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Summary 

The quantification of brain activity has been one of the main goals of 

neuroimaging since the earliest applications. In functional magnetic resonance 

imaging (fMRI) such an aim has been pursued indirectly by studying changes of 

the blood oxygenation dependent signal triggered by alterations in blood flow 

following changes in energy metabolism. Such approach is limited because of the 

complex relationship between the vascular and neural systems in brain tissue. 

Therefore methods have been proposed to assess oxygen metabolism, which 

directly underlies energy supply to brain tissue and therefore brain activity.  

Investigating existing and novel MRI methods, the thesis aims to improve the 

assessment of oxygen metabolism for a fully quantitative measurement of this 

biomarker.  

A simulation study has been carried out to optimise one of the mathematical 

(fMRI calibration) models used to relate the measured signal to the underlying 

physiology. As a result we are able to define a new model, less complex and more 

accurate for estimation of oxygen extraction fraction. 

Following this, an estimation approach recently developed in our centre is 

applied to carbon dioxide and oxygen calibrated fMRI data in an experimental 

setting firstly for a repeatability study and then for a drug study looking at the 

acute effects of caffeine on brain metabolism and haemodynamics. The precision 

of the novel approach shows values consistent with previous methods, but with 

much higher spatial resolution. Exploiting this, acute caffeine effects are 

characterized with a voxel-wise level of detail, showing results consistent with 

literature electrophysiological findings. 

Finally, an innovative method for estimating oxygen extraction fraction, based on 

velocity spectral imaging and estimation of transverse relaxation time, is 

introduced and tested at a proof-of-concept level. The performance and limits are 

examined through simulation and experimentation, suggesting that it might be a 

viable alternative to the calibration techniques previously introduced.    
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Thesis outline 

Energy metabolism underlies brain activity. As the former is predominantly 

oxidative, oxygen consumption measurements can be used as a proxy for the 

latter. Multiple MRI techniques have been developed with this purpose and for 

providing an effective alternative to other more invasive methods such as PET. In 

this thesis we aim to develop and evaluate viable means for measuring absolute 

brain oxygen consumption with MRI by further advancing current approaches 

and by proposing new applications.   

Chapter 1 introduces the main physiological processes underlying brain 

metabolism, oxygen consumption and gas transportation in blood, relevant to the 

methods employed in this work. The motivations for pursuing the quantification 

of oxygen metabolism are presented, along with a brief review of techniques 

currently available.  

Chapter 2 offers an introduction to MRI, from the physical principles to the main 

applications. All the major methods applied later in the experimental section of 

the thesis are presented, especially those related to fMRI. The most relevant MRI 

techniques recently developed for quantifying the absolute brain oxygen 

consumption are reviewed, with particular attention to those based on 

hypercapnic and hyperoxic calibration that are used in this thesis.    

In Chapter 3 the physiological model adopted by hypercapnic and hyperoxic 

calibration methods for estimating absolute oxygen metabolism is investigated. 

With a simulation study and using innovative metrics of goodness of the 

estimates we are able to characterise the bias present in the literature models. 

The process of optimisation leads to the proposal of a new simplified calibration 

model that shows improved performances and more accurate estimates of 

oxygen extraction fraction. 
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Chapter 4 assesses the repeatability of the results supplied by a novel estimation 

framework recently developed in our centre using calibration methods, together 

with measurements of blood flow and a mathematical model relating them. The 

resulting estimates are characterised by a level of repeatability comparable to 

that obtained with previous methods, but with an improved spatial resolution. 

The information supplied by such maps is of extreme interest for applications 

aimed at studying brain physiology across grey matter. Metrics of repeatability 

inform positively on the feasibility of the estimation framework in future 

applications. 

In Chapter 5 the same estimation framework is applied for a randomised, 

double-blind, placebo-controlled study on caffeine, enabling us to assess its acute 

effects on brain metabolism and haemodynamics. Results show a general 

decrease in oxygen metabolism after caffeine consumption, consistent with a 

decrease in energetic demand due to an overall inhibitory effect previously 

reported by electrophysiology studies. With this work we also exemplify the 

feasibility of our approach, showing its effectiveness in a drug study application.   

Chapter 6 introduces and explores a new method for quantifying brain oxygen 

consumption alternative to techniques based on hypercapnic and hyperoxic 

calibration and exploiting measurements of relaxation ( ) to estimate venous 

oxygenation. Background theory, simulations and real case applications are 

presented, together with an extensive discussion on the main limitations. 

Estimates of venous blood oxygenation in two subjects are found to increase 

following a visual task. The proof of concept reported represents a first step 

towards the proposal of a new promising alternative to current techniques for 

measuring absolute brain oxygen metabolism. 

Finally, an overall discussion of the most relevant results of the experimental 

section of the thesis (Chapters 3 to 6) and the ultimate conclusions are reported 

in Chapter 7. 
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Chapter 1

Neural activity, blood flow and oxygen 

metabolism

From the earliest applications, one of the main goals of neuroimaging has been to 

study brain activity. This can be done directly measuring the electromagnetic 

signal generated by the cells both with invasive methods, such as 

electrocorticography (ECoG), or through non-invasive methods, like electro- or 

magneto-encephalography (EEG and MEG respectively). Other approaches focus 

instead on mapping and measuring the metabolic and haemodynamic changes 

due to brain activity. Among these there are invasive techniques, like positron 

emission tomography (PET), and non-invasive techniques, such as magnetic 

resonance imaging (MRI). 

This chapter firstly includes a brief general introduction to the main 

physiological mechanisms underlying brain activity, with particular focus on the 

connection between neural activity, energy metabolism and blood flow. Then an 

overview of the principal neuroimaging methods for estimating oxygen 

metabolism is provided.   
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1.1 Physiology and energetics of neural signalling 

The neurons are the cells responsible for generating and transmitting 

information in the brain in the form of electrical signal. They are composed of a 

body, where the nucleus is located and the signal is generated, a single axon, 

carrying outgoing signals and branching to reach several others neurons, and 

dendrites, which are able, along with the body itself, to exchange information 

with other neurons in synapses. 

The excitability of the neurons, that allows the generation and transmission of 

these signals, originates from a negative electronic potential (about -70 mV) 

between the intra- and the extra-cellular space: the membrane potential. The 

potential is due to a dynamic balance of ions: Na+, Ca2+ and Cl- have a greater 

concentration outside than inside the cell, while the opposite is true for K+. A 

complex system of channels regulates the ionic flux, with or without energy 

consumption depending on the direction relative to the chemical and electrical 

gradients. 

The signal is generated by a transient depolarization perturbing the membrane 

potential (referred to as an action potential or spike) and then propagated along 

the axon to reach the synapses. Here the signal is transmitted to other neurons 

through chemical signalling with neurotransmitters: molecules able to affect the 

ion channels of the receiving neuron altering its potential. A positive alteration is 

called excitatory and is achieved mostly through glutamate, while a negative 

alteration is called inhibitory and is achieved mostly through γ–aminobutyric 

acid (GABA). The signal is then re-generated in the post-synaptic neuron 

depending on the net alteration of the polarization resulting from the sum of all 

excitatory and inhibitory contributions.  

After transmission, recovery from neuronal signalling takes place at the synaptic 

level: neurotransmitter molecules are brought back to the pre-synaptic terminal 

and the membrane potential is restored in both pre- and post- synaptic neuron, 

requiring the transport of Na+ ions against the gradient. In particular, the first 
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process is operated by the astrocytes, a type of glial cell that also interfaces 

neurons with blood vessels and with them constitutes the neurovascular unit. 

Neural signalling has an energetic cost, which is not equally distributed among all 

the processes described. In fact, it is estimated that about three quarters of the 

energetic demand is associated with the recovery at the post-synaptic neuron 

(Buxton, 2009) and the remaining quarter accounts for the other energetic costs, 

as membrane potential maintenance, spiking, neurotransmitter recycling, etc.  

This has two main consequences: 1) energy metabolism is closely related to 

spiking rate (Laughlin and Sejnowski, 2003), even though this is driven by 

recovery rather than spiking costs; 2) metabolism is mostly localized in the 

synaptic sites (Raichle and Gusnard, 2002), rather than where the spiking takes 

action. In particular the first point justifies the approach adopted by some 

neuroimaging techniques to take into consideration energy metabolism rather 

than electromagnetic signals as a measure of brain activity.  

The large amount of energy required for brain activity is supplied in the form of 

glucose and oxygen coming through the blood stream. Inside the brain cells, 

glucose undergoes different chemical processes that result in the production of 

adenosine triphosphate (ATP), the compound in which free energy is stored. The 

reversible reaction that transforms ATP into adenosine diphosphate (ADP) is 

coupled to all the energetic processes in the cell: from ATP to ADP when the 

process requires energy, from ADP to ATP in case of energy storage. 

Glucose is processed into ATP in two steps (see Figure 1-1): from glucose to 

pyruvate, in a process known as glycolysis, and then from pyruvate to waste 

products (CO2 and H2O) undergoing the TCA cycle in the mitochondria. Both 

steps result in ATP production, but with substantial differences: in fact the TCA 

cycle requires O2 consumption, it is slower and supplies 18 times more ATP then 

glycolysis. Not all the pyruvate produced by glycolysis necessarily enters the TCA 

cycle. It can also be stored and build up in the cytosol as lactate which is then 

exchanged between astrocytes and neurons with a mechanism known as lactate 

shuttle (Pelligrino et al., 2012) depending on the energetic demand. Despite 

different pathways, the close relationship between functional activity and local 
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glucose metabolism has been also verified in early animal studies (Sokoloff, 

1981).  

Figure 1-1: Schematic of ATP production in the cell through glucose (GLU) 
metabolism. The transformation of a molecule of GLU into pyruvate, process called 
glycolysis, results in the production of 2 molecules of ATP. Pyruvate can then be 
further metabolised into CO2, H2O and 36 ATP molecules through oxidative 
metabolism.
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1.2 Blood flow and oxygen metabolism  

1.2.1 Cerebral blood flow regulation 

Cerebral blood flow (CBF) is the rate of arterial blood delivered to the capillary 

bed of a certain mass of tissue, typically expressed in units of ml of blood per 100 

grams of tissue per minute (ml/100g/min). CBF has a key role in sustaining brain 

tissue as it supplies glucose and oxygen necessary for metabolism. Whole brain 

CBF is about 50 ml/100g/min (Rostrup et al., 2005) and it is heterogeneously 

distributed across the brain, with values in grey matter about twice as much as in 

white matter. The vascular system supporting CBF is formed by a group of 

branching vessels in the parenchyma and then draining the blood: from large 

arteries to small arterioles and capillaries, and then back from small venules to 

big draining veins. The fraction of tissue volume occupied by blood vessels is 

referred to as cerebral blood volume (CBV) and it has a typical value of about 4 

ml/100g (Buxton, 2009).  

One of the most important factors modulating CBF regulation is neural activity. 

As brain tissue cannot store glucose or O2 (Siesjo and Plum, 1971), a steady 

supply of nutrients needs to be maintained both at baseline and after stimulation. 

The mechanism linking local neuronal activity to increase in CBF is known as 

neurovascular coupling and it is regulated by the complex relationship between 

neurons, astrocytes and blood vessels that together form the vascular unit. 

Evidence from in vivo studies on animals shows that CBF changes are likely 

driven by a feedforward mechanism involving neuronal signalling via 

neurotransmitters (Attwell and Iadecola, 2002; Lauritzen, 2005). Astrocytes 

mediate the neurotransmitter activity of both excitatory and inhibitory pathways 

to vascular response, through their role in glutamate recycling (Pellerin and 

Magistretti, 2004). This activity triggers the production of vasoactive chemical 

agents such as K+ and NO (Lecrux and Hamel, 2011; Raichle and Mintun, 2006), 

which can alter the membrane potential of the surrounding cells.  

In fact, CBF is determined by regulating the vascular resistance, dependent on the 

internal diameter of the vessels. This resistance is mainly due to the arterial side 
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of the vascular tree, and in particular the arterioles, by virtue of the smooth 

muscle layer surrounding the vessels which is able to alter their diameter. 

Different vasoactive substances can induce an increase or decrease of the 

vascular resistance with different chemical paths. Although, the mechanism by 

which relaxation or constriction of the muscle is induced is common and it is 

regulated by Ca2+ concentration in the smooth muscle cells’ cytosol. Vasoactive 

agents can act on ion channels and alter the membrane potential increasing or 

decreasing cytosolic Ca2+ concentration inducing muscle contraction or 

relaxation respectively.       

A well-known vasoactive agent is CO2, which causes vasodilation and CBF 

increase. High concentrations of this agent in blood prevent the clearance of CO2

from tissue, causing a build-up that results in acidification of the environment. 

This alters the membrane potential and triggers Ca2+ depletion. Another 

vasoactive agent is adenosine, which not only is a fundamental substrate for 

energy metabolism forming ATP, but is also crucial in the regulation of the 

neurovascular unit acting both as a neuromodulator, reducing neuronal 

excitability, and as a powerful vasodilator (Berne et al., 1983). A widely 

consumed substance that causes vasoconstriction acting as an antagonist of the 

adenosine receptors is caffeine, discussed in more detail in Chapter 5.  
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1.3 O2 and CO2 in blood  

1.3.1  Transportation and physiology 

Among all the substances transported by the blood stream, O2 and CO2 play a 

crucial role, with the first being a metabolic reagent and the second a waste 

product. These gases are exchanged between the external environment and the 

blood stream in the capillary bed of the alveoli, the functional units of the lungs. 

Exchange is determined by gradients of gas concentration, with O2 passively 

diffusing into blood during inspiration and CO2 passively diffusing into alveolar 

space during expiration.     

Despite this apparent similarity, the mechanism of transportation is quite 

different between the two. As CO2 is highly soluble in water, most of it (about 

85%) reacts dissociating into bicarbonate ions ( ) and protons ( ) with 

the result of reducing the blood pH. The reaction is normally quite slow, but it is 

accelerated in blood due to the presence of the enzyme carbonic anhydrase. This 

maximizes the amount that can be transported and exchanged ensuring an 

effective system of metabolic waste elimination. Of the remaining 15%, about 5% 

is transported as free CO2, while about 10% is bound to the protein haemoglobin 

(Hb). The typical expired pressure at rest is about 40 mmHg. 

In contrast, O2 solubility in water is very low. What makes it highly soluble in 

blood is the presence of Hb which can bind an O2 molecule at the iron site of each 

of its four haem groups. The result is that most of the gas is carried in the vessels 

bound to Hb and only a small percentage in the plasma. The relationship between 

O2 arterial partial pressure (PaO2) and Hb O2 saturation follows a sigmoidal law 

(Eq. 1-1): this means that the saturation remains almost constant for PaO2 values 

above a certain level (about 160 mmHg), while it is very sensitive to changes 

below that level. The contribution of oxygen dissolved in plasma to the total 

arterial content (CaO2) is only significant when the Hb is almost totally saturated 

(see Figure 1-2).  
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The equations describing these effects are: 

   Eq. 1-1 

Also known as Severinghaus equation, and: 

Eq. 1-2 

Where ε is the coefficient of solubility of oxygen in blood (0.0031 ml O2/dlblood

mm Hg) and  is the O2 carrying capacity of haemoglobin (1.34 ml O2/gHb). 

The typical PaO2 is around 110mmHg and the difference between inspired and 

expired pressure is about -50 mmHg, with the saturation dropping from about 

98% in large arteries to 70-65% in venous blood. Work on animals suggests that 

O2 saturation has an almost continuous decrease, with values of about 75% in 

small arterioles (Sakadžić et al., 2015). 

The most accurate measure of PaO2 and PaCO2 is direct intermittent arterial 

sampling, which involves puncture of the vessel and is therefore invasive. A non-

invasive alternative consists of measuring the end tidal concentrations (PetO2 

and PetCO2). This is based on the consideration that these values reflect the 

values in the alveoli: partial pressure of gases in the alveolar capillaries rapidly 

reaches equilibrium with the alveolar space, so that we can assume the two 

quantities to be the same (Dubois, 1952). This has been tested to hold true 

during rest in healthy subject, whereas overestimates of arterial partial pressure 

have been found in conditions like intense exercise or diseases, especially as 

regards values of CO2 (Benallal et al., 2002; Robbins et al., 1990; Young et al., 

1991). Evidence suggests that the main source of bias is associated with 

deviation from the normal breathing pattern (Benallal et al., 2002; Jones et al., 

1979).    
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Deviations from normocapnic-normoxia 

When the normal concentrations of inspired O2 and CO2 (typically 20.9% and 

0.04% respectively, condition also referred to as normocapnic-normoxia) are 

altered, various physiological processes arise aimed at maintaining viable levels 

of pH and O2 partial pressure in tissue. For our purpose, these are of particular 

interest because they can be exploited as mechanisms of contrast to investigate 

the property of these gases in neuroimaging applications. In fact, experiments 

involving administration of atypical concentrations of O2 and CO2 will be 

discussed later in Chapter 3, Chapter 4 and Chapter 5. 

As previously mentioned, CO2 is known for its vasodilatory effect on arteries, so 

that levels higher than normal (hypercapnia) increase blood perfusion, while 

lower values (hypocapnia) induce a decrease. The ratio between changes in CO2

and CBF is often referred to as cerebrovascular reactivity (CVR) to CO2. The 

relationship between end-tidal values of CO2 and CBF is generally not linear, but 

it can be assumed as such for limited changes in CO2 (Tancredi and Hoge, 2013). 

O2 has been found to have a much less pronounced effect on blood perfusion with 

an opposite direction compared to CO2, with some studies pointing at a 

vasoconstrictive action during increased partial pressure (hyperoxia) (Bulte et 

al., 2007).    

Complications to these main effects are related to interaction effects between the 

two gases, which occur firstly at a biochemical level. In fact the Hb O2 binding 

affinity is inversely proportional to CO2 concentration and therefore proportional 

to pH (Bohr effect), while O2 concentration decreases blood ability to carry CO2

(Haldane effect, a review of both can be found in (Jensen, 2004)). Moreover, both 

hyperoxia and hypercapnia trigger hyperventilation (Dean et al., 2004; Wise et 

al., 2007), respectively reducing the end-tidal partial pressure of CO2 and 

increasing the end-tidal partial pressure of O2 (PetCO2 and PetO2). 
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Figure 1-2: Arterial oxygen content (CaO2) as a function of arterial partial pressure of 
O2 (PaO2) calculated with Eq. 1-1 and 1-2. Highlighted in red the value of O2 for which 
Hb reaches 99.5% saturation (SaO2), where the CaO2-O2 relationship starts being 
dominated by the additional O2 dissolved in plasma and becomes linear. In blue, 
values corresponding to a 50% fraction of inspired O2 (FiO2), typically used in gas 
challenges.
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1.3.2 OEF and CMRO2 during rest and activation 

The percentage of O2 extracted from the blood stream is referred to as the 

oxygen extraction fraction (OEF) and it can be calculated from the content in 

arteries and veins (  and ) with a mass conservation law as: 

        Eq. 1-3 

Despite heterogeneous distributions of CBF, OEF tends to be constant across the 

healthy brain at rest, with typical values of about 0.4 (Buxton, 2009). 

By combining the information on the blood delivered, the arterial content of O2 

and the proportion of O2 extracted by the tissue, it is possible to measure the 

cerebral metabolic rate of O2 consumption (CMRO2):    

   Eq. 1-4 

Considering a typical value of 8 μmol/ml for , values of CMRO2 are around 

160 μmol/100g/min (Buxton, 2009). Eq. 1-3 is also known as Fick’s principle and 
states that the quantity of a O2 taken up by a tissue per unit of time is equal to the 

quantity entering it via the arterial blood minus the quantity leaving in the 

venous blood. 

Energy metabolism in the brain is characterized by a high baseline, with local 

increases due to intense activation typically of about 20-30%. Such increases 

could be supported simply by altering CBF and OEF, without affecting the 

underlying mechanisms of energy production. Although, in reality the possibility 

of uncoupling between the two processes for ATP synthesis – discussed earlier in 

this chapter - determines different metabolic behaviours during rest and 

activation. At rest the proportion between glucose and oxygen metabolism has 
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been found very similar to the one described by the mass equation that regulates 

the oxidative metabolism (Raichle et al., 1970), suggesting that the energetic 

supply at resting state is dominated by the more energetically efficient oxidative 

pathway.  

The situation changes with activation, when the time efficiency of glycolysis plays 

an important role. A breakthrough in the understanding of brain metabolism was 

made by Fox and Raichle in their studies looking at estimating oxygen 

metabolism, glucose metabolism and cerebral blood flow in humans (Fox and 

Raichle, 1986). What they found is that, in activated areas of the somatosensory 

cortex, CBF and glucose metabolism increases much more than oxygen 

metabolism, typically with a ratio between 2 and 3 (Buxton, 2009). Moreover 

later studies have found that during activation, glycolysis increases much more 

than oxidative metabolism, possibly explaining this effect (Fox et al., 1988; Lin et 

al., 2010). This seems to suggest that increase in glucose metabolism during 

activation is driven by glycolysis (due to the time efficient response) triggered by 

pre-synaptic activity, while CMRO2 reflects the overall energy cost of neural 

activity (Buxton, 2009). This theme, already partially introduced when 

introducing the idea of neurovascular coupling, is crucial for the MRI approach to 

image of the brain activation and will be expanded in Chapter 2.  

Due to its strict connection to energy consumption, oxygen metabolism is 

considered a potentially important biomarker for assessing brain 

physio/pathology and treatment’s effects (Lin et al., 2010). Alterations in both 

OEF and CMRO2 have been found in conditions and diseases like stroke (Heiss 

and Herholz, 1994), dementia (Tohgi et al., 1998), Alzheimer’s (Ishii et al., 1996), 

multiple sclerosis (Ge et al., 2012) and tumours (Leenders, 1994; Vlassenko et al., 

2015). In cases where there is no metabolic alteration but the perfusion 

decreases endangering the O2 supply to the tissue (condition known as 

ischemia), OEF alone can be used to detect inadequate perfusion. In fact, 

alterations of OEF are used as markers in head injuries and cerebrovascular 

diseases (Coles et al., 2004; Diringer et al., 2000; Marchal et al., 1996; Ragan et al., 

2012).       
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1.3.3 Methods for investigating oxygen metabolism 

An early attempt to assess oxygen metabolism in vivo was proposed by Kety and 

Schmidt with tracer kinetic measurements (Kety and Schmidt, 1948). Nitrous 

oxide (N2O, a metabolically inert gas) is delivered to a subject until it equilibrates 

with the brain tissue. Then the rate of disappearance is measured and CBF is 

calculated on the assumption that this rate is a function of how much of the gas is 

in the tissue at any time. Combining such information with measurements of 

blood oxygen content obtained by sampling the carotid artery and jugular vein it 

is possible to measure bulk CMRO2 with Fick’s principle. 

In the following decades more sophisticated neuroimaging methods have been 

developed, able to measure oxygen metabolism exploiting different physical 

processes and with different degrees of specificity, invasiveness and accuracy. 

Here we give an overview of the most important ones. 

1.3.3.1 Positron emission tomography 

Position emission tomography (PET) is one of the earliest neuroimaging methods 

able to investigate brain physiology and specifically energy metabolism. PET 

involves the use of radioactive tracers (radionuclides, e.g. 18F, 15O and 11C) 

formed substituting stable atoms with unstable isotopes in biological molecules. 

As the radioactive decay takes place a positron is emitted, which annihilates with 

an electron producing two γ-rays in opposite directions. This activity is 

measured, producing a map of the spatial distribution of the tracer over time. 

Arterial or venous samples can also be taken, in order to measure radioactivity in 

total blood or plasma and allow quantification. What characterizes PET is the 

possibility of studying a variety of different biological processes with high 

specificity, due to the high number of different tracers that can be created.  

The investigation of oxygen metabolism is performed with a technique called 

triple oxygen PET, in which the isotope 15O is employed in three compounds 

delivered sequentially: C15O, H215O and 15O2. Inhalation of C15O is used to measure 

CBV, injection of H215O is used to measure CBF and finally, from inhalation of 15O2, 

OEF and CMRO2 are measured. This method is the first one allowing the 
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measurement of the spatial distribution of oxygen metabolism. It has been used 

in the early seminal studies on metabolism and neurovascular coupling (Fox et 

al., 1988; Mintun MA, Raichle ME, Martin WR, 1984; Raichle et al., 1983) and it is 

now considered a gold standard for measuring CMRO2 (Ito et al., 2005).     

Nevertheless PET techniques present several issues, such as the cost, the 

technical complexity, the time constraints imposed by the isotopes’ half-life and 

the technological requirements involved (e.g. an in-site cyclotron). Moreover the 

invasiveness due to the administration of ionizing radiations limits its use for 

longitudinal and repeatability studies. 

1.3.3.2 Near-infrared spectroscopy   

Near-infrared spectroscopy (NIRS) is a technique that exploits the optical 

properties of tissue to assess total, oxy- and deoxy- haemoglobin (tHb, Hb and 

dHb respectively) content in the vessels. In fact, while tissue is transparent to 

near-infrared light, Hb and dHb in small vessels (<1mm diameter, (Ferrari and 

Quaresima, 2012)) show characteristic spectra of absorption in a range of about 

650 to 910 nm (Lloyd-Fox et al., 2010) that can be directly related to their 

content in the blood stream. Measurements are made with an array or a cap of 

light emitters and detectors put in direct contact with the skin of the subject, 

similar to what happens in EEG, leading to the creation of maps. Due to limits on 

the power of the light emitted, NIRS is only sensitive to vessels within a range of 

3-4 cm from the skull surface.  

NIRS studies have been typically focusing on measuring the physiological 

changes due to neural activation discussed in the previous paragraphs. These 

measurements lead to estimates of relative changes in CMRO2, either alone (Boas 

et al., 2003) or in combination with other methods able to estimate changes in 

CBF (Hoge et al., 2005). Although, absolute quantification of CMRO2 is unfeasible 

due to the necessary assumptions on the baseline value of physiological 

parameters such as CBV and tHb.   
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Compared to other methods, NIRS is minimally invasive, not expensive and 

supplies measurements with high time resolution, but has a poor spatial 

resolution and only supplies estimates of relative changes in CMRO2.

1.3.3.3 Magnetic resonance imaging 

Since its introduction in the 1990s, functional magnetic resonance imaging 

(fMRI) has relied on alteration in oxygen metabolism and blood flow to explore 

brain activity. A straightforward MRI technique for measuring CMRO2 is highly 

desirable, as it would represent a cheaper and less invasive alternative to the PET 

gold standard, ready to be implemented in hospitals and neuroimaging centres 

all over the world.  

Various methods for measuring firstly relative changes and then absolute CMRO2

have been introduced in recent years and they will be described in detail later in 

Paragraph 2.2.3. Some MRI techniques allow researchers to obtain accurate and 

repeatable whole brain estimates. Others have been proposed for voxel-wise 

estimates, but no one method has emerged yet as the complete and valid 

alternative to the gold standard PET techniques, so that further research and 

improvement is still needed. The experimental chapters of this thesis try to 

address this issue optimizing already available techniques (Chapter 3), testing 

these developments in different contexts (Chapter 4, Chapter 5) and finally 

exploring new methods (Chapter 6). 
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Chapter 2

Introduction to MRI and fMRI

The aim of this chapter is to introduce the basic concepts of magnetic resonance 

imaging (MRI) and subsequently of functional magnetic resonance imaging 

(fMRI). 

MRI comprises a series of techniques able to interact with the magnetic 

properties of the matter in our body exploiting strong magnetic fields and 

radiofrequency pulses. Measuring these interactions we are able to infer about 

the structure or function of the regions under investigation. In this brief 

description, the focus is on techniques which are most relevant to the 

experimental work presented in the rest of the thesis. In particular the chapter 

includes a comprehensive review of the most relevant MRI methods adopted so 

far for quantifying oxygen metabolism in human brain.   
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2.1 Basic MRI concepts

2.1.1 The origins of the signal  

Atoms with an odd number of protons or neutrons are characterised by a non-

zero spin angular momentum . Associated with their spin, there is a dipolar 

magnetic moment . The relationship between the two is given by: 

    Eq. 2-1 

where the constant  is called gyromagnetic ratio. According to the quantum 

mechanics description,  is calculated from the spin angular momentum number 

 as:  

   Eq. 2-2 

 Where  is quantised and can only take integral or half-integer value and the 

constant h denotes the Planck’s constant.
As the human body is largely composed of water, hydrogen (H) is particularly 

abundant in tissues and represents a good target for imaging. Most MRI 

applications are tuned to interact with H atoms, whose nuclei are composed of a 

single proton and therefore have spin. In the following we are therefore focusing 

on applications with H, which is characterised by I = ½ and quantum number mI

= ½. 

In the absence of relevant magnetic perturbations the magnetic moments of a 

pool of H nuclei are randomly oriented in tissues and their resulting sum  can 

be assumed null. Instead, when a magnetic field  is applied, they tend to align 

with the field. In particular – according to a process known as Zeeman effect - the 
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system reaches an equilibrium in which all moments will populate the energy 

states described by: 

    Eq. 2-3. 

As for H mI = ½, these states are two: the low energy state (-), with spins aligned 

parallel to the field or the high energy state (+), with spins aligned anti-parallel. 

The energy difference between the two states E can therefore be expressed 

with the following: 

    Eq. 2-4 

The ratio of the two populations of spins (N+/N-) is finally described by Eq.2.5, 

where k is the Boltzmann constant and T is temperature.  

     Eq. 2-5 

This distribution, known as the Boltzmann distribution, predicts a resulting 

magnetic dipole  (also known as bulk magnetization) aligned with  as a 

result of the majority of spins reaching the lower energy state. Assuming that in a 

sample all spin at high energy state have magnetic moment  and all those at 

low energy state have magnetic moment  , the magnitude of the resulting 

magnetic dipole is:  

  Eq. 2-6 

where N is the  total number of protons.  
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Because of the external magnetic field, the alignment of the spinning nuclei is 

also characterised by the precession of the spins around the field direction. This 

process is described by Eq. 2.7, where  equals 42.56 MHz/T for H atoms. 

    Eq. 2-7 

The frequency of precession generated by the main magnetic field  is denoted 

with 0 and referred to as the Larmor frequency. 0 is directly proportional to the 

magnitude of the main magnetic field, accordingly to Eq. 2.8. 

      Eq. 2-8 

So far we have described how spins in a static magnetic field tend to reach an 

energetic equilibrium and how they behave when approaching the alignment to 

this field but for our purposes it is important to note that only when  is 

perturbed, altering its alignment to the magnetic field, does precession produce a 

detectable signal. This signal can then be altered to encode information about the 

tissue from which it originates.

2.1.2 RF pulses and gradients 

In an MRI scanner the main magnetic field  is produced with coils of 

superconductive material. In addition to these, other coils are used for producing 

radiofrequency pulses ( ) and magnetic gradients ( ) which are exploited to 

generate, modulate and encode the signal. The magnetic gradients can be created 

in all directions independently or in combination, with the components along the 
x, y and z directions denoted as ,  and  respectively. Finally, receiver coils 

positioned perpendicularly to the x and y axes detect the changing magnetic field 
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generated by the precessing dipoles when the net equilibrium magnetization 

is perturbed and produces a component in the xy-plane.   

2.1.2.1 RF pulses 

The RF pulses, denoted as , have the aim of tipping the magnetization vector , 

so that a net electric signal is generated in the receiver coils.  is usually 

delivered along the x axis, so that  rotates around the same axis, towards the 

xy-plane. In order for this to happen,  must be oscillating at the Larmor 

frequency 0, that is it must be on resonance with the precession frequency: an 

effect known as nuclear magnetic resonance (NMR). If this is not the case and the 

pulse is off-resonance, only a smaller portion of the magnetization is measurable 

by the receiver coils on the xy-plane. 

pulses are usually characterised by the angle they produce between the static 

magnetic field and the magnetization vector, also known as flip angle. High flip 

angles generate higher  and  components of magnetization in the xy-plane 

and therefore higher signals. The same flip angle can be obtained increasing the 

magnitude or the duration of the RF pulse. 

The process for which energy is supplied through RF pulses to the protons, so 

that more of them reach a high energy state perturbing , is called RF excitation. 

During the opposite process energy is dissipated as heating and more protons 

return to a low energy state, with the longitudinal component of magnetization 

 returning to  and the transverse components  and  return to 0. This 

last process, called relaxation, occurs naturally and will be discussed in more 

detail later on. 

2.1.2.2 Magnetic field gradients 

Magnetic field gradients are fundamental for MRI, as they allow encoding 

information about the magnetization itself. This information is primarily 

exploited for image reconstruction, but then also for signal selection or contrast 

purposes, for example in motion sensitizing applications. As the resonant 

frequency is directly proportional to the magnetic field applied, introducing a 
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spatial gradient of the magnetic field along one direction imposes a spatial 

gradient of the Larmor frequency along that same direction. These spatial 

variations of  can be expressed as: 

    Eq. 2-9 

Where ,  and  represent the positions along the three axes.  

2.1.3 Longitudinal and transverse relaxation   

As mentioned, when an RF pulse  is applied it gives rise to a transverse 

magnetization on the xy-plane and may also leave longitudinal magnetization on 

the z axis. This is a transient high energy state, from which the system moves 

towards a low energy state. The less energetic state is reached when the 

magnetization aligns with , the longitudinal magnetization goes back to 

equilibrium value aligned on the z axis and the transversal magnetization 

vanishes.  

These two processes are known as longitudinal and transverse relaxation. They 

occur with an exponential behaviour and can be characterised by two 

independent time constants: T1 and T2 respectively. They are specific for each 

different component of the human tissue, being therefore fundamental 

parameters for the contrast in the images, along with proton density and others 

related to the scan sequence (such as flip angle α, repetition time TR and echo 

time TE).  

