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ABSTRACT

We cross-correlate the Planck Catalogue of Compact Sources (PCCS) with the fully sampled 84 deg2 Herschel Virgo Cluster Survey
(HeViCS) fields. We search for and identify the 857 and 545 GHz PCCS sources in the HeViCS fields by studying their FIR/submm
and optical counterparts. We find 84 and 48 compact Planck sources in the HeViCS fields at 857 and 545 GHz, respectively. Almost all
sources correspond to individual bright Virgo Cluster galaxies. The vast majority of the Planck detected galaxies are late-type spirals,
with the Sc class dominating the numbers, while early-type galaxies are virtually absent from the sample, especially at 545 GHz.
We compare the HeViCS SPIRE flux densities for the detected galaxies with the four different PCCS flux density estimators and
find an excellent correlation with the aperture photometry flux densities, even at the highest flux density levels. We find only seven
PCCS sources in the HeViCS fields without a nearby galaxy as obvious counterpart, and conclude that all of these are dominated by
Galactic cirrus features or are spurious detections. No Planck sources in the HeViCS fields seem to be associated to high-redshift proto-
clusters of dusty galaxies or strongly lensed submm sources. Finally, our study is the first empirical confirmation of the simulation-
based estimated completeness of the PCCS, and provides a strong support of the internal PCCS validation procedure.

Key words. galaxies: ISM – submillimeter: galaxies

1. Introduction

Roughly half of all the energy emitted by stars and AGNs in
the Universe has been absorbed by dust and re-emitted at far-
infrared (FIR) and submillimetre (submm) wavelengths. For
many years, this important wavelength regime was one of the
least explored windows. Several space missions have been op-
erational in the FIR wavelength region since the mid 1980s, in-
cluding the Infrared Astronomical Satellite (IRAS, Neugebauer
et al. 1984), the Infrared Space Observatory (ISO, Kessler et al.
1996), the Spitzer Space Telescope (Werner et al. 2004) and the
Akari mission (Murakami et al. 2007). At the same time, the
submm window has been explored using bolometer instruments

? Herschel is an ESA space observatory with science instruments
provided by European-led Principal Investigator consortia and with im-
portant participation from NASA.
?? Tables 1 and 2 are available in electronic form at
http://www.aanda.org

on ground-based telescopes including SCUBA and SCUBA-2
on the James Clerck Maxwell Telescope (Holland et al. 1999,
2006) and LABOCA on the Atacama Pathfinder Experiment
(Siringo et al. 2009), as well as balloon experiments such
as the Balloon-borne Large Aperture Submillimeter Telescope
(BLAST, Pascale et al. 2008). All these missions suffered from
relatively poor resolution and/or sensitivity, and left the wave-
length region between 200 and 800 µm virtually unexplored. The
simultaneous launch of the Herschel Space Observatory (Pilbratt
et al. 2010) and the Planck mission (Planck Collaboration
2011a) in May 2009 has finally opened the FIR/submm window
in earnest.

Herschel was a FIR/submm observatory facility that has of-
fered for the first time imaging and spectroscopic capabilities
from space in the wavelength range between 55 and 671 µm. It
contained three instruments on board: the FIR imager and spec-
trometer PACS (Poglitsch et al. 2010), the submm imager and
spectrometer SPIRE (Griffin et al. 2010), and the high-resolution
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heterodyne spectrometer HIFI (de Graauw et al. 2010). The
PACS camera had three photometric bands, centered at 70, 100
and 160 µm, the corresponding SPIRE camera operates at three
bands centered at 250, 350 and 500 µm. The angular resolu-
tion of the Herschel imaging data varies from 6 arcsec at the
PACS 70 µm band to 36 arcsec at the SPIRE 500 µm band. The
main goal of Herschel was to study the cool interstellar dust and
gas in the Universe, with pointed observations of all types of ob-
jects, ranging from the Solar System (e.g., Müller et al. 2010;
Hartogh et al. 2011) to the deep extragalactic sky (e.g., Maddox
et al. 2010; Oliver et al. 2012; Thacker et al. 2013).

Planck is an all sky survey mission that has been simul-
taneously and continuously scanning the entire sky in nine
submm/mm wavebands. It has two instruments onboard: the
High Frequency Instrument (HFI, Lamarre et al. 2010) con-
tains bolometers operational at six bands centered at 857,
545, 353, 217, 143 and 100 GHz (corresponding to wave-
lengths of 350, 550, 850 µm and 1.38, 2.1 and 3 mm, re-
spectively) and the Low Frequency Instrument (LFI, Bersanelli
et al. 2010) contains radiometers that cover three bands at
70, 44 and 30 GHz (corresponding to 4.3, 6.8 and 10 mm,
respectively). The angular resolution decreases from 4.33 ar-
cmin at the highest frequency to 32.88 arcmin at the low-
est frequency. The prime objective of Planck is to measure
the spatial anisotropies of the temperature and the polariza-
tion of the cosmic microwave background with an unprece-
dented sensitivity and resolution (Planck Collaboration XV,
XVI. 2014). In addition, the Planck mission has produced a
treasure of valuable information on the submm/mm properties
of foreground objects, both in our Milky Way (e.g., Planck
Collaboration 2011c,g,h) and extragalactic objects (e.g., Planck
Collaboration 2011d,e; Clemens et al. 2013). A preliminary cat-
alogue of Planck compact sources, the Early Release Compact
Source Catalogue (ERCSC) was publicly released in January
2011 and contains more than 15 000 unique sources (Planck
Collaboration 2011b). A similar, but more complete catalogue
(more than 25 000 sources), the Planck Catalogue of Compact
Sources (PCCS, Planck Collaboration XXVIII. 2014), was re-
leased in March 2013 as part of the major Planck 2013 data and
scientific results release (Planck Collaboration I. 2014).

The complementarity and overlap of the Planck and
Herschel missions offers a number of advantages. Planck has the
advantage of observing the entire sky, and is likely to discover
the most rare and extreme submm sources, including strongly
lensed high-redshift starburst galaxies and proto-clusters of lu-
minous submm galaxies. With its much better spatial resolution,
Herschel has been ideal to follow up these sources, to determine
their nature and to characterize their physical properties (the
ERCSC was released a few months before Herschel’s second in-
flight announcement of opportunity for observing time propos-
als). More generally, Herschel observations of Planck sources
are useful to quantify the boosting of Planck flux densities due
to noise peaks and confusion, to provide more accurate posi-
tions, and to distinguish between Galactic foreground cirrus and
genuine extragalactic point sources. Herschel can also take ad-
vantage of the absolute calibration of the Planck HFI instrument.
Finally, while both missions have a limited overlap in wave-
length coverage, they can take advantage of the complementarity
beyond this common range. For Herschel sources, Planck flux
densities at frequencies of 545 GHz and lower (i.e. wavelengths
of 550 µm and beyond) can be useful to investigate a change in
the slope of the spectral energy distribution (SED) of galaxies at
about 500 µm that might be related to very cold dust or might
originate from dust with a shallow emissivity function. In turn,

SPIRE 250 µm and PACS data are useful to bridge the gap in the
SED between the Planck HFI and the 100 µm band as observed
by IRAS.

The complementarity of Herschel and Planck can be ex-
ploited in different ways. A first obvious way is to consider a set
of galaxies observed by Herschel and complement the Herschel
data with Planck observations. This approach has been applied
to several samples of nearby galaxies (e.g., Ciesla et al. 2012;
Davies et al. 2012; Planck Collaboration XVI. 2014), either as a
check on the Herschel photometry or to add additional submm
data to the SED beyond the SPIRE 500 µm limit. The disadvan-
tage of this approach is that the population of galaxies is fixed
beforehand (typically selected in the optical), and hence does
not allow for a characterization of the Planck population or a
discovery of peculiar Planck sources. An alternative approach
is to search for and characterize the Planck sources in large-
area "blind" extragalactic surveys with Herschel. A first effort
along this line is the recent work by Herranz et al. (2013). They
cross-correlate the Planck ERCSC catalogue with Herschel ob-
servations taken as part of the Herschel Astrophysical Terahertz
Large Area Survey (H-ATLAS, Eales et al. 2010). H-ATLAS
is a Herschel open time key programme that has surveyed
about 550 deg2 of extragalactic sky in five FIR/submm bands, us-
ing the PACS and SPIRE instruments in parallel mode. Herranz
et al. (2013) analyzed the compact Planck submm sources in
the so-called Phase 1 fields, a set of equatorial fields with a to-
tal survey area of 134.5 deg2. They detected 28 compact Planck
sources, 16 of which are most probably high-latitude Galactic
cirrus features. Ten of the Planck sources correspond to bright,
low-redshift galaxies and one source corresponds to a pair of
nearby galaxies. Interestingly, one compact Planck source is re-
solved by Herschel into a condensation of about 15 faint point
sources surrounding an unusually bright submm source, which
turned out to be a strongly lensed submm galaxy at z = 3.259
(Fu et al. 2012; Harris et al. 2012).

