensitive in assessing pre-clinical changes in pulmonary arterial 

compliance prior to clinical manifestations of pulmonary hypertension. Children with 

previous CLD may be at higher risk of developing pulmonary hypertension if they were 

to be exposed to recurrent chest infections and should be discouraged from smoking 

tobacco.  

 

In view of the risk of children with CLD in infancy developing right ventricular 

dysfunction secondary to pulmonary disease, these children should have a right sided 

cardiac assessment if pulmonary function deteriorates even if they are asymptomatic 

from the cardiac point of view. There may be a role for using this MRI technique to 

non-invasively assess these children‟s PA compliance or PWV longitudinally when 

MRI scanners become more readily available in the clinical setting.  
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6.4 Future and on-going research 

 I have identified diastolic dysfunction in preterm infants at birth and normalisation 

of the diastolic function by the time they reach term corrected gestation. This 

finding was also reported by two other studies (Kozák-Bárány 2001, Eriksen 2013) 

with similar intervals (at birth and at term). At the time of doing this thesis, there 

was no study looking at the natural history of this improvement at such a short 

interval. This would improve our understanding of the maturation of the cardiac 

function of the preterm population. 

 

 I was unable to address the question whether regional myocardial velocities are 

affected by heart size in my study. A larger study to obtain regional myocardial 

velocities of preterm infants of various gestations with and without RDS to address 

this relationship and also produce the z-scores for different gestations would help 

determine the suitability of this parameter in the assessment of regional myocardial 

function in the preterm population.  

 
 

 Speckle tracking echocardiography has been used in the preterm population (Elkiran 

2013, Schubert 2013, de Waal 2014) and has a potential advantage over myocardial 

velocity imaging or tissue Doppler echocardiography in the assessment of 

ventricular deformation. Speckle tracking echocardiography is not affected by the 

translation and stretching of neighbouring myocardial segments, has less angle 

dependency, is more reproducible and requires less post-processing time (Elkiran 

2013). However, more studies will need to be carried out to using this technique to 

ascertain the usefulness of regional myocardial deformation in the assessment of 
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clinical or subclinical pulmonary hypertension in the preterm population with or 

without RDS.  

 

 MRI assessment of the pulmonary artery and right ventricle has the potential for the 

detecting subclinical changes of pulmonary hypertension. A more robust automated 

vessel outlining tool based on active contouring in outlining the pulmonary artery 

would decrease the time to post-process images tremendously and increase the 

chances of this technique being used in the future. 

 
 Future research investigating pulmonary vascular reactivity should include larger 

numbers of children with more severe CLD in infancy in order to compare the 

findings reported in this thesis. 

 
 This cohort should be followed up longitudinally to monitor for any change or 

worsening of PA PWV especially if they smoke cigarettes or have poor lung 

function in later life. 

 

6.5 Challenges of the study 

6.5.1 Recruitment 

6.5.1.1 Neonatal tissue Doppler studies 

The parents of the preterm subjects in the study were approached and recruited 

following admission to the neonatal unit. Sixty seven out of 90 (35 preterm control and 

32 preterm RDS) approached consented to participate in the study. The term controls 

were recruited from the postnatal ward and 60 out of 135 term controls identified were 

recruited over 3 years. The parents of the term infants were less keen to participate in 
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the study due to personal reasons, the potential delay at discharge from the postnatal 

ward and inability to attend follow-up scans at one month and one year of age.  

 

6.5.1.2 Pulmonary artery pulse wave velocity MRI study 

The preterm-born subjects in this study were identified from the contact details of the 

children at the time of birth and from their hospital records. The parents of these 

children were contacted only after confirmation with their general practitioner of their 

survival following their preterm births. Out of 336 preterm-born children identified to 

be eligible for the studies, only 189 (56%) could be traced with confirmation of them 

being alive with their general practitioner as most had moved out of the area. Out of 147 

that were contacted by invitation letter (Appendix C2.1), only 50% (73/147) responded 

to participate in the study. The reasons for the non-response were unknown and this 

could have caused unintentional and unavoidable selection bias in the study. 