Relaxation originates from dynamic fluctuations of the magnetic field due to the 

fact that the magnetic dipoles are sensitive not only to the main magnetic field, 

but also to the small magnetic fields generated from the surrounding dipoles and 

their perturbations. In particular longitudinal relaxation (also referred to as T1

recovery) is caused by the exchange of energy from nuclei to their surrounding 

environment (lattice). Transverse relaxation (also known as T2 decay) is caused 

by the exchange of energy from one nucleus to another. Also, T2 is determined by 
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the effect of dephasing in the precession and therefore coherence loss induced by 

the fluctuations. Typically at 3T values of T1 are longer than 1s, whereas T2 is 

about one order of magnitude smaller. Reported values for grey matter, white 

matter, arterial blood and cerebrospinal fluid at 3T are about 1.4 s, 1 s, 1.6 s and 

4 s respectively (Wansapura, 1999; Stanisz, 2005). We will take a closer look at 

the transverse relaxation later when discussing the basis of functional MRI.  

2.1.4 Free induction decay, gradient echo and spin echo  

After the RF excitation pulse has been applied and the desired flip angle achieved, 

T1 recovery and T2 decay take place. In particular the signal induced in the 

receiver coil oscillates at the Larmor frequency and decreases with a process 

known as free induction decay (FID). The FID is indeed characterised by a signal 

decrease, but typically by much more than expected. This enhanced decay is 

described in terms of an apparent transverse relaxation time, T2*, shorter than T2

and occurring naturally, due to magnetic field inhomogeneity inducing small 

changes in precession frequencies across the protons and loss in phase 

coherence.  

Mechanisms of signal refocusing are therefore necessary as the dephasing occurs 

almost immediately after the RF excitation pulse has been applied, making the 

signal difficult to detect. In MRI two different approaches are exploited for 

refocusing transverse magnetisation: gradient echo (GE) and spin echo (SE).  

During a gradient echo (also known as gradient recalled echo or GRE) the signal 

is re-phased by applying gradients along the frequency encoding direction. After 

the RF excitation pulse a dephasing gradient is imposed for a short period of 

time, followed by a rephasing gradient of opposite sign (typically with negative 

value). Doing so, after an initial increase in the rate of phase dispersion, the signal 

recovers some of the phase coherence and is refocused. In particular it reaches 

its maximum - the refocusing echo - at the characteristic time t = TE, when the 

area under the rephasing gradient equals the one under the dephasing gradient 

(see pulse diagram in Figure 2-1, top).  The signal obtained is sensitive to the 
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apparent transverse relaxation time T2* as the gradients are not able to correct 

the changes in precession frequencies due to field inhomogeneity.  

However, given that T2* results from constant offsets rather than fluctuating 

fields, it is possible to correct for these inhomogeneity effects and obtain an 

image with T2 contrast. This is done by the spin echo, which exploits an 

additional RF pulse on top of two gradients for refocusing the signal. In this case 

after the initial RF pulse  giving rise to the transverse magnetization, two 

gradients with same sign (typically positive) are interleaved with a 180° 

refocusing pulse.  The pulse has the effect of rotating the dephasing transverse 

magnetization around its own axis by 180°, reversing the dephasing process and 

eventually resulting in the net transverse magnetisation being refocused in an 

echo (see pulse diagram in Figure 2-1, bottom). Due to the inversion of the 

dephasing process, the effects of static field inhomogeneity are corrected, while 

the transverse relaxation due to spin-spin interactions is maintained, resulting in 

a signal sensitive to T2 rather than T2* contrast. It is noteworthy that in an SE 

imaging approach, there are two echoes occurring simultaneously: one due to the 

180° RF pulse and the other due to the read-out gradient pulses. In a 

conventional SE these two echoes occur at the same time, with the 180° 

refocusing pulse applied at t = TE/2.  It is also possible to shift the two echoes, 

with an approach known as asymmetric spin echo (ASE). As in this case the 

transverse magnetization phase is only affected by field inhomogeneities for a 

certain time, the ASE sensitivity to transverse relaxation is in between the ones of 

SE and GE. More details on the origins of T2 and T2* will be presented later on, 

when considering the interactions between physiology and MRI signal 

(Paragraph 2.2.1.1).  
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2.1.5 Image formation  

2.1.5.1 Slice selection, frequency encoding and phase encoding 

RF pulses and gradients are exploited, among the others, to encode the 

information about the spatial distribution of the transverse magnetization into 

the frequency and phase of the signal. In fact, imaging is made possible because 

the local precession frequency is proportional to the local magnetic field which 

can be manipulated by applying gradient fields. In conventional applications this 

is done in three steps: slice selection, frequency encoding and phase encoding. 

The slice selection consists of determining the position and geometry of the field 

of view. This is done applying simultaneously an RF pulse at the Larmor 

frequency 0 and a spatial gradient (typically a  gradient, see pulse diagrams in 

Figure 2-1) in order to excite only a portion of protons included in a thin slice 

(typically on the xy plane). The spatial gradient generates a spatial distribution of 

frequencies around 0, with 0 corresponding to a particular value z0 of the z 

coordinate. Doing so, when the RF pulse is applied, only the spins at z0 are 

affected producing an   component that is detectable.  

After this step, the distribution of the transverse magnetization needs to be 

encoded in the x and y plane. Applying a spatial gradient along the x direction, 

the precession frequency of the transverse magnetization varies linearly along 

the x axis. During the continuous application of the gradient , the MR signal is 

measured at discrete time-points in which it will have a different amount of 

phase change (see pulse diagrams in Figure 2-1). Therefore the total signal 

acquired will be the sum of a range of frequencies rather than the only Larmor 

frequency. In particular the component of the signal at a particular frequency is 

proportional to the transverse magnetization at a certain value of the x 

coordinate. In this process, referred to as frequency encoding, the information on 

the position of the transverse magnetization is encoded in the frequency of the 

acquired signal. 

Similarly for the y axis the spatial information is encoded in the phase of the 

signal detected. This is done applying a spatial gradient  before data 
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acquisition and causing spins to accumulate a phase difference dependent on 

their position (see pulse diagrams in Figure 2-1). When the phase encode 

gradient is switched off this phase difference remains and spins are said to be 

phase encoded. In this way components of the transverse magnetization will 

have different phases depending on their position along the y axis, regardless of 

their precession frequency.  

Figure 2-1: pulse sequence diagrams for standard GRE (top) and SE (bottom) 
sequences with Cartesian navigation of k-space (see Paragraph 2.1.5.2). In both 
cases, the phase encoding gradient (Gy) has a fixed value for each TR.
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2.1.5.2 K-space   

Let be the transverse magnetization in a position  of the xy plane. If we 

were to measure the signal  due to this magnetization arising from a small 

area dA without any encoding we would have: 

Eq. 2-10 

Once the encoding has been performed, the information about the spatial 

distribution of -  that is the image of interest - is encoded in the frequency 

and phase of the signal S(t) detected by the coils. Considering the rotating frame 

of reference, the phase  acquired over time due to the gradient vector  can be 

expressed as: 

   Eq. 2-11 

Therefore the oscillating signal measured by the coils during a short period of 

readout can be expressed as: 

Eq. 2-12 

At this point it is useful to introduce the vector  = (kx, ky) defined as 


 , so that the measured signal can be expressed in terms of its 

dependence on  as:

Eq. 2-13 
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This formalism allows us to think about  as a spatial frequency (Hz/cm). Also, as 

the expression in Eq. 2.12 equals an inverse Fourier transform, the space of the 

image of interest and the k-space can be considered as Fourier transform 

conjugate spaces. It is then possible to retrieve  from the measured signal 

in k-space through a 2D Fourier transformation: 

  Eq. 2-14 

where ℱ denotes the Fourier transform operator.  In fact, the process of image 

readout consists of navigating and sampling k-space with the phase encoding and 

frequency encoding gradients. The amplitude of a voxel S( *) of this image 

represents the amplitude of a 2D sinusoidal wave with spatial frequency on x and 

y across the all image defined respectively by k*x and k*y.  

Values of k close to 0 define low frequencies of the image of interest and are 

mainly responsible for the contrast, whereas high values define sharp transitions 

and details.  The spatial resolution of will depend on the range of  values 

measured, following the Nyquist criterion. So resolution in x depends on the 

magnitude of the read-out gradient and on the extent of the data collection time, 

while resolution in y depends on the magnitude of the maximum phase-encoding 

gradient. 

2.1.5.3 K-space sampling trajectories 

By k-space trajectory, what is meant is the trajectory traced in the readout phase 

and frequency to sample k-space. What allows us to traverse through the k-space 

is, as previously mentioned, the application of phase and frequency encode 

gradients. The k-space trajectory chosen determines both the acquisition 

strategy and the image reconstruction algorithm to be employed. In particular 

different trajectories have different acquisition times and are affected by 

different types of artefacts.  
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One of the most popular approaches is the Cartesian navigation, that consists of a 

raster in which each line of k-space (along the kx axis) corresponds to the 

frequency-encoding readout at a fixed value of the phase-encoding gradient (k*y). 

All lines in the raster are parallel and separated by equal distance in k-space. This 

trajectory is typically more robust than others to artefacts due to resonance 

offset, eddy currents, and other imperfections. In its classic implementation each 

line of k-space is acquired after an RF pulse, that is after each repetition time TR, 

leading to long scan times.  

A faster implementation instead exploits echo trains that allow sampling of the 

whole (or portions of) k-space with just one (or few) RF pulses. In this 

application the gradients change dynamically, allowing sampling almost 

continuous in space, with an alternating direction of the trajectory along the kx

coordinate (see Figure 2-2,A). This also leads to increase the sensitivity to several 

artefacts such as geometric distortions. 

The spiral trajectory instead navigates the k-space describing a spiral, either 

starting from the origin of k-space outward (spiral-out) or vice versa (spiral-in). 

This is done exploiting oscillatory phase and frequency encoding gradients with 

amplitude increasing during time (or decreasing, in the case of spiral-in). The 

simultaneous use of both gradients shortens the readout time, leading to the 

acquisition of the whole k-space in a single TR (see Figure 2-2,B). However, it can 

be more demanding for the gradient generating hardware and has different 

artefacts when compared to the previously presented approaches. Also, given 

that the sampling of the k-space is not evenly distributed, the reconstruction 

process through the Fourier transform is more complicated.  
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Figure 2-2: k-space sampling trajectories. In panel A the Cartesian trajectory for a 
train of phase encoding gradients allowing sampling of the entire space in a single 
TR. In panel B a spiral (out) trajectory.
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2.1.6 Motion encoding, q-space and Fourier velocity imaging 

2.1.6.1 Motion encoding 

So far the MR signal has been considered in terms of a static spatial distribution. 

However, the MR signal shows sensitivity to movement, random or coherent, and 

many methods have been developed for quantifying this phenomenon. The 

techniques can be divided into two broad groups: those that encode the 

information in the phase of the signal (phase contrast techniques) and those that 

encode it in its magnitude (time-of-flight techniques). Here we focus on the 

former, as a novel application of this group will be presented in Chapter 6.       

As previously seen, the local precession frequency of protons is proportional to 

the local magnetic field. The phase dependency of a pool of moving spins 

resonating at the same frequency (also referred to as isochromat) can be derived 

from its precession frequency. In fact the phase of an isochromat at position 

and time t can be expressed as: 

   Eq. 2-15 

where the first terms -  - take account of the static magnetic field 

and its inhomogeneity , whereas the last term expresses the dependency on 

the local gradient (spatially dependent and time varying). Considering now the 

rotating frame of reference and disregarding for simplicity the effect of , the 

phase acquired over time t can be expressed as per Eq. 2.11. It is always possible 

to express the component of an isochromat’s position (t) along the direction of 

applied gradient as the sum of its temporal derivatives at t = 0. Let’s take, for 
ease, the 1D case of direction x: 

   Eq. 2-16 
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Substituting Eq. 2.16 in the 1D version of  Eq. 2.15 it is possible to give a general 

expression for the phase shift acquired relative to a stationary spin at position x0

= 0. In practice, depending on the specific application, high order temporal 

derivatives can be considered not significant and the equation simplifies into a 

dependency on the only position (x0) and local velocity (vx0) of the isochromat: 

   Eq. 2-17 

Where the nth moment Mn is defined as  

     Eq. 2-18 

Therefore it is possible to adjust the moments of the gradient so that the phase 

acquired by the signal encodes information about spin position or velocity. In 

particular by setting M0 to 0 and M1 to a value different from 0 the signal 

becomes velocity but not position sensitive, allowing velocity imaging.  

The requirement on the moments’ value is typically achieved exploiting pulsed 
field gradients (PFG), that is rectangular gradient pulses of duration δ and 
separation  with equal and opposite amplitudes ±G in the case of a GE sequence 

or with equal amplitudes but separated by a 180° RF pulse in a SE sequence. In 

fact for a PFG the magnitudes of the moment are M0 = 0 and M1 = Gδ, where G is 

the amplitude of the gradient in the direction considered (see Figure 2-3). This 

leads to an accumulated phase ϕ for movements in a fixed direction x that we can 

calculate with Eq. 2.16-17 as:  . 

The amount of phase encoding which is possible to apply is limited, as the 

maximum phase difference distinguishable between images obtained with two 

different values of the gradient is ±π. Therefore a boundary is also introduced 
on the maximum value of velocity detectable without aliasing: 

  , were M1 represents the first moment difference between two PFG 

applied. 
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2.1.6.2 Fourier velocity imaging 

There are several ways to exploit the information given by the obtained phase 

maps. In particular Fourier velocity imaging consists of collecting several phase 

images sampling different values of the gradient . To explore this approach it is 

possible to introduce the formalism of the q-space with the q variable defined as:  

. This allows to exploit a reciprocal displacement space, the q-space, 

described as the motion encoding domain, similarly to what happens with the k-

space for position encoding. The sampling of the q-space is carried out stepping 

through different amplitudes of PFGs.   

With the variable introduced, the MR signal can be expressed combining spatial 

and velocity imaging: 

  Eq. 2-19 

Figure 2-3: Gradient applied (G) and correspondent 0-moment (M0) for a PFG 
applied in a gradient echo sequence. The resulting M0 is nulled while M1 = G 
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Where  is the signal arising from nuclei with position  and velocity .  It is 

worth noting that this last equation expresses the relationship of duality between 

the -space and the space of position and velocity ( -space). It’s 
therefore possible to use the Fourier transform to investigate  rather than 

 extending the equation presented in the previous paragraph (Eq. 2.14) in 

order to include . 

Finally the sampling of the q-space has to obey the rule on phase encoding 

imposed by the Nyquist criterion. Therefore the maximum velocity detectable 

without aliasing (max_venc) is defined by the venc associated with the minimum 

value of the gradient applied (Gstep) and the resolution in velocity is determined 

by the number of samples acquired.
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2.2 Functional MRI  

Functional MRI (fMRI) is the group of MRI methods aimed at measuring brain 

activity. This is only done indirectly, measuring the regional effects of the 

haemodynamics and relying on the assumption that local cerebral blood flow 

(CBF) is coupled to neuronal activity. The motivations for this – already 

discussed in Chapter 1 - are rooted in evidence found, since early modern 

physiological experiments, of changes in local CBF triggered by alterations in 

neural activity (James, 1890).  

The first method introduced relies on the venous blood oxygenation level-

dependent (BOLD) effect. The differential MR signal due to the BOLD effect 

(hence BOLD signal) is triggered by changes in deoxyhaemoglobin (dHb) content, 

which acts as an endogenous contrast agent. Given that the BOLD signal is 

nonlinearly dependent on various physiological and biophysical factors, it only 

supplies a qualitative or semi-quantitative measure of brain activity.  

Another group of methods have been developed, focused on directly measuring 

changes in blood perfusion. This group is based on the arterial spin labelling 

(ASL) technique, which exploits magnetized water in the blood stream as an 

endogenous tracer. Using some mathematical models is possible to relate the ASL 

signal to CBF, a measure that has a straightforward physiological meaning. 
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2.2.1 Blood Oxygen Level Dependent Signal  

2.2.1.1 Origin of the signal  

The BOLD signal originates from a combination of two different phenomena that 

occur in the brain: one biophysical and the other physiological. 

The first is due to the different magnetic properties of haemoglobin (Hb), which 

is diamagnetic when bound to O2 molecules but is paramagnetic when not bound 

(Pauling and Coryell, 1936), therefore disrupting the surrounding magnetic field. 

In particular the relationship between blood magnetic susceptibility (blood) and 

haematocrit (Hct) is described by Weisskof and Kiihne (Weisskoff and Kiihne, 

1992) as: 

      Eq. 2-20 

where do (0.264 ppm) is the difference in susceptibility between fully 

oxygenated and fully deoxygenated red blood cells and Y is the fractional 

haemoglobin saturation, which expresses the percentage of red blood cells bound 

to oxygen. As Hct is proportional to the haemoglobin concentration 

([Hb]Hct/0.03), there is a linear relationship between blood susceptibility and 

fractional haemoglobin saturation.

Blood susceptibility affects the magnetic signal inducing frequency shifts and 

signal dephasing and ultimately shortening the transverse relaxation time T2*. In 

particular defining R2*=1/T2*, it is possible to express R2* as: 

    Eq. 2-21 

The second component - R2’ - accounts for the reversible relaxation rate which 

depends on blood and therefore on [dHb], while R2 denotes the irreversible 
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transverse relaxation rate (R2=1/T2), which is dependent on intrinsic tissue 

susceptibility and field inhomogeneities not caused by dHb (Davis et al., 1998).  

These properties of Hb are coupled to another characteristic physiological effect 

taking place: when an area of brain is activated in response to a stimulus, the 

blood flow to the tissue increases to such an extent that the oxygen delivered 

exceeds the metabolic need, as discussed in Chapter 1 (see Figure 2-4). This 

seems to support the idea that CBF and CMRO2 are driven by neural activity in 

parallel: CBF as a feedforward response to synaptic activity, CMRO2 as a feedback 

response to overall energy cost (Buxton, 2009). The result is a decrease in OEF 

and dHb content, resulting therefore in an increased MR signal (Buxton et al., 

2004). This modulation of the amount and local concentration of dHb affecting 

the MR signal (S) was first found by Ogawa (Ogawa et al., 1993) and referred to 

as the blood oxygen level dependent (BOLD) effect. The signal arising, called 

BOLD signal, can be expressed as: 

     Eq. 2-22 

The relationship between neural activity and BOLD signal is intrinsically 

nonlinear as it is mediated by the previously mentioned cascade of events and it 

is modulated by the baseline physiological state of the brain tissue, such as 

baseline CBV and dHb. For this reason the BOLD signal can only provide a semi-

quantitative tool for mapping brain activity.     
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2.2.1.2 BOLD  signal modelling 

A simplified model for describing the BOLD signal was firstly introduced by Davis 

(Davis et al., 1998) and then Hoge (Hoge et al., 1999a) based on modelling 

studies carried out by Boxerman (Boxerman et al., 1995a) Ogawa (Ogawa et al., 

1993) and Weisskoff (Weisskoff et al., 1994). This model allows us to express the 

relationship between BOLD signal and changes in magnetic susceptibility of 

blood due to changes in dHb content with physiological parameters of interest, 

such as CBF, CBV and CMRO2.  

As previously seen, the exponential decay of the MR signal in a GRE experiment is 

characterized by the parameter R2*, which is the sum of an irreversible and a 

reversible component (R2 and R’2 respectively).  The latter can be described as 

(Ogawa et al., 1993; Yablonskiy and Haacke, 1994): 

    Eq. 2-23 

Figure 2-4: Schematic of the chain of events triggered by a stimulus in brain tissue. The 
interaction between the different physiological parameters involved determines the 
dynamics of the BOLD signal. Adapted from Blockley et al. (Blockley et al., 2012b).
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with k being a proportionality constant depending on magnetic field strength and 

 expressing the nonlinear dependence of the MR signal on venous oxygenation 

(Boxerman et al., 1995b). In particular the value of  has been originally fixed to 

1.5 at 1.5 T as a compromise between the values of 1 and 2, which would more 

accurately describe the relationship for large and small vessels respectively. It is 

therefore possible to express the change in R2* due to an alteration from a 

baseline state (denoted with subscript 0) as: 

     Eq. 2-24 

Considering the expression for BOLD signal in Eq. 2.22 and assuming small 

values of R2* is possible to obtain the following approximated equation: 

    Eq. 2-25 

With the scaling parameter M lumping together physical scanning parameters 

and geometrical factors and the effect of baseline dHb content on susceptibility, 

defined as:  

Eq. 2-26 

Eq. 2.25 can be rearranged to express the relationship of the BOLD signal with 

two different parameters of interest: CMRO2 and CBF. In fact, due to Fick’s 
principle of mass conservation, we have: 

   Eq. 2-27 
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This allows one to directly relate the BOLD signal with the underlying 

metabolism. Then it is possible to express the CBV ratio, with a power law 

relationship in terms of CBF ratio, that is: 

   Eq. 2-28 

with the parameter α=0.38 known as Grubb’s parameter (Grubb et al., 1974). 

Finally, substituting the values in Eq. 2.27 and Eq. 2.28, Eq. 2.25 can be expressed 

again as:  

  Eq. 2-29 

This model, although simplified and only considering the extravascular origin of 

the signal, has been successfully used in experiments to model the BOLD signal in 

both simulations and real world experiments (Buxton et al., 2004; Obata et al., 

2004). Moreover it has been possible to adjust its application to a field strength 

of 3 T, just by tuning the parameters α and  : (α,)=(0.2,1.3) as found by Bulte 

and colleagues (Bulte et al., 2012), or (α,)= (0.14,0.91) as suggested by Griffeth 

and Buxton (Griffeth and Buxton, 2011). In particular this model will be studied 

and applied in the next chapters of this thesis for baseline CMRO2 assessment. 
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2.2.2 Arterial Spin Labelling and CBF quantification 

2.2.2.1 General principles  

The principle of ASL is to label water in the arterial blood stream to exploit the 

blood itself as an endogenous tracer. The perfusion of this tracer in the tissue is 

then measured, giving an estimate of the water exchanged at the capillary level in 

brain tissue. 

This operation can be conceptualized in three steps: 1) labelling of arterial blood: 

the magnetic characteristics of blood are altered at the arteries level by inverting 

or saturating its longitudinal magnetization; 2) post labelling delay: time delay to 

allow the labelled bolus of blood to reach and perfuse the tissue of interest; 3) 

signal acquisition: once all the blood is expected to be in the tissue. As the 

labelling results in a relative attenuation of the MR signal, the acquisition is 

typically carried out with a tag-control scheme: images are acquired with the 

labelling being (tag) or not (control) applied alternately. The ASL signal is then 

obtained by the subtraction of control images, in which the magnetization is 

relaxed, and tag images, in which the longitudinal magnetization of arterial blood 

is inverted. The obtained difference in magnetization (M) is therefore 

proportional to CBF, but also to other underlying physiological parameters. In 

order to have a quantitative measurement of CBF, further processing of the signal 

is need, which we will discuss in details later on when describing the ASL signal 

modelling for CBF quantification (Paragraph 2.2.2.3).  

It is important to consider that the contrast given by the tag is negative and it 

only applies to the water in the blood which we expect to exchange with tissue 

water. In grey matter, considering typical values of perfusion (approximatively 

60 ml/100g/min, equivalent a rate of 0.01/s) and labelled blood bolus duration 

(up to about 2s), ASL measurements perturb approximately 2% of the total MR 

signal. Considering then the label efficacy and signal decay, this limits the 

difference between label and control images to about 1%. Signal fluctuations, 

mainly due to subject motion, are proportional to the signal intensity in the un-

subtracted images, which is dominated by static tissue. For this reason ASL is a 
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noisy signal, with values of SNR typically between 3 and 5 times lower than 

BOLD.   

Several approaches have been proposed to address this issue and improve SNR. 

They typically rely on decreasing the intensity of the signal from static tissue 

without a proportional decrease in the ASL difference signal. One of them, widely 

used for research and clinical ASL but not exploited in the experimental part of 

this work, is referred to as background suppression and aims at nulling the signal 

from the static tissue prior to readout using a combination of spatially selective 

saturation and inversion pulses (Alsop et al., 2014). For other methods, oriented 

on the post-labelling and readout phase we refer to the next paragraphs.
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2.2.2.2 Signal encoding  

Depending on the strategy adopted for labelling arterial blood and therefore 

encoding the signal of interest, ASL techniques can be divided into three broad 

groups: continuous ASL (or CASL), pulsed ASL (or PASL) and velocity selective 

ASL (VS-ASL). In the following we are going to give a general description of all of 

them, with more details supplied for the PASL case as it is the approach adopted 

in the experimental chapters of this thesis. 

CASL 

In this case the labelling is operated with a continuous inverting RF pulse (typical 

duration between 1 and 3 s) in conjunction with a slice selective gradient 

targeted at a certain distance from the region to be imaged on the arterial side 

(usually in the neck). This is often referred to as an inversion plane, crossing 

which the blood is labelled. This technique is characterized by high SNR, but also 

high specific absorption rate (SAR) and magnetization transfer effects. Due to the 

long labelling pulse and post labelling delay CASL is also characterized by long 

TR. An alternative CASL approach is the pseudo-CASL (or pCASL), that exploits 

for the same purpose, a train of short pulses rather that a single long RF pulse, 

reducing SAR and being more practical to implement on most MR systems, while 

maintaining the same SNR.   

PASL 

With PASL the tag is performed by applying a short spatially selective pulse 

(typically between 5 and 20 ms) on the arterial blood contained in a whole slab, 

or tagging volume, proximal to the imaging region. PASL techniques are 

characterized by lower SAR and short TR thanks to the nature of the labelling 

pulse, on the other hand they are affected by the quality of the tagging volume 

produced, in terms of spatial homogeneity and SNR lower than in CASL (Wong et 

al., 1998a). With PASL it is usually possible to position the tagging volume closer 

to the imaging volume compared to CASL, due to the reduced magnetization 

transfer, resulting in a shorter post labelling delay. Nevertheless the technique is 

affected by off-resonance effects, in which some inversion is induced outside the 

tagging volume.  
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Several methods have been proposed for addressing the issue of how to 

minimize changes in the static tissue contribution between the tag and control 

condition in order to enhance SNR. This is particularly important for PASL due to 

the proximity of the tagging volume to the imaging region. In the method known 

as echo planar imaging and signal targeting with alternating radiofrequency (or 

EPISTAR, (Edelman et al., 1994)), during the control image formation a tagging 

volume is positioned above the imaging region to induce the same off-resonance 

effect as in the tag and therefore a null contribution after the tag-control 

subtraction. Due to the close proximity of the tagging volume, a common artefact 

produced is the tagging of venous blood flowing downwards that confounds the 

dependency of the final ASL on CBF. More recently a new scheme was introduced 

in order to avoid magnetization transfer effects (Edelman, 1998). This exploits a 

360° adiabatic pulse for the label, while two 180° adiabatic pulses for control are 

applied sequentially at the same location as the labelling pulse. Doing so, the 

magnetization transfer effects are the same as for the labelling pulse and cancel 

with image subtraction for all slices. 

With another method, known as flow-sensitive alternating inversion recovery (or 

FAIR, (Kim, 1995)), the tag image is acquired with a non-selective inversion 

pulse, and the control image is acquired with a slice-selective inversion pulse on 

the image slice. In this way, the signal in the imaged region in the tag originates 

from the recovery of both arterial blood and tissue, while from the recovery of 

tissue alone in the control. As this last contribution from tissue in the image slice 

is ideally identical in both experiments, it cancels out. In FAIR a common artefact 

is represented by venous blood being tagged, leading to biases similar to the one 

found in EPISTAR (but with opposite direction). Finally a third method known as 

proximal inversion with a control for off-resonance effects (or PICORE, (Wong et 

al., 1997)), exploits a tag-control scheme similar to that of EPISTAR. While the tag 

remains the same, in the control image an RF inversion pulse with shifted 

frequency is applied without field gradients, so that the same off-resonance effect 

is produced on the image plane in both images. In this way the contribution from 

the venous blood to the total signal affecting EPISTAR and FAIR is nulled. 
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Another issue that has been addressed is the duration of the labelled bolus. In 

fact while in CASL bolus duration is a well-known parameter (and equals the 

labelling pulse duration), in PASL it is not and it depends on the heterogeneous 

mixture of velocity profiles of the different arteries included in the tagging 

volume. This represents a major limit when it comes to modelling the ASL signal 

and estimation of CBF. A method known as QUantitative Imaging of Perfusion 

using a Single Subtraction, type II (or QUIPSS II, (Wong et al., 1998b)) overcomes 

this difficulty creating a bolus with well-defined duration. This is done by 

applying a saturation pulse to the tagging volume at a time t = TI1 after the RF 

tagging pulse (t = 0). Doing so, even the tagged arterial blood still present in the 

tagging volume is saturated, ensuring a bolus of duration TI1. The time between 

tag and imaging is then t = TI2 and, for the technique to be applied successfully, 

two conditions must be satisfied: i) the saturation pulse has to be applied before 

all the bolus has left the tagging volume and ii) TI2 must be long enough to allow 

the entire bolus to reach the imaging region.   

The PASL approach was developed after CASL and is nowadays very popular in 

research, despite the lower SNR, due to its rapidity and flexibility. In particular it 

is possible to use it in combination with another imaging module and obtain a 

simultaneous BOLD-ASL acquisition (see Paragraph 2.2.2.4). 

VS-ASL 

This kind of method is a sub-group of PASL which only tags the blood flowing 

slower than a fixed velocity (typically 1 cm/s), therefore targeting the blood 

contained in very small vessels. This is done by a non-selective RF saturation 

pulse in conjunction with a series of pulse gradients able to de-phase the signal 

originating from fast-flowing blood while maintaining the one from the targeted 

blood (see Paragraph 2.1.6.1 for more details). VS-ASL applications are more 

recent (Wong et al., 2006) and less widely used than CASL and PASL, due to their 

technical complexity and reduced SNR, and they are often used in combination 

with other imaging modules, as the ones reported later in paragraph 2.2.3.2.   
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2.2.2.3 ASL modelling for CBF quantification 

ASL signal is only proportional to CBF and for absolute quantification it is 

necessary to introduce a mathematical model that describes the evolution of the 

signal taking into account the contribution of physiological parameters other 

than just CBF. 

The most popular models in use derive from the general kinetic model (GKM, 

(Buxton et al., 1998)) which is based on tracer kinetics principles. This applies to 

both the CASL and PASL approach, with only the details of the mathematical 

implementation being different between the two. The tracer considered is the 

magnetisation difference M, which has a dynamic over time expressed in terms 

of: 

- delivery function, c(t) : normalized tagged blood arriving in the voxel  

- residue function, r(t) : normalized tagged blood left in the voxel  

- magnetisation relaxation function, m(t): describes the amount of remaining 

longitudinal magnetisation of the tagged blood after relaxing.  

It is possible to express M(t) as a convolution of the previous, in the form: 

 Eq. 2-30 

Where M0B is the equilibrium magnetization of the arterial blood and CBF is a 

scaling factor. 

The delivery function is defined taking into account its dependency on the 

tagging duration  (well defined in CASL,  = TI2 in PASL with QUIPSS II), the 

transit time delay occurring for the tagged blood to reach the voxel of interest 

(t) and the relaxation undergone by the labelled water: 
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  Eq. 2-31 

Where α is the tagging efficiency and T1B is the longitudinal relaxation of blood. 

The residue function describes the dynamic of the tagged blood according to a 

mono-compartmental model as: 

     Eq. 2-32 

Where λ is the blood/tissue partition coefficient. Finally in the original 
description the magnetisation relaxation function describes the evolution of 

magnetized water that, after been exchanged at the capillary level, is 

characterized by the longitudinal relaxation of tissue T1T:   

    Eq. 2-33 

Substituting the expression in Eq. 2.31, Eq. 2.32, Eq. 2.33 into Eq. 2.30 and 

integrating over time is possible to obtain the following equations. 

PASL 

   Eq. 2-34 

with 
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



  



  Eq. 2-35 

and 

Eq. 2-36

CASL 

Eq. 2-37 

with 




  Eq. 2-38 

and 

Eq. 2-39

This model makes the assumption of instantaneous exchange of labelled water 

between blood and tissue, so that the ratio of M(t) to the venous concentration 

is constant and equal to λ. Although this can be considered true in most cases, in 
voxels where there is a substantial microvasculature component with blood that 
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does not perfuse in the tissue but flows to reach more distal areas, the Buxton 

model leads to CBF overestimates. Other models able to take into account such 

effect are based on two-compartment models (Chappell et al., 2010; Parkes and 

Tofts, 2002) which separate the contribution of the voxel magnetization in terms 

of intra- and extravascular compartments. In the model proposed by Chappell 

and colleagues (Chappell et al., 2010) the total magnetization is expressed as the 

sum of the ones arising from tissue (tis) and arteries (art): 

  Eq. 2-40 

Where  has the form reported in Eq. 2.34, while  is expressed as: 

 Eq. 2-41 

Where aCBV is the arterial blood volume. In this case ta is the transit time delay 

occurring for the tagged blood to reach the intravascular compartment of the 

voxel, henceforth called arterial arrival time (AAT), whereas the t use in the 

expression for is referred to as tissue arrival time (TAT).  

Both the one and the two compartment models are described using several 

parameters other than CBF. These need to be either estimated or fixed to 

literature values based on the information content of the data available. In the 

rest of the thesis we will use Buxton model to fit the data for which M(t) is 

measured at a single t = TI, referred to as “single TI” data. The Chappell model 

will be used instead to fit data in which the magnetization is measured at 

different TI (“multi TI” or mTI) leading to estimates of aCBV, TAT and CBF.   
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One parameter that needs to be measured in both models independently from 

the fitting is the equilibrium magnetization of blood M0B. This is done with an EPI 

scan equivalent to the ASL control acquisition with an infinite TR (Çavuşoǧlu et 

al., 2009) exploiting the relationship: 

   Eq. 2-42 

Where M0CSF is the equilibrium magnetization of CSF (easily localized), R is the 

ratio of the proton density of blood in the sagittal sinus to CSF (fixed to 0.87, 

(Çavuşoǧlu et al., 2009)), T*2,B and T*2,CSF are the relaxation times for CSF and 

arterial blood which are 43.6 ms and 74.9 ms respectively at 3T (Çavuşoǧlu et al., 
2009; Zhao et al., 2007).  