In this paper, we investigate the Planck compact submm
sources in the survey field of another Herschel extragalactic
survey, the Herschel Virgo Cluster Survey (HeViCS, Davies
et al. 2010). HeViCS is a Herschel open time key program
and has conducted a deep survey of four 16 deg2 fields in the
Virgo Cluster. The prime aim of HeViCS is a detailed study of
the FIR/submm properties of the galaxies in the Virgo Cluster
(Cortese et al. 2010b; Smith et al. 2010; Grossi et al. 2010;
Baes et al. 2010; De Looze et al. 2010; Magrini et al. 2011;
Corbelli et al. 2012; Davies et al. 2012; di Serego Alighieri et al.
2013) and a study of the environmental effects through compar-
ison with nearby galaxies in less dense environments, such as
in the HRS (Boselli et al. 2010b, 2012; Ciesla et al. 2012) or
KINGFISH (Kennicutt et al. 2011; Dale et al. 2012) surveys.
However, given that HeViCS has observed a large area of extra-
galactic sky, it is very suitable for a cross-correlation between
Herschel and Planck. Similar to H-ATLAS, HeViCS is a fully-
sampled, blind survey and adopts parallel mode observations
with both PACS and SPIRE at five wavelengths between 100
and 500 µm. The main difference between both surveys, apart
from the choice of the survey fields and the specific scientific
objectives, is the depth of the observations: while H-ATLAS
uses two cross-linked scans of every field, HeViCS has per-
formed eight cross-linked scans of every field, with the aim to
reach the 250 µm confusion limit. Due to the time span between
the different observations and the corresponding orientation of
the survey fields and the spatial offset between the PACS and
SPIRE instruments on the sky, HeViCS has observed a total
area of 84 deg2, of which 55 deg2 has been observed to the full
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depth (for details, see Auld et al. 2013). Combined with the fact
that the Virgo Cluster has been observed extensively at virtu-
ally all wavelengths from X-rays to radio waves (e.g., Böhringer
et al. 1994; Davies et al. 2004; Lawrence et al. 2007; Boselli
et al. 2011; Ferrarese et al. 2012), the HeViCS fields are ideal
for a flux density comparison between Planck and Herschel and
a characterisation of the nature of the detected Planck submm
sources within the survey field.

The content of this paper is as follows: in Sect. 2 we search
for and characterize the PCCS 857 and 545 GHz sources in
the HeViCS survey fields and we search for their Herschel
FIR/submm and optical counterparts. In Sect. 3, we analyze
different characteristics of these populations: we compare the
various flavors of the flux densities from the PCCS of the
Planck detected sources in the HeViCS fields to the correspond-
ing SPIRE flux densities at 350 and 500 µm, discuss the na-
ture of sources without obvious counterparts, we investigate
the completeness and positional accuracy of the PCCS, and we
discuss the overdensity of the Virgo Cluster at submm wave-
lengths. Finally, in Sect. 4 we present our conclusions and
summary.

2. Identification and characterization of the sources

We searched the Planck Catalogue of Compact Sources (PCCS)
for all sources within the boundaries of the 84 deg2 extended
HeViCS fields. In this section we identify these sources and
discuss the global properties of the sample of detected 857
and 545 GHz sources.

2.1. 857 GHz sources

The dominant emission mechanism at 857 GHz (350 µm) is
thermal dust emission. For realistic dust temperatures, 857 GHz
is already significantly down the Rayleigh-Jeans tail of the
blackbody spectrum, so we primarily expect emission by large
amounts of cold dust, rather than warm dust emission linked to
star formation (e.g., Bendo et al. 2010, 2012; Boquien et al.
2011). This frequency is still too high for free-free emission
or synchrotron emission to start playing a significant role. On
the other hand, thanks to the negative K-correction, galaxies at
intermediate or high redshift can have the peak of their SED
around 857 GHz or even lower frequencies, and star-forming
galaxies at z > 0.5 form a substantial contribution to the galaxy
population at the frequency of 857 GHz (e.g., Clements et al.
2010; Lapi et al. 2011). Strongly lensed ultra-luminous infrared
galaxies at redshifts z > 1 could also contribute to the popula-
tion (Negrello et al. 2007; Lapi et al. 2012). So we expect that the
counterparts of the Planck sources at 857 GHz would be dom-
inated by nearby galaxies, with a potential contribution of in-
termediate to high redshift galaxies (in particular if they tend to
cluster within the relatively large Planck beam).

We used the online Planck Legacy Archive (PLA) tool to
select from the PCCS 857 GHz catalogue those sources lo-
cated in the extended HeViCS survey field. The search re-
sulted in 84 compact Planck sources. In Table 1 we list each
of these sources, with the central positions and flux densities
as listed in the PCCS. Subsequently, we searched for optical
and FIR/submm counterparts for each of these sources, using a
simple query in the NASA/IPAC Extragalactic Database (NED)
for sources within the 857 GHz beam FWHM and a search in
the HeViCS Herschel maps. For 82 of the 84 sources detected
at 857 GHz, we could immediately match the Planck source to

an optical and Herschel counterpart. Examples of such identifi-
cations of Planck sources are shown in Fig. 1.

In 80 cases the counterpart was a single nearby galaxy
(top two rows of Fig. 1), and 77 of these belong to the Virgo
Cluster. The three remaining ones are the background galaxies
IC 3029, NGC 4246 and NGC 4334, at distances of about 98,
56 and 66 Mpc respectively (Springob et al. 2005, 2009; Mould
et al. 2000).

The majority of these 80 nearby galaxies are late-type spi-
ral galaxies, with the Sc class accounting for slightly more
than 40% of all the Planck detected galaxies. Only three galax-
ies (NGC 4370, 4429 and 4526) are classified as lenticular in
the Galaxy On Line Database Milano Network (GOLDMine,
Gavazzi et al. 2003), and the first of these three is sometimes
classified as Sa (e.g., de Vaucouleurs et al. 1991). The only el-
liptical galaxy detected at 857 GHz is M 87, the massive radio
galaxy at the centre of the Virgo Cluster. Whether or not this
galaxy has a substantial interstellar dust reservoir detectable at
FIR/submm wavelengths is still a matter of debate, even with
the Herschel data at hand (Baes et al. 2010; Boselli et al. 2010a;
di Serego Alighieri et al. 2013). It is clear, however, that the
emission at frequencies of 857 GHz and lower is dominated by
synchrotron emission that goes as S ν ∝ ν

α with a spectral index
α ≈ −0.75 (Shi et al. 2007; Buson et al. 2009; Cotton et al. 2009;
Baes et al. 2010).

Two 857 GHz PCCS sources, PCCS1 857 G272.51+75.68
and G289.78+73.72, correspond to a galaxy pair rather than a
single bright galaxy (bottom two rows of Fig. 1). The former
corresponds to the close pair KPG 332, formed by the edge-
on galaxy NGC 4302 and the inclined spiral NGC 4298, with
a projected separation of 2.4 arcmin (recall that the Planck’s
beam size at 857 GHz is 4.33 arcmin). The position of the
Planck source is centered between the two galaxies, closer
to NGC 4302, which is the most luminous of both sources
at 350 µm (Davies et al. 2012; Auld et al. 2013). The latter
Planck source PCCS1 857 G289.78+73.72 corresponds to the
close pair VV 219, also known as the Siamese Twins. It consists
of the two spiral galaxies NGC 4567 and 4568, with a separation
of 1.3 arcmin. Here the position of the Planck source is close to
the centre of NGC 4568, which is significantly more luminous
than its companion at 350 µm (Davies et al. 2012; Auld et al.
2013).

The remaining two Planck detections at 857 GHz,
PCCS1 857 G261.44+74.24 and G270.81+76.99, do not have
any nearby galaxy as optical counterpart. Their nature will be
discussed in Sect. 3.3.

2.2. 545 GHz sources

The dominant emission mechanism at 545 GHz (550 µm) is still
thermal emission by cool, large dust. Due to the steep spectral
slope of a modified blackbody at submm wavelengths, Fν ∝ ν

2+β

with β ∼ 1.5−2 the emissivity index (Boselli et al. 2012; Smith
et al. 2013), the fluxes of nearby dusty galaxies at 545 GHz are
typically a factor 6 lower compared to 857 GHz, and we there-
fore expect a correspondingly lower number of HFI detections
corresponding to local dusty galaxies. On the other hand, the
negative K-correction is stronger at 545 GHz and the relative
contribution of intermediate and high redshift galaxies to the
population counts is expected to be larger.