 

6.5.2 Sample size 

As there were no previous studies on tissue Doppler echocardiography changes in 

preterm infants with RDS and pulmonary vascular response to hypoxia in ex-preterm 

children, I based my sample size on a study by Sartori et al (Sartori 1999). Sartori and 

colleagues had studied term-born young adults who had persistent pulmonary 

hypertension rather than those with CLD of prematurity. Thus, the sample size was 

based on a study that had a different study population with regards to their disease 

pathology. The sample size in the MRI study was less than intended due to poor 

recruitment response from identified subjects despite extension of recruitment duration 

and recruitment centre.  
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6.5.3 Neonatal tissue Doppler study 

This was a prospective study and there was a 50% drop out rate (as a result of missed 

follow-up and also death in the neonatal period) in the one month and one year follow-

up assessment. However, the ratio of 2:1:1 (term control: preterm control: preterm with 

RDS) was maintained throughout the study and the dropout was not felt to have 

influenced the result of the study. 

 

6.5.3.1 The challenges of tissue Doppler echocardiography 

Measurement of myocardial velocity and deformation by ultrasound are associated with 

a number of technical problems such as angle dependency of ultrasound beam, artefacts 

from reverberations and shadows, sampling rate, out of plane motion, and random noise. 

Strain images may be characterised by signal noise compromising image quality. Strain 

profiles and curves do not always return to baseline at the end of systole. This may be in 

part due to the mathematical integration algorithm, but may also be caused by the fact 

that the wall itself does not return to exactly the same state of deformation at the end of 

the cycle as was the case at the start. This aspect could be related to several factors, 

including normal beat to beat variation in stroke volume. RV isovolumic acceleration 

and isovolumetric relaxation time were assessed in the study in view of the high inter-

observer variability in our group‟s reproducibility study (Joshi 2010). 
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6.5.4 Pulmonary artery pulse wave velocity MRI study 

6.4.4.1 Definition of CLD used (28 days oxygen dependency) 

Oxygen dependency beyond 28 days postnatal age was used as the definition of CLD in 

this study as recommended by Jobe and Bancalari (Jobe 2001). Because of this, the 

cohort recruited into this study may represent milder CLD and potentially display less 

pulmonary vascular reactivity than those who were oxygen dependent at 36 weeks 

corrected gestation. 
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6.5.4.2 MRI scan: Challenges 

Five subjects were unable to tolerate the claustrophobic environment within the MRI 

scanner and were excluded from the study.  The MRI scanning time initially lasted 

approximately 90 minutes (including 20 minutes hypoxic challenge) but with more 

practice and familiarity of the protocol, MRI scanning time was reduced to 60 minutes 

per subject. Distraction by using optic prisms to enable subject to watch DVD during 

the scanning procedure greatly reduced the failure of non-completion of the protocol. 

Manual outlining of the pulmonary artery was required during post-processing of the 

MRI images. Although this can be subjective, I noted good repeatability and low 

variability in my methodology study. However, I do suggest a more robust, automated 

vessel outlining tool based on active contouring could possibly minimise this error by 

avoiding operator dependency. The process of moving the subjects out of the MRI 

scanner to place the face mask to deliver the hypoxic challenge and then repeat 

localisation of the pulmonary artery could introduce errors. This was performed in order 

to improve the success of completing the MRI scanning protocol by reducing the time 

subjects breathed via the face mask. 

 

6.5.4.3 Challenges of hypoxic challenge test 

Three subjects were unable to tolerate the hypoxic challenge whilst having the MRI 

scan and had to be excluded from the study. This was due to the use of an anatomical 

anaesthetic face mask which exaggerated the claustrophobic experience in addition to 

the MRI scanning. A closed respiratory circuit was used to deliver the normobaric 

hypoxic challenge (12%) from oxygen/nitrogen mixture and 100% oxygen cylinder. 

Humidified gases delivered at a high flow rate (20L/min) were delivered into a small 

mixing chamber, to prevent rebreathing of the previous breath, before being inhaled by 
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the subject. The excess gases and expired breaths from subjects exited the circuit 

through the expiratory limb, which also acted as a rebreathing reservoir necessary for 

when the peak inspiratory flow instantaneously exceeded the gas flow rate. Normobaric 

hypoxic challenge was used because the MRI assessment could not be performed 

alongside the hypoxic chamber; hence the use of my methodology in this study. In some 

of the subjects studied, the hypoxic challenge caused the subjects‟ oxygen saturations to 

fall to below 80%. This would undoubtedly cause more significant changes in 

pulmonary arterial pulse wave velocity but in order to abide to the criteria agreed with 

the ethics committee, supplemental oxygen was given to maintain oxygen saturation to 

above 80%.   