Figure 2-5: Evolution of magnetization difference as expressed by Chappell’s 
model for a PASL experiment (Chappell et al., 2010).  The GKM follows the 
same description but ignoring the contribution of the arterial component 
( )
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2.2.2.4 Simultaneous BOLD-CBF acquisition 

ASL sequences typically consist of the repetition of interleaved acquisitions 

following the tag-control scheme previously described. As discussed, the signal 

obtained as difference of magnetization M can be used to estimate CBF in a 

steady state or in its evolution over time. Given that these images are typically 

acquired with GRE-EPI readout sequence, they are also sensitive to T2* effects. If 

this can be considered a source of nuisance for estimating perfusion, on the other 

hand it can be exploited to simultaneously estimate BOLD signal. 

This sensitivity to both ASL and BOLD contrast is subject to a trade-off 

determined by the value of TE chosen: in fact while the ASL signal is greater for 

short TE (Liu et al., 2001), the BOLD signal is optimized for specific values of TE 

(about 30 ms at 3T, (Clare et al., 2001)).  

Historically, in the first applications that aimed at a simultaneous acquisition of 

BOLD and ASL data this interdependency between the two contrasts was not 

considered and data were acquired in an interleaved fashion (Hoge et al., 1999b). 

Then a single echo was used with a TE selected as a trade-off between the two 

optimal ones (Chen and Parrish, 2009a). Finally a more efficient approach was 

developed, exploiting a dual echo GRE acquisition in which at each TR a first 

image with ASL weighting is acquired at a short TE and a second one later for 

BOLD contrast (Yongbi et al., 2001). In particular the spiral readout, thanks to the 

rapidity of k-space navigation, enables to use a particularly short TE for the first 

echo, benefitting the CBF measurement and optimizing the dual echo approach. 

For this reason dual echo acquisitions with spiral readout will be used in Chapter 

4 and Chapter 5 for simultaneous BOLD-ASL acquisition.  

In order to separate the two contributions to the signal some processing is 

required. As regards ASL, one approach that has shown increased performance, 

compared to a pairwise subtraction, is the surround subtraction of the tag-

control images from the first echo (Liu and Wong, 2005). This consists of 

subtracting from each image the average of the previous image and the next 

image, giving a difference signal that is insensitive to low frequency fluctuations 

in the overall signal. Similarly BOLD signal is obtained with an operation of 
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surround averaging (Liu and Wong, 2005) by adding to each tag-control image 

from the second echo the average of the previous and next images, resulting in a 

signal that is insensitive to flow. 

2.2.3 Methods for measuring CMRO2 and OEF  

Various methods for absolute CMRO2 measurement have been proposed in 

recent years, confirming the increased interest among the MR community in 

finding an alternative to invasive methods for the study of oxygen metabolism. 

Despite the research in the field so far, no particular method emerged as the 

optimal and PET is still considered the gold standard method for such 

measurements. 

2.2.3.1 Susceptibility methods  

These methods aim at estimating the venous oxygen saturation by measuring the 

susceptibility difference between venous blood vessels and surrounding brain 

parenchyma. The information can then be combined to independent estimates of 

CBF to assess CMRO2 exploiting Fick’s principle. Susceptibility measurements 
() are practically done acquiring phase images (ϕ) with a GRE experiment 

and assuming some knowledge on the angle (θ) between the vessels under 
investigation and the magnetic field (B0) with the following: 

     Eq. 2-43 

Where the hypothesis of vessels being analogue to infinite cylinders - that is 

much more extended in one dimension than the other two - is made. 

Such methods were originally proposed for investigating the saturation of major 

vessels, supplying bulk CMRO2 estimates (Haacke et al., 1997) and then 

developed for regional applications (such as PROM, (Fan et al., 2012)), leading to 

more details on the spatial distribution of oxygen metabolism. The principal 

limitation of this group of techniques is the spatial resolution. In fact, in case of 
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bulk measurements, the O2 saturation measurement represents an integration of 

the information relative to a large region drained by the selected vessel. On the 

other hand, in case of a ROI measurement in a region rich of pial veins, partial 

volume effects affect the accuracy of the estimates. 

2.2.3.2 T2 methods 

These methods aim at estimating the value of T2 within the veins, from which it is 

possible to assess SvO2 through a calibration curve. Blood is typically isolated 

with tag-control labelling techniques analogous to those employed in ASL but 

targeted on inflowing venous rather than arterial blood. The T2 signal is then 

acquired at different TEs to quantify the signal loss due to dHb. Combining this 

with a measure of CBF it is then possible to estimate CMRO2.  

The first of these methods is known as T2-Relaxation-Under-Spin-Tagging 

(TRUST) and was introduced by Lu and colleagues (Lu and Ge, 2008). The main 

limitation of this technique is the difficulty of isolating pure venous blood and 

then the sensitivity to partial volumes effects. Practically, this restricts its 

employment to large venous vessels, such as the sagittal sinus. Therefore TRUST 

just provides a global measurement of venous oxygenation and, when CBF is 

acquired, CMRO2. Another source of nuisance in the estimate is represented by 

fast flowing blood in large vessel, whose effect are minimized with a using a 

series of non-slice-selective T2-preparation pulses rather than the conventional 

spin-echo sequence. 

Developments of this first approach were introduced with methods known as 

QUantitative Imaging of eXtraction of Oxygen and TIssue Consumption 

(QUIXOTIC, (Bolar and Rosen, 2011)) and then Velocity Selective Excitation with 

Arterial Nulling (VSEAN, (Guo and Wong, 2012)). They both exploit velocity 

selective ASL techniques in order to isolate the signal exclusively from post-

capillary blood. On top of that, VSEAN adopts phase encoding modules to 

maximise the separation between the static and moving components of the 

signal, representing a substantial improvement to QUIXOTIC. These methods 

offer a single slice acquisition therefore allowing to calculate maps of SvO2, rather 

than just bulk measurements as in TRUST. Although promising, they have 
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limitations that challenge their application, especially related to the 

characterization of the velocity selective modules and to SNR, as the proportion 

of signal they base their estimate on is inherently small.       

2.2.3.3 R2’ methods

This group of methods quantifies SvO2 based on the signal loss in extravascular 

tissue due to dHb, that is on the reversible relaxation rate R2’. R2’ sensitive 
images are obtained either from combination of T2 and T2* images (typically 

GESSE), or with sequences like asymmetric spin echoe (ASE), providing specific 

sensitivity to R2’. 
Two such approaches exploit an MRI signal model that directly relates SvO2 to the 

magnetic signal.  The first one, originally developed by An and colleagues (An and 

Lin, 2000), uses a single compartment tissue model to produce venous CBV, SvO2

and OEF maps. He and Yablonskiy, with their quantitative BOLD method (qBOLD, 

(He and Yablonskiy, 2007)), have developed this approach, introducing a 

multiple-compartment model and accounts for tissue, blood and CSF signal. Both 

allow to obtain voxel-wise estimates of the parameters of interest. The main 

drawbacks of these models are that some sources of signal dephasing are 

ignored, such as proton diffusion and local susceptibility differences due to other 

that dHb.   

2.2.3.4 Calibrated BOLD methods  

Due to the complex dependence of the BOLD signal on various underlying 

physiological parameters – summarized in Figure 2-4 – BOLD signal changes 

alone do not supply enough information to quantify brain tissue metabolic 

activity.   

The calibrated BOLD techniques address this issue by characterising the signal at 

a certain physiological baseline state (a process known as calibration) and then 

estimating relative metabolic changes from that baseline. This is typically done 

by performing gas challenges and exploiting mathematical models that relate the 

BOLD signal to underlying physiological parameters, such as the Davis model in 

Eq. 2.28.
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Practically, this is done by estimating at a first stage the maximum BOLD signal 

change (M) for the current state through isometabolic alterations of the venous 

deoxyhaemoglobin content (in the case of hypercapnic and hyperoxic 

calibration) or through specific acquisitions (in the case of R2` calibration). Then 

relative changes in CMRO2 triggered by stimuli can be measured having fixed the 

parameter M in the considered mathematical model. 

Hypercapnic calibration 

In its original form, this calibration is performed increasing the concentration of 

inspired CO2, typically up to about 5%, with normal concentration of O2. Mild 

hypercapnia is known to elicit an increase in CBF through vasodilation (Poulin et 

al., 1996) and the assumption is made that the metabolism is unaltered. 

Therefore measuring the triggered BOLD signal and the change in CBF it is 

possible to estimate M with the Davis model as: 

     Eq. 2-44  

A variant induces hypercapnia in the subject with a breath-hold rather than gas 

challenge. This might be subject to more sources of nuisance, such as reduction in 

arterial pO2 and SNR issues due to the limits on the breath-hold duration (Bulte 

et al., 2009). 

Hyperoxic calibration 

Similarly to the previous method, hyperoxic calibration is performed increasing 

the concentration of inspired O2, typically to about 50 or 100%. Hypercapnia has 

the effect of changing the proportion of deoxy- to oxy- haemoglobin in the venous 

side of the vascular tree, while supposedly maintaining CBF and metabolism 

unaltered. In order to relate the triggered BOLD signal to the changes in deoxy- to 

oxy-haemoglobin, more sophisticated mathematical models were developed, 
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taking into account the mechanism of transport of oxygen in blood (Chiarelli et 

al., 2007). Again, with this new formulation is possible to estimate the maximum 

BOLD signal change as: 

     Eq. 2-45 

Where the expression for [dHb]/[dHb]0 requires one to measure the arterial 

pO2 and to assume a value of the baseline oxygen extraction fraction OEF0. 

R’2 calibration 

A different approach adopted by Blockley and colleagues (Blockley et al., 2012a) 

integrates the information given by R2` in the BOLD-calibration framework. This 

is based on the consideration that if all the effect related to BOLD are reversed 

with a spin echo, then the measured relaxation would be accounted for by R2`, as 

per Eq. 2.18. Therefore M can be estimated at baseline with the equation: 

   Eq. 2-46 

Where R2` is measured with sequences like ASE or GESSE (gradient echo 

sampling of spin echo). This kind of calibration does not rely on assumptions on 

the underlying physiology (such as isometabolism), but it is sensitive to 

macroscopic field inhomogeneity. 

Limitations of calibrated BOLD methods  

The main limitation of the calibrated BOLD techniques stems from the 

physiological assumption made, that mild hypercapnia and hyperoxia change 

respectively CBF and arterial O2 content, but not CMRO2. In fact simulation 

studies addressing this issue have highlighted that changes in CMRO2 during 
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hypercapnia and even more during hyperoxia would strongly affect the 

estimated changes in metabolism (Blockley et al., 2015). 

These assumptions are still the subject of discussion and the dependence of 

CMRO2 on altered arterial CO2 and O2 levels have been reported with variable 

results. Hyperoxia has been found to cause an increase (Rockswold et al., 2010)), 

decrease (Richards et al., 2007; Xu et al., 2012) and no change (Diringer et al., 

2007) in oxygen metabolism. Similarly hypercapnia has been observed to cause 

an increase (Horvath et al., 1994; Jones et al., 2005; Yang and Krasney, 1995), 

decrease (Sicard and Duong, 2005; Xu et al., 2011) and no change (Barzilay et al., 

1985; Kety and Schmidt, 1948; Novack et al., 1953) in oxygen metabolism. 

The most relevant studies suggest hypometabolism resulting from both 

hypercapnia and hyperoxia with a relative decrease in CMRO2 respectively up to 

13% (for a +10 mmHg increase in end tidal CO2, (Xu et al., 2011)) and 10% (for a 

50% fraction of inspired O2, (Xu et al., 2012)). Although, given the successful 

literature reports of the calibrated fMRI approaches to estimating OEF and 

CMRO2, it seems unlikely that they are affected by violation of assumptions of 

isometabolism to such an extent. Moreover, if these metabolic changes where 

quantified, they could be included in the Davis model for a more accurate 

calibration. Further investigation of the circumstances in which CMRO2 is altered 

is therefore desirable. 

Another source of nuisance might be represented by changes in CBF with 

hyperoxia, due to the vasoconstrictive properties of O2 (Bulte et al., 2007). Recent 

evidence suggests that this is more specifically due to the hyperoxia-induced 

changes in CO2 (Croal et al., 2015). This effect can be addressed either with a fine 

regulation of the gas challenging imposing isocapnia during hyperoxia or taking 

it into account in the estimation models.   

A more fundamental limitation of these methods is represented by the relative 

nature of the calculated change in metabolism. This means that comparisons of 

estimated values of percentage change in CMRO2 between subjects, and even 

within subjects in different conditions, might be confounded by changes in the 

baseline metabolism. In fact several factors, such as drugs (Brown et al., 2003), 
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are known to alter the baseline physiological state of the subject, causing changes 

in BOLD signal and artificial variations in CMRO2 changes estimated.

2.2.3.5 Dual calibrated BOLD methods  

Recently, extensions of the approaches of Davis (Davis et al., 1998) and Hoge 

(Hoge et al., 1999b) have been developed, using both hypercapnia and hyperoxia 

induced CBF and BOLD signal changes within the same experiment, hence the 

name of dual calibrated BOLD methods or dual calibrated fMRI (dcFMRI). The 

novelty of the dcFMRI methods is that they allow us to estimate venous 

deoxyhaemoglobin concentration and thus OEF and absolute CMRO2 (Bulte et al., 

2012; Gauthier and Hoge, 2012; Wise et al., 2013) rather than just relative 

changes as in the previous calibrated techniques. 

The first version of dcFMRI technique, proposed by Bulte and colleagues (Bulte et 

al., 2012), adopts a two-stage approach: a first hypercapnic respiratory challenge 

is performed to calculate the parameter M, which is then used to fit the signal to 

the Davis model in a following hyperoxic challenge, allowing the estimate of the 

only unknown venous oxygen saturation (SvO2).     

Both the developments proposed by Gauthier and Hoge (Gauthier and Hoge, 

2012) and Wise and colleagues (Wise et al., 2013) introduce expansions to the 

Davis model accounting for simultaneous changes in CBF and CaO2 due to the 

hypercapnic and hyperoxic task respectively. These developments rely on a novel 

expression for the [dHb]/[dHb]0 ratio to substitute in Eq. 2.25, that is 

respectively: 

  Eq. 2-47 

And 
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 Eq. 2-48 

Where [(d-)Hb] indicates the (de-)oxyhaemoglobin concentration, CBF is the 

cerebral blood flow, OEF the oxygen extraction fraction, CaO2 the arterial content 

of oxygen,  the O2 carrying capacity of Hb and the subscript 0 denotes the 

baseline condition. 

The two versions of the expanded model are found to be mathematically 

equivalent (as shown by Blockley and colleagues (Blockley et al., 2015)). While 

these methods address the issue of estimating absolute rather than relative 

CMRO2, they are still affected by the potential uncertainty upon the assumptions 

of isometabolism during hyperoxia and hypercapnia.  

Other aspects of the dcFMRI methods will be discussed in Chapter 3, when an 

optimization of the Wise model (Wise et al., 2013) will be proposed, and in 

Chapter 4 and Chapter 5, when double calibrated BOLD measurements for 

assessing CMRO2 will be presented. 
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Chapter 3

Measurement of oxygen extraction fraction 

(OEF): an optimised BOLD signal model for use 

with hypercapnic and hyperoxic calibration 

In this chapter we investigate the physiological models adopted by hypercapnic 

and hyperoxic calibration methods for estimating absolute oxygen metabolism. 

With a simulation study and using innovative metrics of goodness of the 

estimates we are able to characterise the bias present in the literature models 

and the dependency of the estimates on different respiratory designs, in the ideal 

noiseless condition. The process of optimisation focuses in particular on the 

values of two biophysical parameters of the original calibration model:  and . 

This leads to the proposal of a new simplified calibration model characterised by a 

single fitting parameter (θ), that more accurately estimates oxygen extraction 

fraction and has higher performances in an error propagation analysis. 
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3.1 Introduction     

BOLD fMRI is a common tool for basic neuroscientific and clinical research. 

However, relating changes in BOLD signal to local brain activity is complicated by 

its dependence on various physiological parameters, in particular CBF, CMRO2

and CBV.  

As seen in Paragraph 2.2.3 of Chapter 2, mathematical models and MRI-based 

methods have been proposed to unfold this dependence (Davis et al., 1998; Hoge 

et al., 1999a; Wise et al., 2013) and to measure CMRO2 changes. In particular, 

recent extensions of the original approaches of Davis (Davis et al., 1998) and 

Hoge (Hoge et al., 1999b) have been developed allowing the use of both 

hypercapnia and hyperoxia induced CBF and BOLD signal changes within the 

same experiment, to estimate venous deoxyhaemoglobin concentration and thus 

OEF and absolute CMRO2 (Bulte et al., 2012; Gauthier and Hoge, 2012; Wise et al., 

2013).  

It is this last approach that we investigate with this chapter, focusing on 

improving the calibration model previously defined for describing BOLD signal 

behaviour by Wise et al. (2013) (see Figure 3-1). The aim of this simulation study 

is to empirically modify the original calibration model to optimise the integration 

of information carried by BOLD and CBF signals, modulated through hypercapnic 

and hyperoxic respiratory challenges, in order to provide the best estimates of 

OEF0 and therefore absolute CMRO2 from the analysis of a set of synthetic BOLD 

signals generated with a detailed BOLD signal model (Griffeth and Buxton, 2011) 

in the ideal noiseless condition. Accurate estimates of OEF0 are crucial for the 

assessment of absolute CMRO2, therefore it is necessary to optimize the 

calibration model (Wise et al., 2013) to best explain BOLD signal behaviour 

across a range of potential underlying physiological states to apply the model in 

practice in the healthy and diseased brain.  

The focus in this work is on optimising the values of two parameters of the 

calibration model:  and  (see models summary, Figure 3-1). In the original 

implementations – as reported in Paragraph 2.2.3.4 - these parameters 

represented the Grubb’s parameter (Grubb et al., 1974) and the exponent of a 
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nonlinear dependence of the MR signal on venous oxygenation (Boxerman et al., 

1995b) respectively. Here instead, following the scheme adopted by Griffeth and 

Buxton (Griffeth and Buxton, 2011), they are simply recast as fitting factors, 

removing the previous strict connection to the biophysical origin of the signal.  

However, other assumptions underlying the original calibration model are still 

made, in particular that mild hypercapnia and hyperoxia change respectively CBF 

and arterial O2 content (CaO2), but not CMRO2 (Jain et al., 2011). The validity of 

physiological assumptions is still controversial and is examined in detail in a 

recent paper by Blockley and colleagues (Blockley et al., 2015) that investigates 

sources of systematic error in dual calibrated BOLD approaches to CMRO2 

estimation.  

The simulations in this study (a flowchart of the analysis framework is shown in 

Figure 3-2)  provide a detailed analysis of the biases present in estimating OEF0

from the original calibration model assuming previously reported values of  and 

. The simulations allow us to define a simplified calibration model, with fewer 

parameters and improved performances.  

This model is similar to others recently proposed to simplify the original Davis 

model (Blockley et al., 2015; Griffeth et al., 2013) by linearizing the relationship 

between BOLD signal and changes in deoxyhaemoglobin. What distinguishes the 

simplified calibration model is the subsequent process of optimization of the 

parameters, which eventually leads to improved performance in estimating OEF0. 

Finally, an analysis on the effects of input errors was carried out comparing the 

simplified calibration model with the original one. This provided a first 

evaluation of the behaviour of this model when dealing with errors in 

measurements and also a further understanding of its limits. 
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3.2 Methods  

3.2.1 Dataset generation     

3.2.1.1 Generation of physiological states 

A set of BOLD signals was created to simulate experiments at 3 Tesla, using the 

detailed model employed by Griffeth and Buxton (Griffeth and Buxton, 2011), 

developing an approach taken by Uludağ et al. (Uludaǧ et al., 2009) and adapted 

here to simulate experiments in which arterial oxygen and carbon dioxide 

tensions are modulated for the measurement of OEF0 and CMRO2. The model 

relates the BOLD signal to the echo time TE, taking into account the contribution 

of four different compartments: one extravascular and three intravascular, i.e. 

arterial, venous and capillary. The signal is therefore computed as a sum of the 

different sources weighted for their respective volumes (see models summary, 

Figure 3-1 and parameters value Figure 3-2). 

This model was chosen because of its sensitivity to different aspects of the signal, 

in particular the introduction of the capillary compartment, which represents an 

improvement in accuracy of signal description compared to previous models. 

Moreover it allows the variation of underlying physical and physiological factors, 

allowing to simulate a wide set of different experimental conditions.  

The simulated different physiological states where created by picking 1000 

quartets of values of baseline cerebral blood volume (CBV0), baseline cerebral 

blood flow (CBF0), baseline oxygen extraction fraction (OEF0) and haematocrit 

(Hct). These parameters were designed to span wide ranges of plausible 

physiological values with assumed Gaussian distributions (N ~ (μ,σ)) centred on 
typically previously reported values.  

CBV0 was chosen from a distribution with mean μ = 5.5 ml/100g and standard 
deviation σ = 1.5 ml/100g (spanning the range [0.5,10.5] ml/100g), CBF0 with μ 
= 50 ml/100g/min and σ = 8.3 ml/100g/min (spanning the range [23,83] 
ml/100g/min), OEF0 with μ = 0.5 and σ = 0.133 (spanning the range [0.1, 0.9]) 
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and Hct with μ = 0.415 and σ = 0.0284 (spanning the range [0.31,0.53]). The 
remaining physical and physiological parameters required by the detailed model, 

were set to the values proposed by Griffeth and Buxton (Griffeth and Buxton, 

2011) at 3T (see Figure 3-2). 

3.2.1.2 BOLD signal generation 

Different sets of BOLD signals were created from the detailed model by 

combining these physiological inputs with the expected CBF changes produced 

by different combinations of respiratory gas challenges. Both hyperoxic and 

hypercapnic conditions were simulated and considered (see gas designs 

summary, Figure 3-4) following the practical work developed in our centre using 

similar designs (Wise et al., 2013).  

The effects of hypercapnic stimuli were directly related to CBF changes through 

an assumed linear cerebrovascular reactivity to CO2 (fixed to 3 % CBF/mmHg 

accordingly to reports from Bulte et al. (Bulte et al., 2012) and Mark et al. (Mark 

et al., 2010)). It is noteworthy that for the values of CBF0 and the mild levels of 

hypercapnia considered we expect an approximately linear relationship between 

end tidal CO2 and CBF (as per Tancredi and Hoge (Tancredi and Hoge, 2013) and 

Reivich (Reivich, 1964)).   

In order to reflect BOLD signal changes with hyperoxia, the detailed model has 

been integrated with well-known physiological descriptions of carriage of oxygen 

in the blood, under the assumption of isometabolism in hyperoxia. Eq. 1-1 and 

Eq. 1-2 have been adopted to take account of the arterial oxygen saturation and 

content, incorporating in hyperoxia the important component of oxygen carried 

in solution in the blood plasma.  

Then venous oxygen saturation (SvO2) has been calculated as : 

    Eq. 3-1



Measurement of oxygen extraction fraction (OEF): an optimised BOLD signal model for use with hypercapnic and 
hyperoxic calibration Chapter 3 

66 

considering negligible the role of O2 dissolved in venous plasma (as in Chiarelli et 

al. (Chiarelli et al., 2007)).  

Each simulated respiratory experiment and therefore each BOLD signal 

simulated, consisted of 13 equally spaced samples, each representing a block of 

experimental data. This approach aimed to simulate studies in which data time 

series (BOLD, CBF, pO2, pCO2) are averaged over blocks of time (as in Bulte et al., 

(Bulte et al., 2007); Chiarelli et al., (Chiarelli et al., 2007); Wise et al., (Wise et al., 

2010)). Levels of end-tidal CO2 and O2 partial pressure modulation were chosen 

to represent those typically used in previous calibrated fMRI studies.   

The simulated respiratory experiments (see gas designs summary, Figure 3-4) 

were chosen to be of two main types: simultaneous or interleaved modulation of 

the O2 and CO2 supply. For the simultaneous experiment, a single instance being 

considered (design A), hypercapnia and hyperoxia were applied simultaneously 

as previously experimented in our centre (Wise et al., 2013). For the interleaved 

experiments either hypercapnia or hyperoxia is applied, but not both together. 

Typically a single level of hypercapnia and hyperoxia is chosen, alternated with 

normocapnia and normoxia as used by Bulte et al. (Bulte et al., 2007) for their 

CMRO2 calibration study and also in our previously presented work (Wise et al., 

2013).  

In addition, three new interleaved designs  are proposed, for which more than 

one level of hypercapnia (“interleaved modulated in CO2”), hyperoxia 
(“interleaved modulated in O2”) or hypercapnia and hyperoxia (“interleaved 

modulated”) is employed (see Figure 3-4). These additional designs are included 

to explore the information that they can yield for the original calibration model, 

discussed further below. These new designs are aimed at simplifying the 

experiment compared to the simultaneous design while possibly allowing the 

extraction of the same amount of information as available from that design.  
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3.2.2 Criteria for optimising   and  values 

Estimates of OEF0 using the original calibration model (Figure 3-1) were 

obtained by setting literature values of the  and  parameters: (0.2,1.3) as used 

by Bulte et al (Bulte et al., 2012), and (0.14,0.91) as suggested by Griffeth and 

Buxton (Griffeth and Buxton, 2011). The resulting values, for both the 

simultaneous and interleaved gas challenge designs, were considered as 

“standard” results against which others are referenced. The aim of the 
optimisation process was to establish values of  and  that minimise the error 

and bias in OEF0 estimated across the range of physiological states using the 

original calibration model. 

The first part of the optimisation process fitted the original calibration model to 

the generated BOLD signals. We estimated the values of the parameters M and 

[dHb0], defined in Wise et al. (Wise et al., 2013), with Matlab (Mathworks, Natick, 

MA) function lsqnonlin for different pairs of the  and  parameters: 2500 

combinations of parameters in which  ranged from 0 to 1 in steps of 0.0204 and 

 from 0.5 to 3 in steps of 0.051. Two different approaches were chosen and 

compared for assessing the best ( ) pairs: (1) the ( ) parameters were 

chosen to minimize the residual sum of squares (RSS) fit to the BOLD signal, and 

(2) they were chosen to minimize the difference between the OEF0 estimate from 

the original calibration model and the true OEF0 entered into the detailed model 

(dOEF). 

The first approach optimised  and  by minimizing the RSS index among all 

combinations of physiological states. This was obtained as the sum of the 

squared differences between the fitted and simulated BOLD signal. However it 

must be remembered that a good fit of the model to the signal is not a guarantee 

for good OEF0 estimate; in fact the relationship between the BOLD signal and 

OEF0 is non-linearly regulated through the original calibration model.  and  are 

regarded simply as parameters to be fit: the search space is extended broadly 

beyond the literature values and no constraint is imposed on their value. 
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Computing the RSS over the entire search space leads to the definition of 

characteristic surfaces, whose minimum points represent the pairs of ( ,) which 

give the best fit for the specific physiological states considered. The surfaces of all 

the physiological states were studied and the respective minima found. Also the 

median surface was calculated from all the physiological states and the results 

compared to those of the single states in order to understand if common and 

representative patterns of minima could be detected across all physiological 

states. These common surface shapes would suggest that a single ( ,) 

combination would optimise the fit of all the physiological states. Otherwise, if 

the single surfaces present patterns so greatly different among each other that 

the median surface is not representative of the whole set, the choice of an 

optimum ( ,) pair may not be possible.     

The second approach optimised  and  by minimizing the absolute difference 

between the estimated OEF0 from the original calibration model and the true 

OEF0 used as an input to the detailed model (dOEF). The analysis was carried out 

calculating difference index surfaces for all physiological states and also the 

median surface. This is of course a theoretical exercise given that experimentally 

the information about the real value of OEF0 is not available as it is the goal of the 

measurement. Nevertheless, as in the case of the signal RSS indices, it is useful in 

the context of simulations to assess whether a common representative pattern 

can be found in the calculated surfaces and what kind of information may be 

extracted in experiments. In contrast to the first approach, this second approach 

was introduced to specifically address the minimisation of errors in OEF0

estimate without aiming at a good fit to the simulated BOLD data.  

We further addressed the need to find a single representative value of ( ,) that 

optimises OEF0 estimates when only the BOLD and CBF information are available 

and OEF0 is unknown, reflecting the real world situation. The search for the best 

combination was performed by combining, for the simulations, the information 

given by both the RSS and dOEF indices. The resulting values of ( ,) would be a 

trade-off between a good fit to the real data and accurate estimates of OEF0, 
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therefore matching the criteria for an optimum model which provides reliable 

estimates of CMRO2 consumption in a real world case.   

3.2.3 Development of the original calibration model and proposal of the 

simplified model 

We also investigated the nature of the relationship between  and  and its 

dependence on the respiratory challenge design. In fact, the results from the 

analysis above may be influenced by the interaction of the two parameters for 

the particular task considered rather than reflect their general behaviour. The 

aim was, therefore, to find reliable optimum  and  values with reduced 

dependence on the choice of experimental design, making the model applicable 

over a wide range of potential experiments.  

In particular, we studied the RSS and dOEF indices having fixed , so that its 

relationship with  is disentangled. We tested different literature values of  and 

the results were compared to investigate the relationship between these two 

parameters.  On the basis of the results of these analyses we introduced a new 

optimal model, the simplified calibration model (Eq.3-2, also see models 

summary, Figure 3-1), that aims to offer a single estimation framework for all 

different respiratory designs.   

This new model removes the  parameter, reducing the complexity from 4 to 3 

parameters: M, dHb0 and θ (Eq.3-2). For M and dHb0 we refer to the previous 

study from our laboratory (Wise et al., 2013), while θ may be considered an 
empirical parameter lumping together different sources of physiological 

information expressed by  and  in the original calibration model. The single 

optimum value of θ was selected as a representative value across all the designs 
considered.  

Eq.3-2 
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The choice to remove the  parameter, equivalent to setting  = 1, rather than 

fixing  was a pragmatic one in order to reduce the model complexity. In addition 

there is a historical trend to increasing field strength in MRI. At higher field 

tends closer to 1 as a larger proportion of the BOLD signal contribution is 

extravascular. The form of this simplified model therefore becomes physically 

more representative at higher field strengths. 

3.2.4 Approaching the real-world case  

Having proposed the simplified model we returned our focus to the initial 

practical goal of the study, namely obtaining the best estimates of OEF0 from the 

analysis of a set of BOLD signals, with no information of the real OEF0 itself, that 

is, without calculation of the dOEF index. At the same time, the respiratory 

challenge designs showing the lowest bias and variability in estimated OEF0 were 

identified. This was done with the intention of providing practical advice for 

experimental designs. 

We further investigated the situation in which θ was fixed to the optimum value 
found, considering both the whole dataset and a subset including only the 

physiological states for which the value of each input parameter (i.e. CBF0, CBV0, 

Hct and OEF0) lay within the μ±σ range. This set (270 cases) is more similar to an 
ideal “average dataset”, excluding outliers while including physiological states 

which should be more frequently found in real data, at least in the healthy brain. 

The results for all designs are reported and compared to those previously found 

with the original calibrated model and literature values of  and . 
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Figure 3-1: From the top to the bottom, in the green box the detailed model 
proposed by Griffeth and Buxton (Griffeth and Buxton, 2011), used for the data 
simulation. In red the calibration model defined in the previous paper (Wise et al., 
2013), used in the estimates and for the calculation of RSS index and OEF0

discrepancy. In yellow the newly proposed simplified model. For details please refer 
to the respective papers.
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Figure 3-2: Values of the parameters used in the detailed model for the generation of 
the synthetic datasets
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Figure 3-3: flowchart of the analysis process
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Figure 3-4: respiratory challenge designs considered for the simulations
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3.2.5  Error propagation analysis 

We performed a targeted error analysis of the original and simplified calibration 

models to demonstrate the effect, on OEF estimation, of errors in the 

measurement of key elements of the brain’s responses to hypercapnia and 
hyperoxia. Only the interleaved design (des. B, Figure 3-4) was considered at this 

stage, as one of the more common types of respiratory experimental designs 

employed in calibrated fMRI studies. In particular, five sources of error were 

tested independently of one another: (1) error in the measurement of the CBF 

response to CO2, which we express as error in cerebrovascular reactivity (change 

in CBF per mmHg change in partial pressure of end-tidal CO2), (2) error in the 

measurement of the BOLD signal response to CO2, (% BOLD signal change per 

mmHg change in partial pressure of end-tidal CO2), (3) error in the measurement 

of the BOLD signal response to O2, (% BOLD signal change per mmHg change in 

partial pressure of end-tidal O2), (4)  change in CMRO2 with hypercapnia and (5)  

change in CMRO2 with hyperoxia.  

Error in the measurement of the CBF response to CO2 was introduced as an 

additive factor on the assumed value of cerebrovascular reactivity in the model 

(fixed to 3% CBF/mmHg, see BOLD signal generation section in Methods). The 

simulated measured values of cerebrovascular reactivity considered were, 

therefore, between 2 and 4% CBF/mmHg, (an error from -33 to +33%). The 

same rationale was applied to introduce error in BOLD signal measurement 

during hypercapnia and hyperoxia, with measurement errors ranging from -33 to 

+33% of the true value of BOLD signal response. In these three cases the 

resulting erroneous simulated traces of CBF and BOLD signal were input to the 

nonlinear estimate framework for OEF0 estimation.  

The final two sources of error introduce the effects of the violation of the 

assumption of isometabolism during hypercapnia and hyperoxia that have been 

suggested in some previous investigations (as reported in Paragraph 2.2.3.4 in 

Chapter 2). The CMRO2 changes with hypercapnia and hyperoxia were 

introduced during the BOLD signal generation with the detailed model. The 

ranges of changes in oxygen consumption were fixed below extreme values found 



Measurement of oxygen extraction fraction (OEF): an optimised BOLD signal model for use with hypercapnic and 
hyperoxic calibration Chapter 3 

76 

in literature: 1% change in CMRO2 for 1 mmHg change in end-tidal CO2 (against 

1.5%/mmHg found by Xu et al., (Xu et al., 2012)) and 1% change in CMRO2 for 

40mmHg change in end-tidal O2 (against between 1.86%/40mmHg and 

1.16%/40mmHg found by Xu et al., (Xu et al., 2011) for hyperoxia with a fraction 

of inspired O2 of respectively 50 and 98%). These values therefore led to errors 

spanning between -7 and +7% change in CMRO2 during hypercapnia and -5 and 

+5% change in CMRO2 during hyperoxia, for the chosen respiratory design (des. 