Querying the Planck PCCS catalogue through the PLA
tool, we found 48 compact Planck sources within the extended
HeViCS fields at 545 GHz. The list of sources can be found
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PCCS1%545%G260.37+75.43%
NGC4152%

op3cal%(SDSS%g)% near>infrared%(WISE%W1)% mid>infrared%(WISE%W3)% far>infrared%(SPIRE%350)% radio%(FIRST%21%cm)%

PCCS1%545%G288.44+75.62%
M90%

PCCS1%545%G272.43+75.68%
NGC4298/4302%

PCCS1%545%G289.82+73.73%
NGC4567/4678%

Fig. 1. Examples of Planck sources with an obvious counterpart at optical and infrared wavelengths. On each row, the different panels represent
an optical g-band image from SDSS DR9 (Ahn et al. 2012), near- and mid-infrared images at 3.4 and 12 µm from the WISE survey (Wright et al.
2010), the Herschel/SPIRE 350 µm image from HeViCS, and a 20 cm radio continuum image from the VLA-FIRST radio survey (Becker et al.
1995). Each panel is 12×12 arcmin2, and the yellow circle indicates the beam size of the HFI instrument at 857 GHz. The top two rows correspond
to sources with individual Virgo Cluster galaxies as counterparts, the bottom two rows correspond to two pairs of Virgo Cluster galaxies.

in Table 2. The characterization of the sample is similar as
for the 857 GHz sample: the vast majority (43 out of 48) of
the Planck sources can be clearly identified with nearby galax-
ies. All of the 43 sources with clear optical counterparts are in
common with the 857 GHz list, including the two galaxy pairs
NGC 4298/4302 and NGC 4567/4568. All of the 545 GHz de-
tected galaxies belong to the Virgo Cluster, i.e. the three back-
ground galaxies detected at 857 GHz are not detected anymore
at 545 GHz.

Concerning the type of the galaxies detected, we note that
the relative number of late-type galaxies has even increased
compared to the 857 GHz detected population: more than half
of all the galaxies detected at 545 GHz are of the Sc type.
Remarkably fewer early-type spiral galaxies are detected: of
the 10 Sa galaxies detected at 857 GHz, only one single sys-
tem, NGC 4419, is also detected at 545 GHz. This galaxy at the
centre of the Virgo Cluster is classified as a galaxy “at the end
of the Sa sequence” (Sandage & Bedke 1994), and is character-
ized by an unusually high ratio between molecular versus atomic

gas (Kenney et al. 1990). Concerning the early-type galaxy pop-
ulation, we are left with only two galaxies: the synchrotron-
dominated elliptical M 87, and the lenticular galaxy NGC 4526,
known to host a prominent dust disc (Ferrarese et al. 2006; Sarzi
et al. 2006; Young et al. 2009).

The PCCS contains five 545 GHz sources in the extended
HeViCS fields without an obvious optical counterpart. Their na-
ture will be discussed in Sect. 3.3.

3. Analysis and discussion

3.1. Flux density comparison

The Planck 857 GHz and SPIRE 350 µm filters were designed
to have virtually the same transmission curve, with nearly iden-
tical central wavelength and bandwidth. Therefore, we can im-
mediately compare the PCCS 857 GHz fluxes to the integrated
SPIRE 350 µm fluxes, without significant color corrections.
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SPIRE flux densities, both at 350 and 500 µm, are based on
the results from Auld et al. (2013), who performed automated
flux density determination of all Virgo Cluster VCC galaxies in
the HeViCS fields. Their flux density determination method con-
sists of several steps, including an advanced determination of
the background, an iterative determination of the ideal aperture
within which the flux is determined, and an elaborate determi-
nation of the uncertainty, taking into account contributions from
calibration uncertainty, aperture uncertainty and zero-point un-
certainty. The flux densities are presented in their Table B1. We
have applied a number of additional corrections to these values.
First, the fluxes were still based on the “old” SPIRE beam sizes,
whereas these have been updated since. Secondly, Auld et al.
(2013) did not contain a correction for extended fluxes, known
as the K4E/K4P correction. And finally, the new SPIRE calibra-
tion, based on Neptune as a primary calibration source (Bendo
et al. 2013), has been taken into account. The final correction
factor comes down to a multiplication by a factor 0.90 and 0.87
at 350 and 500 µm, respectively. The final integrated flux den-
sities we use for our comparison are listed in the last column of
Tables 1 and 2 for 350 and 500 µm respectively.

As mentioned in Sect. 2.1, three galaxies detected
at 857 GHz (IC 3029, NGC 4246 and NGC 4334) do not be-
long to the Virgo Cluster (even though they all have a number
in the VCC). These background galaxies were not considered
in Table B1 of Auld et al. (2013). For these galaxies, we have
measured the SPIRE flux densities from the HeViCS maps us-
ing exactly the same technique.

Each source in the PCCS has four different measures of the
flux density, depending on the source detection algorithm. The
detection pipeline flux density (DETFLUX) is directly obtained
from the filtered maps and assumes that the sources are point-
like. The three other measures are estimated from the full-sky
maps at the positions of the sources. The aperture photometry
flux density (APERFLUX) is estimated by integrating the data
in a circular aperture centred at the position of the source, with
the average FWHM of the effective beam as radius for the aper-
ture. The PSF fit photometry (PSFFLUX) is obtained by fitting a
model of the PSF at the position of the source (Mitra et al. 2011).
Finally, the Gaussian fit photometry flux density (GAUFLUX) is
obtained by fitting a Gaussian model, centred at the position of
the source, in which the size, shape and background offset are
allowed to vary.

Planck Collaboration XXVIII. (2014) present a comparison
between the different measures for the Planck PCCS 857 GHz
flux densities and the SPIRE 350 µm flux densities for a set of
galaxies from four different catalogues1. They found that, at low
flux densities, the smallest dispersion between the SPIRE and
Planck flux densities is achieved by the DETFLUX photometry
because the filtering process removes structure not associated
with compact sources. At the highest levels, corresponding to the
most extended galaxies, the flux densities are underestimated by
DETFLUX, APERFLUX and PSFFLUX. GAUFLUX accounts
for the size of the source and is therefore able to estimate the flux
density correctly. The general recommendation from the PCCS
is that the appropriate photometry to be used depends on the
nature of the source, with GAUFLUX to be used for the brightest

1 Comparisons between SPIRE and Planck ERCSC fluxes have also
been presented previously for individual galaxy samples, including
the HeViCS Bright Galaxy Sample (Davies et al. 2012), the Herschel
Reference Survey (Ciesla et al. 2012), and a sample of Planck-selected
star forming galaxies (Negrello et al. 2013).

Table 3. Results of the linear regression fits of the SPIRE versus Planck
flux densities.

Frequency Flux density a b χ2
red

857 GHz APERFLUX 0.944 0.0828 0.852
DETFLUX 0.833 0.0953 1.643
PSFFLUX 0.927 0.0723 1.778
GAUFLUX 0.852 0.271 4.314

545 GHz APERFLUX 0.884 0.0656 1.194
DETFLUX 0.792 0.0262 1.431
PSFFLUX 0.864 0.0483 1.968
GAUFLUX 0.815 0.165 2.950

Notes. a and b represent the slope and intercept of the linear relation
in the form log FPlanck = a log FSPIRE + b. The last column gives the
reduced χ2 value of the fit.

and most resolved sources. A similar conclusion was obtained by
Herranz et al. (2013).

In Fig. 2 we show the comparison between the Herschel
SPIRE 350 µm flux density and the Planck PCCS 857 GHz flux
density, for each of the four different methods used in the PCCS
to measure flux densities. The solid blue lines in the different
panels correspond to a one-to-one correlation, the solid green
lines represent a linear regression fit. These fits were made us-
ing the IDL MPFITEXY tool (Williams et al. 2010), based on
the non-linear least-squares fitting package MPFIT (Markwardt
2009), and the parameters of these fits can be found in Table 3.

It is immediately obvious that the GAUFLUX is not an ap-
propriate choice: only the highest flux densities at S 350 & 10 Jy
are recovered fairly reliably, whereas lower flux densities are
typically strongly overestimated. Somewhat surprisingly, the
DETFLUX flux densities, which showed the smallest disper-
sion in the comparison of Planck Collaboration XXVIII. (2014),
also show systematic deviations from the SPIRE flux densities.
At high levels, the flux densities are systematically underesti-
mated, as also found by Planck Collaboration XXVIII. (2014).
Also at the lowest flux density levels, however, the DETFLUX
measure shows a systematic overestimation compared to the
SPIRE flux densities. This might be due to the flux boosting
also noted by Herranz et al. (2013) for faint ERCSC sources in
the H-ATLAS fields. We find the smallest scatter between the
Planck and SPIRE flux densities for the APERFLUX flux den-
sity estimate. The flux densities agree very well, even up to the
highest values where the DETFLUX estimate breaks down. The
reduced χ2 of this correlation is 0.852, which indicates that the
error bars on the APERFLUX flux densities might be slightly
overestimated. The PSFFLUX flux densities are a close second
best, although the scatter at the lowest flux densities is a bit
larger.

Comparing Planck 545 GHz and SPIRE 500 µm fluxes is
less obvious, as the former filter has a significantly longer central
wavelength (550 µm). In order to make a comparison possible,
we converted the observed SPIRE 500 µm fluxes by multiply-
ing it with a conversion factor. The FIR/submm SEDs of nearby
galaxies in the Virgo Cluster can be approximated by a modi-
fied blackbody, Fν ∝ ν

β Bν(T ), with a temperature of T ≈ 20 K
and β ≈ 2 (Davies et al. 2012; Auld et al. 2013). Taking into
account the color corrections of the SPIRE 500 µm and Planck
HFI 545 GHz bands, a color correction of 0.83 has to be ap-
plied to the SPIRE flux densities. A similar conversion factor
(0.87) was obtained by Ciesla et al. (2012), based on a modi-
fied blackbody SED with β = 1.5. Only for M 87, for which the

A106, page 5 of 16



A&A 562, A106 (2014)

Fig. 2. Comparison between the Herschel SPIRE 350 µm flux density and the Planck 857 GHz flux density for the 82 PCCS sources with a clear
counterpart. The different panels correspond to four different methods used in the PCCS to measure flux densities. The solid green line represents
a linear regression fit to the data, the solid blue line corresponds to a one-to-one correlation. The GAUFLUX panel only contains 53 sources as
this flux density estimate is not provided for all sources in the PCCS.