 

6.6 Conclusion 

This thesis includes two detailed studies on the cardiovascular effects of RDS in 

preterm infants and long term effects of CLD in infancy on the pulmonary artery 

reactivity in children aged 8-12 years. The study population represents both infants and 

children born in the surfactant era. All parameters measured in the studies were 

compared between subjects affected by their respective respiratory conditions and the 

preterm and term control population.  

 

In this thesis, I have demonstrated preterm infants with RDS have impaired RV global 

systolic function and impaired myocardial velocities. Preterm infants, both with and 

without RDS have diastolic dysfunction which improves by the time they reach term 

corrected gestation. I have also showed that preterm infants displayed catch up growth 

in cardiac size and maturation of cardiac function postnatally when compared to their 

term counterparts at one month and one year of age. 
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Using velocity-encoded MRI assessment of the pulmonary artery stiffness, I 

demonstrated that children who had CLD in infancy had normal baseline pulmonary 

artery pulse wave velocity but displayed an exaggerated response in pulmonary vascular 

reactivity to hypoxic challenge. This could be suggestive that the increased pulmonary 

vascular reactivity may persist well into adulthood in this population, similar to Sartori 

et al‟s cohort of young adults who had suffered transient perinatal hypoxic pulmonary 

hypertension (Sartori 1999).  

 

More research is required on this growing population of teenagers and young adults 

who had CLD in infancy to identify their risk of developing pulmonary hypertension at 

an earlier age and ensure appropriate follow up and active management.  
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Appendices 
 

Appendix A – Study protocols 

 
A1.1 TDi study protocol 

A1.2 TDi study echocardiogram acquisition protocol 

A1.3 TDi Study analysis protocol 

A2.1 MRI study protocol 

A2.2 MRI study echocardiogram acquisition protocol 

A2.3 MRI Study - MRI acquisition protocol 
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A1.1 TDi study protocol 
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A1.2 TDi study echocardiogram acquisition protocol 

 
 
Tissue Doppler Assessment of Longitudinal Right and Left Ventricular Strain and 

Strain Rate in Term and Preterm Infants 

(Echo Acquisition Protocol) 
 
  
A. Subcostal window 
1. PWD of hepatic venous flow 
2. 2D- IVC (sniff test) 
3. CFD of atrial septum 
 
  
B. Apical window 

A4C 
1. CFD of ventricular septum 
2. PWD of MV flow (CFD) 
3. CWD of TV flow (if TR is present in CFD) 
4. PWD (TDI) of lateral tricuspid annulus 
5. PWD (TDI) of lateral mitral annulus 
6. PWD (TDI) of medial mitral annulus 
7. A4C –2D 
8. A4C – TD 
9. TD – RV only 
10. TD – LV only 
11. TD – Septum only 
 
  

A5C 
12. PWD of LVOT (CFD) 
  
 
C. Parasternal long axis window  
1. Conventional 2D grey scale (for LVOT diameter) 
2. CFD- AV 
3. CFD of ventricular septum 
 
D. Parasternal short axis window 
1. PWD of PA (CFD) 
2. PWD at RVOT (if PR is present) 
3. PWD of LPA flow 
4. PWD of RPA flow 
5. PWD of PDA flow (if present) 
6. CWD of TV (if TR is present in CFD) 
7. 2 D grey scale- Mid- papillary level (CFD to r/o VSD) 
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A1.3 TDi Study analysis protocol 
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A2.1 MRI study protocol 
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A2.2 MRI study echocardiogram acquisition protocol 

 

Pulmonary and Systemic Haemodynamics in Children born Preterm: an MRI 

Study (PuSH MRI) 

(Echo Acquisition Protocol) 

 
 
Assessment for cardiac structure and raised pulmonary arterial pressure 
 
A. Subcostal view 

1. Assess situs – position of aorta and IVC in relation to vertebra 
2. Sniff test on IVC – to approximate CVP / RA pressure 

 
B. Subcostal 4 chamber view  
     1.   Look for ASD and VSD using colour flow Doppler (CFD) 
 
C. Parasternal long axis view 

1. Look for VSD using CFD 
 
D. Parasternal short axis view 

1. Assess aortic and mitral valves 
2. Assess PA flow velocity using pulsed wave Doppler (PWD) 
3. Look for PR using PWD 
4. Look for TR using continuous wave Doppler (CWD) 

 
E. Apical 4 (and 5) chamber view 

1. Look for VSD using CFD 
2. Look for TR jet using CWD 
3. Assess LVOT flow velocity using PWD 

 
F. Suprasternal view 

1. Assess the arch of aorta – CFD (turbulence) and PWD (velocity) at descending 
aorta 
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A2.3 MRI Study - MRI acquisition protocol 