B, Figure 3-4).  

Performance in estimating OEF0 in the simplified calibration model was 

compared to the original calibration model. The nature of the difference between 

these models was further investigated by analysing the role of the balance 

between the fractions of capillary and venous baseline CBV (respectively C and 

V) and the exponents relating CBF to total, capillary and venous CBV 

(respectively t, C and V, in Griffeth and Buxton (Griffeth and Buxton, 2011), 

see Figure 3-2). In particular, estimates of OEF0 were calculated for the 

interleaved design (des. B, Figure 3-4) where, on top of the four varying input 

baseline physiological parameters, different values of C and V, t, C and V

have been considered. The values considered matched the ones used in (Griffeth 

and Buxton, (Griffeth and Buxton, 2011), that is: [0.6 – 0.2] and [0.2 – 0.6] for C

and V while maintaining the arterial blood volume fraction equal to 0.2, [0.3 –
0.65] for t, [0 – 0.33] for C and [0 – 0.65] for V. 

Finally the robustness of the simplified model has been tested against variations 

of two experimental parameters: the echo time TE and the static magnetic field 

B0. This was done to assess the sensitivity of the optimization process to such 

parameters and the degree of error introduced in the estimates of OEF0 when 

using the simplified model in applications other than the one it has been 

optimized for (i.e. TE = 32 ms and B0 = 3 T).  

We firstly repeated the process of optimization of  and  on datasets of 

synthetic BOLD signals created for TE of 22, 27, 32, 37 and 42 ms at both 3 and 7 

T. Only the simultaneous design (des. A, Figure 3-4) was considered in this case, 

as the interleaved design (des. B) is shown not to carry enough information for 
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the optimization both of  and . Then, exploiting the same approach adopted for 

the rest of the error propagation analysis, we estimated OEF0 with the simplified 

calibration model considering the different values of TE and B0 as sources of 

systematic error. In this case only the interleaved design (des. B, Figure 3-4) was 

considered for consistency with the error propagation analysis.  For the 

application at 7 T, the detailed model, optimized for 3 T experiments, had to be 

modified in order to take account of the field dependency of the baseline 

extravascular signal decay rate and of the baseline intravascular signal decay 

rate. The former was fixed at 35 ms (Griffeth et al., 2013), while for the latter a 

quadratic model has been used to extrapolate its dependency on haematocrit, 

based on data available in literature for experiments at 1.5 and 4.7 T 

(Silvennoinen et al., 2003), 3 T (Zhao et al., 2007) and 7 T (Blockley et al., 2008). 
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3.3 Results 

3.3.1 The original calibration model 

The results of using literature values for the parameters ( ,) and fitting the 

original calibration model to the simulated BOLD signal at 3T using the nonlinear 

RSS estimates are shown in Figure 3-5. The percentage errors in OEF0 estimates 

for values of (0.14, 0.91) and (0.2, 1.3) in both the simultaneous and interleaved 

gas challenge designs are shown as compared to OEF0, the input into the detailed 

model. An overestimate of OEF0 is observed in all cases, with mean and median 

values of 11.63 %, and 11.17 % respectively for the simultaneous design with 

( ,) = (0.2, 1.3) (Figure 3-5,1); 10.46 % and 9.89 % for the simultaneous design 

with ( ,) = (0.14, 0.91) (Figure 3-5,2); 10.54 % and 10.11 % for the interleaved 

design with ( ,) = (0.2, 1.3) (Figure 3-5,3); 10.66 % and 10.14 % for the 

interleaved design with ( ,) = (0.14, 0.91) (Figure 3-5,4). These results provided 

us with the motivation to optimise the  and  parameters in order to minimise 

this bias.  

Figure 3-6 shows the RSS surfaces in the ( ,) space for a single mean state (OEF0

= 0.4, CBF0 = 55 ml/100g/min, CBV0 = 5 ml/100g and Hct = 0.44 – top row) and 

the median across all physiological states (bottom row). A reliable and 

representative minimum point cannot be found for either type of experimental 

design; a minimum for each physiological state can be found but not consistently 

across states, i.e. it is not possible to select a single pair of ( ,) values which 

minimizes the discrepancy between the data generated with the detailed model 

and the signal fitted with the original calibration model. In the interleaved case 

this is due to the extreme irregularity of the surfaces in a single physiological 

state (Figure 3-,2). Then in the median over all physiological states and in the 

simultaneous cases those surfaces assume a characteristic “valley shape”, whose 
minima are ill-defined (Figure 3-6,1,3,4). The minima lie in a wide region at the 

bottom of the valley which appears to broaden once the boundaries of the ( ,) 

space are extended (data not shown). This suggests a difficulty with fitting the 
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original calibration model, namely, the collinear nature of the relationship 

between the two parameters  and . 

Figure 3-5: Percentage errors in OEF0 estimates from fitting (residual sum of 
squares) the calibration model for different literature values of parameters 
and gas challenge design (design A: simultaneous design, design B: interleaved 
design, referred to Figure 3-2).  



Measurement of oxygen extraction fraction (OEF): an optimised BOLD signal model for use with hypercapnic and 
hyperoxic calibration Chapter 3 

80 

Figure 3-7 plots the surfaces for the discrepancy between true OEF0 and that 

estimated from the original calibration model over ( ,) space. In contrast with 

the RSS surfaces, similar patterns are observed for the two respiratory challenge 

designs, but large differences exist between the single mean physiological state 

and the average one. In all cases, similarly to what has been shown for the RSS 

analysis, it is possible to find a minimum for each physiological state, but not one 

representative for all states, demonstrating that an optimal  and  combination 

cannot be prescribed when considering only the minimisation of the error in 

measured OEF0. 

3.3.2 Collinearity in the original calibration model  

Figure 3-8 shows the lines extrapolated from the points of minimum of the RSS 

and dOEF median curves for the five different gas challenge designs considered. 

The intersection for the simultaneous design (des. A) is (0.07,1), whereas for the 

interleaved modulated (des. C) is (0.06,0.7) and for the interleaved modulated in 

CO2 (des. D) is (0.06,0.85). An optimum combination was found also for the 

interleaved design modulated in CO2 (des. E) but laying outside the space of the 

( ,) considered for our analyses (0.08,0.4). For the interleaved design (des. B), 

the distribution of the minima is such that it is not informative to calculate a line 

of best fit. Figure 3-8 also shows how the intersection for designs A, C and D 

differ from the optimum values of ( ,) previously proposed in literature and 

here marked with a black circle and a green star (respectively (0.3,1.2) and 

(0.14,0.91)).  

Figure 3-9 illustrates statistics on the logarithm values of the two indices, RSS 

and dOEF. Three values of fixed ( ,) were tested in order to remove the effect of 

collinearity between parameters  and . These values were 0.91, 1.3 and 1: the 

first two taken from the literature, while the last chosen as the value that 

effectively removes the effect of  from the model.  The minima of the median 

curves reflect the behaviour of the whole set of physiological states for the 

simultaneous design (des. A) and for respiratory designs when CO2 delivery 

modulation is exploited in interleaved designs (des. C, D). By comparison, in the 
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interleaved design (des. B) there is more variability across physiological states, 

suggesting that the choice of a minimum would be far less representative of the 

general behaviour of the curves. Also the magnitude of the RSS index is so low 

that it becomes uninformative (note the change of scale in Figure 3-9, des. B 

compared to the others). Finally the result for the interleaved design modulated 

in O2 (des. E) is noteworthy as the calculated RSS index seems to be insensitive to 

the considered values of  and therefore a significant minimum cannot be 

identified.  

Figure 3-6: Logarithm of the RSS surface in the  space for simultaneous 
(des. A) and interleaved (des. B) designs. (1) and (2) show surfaces for a single 
mean physiological state (OEF0 = 0.4, CBF0 = 55 ml/100g/min, CBV0 = 5 ml/100g 
and Hct = 0.44 ).  (3) and (4) show surfaces for the median calculated on all 1000 
states. In both cases a reliable minimum cannot be found and the collinearity 
between the two parameters andis highlighted. 
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Figure 3-7: Logarithm of the absolute error in OEF0 estimate surface in the () 
space for simultaneous (des. A) and interleaved (des. B) designs. (1) and (2) show 
surfaces for a single mean physiological state (OEF0 = 0.4, CBF0 = 55 ml/100mg/min, 
CBV0 = 5 ml/100g and Hct = 0.44).  (3) and (4) show surfaces for the median 
calculated on all 1000 states. In both cases reliable minima cannot be found.
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Figure 3-8: Lines extrapolated from the minimal points of the median curves for the 
residual sum of square (RSS) and absolute discrepancy in OEF0 (dOEF) indices in all 
different designs. The combinations of (,) for which minima coincide are (0.07,1.00) 
in design A, (0.06,0.07) in design C, (0.06,0.85) in design D. The combination is outside 
the search space for design E (0.08,0.4), whereas a line of best fit was not calculated 
for the RSS index in design B. Literature combinations of (,) are shown with a black 
circle (0.2,1.3) and a green star (0.14,0.91) for comparison.
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3.3.3 The simplified model 

For the simplified model, i.e. the original calibration model in which the 

parameter is fixed to 1 and the new parameter θ substitutes for , the single 

optimum value of  has been selected that gives the minimum of the median 

dOEF curves across the dataset. This value is  = 0.06 for each design (apart from 

the interleaved one, des. B) as reported in the middle column of Figure 3-9. 

Strictly, this is a suboptimal solution, given that the minima of RSS and dOEF 

median curves do not coincide. Nevertheless this choice matches the value of 

for the intersections found in Figure 3-8. Also, the consistency across designs of 

selecting this single representative value of the θ parameter for the simplified 
model offers a practical benefit justified by the results below. 

The percentage errors in OEF0 estimates fitting the simulated signal through 

minimisation of RSS only using the simplified model are reported in Figure 3-10. 

The biases in the distributions of estimates from the set of underlying 

physiological states are only slight, with mean and median values lower that 

those reported in Figure 3-5: 2.45 %, and -0.35 % respectively for the 

simultaneous design (Figure 3-10,1 , des. A); 2.83 %, and 0.05 % for the 

interleaved design (Figure 3-10,1 , des. B); 2.44 % and -0.39 % for the 

interleaved modulated design (Figure 3-10,1 , des. C); 2.15 % and -0.69 % for the 

interleaved modulated in CO2 design (Figure 3-10,1 , des. D); and 3.13 % and 0.33 

% for the interleaved modulated in O2 design (Figure 3-10,1 , des. E). In summary 

all respiratory designs show similar results with this simplified calibration 

model. The small value of θ found led us to consider the effect of fixing its value 

to 0. Results (not reported in figures) showed mean errors in OEF0 estimates 

about -6 %, with distributions mainly within the range -10 – 5 %.  

Finally in Figure 3-10, 2 the percentage errors in OEF0 estimates are shown for 

the simplified model but considering only the physiological states in which the 

value of each input variable is included in the respective μ±σ range. For all, as 
expected, the boxplots are tighter than those comprising the wider range of 

physiological states.  
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Figure 3-9: Curves of the logarithm of the RSS index (blue) and dOEF index (red) for 
the calibration model with  fixed to different values. All the designs are considered. 
The median curves are shown in solid lines, while the boundaries containing the 
central 75% of the distributions are shown in dotted lines. 
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Figure 3-10: Percentage errors resulting from the estimate of OEF0 using only a 
nonlinear RSS minimization, simulating the experimental situation. (1) shows 
results achieved from implementing the simplified model () on all 
physiological states. (2) presents results using the simplified model () with 
ranges of physiological states considered narrowed to ±. 
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3.3.4 Error propagation  

Figure 3-11 summarises the results of the error propagation analysis. The upper 

row (A) reports results from the original calibration model, whereas the lower 

row (B) reports results from the simplified calibration model. The columns 

report the effect of the different errors considered.  For both models and for all 

sources of error considered, the performance in estimating OEF0 worsens as the 

error increases, and worsens at higher values of true underlying OEF0. 

Furthermore, the degree of error affects both the offset and the slope of the 

scatterplot lines in each of the five cases of error.  Of particular note is the effect 

of altered oxygen metabolism with hyperoxia (Figure 3-11-5 A and B). The 

relationship between true and estimated values of OEF0 is non-linear and larger 

changes in oxygen metabolism lead to a huge increase of error in OEF0 estimates 

(some of the results not shown in the figure).   

The direction of the effect on OEF0 is different depending on the error. For both 

models a positive error in CBF estimation to CO2 (Figure 3-11-1 A,B), BOLD 

estimation due to O2 (Figure 3-11, 3 A,B) and CMRO2 increases due to CO2 (Figure 

3-11,4 A,B), cause an underestimate of OEF0 while a negative error causes an 

overestimate of OEF0 , In the other cases (Error in BOLD estimation to CO2, 

Figure 3-11-2 A,B and CMRO2 increase due to O2, Figure 3-11,5 A,B) the opposite 

is true.  

The principal difference between the original calibration and the simplified 

model, highlighted in Figure 3-11, is the offset and slope of the lines, most clear in 

the error-free condition (blue crosses, corresponding to noiseless condition in all 

panels). The original calibration model shows a slope very close to the unity but 

also a significant offset that shifts the relationship between true and estimated 

OEF0 away from the identity line (plotted as a black line), leading to consistent 

overestimation of OEF0. In comparison, for the simplified model, the offset is 

minimized and the slope is close to unity such that the discrepancy between true 

and estimated OEF0 is particularly small over the middle range of OEF0 values.  
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Figure 3-12 illustrates the influence of the balance between the fractions of 

capillary and venous baseline CBV and the effects of altered exponents relating 

CBF to total, capillary and venous CBV. The estimates of OEF0 show relatively 

little sensitivity to changes in all parameters apart from V (the exponent relating 

fractional changes in venous blood volume to blood flow, Figure 3-12,4 A,B) and 

venous blood volume fraction V at lower values of OEF0. Similarly to Figure 

3-11, the main difference between the two models is the offset in the estimate of 

OEF0.The biased in the results introduced by altering the blood volume 

parameters change little between the models and appear independent of offset 

between the two models. 

Figure 3-13 illustrates the sensitivity to changes in TE and B0 of the optimization 

approach presented and of the simplified calibration model proposed. In Figure 

13-A are shown lines extrapolated from the points of minimum of the RSS and 

dOEF median curves for the simultaneous design (des. A) at different 

combinations of TE and B0. This figure is analogous to Figure 8, where only the 

case of TE = 32 ms and B0 = 3 T is reported. Results show that the optimum 

combinations found are sensitive to both parameters, TE and B0. However, while 

for 3 T (Figure 3-13,A, solid lines) the combinations gravitate around the 

optimum one selected for the simplified model, for 7 T (Figure 3-13,A, broken 

lines) they are shifted towards values of approximately (0.19,1.2).  

Furthermore, while in the first case TE mostly affects the optimal value of , at 7 

T it affects more the optimum . The scatterplot in Figure 3-13,B reports the 

error introduced estimating values of OEF0 with the simplified model from the 

BOLD signals created at different values of TE and B0. Similar values are obtained 

for the other respiratory experiments considered (data not shown). Results 

highlight that the estimates are only slightly sensitive to variations in TE, with 

the introduced error being negligibly small when considering 3 T experiments, 

but showing a larger offset when using the 3 T optimised simplified model at 7 T
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Figure 3-11: Estimated vs true OEF0 values of the dataset for two different models (A original calibration model, B simplified calibration model) for 
different sources of error: (1) percentage error in measured CBF response to CO2, (2) percentage error in measured BOLD response to CO2, (3) 
percentage error in measured BOLD response to O2, (4) change in oxygen metabolism due to +7mmHg change in end-tidal CO2 and (5) change in 
oxygen metabolism due to +200mmHg change in end-tidal O2.
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Figure 3-12: Estimated vs true OEF0 values of the dataset for two different models (A, top row, original calibration model and B, 
bottom row, simplified calibration model) and different values of: (1) fractions of venous baseline CBV (v, with capillary baseline 
CBV=0.8-v), exponents relating CBF to (2) total CBV (ϕt), (3) capillary CBV (ϕc) and (4) venous CBV (ϕv).
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Figure 3-13: A) optimal (α,) combinations found for different TE and B0. Shown are extrapolated lines of minimal values of RSS and dOEF 
indices (solid lines: 3 T, broken lines: 7 T) and combinations previously considered (black circle = (0.2,1.3), green star = (0.14,0.91) and red star 
= (1,0.06)). In this case only the simultaneous design (des. A) is analysed. B) Values estimated with the simplified model against true values of 
OEF0 for different TE and B0 (dots: 3 T, open circles: 7 T). In this case only the interleaved design (des. B) is considered. 
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3.4 Discussion 

The process that led to the optimization of the original calibration model is 

summarized in Figure 3-3. Our simulated data was a set of BOLD signals created 

using the detailed signal model (Griffeth and Buxton, 2011) with Gaussian 

distributed values of physiological parameters (CBV0, CBF0, OEF0 and Hct) and 

five different specific respiratory experimental designs employing hypercapnia 

and hyperoxia, some previously published and some new. Estimates of OEF0

obtained using the original calibration model (Wise et al., 2013) and literature 

combinations of  and  using residual sum of squares (RSS) proved 

unsatisfactory. We therefore considered an index based on the magnitude of the 

discrepancy between the real and estimated OEF0 (dOEF) in addition to the RSS. 

The consequent minimisation led to values of  and  that are a good trade-off 

between the experimental necessity to fit to the BOLD signal and the capacity to 

estimate OEF0 in an unbiased manner. 

We demonstrate substantial collinearity between the parameters of the original 

calibration model when estimating OEF0, a feature that leads to erroneous results 

illustrated by the valleys in Figure 3-6 and Figure 3-7, in which we have almost 

the same value of the RSS and dOEF indices for very different combinations of 

and which therefore produce broad distributions of potential OEF0 estimates. 

The collinearity suggests that for practical applications using the respiratory 

challenges here analysed, values of and need to be fixed. We overcame the 

collinearity, in a practical sense, by the analysis of the relationship between the 

two indices for fixed values of  and fixing the and parameters to those 

values where minima of both RSS and absolute discrepancy in OEF0 estimate 

curves coincided, providing optimised OEF0 estimates and BOLD signal fits.  

Figure 3-8 shows that this is not achieved using the literature values of  and 

and explains the bias in the results in Figure 3-5.  

The consequence of our practical optimisation in this work is that we take  and 

 parameters to have no specific physiological meaning compared to those 
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introduced in the original models by Davis (Davis et al., 1998) and Hoge (Hoge et 

al., 1999a). Figure 3-9 shows that once alpha is fixed to the value minimizing the 

dOEF index, the sensitivity of the model to the chosen  is only small. In fact the 

values of  considered mostly affect the behaviour of the RSS index, which is 

orders of magnitude lower than the dOEF one. This therefore allows us to fix  to 

1 and thus to introduce the simplified model. Note that the approach we take is 

similar to others recently taken (Blockley et al., 2015; Griffeth et al., 2013), in 

which  has been fixed to 1. Differences arise when considering that in those 

cases has been chosen as Grubb’s parameter (Grubb et al., 1974), instead of an 

optimized fitting parameter, as in the present case. The one we propose is of 

course, strictly speaking, a suboptimal model, in which, for the purpose of 

simplicity and generality of the model, the best possible fit to the data is 

compromised in favour of a better estimate of OEF. This model overcomes the 

difficulty of defining an optimum value for  and  in the interleaved gas 

challenge designs (des. B, Figure 3-5) and of needing to consider a different pair 

of parameters,  and  for each different respiratory experiment. For all the 

designs considered, the distributions of percentage errors in OEF0 estimates lay 

almost exclusively within the ±5% range, with rare outliers. This same accuracy, 

assuming good estimates of CBF, would be directly translated into CMRO2

estimates through the defining relationship (CMRO2 = CBFOEFCaO2). The 

simplified model shows good performance for all interleaved modulated designs, 

which mimic more closely the behaviour of a real experiment in which end tidal 

values will vary over time and between hypercapnic and hyperoxic blocks. The 

simplified model offers, therefore, a reliable and adaptable tool for estimating 

OEF0, and therefore absolute CMRO2, across a range of respiratory experiment 

designs. Indeed, the simulation framework that we have presented could be 

applied to any arbitrary respiratory experimental design. 

Given the substantial equivalence between experimental designs in their ability 

to estimate OEF0 once the model parameters are fixed, we may substitute the 

more sophisticated experimental designs, in which both CO2 and O2 are elevated 

simultaneously, with simpler interleaved designs (as in Bulte et al., (Bulte et al., 

2012)). The simplification achieved would be significant firstly in terms of 
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instrumentation and control of the experiment, as this requires only one gas to 

be delivered at any given time. Moreover the BOLD signal behaviour itself is 

likely to be simplified in an interleaved block sequence, less affected for instance 

by transients between different levels of hypercapnia and hyperoxia. Both of 

these improvements may also lead to more rapid data acquisition.  

Our simulated results also help to explain the estimates of OEF0 in our previous 

study (Wise et al., 2013). Figure 3-5 reports overestimates of OEF0 when using 

the original calibration model with two pairs of literature  parameters, 

leading directly to overestimates in CMRO2. In our previous study (Wise et al., 

2013) experimental data were fitted with literature values of and. This may 

help to explain the higher values of CMRO2 reported in Table 1 of the Wise and 

colleagues study (Wise et al., 2013), compared to previous MRI and PET studies 

(Bulte et al., 2012; Gauthier and Hoge, 2012; Ito et al., 2004). From the current 

work, similar biases in OEF0 estimates from other groups’ work using similar 

respiratory challenges and literature values would also be expected. 

The limitations of the present study lie mainly in the synthetic nature of the data. 

In the BOLD signal generation process no noise was added to the resulting time 

series. We made this choice because our focus was on the analysis of the model 

properties and in particular on its bias in OEFo estimation, with an approach 

similar to that of Griffeth and Buxton (Griffeth and Buxton, 2011). The simulation 

environment was necessary to study and optimise the behaviour of the original 

calibration model, in particular for the analysis of the discrepancy in OEF0

estimates, which leads to the identification of the optimum parameters  and 

and to the definition of a simplified model with an optimum parameter . Even 

though synthetic, the set of simulated BOLD signals was designed to span a wide 

range of physiological states defined by CBF0, CBV0, OEF0 and Hct. The results 

show the distributions of errors in OEF0 estimates to be narrow with median 

values close to 0, demonstrating a substantial insensitivity to differences in the 

underlying physiological state for both the original calibrated model and the 

simplified one. In particular these models to estimate OEF are robust to 

variations in haematocrit that is considered to be an unknown variable, and 

therefore a source of uncertainty. 
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Using the simplified model, the analysis of a subset of physiological states in 

which the value of each input parameter was included in the narrower mean ± 

one standard deviation range, that is, a more realistic range for the healthy brain, 

led to even more accurate final results in OEF0 estimates (Figure 3-10,2). This 

suggests that the outliers found using the wider range of physiological states may 

be due to particular combinations of unusual physiological states rather than 

possible critical issues with the simplified model.  

The error propagation analysis illustrated the differences between the original 

and simplified calibration models and their likely practical limitations. Figure 

3-11 shows the offset in OEF0 estimates in the application of the original model, 

eliminated by the new simplified model. Both models are susceptible to errors in 

the measurement of the CBF and BOLD responses to the respiratory challenges. 

Performance in terms of absolute error in estimated OEF0 tended to be worse at 

higher OEF values, although fractional errors were largely independent of true 

OEF0. In practice, the accurate estimation of CBF responses to CO2 is more 

challenging, and carries greater uncertainty, than the estimation of BOLD signal 

responses to CO2 and O2, largely as a result of the low contrast-to-noise of arterial 

spin labelling. The errors represented in Figure 3-11,1 (CBF response to CO2) are 

likely to be of a realistic order of magnitude, depending on a number of 

experimental factors, while the uncertainty of BOLD responses is likely to be 

smaller and contribute less to OEF0 estimate error in practice. 

Changes in CMRO2 during hypercapnia and even more during hyperoxia would 

strongly affect the estimated OEF0. This is to be expected, as the assumptions of 

isometabolism in hypercapnia and hyperoxia, although still object of discussion, 

are commonly assumed as hypotheses for BOLD calibrated methods (see 

Paragraph 2.2.3.4).  

The most relevant studies suggesting deviation from isometabolism during 

respiratory tasks report hypometabolism resulting from both hypercapnia and 

hyperoxia with relative decrease in CMRO2 respectively up to 13% (for a +10 

mmHg increase in end tidal CO2, (Xu et al., 2011)) and 10% (for a 50% fraction of 

inspired O2, (Xu et al., 2012)). These, according to our results, would translate in 



Measurement of oxygen extraction fraction (OEF): an optimised BOLD signal model for use with hypercapnic and 
hyperoxic calibration Chapter 3 

96 

very severe errors in OEF0 estimates even for average values of OEF0: 50% 

overestimate in hypercapnia and 42% underestimate in hyperoxia (for the 

simplified calibrated model with OEF0 = 0.4 and CMRO2 changes scaled to match 

the variations in end tidal CO2 and O2 of our interleaved design, des. B, Figure 3-

5). This indicate the failure of both the original and the newly proposed model in 

accordance with results from Blockley and colleagues (Blockley et al., 2015) 

when testing the effect of changes in metabolism during hypercapnia on OEF 

estimates for calibrated BOLD methods. 

Further investigation of the circumstances in which CMRO2 is altered needs to be 

performed. It is possible that, with mild respiratory challenges that limit the 

violation of the assumption of isometabolism, the errors in OEF0 suggested by 

Figure 3-11,4 and Figure 3-11,5 can be maintained within practically acceptable 

levels. However, we must be cautious in future assumptions of isometabolism in 

studies of cerebral pathology.  

Finally it has been demonstrated that the better estimates of OEF0 obtained with 

the simplified model, and more specifically the absence of the offset affecting the 

estimates of the calibration model, are not dependent on the particular balance 

between the fractions of capillary and venous baseline CBV or the exponents 

relating CBF to CBV used in the detailed model for creating the synthetic BOLD 

signal. This suggests that the optimization carried out and the performance of the 

simplified model is not significantly dependent on the characteristic features of 

the detailed model when considering the blood volumes of the venous and 

capillary compartments. The effects of different blood volumes will be partly 

absorbed into the parameter M in the original and simplified calibration models. 

While this is often considered in studies using the original calibration model as 

the maximum achievable BOLD response, in the current framework where the 

focus is the unbiased estimation of OEF, we do not interpret its biological 

significance and consider it simply as a fitting parameter of no particular interest. 

In fact, the role of M in our approach is drastically different from other early 

approaches to calibrated fMRI. In those cases it is used to calibrate changes in 

BOLD signal and therefore accurate estimates of M are crucial for accurate 

assessment of changes in oxygen metabolism. In our approach instead, thanks to 
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a model in which hypercapnia- and hyperoxia- induced changes are both 

accounted for simultaneously, M, although still estimated, is just a by-product of 

an estimation of OEF0 and has therefore been put into the background. Finally, 

given the different form of the simplified calibration model, we expect the 

estimate of M obtained to be different to those reported in literature as they are 

representative of different information.  

Effects of considering different values of TE and B0 are investigated showing that 

the optimal combination of  and  is sensitive to TE at both 3 and 7 T. However, 

at 3T the error introduced in the estimates of OEF0 over a practical range of TE is 

negligible. Conversely, the effect of B0 cannot be ignored as results at 7 T show 

that using the simplified calibration model would lead to a significant bias in the 

estimates of OEF0 and therefore another (,) combination should be used. 

Considering a characteristic TE of 25 ms for a GRE experiment at 7 T, the optimal 

combination found is about (0.21,1.245). Our analysis, therefore, not only 

supplies a complete picture of the influence of TE and B0 on the newly proposed 

model, but also demonstrates how our optimization approach can conveniently 

be adapted by other groups to different research settings, such as 7 T 

experiments. 
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3.5 Conclusions

In conclusion, we have demonstrated our simulation framework as a useful 

means of testing calibration models for respiratory experiments aimed at 

measuring OEF0. We have shown that the proposed simplified model is a 

potentially valuable tool for the unbiased evaluation of OEF0 and therefore 

absolute CMRO2 in studies using respiratory challenges. In particular, we would 

recommend the simplified calibration model as it offers accurate results along 

with reduced complexity and enhanced flexibility with respect to the respiratory 

design of the experiment.  

As the model has been found to be particularly affected by errors in 

measurements for high values of OEF0, its application for absolute estimates of 

CMRO2 may not be optimal in those pathological conditions where extreme 

values of OEF0 might be expected. In considering practical experimentation, since 

similar accuracy is achieved across different respiratory challenge designs when 

 is fixed to its optimal value in the simplified model, the least complex 

interleaved designs may be used with that model with no detriment to the OEF0

estimates.  

These guidelines will be applied for the studies in Chapter 4 and Chapter 5, 

where an interleaved design is used for the respiratory tasks and the simplified 

calibration model is integrated in the estimation framework used.  
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Chapter 4

Repeatability study on a dual calibrated 

fMRI method for estimating brain oxygen 

metabolism

In this study we assess the repeatability of a novel estimation framework 

recently developed in our centre. Dual-echo GRE data from a dcFMRI experiment 

are related to the underlying physiology through a forward model. With a 

Bayesian estimate we are then able to measure five parameters: CBF, OEF0, CVR, 

CBV and CMRO2. Measurements of correlation, ICC and CV are exploited to show 

that the results are characterised by a level of repeatability comparable to that 

obtained with previous techniques (both MRI and PET), but with an improved 

spatial resolution. The information supplied by such maps is of extreme interest 

for applications aimed at studying brain physiology across grey matter. 
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4.1 Introduction 

In this study, we want to assess the repeatability of the estimates of brain 

haemodynamics and metabolism obtained from dual calibrated BOLD 

experiments with a novel forward model developed in our lab (Germuska et al., 

2015). We do this with a test-retest repeatability experiment on ten healthy 

volunteers in the resting state. In particular, our aim is to evaluate the precision 

and reliability of the estimates and to collect reference data in order to determine 

the viability of the estimation framework adopted for future studies. Results will 

be compared to recent similar repeatability studies on brain metabolism with 

PET (Bremmer et al., 2011) and MRI (Barhoum et al., 2014; Liu et al., 2013) 

techniques. 

As mentioned, the estimates presented are based on a newly developed forward 

model that describes analytically the contributions of BOLD signal, ASL signal 

and of the measured end-tidal partial pressures of CO2 and O2 (PetCO2, PetO2 

respectively) to the measured dual echo GRE signal in a dual calibrated BOLD 

approach. We are then able to estimate quantitative maps of five main 

physiological parameters involved in brain metabolism across grey matter: OEF0, 

CBF, perfusion-induced CVR, venous CBV and CMRO2. In parallel to these, 

another set of measures of brain haemodynamics is provided for comparison by 

an already validated multi-inversion time ASL technique (mTI-ASL), developed 

by Chappell and colleagues (Chappell et al., 2010).  
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4.2 Materials and methods 

4.2.1 Participants and experimental design 

Ten healthy volunteers (4 females, age = 2710) were recruited for this study. 

Exclusion criteria were introduced with special attention to possible difficulties 

in complying with respiratory tasks (asthma, smoking, cold/flu, etc.). Volunteers’
tolerance of hypercapnic periods and prolonged breathing through a facial mask 

was tested with a benching session held in the days before the scanning session. 

The study was approved by the local ethics committee and written informed 

consent was obtained from each participant prior to each session.   

Each participant was scanned at resting state (eyes open) on a single scan 

session and fMRI acquisitions were repeated twice for a total duration of about 

60 min. A multi inversion time dual echo scan (mTI scans, 10 min) was acquired, 

followed by a dual calibrated fMRI scan (dcFMRI scan, 18 min). These same scans 

were then repeated. During each of the dcFMRI scans an 18 min respiratory task 

was performed, with interleaved levels of hypercapnia, hyperoxia and medical 

air being delivered to the subjects. An anatomical scan was also acquired for 

segmentation and registration to anatomical space when not already available. 

4.2.2 Gas delivery, breathing circuit and respiratory task 

The respiratory task design we adopt is similar to interleaved paradigms 

previously presented in literature (Bulte et al., 2012; Wise et al., 2013) and was 

optimized according to results from modelling with real noise carried out in our 

centre in collaboration with Dr. Germuska. The design includes three periods of 

hypercapnia interleaved with two periods of hyperoxia, for a total duration of 18 

minutes (see Figure 4-2,B). In order to achieve hypercapnia, fixed values of 5% 

CO2 (balance air) were administered. Instead, as regards O2, the levels of 

administered gas were modified with positive and negative emphasis. This meant 

delivering short periods of respectively 100% O2 (14s) and 10% O2 (40s) in 

order to accelerate the process of reaching the hyperoxic state and then return to 
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normoxia. It is noteworthy that although hypoxic mixtures were administered, 

the short duration did not induce arterial blood hypoxia. Inspired fractions of 

50% O2 (balance air) were delivered during plateau periods. Supplies of 5% CO2

(balance air), 10% O2 (balance N2), 100% O2 and medical air were delivered at a 

flow rate of 25 l/min to the gas mixing chamber which was placed in the MR 

control room. The mixing chamber was then connected to the breathing circuit 

through a humidifier. An independent O2 backup cylinder was also connected 

directly to the breathing circuit for safety reasons. The gas delivery system 

consisted of a laptop personal computer using in-house Matlab software 

(Mathworks, Natick, MA, USA) to control the voltage output from a NI-DAQ AD 

converter (National Instruments, Austin, TX). The output voltages were then fed 

into four mass flow controllers (MKS Instruments, Wilmington, MA, USA) that 

allowed us to administer the fixed flow of selected gas. The respiratory circuit 

adopted was similar to the one proposed by Tancredi and colleagues (Tancredi et 

al., 2014). This circuit includes a system of one-way valves that minimizes re-

breathing and an open reservoir that allows the subject to breath room air in 

case of failure of the delivery system (see Figure 4-1). Gas levels were sampled 

from the volunteers’ facemask and tidal partial pressures of O2 and CO2 were 

measured and recorded using rapidly responding gas analysers (AEI 

Technologies, Pittsburgh, PA, USA).  
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Figure 4-1: The breathing circuit in use, based on the one proposed by 
Tancredi and colleagues [19]. 