FIR/submm emission is completely dominated by synchrotron
emission rather than by thermal dust emission (Shi et al. 2007;
Baes et al. 2010), we applied a different conversion term. For
a power-law synchrotron spectrum with α = −0.75, we find a
conversion term of 1.07.

The comparison between the observed Planck 550 µm flux
densities and the converted SPIRE 500 µm flux densities is
shown in Fig. 3, where each panel again corresponds to the dif-
ferent measures for the flux densities in the PCCS. The results
of the linear regression fits can be found in Table 3. In gen-
eral, we find the same behavior as for the comparison of the
Planck 857 GHz and SPIRE 350 µm flux densities. For the high-
est flux density levels, DETFLUX and PSFFLUX underestimate
the true flux densities, whereas GAUFLUX and APERFLUX
do not suffer from this effect. Except for the brightest sources,
the GAUFLUX estimates are the worst, with an exceptionally
spurious flux density estimate more than an order of magni-
tude off for the otherwise unremarkable Sc galaxy NGC 4571.
In general, the APERFLUX flux density estimates show least
dispersion compared to the SPIRE flux densities. In this case,
the PSFFLUX flux densities tend to underestimate the true flux
densities significantly at the lowest levels.

3.2. Modified blackbody fits

The FIR/submm traced by Herschel and Planck is dominated
by the emission from cold dust. The physical properties of the
dust can in principle be determined by fitting SED models to
the observed flux densities. While complex multi-component
methods have been developed that take into account the entire

range from mid-infrared to mm wavelengths (e.g., Draine & Li
2007; Compiègne et al. 2011; Galliano et al. 2011), the most
common approach is a simple modified blackbody fit. This ap-
proach enables to determine the most fundamental properties of
the dust medium: the mean dust temperature and the amount of
dust.

In the Virgo Cluster, modified blackbody fits have been
applied to the FIR/submm SED in several different studies:
Davies et al. (2012) fitted modified blackbodies to a sample of
SPIRE 500 µm selected galaxies, Auld et al. (2013) and Davies
et al. (2013) used them to study the dust characteristics of a
samples of optically selected galaxies, and Grossi et al. (2010),
di Serego Alighieri et al. (2013) and De Looze et al. (2013) ap-
plied modified blackbody fits to smaller samples of star-forming
dwarfs, early-type galaxies and transition-type galaxies, respec-
tively. All of these studies relied on Herschel flux densities.
One important question is whether the availability of additional
Planck flux densities at 857 and 545 GHz substantially modifies
the derived parameters.

In order to test this, we considered all galaxies in the HeViCS
fields detected at 545 GHz, and constructed FIR/submm SEDs
by combining the Planck HFI with Herschel/SPIRE observa-
tions at 250, 350 and 500 µm, Herschel/PACS data at 100
and 160 µm. The PACS and SPIRE fluxes and corresponding er-
ror bars were taken from Auld et al. (2013), where an automatic
flux density measurement was applied to the five HeViCS maps
for all galaxies from the Virgo Cluster Catalogue (Binggeli
et al. 1985). Only M 87 was omitted from the sample as its
SED is dominated by synchrotron emission rather than cold dust
emission.
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Fig. 3. Comparison between the Herschel SPIRE 500 µm flux density and the Planck 545 GHz flux density for the 43 PCCS sources with a clear
counterpart. The Herschel flux densities have been converted to correspond to a wavelength of 550 µm (see text). The different panels correspond
to four different methods used in the PCCS to measure flux densities. The solid green line represents a linear regression fit to the data, the solid
blue line corresponds to a one-to-one correlation. The GAUFLUX panel only contains 33 sources as this flux density estimate is not provided for
all sources in the PCCS.

We fitted the observed broadband fluxes using a simple mod-
ified blackbody function, i.e.

Fν =
Md

D2 κν Bν(Td) (1)

with Md the dust mass, D the distance to the galaxy, Td the dust
temperature and κν the emissivity. We used a common distance
of 16.5 Mpc to all galaxies (Mei et al. 2007), and, as custom-
ary, we assume a power-law dust emissivity in the FIR/submm
wavelength range, i.e. κν ∝ νβ, where we fixed β to 1.8 (Planck
Collaboration 2011i; Smith et al. 2013), and the zero-point to
κν = 0.192 m2 kg−1 at 350 µm (Draine 2003). Note that both
the value of the emissivity index β and the absolute calibration
of the emissivity are notoriously uncertain; actually, the quoted
value of the zeropoint at λ = 350 µm has been derived assuming
a dust model with β = 2, so it would in principle not be appli-
cable to models with a different value of β (for a discussion, see
Bianchi 2013). However, the goal of the present exercise is not to
determine absolute dust masses, but rather to compare SED fits
with and without Planck data, so the absolute normalization of
the emissivity (and the distance to the galaxies) is of less im-
portance in our case. The two remaining free parameters in our
fitting routine are the dust mass and the dust temperature. The
fits were done by performing a χ2 minimization using a simple
gradient search method. Error bars on the derived parameters
were derived using a Monte Carlo bootstrapping method.

Fitting modified blackbody fits to the PACS, SPIRE and
HFI APERFLUX data, we find a mean temperature 〈Td〉 =
(21.3 ± 3.2) K and dust mass 〈log Md〉 = 7.10 ± 0.17. These

values are consistent with previous studies of the dust proper-
ties in late-type galaxies in the Virgo Cluster (Davies et al. 2012,
2013; Auld et al. 2013), especially if we take into account that
sometimes other assumptions have been made on the value of β
and the distances. More important here than the absolute values,
however, is whether the inclusion of Planck data has a systematic
effect on the derived dust characteristics. Figure 4 compares the
dust mass and temperature for all galaxies in our sample, fitted
with and without the Planck 857 and 545 GHz flux densities. The
consistency between both fits is convincing: for every individual
galaxy in our sample, the fitted modified blackbody parameters
are fully consistent within the error bars. This implies that the ad-
dition or omission of the Planck 857 and 545 GHz flux densities
does not imply a systematic bias, which is not unexpected given
the good agreement between the SPIRE and Planck HFI flux
densities (Sect. 3.1).

Note that we have, at this stage, limited ourselves to the 857
and 545 GHz data, whereas Planck covers wavelengths up to the
mm range. Our conclusion that the addition of 857 and 545 GHz
data to the Herschel PACS and SPIRE data points does not affect
the derived dust parameters does not necessarily imply that the
same applies when longer wavelength Planck data are also taken
into account. In particular, there has been quite some evidence
for a submm/mm excess beyond a simple modified blackbody,
in particular for dwarf galaxies (e.g., Galliano et al. 2003, 2005,
2011; Galametz et al. 2009, 2011; Israel et al. 2010; Planck
Collaboration 2011f; Dale et al. 2012). A study of the popula-
tion of Planck sources detected at longer wavelengths, includ-
ing their extended spectral energy distribution, the implied dust
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Fig. 4. Comparison between the dust temperature and dust mass of 42 Virgo Cluster galaxies detected by Planck at 545 GHz, as derived from
modified blackbody fits to the Herschel data alone (horizontal axis) and the combined Herschel and Planck 857 and 545 data (vertical axis). The
dotted line corresponds to a one-to-one relation.

properties and a possible submm/mm excess, will be considered
in a separate HeViCS study.

3.3. Nature of the sources without counterparts

The PCCS contains two 857 GHz sources and five 545 GHz
sources without an obvious nearby galaxy as counterpart. These
Planck sources are particularly interesting as their submm flux
density might originate from the common contribution of in-
termediate redshift galaxies or high-redshift ultra-luminous in-
frared galaxies. An example of such a compact 857 GHz
Planck source is PLCKERC857 G270.59+58.52, linked to
the strongly lensed hyperluminous starburst galaxy H-ATLAS
J114637.9+001132 (Fu et al. 2012).

Within the beam area around the position of the first uniden-
tified 857 GHz source in the HeViCS fields, PCCS1 857
G261.44+74.24, NED lists 55 SDSS galaxies and one NVSS
radio source. All of these galaxies are very dim at optical wave-
lengths: one galaxy has a g-band magnitude of 15.8, the others
all are fainter than mg = 17.7 mag. The top panel of Fig. 5 com-
pares the HeViCS SPIRE 350 µm image of the region around
PCCS1 857 G261.44+74.24 with an optical SDSS image, near-
and mid-infrared images from WISE and a radio continuum im-
age from FIRST. The SPIRE image contains a number of dis-
crete sources, all of them with flux densities below 75 mJy. Only
one of the sources, with S 350 ∼ 40 mJy, has an obvious galaxy as
counterpart in the SDSS map, the mg = 17.7 mag galaxy SDSS
J120835+145750 at redshift z = 0.083. This Planck source is lo-
cated at the edge of a prominent cirrus feature that extends from
the centre of the cluster in the northwestern direction (Fig. 6),
and it is marked as an extended source in the PCCS, i.e. it has the
EXTENDED flag equal to one. Putting all this information to-
gether, it seems logical that the Planck detection corresponds to
a Galactic cirrus feature (with potentially a non-negligible con-
tribution from background galaxies).