 

Pulmonary and Systemic Haemodynamics in Children born Preterm: an MRI 

Study (PuSH MRI) 

(MRI Acquisition Protocol) 
 
Baseline scan 

 Scanning sequence 

1 3 plane localiser 
2 Asset calibration 

3 Shimming with localisation with shallow breathing 

4 Scan along the main pulmonary artery – to identify pulmonary valve (PV) 
5 Cross sectional image of PA (perpendicular to 4) 1-2cm above PV 

FIESTA cine of PA (Venc depends on PA flow velocity from echo, default 90cm/s) 
- Sequence to be determined / calculated 
- Preferably 10-12ms between images 

 

 
 
Following hypoxic challenge (after 20 minute of 12% O2) 

 

 Scanning sequence 

1 3 plane localiser 
2 Asset calibration 

3 Shimming with localisation with shallow breathing 

4 Scan along the main pulmonary artery – to identify pulmonary valve (PV) 
5 Cross sectional image of PA (perpendicular to 4) 1-2cm above PV 

FIESTA cine of PA (Venc depends on PA flow velocity from echo, default 90cm/s) 
- Sequence to be determined / calculated 
- Preferably 10-12ms between images 
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Appendix B – History proforma 

 

B1.1 TDi study history proforma 
 

B2.1 MRI study history proforma 
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B1.1 TDi study history proforma 
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B2.1 MRI study history proforma 
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Appendix C – Invitation letter to parents 

 
C1.1 TDi study invitation letter to parents 

C2.1 MRI study invitation letter to parents 
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C1.1 TDi study invitation letter to parents 
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C2.1 MRI study invitation letter to parents 
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Appendix D – Information leaflet for parents 

 
D1.1 TDi study - information leaflet for parents of ventilated preterm infants 
 
D1.2 TDi study - information leaflet for parents of non-ventilated preterm infants 
 
D1.3 TDi study - information leaflet for parents of term born infants 
 
(D1.2 and D1.3 were provided separately to parents of the preterm and term control 
groups respectively and contain similar information as D1.1) 
 
 
D2.1 MRI study – information leaflet for parents of children born preterm with CLD 
 
D2.2 MRI study – information leaflet for parents of children born preterm without CLD 
 
D2.3 MRI study – information leaflet for parents of healthy children born at term  
 
 
(D2.2 and D2.3 were provided separately to parents of the preterm and term control 
groups respectively and contain similar information as D2.1) 
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D1.1 TDi study - Information leaflet for parents of ventilated preterm 
infants 
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D2.1 MRI study – information leaflet for parents of children born preterm with CLD 
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Appendix E – Information sheet for children 

 
E1.1 MRI study - information leaflet for children born preterm with CLD 
 
E1.2 MRI study - information leaflet for children born preterm without CLD 
 
E1.3 MRI study - information leaflet for well children born at term 
 
(E1.2 and E1.3 were provided separately to parents of the preterm and term control 
groups respectively and contain similar information as D1.1) 
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E1.1 MRI study - information leaflet for children born preterm with 
CLD 
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Appendix F – Consent form for parents 

 
F1.1 TDi study consent form for parents 
 
F2.1 MRI study consent form for parents 
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F1.1 TDi study consent form for parents 
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F2.1 MRI study consent form for parents 
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Appendix G – Assent form for children 

 
G1.1 MRI study assent form for children  
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G1.1 MRI study assent form for children 
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Appendix H – Published papers 

 
H1 Optimisation of myocardial deformation imaging in term and preterm infants  
 
H2 Long term cardiovascular consequences of chronic lung disease of prematurity  
 
H3 Assessment of pulmonary artery pulse wave velocity in children: an MRI pilot study  
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H1 Optimisation of myocardial deformation imaging in term and 
preterm infants  
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H2 Long term cardiovascular consequences of chronic lung disease 
of prematurity  
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H3 Assessment of pulmonary artery pulse wave velocity in children: 
an MRI pilot study 
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Appendix I – Posters presented 

 
I1 Pulmonary and systemic haemodynamics in children born preterm: an MRI study 
 
I2 Pulmonary artery stiffness assessment in children born preterm using velocity 
encoded MRI 
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I1 Pulmonary and systemic haemodynamics in children born 
preterm: an MRI study 
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I2 Pulmonary artery stiffness assessment in children born preterm 
using velocity encoded MRI 

 