A – fitted mask; B – tidal gases sampling line; C – one-way valves; D –
bacterial filter; E – supplementary O2 sampling line; F – reservoir limbs (~1.3 
l, open end); G – air mixture supply; H – emergency O2 supply.
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4.2.3 fMRI data acquisitions 

Scanning was performed on a 3T GE HDx MRI (GE Healthcare, Milwaukee WI) 

with a body transmit coil and 8-channel head receive coil. All participants 

underwent (or had available) whole brain T1-weighted structural scans (3D 

FSPGR, 1x1x1 mm voxels, TI/TR/TE = 450/7.8/3 ms).  

As regards the mTI PASL, dual-gradient echo (GRE) readout and spiral k-space 

acquisition imaging was used with the following acquisition parameters: TE1 = 

2.7 ms, TE2 = 29 ms, matrix = 64x64, voxel size = 3x3x7mm3, slice gap = 1 mm, 

12 slices. Automated linear shimming with the built-in software (GE HDx) was 

performed. Perfusion weighting on the two scans included four equally spaced 

inversion times each: 150, 300, 450, 600 ms and 1000, 1400, 1800, 2200 ms. 

Proximal inversion and control for off-resonance effects (PICORE) tagging 

scheme was used with a quantitative imaging of perfusion using a single 

subtraction (QUIPSS II) cut-off at 700ms for TI>700 ms. Label thickness was 

200mm with a 10-mm gap between the distal end of the labelling slab and the 

most proximal imaging slice. In both cases a variable TR increasing with the 

value of TI was used, so that TR-TI was fixed to 0.85 s for TI<0.7 s, while was 

fixed to 0.7 s for TI>0.7 s. This resulted in minimization of imaging time. Twenty 

control–tag pairs were acquired for each TI and each TI was repeated separately, 

resulting in a total of 160 repetitions and a final acquisition time of about 3.5 and 

6 minutes respectively.  

During the dcFMRI acquisition, simultaneous perfusion and BOLD imaging data 

was collected using a PASL PICORE, QUIPSS II imaging sequence with a dual-

gradient echo (GRE) readout and spiral k-space acquisition with the same 

prescription as the mTI scans: TE1 = 2.7 ms, TE2 = 29 ms, TR = 2.2 s, Flip Angle = 

90°, FOV = 22 cm, Matrix = 64 x 64, 12 slices of 7 mm thickness with an inter-slice 

gap of 1 mm acquired in ascending order, TI1 = 700 ms, TI2 = 1500 ms for the 

most proximal slice and was incremented for the subsequent slices, tag thickness 

= 20 cm, 10 mm gap between labelling slab and bottom slice, 10 cm QUIPSS II 

saturation band thickness. This resulted in a 490-volume acquisition (245 tag-

control pairs) for each of the dcFMRI acquisitions.  
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All mTI and dcFMRI scans were preceded by two calibration scans. The first 

consisted in a single shot EPI scan to estimate the equilibrium magnetization of 

brain tissue (M0), used for perfusion quantification (Çavuşoǧlu et al., 2009), with 
the same acquisition parameters as for the perfusion-weighted scans, except for 

being acquired with fully relaxed magnetization and no labelling. The second was 

a low resolution, minimal contrast image used for coil sensitivity correction in GE 

scanners (Wu et al., 2011), with the same acquisition parameters as for the 

equilibrium magnetization scan, except for TE = 11 ms and TR = 2 s. 

4.2.4 dcFMRI signal modelling 

The forward model (Germuska et al., 2015) used in this work and later in Chapter 

5 is based on a signal model constructed by combining a detailed description of 

the arterial spin labelling (ASL) signal developed by Woolrich and colleagues 

(Woolrich et al., 2006) and a model of the BOLD model developed in our centre in 

collaboration with Dr Mike Germuska. The proposed method simultaneously 

estimates signal changes from a dual-echo acquisition to find the physiological 

parameters that provide a best fit to the acquired data.  

The analytical description of the model allows us to adopt two different 

estimation approaches: one exploiting least-mean-square (LME) analysis and the 

other - adopted in this work - exploiting a Bayesian approach. Computationally, 

this is done with a Matlab toolbox for variational Bayesian approaches (VBA) 

developed and made available by Daunizeau and colleagues (Daunizeau et al., 

2014).  

In this paragraph we firstly report the equations defining the forward model and 

then supply a quick overview of the VBA approach. A more detailed description is 

to be found in the original papers (Daunizeau et al., 2014; Germuska et al., 2015). 
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4.2.4.1 The forward model 

The total MR signal STOT resulting from a dual-gradient echo (GRE) imaging 

sequence with a PASL PICORE, QUIPSS II scheme for ASL signal can be expressed 

as: 

Eq. 4-1

Where SASL is the ASL signal and the BOLD contribution is accounted for by 

changes in transverse relaxation rate R2*. Practically these two contributions to 

the overall signal STOT are considered separately, with the measured TE1 time 

series used to calculate the ASL signal, and the TE2 used to calculate the BOLD 

signal. This is acceptable assuming changes being fairly slow (compared to TR) 

and therefore lack of cross-contamination of the two signal signals. Despite this, 

given that all the model parameters are estimated in a single forward model, 

information from the one signal is used to infer on the other. 

As regards the latter, it can be expressed following the model first proposed by 

Wise and colleagues (Wise et al., 2013) and then simplified in Chapter 3 as: 

   Eq. 4-2 

and        Eq. 4-3 

Where A is a scaling factor depending on field magnitude and geometry fixed to 

3.7, [dHb] is the deoxy-haemoglobin concentration, PaCO2 is the arterial partial 

pressure of O2 and CVR is the cerebrovascular reactivity (in %CBF/mmHgCO2). 

Then OEF0 can be calculated from the expression for [dHb]/[dHb]0 (Wise et al., 

2013):

Eq. 4-4 
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Prior to analysis and during the fitting process, the T2* signal is high-pass filtered 

with a cut-off value of 340 s to remove any significant baseline drift.  

The ASL contribution SASL can also be expressed, following the Woolrich model 

(Woolrich et al., 2006), as a sum of a static component (Ss) and a component due 

to perfusion (Sb): 

Eq. 4-5

Where the static component is expressed in terms of changes in voxel 

magnetization M: 

Eq. 4-6 

So that changes in M0 are assumed to derive from a change in blood volume and 

water exchange and can therefore be used to calculate venous CBV. M0 is 

estimated by the model, while a fixed value of 5 ml/100g was instead used for 

tissue CBV.  

The perfusion component is then expressed in terms of changes of CBF and the 

kinetic PASL model: 

    Eq. 4-7 

Where M0,blood and T1b are respectively the baseline magnetization and the 

longitudinal relaxation time of blood, Rpn is 1 for tag and -1 for control and finally 

TI1, TI2 and δt are the times time to saturation, time to imaging and transit time 

defined by the QUIPSS II tagging scheme. For T1 signal the high-pass filter is 

operated by the surrounding subtraction process. Although the mean signal for 

each echo time is preserved so that R2,0* and M0,blood can still be estimated. 
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The relationship between PaO2 and arterial T1b is taken to be linear (as per Ma 

and colleagues, (Ma et al., 2014)) and described by:  

    Eq. 4-8 

The unknown parameters were fixed to literature values, with b = -6.14x10-4

(extrapolated from Ma and colleagues, (Ma et al., 2014)) and c = 1.793 (from Lu 

and colleagues, (Lu et al., 2004)). As regards the contribution of PetO2 and to 

PetCO2 to calculated CaO2 and PaCO2 respectively, local variation of the 

haemodynamic response (hr(t)) was allowed modelling each of them separately 

as gamma-variate functions: 

       Eq. 4-9 

with tmax  (fixed to 0.2 s) denoting the time of peak and i free parameter 

determining the rise and fall times of the response (with i = CO2, O2). Finally 

CMRO2 is calculated as: 

    Eq. 4-10 

4.2.4.2 The Bayesian estimation framework 

Bayesian inference is an approach to statistical inference that allows us to 

estimate parameters of a stochastic model based on the contribution of both 

evidence from measurements and prior knowledge on the parameters and the 

model themselves. At the basis of Bayesian inference is Bayes’ theorem, which 
expresses the relationship between the probability of a group of unknown 

parameters  of a model given and a set of measurements X as: 

    Eq. 4-11 

Where p(X|) is the probability of the measurements given the parameters, p() 

is the a priori knowledge on the parameters and p(X) is the is the probability of 

the measurements. p(|X) is also known as posterior distribution, while p(X|) 

and p() are respectively the likelihood and the prior on the parameters.  
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What makes the problem of determining the posterior distribution challenging is 

the fact that in general the form for p(X|) is unknown and therefore there might 

be no analytically exact solution to the problem. In these cases then the posterior 

distribution has to be estimated. This can be done with approaches like Markov 

Chain Monte Carlo (MCMC) techniques, in which a numerical approximation to 

the exact posterior is provided, typically with long computational times. Other 

approaches instead – such as the VBA one adopted by Danizeau and colleagues in 

their software (Daunizeau et al., 2014) – only supply an approximation to the 

posterior distribution, allowing to calculate locally optimal estimates of the 

parameters under investigation through variational analysis. This is done 

approximating the posterior p(|X) with a distribution q(), whose analytic form 

is well known (usually - and in this case - gaussian). The goodness of 

approximation is measured in terms of a dissimilarity function 

d(q();p(|X),p(X)), so that the inference is performed by estimating the q() that 

minimizes the dissimilarity function. In particular, thanks to the defined analytic 

form of q(), this is achieved with a regularized Gauss-Newton optimization 

scheme, drastically decreasing the computational load. 

In our case the forward model of the signal y is defined as:  

    Eq. 4-12 

Where g(·) is non-linear and expressed as per Eq. A-1,  is the vector of unknown 

parameters, X are the input measurements and e is the error.  includes eight 

parameters: four physiological parameters reported in the study (OEF0, CBF, CVR 

and CBV), then the baseline static magnetisation (M0) and relaxation rate ( ) 

and finally the parameters determining the shape of the haemodynamic 

responses for CO2 and O2 (CO2 and O2 respectively). 
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4.2.5 Data analysis 

4.2.5.1 dcFMRI data and end-tidal traces 

dcFMRI data were pre-processed with motion correction (MCFLIRT, (Jenkinson 

et al., 2002)) and brain extraction (BET, (S. M. Smith, 2002)) and spatially 

smoothed with a Gaussian kernel of 6 mm with SUSAN (Smith and Brady, 1997), 

separately for echo 1 and echo 2. Estimation of physiological parameters of 

interest was performed with the forward model previously developed in our lab 

(Germuska et al., 2015) adapted for a Bayesian approach, whose defining 

equations have been reported in the previous paragraph for reference. This 

model was adopted because it allows us to take into account different aspects of 

physiology contributing to the measured BOLD and ASL signals in a simultaneous 

optimization and also because it is less prone to estimation failure compared to 

previous calibrated BOLD methods. The priors on estimates were defined 

specifying means and standard deviations (mean,std.) as OEF0 = (0.35,0.1), CBF = 

(60,Inf) ml/100g/min, CVR = (3,0.774) %mmHg, CBV = (1.9,2.34) ml/100g,

where by “Inf” we mean a non-informative prior. These values were fixed in 

agreement with reported physiological ranges and consistently with those used 

in the original study on the Bayesian framework for the forward model 

(Germuska et al., 2015). Non-informative priors are used to initialize the 

estimate without carrying information, therefore they can be thought about as 

uniform distributions of probability. No prior is defined on the estimates of 

CMRO2 as this is calculated as CMRO2 = CBF·OEF·CaO2, where CaO2 is the arterial 

content of oxygen. As regards other parameters, they were kept the same as 

those adopted in the original work (Germuska et al., 2015).  

The inputs to the framework are dual echo GRE images and PetO2-PetCO2 traces, 

then analytic models describing the magnetization decay occurring at the first 

and second TE were used to estimate grey matter maps of OEF0, CBF, CVR, 

venous CBV and CMRO2.  Prior to analysis, the end-tidal responses were visually 

aligned with the MR data to remove the influence of any bulk delay between the 

recorded end-tidal traces and the fMRI data. The resulting maps were registered 
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into anatomical space and finally to MNI space (using FSL FLIRT (Jenkinson et al., 

2002) and then FNIRT (Andersson et al., 2007)) for second level analysis.  

Mean whole grey matter values of each estimated parameter were calculated for 

the scans and masked subsequently for I) partial volume grey matter values 

(based on MNI space priors) greater than 30% and II) estimated values of CBF 

within the range [0 200] ml/100g/min. The first criterion was imposed as an 

empirical threshold to avoid values affected by poor SNR of the signal in white 

matter, while the second was used as a sanity check on the estimates to exclude 

non-physiological values.  

4.2.5.2 mTI ASL CBF data 

Data were analysed using a two-compartment model developed by Chappell and 

colleagues (Chappell et al., 2010) which attenuates the error in CBF estimates 

due to signal arising from intravascular blood by modelling its effect on the ASL 

signal. In particular, the oxford_asl program – included in the FSL BASIL toolkit –
was used, allowing to obtain unscaled CBF maps, along with estimated arterial 

blood volume (aCBV, only if found to significantly contribute to the signal) and 

tissue arrival time (TAT). CBF quantification and coil sensitivity correction were 

then performed as for the dcFMRI data. 

Mean whole grey matter values of each estimated parameter were calculated for 

the three scans and masked following the same criteria adopted for the dcFMRI 

data. Finally estimates of cerebral perfusion were also used to probe the quality 

of the corresponding estimated values of CBF obtained with the dcFMRI model 

(with single inverstion time) through a correlation analysis. 

4.2.5.3 Repeatability analysis 

Indices quantifying the repeatability of the estimates were calculated for each 

parameter at a bulk grey matter level. Firstly those resulting from a correlation 

analysis between the estimates in the two time points, aiming at quantifying to 

what extent the two set of measurements covariate: coefficient of determination 

(R2), effect size () and statistical significance (p).  
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Then the intraclass correlation coefficient (ICC, (McGraw and Wong, 1996; 

Shrout and Fleiss, 1979)) was used as a measure of absolute agreement between 

the bulk estimates. The ICC has previously been applied to fMRI data  to quantify 

the ratio between the total data variance of interest and the one under 

investigation (Bright and Murphy, 2013; Lipp et al., 2015). In particular, it can be 

applied in a voxel-wise fashion in order to obtain estimates of spatial 

repeatability of the signal (Lipp et al., 2014). Two different ICC indices were 

therefore considered: one calculated on whole grey matter values of the 

parameters across subjects (corresponding to ICC(3,k) in [16] or ICC(A,k) in 

[17]) and another considering voxel-wise comparisons between the two scans 

for each participant separately (corresponding to ICC(3,1) in [16] or ICC(A,1) in 

[17], also referred to as “spatial ICC” in (Lipp et al., 2014)). These are hence 

referred to as inter-subjects ICC (ICCinter) and intra-subjects ICC (ICCintra) 

respectively. Both are interpreted according to commonly used guidelines that 

classify values ICC as “poor”, values between 0.41 and 0.59 as “fair”, values 
between 0.60–0.74 as “good” and values > 0.74 as “excellent” (Cicchetti, 2001). 

In order to evaluate the precision and spread of the bulk results, coefficient of 

variance (CV) of the estimates were also calculated. Similarly to the case of ICC 

estimates, two CV indices were considered: one taking account of the differences 

between the subjects of the cohort (CVinter) and the other considering the 

variability occurring in each subject separately (CVintra). CVinter was calculated as 

the average between the values of the standard deviation divided by the mean of 

all participants’ estimates calculated in the two sessions. CVintra was calculated 

for each person by dividing the standard deviation of the two measures by their 

mean. These CV indices were visually integrated with Bland-Altman plots, 

scatterplots in which the differences between two set of measurements are 

plotted against their means. Calculating the mean (m) and standard deviation 

(sd) across the differences, it is then possible to characterise as outliers the 

values lying beyond the interval of m  1.96*sd .  

CV indices were also calculated at a voxel-wise level, enabling to evaluate the 

precision of the estimates across grey matter. As for the bulk case, CVinter was 

calculated as the average between the values of the standard deviation divided 
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by the mean of all participants’ estimates calculated in the two sessions. 
Differently from the bulk estimates, CVintra was calculated as the mean across 

subjects of the ratios between the standard deviation and the mean of the two 

measurements. This allowed us to calculate a unique map for comparison with 

the relative CVinter map. 
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4.3 Results 

4.3.1 dcFMRI data and respiratory traces 

As shown in the averaged end-tidal traces reported in Figure 4-2-A, subjects’ O2

increased during periods of hyperoxia, while CO2 increased during hypercapnia. 

The average baseline PetO2 value was 113 mmHg, while it was 42 mmHg for 

PetCO2. Plateau levels of hyperoxia caused an average increase of approximately 

230 mmHg in PetO2 and the average increase in PetCO2 from baseline with 

hypercapnia was 11.5 mmHg. Moreover, periods of hyperoxia appear to produce 

a reduction PetCO2 of about 2 mmHg, while periods of hypercapnia correspond 

with an increase in PetO2 of approximately 10 mmHg, consistently with literature 

findings (Floyd et al., 2003; Tancredi et al., 2014) and in agreement with the 

mechanisms of gas transportation in brain tissue introduced in Paragraph 1.3 (in 

particular Haldane and Bohr effects, (Jensen, 2004)). The corresponding inspired 

gas fractions are reported in Figure 4-2-B. In one subject, the respiratory task run 

included hyperoxic periods 10s shorter than for the rest of the subjects (excluded 

from the average in Figure 4-2).  

Figure 4-3 and Figure 4-4 show the raw images of a single acquisition of echo 1 

and echo 2 for one representative subject and the relative perfusion signal 

obtained as the average of surround subtracted echo 1 signal from the same 

subject. 

Figure 4-5 shows an axial view of the maps of all the estimated parameters 

registered to MNI space in the two time points for a single representative subject. 

In these maps it is also possible to see areas where the algorithm fails its 

estimates (indicated by arrows). All the maps estimated for all subjects are 

reported for reference in the Supplementary material paragraph (Figure 4-14 

and Figure 4-15). 

. 
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Figure 4-2: A - end-tidal values of partial O2 and CO2 pressure averaged across N=9 
subjects. B – inspired gas fractions for the respiratory task. 
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Figure 4-3: Raw images of a single acquisition of echo 1 (top) and echo 2 (bottom) 
for a single subject. In both cases slices are presented from the bottom (s1) to the 
top (s12).
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Figure 4-4: Images obtained from the averaging over time of surround subtracted
echo 1 acquisitions for a single subject. The contrast shown is proportional to 
blood perfusion (arbitrary units). Slices are presented from the bottom (s1) to the 
top (s12).
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Figure 4-5: Axial view of the estimated maps of the physiological parameters for 
a representative subject in the two time points. White arrows point at areas 
where the algorithm fails to output valid values.
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Grey matter values of the five physiological parameters for both sets of 

measurements are reported in Figure 4-6. Averages across subjects show only 

slight and not significant changes between the two time points, with pooled mean 

values of 0.380.076 for OEF0, 5611.7 [ml/100mg/min] for CBF, 2.60.47 

[%/mmHg] for CVR, 1.90.35 [ml/100g] for CBV and 18349 

[μmol/100mg/min] for CMRO2. 

Results of the correlation analysis are reported for all parameters in Figure 4-7. 

In this case the goodness of fit is mixed: while OEF0, CBF and CBV show relatively 

high values of the coefficient of determination (R2>0.5) and good values of the 

effect size (>0.75), CVR and CMRO2 only present a mediocre agreement between 

the two measurements, with relatively high values of R2, but effect size away 

from the ideal (0.449 and 0.659 respectively).    

As regards the ICC indices, ICCinter is found to be “excellent” for all five 
parameters, with particularly high performances for OEF0 and CBF (>0.9, Figure 

4-8, top). Results are more varied for the voxel-wise analysis, with values of 

ICCintra remarkably high for CBF, mostly “excellent” for CVR, CBV and CMRO2, 

while mostly “good” for OEF0.   

Figure 4-8 (bottom) shows the CV indices calculated for the precision analysis. 

Values of CVinter are generally high, ranging between 17.5% for CVR to 26.9% for 

CMRO2. CVintra indices have similar distributions across parameters, with a value 

of 6.76.6% for OEF0, 6.95.9% for CBF, 9.68.8% for CVR, 8.46.3% for CBV and 

129.6% for CMRO2. In only three cases (not corresponding to the same subject) 

CVintra is higher than CVinter.  

Bland-Altman plots are reported for all parameters in Figure 4-9. Results show 

most of the values clustering around the pool averages for OEF0, CVR and CBV, 

with bias in the differences of 4.9%, 2.6% and -9.4% respectively compared to 

the relative mean. For these parameters it is also possible to find an outlier (not 

always corresponding to the same subject). Distributions for CBF and CMRO2 are 

instead broader, with bias in the differences of just -0.4% and 4.6% respectively 

and no outliers. 
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Maps of the CV indices calculated at a voxel-wise level for each parameter are 

reported in Figure 4-10. As for the bulk estimates, values of intra-subjects CV are 

generally lower than values of inter-subjects CV. Notably, for all physiological 

parameters areas of interface between grey matter and different structures 

(white matter, ventricles and skull) present higher CV values. For both CVintra and 

CVinter, CBF shows the lowest variability, with values mostly homogeneous across 

parameters apart from few focal areas. A similar situation is shown by OEF0 and 

CVR, but with higher estimates. CBV and CMRO2 show instead high CVintra and 

CVinter indices with highly irregular distributions in space.  
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Figure 4-6: Grey matter values of the five physiological parameters for all subjects 
for the two time points. In red, average values with bars representing standard 
deviations.
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Figure 4-7: results of correlation analysis between the two set of measurements (1 
and 2) for the five parameters. Solid lines show the best fit and displayed are the
coefficient of determination (R2), effect size () and statistical significance (p). 
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Figure 4-8: ICC and CV indices for all parameters considered. 
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Figure 4-9: Bland-Altman plots for each physiological parameters. In black solid lines 
the mean between measures difference in the two time points, while red lines 
denote intervals of mean  1.96*standard deviation.
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Figure 4-10: Axial view of the maps of intra- and inter-subjects CV calculated 
for each estimated parameter.
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4.3.2 mTI data 

Figure 4-11 shows the relative perfusion signal obtained as the subtracted image 

(tag-control) for a representative subject at different values of inversion time 

(TI) and relative evolution of the signal arising from a particular region. The 

effect of perfusing labelled blood over time is evident, highlighting a good quality 

of the signal. 

In Figure 4-12 axial views of the CBF and TAT maps registered to MNI space in 

the two time points are reported for a single representative subject. As expected, 

maps of TAT seem less homogeneous than the CBF ones. 

Grey matter estimates of CBF and TAT for both set of measurements are reported 

in Figure 4-13,A,B. As for the dcFMRI data, averages across subjects show only 

slight and not significant changes between the two time points, with pooled mean 

values of 369 ml/100mg/min for CBF and 0.760.061 s for TAT. In Figure 

4-13,C,D results of the correlation analysis on CBF are reported: panel C shows 

the relationship between estimates of CBF calculated from mTI data from the two 

time points, while in panel D these are correlated with estimates of CBF obtained 

with the forward model from dcFMRI data. While in the former case the 

correlation shows strong repeatability, in the latter the high value of the 

coefficient of determination (R2=0.796) and an effect size not far from ideal 

(=1.17) is coupled to the presence of an offset of about 20 ml/100mg/min 

between the two measurements, with the proposed forward model consistently 

supplying higher estimates. Bland-Altman plots (Figure 4-13,E,F) show 

measurements spreading along the means (y axis), while clustering quite tightly 

around the difference (x axis), the only exception being a single subject for both 

CBF and TAT. As regards the ICC indices (Figure 4-13,G), they are found to be 

mostly excellent for both parameters, with ICCintra of 0.94 and 0.82 for CBF and 

TAT respectively and poor values of ICCintra found just in a single subject. Figure 

4-13,H shows the calculated CV indices: CVinter are 24.5% for CBF and 8.1% for 

TAT, while CVintra means are 6.16.8% and 2.73.7% respectively.  
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Figure 4-11: On the left: single slice acquisitions on the subtracted signal (tag-control) for a 
representative subject at different values of inversion time (TI). On the right: example of 
evolution in time (circles) and best fit (GKM) of the signal from a ROI in the right visual cortex 
(red in the raw data). 

Figure 4-12: Axial view of the estimated maps of the physiological parameters for a 
representative subject in the two time points. 
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Figure 4-13: Summary of the calculated statistics for the mTI data. A,B – mean grey 
matter values (in read the averages across subjects); C – correlation scatterplot for 
CBF; D - correlation scatterplot between CBF values estimated from dcFMRI vs mTI 
data (in black dot values from session 1, in red from session 2); E,F – Bland-Altman 
plots; G,H – ICC and CV indices.
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4.4 Discussion 

Grey matter values estimated with the forward model show an overall 

consistency of the results between the sets of measurements taken in two time 

points, with t-tests revealing no significant changes at a group level. Measured 

values of 0.38±0.076 for OEF0 are in agreement with what reported from 

previous studies in our lab (0.42±0.12, (Wise et al., 2013)) or from other centres, 

with typical values for other MR methods ranging between 0.26 (Bolar and 

Rosen, 2011) and 0.395 (Guo and Wong, 2012). Global grey matter measures of 

CBF (56 ml/100mg/min) tend to be higher than what typically reported for MRI 

and PET studies (41 ml/100mg/min (Bulte et al., 2012), 42 ml/100g/min 

(Ibaraki et al., 2010)), but they are consistent with those from our previous study 

and similar ones, especially when considering young cohorts (56 ml/100mg/min 

(Wise et al., 2013), 52 ml/100mg/min (Gauthier and Hoge, 2012) and 63 

ml/100g/min (Ances et al., 2009)). Estimates of 2.60.47 %/mmHg for CVR lie 

on the lower side of the typical range of values obtained for comparable CO2

challenges in most of the MRI literature (between 5.151.1 %/mmHg (Bulte et 

al., 2012) and 2.82±1.21 %/mmHg (Heijtel et al., 2014)). Values of 1.90.35 

ml/100g for CBV are similar to those reported in literature and obtained with 

other MRI methods (2.180.41 ml/100g (Blockley et al., 2013), 2.460.28 

ml/100g (An and Lin, 2002) and 1.750.13 ml/100g (He and Yablonskiy, 2007)). 

Finally average CMRO2 values of 18349 μmol/100g/min are comparable to 

reported values obtained with the dual calibrated BOLD method previously 

presented by our lab (184±45 μmol/100g/min (Wise et al., 2013)), other 

calibrated BOLD methods (145±30 μmol/100g/min (Gauthier and Hoge, 2012) 

and 155±39 μmol/100g/min (Bulte et al., 2012)) and values of 182±12 

μmol/100g/min (Liu et al., 2013), 158±18 μmol/100g/min (Fan et al., 2012) and 

157.4±19.7 μmol/100g/min (Roland et al., 1987) obtained with different MR 

methods and PET. Nevertheless a few subjects show substantial changes between 

the two time points or outlying values, highlighting a degree of noise in the 

estimates, especially as regards CVR and CMRO2.  
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High resolution maps in Figure 4-3 show the overall consistency of the two set of 

measurements and also supply a representative example of the variability of the 

estimates across the brain, with generally spatially smooth results for OEF0 as 

opposed to more irregular estimates for CBV and CVR.  

The correlation analysis shows an overall elevated level of correlation between 

the estimates, although highlights less than optimal performances in the cases of 

CVR and CMRO2. In particular, in Figure 4-5,C,E different subjects appear as 

outliers. The main cause can be found considering the nature of the 

measurements, as both are derived from other estimates: CVR as the ratio 

between percent change in CBF and absolute changes in PetCO2 while CMRO2 as 

the product of OEF0 and CBF. This means that they are particularly sensitive to 

cumulative effects of noise on the original measurements.  

ICC indices give a further quantification of the absolute agreement between the 

estimates: high values for the ICCinter index support what found in the correlation 

analysis, while calculated ICCintra indices inform about consistency at a voxel-wise 

level. As expected, ICCintra is generally lower than ICCinter because averaging the 

estimate across grey matter allows some of the noise contributions to be 

reduced. In fact it might be argued that the good agreement of the estimates at a 

grey matter level is simply due to the averaging operated on a possibly wide 

range of noisy and non-informative estimates. Our analysis gives evidence that 

this is not the case: in fact ICCintra indices show that estimates are generally 

consistent also at a voxel-wise level. Results are especially good for values of CBF, 

while they tend to be less in agreement for OEF0.             

A further understanding of the variability in the data is given by the calculated CV 

indices. CVinter and CVintra indices measure the proportion of the variability in the 

estimates originating from inter-subjects differences (such as normal 

distribution of physiological parameters in the cohort) and intra-subject 

differences (more related to accuracy and precision of the measures). As values 

of CVintra are found to be generally lower than CVinter, this means that the method 

applied is accurate enough to capture the single subject’s physiology. Moreover, 
grey matter CVintra values of 6.76.6% for OEF0, 6.95.9% for CBF and 129.6% 
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for CMRO2 are comparable with those reported in PET literature for other 

methods aiming at estimating brain metabolism and haemodynamics across 

brain (5.74.4%, 8.47.6% and 5.33.9% respectively, (Coles et al., 2006)). They 

appear instead higher than those reported from MRI methods for bulk estimates 

(3.21.2%, 2.80.8% and 3.81.4% respectively with TRUST, (Liu et al., 2013)).  

Voxel-wise CV indices are higher than those reported for bulk estimates, typically 

by a factor of 2 and 3 for the intra- and inter-subjects case respectively. This is 

expected due to the high spatial resolution but it allows us to inform about the 

spatial distribution of the variability in the estimates. In particular they show 

that the low CV indices calculated at a bulk level for OEF0 and CBF are 

representative of the voxel-wise distribution of these indices. This does not seem 

to be the case for estimates of CBV, which present the highest degree of 

variability. Maps of CMRO2 further support the notion that the precision of the 

estimates is degraded by the contribution of both OEF0 and CBF variability.      

The Bland-Altman plots visualize the relationship between the inter-subject and 

intra-subject variability or measurement precision, where the first is here given 

by the spread along the x axis, while the second is the spread along the y axis. 

Results for the latter confirm what also found calculating ICC and CV indices, that 

is a generally good agreement of the estimates in the two time points with a few 

outliers lowering the performance. As regards instead the inter-subject 

variability, the plots are consistent with what found in physiology, that is values 

of OEF0 mostly clustered around the mean, with more varied values of CBF and 

CMRO2. 

The analysis of the estimates obtained from the mTI data can firstly be used to 

compare the estimate of CBF with measurements using a single inversion time. 

Results show a good correlation between the measurements but also a consistent 

offset, with the forward model supplying values typically 20 ml/100g/min higher 

than the mTI data. This can be explained mostly considering that estimates from 

single TI measures - as in the case of the forward model – tend to overestimate 

CBF, compared to those from mTI measures. This is due both to assumed 

constant timings of the labelled bolus (Van Osch et al., 2007) and spurious 
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arterial contributes to the ASL signal (Chappell et al., 2010). For example the 

inter-subject variability of TAT estimated using Chappell’s model (Chappell et al., 

2010) is not accounted for in the forward model and therefore introduces some 

error in the estimates.  

Three main issues are raised by the application of the newly proposed forward 

model in this study: one regarding the hypothesis underlying its application and 

two highlighted by the analysis of the results. As regards the first, it relates to the 

assumption of isometabolism during hypercapnia and hyperoxia when 

performing respiratory tasks. Studies on the dependence of CMRO2 on altered 

arterial CO2 and O2 levels have found variable results (as discussed in Paragraph 

2.2.3.4), with some of the more relevant ones pointing at a decrease in 

metabolism with both hyperoxia and hypercapnia (Xu et al., 2012, 2011). An 

eventual deviation from isometabolism during these conditions would translate 

into great bias on the estimates from calibrated BOLD models, as explored in 

Paragraph 3.3.4 and as reported by other groups (Blockley et al., 2015). Although 

still the object of discussion in the field, this is a commonly adopted assumption 

for BOLD calibrated methods and to investigate it goes beyond the scope of the 

data of this study. 

Another limitation arises from the precision of the estimates obtained with the 

forward model. As previously discussed, grey matter values reported are 

generally consistent with those found in literature, with the exception of few 

outliers. Repeatability of the measurement, quantified with correlation analysis 

and ICC calculations, has been shown to be overall satisfactory, both at a bulk and 

voxel-wise level, the worst performances being related to the inherently noisiest 

derived parameters, i.e. CVR and CMRO2. CV indices are instead higher than those 

reported in literature and for the mTI calculations, especially when measuring 

intra-subject variability. Although it does not represent a major limitation as in 

most cases values of CVintra are lower than CVinter. This indicates that the 

estimation precision of a subject’s parameters is still good enough not to be 

confounded in the cohort’s variability. In fact we should note that the estimates 
of five physiological parameters presented here have a voxel-wise resolution. 

Therefore, a trade-off between repeatability and spatial resolution has to be 
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considered when comparing them to other methods only allowing bulk estimates 

of fewer parameters.   

The final issue originates from the Bayesian approach adopted for the estimates. 

In fact the use of priors could potentially bias the estimates towards pre-

determined values (the priors themselves) rather than the real ones. This would 

translate into good repeatability and decreased variability in the data, but 

ultimately resulting in a loss in sensitivity to individual physiology. This 

argument, however, is contradicted by the evidence of a substantial inter-

subjects variability in the estimates, the presence of outlying values, the 

physiological spread of estimates and relative CV indices across the grey matter. 

Nevertheless it might be argued that the use of priors, combined with the 

reported values of repeatability, would make the method under investigation not 

effective in detecting physiological changes between different conditions, such as 

the activation due to a task or the response to a drug.  