The second unidentified 857 GHz PCCS source, PCCS1
857 G270.81+76.99 (Fig. 5, second row), is located in a re-
gion less affected by Galactic cirrus and is not marked as an
extended source in the PCCS. NED lists 37 sources with the
beam centered around the position of the source, most of them

SDSS galaxies fainter than mg = 19 mag. This might hence
be a more promising candidate for an intermediate or high-
redshift counterpart. However, the source is located very close
(<3 arcmin) to M100, with a flux density of almost 26 Jy the
brightest source in the Virgo Cluster at 350 µm (Auld et al.
2013). As there are no SPIRE 350 µm sources with flux den-
sities above 50 mJy within the Planck beam at this position (sec-
ond row in Fig. 5), we presume that this source is a spurious
detection.

The five 545 GHz PCCS sources without obvious optical
counterpart are different from the two 857 GHz sources with-
out optical counterpart. Looking at the position of these sources
on the HeViCS map (Fig. 6), it seems obvious for at least two
sources (PCCS1 545 G287.49+72.83 and G286.36+76.69) that
they are associated with Galactic cirrus emission, as they are lo-
cated on top of the notorious Galactic cirrus ring that surrounds
the central regions of the Virgo Cluster (e.g., Mihos et al. 2005;
Rudick et al. 2010; Cortese et al. 2010a). Also for the other
sources, we expect them to be dominated by cirrus emission.
In all cases, the corresponding fields in the HeViCS SPIRE maps
show a collection of faint sources, none of them bright enough to
contribute a substantial part of the submm flux density, and most
of them not associated to obvious sources in the corresponding
SDSS optical maps (bottom two rows of Fig. 5).

Altogether, the number of PCCS sources without optical
counterpart is very modest, especially at 857 GHz (2 out of 84).
This is particularly striking when we compare these numbers
to the results from the equatorial fields of the H-ATLAS sur-
vey by Herranz et al. (2013). Of the 28 Planck sources they
found at 857 GHz, only 11 correspond to bright low-redshift
galaxies (one of them a pair of nearby galaxies) and as many
as 17 have no nearby galaxy as counterpart. Of these 17 uniden-
tified sources, one source is resolved into a condensation of high-
redshift point sources clustered around a strongly lensed galaxy,
while the remaining 16 are probably related to Galactic cirrus
features. A similar situation, but with fewer detected sources, is
seen at 545 GHz.

Even though it is logical that we detect many more nearby
galaxies compared to Herranz et al. (2013) (as we are look-
ing at a nearby cluster), the number of sources without optical
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PCCS1%857%G261.44+74.24%

op1cal%(SDSS%g)% near<infrared%(WISE%W1)% mid<infrared%(WISE%W3)% far<infrared%(SPIRE%350)% radio%(FIRST%21%cm)%

PCCS1%857%G270.81+76.99%

PCCS1%545%G278.07+68.11%

PCCS1%545%G267.22+75.46%

Fig. 5. Same as Fig. 1, but now for four Planck sources without an obvious counterpart at optical wavelengths or on the Herschel maps.

counterpart remains modest. Based on the number of sources
and the area of the H-ATLAS equatorial fields (134.55 deg2),
we would expect 10 to 11 sources at 857 GHz without obvi-
ous optical counterpart. The obvious reason that explains this
difference is the high Galactic latitude (b = 67−76 deg) of the
HeViCS fields compared to the equatorial H-ATLAS fields. In
particular, all but one of the Planck detections by Herranz et al.
(2013) are located in the GAMA-09 field, located at a Galactic
latitude around 30 deg and known to be strongly contaminated
by cirrus (Bracco et al. 2011). In spite of the clear signatures
of cirrus in the HeViCS fields (see Fig. 6), this difference in
Galactic latitude is probably responsible for the much lower
number of Planck cirrus features. An additional factor could
have been the difference between the Planck catalogues used for
both studies: we use the PCCS, whereas Herranz et al. (2013) use
the ERCSC. Compared to the ERCSC, the PCCS uses a different
extraction method that is better at excluding slightly extended
objects.

Finally, we did not find any Planck source in the HeViCS
fields that corresponds to a proto-cluster of intermediate or high-
redshift dusty galaxies or strongly lensed submm sources. Based
on the extrapolation of the Herranz et al. (2013) results, at most
one such source would be expected. One factor to take into

account is again the source extraction method used by PCCS,
which is better at excluding slightly extended objects (not only
cirrus, but also high-redshift clumps).

We can also attempt to make an estimate based on theoret-
ical studies whether it is expected that no high-redshift Planck
sources are detected in the HeViCS fields. Negrello et al. (2005)
made predictions on the surface density of proto-clusters of
dusty galaxies detectable by Planck. For the evolution indicated
by simulations, they expect a surface density at the Planck de-
tection limit below 10−2 deg−2. This corresponds to at most one
detected proto-cluster in the HeViCS fields. These predictions
are, however, endowed with very large uncertainties both be-
cause the predicted counts of proto-clusters are very steep (and
therefore are critically dependent on the detection limit which is
hard to determine because the protoclusters are expected to be
resolved by Planck), and because there is a considerable uncer-
tainty on the evolution of key quantities such as the amplitude
of the three-point correlation function. It is expected that, for lu-
minous matter, this amplitude behaves as b−1 or b−2, where b is
the bias parameter (Fry & Gaztanaga 1993; Szapudi et al. 2001),
and in this case the expected surface density decreases by more
than an order of magnitude compared to the case without three-
point correlation amplitude redshift evolution. Moreover, due to
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Fig. 6. Location of the PCCS sources without obvious SDSS or HeViCS counterpart on the HeViCS SPIRE 350 µm map. The white circles
correspond to the 857 GHz sources, the yellow circles to 545 GHz sources. The SPIRE map has been smoothed to enhance the visibility of the
Galactic cirrus features.

the relatively small field size and the effect of cosmic variance,
it is difficult to make a firm estimate of the expected number of
sources. On the other hand, the expected number counts of the
sources as a function of flux density are quite steep (Negrello
et al. 2005), so it is likely that substantially more submm bright
proto-clusters can be found at fainter fluxes.

Negrello et al. (2007) and Lapi et al. (2012) present pre-
dictions of the surface density of lensed spheroids. Constrained
by the number of detected and candidate strongly lensed
submm galaxies in the H-ATLAS Science Demonstration Field
(Negrello et al. 2010; González-Nuevo et al. 2012), the mod-
els of Lapi et al. (2012) predict a surface density around 8 ×
10−4 deg−2 at a 500 µm flux density limit of 1 Jy. Again, this
estimation is very uncertain and could in principle be considered

as a lower limit, as the number of lensed spheroids decreases
very quickly with flux density and the well-known clustering
of submm sources (Maddox et al. 2010; Short & Coles 2011;
van Kampen et al. 2012) is not taken into account in these es-
timates. In any case, these numbers are so low that we do not
expect any high-z lensed systems in the 84 deg2 HeViCS fields
above the Planck detection limit.

3.4. Completeness and positional accuracy of the PCCS

According to Planck Collaboration XXVIII. (2014), the PCCS
catalogue should be 90% complete at 857 GHz down to a
flux density level of 680 mJy. To verify this, we checked the
SPIRE 350 µm flux densities of all Virgo Cluster galaxies
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in the catalogue of Auld et al. (2013). This catalogue con-
tains 72 galaxies with a S 350 > 680 mJy (taking into ac-
count the correction factors for the old beam size, extended
flux density correction and updated SPIRE calibration). Sixty-
nine of these sources are detected by Planck in the PCCS
(as 67 sources, as two pairs of galaxies are blended into sin-
gle Planck sources). The three non-detected sources (IC 3061,
NGC 4351, and NGC 4435) all have SPIRE 350 µm flux den-
sities below 720 mJy. Below S 350 ∼ 650 mJy the detection rate
drops quickly, although there are still occasional PCCS detec-
tions with even lower SPIRE flux densities. The most extreme
case is the peculiar Sa galaxy NGC 4506 with S 350 = 178 mJy,
which stands out in Fig. 2 as the isolated point at the extreme left
of the panels. Flux boosting and confusion with Galactic cirrus
emission are probably responsible for the fact that this galaxy
made it to the PCCS: it is located on top of the previously men-
tioned prominent cirrus ring in the centre of the Virgo Cluster.