Finally, this study helps us informing about the feasibility of future studies based 

on the same estimation framework. Considering the distributions of estimates 

reported, a significance level of 5% and a statistical power of 80%, the sample 

size (N) needed to detect size effects of 15%, 20% and 25% in a study between 

independent groups would be of N = 46, 28 and 18 respectively for OEF0, N = 50, 

30 and 20 respectively for CBF and N = 79, 46 and 30 respectively for CMRO2. 

Similarly, the sample size needed in for matched groups would be of N = 30, 18 

and 13 respectively for OEF0, N = 33, 20 and 14 respectively for CBF and N = 51, 

30 and 20 respectively for CMRO2. Finally, the sample size needed in a crossover 

study such as the one reported in Chapter 5 would be of N = 23, 14 and 10 

respectively for OEF0, N = 25, 16 and 11 respectively for CBF and N = 39, 23 and 

16 respectively for CMRO2. These calculations, supported by the repeatability 

analysis previously presented, suggest that our approach can be applied 

proficiently for size effects and magnitudes of sample size typically found in fMRI 

studies. In order to avoid large cohorts, experimental designs characterized by 

reduced variability in the data should be preferred (e.g. repeated measurements, 

longitudinal, crossover).    
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4.5 Conclusions 

In this study we have quantified the repeatability of a newly proposed method 

for estimating brain haemodynamics and metabolism with a dual calibrated 

BOLD approach in a test-retest experiment on ten healthy subjects in the resting 

state. 

Results show an overall consistency of the estimated parameters with literature 

reports and a good level of repeatability, with varied performances depending on 

the specific parameter under analysis and on the spatial resolution considered. In 

particular the information supplied by grey matter maps is of extreme interest 

for studies focused on the spatial distribution of brain physiology, despite some 

reliability limitations compared to methods supplying bulk measurements. The 

level of variability in the data suggest that our approach can be applied 

proficiently for appropriate experimental designs with magnitudes of sample size 

typically found in MRI studies.      

More work can be done to further explore the possibilities of this method, such as 

to test its effectiveness in detecting physiological changes between different 

conditions. This is the aim of the study presented in Chapter 5, where the same 

method will be applied to investigate the acute effects of caffeine in a drug study.     
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4.6 Supplementary material 

Figure 4-14: Maps of the estimated parameters at each time point for subjects 1 to 5.
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Figure 4-15: Maps of the estimated parameters at each time point for subjects 6 to 10.
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Chapter 5

The acute effects of caffeine on brain oxygen 

metabolism: a dual calibrated fMRI study 

In the following study the same estimate framework introduced in the previous 

chapter is applied for a randomised, double-blind, placebo-controlled study on 

caffeine. 16 low to moderate consumers were recruited and scanned before and 

after consumption of a capsule of powdered caffeine (or placebo) with the aim of 

assessing its acute effects on brain metabolism and haemodynamics. Results 

show a general decrease in oxygen metabolism after caffeine consumption, 

consistent with a decrease in energetic demand due to an overall inhibitory effect 

previously reported by electrophysiology studies. With this work we also 

exemplify the feasibility of the estimate framework, showing its effectiveness in a 

drug study application. 
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5.1 Introduction 

In this work we aim to show how the combination of the dual calibrated 

experimental methodology and the forward modelling estimation approach 

presented in Chapter 4 can be used to assess the effects of a drug on the brain. 

We utilise a randomised, double-blind, placebo-controlled study design to 

demonstrate the acute effects of caffeine ingestion in low to average caffeine 

consumers. In particular, our aim is to characterize the changes in brain 

metabolism and haemodynamics following caffeine consumption with a high 

spatial resolution, quantifying the main underlying physiological parameters of 

interest.  

Caffeine is a methylxanthine and is one of the most frequently and widely 

consumed psycho-active substances. It is known as a non-selective antagonist of 

the adenosine receptors, especially types A1 and A2 (both A2A and A2B) 

(Fredholm et al., 1999; Pelligrino et al., 2012), inhibiting the release of excitatory 

neurotransmitters. This has two independent consequences on neural activity 

and blood flow. On one hand, by inhibiting the A1 receptors, it increases the 

neuronal firing rate (Fredholm et al., 1999). On the other hand, acting on the A2A 

and A2B receptors located on blood vessels, it promotes vasoconstriction and 

therefore leads to reduction in CBF (Pelligrino et al., 2012). Due to the non-

specific binding of caffeine to both types of receptors (A1 and A2), these effects 

may vary depending on the proportional expression of the two receptors in 

specific areas of the brain (Laurienti et al., 2003). In particular, studies with 

autoradiography (Svenningsson et al., 1997) and PET (Fukumitsu et al., 2003; 

Ishiwata et al., 2005) found both receptors to be heterogeneously distributed 

across tissue, with the A1 type more abundant in nucleus caudatus, striatum and 

superficial cortical areas, while A2 in putamen, nucleus caudatus and thalamus. 

Caffeine has also been reported to elicit other effects of psycho-physical nature, 

such as increased anxiety, alertness and raising blood pressure (Einöther and 

Giesbrecht, 2013;  a Smith, 2002). Caffeine plasma concentration peaks between 

30 and 45 min after ingestion followed by a plateau of approximately 60 to 80 

min (Fredholm et al., 1999; Nehlig and Boyet, 2000) and is then characterized by 
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a wide half-life range typically between 2.5 and 10 hours depending mainly on 

age, gender and weight (Fredholm et al., 1999; Magkos and Kavouras, 2005).  

Due to the parallel effect on both the neural and vascular systems, caffeine can 

alter the coupling between CBF and CMRO2. Converging evidence has been found 

with PET and MR techniques, indicating a reduction in baseline CBF (Cameron et 

al., 1990; Field et al., 2003), with an increased task related CBF change (Chen and 

Parrish, 2009b; Griffeth et al., 2011). Both CBF and BOLD induced 

cerebrovascular CO2 reactivity (CVR) changes are reported not to be significant 

(Chen and Parrish, 2009a; Vidyasagar et al., 2013). Contrasting results have been 

found for the effects on oxygen consumption. In fact, the most relevant MR 

studies find decreases in relative stimulus-induced changes in CMRO2 (Chen and 

Parrish, 2009b; Griffeth et al., 2011), which then translates in increased (Chen 

and Parrish, 2009) or unchanged (Griffeth et al., 2011) measured BOLD signal. 

Regarding absolute oxygen metabolism, there is an insufficient body of research 

to support any specific direction of the effect, with both increase (Griffeth et al., 

2011), a tendency to decreasing (not significantly different from placebo, Yang et 

al., 2015) and no change (Xu et al., 2015) in CMRO2 being reported.  

Finally, to our knowledge no MR study has been published supplying grey matter 

maps of OEF0 and absolute value CMRO2 after caffeine assumption, motivating 

the need for a more detailed description of the acute effects on brain metabolism 

and haemodynamics to be provided.   
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5.2 Materials and methods 

5.2.1 Participants and caffeine administration 

Sixteen healthy caffeine consumers (8 males, age = 24.75.1) were recruited to 

the study. Exclusion criteria were introduced with special attention to possible 

difficulties in complying with respiratory tasks (asthma, smoking, cold/flu) and 

to spurious interactions with caffeine effects (drug dependency, regular 

medications altering systemic haemodynamics, negative reaction to caffeine). 

Volunteers’ tolerability to hypercapnic periods and breathing through a face- 

mask was tested with a benching session held in the days before the first 

scanning session. Caffeine intake was assessed with a self-reported retrospective 

log of weekly caffeine consumption that quantified the use of coffee, tea, cola, 

chocolate and other caffeine-containing drinks, dietary supplements and over the 

counter medications (Addicott et al., 2009). Volunteers that were low to 

moderate caffeine consumers (between 51 and 298 mg/day, mean 154.176.2 

mg/day), did not match exclusion criteria and successfully undertook the 

benching session were included in the study.  

The caffeine dosage administered was 250 mg (roughly equivalent to the caffeine 

present in 2 cups of ground coffee), chosen not to exceed the recommended daily 

limit to avoid adverse effects in low to moderate users (300 mg, Fredholm et al., 

1999). This is consistent with quantities used in previous studies, typically 

ranging between 200 and 300 mg (Perthen et al., 2008; Vidyasagar et al., 2013; 

Yang et al., 2015). The choice of excluding high consumers and caffeine-naïve 

volunteers was made to maximize the chance of avoiding strong withdrawal 

effects and unexpected reactions to caffeine respectively. 

Participants were asked to abstain from caffeine containing drinks, food, 

pharmaceuticals and alcohol from the evening before the scanning day (9 pm) 

and to have a light meal not later than one hour before the visits to our lab. The 

study was approved by the local ethics committee. Written informed consent was 

obtained from each participant.   
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5.2.2 Experimental design  

Figure 5-1 illustrates the experimental design. Each participant was scanned on 

two different days (30.118.8 days apart, same time of the day), each day 

including the same protocol with a pre-dose scan session followed by the 

delivery of the capsule of drug or placebo (randomized order for males and 

females) and finally a post-dose scan session.  

The pre-dose sessions included an anatomical scan (when not already available 

for the participant) then a multi inversion time dual echo scan (mTI scans) and a 

dual calibrated fMRI scan (dcFMRI scan), for the duration of about 40 min. The 

post-dose sessions instead included a mTI scan followed by a dcFMRI scan and 

finally another mTI scan, for a total time of about 50 min.  

Each dcFMRI scan contained an 18 min respiratory task, with interleaved levels 

of hypercapnia, hyperoxia and medical air being delivered to the subjects as for 

the experiment presented in Chapter 4. 

At the end of the first scan session the subjects were removed from the MRI 

scanner and given a capsule containing either 250 mg of powdered caffeine or 

placebo (cornflour). Caffeine was administered in a double-blind, crossover, 

placebo-controlled, randomised manner. This was followed by a 30 min pause for 

the caffeine absorption, during which the subjects were allowed to relax and 

consumed nothing other than water. After this time, they were led back to the MR 

suite for the post-dose scanning session. Based on the reported drug kinetics 

(Fredholm et al., 1999), we expected the plasma levels of caffeine to stay stable 

for the duration of the second dcFMRI acquisition, that started about 45 minutes 

after the capsule administration.   
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At the beginning and end of each scanning day, volunteers were asked to fill in a 

Mood and Physical Sensations Scale form (MAPSS), in order to evaluate their 

mental and physical state (Rogers et al., 2010). At the end of the second scanning 

day participants were also asked to guess on which day they received caffeine or 

placebo and to explain their choice. 

Figure 5-1: Diagram of the experimental design. Capsule delivery consists of caffeine 
or placebo (order randomized with gender). 
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5.2.3 Salivary samples 

A total of 6 salivary samples (3 for each day) was taken from each volunteer in 

order to assess the caffeine content in saliva over time. The sample consisted on a 

swab (Salivette) the participants had to chew on for a minute.  

Before the first sample, subjects were asked to rinse their mouth in order to 

reduce contamination. In each scanning day one samples were taken pre-dose 

and approximately 30 and 60 minutes post-dose (“pre”, “post1” and “post2” 
respectively, see Figure 5-1).  

As saliva concentration of caffeine is an index of plasma caffeine level (Fredholm 

et al., 1999), the second and third samples of the day in which caffeine was 

delivered were used  to reveal the stability of the post-dose plasma caffeine 

levels. Compliance to the request of abstaining from caffeine containing drinks 

and food was assessed with the first saliva sample of each scanning day. 

5.2.4 Respiratory task 

As for the study in Chapter 4, the respiratory task design we adopted follows the 

optimized design defined in our lab according to results from modelling, with 

three periods of hypercapnia interleaved with two periods of hyperoxia, for a 

total duration of 18 minutes (Figure 5-3 C). In order to achieve hypercapnia, fixed 

values of CO2 (5%) were administered. For O2, the levels of administered gas 

were modified with positive and negative pre-emphasis. These meant delivering 

short periods of respectively 100% O2 (14s) and 10% O2 (40s) in order to 

accelerate the process of reaching the hyperoxic state and then return to 

normoxia. It is noteworthy that although hypoxic mixtures were administered, 

the short duration did not induce arterial hypoxia. Supplies of 5% CO2 (balance 

air), 10% O2 (balance N2), 100% O2 and medical air were delivered at a total flow 

rate of 25 l/min to the gas mixing chamber which was placed in the MR control 

room and connected to the breathing circuit through a humidifier. An 
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independent O2 backup cylinder was also connected directly to the breathing 

circuit for safety reasons.    

The gas delivery system consisted of a laptop personal computer using in-house 

Matlab software (Mathworks, Natick, MA, USA) to control the voltage output 

from a NI-DAQ AD converter (National Instruments, Austin, TX). The output 

voltages were then fed into four mass flow controllers (MKS Instruments, 

Wilmington, MA, USA) that administered the gas at the required flow rate. The 

respiratory circuit adopted was designed based on that of Tancredi and 

colleagues (Tancredi et al., 2014). This circuit includes a system of one-way 

valves that minimizes re-breathing and a reservoir on the expired limb that 

allows the subject to breath room air in case of failure of the delivery system (see 

Figure 4-1 in Chapter 4). Gas levels were sampled from the volunteer’s facemask 

and tidal partial pressures of O2 and CO2 were measured and recorded using 

rapidly responding gas analysers (AEI Technologies, Pittsburgh, PA, USA).  

5.2.5 fMRI data acquisitions 

Scanning was performed on a 3T GE HDx MRI (GE Healthcare, Milwaukee WI) 

with a body transmit coil and 8-channel head receive coil. All participants 

underwent (or had available) whole brain T1-weighted structural scans (3D 

FSPGR, 1x1x1 mm voxels, TI/TR/TE = 450/7.8/3 ms).  

As regards the mTI PASL, dual-gradient echo (GRE) readout and spiral k-space 

acquisition imaging was used with the following acquisition parameters: TE1 = 

2.7 ms, TE2 = 29 ms, matrix = 64x64, voxel size = 3x3x7mm3, slice gap = 1 mm, 

12 slices. Automated linear shimming with the built-in software (GE HDx) was 

performed. Perfusion weighting on the two scans included four equally spaced 

inversion times each: 150, 300, 450, 600 ms (sh. mTI in Figure 5-1) and 1000, 

1400, 1800, 2200 ms (lo. mTI in Figure 5-1).  Proximal inversion and control for 

off-resonance effects (PICORE) tagging scheme was used with a quantitative 

imaging of perfusion using a single subtraction (QUIPSS II) cut-off at 700ms for 

TI>700 ms. Label thickness was 200mm with a 10-mm gap between the distal 

end of the labelling slab and the most proximal imaging slice. As for the 
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acquisitions in Chapter 4, variable repetition time was used in both cases, such 

that imaging time was minimized (see Pargraph 4.2.3). Twenty control–tag pairs 

were acquired for each inversion time, resulting in a total acquisition time of 

about 3.5 and 6 minutes respectively.

During the dcFMRI acquisition, simultaneous perfusion and BOLD imaging data 

was collected using a PASL PICORE, QUIPSS II imaging sequence with a dual-

gradient echo (GRE) readout and spiral k-space acquisition with the same 

acquisition parameters as the mTI scans, except for the use of a single inversion 

time (TI2 = 1500 ms), a set repetition time (TR = 2.2s) and acquiring 490-

volumes (245 tag-control pairs).  

All mTI and dcFMRI scans were preceded by two calibration scans. The first 

consisted in a single shot EPI scan to estimate the equilibrium magnetization of 

brain tissue (M0), used for perfusion quantification (Çavuşoǧlu et al., 2009), with 

the same acquisition parameters as for the perfusion-weighted scans, except for 

being acquired with fully relaxed magnetization and no labelling. The second was 

a low resolution, minimal contrast image used for coil sensitivity correction (Wu 

et al., 2011), with the same acquisition parameters as for the equilibrium 

magnetization scan, except for TE = 11 ms and TR = 2 s. 

5.2.6 Behavioural data acquisition  

Mood, Alertness and Physical Sensations Scales (MAPSS) was used to measure 

anxiety, alertness, and headache (Rogers et al., 2010). The scale comprised 15 

questions to which participants were instructed to rate mood and physical 

sensation states according to how they were feeling “at the moment” using an 
eight-point unipolar scale, where 1 represented ‘not at all’ and 8 represented 
‘extremely’. Participants were instructed: ‘There are no right or wrong answers.
Do not spend too much time on any one statement but give the rating which 

seems to best describe your present feeling’. Three aspects of mood were rated 

on unipolar scales: energetic mood (sleepy–energetic), tense mood (tense–
relaxed) and hedonic tone (sad/gloomy–happy/cheerful). One item assessed 
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mental alertness. The physical sensation descriptors were clear-headed–
muzzy/dazed, light-headed/ feeling faint, jittery/shaky, and headache. 

5.2.7 Data analysis 

5.2.7.1 dcFMRI data and end-tidal traces 

dcFMRI data were pre-processed with motion correction (MCFLIRT (Jenkinson et 

al., 2002)) and brain extraction (Smith, 2002) and spatially smoothed with a 

Gaussian kernel of 6 mm with SUSAN (Smith and Brady, 1997), separately for 

echo 1 and echo 2. Calculation of physiological parameters of interest was 

performed with a Bayesian framework of analysis applied to the forward model 

previously developed in our lab (Germuska et al., 2015), whose defining 

equations were introduced in the previous Chapter (see Paragraph 4.2.4.1  and 

original papers for reference). The Gaussian priors on estimates were defined 

specifying means and standard deviations (mean,std.) as OEF0 = (0.35,0.1), CBF = 

(60,Inf) ml/100g/min, CVR = (3,0.774) %/mmHg, CBV =  (1.9,2.34) ml/100g,

where by “Inf” we mean a non-informative prior. Non-informative priors are 

used to initialize the estimate without carrying information, therefore they can 

be thought about as uniform distributions of probability. No prior is defined on 

the estimates of CMRO2 as this is calculated as CMRO2 = CBF·OEF·CaO2. As 

regards other parameters, they were kept the same as those reported in the 

original work (Germuska et al., 2015) and are reported in the Paragraph 4.2.4.1 

for reference. The inputs to the framework are dual echo GRE images and PetO2-

PetCO2 traces, then analytic models describing the magnetization decay 

occurring at the first and second TE were used to estimate grey matter maps of 

OEF0, CBF, CVR, venous CBV and CMRO2.  Prior to analysis, the end-tidal 

responses were visually aligned with the MR data to remove the influence of any 

bulk delay between the recorded end-tidal traces and the fMRI data. The 

resulting maps were registered into anatomical space and finally to MNI space 

(using FSL FLIRT, (Jenkinson et al., 2002)) for second level analysis.  

Mean grey matter values of each estimated parameter were calculated for the 

four scans and masked for I) partial volume grey matter values (based on MNI 
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space priors) greater than 30% and then II) estimated values of CBF within the 

range [0 200] ml/100g/min. The first criterion was imposed as an empirical 

threshold to avoid values affected by poor SNR of the signal in white matter, 

while the second was used to exclude non-physiological values. Moreover results 

from one subject (s16) were excluded for their poor quality in a single 

acquisition, with abnormally unsteady end-tidal values due to the very irregular 

breathing pattern that made estimation unfeasible. Therefore the subsequent 

statistical analyses were carried out on N=15 subjects.  

Two-way ANOVA tests were then performed for each parameter estimated to 

test for differences on the effect of the two factors considered, that is 1) “drug” 
(i.e. caffeine or placebo) and 2) “dosing” (i.e. pre or post dose). T-tests were also 

performed to test the significance of differences between changes from pre to 

post condition with caffeine and placebo.  

Group-level voxel-wise analysis were then performed. For each parameter the 

differences from pre to post condition with placebo were tested against those 

obtained with caffeine with a paired t-test. In order to do this, anatomical T1-

weighted images were first registered to the MNI152 standard space with the 

FSL program FNIRT (Andersson et al., 2007) and the obtained transformations 

were then applied to the estimated maps. T statistics were then calculated on the 

map in MNI 152 standard space with the AFNI program 3dttest++ (Cox, 1996) 

and thresholded with a voxel-wise significance level of αv = 0.01 and a cluster-

wise level of αc = 0.05 with minimum size of 246 mm3, as estimated with the 

AFNI program cdf (Cox, 1996).  

In addition, a ROI analysis was carried out to further investigate the spatial 

distribution of the estimated parameters at a group level. Mean changes from pre 

to post condition in caffeine and placebo are reported for seven different ROIs: 

caudate nucleus, frontal lobe, insula, occipital lobe, parietal lobe, putamen and 

thalamus (see Figure 5-8, F). These regions were chosen in order to subdivide 

grey matter into approximately structurally homogeneous areas with the 

purpose of testing whether changes in haemodynamics and metabolism can be 

considered consistent across tissue. Note that these regions are characterised by 
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different volumes: higher for the lobes, while lower for the others. Segmentation 

was based on the Harvard-Oxford cortical and subcortical structural atlases 

(threshold 50 %). 

5.2.7.2 mTI CBF ASL data 

Data was analysed using a two-compartment model developed by Chappell and 

colleagues (Chappell et al., 2010) which attenuates the error in CBF estimates 

due to signal arising from intravascular blood by modelling its effect on the ASL 

signal. In particular, the oxford_asl program – included in the FSL BASIL toolkit –
was used, allowing us to obtain unscaled CBF maps, along with estimated arterial 

blood volume (aCBV, if found to significantly contribute to the signal) and tissue 

arrival time (TAT). CBF quantification and coil sensitivity correction were then 

performed as for the dcFMRI data. 

Mean grey matter values of CBF and TAT were calculated for the six scans and 

masked following the same criteria adopted for the dcFMRI data. Note that in this 

case the factor “dosing” has three levels (“pre”, ”post1” and “post2”). Similarly to 

the dcFMRI data, two-way ANOVA tests were performed for each parameter to 

test for the effects of the two factors considered.  

Finally t-tests were performed voxel-wise for CBF and TAT to localise possible 

spatial distributions of the effects as per the dcFMRI data. The registration of the 

maps from subject space to MNI152 standard space was carried out with FNIRT

(Andersson et al., 2007), while t statistics were calculated with the AFNI program 

3dttest++ (Cox, 1996) and thresholded with a voxel-wise significance level of αv = 

0.01 and a cluster-wise level of αc = 0.05 with minimum volume size of 246 mm3. 

For ease of comparison with the results obtained from dcFMRI data, t-tests were 

only performed with differences between the pre and post2 condition.  

5.2.7.3 Behavioural data 

A two-way ANOVA was performed for each of the 15 items of the MAPPS, 

followed by t-tests on the changes within session due to caffeine or placebo in 

order to evaluate the effect of the factor considered on the mental state of the 

subjects. 
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5.3 Results 

5.3.1 Salivary sample data 

Concentrations of caffeine from the salivary samples are reported for all subjects 

in Figure 5-2. These show that the levels of caffeine in saliva are significantly 

different from baseline (“pre” condition) at thirty minutes post caffeine ingestion 
and continue to rise from a mean of 2.08 mg/l to a significantly higher mean 

value of 4.1 mg/l between post-caffeine 1 and post-caffeine 2 samples. In 

contrast, concentrations remain constantly low for placebo, with one subject 

showing consistently high concentrations (about 1 mg/l), while for another 

subject values increased with time.   

Figure 5-2: values of caffeine salivary concentration for the three samples in each 
day (“caffeine” or “placebo”). Significance of t-tests reported (**p<.01). 
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5.3.2 dcFMRI data and respiratory traces 

The average baseline PetCO2 value was 113 mmHg, while it was 39 mmHg for 

PetCO2. The average change in PetCO2 from baseline was 12 mmHg, while plateau 

levels of hyperoxia caused an average increase of approximately 211 mmHg in 

PetO2 (see Figure 5-3-B). Periods of hyperoxia appear to produce a reduction in 

PetCO2 and periods of hypercapnia are associated with slight increases in PetO2. 

Results of an ANOVA carried out on average increases in end-tidal values did not 

show any significant effect of drug, dosing or their combination (data not shown).     

The end-tidal traces for a single representative subject (s12), the end-tidal traces 

averaged across all subjects and the respiratory task are reported in Figure 5-3. 

Reasonably steady values of PetCO2 are maintained during hypercapnia and of 

PetO2 during hyperoxia, the latter preceded and followed by short perturbations 

due to periods of 100% O2 hyperoxia and 10% O2 hypoxia respectively. The 

excluded subject (s16) was excluded because of abnormally unsteady values 

during hypercapnia, hyperoxia and also normocapnia-normoxia, due to the very 

irregular breathing pattern (data not shown).  

Grey matter values of all the estimated parameters for the four conditions 

considered are reported in Figure 5-4. Changes from “pre” to “post” conditions 

are not found to vary significantly for any parameters with placebo (when 

considered separately). Instead, with caffeine a significant increase is found for 

OEF0 and CVR, with values changing form 0.420.067 to 0.480.066 (Figure 

5-4,A) and from 2.2 0.50 to 2.50.4 (Figure 5-4, D) respectively. Also, with 

caffeine significant decreases are found for CBF, CBV and CMRO2, with values 

changing from 6512 to 456 (Figure 5-4, B) ml/100g/min, from 20.4 to 

1.30.2 (Figure 5-4, E) ml/100g and from 23348 to 18836 (Figure 5-4, F) 

μmol/100g/min respectively.  

Results of ANOVA performed on whole grey matter values for each parameter are 

reported in Table 5-1. Statistics are significant for all effects (drug, dosing and 

interaction) for CBF and CBV, whereas they are not significant for OEF0 and CVR. 
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As regards CMRO2, the effect is significant for both drug and dosing, whereas it is 

not for their interaction.  

Figure 5-5 shows the mean grey matter percent change from the pre to post 

condition for all parameters with caffeine and placebo. No significant changes are 

found for any parameters with placebo, whereas they are significant with 

caffeine for several parameters, with OEF0 showing an increase of 15.6% 

(18.9%, p <0.05), while CBF, CBV and CMRO2 showing a decrease of -30.4% 

(6.1%, p <0.01), -31% (13.8%, p <0.01) and -18.6% (11.1%, p <0.01) 

respectively.  
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Figure 5-3: A – Tidal traces of a single representative subject (s12). B - End-tidal 
traces averaged across all subjects. C – inspired gas fractions. In both A and B three 
periods of hypercapnia and two of hyperoxia are clearly visible, interleaved with 
short periods of normocapnia-normoxia. Positive and negative emphases can be 
distinguished before and after the plateau hyperoxic periods, respectively.   
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Figure 5-4: mean grey matter values of the five estimated parameters for N=15 
subjects. In red the calculated means with bars representing the standard deviations.
Significance of t-tests between pre and post condition denoted with asterisks (*p<.05,
**p<.01)   
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Figure 5-5: mean grey matter values of percent change between pre and post 
condition for the five estimated parameters (N=15, bars representing the standard 
deviations). Significance of t-tests are denoted with asterisks (*<.05, **<.01)

Table 5-1: results of ANOVA performed on GM averaged values of the maps 
estimated with the dcFMRI model. Statistics (F and p value) for main effects (DRUG, 
DOSING) and interaction effect (INTERACTION) reported for each of the six 
parameters considered.
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Figures 5-6 and 5-7 show results from voxel-wise analysis of the estimated maps. 

In Figure 5-6 examples of grey matter values of estimated maps registered to 

MNI152 standard space for a single representative subject (s12) before and after 

caffeine assumption (“pre” and “post” condition respectively). These maps are 
consistent with the mean trend, with values of CBF, CBV and CMRO2 generally 

decreasing while values of OEF0 and CVR increasing. Besides they are 

representative of the variability of the result, with generally spatially smooth 

results for OEF0 as opposed less smooth estimates for CBV and CVR. In these 

maps it is also possible to see areas where the algorithm fails its estimates 

(indicated by arrows in Figure 5-6). 

Figure 5-7 displays thresholded t values from the group t-test performed 

between the differences from pre to post condition with caffeine and placebo. 

Areas of significant change are found for all parameters. More information on the 

size and coordinates of these for OEF0 and CMRO2 can be found in the 

Supplementary material section at Paragraph 5.5 (Table S-5.1 and S-5.2). CBF 

and CBV show widespread and highly significant decrease in change due to 

caffeine. CMRO2 also shows areas of significant decrease, but they are more 

localized. Conversely, results from OEF0 and CVR indicate areas of increase due to 

caffeine, with the latter being confined to only few significant areas. None of the 

parameters showed a mixed direction of the effect.  

Finally Figure 5-8 shows the results of a ROI analysis to further investigate the 

spatial distribution of the estimated parameters at a group level. Mean changes 

from pre to post condition in caffeine and placebo are reported for seven 

different ROIs. These show the effect of caffeine being consistently significant for 

CBF (Figure 5-8 B), while being more varied for the others. CBV changes (Figure 

5-8 D) are only significant in the frontal lobe, occipital lobe, parietal lobe and 

thalamus (ROIs 2, 4, 5 and 7), while they are not for the other regions. OEF0

(Figure 5-8 A) changes are significant in the caudate nucleus, putamen and 

thalamus (ROIs 1, 6 and 7). CVR does not show significant effects, with 

measurements characterized by high variance across regions. Finally, decreases 

in CMRO2 (Figure 5-8 E) are only significant in occipital lobe and parietal lobe 

(ROIs 4 and 5).  
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Figure 5-6: Estimated GM maps in MNI space for a single representative 
subject (s12). Results displayed before and after caffeine assumption (pre and 
post condition respectively). White arrows point at areas where the estimate 
failed in CBV and OEF0 (and therefore CMRO2). 
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Figure 5-7: Results of a group t-test performed between differences from pre to post 
condition in caffeine and placebo. Each map shows values of the t statistic for which 
p<0.01 either in negative or positive direction (t>3.33 and t<-3.33 respectively, 14 dof), 
and thresholded for cluster size with significance level αc=0.05.  



The acute effects of caffeine on brain oxygen metabolism: a dual calibrated fMRI study Chapter 5 

158

Figure 5-8: Mean differences from pre to post condition in caffeine and placebo for 
each parameter in different ROIs. Bars represent standard deviations. Significance of t-
tests is denoted with asterisks (*<.05, **<.01, fdr corrected).

In panel F key for the ROIs considered: 1 - caudate nucleus; 2 - frontal lobe; 3 - insula; 4 
- occipital lobe; 5 - parietal lobe; 6 - putamen; 7 - thalamus.
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5.3.3 mTI data 

Mean grey matter values of all the estimated CBF and TAT for the six conditions 

considered are reported in Figure 5-9. Changes from baseline are not found 

significant for placebo. Instead, in caffeine a significant decrease (p<.01) is found 

for CBF form 498.9 ml/100g/min before caffeine delivery to 345.6 

ml/100g/min after thirty minutes and then to 325.2 ml/100g/min after sixty 

minutes. Also the last two show significant difference, even though less strong 

(0.01<p<0.05). As regards TAT, values for caffeine show significant increase form 

0.710.038 s in the pre to 0.740.029 s at post1 and then to 0.740.028 s at post2. 

Results of ANOVA performed on whole grey matter values for both parameters 

are reported in Table 5-2. Statistics are significant for all effects (drug, dosing and 

interaction) whereas for TAT, the effect is significant for both drug and dosing 

but it is not for their interaction.  

Finally in Figure 5-10 t statistics resulting from a group-level test performed 

between differences from pre to post2 condition in caffeine and placebo are 

reported. CBF shows a general significant decrease across grey matter. TAT 

shows more confined areas of significance, with both a positive and negative 

direction of the effect (red-yellow and blue-light blue respectively in Figure 

5-10).  
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Figure 5-9: mean grey matter values of the two estimated parameters (N=16). In red 
the calculated means with bars representing the standard deviations. Significance of t-
tests between pre, post1 and post2 condition are denoted with asterisks (*p<.05, 
**p<.01)

Table 5-2: results of a two-way ANOVA performed on values of the maps estimated 
with the mTI model averaged across grey matter. Statistics (F and p value) for main 
effects (DRUG: dof (1,60), DOSING dof (2,60)) and interaction effect (INTERACTION) 
reported for CBF and TAT.
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Figure 5-10: Results of group-level t-test performed between differences from pre 
to post2 condition in caffeine and placebo. Each map shows values of the t statistic 
for which p<0.01 either in positive or negative direction (t>3.29 and t<-3.29 
respectively, 15 dof), and thresholded for cluster size with significance level αc=0.05.  
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5.3.4 Behavioural data 

The analysis of behavioural data does not show any significant result, with the 

highest F value relative to a main effect of dosing on the relax-ness feeling (p 

value not significant when corrected for multiple comparisons). Mean changes 

from pre to post condition show a not statistically significant trend of caffeine 

reducing sleepiness, fatigue and headache while increasing energetic mood and 

jitteriness compared to placebo. These results are shown in the Supplementary 

material section at Paragraph 5.5 (Table S-5.3). 
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5.4 Discussion 

The grey matter analysis of estimates from the forward model shows CBF and 

CBV decreasing by about 30% due to caffeine ingestion, while they remain 

constant with placebo. OEF0 increases by about 16%, partially offsetting the CBF 

reduction in oxygen delivery, leading to an overall 18.6% decrease in CMRO2.  

All changes are found to be significant when tested for two-way ANOVA and post-

hoc t-tests, highlighting a clear effect of caffeine. Despite the variability in the 

bulk estimates reported in Figure 5.4, all changes from baseline due to caffeine 

ingestion are found to be significant. The effect is particularly high for CBF, while 

less pronounced for OEF0, resulting in a wider range of changes in CMRO2. Based 

on the power calculations supplied in the Discussion section of Chapter 4, the 

accuracy of our method seems appropriate to detect the effect size of caffeine on 

CBF and OEF0 with a statistical power of 80%. 

Our haemodynamics findings confirm what has already been reported (Cameron 

et al., 1990; Field et al., 2003). The reduction in oxygen metabolism contrasts 

what is reported by some other MRI studies that show both increases (Griffeth et 

al., 2011) and no change (Xu et al., 2015) in CMRO2, while is consistent with 

recent findings using simultaneous near-infrared spectroscopy and transcranial 

Doppler ultrasound (Yang et al., 2015). Our results are also consistent with an 

hypothesis of decrease in energetic demand due to an overall inhibitory effect 

mediated by two distinct mechanisms triggered by caffeine as an antagonist of 

adenosine receptors: pre-synaptic inhibition of neurotransmitter release and 

prevention of post-synaptic depression (Pelligrino et al., 2012). The result of the 

two would be decrease in synaptic activity accompanied by increase in spiking 

activity. As the metabolic demand of the first is predominant in the total 

energetic balance of neural activity (Raichle and Gusnard, 2002), a decrease in 

oxygen metabolism might be expected. This hypothesis is also partially 

supported by previous electrophysiology studies finding reductions in spectral 

power with EEG (Dimpfel et al., 1993) and connectivity with MEG (Tal et al., 

2013) in the resting state following caffeine ingestion.   
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As regards CBF, our estimates obtained with dcFMRI acquisitions are also 

supported by the analyses carried out on data from mTI-ASL acquisitions. In fact, 

a similar decrease of 30 and 35 % is found when comparing the value in pre to 

post1 and post2 conditions respectively (Figure 5-9) and a good correlation is 

found between the two set of measurements obtained with different modality. 

Results also highlight a seemingly constant offset between the two estimates, 

with the ones obtained from our forward model being about 15 ml/100g/min 

higher than the ones obtained with the mTI model. This can be explained 

considering that estimates from single TI measures - as in the case of the forward 

model – tend to overestimate CBF compared to those from multi TI measures, 

due to both assumed constant timings of the labelled bolus (Van Osch et al., 

2007) and spurious arterial contributes to the ASL signal (Chappell et al., 2010).  

Results for group mean grey matter seem to be overestimating CMRO2 when 

compared to literature, with a resting state value of 242.438.4 μmol/100g/min 
(averaging the results from pre condition in each day) opposed to reported 

values of 145±30 (Gauthier and Hoge, 2012) and 155±39 μmol/100g/min (Bulte 

et al., 2012) obtained with calibrated BOLD methods and values of 182±12 (Liu 

et al., 2013), 158±18 (Fan et al., 2012) and 125±15 μmol/100g/min (Bolar and 

Rosen, 2011) obtained with other MR methods and of 157.4±19.7 (Roland et al., 

1987) and 120±17.7 μmol/100g/min (Ibaraki et al., 2010) with PET. This 

overestimate can in part be explained by the young cohort analysed, but can be 

mostly attributed to the propagation of systematic bias in estimates of CBF and 

OEF0. In fact our baseline grey matter CBF estimates are 65.8±11.7 ml/100g/min 

(averaging the results from pre condition in each day), similar to values of 63 

ml/100g/min reported in other studies (Ances et al., 2009), whereas typical 

literature values range between 41 ml/100g/min (Bulte et al., 2012) and 52 

ml/100g/min (Gauthier and Hoge, 2012). Similarly, measured values of 

0.433±0.063 for OEF0 are above those reported by others, with typical values for 

MR methods ranging between 0.26  (Bolar and Rosen, 2011) and 0.395 (Guo and 

Wong, 2012). Nevertheless whole brain grey matter estimates appear to be more 

similar to those found in a previous study from our lab with OEF0 of 0.42 ± 0.12 

and CMRO2 of 184±45 μmol/100 g/min given a CBF of about 56 ml/100g/min 
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(Wise et al., 2013). Also, the overestimated values reported here suggest that the 

regularization introduced with the forward model proposed does not bias the 

results towards the priors.  

As grey matter maps were estimated for all parameters, we were able to carry 

out voxel- and ROI-wise analyses at a group level in order to investigate the 

spatial distribution of the caffeine effect. All five parameters showed areas of 

significant differences in the same directions reported for the mean difference 

across grey matter. These areas were widespread for CBF (as also found for the 

analysis of mTI-ASL data, Figure 5-10) and CBV, as expected due to adenosine 

receptors being spread all over the grey matter. Areas of significant change were 

instead more restricted for OEF0, CMRO2 and CVR. An analogue spatial 

distribution of the response to caffeine surfaces from the analysis of changes 

between pre and post condition due to caffeine for estimated values averaged 

across seven ROIs. Notably, at a ROI level significant changes in OEF0 were mostly 

localized in the putamen, caudate nucleus and thalamus, where the highest 

concentrations of A1 and especially A2 receptors have been reported to be 

(Svenningsson et al., 1997; Fukumitsu et al., 2003; Ishiwata et al., 2005). 

Nevertheless, the first two regions appear to be the one with the most variability 

in the estimates (see Figure 5.8), possibly due to their size. As a consequence, 

caution must be taken when considering the implication of such results. 

Interestingly, putamen, caudate nucleus and thalamus also show the least 

difference in CMRO2 between pre and post dose, with values not significantly 

different between pre and post dose. This could be explained by the maintenance 

of a higher oxygen supply to the local metabolic need while perfusion is 

dropping. This behaviour, confined to few small subcortical structures, seems in 

contrast with the general grey matter tendency and needs further investigation. 

Surely the findings suggest a complex and spatially distributed effect across grey 

matter that can be characterised with our novel approach, while cannot be 

properly captured with standard bulk analyses.  

Caffeine salivary concentrations measured suggest that subjects complied with 

the request of abstaining from caffeine consumption previous the experiments, 
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with only one dubious case. Although, given that this has outlying values less 

than half the mean value found thirty minutes after caffeine consumption, it is 

reasonable to assume that they are not concerning sources of nuisance for the 

study. The data also show that in most cases salivary samples were taken before 

peak caffeine concentration, as values increase significantly from post1 to post2. 

The three samples showing instead a mean decrease in concentration could 

possibly be due to a faster drug kinetic for those subjects and therefore measures 

taken closer in time to peak concentration. This is not unexpected, given that 

time to peak values are reported to be between 30 and 45 minutes (Fredholm et 

al., 1999). This means that post1 mTI acquisitions might be measuring a changing 

haemodynamic state of brain tissue, leading to noisier estimates of CBF and also 

values of CBF significantly different between post1 and post2 conditions (as seen 

in Figure 5-9). On the other hand we do not expect the haemodynamic state to 

change significantly for the subsequent post dcFMRI acquisitions thanks to the 

chosen timing. Also, the values for subjects showing decrease in concentration 

suggest a good stability of the levels during the time in between the two samples 

as expected, with a difference of only about 0.67 mg/l.   

Data from MAPPS reports did not show significant effects of drug or dosing on 

the psycho-physic state of the participants. Nevertheless there were non-

significant trends indicating that caffeine reduce sleepiness, fatigue and headache 

and increased energetic mood and jitteriness compared to placebo, which is 

consistent with effects reported in literature for larger groups of participants 

(Rogers et al., 2010; Smith et al., 2012). Importantly, values measured with 

MAPSS and feedbacks from subjects did not indicate significant adverse reactions 

to caffeine consumption that could have caused discomfort to the subjects and 

therefore behaviour capable of degrading the quality of the data (e.g. movements 

into the scanner). In the case of the excluded subject, the unusual pattern of 

respiratory traces only occurred on the second scanning day and was not related 

to any particular discomfort experienced (as no negative feedback was reported 

and the subject was willing to carry on with the “post” acquisition) nor was it 
repeated in any of the remaining dcFMRI acquisitions from the same or other 

participants.    



The acute effects of caffeine on brain oxygen metabolism: a dual calibrated fMRI study Chapter 5

167

The analysis and results presented in this work have three main limitations. The 

first relates to the assumptions we make on metabolism. We assume 

isometabolism during hypercapnia and hyperoxia when performing respiratory 

tasks, as already discussed for the experiment in Chapter 3 and Chapter 4. We 

also assume that metabolism does not change during the length of the dcFMRI 

acquisitions. This may not be the case in the post condition of the caffeine day 

due to possible changes of drug plasma concentration, although evidence 

suggests that the concentration plateaus by the time the acquisition starts 

(Fredholm et al., 1999).    

A second limitation might be represented by the reliability of individual results. 

In fact, while values of the parameters averaged across grey matter lie within 

physiological ranges and show generally sensible trends (as seen in Figure 5-4), 

individual maps include several outliers (Figure 5-6). Results, together with the 

repeatability performances reported in Chapter 4, suggest that this is mainly due 

to low SNR of the MR signal and variability of the respiratory traces, which tend 

to bias or even prevent the estimates. If this represents a shortcoming on one 

hand, on the other hand it demonstrates that the estimates are not driven by 

Bayesian priors as also suggested by the existence of limited areas were the 

method fails to output valid values (highlighted in Figure 5-6). This limits the use 

of the technique to group analysis, for which it is still possible to detect 

distributions of areas of significant effects both in a voxel-wise or ROI-wise 

calculations.  

Furthermore, the levels of variability found together with lack of standard 

methods for retrospective physiological noise removal (e.g. RETROICOR, Glover, 

2000) suggest that care must be taken when trying to apply this method to other 

conditions, such as functional tasks. More work is therefore needed to evaluate 

the performance of our method in such approaches.   

A third set of limitations is more specifically related to the caffeine effects we are 

characterizing with a Bayesian estimate framework. A first issue is that, as 

previously discussed, the CBF values are overestimated compared to those 

obtained from the mTI model, leading directly to overestimated values of CMRO2
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(as by definition CMRO2 = CBF·OEF·CaO2). If we were to correct the latter using 

CBF values obtained from the mTI model and keeping OEF constant, we would 

obtain mean values for CMRO2 in the pre condition of about 155 μmol/100g/min, 
which is more similar to values reported in literature. Nevertheless, as changes in 

CBF are consistent between the two techniques, our method still enables to 

account for this variability and detect these changes. Another issue is specifically 

related to estimates of CMRO2. In fact, as CMRO2 = CBF·OEF·CaO2, detection of 

changes in CMRO2 might simply be triggered by decreases in CBF with little or no 

change in OEF0. This could be the case, for example, if the model was highly 

sensitive to changes in CBF but less so to changes in OEF0. However, the fact that 

areas where significant changes in CBF and OEF0 occurring at the same time 

show no significant change in CMRO2 (see caudate nucleus, putamen and 

thalamus in Figure 5-8) argues against this suggestion. 

5.5 Conclusions 

In conclusion, we have characterised acute effects of caffeine on brain 

haemodynamics and metabolism in a drug study with the novel forward model 

and a dual calibrated BOLD experiment. The effects measured are consistent with 

those known from neural physiology and in agreement with electrophysiology 

studies. New information is provided in terms of spatial distribution of the 

estimated maps allowing us to identify particular areas where the significant 

effects are localized. This represents a major step forward in the understanding 

of the acute effects of caffeine and it also demonstrates that such method could 

be applied to assess grey matter haemodynamics, OEF0 and CMRO2 at a voxel-

wise resolution for other pharmacological agents.  
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5.6 Supplementary material 

Table S-5.1: Regions showing significant increase in OEF0 ordered by size. 
Reported are the volume, the maximum value of the t statistic (t max) the 
coordinates of the centre of gravity in MNI152 space (COG x,y,z). In the further 
right column the position of the regions according to the Harvard-Oxford 
cortical and subcortical structural atlases (“R/L” = right/left, “c.” = cortex, “g.” 
= gyrus).
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Table S-5.2: Regions showing significant decrease in CMRO2 ordered by size. 
Reported are the volume, the minimum value of the t statistic (t max) the 
coordinates of the centre of gravity in MNI152 space (COG x,y,z). In the further 
right column the position of the regions according to the Harvard-Oxford cortical 
and subcortical structural atlases (“R/L” = right/left, “c.” = cortex, “g.” = gyrus).
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Table S-5.3: results of statistical analysis performed on MAPPS data. Statistics 
from two-way ANOVA (F and p value) looking at main effects (DRUG, DOSING) and 
interaction effect (INTERACTION) reported for all the questions considered. In the 
furthest right columns values of post-pre changes with caffeine and placebo and 
the p-value from a t-test testing the difference between the two. Statistics 
reported not corrected for multiple comparisons.
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Chapter 6

Measurement of blood O2 saturation via 

estimates with Fourier velocity imaging

This chapter introduces and explores a new method for quantifying brain oxygen 

consumption not based on hypercapnic and hyperoxic calibration. Multi-echo 

GRE acquisitions are exploited together with -SvO2 calibration curves in order 

to measure venous blood saturation. Background theory, simulations and real 

case applications are presented, together with an extensive discussion on the 

main limitations. Analysis of the synthetic dataset allows us to characterise the 

effect of noise in the signal and estimates of venous blood oxygenation in two 

subjects are found to increase following a visual task. This proof of concept 

represents a first step towards the assessment of a new promising alternative to 

current techniques for measuring brain oxygen metabolism. 



Measurement of blood O2 saturation via  estimates with Fourier velocity imaging Chapter 6

173

6.1 Introduction 

In the previous chapters we have explored in detail calibrated fMRI approaches 

for estimating OEF and ultimately CMRO2. In this chapter we are focusing on 

quantifying the venous oxygen saturation (SvO2) by estimating  and then 

exploiting -SvO2 calibration curves. This, joint with measurements of CBF, is an 

alternative way of estimating oxygen metabolism.  

As discussed in Paragraph 2.2.3.2 similar methods have been proposed in the 

past years (Bolar and Rosen, 2011; Guo and Wong, 2012) typically exploiting 

velocity selective pulses with multi-echo acquisitions for estimating  and finally 

SvO2. The main novelties of our technique are two: the approach used for 

isolating the signal from venous vessels and the measurement of  to estimate 

SvO2. In fact, in this work we are investigating a new approach that exploits 

Fourier velocity imaging to encode the MR signal from moving blood, allowing 

the identification of compartments of the same voxel characterized by different 

velocities. Then, exploiting a multi-echo acquisition, the decay of signals’ spectra 
with time is calculated and values of  are estimated for the velocity range of 

interest. Finally SvO2 and therefore OEF can be assessed through -SvO2

calibration curves specifically targeted on values calculated for the venous side of 

the vascular tree. 

The aim of this work is to explore the feasibility of the proposed method. Our 

approach is twofold: to design a simulation model and to run pilot acquisitions. 

The model let us create datasets of synthetic MR signals taking account of 

different aspects of the physiology from which the signal arises and the sources 

of nuisance that are likely to corrupt it. More specifically, metrics of the 

proportion of the signal in the data (named spectral signal fraction or SSF) are 

used to characterize the noise in both simulated and acquired data, giving a 

quantitative indication on its effects and on the feasibility of the novel technique. 

Finally the effectiveness of the method is tested in the real case scenario in grey 

matter regions and by estimating the changes in SvO2 triggered by a visual 

stimulus in the superior sagittal sinus (sSS).  
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6.2 Methods 

6.2.1 Signal analysis pipeline 

A flowchart showing the steps undergone by the signal from its origin to the 

estimates of blood oxygen saturation is reported in Figure 6-2. This paragraph 

briefly summarises the theoretical description of the signal underpinning the 

process and already partially introduced in Paragraph 2.1.6. 

In the first instance the GRE signal at time t after excitation can be described in 

the form . This can be modelled as a weighted sum of different 

contributions arising from three different compartments of the voxel considered, 

characterised by different : tissue, arterial vessels and venous vessels (ST, SA

and SV respectively).  

The velocity encoding module introduces a dependency of the phase of S on   via 

the application of pulsed field gradients (PFGs) of varying magnitude. Therefore, 

compartments characterised by different velocities will contribute differently to 

the evolution of the phase, as described by equation Eq. 2.14 in Chapter 2 and 

here simplified as: 

  Eq. 6-1 

In particular, it is possible to express the signal arising from a single 

compartment of a voxel characterised by  and transverse relaxation time 

T2* at the n-th echo time TEn as: 

 Eq. 6-2 
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Where the first term ( ) is not dependent on  or  and represents a 

weighting term accounting for the dependence on the relaxation process. 

Applying a Fourier transformation is then possible to express the dependency of 

S on . The linearity of the Fourier transform operator preserves the weighting 

term, so that the spectra obtained for each voxel show an exponential decay with 

time. In particular each point of the v-space will be representative of a certain 

component of the voxel under analysis. 

Finally, with a multi-echo acquisition is possible to estimate the relaxation 

constant  of the moving components of brain tissue at each value of . These 

values are then used to quantify the oxygenation content exploiting - SvO2

calibration curves, that is analytic expressions of the relationship between  and 

SvO2 for fixed haematocrit and magnetic field (Hct = 0.44 and B0 = 3 T 

respectively in our case).  

6.2.2 Synthetic data creation 

6.2.2.1 Generation of MR signal 

The modelling of the signal starts from the description of a GRE signal at time TE 

after excitation    introducing different levels of complexity.  

We have paid particular attention to two aspects: the origin of the signal, in terms 

of physiology and biophysics underlying the signal itself, and the effect of two 

sources of noise. 

As regards the first aspect, we wanted to take into account the main 

characteristics of a single grey matter tissue voxel and the variability among 

different such voxels across brain. This aims to supply our analysis pipeline with 

realistic signals, in order to enhance the robustness of the results and to better 

estimate the possible translation of the technique into application to real 

subjects.         

We considered a 3 compartment model with tissue, arteries and veins. Each one 

has a different weight on the signal based on its volume (95% tissue, 2% arteries, 
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3% veins, as from Griffeth at al. (Griffeth and Buxton, 2011)) and is characterised 

by a different  depending on the magnetic susceptibility modulated by the 

specific O2 saturation. In particular we fixed these to 54 ms and 21 ms for arterial 

and venous compartment respectively (corresponding to SaO2 = 0.98 and SvO2 = 

0.6 for a fixed Hct of 0.44, as for Zhao and colleagues (Zhao et al., 2007)), while 

tissue  was fixed to 47 ms (as measured at 3 T in resting state extravascular 

visual cortex by Lu and Van Zijl, (Lu and Van Zijl, 2005)). Note that the 

compartment labelled as “tissue” groups heterogeneous types, characterized by 

an approximately static behaviour and of secondary interest (specifically mainly 

grey matter but also white matter). No cerebrospinal fluid (CSF) compartment 

has been considered. We therefore assume to model signal relative to tissue in 

which the CSF partial volume is negligible. This assumption can be considered 

valid for most grey matter tissue, apart from that localised in proximity to the 

cortical surface and the ventricles. The implications of this simplification and of 

the issues due to CSF in real case applications will be further examined later in 

the Discussion session.     

Then the effect of moving blood was simulated, which is the main interest for our 

purposes. The signal arising from the tissue compartment has been modelled as 

static. Moving blood instead affects the signal through changes in phase 

introduced accordingly to the Fourier velocity encoding approach used and then 

exploited for estimating the oxygen saturation. We assume that the distributions 

of velocities of the arterial and venous compartments are different in terms of 

magnitude and direction. The absolute value of velocity is modelled with a linear 

dependence on vessel size as proposed by Kobari et al. (Kobari et al., 1984). The 

range of vessels diameters was fixed to span from 5 to 200 μm, to which 
corresponds a maximum velocity of 6.8 cm/s for the arteries and of 2 cm/s for 

the veins. The spread of directions of the flowing blood is incorporated, because 

the only contribution to the phase of the signal arises from the component of the 

velocity parallel to the direction of the encoding gradient. Moreover, for the sake 

of simplicity, we have modelled a signal arising from a non-isotropic distribution 

of vessels and considering a single axial velocity component (z). The probability 

of a vessel being parallel to the axis of the encoding gradient was considered 
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maximal and then decreasing following a Gaussian distribution, reaching its 

minimum for a perpendicular orientation. Then, accordingly for a simplified 

description of blood flow in the brain, the flow direction has been considered 

positive for arterial blood (bottom-up direction), while negative for the veins 

(top-down direction). 

6.2.2.2 Noise in the synthetic MR signal 

Two different noise sources have been considered. One is referred to as 

“background noise”, to indicate that kind of noise naturally arising from the 
signal measured in the scanner and due to thermal noise and fluctuations of 

biophysical parameters underlying the signal. Following the description 

proposed by Kruger et al. (Kruger and Glover, 2001), this has been modelled as 

the sum of two different components: one TE-independent (denoted as TEi

component) and the other TE-dependent (denoted as TEd component). The first 

is constant in time, whilst the second is proportional to the signal and decays 

with an exponential law. We fixed the relationship between the two accordingly 

to experimental results presented by Kruger et al. (Kruger and Glover, 2001) that 

showed a relationship between the standard deviations of the two components 

(TEi and TEd respectively) at the first TE: TEi = 2.7·TEd|TE1. This source of 

nuisance is therefore modulated by fixing TEi (from which TEd is derived) as a 

percentage of the absolute value of the noiseless signal at the TE = TE1. The noise 

has been added to the MR signal separately for the real and imaginary part of the 

signal, mimicking the process of acquisition of the signal in the scanner.   

The second source of nuisance considered is referred to as “physiological noise” 
and models the noise due to the slight movement of the tissue compartment. This 

is primarily due to the effect of the heart beats generating pressure waves 

causing slight motion (especially in the bottom part of the brain) and imposing 

therefore to the tissue displacements of about 0.1– 0.13 mm and velocities of the 

order of magnitude of 1 mm/s (Greitz et al., 1992; Nunes et al., 2005). In practice 

this phenomenon has been modelled assigning to the tissue compartment a non-

zero velocity, whose value has been picked randomly sampling a sine function 

spanning the range [-vmax vmax], where vmax is the control parameter. We model 
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the situation in which the phase of the cardiac cycle is randomized with respect 

to the q-space sampling and for each TE.  

Therefore TEi and vmax are the two parameters we are manipulating in order to 

modulate the effect of noise on the signal in the simulation, aiming to determine 

what values cause a failure of the estimation technique. We considered values of 

TEi of 0, 1, 2, 3, 4 and 5 % and vmax of 0, 0.5, 1, 1.5, 2 mm/s. 

Finally, we explored the effect of summing signals from multiple voxels or from 

multiple acquisitions of the same voxel. The first has been implemented for 

reproducing what happens when multiple signals are clustered and summed (e.g. 

in ROI approaches) and groups of 1, 10, 25, 50, 100 signals were considered. The 

second feature has been implemented for taking into account repeated 

acquisitions of the same voxel, as possible in real case acquisitions. The 

difference between the two is that while in the first case the signal is the sum of 

contributions from slightly different physiological characteristics but with a 

varying contribution of noise, in the second the underlying physiology is the 

same.       

6.2.2.3 Velocity encoding and multi-echo acquisition 

Velocity encoding is performed via a velocity dependent phase encoding which 

samples q-space, that is stepping through different values of the PFGs. 

Considering the magnitude of the velocities involved, the accuracy and resolution 

needed and the feasibility of eventual application as regards timing and gradient 

strength, we have sampled q-space in 128 equally spaced bins, fixing the 

maximum velocity encoding to max_venc = 20 cm/s, δ = 9 ms,  = 13.4 ms (see 

Paragraph 2.1.6), for which the gradient step is Gstep = 0.487 mT/m. As 

mentioned, for simplicity we considered only one direction of the gradient (z 

axis), stepping through magnitudes from -Gmax = -31.2 mT/m to Gmax- Gstep = 30.7 

mT/m, encoding a range of velocities spanning from -20 to 19.6875 cm/s, with a 

resolution of 0.3125 cm/s.      

In order to allow estimates of the relaxation decay constant , it was necessary 

to generate an array of MR signals, corresponding to a multi-echo acquisition. In 
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order to match the specifics of the simulation with those of the pilot acquisitions 

(see below), we modelled a 6-echo acquisition with TE = 11, 20, 29, 38, 47 and 56 

ms (see Figure 6-1).  

Figure 6-1: Pulse sequence diagram. Following the slice-selective application of a 90° RF 
pulse, the motion encoding along the z axis is operated via PFGs. the T2* signal is then  
measured at six different TEs after a T2 magnetization preparation sequence.
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6.2.3 Pilot data acquisition 

6.2.3.1 Scanning protocols 

Provisional data were acquired for one phantom and two subjects. For all three 

cases, scanning was performed in a 3T GE HDx MRI (GE Healthcare, Milwaukee 

WI) with a body transmit coil and 8-channel head receive coil. Data were 

collected with a six-gradient echo (GRE, TE = 11, 20, 29, 38, 47, 56 ms) readout 

and spiral k-space acquisition (5 repetitions, TR = 3 s, Flip Angle = 90°, FOV = 

22.4 cm, Matrix = 64 x 64, resolution 3.5x3.5x6.9 mm). 10 slices with an inter-

slice gap of 1 mm were acquired in ascending order. 

The flow velocity encoding module for the Fourier velocity imaging consisted of 

two series of 65 PFGs: one spacing the positive (from 0 to Gmax) and the other the 

negative (from 0 to -Gmax) direction of the q-space along the z axis. This was made 

necessary because the scanner in use do not allow us to sample the q-space 

directly from -Gmax to Gmax. The parameters used were the same described for the 

simulation: max_venc = 20 cm/s, δ = 9 ms,  = 13.4 ms, Gstep = 0.487 mT/m and -

Gmax = -31.2 mT/m.        

For the subjects, two consecutive acquisitions were made with the same scanner 

parameters: one at rest (eyes open, black screen) and one with a visual stimulus 

(movie), for a total duration of 22 minutes. For the phantom a single acquisition 

was performed. Acquisitions were limited to such small numbers with the idea of 

privileging the signal processing aspect of the new technique over the statistical 

power of calculations achievable through a multitude of subjects.  

The two participants had available whole brain T1-weighted structural scans (3D 

FSPGR, 1x1x1 mm voxels, TI/TR/TE = 450/7.8/3 ms).  

6.2.3.2 Signal pre-processing 

Four pre-processing steps are made sequentially in order to make the signal from 

the scanner suitable for analysis. First it is necessary to combine the complex 

data obtained for each of the eight receiver coils and this has been done with a 

complex sum. The obtained signal for each acquisition consisted in two series 
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uniformly spanning the positive and negative values of the gradient in 65 steps 

each. In order to obtain a single array of 128 items, the phase images were 

subtracted in order to match in the two acquisitions at G = 0 and then one of the 

values corresponding to G = 0 and Gmax were discarded (because matched to the 

other one and equal to -Gmax for aliasing, respectively), leading eventually to 

samplings of the q-space of 128 bins.  

Secondly, in case of subjects’ acquisitions, motion correction is performed on 4D 
matrices with the AFNI function 3dvolreg for each TE separately in order to 

correct for head movements. 

Then phase unwrapping is performed to correct possible artefactual phase 

differences due to oscillations across 0/2. This was done with a Matlab toolbox 

developed for QSM applications and made available by Bilgic and colleagues 

(Bilgic et al., 2014).  

Finally low frequency spatial phase inhomogeneity and drifts are removed with a 

linear filter, with an approach similar to the one proposed by Langham and 

colleagues for susceptometry applications (Langham et al., 2009).  

Registration of the structural scans from high resolution anatomical space to the 

native low-resolution phase space was performed with FSL FLIRT (Jenkinson et 

al., 2002) for the localization of regions of interest.  
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6.2.4 Analysis 

6.2.4.1 Noise characterization 

Levels of noise on both simulated and real data have been estimated calculating 

indices of spectral signal fraction (SSF). SSF has been computed as the fraction of 

the spectrum corresponding to velocities where we expect to have signal. In data 

relative to phantom acquisitions (real or simulated), SSF has therefore been 

computed as the ratio between the energy of the spectrum at v = 0 and the rest, 

while for data relative to tissue acquisitions (real or simulated) as the ratio 

between the expected velocities ([-2 6.8] cm/s) and the rest. 

This index of SSF is suboptimal, due to the fact that both the portions of the 

spectrum contain noise. Although it has been chosen to satisfy four criteria based 

on a pragmatic idea of signal to noise ratio: i) values calculated on synthetic data 

are inversely proportional to magnitudes of background and physiological noise; 

ii) they are inversely proportional to the number of voxels considered (in both 

real and synthetic data); iii) they allow to compare both real and synthetic data 

without the need for scaling; iv) values decrease with TE.  

In order to evaluate the effect of the noise on the synthetic data, realistic SSF 

indices were estimated from the acquired data. A representative SSF value was 

estimated as the median of a distribution of indices calculated on 1000 

permutated ROIs for each number of voxels (1, 10, 25, 50 and 100). For the two 

subjects, only signal arising from grey matter was considered, to be consistent 

without assumptions made in our simulation. Also in this case the obtained SSF 

values were averaged across the two subjects. 

We therefore expect the SSF indices to represent only background noise in the 

phantom acquisitions and both sources of noise in the subjects’ acquisitions. In 

particular comparing SSF indices obtained from real and synthetic data we want 

to understand the likelihood of different combinations of simulated (TEi , vmax) 

values, the different effect of the two sources of noise considered and ultimately 

an indication on the levels of noise for which the method fails.   
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6.2.4.2 T2* and SvO2 estimates  

The data generated either from the simulation or from MR scanner acquisitions 

have a dependency on and TE. Estimates of  are obtained from signal 

summed over portions of the velocity range. This assumes that, in a simplified 

description of the vascular tree, contiguous regions of the velocity spectrum are 

assumed to originate from the same moving compartments, characterized 

therefore by the same value of . We consider the three compartments of 

interest (tissue, arterial and venous blood), based on their expected velocity 

ranges, with the effect of enhancing the signal to noise ratio of the analysis.    

For a proof-of-principle of the method, we tested its effectiveness with an 

application on grey matter ROIs and bulk estimates of  and SvO2. This has been 

done in the first case selecting regions of increasing size (size N1,2,..,5 = 1, 10, 25, 

50 and 100 voxels, where the region of size Ni is a subset of the region of size 

Ni+1) from the grey matter of one subject. In the other case studying the signal 

relative from the superior sagittal sinus (sSS), similarly to what done by other 

techniques for whole brain SvO2 estimates (e.g. TRUST (Lu and Ge, 2008)). 

Manually drawn sSS masks were then defined on pre-processed phase images 

overlaid to low resolution anatomical scans for each subject.  

In both cases the signal of interest was obtained as the complex sum of all signals 

identified as arising from the defined ROI. Finally values of  and SvO2 were 

estimated as described in Paragraph 6.2.1 and depicted in Figure 6-2.    
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Figure 6-2: data flowchart from generation to the estimates of blood oxygen 
saturation.
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6.3 Results 

6.3.1 Resulting synthetic signal 

The resulting simulated signals are reported in Figure 6-3. The logarithm of the 

absolute value of the spectrum for TE = TE1 is shown as a function of velocity for 

different combinations of noise. Panels A to D include results from a single voxel, 

while panels E and F show sums of 10 and 100 voxels respectively.  

In Figure 6-3,A the ideal noiseless condition is reported. The signal has a peak 

corresponding to the static component at v=0 and two lobes corresponding to 

the components moving with positive and negative direction (arterial and 

venous respectively). Figure 6-3,B reports the spectrum due to the only 

physiological noise being set to vmax = 1 mm/s, according to typical peak 

velocities values reported in literature (Nunes et al., 2005). This has the main 

effects of spreading the peak in the signal due to the static component, so that 

both the signal due to arterial and venous compartment will be partially 

corrupted, and introducing oscillations in the spectrum.  

Figure 6-3,C shows the spectrum due to the reciprocal situation, in which the 

physiological noise is null, whilst the background noise is set to TEi = 1%. This 

confounding factor has two main effects on the spectrum: it increases its 

magnitude, especially in those velocity ranges where there is no signal from 

moving components, and makes it more irregular. Finally in Figure 6-3,D is 

reported the spectrum of a signal with the combination of the two effects, that is 

with TEi = 1% and vmax = 1 mm/s. In results obtained as sums of multiple voxels 

(Figure 6-3 E,F), the spectra appear more regular and the signals arising from the 

three different compartments are more distinguishable at equal levels of noise 

introduced (TEi = 1% and vmax = 1 mm/s). 

Figure 6-4 shows the fit of the spectral decay of the synthetic signal resulting 

from the combinations of noise and sums presented in Figure 6-3. As our focus is 

centred on estimating SvO2, only the venous portion of the spectra is considered. 

Analysis of signal from a single voxel in the noiseless condition (Figure 6-4,A) 
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show a perfect estimate of  = 21 ms excluding the possibility of bias being 

introduced by the simulation in this scenario. The situation changes quickly with 

the introduction of one (Figure 6-4,B,C) or both sources of noise (Figure 6-4,D), 

with overestimates of  . For fixed values of σTEi = 1 % and vmax = 1 mm/s the 

operation of summing increases the regularity of the decays progressively 

enhancing the quality of the fit (Figure 6-4,D,E,F). Despite this, the accuracy of the 

estimates remains low, with errors in estimating  above 100% even for 100 

sums (Figure 6-4,F).     

Figure 6-3: logarithm of spectra of simulated signals for different combinations 
of noise. Panels A to D are relative to signal from a single voxel, while panels E 
and F show spectra from sums of 10 and 100 voxels respectively. 
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Figure 6-4: fit of the decay of the venous component of the spectra for signals with
different combinations of noise and averaging, as in Figure 6-2. Panels A, B, C and
D are relative to signal from a single voxel with (TEi , vmax) values of (0 %, 0 mm/s), 
(0 %, 1 mm/s), (1 %, 0 mm/s) and (1 %, 1 mm/s) respectively. Panels E and F are 
relative to spectra obtained from sums of 10 and 100 voxels respectively.
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6.3.2 Noise characterization 

Statistics of SSF from data acquired on two subjects (rows 1 and 2) and a 

phantom (row 3) are shown in Figure 6-5. The histograms show the distributions 

obtained calculating the SSF on the signal arising from 1000 randomly sampled 

regions of varying extent (1, 10, 25, 50, 100 voxels) and the red lines highlight 

the median values. These are 0.896, 0.8979, 0.8989, 0.9045 and 0.9185 for 

subject 1; 0.8677, 0.8685, 0.8685, 0.8686 and 0.8687 for subject two; 0.9434, 

0.9440, 0.9440, 0.9440 and 0.9442 for the phantom.  In all cases considered the 

median values of SSF are not decreasing with the size of the regions. Values 

calculated for the phantom are higher than those calculated for the subjects, 

which show some inter-subjects variability and negatively skewed distributions 

especially for low number of voxels. 

Figure 6-6 and Figure 6-7 report the values of SSF calculated for different levels 

of noise and voxels when simulating data from a phantom and a subject 

respectively. In both cases the values of SSF resulting which are lower than the 

median ones estimated from the statistics in Figure 6-5 are marked with black 

dots.  