The PCCS 545 GHz catalogue is reported to have a 90%
completeness limit of 570 mJy (Planck Collaboration XXVIII.
2014). Using the conversion factor 0.83 as derived in Sect. 3,
this corresponds to a 500 µm flux density level of 687 mJy.
There are 37 galaxies in the Auld et al. (2013) catalogue with
a SPIRE 500 µm flux density above 687 mJy (again taking
into account the previously mentioned correction factors). All
but one of these sources, the edge-on spiral NGC 4316 with
S 500 = 694 mJy, are detected by Planck at 545 GHz. The faintest
source detected has S 500 = 502 mJy.

Overall, our results are in good agreement with the PCCS
completeness estimates: in the HeViCS fields, the PCCS recov-
ered ∼95% of the sources with S 350 > 680 mJy and ∼95% of
the sources with S 550 > 570 mJy. This is the first empirical
confirmation of the estimated completeness of the PCCS. For
the HFI bands, the PCCS completeness estimates were based
on simulations in which unresolved point sources of different in-
trinsic flux density levels were injected in the real maps and con-
volved with the effective beam. The fact that we confirm these
numbers is a strong support for the internal PCCS validation
procedure.

Finally, in order to test the positional accuracy of the PCCS,
we checked the positions of the sources as listed in the PCCS cat-
alogue (and listed in Tables 1 and 2) with the central posi-
tions of the galaxies obtained from NED. The results are shown
in Fig. 7. There is no systematic offset, and the general posi-
tional accuracy is 0.71 ± 0.29 arcmin for the 857 GHz band,
and 0.79 ± 0.36 arcmin for the 545 GHz band. These numbers
are some 10% larger than, but still fully consistent with, the po-
sitional uncertainties quoted by (Planck Collaboration XXVIII.
2014) based on the PCCS sources from the KINGFISH, HRS, H-
ATLAS and HeViCS BGS samples (0.65 at 857 GHz and 0.72
at 545 GHz).

4. Conclusion and summary

We have cross-correlated the Planck Catalogue of Compact
Sources (PCCS) with the 84 deg2 survey fields of the Herschel
Virgo Cluster Survey (HeViCS), with the goals of identify-
ing and characterizing the counterparts of the compact Planck
sources at 857 and 545 GHz, and searching for possible
high-redshift gravitational lenses or proto-clusters of star-
forming galaxies. The results of this investigation are the
following:

1. We find 84 compact Planck sources at 857 GHz in the
HeViCS survey fields; 77 of these sources correspond

Fig. 7. Positional accuracy of the PCCS at 857 GHz (left panel)
and 545 GHz (right panel). The plots show the difference in right as-
cension and declination between the position of the PCCS source and
the coordinates of the centre of the optical counterpart, for all sources
with a single nearby galaxy as counterpart.

to individual Virgo Cluster galaxies, 3 to nearby back-
ground galaxies, and 2 to galaxy pairs in the Virgo Cluster.
Only 2 sources do not have a clearly identifiable counterpart
at optical and FIR/submm wavelengths.

2. At 545 GHz, where the dominant emission mechanism is
still continuum emission by cold and large dust grains, we
find 48 sources in the PCCS; 41 of these sources have a sin-
gle Virgo Cluster galaxy as counterpart, two correspond to
a Virgo Cluster galaxy pair, and 5 sources have no nearby
galaxy as a clearly identifiable counterpart at optical or
submm wavelengths. No background galaxies are detected,
and all sources with a counterpart, including the two galaxy
pairs, are also detected at 857 GHz.

3. The vast majority of all Planck detected galaxies are late-
type spiral galaxies, with the Sc class dominating the num-
bers (more than half of all galaxies detected at 545 GHz).
The number of early-type spirals reduces sharply when mov-
ing from 857 to 545 GHz: of the 43 galaxies detected
at 545 GHz, there is only one Sa galaxy, compared to 10
out of 82 at the 857 GHz. Early-type galaxies are virtu-
ally absent from the PCCS, with only three lenticular galax-
ies (NGC 4370, 4429 and 4526) and one elliptical galaxy
(M 87) detected. In the latter galaxy, detected at both 857
and 545 GHz, the submm emission is dominated by syn-
chrotron rather than dust emission.

4. The PCCS presents four different estimates for the flux
density, reflecting the different methods used to detect
sources and measure their flux density. We have compared
these different flux density measures to the SPIRE 350
and 500 µm flux density measures from the HeViCS Virgo
Cluster catalogue (Auld et al. 2013). The Planck pipeline
source detection algorithm estimate, DETFLUX, which
showed the smallest dispersion in the comparison of Planck
Collaboration XXVIII. (2014), shows systematic deviations
both at the highest and the lowest flux densities. We find the
best correlation between the SPIRE flux densities and the
Planck aperture photometry flux densities (APERFLUX),
even at the highest flux density levels. At 857 GHz, a lin-
ear regression fit results in a reduced χ2 compatible with a
relation without intrinsic scatter.

5. Based on the number of detected Virgo Cluster galax-
ies, we have estimated the completeness and positional
accuracy of the PCCS at 857 and 545 GHz. Our es-
timates are in agreement with the results from Planck
Collaboration XXVIII. (2014), who report 90% complete-
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ness limits of 680 and 570 mJy at 857 and 545 GHz respec-
tively. Our study is the first empirical confirmation of the
claimed completeness of the PCCS at submm wavelengths,
which was estimated based on simulations, and hence pro-
vides a strong support for the internal PCCS validation pro-
cedure.

6. We have found only seven PCCS sources in the HeViCS
fields without a nearby galaxy as obvious counterpart
(two sources at 857 GHz and five sources at 545 GHz).
Based on their location in the cluster and the SDSS and
HeViCS sources at their positions, we conclude that all of
these are probably linked to Galactic cirrus features or spu-
rious detections. The number of sources without counter-
part is remarkably low compared to the study by Herranz
et al. (2013), who found that more than half of the compact
Planck sources in the H-ATLAS equatorial fields correspond
to cirrus features. This might be due to a combination of
the higher galactic latitude of the Virgo Cluster compared to
the equatorial H-ATLAS fields and the different Planck cat-
alogue used. Unlike Herranz et al. (2013), we find no Planck
sources in the HeViCS fields associated to high-redshift
proto-clusters of dusty galaxies or strongly lensed submm
sources.
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Table 1. Planck 857 GHz PCCS sources in the extended HeViCS survey area.

PCCS source αJ2000 δJ2000 PCCS 857 GHz Counterpart VCC Type SPIRE 350 µm
(deg) (deg) (Jy) (Jy)

PCCS1 857 G261.44+74.24 182.12855 14.94011 0.746 ± 0.136 · · · · · · · · · · · ·

PCCS1 857 G260.38+75.42 182.66101 16.03927 2.111 ± 0.147 NGC 4152 25 Sc 1.996 ± 0.149
PCCS1 857 G266.31+73.24 182.68154 13.34018 0.591 ± 0.110 IC 3029 27 Sc 0.317 ± 0.029
PCCS1 857 G269.69+72.43 183.12050 12.12778 0.980 ± 0.154 IC 769 58 Sb 0.877 ± 0.072
PCCS1 857 G276.80+67.94 183.26859 07.04378 1.770 ± 0.158 NGC 4180 73 Sb 1.582 ± 0.114
PCCS1 857 G268.39+73.70 183.44470 13.41055 3.140 ± 0.175 NGC 4189 89 Sc 2.687 ± 0.196
PCCS1 857 G265.42+74.97 183.46055 14.91470 7.332 ± 0.194 M 98 92 Sb 11.571 ± 0.840
PCCS1 857 G268.93+73.52 183.48450 13.17543 1.610 ± 0.144 NGC 4193 97 Sc 1.592 ± 0.125
PCCS1 857 G278.93+66.94 183.64987 05.81024 1.749 ± 0.129 NGC 4197 120 Scd 1.574 ± 0.118
PCCS1 857 G270.21+73.54 183.81944 13.01505 1.942 ± 0.151 NGC 4206 145 Sc 2.205 ± 0.149
PCCS1 857 G268.89+74.36 183.91888 13.90904 4.512 ± 0.168 NGC 4212 157 Sc 4.847 ± 0.346
PCCS1 857 G270.46+73.72 183.97418 13.13815 8.083 ± 0.188 NGC 4216 167 Sb 9.207 ± 0.656
PCCS1 857 G270.58+73.91 184.10005 13.29014 1.586 ± 0.188 NGC 4222 187 Scd 1.559 ± 0.115
PCCS1 857 G267.17+75.77 184.29755 15.33868 2.645 ± 0.129 NGC 4237 226 Sc 2.919 ± 0.210
PCCS1 857 G282.23+65.16 184.30274 03.67542 0.878 ± 0.129 NGC 4234 221 Sc 0.857 ± 0.068
PCCS1 857 G279.82+68.01 184.35336 06.68030 0.814 ± 0.149 NGC 4223 234 Sa 0.521 ± 0.052
PCCS1 857 G279.69+68.53 184.49064 07.18604 1.055 ± 0.124 NGC 4246 264 Sc 1.000 ± 0.079
PCCS1 857 G270.45+75.20 184.71895 14.42515 20.680 ± 0.251 M 99 307 Sc 24.229 ± 1.720
PCCS1 857 G282.51+66.97 184.98252 05.35636 3.772 ± 0.146 NGC 4273 382 Sc 3.776 ± 0.277
PCCS1 857 G280.56+69.18 185.01716 07.68557 0.985 ± 0.144 NGC 4276 393 Sc 0.651 ± 0.059
PCCS1 857 G284.34+65.49 185.24478 03.73035 1.156 ± 0.140 NGC 4289 449 Sbc 1.059 ± 0.081
PCCS1 857 G277.07+72.84 185.31732 11.50735 1.937 ± 0.153 NGC 4294 465 Sc 1.939 ± 0.144
PCCS1 857 G277.41+72.86 185.41840 11.48644 1.176 ± 0.160 NGC 4299 491 Scd 1.112 ± 0.093
PCCS1 857 G272.51+75.68 185.42477 14.59761 8.296 ± 0.168 NGC 4298/4302 483/497 Sc/Sc 12.573 ± 0.651
PCCS1 857 G284.35+66.28 185.47457 04.47981 17.872 ± 0.226 M 61 508 Sc 20.528 ± 1.455
PCCS1 857 G280.61+70.62 185.53208 09.03536 2.147 ± 0.136 NGC 4307 524 Sbc 1.757 ± 0.127
PCCS1 857 G282.47+68.84 185.55513 07.13962 0.828 ± 0.160 NGC 4309 534 Sa 0.603 ± 0.060
PCCS1 857 G284.61+66.39 185.60479 04.55969 0.822 ± 0.137 NGC 4301 552 Sc 0.454 ± 0.049
PCCS1 857 G271.42+76.60 185.63878 15.53121 1.516 ± 0.168 NGC 4312 559 Sab 1.532 ± 0.113
PCCS1 857 G277.71+73.24 185.65326 11.80437 1.706 ± 0.144 NGC 4313 570 Sab 1.586 ± 0.119
PCCS1 857 G280.71+70.96 185.67829 09.34033 2.502 ± 0.177 NGC 4316 576 Sbc 1.941 ± 0.142
PCCS1 857 G270.81+76.99 185.71130 15.93892 1.098 ± 0.200 · · · · · · · · · · · ·

PCCS1 857 G271.17+76.89 185.73530 15.81529 17.639 ± 0.257 M 100 596 Sc 25.968 ± 1.840
PCCS1 857 G284.50+67.11 185.77029 05.26741 0.933 ± 0.146 NGC 4324 613 Sa 0.722 ± 0.061
PCCS1 857 G278.76+72.90 185.80843 11.36855 1.634 ± 0.131 NGC 4330 630 Sd 1.547 ± 0.118
PCCS1 857 G282.91+69.24 185.83429 07.47657 1.941 ± 0.177 NGC 4334 638 1.736 ± 0.127
PCCS1 857 G283.52+68.77 185.90001 06.96069 2.263 ± 0.164 NGC 4343 656 Sb 1.517 ± 0.113
PCCS1 857 G282.53+70.30 186.03782 08.52197 0.821 ± 0.153 NGC 4356 713 Sc 0.539 ± 0.047
PCCS1 857 G283.94+69.33 186.21012 07.44889 0.963 ± 0.155 NGC 4370 758 S0 0.734 ± 0.057
PCCS1 857 G286.12+66.93 186.33071 04.92117 1.192 ± 0.134 NGC 4378 785 Sa 1.298 ± 0.105
PCCS1 857 G285.56+67.74 186.33387 05.75341 0.904 ± 0.155 NGC 4376 787 Scd 0.506 ± 0.044
PCCS1 857 G281.96+71.82 186.35291 10.02117 2.201 ± 0.156 NGC 4380 792 Sab 2.001 ± 0.149
PCCS1 857 G284.72+69.17 186.43134 07.21570 2.705 ± 0.162 UGC 7513 827 Sc 2.171 ± 0.157
PCCS1 857 G279.14+74.33 186.45118 12.66357 3.153 ± 0.176 NGC 4388 836 Sab 3.272 ± 0.234
PCCS1 857 G281.83+72.27 186.46056 10.45480 0.892 ± 0.154 NGC 4390 849 Sbc 0.833 ± 0.070
PCCS1 857 G284.56+69.49 186.46772 07.53835 0.860 ± 0.162 IC 3322 851 Sc 0.785 ± 0.061
PCCS1 857 G287.41+65.54 186.48927 03.44221 1.990 ± 0.184 UGC 7522 859 Sc 1.167 ± 0.087
PCCS1 857 G274.37+77.10 186.49855 15.66868 1.950 ± 0.170 NGC 4396 865 Sc 1.823 ± 0.135
PCCS1 857 G278.75+74.77 186.51927 13.10641 5.638 ± 0.161 NGC 4402 873 Sc 5.606 ± 0.396
PCCS1 857 G279.83+74.35 186.63556 12.60895 1.243 ± 0.171 NGC 4407 912 Sbc 1.058 ± 0.081
PCCS1 857 G287.47+66.09 186.64485 03.96705 1.378 ± 0.142 NGC 4412 921 Sbc 1.040 ± 0.079
PCCS1 857 G284.86+69.93 186.69124 07.92894 0.939 ± 0.123 NGC 4416 938 Sc 1.011 ± 0.081
PCCS1 857 G284.05+70.86 186.69953 08.90471 1.128 ± 0.147 UGC 7546 939 Sc 1.115 ± 0.108
PCCS1 857 G276.41+76.63 186.72600 15.04733 4.248 ± 0.195 NGC 4419 958 Sa 3.090 ± 0.220
PCCS1 857 G285.63+69.32 186.78597 07.27420 0.879 ± 0.172 UGC 7557 975 Scd 0.692 ± 0.069
PCCS1 857 G283.86+71.40 186.79590 09.43363 1.308 ± 0.147 NGC 4424 979 Sa 0.931 ± 0.073
PCCS1 857 G286.66+67.97 186.79940 05.87693 0.772 ± 0.142 NGC 4423 971 Sd 0.509 ± 0.043
PCCS1 857 G286.52+68.35 186.84390 06.25747 1.927 ± 0.162 NGC 4430 1002 Sc 1.654 ± 0.125
PCCS1 857 G282.36+73.01 186.85696 11.11080 0.904 ± 0.137 NGC 4429 1003 S0/a 0.672 ± 0.052

Notes. The first four columns list the PCCS name, the J2000 position of the Planck PCCS source, and the observed PCCS 857 GHz flux density
with its associated error (the listed flux density is the standard DETFLUX estimate, see Sect. 3.1 for details). The following three columns give
the name of the optical counterpart (if any), the VCC number, and the galaxy type (from the GOLDMine database). The last column lists the
HeViCS SPIRE 350 µm flux density and its associated error for the sources with an identified counterpart. Details on how this flux density has
been obtained can be found in Sect. 3.1.
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Table 1. Continued.

PCCS source αJ2000 δJ2000 PCCS 857 GHz Counterpart VCC Type SPIRE 350 µm
(deg) (deg) (Jy) (Jy)

PCCS1 857 G280.30+74.83 186.92881 13.01208 3.006 ± 0.153 NGC 4438 1043 Sb 3.373 ± 0.257
PCCS1 857 G285.11+71.32 187.16366 09.24766 1.104 ± 0.138 NGC 4451 1118 Sc 0.847 ± 0.068
PCCS1 857 G289.14+65.84 187.25201 03.57333 1.763 ± 0.135 NGC 4457 1145 Sb 1.600 ± 0.116
PCCS1 857 G286.11+70.88 187.35918 08.73663 1.198 ± 0.150 NGC 4469 1190 Sa 0.788 ± 0.061
PCCS1 857 G287.55+69.00 187.36934 06.79160 0.778 ± 0.143 IC 3414 1189 Sc 0.367 ± 0.036
PCCS1 857 G286.91+70.02 187.39922 07.83258 1.031 ± 0.142 NGC 4470 1205 Sc 0.977 ± 0.076
PCCS1 857 G289.65+66.56 187.60654 04.23901 1.607 ± 0.136 NGC 4480 1290 Sb 1.394 ± 0.104
PCCS1 857 G283.74+74.48 187.69562 12.38577 1.041 ± 0.169 M 87 1316 E 0.941 ± 0.074
PCCS1 857 G287.69+70.33 187.73649 08.07343 0.961 ± 0.145 NGC 4492 1330 Sa 0.597 ± 0.054
PCCS1 857 G290.53+66.33 187.90427 03.93704 4.098 ± 0.174 NGC 4496 1375 Sc 3.641 ± 0.260
PCCS1 857 G282.29+76.51 187.99116 14.43010 18.381 ± 0.246 M 88 1401 Sbc 22.165 ± 1.564
PCCS1 857 G283.78+75.59 188.04652 13.44229 0.775 ± 0.141 NGC 4506 1419 Sa 0.178 ± 0.026
PCCS1 857 G283.51+76.21 188.17680 14.05463 1.165 ± 0.142 IC 3476 1450 Sc 1.085 ± 0.092
PCCS1 857 G289.13+71.03 188.36439 08.64580 2.403 ± 0.152 NGC 4519 1508 Sc 2.268 ± 0.170
PCCS1 857 G288.89+71.57 188.40485 09.19277 1.873 ± 0.145 NGC 4522 1516 Sc 1.434 ± 0.107
PCCS1 857 G290.13+70.13 188.50485 07.69646 3.638 ± 0.163 NGC 4526 1535 S0 2.857 ± 0.207
PCCS1 857 G286.15+75.39 188.57616 13.08787 1.077 ± 0.167 NGC 4531 1552 Sa 0.590 ± 0.051
PCCS1 857 G290.06+70.64 188.58279 08.20291 8.869 ± 0.185 NGC 4535 1555 Sc 14.235 ± 1.024
PCCS1 857 G291.04+68.93 188.58782 06.46346 3.274 ± 0.166 NGC 4532 1554 Sm 2.893 ± 0.206
PCCS1 857 G290.87+69.64 188.65963 07.16808 0.886 ± 0.142 IC 3521 1575 Sm 0.631 ± 0.055
PCCS1 857 G285.72+76.81 188.86411 14.47983 4.691 ± 0.173 M 91 1615 Sb 6.128 ± 0.482
PCCS1 857 G289.78+73.72 189.13379 11.23932 15.958 ± 0.216 NGC 4567/4568 1673/1676 Sc/Sc 15.196 ± 1.281
PCCS1 857 G288.41+75.62 189.19517 13.17062 7.469 ± 0.162 M 90 1690 Sab 8.169 ± 0.581
PCCS1 857 G287.53+76.64 189.23359 14.21160 3.749 ± 0.197 NGC 4571 1696 Sab 3.597 ± 0.275
PCCS1 857 G290.38+74.34 189.42769 11.81137 6.354 ± 0.189 M 58 1727 Sab 8.286 ± 0.616
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Table 2. Same as Table 1, but for the 545 GHz PCCS sources.