In results from both, SSF is inversely proportional to the amount of noise 

introduced and to the number of voxels considered. For the phantom values of 

SSF from the synthetic data compatible with those from the real data seem 

proportional to the number of voxels considered, meanwhile for the subject 

estimated SSF becomes quickly higher than that found in the real acquisition for 

increasing number of voxels. 
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Figure 6-5: SSF distributions for combinatorial selection of 1000 regions of 
increasing size. For the subjects only grey matter voxels were considered. The 
median values are indicated in red. 
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Figure 6-6: SSF values calculated from the synthetic data of a phantom as 
function of the background noise for different ROI sizes. Black dots indicate SSF 
values for which SSF is lower than the median value calculated in real data at 
each ROI size.
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Figure 6-7: SSF values calculated from the synthetic data modelling signal from a subject, as function of the background and 
physiological noise for different ROI sizes. Black dots indicate SSF values for which SSF is lower than the median value 
calculated in grey matter for real data at each ROI size.
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6.3.3 SvO2 estimates in acquired data 

Results for the analysis run on data acquired on two subjects are displayed in 

Figure 6-8, Figure 6-9, Figure 6-10, Figure 6-11 and Figure 6-12.  

Figure 6-8,A shows the grey matter regions of increasing size used for the 

analysis. These are localised in the frontal lobe of subject two. In Figure 6-8,B the 

logarithm of spectra at TE = TE1 and the decay fitting of signal obtained from the 

grey matter regions shown, with the only venous side of the spectrum considered 

for the fitting. Spectra are similar to the one calculated for the synthetic data and 

reported in Figure 6-3, with a peak for the static component more than two 

orders of magnitude higher than the rest of the spectrum but no distinguishable 

lobes elsewhere.  

Despite this, Figure 6-9 reports that the regularity of the fits of the tissue and 

venous component increase and  estimates converge to 20.3 ms and 17.5 ms 

for higher numbers of voxels, this last corresponding to SvO2 = 0.57 (for assumed 

Hct = 0.44).  

The regions considered for the analysis of the signal arising from the sSS are 

reported for both subjects in Figure 6-10, while in Figure 6-11 and Figure 6-12 

the relative results. 

In Figure 6-11 spectra of the signal are reported for subject 1 and 2 both at rest 

and stimulus condition. A peak is present in correspondence to null velocity in all 

cases, as well as pronounced spectral lobes found for negative velocities, with 

minimum values of about -3 cm/s and -4 cm/s stable across conditions for 

subject 1 and 2 respectively. The effect of noise is spread across all the velocity 

components, but it is more evident in the portions of spectra where no signal 

seems to be detected. In both subjects a couple of secondary lobes are 

highlighted symmetrically at negative and positive velocities (about 15 cm/s 

and 9 cm/s), with values about one order of magnitude lower compared to the 

main lobes.   
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Figure 6-12 shows the spectral decays and the relative estimates of  for each 

subject and condition. For the first subject,  is found to increase from 19.4 ms 

at baseline to 25.4 ms after stimulus, which in turns corresponds to an increase 

in SvO2 from 0.6 to 0.71. Similarly for the first subject,  increases from 21.9 ms 

to 26.4 ms after stimulation, which corresponds to an increase in SvO2 form 0.65 

to 0.72.  
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Figure 6-8: A - Anatomical position of the voxels considered for the spectral analysis. Colours code for the size of the region considered 
(with each region of size Ni being a subset of the region with size Ni+1). B – Spectra calculated at rest condition. Highlighted in red the 
portion considered for calculating the decay relative to the venous component.     
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Figure 6-9: Decay fitting of signal obtained from sum of increasing numbers of grey matter voxels at rest. In the top 
panel results for the tissue component, in the bottom results for the venous component.
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Figure 6-10: low-resolution anatomical images for subjects 1 and 2. In red the position of the regions considered 
for the analysis of sSS signal.  
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Figure 6-11: Spectra of the signal arising from the sSS of the two subjects in both rest 
and stimulus condition. Delimited in red the portion of the spectra considered for 
fitting.
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Figure 6-12: fit of the spectral decay for subject 1 and 2 (top, bottom) at resting 
state and during visual stimulus (left, right).
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6.4 Discussion 

6.4.1 Synthetic dataset  

Spectra for synthetic signals reported in Figure 6-3 and the relative decay fit in 

Figure 6-4 exemplify the effect of the modelled sources of noise on the signal.  

In particular, Figure 6-3-A reports the plot of the ideal noiseless condition, where 

the peak corresponding to the static signal and the lobes due to the moving 

components are clearly distinguishable, with the venous higher than the arterial 

(due to the different volume contribution of the two) and both with magnitude 

between two and three times lower than the static peak. The main effect of 

introducing physiological noise is spreading the peak in the signal due to the 

static component, so that both the signals from arterial and venous compartment 

are affected (Figure 6-3-B). Moreover, the synthetic signal shows characteristic 

oscillations, due to the way the physiological noise has been modelled. In fact it 

has been created as a sampling of velocities from a cycle with a sine function 

behaviour. The discrete distribution of a sine function can be approximated by 

rectangular functions, whose Fourier transformed equivalent (sinc function) 

cause the oscillations. Although very disruptive looking, this artefact has small 

magnitudes and reduces its effect when mixed with other confounding effects. 

The effect of background noise is instead less structured, with a widespread 

irregular component added across the entire spectrum (Figure 6-3-C). Finally 

from the other spectra (Figure 6-3-D,E,F) we can visualise  what signal is 

expected from grey matter with physiological and morphological characteristics 

similar to those specified in our model. The comparison with the noiseless 

condition highlights how the spectral components due to the different 

compartments are no longer distinguishable by eye.  

The consequences of the sources of nuisance on the estimates of T2* are 

disruptive in both cases, with no particular differences in accuracy highlighted. 

On the other hand, while in both cases considering more voxels improves the 

regularity of the decays, values of  seem to converge towards an overestimate. 

The main reason for this is that the noise in the data can only be positive, 
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representing an ever increasing proportion of the signal for longer TE and 

therefore altering the exponential decay.  

6.4.2 Noise characterization 

In distributions of SSF calculated for data from real case acquisitions values are 

generally higher for the phantom, due to the most of the spectral energy being 

concentrated in the static component (Figure 6-5). In the case of the subjects 

considered, estimates tend to be not only lower, but also more spread around 

their median values, denoting variability partially influenced by the effect of the 

contribution from physiological noise and partially related to variation in static 

signal through the brain. 

The SSF values calculated allow us to compare the level of noise introduced in the 

modelling with values typically found in reality. The quantification of background 

noise given by simulations of the signal arising from a phantom (Figure 6-6) 

shows that the magnitude of TEi in order to match values estimated in a real case 

scenario increases when considering increased number of voxels.  

The quantification of the contribution of both sources of nuisance (Figure 6-7) 

firstly shows that the role of background noise is dominant compared to the 

physiological one. In fact for lower values of TEi (< 1%) the SSF is maintained 

above realistic values even for the maximum value of vmax considered. Secondly, 

as previously seen for the phantom, the simulated effect of summing signal from 

more voxels seems to overestimate the noise attenuation observed in real data. 

This could have different explanations concerning the validity of the model we 

used for simulating the data, such as a shortcoming in accounting for additive 

effects of thermal noise, the presence – in the real data - of other more complex 

sources of noise, or finally the simplifications introduced in the physiology 

underlying the simulated signal.  

The simulations also highlight the different behaviour of background and 

physiological noise for increasing voxels considered. In fact, while the 

contribution of the first is greatly decreased, the second only undergoes a slight 
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decrease. This can be explained by the nature of the noise, which is randomly 

distributed for the former, while is structured for the latter.  

6.4.3 Acquired data 

The data reported in Figure 6-8, Figure 6-9, Figure 6-10, Figure 6-11 and Figure 

6-12 is representative of the signals that can be obtained with the proposed 

pipeline.  

Figure 6-8,B and Figure 6-9 shows exempla of spectra and decay fit for signals 

originated from regions with increasing number of voxels in the grey matter. 

Results show that the information contained in a single voxel is not sufficient to 

accurately estimate StO2 or SvO2 due to the effect of noise. This is consistent with 

what found in simulation for levels of noise comparable to reality (TEi = 1% and 

vmax = 1 mm/s), leading to the conclusion that the methods – as is – is not suitable 

for voxel-wise estimates. Despite this and the fact that both positive and negative 

velocity contributions in the spectra are not immediately recognizable, the 

spectral decay appears already informative after about 25 voxels considered, 

therefore suggesting that the technique is suitable for ROI analysis. While the 

measurements of SvO2 are consistent with what expected, tissue values of are 

underestimated compared to the literature value of 47 ms (Zhao et al., 2007), 

suggesting a bias in the estimates. The reason for this is not immediately 

identifiable, but, considering the position of the region, it might be due to 

susceptibility induced signal drop-out. Still, our method enables to distinguish 

between the contributions from the two compartments considered.   

The results of the sSS analysis are representative of such approach. Differently 

from the simulations previously discussed, in these cases the signal considered 

originates mostly from venous blood flowing with a negative velocity along the z 

axis. In fact, thanks to the high venous partial volume in the chosen ROI, the 

signal from the venous compartment is about one order of magnitude higher 

than in grey matter, making it clearly distinguishable in the spectra and allowing 

the fitting of the exponential decay. Estimated values of , and subsequently 
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SvO2, show in both cases an increase following stimulus, consistently with the 

expected enhanced venous oxygenation due to functional hyperaemia. 

Notably, the quality of the fitting and the changes detected are lower in case of 

subject 2. This might be due to the fact that portion of sSS considered for the 

analysis might not be low enough in the z direction to drain the venous blood 

coming from the visual cortex interested in the stimulus. 

In both subjects the spectra also show spurious lobes of increased signal in both 

negative and positive velocity. Due to the symmetry it is reasonable to assume 

that these are due to an artefact, whose nature has not been identified, but it is 

reasonable to speculate that they arise from aliasing of velocity components or 

ghosting phaenomena due to motion. Although, given that they are about one 

order of magnitude smaller than the signal of interest and they are clearly 

distinguishable in the spectra, they seem not to be of much concern for the 

analysis.  

The number or subjects considered does not allow us to make conclusive 

statements about the effectiveness of the novel method, although it supplies a 

proof-of-principle of the proposed pipeline that, together with the modelling 

work, constitutes the basis for further development of the technique. 
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6.5 Limits and future developments 

Due to the exploratory nature of the work presented, with a simulation study 

followed by a pilot data acquisition, some of the conclusions to be drawn are only 

partial or speculative. In this paragraph we want to highlight the main issues of 

the technique so far not discussed, along with the limits of our work. The aim is 

to further inform on the feasibility of the proposed method and on the major 

challenges to be addressed for its potential application.    

The three main issues have been identified as: problems related to the effects of 

undesired motion, venous blood targeting and eddy current artefacts.   

6.5.1 Motion-related issues 

6.5.1.1 Motion and velocity encoding imaging 

As discussed, velocity encoded imaging is designed to be sensitive to coherent 

movement of water molecules in the brain. This means, however, that the images 

also become sensitive to other sorts of movement. Image artefacts can therefore 

occur as a result both of motion of the subject, pulsatile motion of the brain itself 

as a result of the heart’s activity.  

While motion correction is performed for the real-case data from subjects, our 

model just took into account the second source of nuisance, showing its 

significant detrimental effect on SSF of the data and therefore estimates of SvO2. 

Literature findings show that this is a complex phaenomenon due to its space and 

time dependency. The highest velocities have been found in the inferior and 

medial areas of the brain, while the superior tissue (roughly above the ventricles) 

is the less affected (Greitz et al., 1992). The motion evolves over time, peaking in 

correspondence to the systole, which usually represent about 20% in time of 

cardiac cycle, and is almost absent during diastole.  
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6.5.1.2 Local gradient fields 

Two sources of nuisance in the data might result from alteration of local gradient 

fields, as commonly found in other techniques focused on the phase of the signal. 

Firstly a major phase error might arise from the bulk motion of the brain in the 

presence of spatial imaging gradients, which would affect the dependency of the 

signal generated on moving blood. This results in erratic velocity phase encoding 

with the signal relative to tissue having a spectral component different from v=0 

cm/s.    

A second minor issue is the presence of susceptibility differences due to local 

gradient fields originated by surfaces of interface between tissue and air. This 

has been partially addressed through phase unwrapping and 3D spatial phase 

filtering. Nevertheless throughout the cardiac cycle nonlinear brain motion 

occurs such that the relative distances between different brain structures varies 

along time. It is therefore possible that such susceptibility-induced gradients 

contribute to additional dephasing and therefore to increased signal loss due to 

cardiac pulsation (Nunes et al., 2005), particularly in lower regions of the brain 

where both susceptibility differences and pulsatile brain motion are most 

significant.  

6.5.1.3 CSF 

CSF represents a nuisance source mainly because of its contribution in partial 

volume effects when moving due to cardiac activity. Specifically its signal 

partially adds to that of venous blood, altering the specificity of the  measured 

as the relaxation time for CSF is typically one order of magnitude higher than 

blood (Perkins and Wehrli, 1986; Zhao et al., 2007).  

Although the motion problem can be faced in the same way as discussed for the 

static component – given that the pressure waves originated during the systolic 

phase cause motion of both static tissue and CSF – the partial volume effect is 

inherited. Nevertheless, considering peak velocities of CSF below 2 mm/s (as 

found by Greitz and colleagues (Greitz et al., 1992, 1991)), the resolution of 
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velocities adopted in our implementation is enough to allow us to isolate pure 

venous blood signal, once motion correction techniques have been adopted.  

Several solutions have been designed to address the problem of undesired 

motion. One is the gating of data acquisition, i.e. synchronizing the acquisition 

with the cardiac cycle. In this way it is possible to acquire data only in the 

diastolic period, when induced motions are minimal. The main drawback of this 

approach is the lengthening of acquisition time, which might represent a problem 

when combined with such an information dense approach as the Fourier velocity 

imaging.  

Another similar solution may be the approach proposed by Nunes et al. (Nunes et 

al., 2005) for diffusion imaging, where acquisition has been synchronized to the 

cardiac cycle such that during systole only slices of superior brain are acquired 

(because they are less affected by movement), while the others are acquired 

during diastole. This allows the shortening of the acquisition time avoiding major 

motion artefacts. 

6.5.2 Venous blood targeting 

Our analysis has focused on a simplified description of vascular structure in a 

voxel, with arteries supposedly having a positive velocity, whilst veins negative 

along the longitudinal axis. This might roughly be the case for particular regions 

or specific direction of the motion encoding gradient considered, for instance in 

the cortex or in large vessels.  

Nevertheless the vasculature in brain parenchyma is typically more complex, 

with arterioles and venules branching in various directions, in both healthy and 

especially pathologic conditions (Cassot et al., 2010). This affects the method in 

discussion as with arterial and venous blood possibly having common velocity 

components, there distinguishing between the two based on the velocity 

spectrum becomes more problematic. Estimates of a single  would therefore 

express an apparent relaxation time arising from the two components. 
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The analysis shown is inherently limited in detecting the venous blood signal, 

mainly due to the small contribution of this to the spectra. In particular the 

amount of information present in a single voxel has been shown not to be enough 

to overcome the effect of noise.  

Nevertheless, this approach presents a major improvement compared to 

methods exploiting velocity selective pulses. In fact all the signal of interest is 

targeted through phase encoding, avoiding signal loss. In particular it is possible 

to overcome some of the technical difficulties related to venous blood signal 

targeting, such as accuracy of the selected velocity of cut-off (vcutoff, see Wu and 

Wong (Wu and Wong, 2007)) and inflow (Guo and Wong, 2012; Wong et al., 

2006; Wu and Wong, 2006) or outflow (Bolar and Rosen, 2011) timings.   

Targeting venous blood is one of the major problems puzzling all methods aiming 

at assessing oxygen consumption through -SvO2 calibration curves. In our 

case it’s possible to imagine a development of the technique towards an approach 

with gradients applied in multiple directions, as for diffusion tensor imaging 

methods. This could maximize the difference between venous and arterial side of 

the spectrum the main drawback being represented by the lengthening of the 

acquisition time. 

Another limitation of our implementation is the choice of measuring , which is 

suboptimal when compared to  for two main reasons. Firstly because of the 

lower specificity to signal arising from blood due to the sensitivity to macroscale 

field inhomogeneities. Secondly, as  relaxation is typically longer than , the 

same choice for TE values would result in better estimates of the exponential 

decays, especially considering the positive nature of the noise. The reason for the 

choice of this implementation has been practical, as the scanner in use only 

allowed a multi-echo gradient echo sequence and not spin echo. Nevertheless the 

principles of the technique discussed so far and the proof of concept hold true for 

an eventual implementation exploiting a spin echo acquisition. 

An alternative solution to the same issue would be to have faster readout, 

allowing us to have TEs more closely spaced and therefore to characterise the 

evolution of the signal even for . One such approach is given by acquiring 
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images with reduced field of view (FOV), so that fewer line of k-space are needed 

to achieve the same spatial resolution in a shorter time. The FOV reduction is 

typically coupled to spatially-selective RF excitation pulses, in order to suppress 

the signal arising from the tissue outside the FOV which would appear as aliasing 

artefact otherwise (Zhao, 2005). In our specific case the image acquisition could 

be restricted to specific areas of interest, such as the superior sagittal sinus. 

6.5.3 Eddy currents 

Eddy currents are induced by time-varying magnetic fields from gradients in MRI 

pulse sequences. They generate unwanted magnetic fields that contrast the ones 

produced by the gradients and are therefore deleterious for images, giving phase 

artefacts. Their characteristics depend on magnitude and slew rate of the 

gradients delivered and on the structure of the scanner itself. For our purposes, 

given that the gradients involved are quite high, it is particularly important to 

consider their effects on the k-space navigation and on the phase encoding. 

As regards the first, it is known that eddy currents may cause inaccuracy in the k-

space acquisition trajectory and this especially a problem for spiral acquisitions, 

where the longer readout time worsen the effect, as k-space deviations can 

accumulate, leading to more deviation at the k-space periphery (Tan and Meyer, 

2009).  

The effects on phase encoding are more specifically linked with the technique we 

are discussing. A first inaccuracy introduced affects the dependency of the signal 

generated on moving spins. In fact, if the gradient imposed along a particular 

direction deviates from the ideal one, the value of its 0-th moment M0 might be 

different from 0, leading to a phase which is dependent also on the static signal 

(see Paragraph 2.1.6). Then, because the phase errors due to eddy currents 

resulting from different velocity-encoding waveforms could be generally 

different, a dependency of the phase error on  is possible. This adds up with the 

spatial dependency of the error which is determined by the direction of the 

velocity-encoding gradient (Bernstein et al., 2004). 
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A few approaches can be exploited to minimize eddy currents artefacts. They are 

based on characterization of their effect, either through acquisition of field maps 

(as proposed for diffusion MRI by Jezzard and colleagues (Jezzard et al., 1998)) 

or with acquisition of phantom images (Bastin and Armitage, 2000), or again 

recording the acquisition trajectory in the specific case of k-space readout (Tan 

and Meyer, 2009).  
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6.6 Conclusions 

In this work we have explored a new method for estimating venous oxygen 

saturation based on phase encoding. A mathematical model has been designed, 

allowing a simulated implementation of the method. This model is able to 

effectively describe different aspects related to the generation of the signal, in 

particular the physiology and morphology of the underlying tissue (described 

with three compartments), the effect of two sources of noise (background and 

physiological) and the phase encoding operated by the Fourier velocity imaging  

approach. 

Noise characterization is performed comparing acquired and simulated datasets, 

supplying an insight on the inherent limitations of the method and detrimental 

effect of noise in a real case scenario. As a proof of principle, provisional ROI and 

bulk SvO2 estimates are reported, showing respectively the feasibility of the 

method and effectiveness in detecting changes due to activation.  

Other technical difficulties encountered in the application to real data are 

discussed, along with possible solutions and future directions of research. The 

results supply an initial evaluation of the potential and limits of the newly 

proposed technique as a tool for estimating brain SvO2.  
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Chapter 7

Final discussion and conclusions

Brain activity is inherently reliant on energy metabolism and oxygen 

consumption. Based on this assumption, from the earliest applications fMRI 

techniques inferred about brain activity from measurements of changes in 

magnetic signal due to blood oxygen content perturbations following hyperaemia 

triggered by tasks or particular conditions. More recently, studies on the complex 

relationship between the vascular and neural mechanisms regulating tissue 

physiology highlighted the limits of this approach (Ekstrom, 2010). For this 

reason new methods have been developed to directly assess oxygen metabolism, 

first in relative and finally in absolute terms. This would lead to a better 

understanding of brain functioning, potentially offering a marker of the 

(patho)physiological state of brain tissue (Lin et al., 2010), in applications like 

tumour (Brown and Wilson, 2004), stroke (Derdeyn et al., 2002), neurological 

(Santens et al., 1997) and neurodegenerative disorders (Ishii et al., 1996).  

Current techniques for assessing oxygen metabolism (reviewed in Chapter 2) 

show limitations, both in terms of accuracy, precision and spatial resolution. 

Maps obtained with PET scans are often still regarded as gold standard. In this 

thesis we therefore aimed to develop a means for assessing oxygen metabolism 

with MRI firstly improving dual calibrated fMRI (dcFMRI) approaches and then 

exploring a new alternative method.  

In Chapter 3 the mathematical physiological models adopted by dcFMRI 

methods to estimate venous deoxyhaemoglobin concentration and thus OEF0 and 

absolute CMRO2 are analysed. In fact, optimising the integration of information 

carried by BOLD and CBF signals, modulated through hypercapnic and hyperoxic 

respiratory challenges, would provide better estimates of OEF0 and therefore 
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absolute CMRO2. The aim was to improve previous models relating the BOLD 

signal to the underlying physiology based on the bias in OEF0 estimates and we 

focused in particular on the original calibration model proposed in our centre by 

Wise and colleagues (Wise et al., 2013). We performed a simulation study 

analysing a set of synthetic BOLD signals generated with a detailed BOLD signal 

model proposed by Griffeth and Buxton (Griffeth and Buxton, 2011) in the ideal 

noiseless condition, across a range of potential underlying physiological states. 

Our approach was similar to others recently adopted (Blockley et al., 2015; 

Griffeth et al., 2013) by linearizing the relationship between BOLD signal and 

changes in deoxyhaemoglobin. The novelty is the subsequent process of 

optimization aimed at improved performance in estimating OEF0. Furthermore, 

an analysis on the effects of input errors was also carried out for a first 

evaluation of the behaviour of the model when dealing with errors in 

measurements and a further understanding of its limits. 

The main result of the analysis was the characterisation of the bias present in the 

literature models, which led to the proposal of a new model: the simplified 

calibration model. This has fewer parameters, shows higher accuracy in 

estimating OEF0 and also improved resilience to input errors. In conclusion, we 

showed that the proposed simplified calibration model is a potentially valuable 

tool for the unbiased evaluation of OEF0 and therefore absolute CMRO2 in studies 

using respiratory challenges. In particular, we would recommend it not only by 

virtue of its accurate results and reduced complexity, but also because of the 

enhanced flexibility with respect to the respiratory design of the experiment.  

Besides these considerations, the model shares certain physiological 

assumptions with the previous ones (for instance the hypothesis of 

isometabolism during hypercapnia and hyperoxia), suggesting similar limits in 

its application. In particular it has been found to be affected by errors in 

measurements for high values of OEF0, so that its accuracy for absolute estimates 

of CMRO2 may not be optimal if applied to those pathological conditions where 

extreme values of OEF0 might be expected (e.g. tumours).  
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Moreover, a caveat in our approach is that the optimization was carried out on 

synthetic data. The detailed BOLD signal model was chosen for generating the 

datasets in virtue of its comprehensive description of the signal, taking into 

account a multitude of biophysical parameters and intra- as well as extra-

vascular contributions. While being a limitation in terms of signal authenticity, 

this enabled us to explore a wide range of physiological conditions and to have a 

quantification of the bias in the estimates based on the knowledge of the true 

underlying values.   

In Chapter 4 we wanted to assess the repeatability of the estimates of brain 

haemodynamics and metabolism obtained from dcFMRI experiments analysed 

with a novel forward model developed in our lab. This describes analytically the 

contributions of BOLD signal, ASL signal and of the measured end-tidal partial 

pressures of CO2 and O2 to the measured dual echo GRE signal in a dual 

calibrated BOLD experiment, where the physiological model adopted in the 

estimation framework included the simplified calibration model proposed in 

Chapter 3. Data from a test-retest repeatability experiment on ten healthy 

volunteers in the resting state were analysed with a Bayesian approach, 

supplying voxel-wise parametric maps of five physiological parameters: OEF0, 

CBF, CVR, CBV and CMRO2.   

We evaluated the precision and reliability of the estimates and collected 

reference data in order to determine the viability of the estimation framework 

adopted for future studies. For this purpose, measures of correlations and 

metrics indices like coefficient of variation (CV) and intra-class correlation (ICC) 

were calculated at different levels of spatial resolution. 

Results showed an overall consistency of the estimated parameters with 

literature reports and a good level of repeatability compared to recent similar 

repeatability studies on brain metabolism with PET (Bremmer et al., 2011) and 

MRI (Barhoum et al., 2014; Liu et al., 2013) techniques. The performance has 

been found to depend on the specific parameter under analysis and on the spatial 

resolution considered. In particular estimates of OEF0 and CBF typically show a 
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higher degree of repeatability, while CMRO2 is affected by the variability from 

both. The information supplied by grey matter maps is of extreme interest for the 

detail of the spatial distribution of brain physiology, despite some reliability 

limitations when compared to methods supplying bulk measurements.  

The major limitations of the study are discussed, indicating that more work has 

to be done to further explore the possibilities of this method, such as to test its 

effectiveness in detecting physiological changes between different subjects and 

conditions. In fact, despite the good repeatability, the results highlighted a not 

negligible level of intra-subjects variability in the estimates. Moreover, sample 

size (N) calculations showed that for typical levels of statistical accuracy and 

effect size, the method is only suitable with small cohorts (N<20) for 

experimental designs with reduced subjects variability.  

Therefore it is suggested that the method should be used with optimised 

experimental designs aimed at reducing the variability in the measurements (e.g. 

longitudinal, repeated measurements, crossover studies) for groups rather than 

single subject analyses. 

The feasibility of this method was further investigated in the study presented in 

Chapter 5, where results from a randomised, double-blind, placebo-controlled 

drug study analysed with the same estimation framework are presented. In 

particular, with this work we aimed to quantify the acute effects of caffeine 

ingestion on oxygen metabolism and blood haemodynamics across grey matter.  

Caffeine is known for increasing of the neuronal firing rate (Fredholm et al., 

1999) and reducing CBF via vasoconstriction (Pelligrino et al., 2012). Due to the 

parallel effect on both neural and vascular systems, caffeine can alter the 

coupling between CBF and CMRO2 and has therefore been extensively studied in 

fMRI studies. While converging evidence has been found indicating a reduction in 

baseline CBF (Cameron et al., 1990; Field et al., 2003), there is an insufficient 

body of research to support any specific direction of the effect on CMRO2, with 

both increase (Griffeth et al., 2011), a tendency to decrease ( Yang et al., 2015) 
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and no change (Xu et al., 2015) in CMRO2 being reported. Crucially, to our 

knowledge no MR study has been published supplying grey matter maps of OEF0

and absolute value CMRO2 after caffeine assumption, motivating the application 

of our approach for providing a more detailed description of the acute effects on 

brain metabolism and haemodynamics.   

The results of our experiment were consistent with the hypothesis of decrease in 

energetic demand due to an overall inhibitory effect of caffeine, supported by 

previous electrophysiology studies. While CBF, CBV and CMRO2 changes seemed 

widespread, high resolution maps showed the effects on OEF0 to be mostly 

localized in putamen, nucleus caudatus and thalamus. The results led to the 

assessment of the estimate framework based on our novel forward model with a 

dual calibrated BOLD experiment as the first viable MRI method to assess the 

effects of caffeine on brain metabolism and haemodynamics with a voxel-wise 

resolution. This, together with the results in Chapter 4, positively informs future 

applications of the method on drug studies and – more generally – brain patho-

physiology.   

Overall, the results presented in Chapter 4 and 5 are representative of some of 

the most recent developments in the field of dcFMRI methods. These enable one 

to obtain estimates of absolute oxygen consumption with similar accuracy but 

lower invasiveness and cost than the gold standard PET. Besides, with the 

implementation reported we were able to supply maps of a wide range of 

physiological parameters across grey matter with good repeatability and efficacy 

in detecting changes due to drug manipulation.  

Despite the developments presented, some caveats and limits of the original 

implementations are still present and need to be considered and addressed in 

future applications. The hypothesis of isometabolism during mild hypercapnia 

and hyperoxia is of major interest and has therefore been repeatedly discussed. 

Considering the disagreeing conclusions of studies aimed at testing it and the 

successful body of calibrated fMRI studies despite the highly detrimental effects 

of its violation (characterised in Chapter 3), it is reasonable to assume its validity. 
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Besides, a known change in oxygen metabolism due to a specific gas task could be 

accounted for by including it in the model. 

One of the major limiting factors for the technique is represented by SNR, with 

about 18 minutes of acquisition needed for the estimates in our study. A better 

quality signal, or alternatively shorter scanning times, could be achieved firstly 

with hardware improvements, for instance using head coils with a higher 

number of channels, or with alternative imaging sequences, for example 

exploiting background suppression for acquiring the ASL signal. A more 

comprehensive physiological model with a dynamic description of the 

relationship between BOLD signal and CMRO2 could also improve our estimates. 

Nevertheless, the estimation framework adopted is already an improvement of 

the original dcFMRI approach. In fact by accounting for multiple contributions to 

the signal, using a one-stage calculation (as opposed to two-stage approaches in 

literature (Bulte et al., 2012; Gauthier and Hoge, 2013)  and adopting a Bayesian 

regularization, it supplies stable estimates of a larger number of physiological 

parameters then previous methods.            

An SNR limitation also constrains the measurements to grey matter, where the 

signal is higher mainly due to the higher cerebral blood flow. With a better SNR 

the estimation framework could also be applied to white matter, but it would 

need some modifications; for example the physiological model relating BOLD and 

ASL signals to oxygen metabolism would need to be optimised in the context of 

white matter. Moreover, potential improvements could be introduced using 

higher magnetic fields, with the decrease in the signal due to longer arrival time 

partially counteracted by a longer longitudinal relaxation time. 

Furthermore, the outliers in the results from Chapter 4 and then from Chapter 5

suggest that caution must be taken in considering individual results, especially at 

a voxel-wise level. Nevertheless it is shown that the technique is repeatable and 

suitable for group analysis, making it possible to detect areas of significant effects 

due to drug manipulation both in a voxel-wise or ROI-wise calculation.    

Finally, the use of gas inhalation through masks, while far less invasive than the 

radiotracers used in PET, may represent a discomfort for the participants and 
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even lead to the exclusion of subjects with respiratory conditions of particular 

susceptibility to CO2. Other calibration techniques could be further developed for 

establishing approaches with a minor impact of gas administration, for example 

exploiting ASE calibration. 

dcFMRI is therefore shown as a valid alternative to PET for research applications 

with the potential to be eventually applied in a clinical environment. However, 

improved assessment of oxygen consumption could also be achieved by adopting 

different methods. An alternative novel approach has been explored in Chapter 6 

for the quantification of venous oxygen saturation, which can be used for 

estimating oxygen metabolism once joint with measurements of CBF. This is 

similar to other techniques estimating SvO2 through -SvO2 calibration curves 

(Bolar and Rosen, 2011; Guo and Wong, 2012) and does not require the use of 

respiratory tasks for calibration. The main novelties of our methods are the 

approach used for isolating the signal from venous vessels, based on Fourier 

velocity imaging encoding the MR signal from moving blood, and the use of - 

rather than -SvO2 calibration curves.

The aim was to explore the feasibility of the proposed method by analysing data 

from a simulation model of the signal and then running pilot acquisitions. From 

the datasets of synthetic MR signals we are able to characterize the expected 

signal and the detrimental effects of sources of nuisance in both simulated and 

acquired data, giving a quantitative indication on the feasibility of the novel 

technique. Then the effectiveness of the method was tested in the real case 

scenario in grey matter regions and by estimating the changes in SvO2 triggered 

by a visual stimulus in the superior sagittal sinus (sSS).   

Results from the simulations showed that our three-compartment model is able 

to describe different aspects related to the generation of the signal, in particular 

the physiology and morphology of the underlying tissue, the effect of two main 

sources of noise (background and physiological) and the phase encoding 

operated by the Fourier velocity imaging approach. Noise characterization was 

performed comparing acquired and simulated datasets, supplying an insight on 
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the inherent limitations of the method and detrimental effect of noise in a real 

case scenario. As a proof of principle, grey matter ROI and bulk SvO2 estimates 

were calculated, showing the feasibility of the method and effectiveness in 

detecting changes due to activation. 

The main difficulties encountered in the application to real data are discussed. 

These are firstly issues related to bulk movement of the static tissue which 

affects the encoding operated, determining spurious spectral components and 

CSF confounding. Possible solutions to these include more sophisticated 

acquisition schemes capable of minimizing motion, such as cardiac gating. The 

challenge of targeting venous blood in grey matter was also analysed, leading to 

the conclusion that further developments with gradients applied in multiple 

directions and a SE acquisition would be highly beneficial. Nevertheless, the 

results supply an initial evaluation of the potential and limits of the newly 

proposed technique as a tool for estimating brain SvO2 and ultimately CMRO2.  

In conclusion, the results shown in this thesis represent innovations in the 

research and assessment of MRI methods for absolute measurement of oxygen 

consumption in brain, both looking at current approaches and hinting at new 

research directions in this field. In particular, the results from the novel 

estimation framework for dual calibrated fMRI experiments recently developed 

in our lab help establishing this technique as a potentially viable method for 

assessing brain oxygen metabolism in a research environment and a promising 

alternative to current techniques. 
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