PCCS source αJ2000 δJ2000 PCCS 545 GHz Counterpart VCC Type SPIRE 500 µm
(deg) (deg) (Jy) (Jy)

PCCS1 545 G260.37+75.43 182.66285 16.04584 0.922 ± 0.114 NGC 4152 25 Sc 0.735 ± 0.061
PCCS1 545 G276.77+67.93 183.25488 07.03960 0.533 ± 0.104 NGC 4180 73 Sb 0.562 ± 0.044
PCCS1 545 G268.38+73.71 183.44879 13.41927 0.498 ± 0.097 NGC 4189 89 Sc 0.911 ± 0.072
PCCS1 545 G265.43+74.97 183.46130 14.91524 2.640 ± 0.107 M 98 92 Sb 4.301 ± 0.318
PCCS1 545 G268.93+73.49 183.47034 13.15472 0.548 ± 0.111 NGC 4193 97 Sc 0.646 ± 0.060
PCCS1 545 G278.92+66.95 183.64901 05.81566 0.654 ± 0.111 NGC 4197 120 Scd 0.670 ± 0.054
PCCS1 545 G278.07+68.11 183.77733 07.01443 0.493 ± 0.094 · · · · · · · · · · · ·

PCCS1 545 G270.22+73.54 183.81908 13.01133 0.838 ± 0.103 NGC 4206 145 Sc 0.954 ± 0.076
PCCS1 545 G268.88+74.36 183.91488 13.90592 0.148 ± 0.106 NGC 4212 157 Sc 1.650 ± 0.123
PCCS1 545 G270.44+73.74 183.97938 13.16155 2.269 ± 0.099 NGC 4216 167 Sb 3.454 ± 0.252
PCCS1 545 G270.53+73.94 184.09985 13.31559 0.814 ± 0.103 NGC 4222 187 Scd 0.694 ± 0.057
PCCS1 545 G267.22+75.46 184.13517 15.07150 0.559 ± 0.105 · · · · · · · · · · · ·

PCCS1 545 G267.21+75.76 184.29853 15.32441 0.807 ± 0.105 NGC 4237 226 Sc 0.994 ± 0.077
PCCS1 545 G270.36+75.19 184.69368 14.43079 4.538 ± 0.116 M 99 307 Sc 7.927 ± 0.564
PCCS1 545 G282.53+66.97 184.99044 05.36161 0.942 ± 0.109 NGC 4273 382 Sc 1.368 ± 0.108
PCCS1 545 G277.04+72.84 185.30844 11.50868 0.707 ± 0.139 NGC 4294 465 Sc 0.805 ± 0.064
PCCS1 545 G272.43+75.68 185.41151 14.61110 2.796 ± 0.120 NGC 4298/4302 483/497 Sc/Sc 4.454 ± 0.325
PCCS1 545 G284.36+66.28 185.47873 04.48218 4.789 ± 0.116 M 61 508 Sc 7.050 ± 0.502
PCCS1 545 G280.54+70.63 185.50988 09.04869 0.569 ± 0.114 NGC 4307 524 Sbc 0.623 ± 0.050
PCCS1 545 G271.16+76.88 185.72922 15.81079 4.626 ± 0.114 M 100 596 Sc 8.825 ± 0.638
PCCS1 545 G278.76+72.88 185.80236 11.35158 0.523 ± 0.100 NGC 4330 630 Sd 0.635 ± 0.053
PCCS1 545 G281.96+71.79 186.34195 09.99236 0.708 ± 0.115 NGC 4380 792 Sab 0.709 ± 0.059
PCCS1 545 G284.73+69.17 186.43614 07.21787 1.125 ± 0.129 UGC 7513 827 Sc 0.908 ± 0.071
PCCS1 545 G279.13+74.34 186.45220 12.66788 0.964 ± 0.111 NGC 4388 836 Sab 1.218 ± 0.093
PCCS1 545 G274.40+77.10 186.50366 15.65977 0.640 ± 0.114 NGC 4396 865 Sc 0.771 ± 0.062
PCCS1 545 G287.46+65.53 186.50593 03.43199 0.664 ± 0.133 UGC 7522 859 Sc 0.526 ± 0.045
PCCS1 545 G278.76+74.77 186.52223 13.10600 1.747 ± 0.116 NGC 4402 873 Sc 1.951 ± 0.142
PCCS1 545 G284.05+70.82 186.68484 08.86340 0.655 ± 0.114 UGC 7546 939 Sc 0.538 ± 0.060
PCCS1 545 G276.42+76.65 186.73352 15.05677 0.834 ± 0.125 NGC 4419 958 Sa 1.074 ± 0.934
PCCS1 545 G286.60+68.36 186.87344 06.25631 0.664 ± 0.103 NGC 4430 1002 Sc 0.599 ± 0.052
PCCS1 545 G280.36+74.81 186.93803 12.98807 1.026 ± 0.134 NGC 4438 1043 Sb 1.208 ± 0.110
PCCS1 545 G289.65+66.58 187.61114 04.25924 0.503 ± 0.097 NGC 4480 1290 Sb 0.551 ± 0.045
PCCS1 545 G283.76+74.47 187.69775 12.37910 1.639 ± 0.096 M 87 1316 E 1.244 ± 0.094
PCCS1 545 G290.54+66.32 187.90694 03.92769 1.329 ± 0.119 NGC 4496 1375 Sc 1.423 ± 0.106
PCCS1 545 G282.29+76.51 187.99024 14.42921 5.887 ± 0.120 M 88 1401 Sbc 7.886 ± 0.558
PCCS1 545 G287.49+72.83 188.27660 10.51415 0.548 ± 0.112 · · · · · · · · · · · ·

PCCS1 545 G289.12+71.03 188.35920 08.65074 0.877 ± 0.109 NGC 4519 1508 Sc 0.907 ± 0.075
PCCS1 545 G288.90+71.54 188.40228 09.16123 0.537 ± 0.090 NGC 4522 1516 Sbc 0.539 ± 0.044
PCCS1 545 G290.14+70.13 188.50820 07.69494 0.780 ± 0.103 NGC 4526 1535 S0 0.929 ± 0.071
PCCS1 545 G289.64+71.15 188.55205 08.73088 0.612 ± 0.122 · · · · · · · · · · · ·

PCCS1 545 G291.04+68.92 188.58393 06.44702 0.827 ± 0.088 NGC 4532 1554 Sm 1.099 ± 0.081
PCCS1 545 G290.09+70.63 188.58932 08.18835 2.967 ± 0.110 NGC 4535 1555 Sb 5.387 ± 0.408
PCCS1 545 G285.69+76.83 188.86145 14.49705 1.525 ± 0.096 M 91 1615 Sb 2.065 ± 0.154
PCCS1 545 G286.36+76.69 188.97390 14.32142 0.568 ± 0.115 · · · · · · · · · · · ·

PCCS1 545 G289.82+73.73 189.14824 11.24395 4.231 ± 0.113 NGC 4567/4568 1673/1676 Sc/Sc 5.197 ± 0.447
PCCS1 545 G288.44+75.62 189.20407 13.16827 2.241 ± 0.106 M 90 1690 Sab 2.849 ± 0.210
PCCS1 545 G287.49+76.66 189.22770 14.22749 0.947 ± 0.130 NGC 4571 1696 Sc 1.182 ± 0.103
PCCS1 545 G290.37+74.35 189.42504 11.82011 1.887 ± 0.100 M 58 1727 Sab 2.877 ± 0.218
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