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     Abstract 

Abstract 

In this thesis work oxidative dehydrogenation (ODH) of ethane to ethene over MoV oxide 

catalyst was investigated. The influence of the preparation techniques and different reaction 

conditions were studied thoroughly. It was found that the precipitation method for the catalyst 

preparation using variable pH produces a more active catalyst at pH values of 3 to 3.5. Slurry 

temperature and calcination temperature are also very important parameters which affect the 

selectivity pattern of the products. This selectivity pattern was found to be further influenced 

by reaction temperature, pressure, GHSV and ethane-oxygen ratio in the feed. 

The influence of the V: Mo ratio on the performance of the catalyst for the ODH was 

investigated by several characterization techniques, such as BET, XRD, XPS, TEM, SEM, 

EDX coupled with catalytic performance tests in a fixed bed reactor. The optimum V: Mo 

ratio was found to be 0.25:1 (i.e., Mo1V0.40). At this ratio, the oxidation state of vanadium 

with respect to total vanadium concentration (V5+/ Vtotal) is at an optimum in terms of the 

adsorption strength of the desired products. It was further fine-tuned by investigating the 

influence of reaction conditions.  

An improvement on the most active MoV oxide catalyst for the ODH reaction was developed 

with the addition of oxalic acid as the vanadium dissolution and pH adjustment agent. 

Addition of oxalic acid influenced the catalytic properties in a variety of ways as observed 

from characterization and reaction results. Addition of either a smaller amount or an excess 

amount compared with the optimal amount has determental impact on the activity of the 

catalyst. Further catalytic activities were tested by the addition of different types of supports 

(e.g., ZrO2, TiO2, Nb2O5, SiO2, and Al2O3) into the MoV oxide catalytic system. The alumina 

support was extensively tested with different amounts onto the base MoV oxide for the 

ethane ODH to ethene. 
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Aims and Scope of the thesis 

 

The aim of this thesis is to investigate a catalytic system for the production of ethene through 

the ODH of ethane using vanadium-based mixed oxide catalysts. For this purpose 

molybdenum-vanadium-oxide and molybdenum-vanadium-supported catalysts were 

prepared, characterized and tested for their catalytic performance at various feed 

concentrations, space velocities and temperatures at steady state. 

The tuning of MoV oxide properties to fit one or the other reaction is a feature of this system 

which is versatile enough to incorporate with other elements. The presence of these elements 

(whatever their nature and their content) is obviously a prominent factor to develop a more 

prominent sustainable catalytical system. 

The following variables were investigated: 

 catalyst composition and structure, 

 preparation parameters such as drying time, ageing and calcination temperature, 

 metal concentration, and 

 reaction conditions such as temperature, pressure, contact time and reactant  

composition 

Furthermore, the ODH of ethane was carried out at relatively low temperature with an 

exothermic reaction in the presence of properly selected MoV oxide catalysts. 
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        Chapter 1 

 

 

 

Chapter 1 

 

Introduction 

 

1.1 Objectives and justification 

The presence of the light alkanes ethane and propane in natural gas is considered to be 

one of the most attractive raw materials for the petrochemical industries for producing 

lower alkenes and many other intermediates. The chemical industry relies heavily on 

unsaturated hydrocarbons (alkenes with at least one carbon-carbon double bond) as a 

feedstock for many industrially significant processes. The present industrial capacity for 

lower alkenes such as ethene, propene and butenes is expected to be insufficient due to 

the increasing demands of the petrochemical industry [1-2].  

Presently, the selective oxidation of n-butane to maleic anhydride using vanadium 

phosphorus oxide catalysts is the only industrial process involving the selective oxidation 



 

 2 

 

of a light alkane [3] leaving a wide scope for their utilization in other chemical process.  

Conversion of alkanes to alkenes is one of the industrially important practices. Since the 

current chemical industry depends heavily on the use of alkenes as starting materials, if 

alkanes can be dehydrogenated to alkenes with high yields, they can become a valuable 

alternate feedstock [4]. 

Presently, the traditional methods for the production of light alkenes involve catalytic or 

steam cracking of naphtha and fluid catalytic cracking (FCC) of petroleum crude oil [5]. 

While these two routes are very well developed, increasing the capacity of these 

processes is only possible to some extent, as the changing regulations limit the use of 

byproducts (notably aromatic molecules) in fuels. The rate at which refineries can 

increase their alkene production is also limited by the complexity of refinery processes, 

thus for satisfactory alkene production, industry needs dedicated alkene producing 

processes. Conventional dehydrogenation reactions are reversible due to the hydrogen 

evolved, and the alkane conversion is limited by the thermodynamic equilibrium. In order 

to shift it towards the formation of the dehydrogenation products, the reactions are carried 

out at relatively high temperatures (from 550 ºC to 650 ºC). However, at these 

temperatures, cracking of hydrocarbons occurs, reducing the alkene selectivity [5]. 

Moreover, coke deposition causes a decrease in catalyst activity and there is a need for 

the frequent regeneration [6].  

Hence as a route to light alkenes catalytic dehydrogenation of alkanes shows some major 

disadvantages, i.e. thermodynamic limitations, a high tendency to coking and 

consequently short catalyst lifetime [5]. A conceptually interesting way to overcome the 

thermodynamic limitation in the direct dehydrogenation reaction is to couple it with 

hydrogen oxidation [7]. Moreover, the presence of oxygen limits coking and therefore 

extends catalyst lifetime. This new concept of alkene production, generically called 
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oxidative dehydrogenation (ODH), has been thoroughly studied in the literature 

motivated by the prospect of a new alternative process which overcomes the above-

mentioned advantages [5-7]. Despite the large amount of research effort, industrial scale 

application of the ODH reaction has not been realized to date due to the low alkene 

selectivity shown by the catalysts that are currently available. The main problem with 

most of the catalysts studied for ODH is that alkene yields typically do not exceed 30 % 

[8]. Conventional transition metal oxides with pronounced redox properties such as 

supported vanadium catalysts have been explored [9-12], but have not been seen as 

promising, as readsorption of alkenes (leading to total oxidation) appears to limit the 

alkene yield [13,14]. 

1.2 Current methods of alkene production 

Most of the lower alkenes produced are converted directly or indirectly to polymers and 

other synthetic materials. Demands for these new synthetic materials are steadily 

increasing year by year, the need for lower alkenes, especially ethene and propene 

follows this demand. The entire capacity of [C2-C4] alkenes worldwide is produced by 

three commercial processes: thermal cracking (pyrolysis or steam cracking), catalytic 

cracking and catalytic dehydrogenation. A brief description of these processes is given in 

the following sections [15-17]. 

1.2.1 Thermal cracking (Steam cracking) 

Today 70 % of alkene production comes from thermal cracking of various petroleum 

hydrocarbons, most often liquefied petroleum gas (LPG) and naphtha, with steam; the 

process is commonly called steam cracking or pyrolysis. The main product of steam 

cracking is ethene; propene and limited amounts of higher alkene are byproducts from 

this process. A hydrocarbon stream is heated by heat exchange against flue gas 
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combustion in the convection section, mixed with steam, and further heated to the 

incipient cracking temperature 500-700 °C, depending on the feedstock. The stream then 

enters a fired tubular reactor (radiant tube or radiant coil) where, under controlled contact 

time, temperature profile, and partial pressure, it is heated from 500–650 °C to 750–900 

°C in two steps for a short time. During this short reaction time hydrocarbons in the 

feedstock are cracked into smaller molecules; ethene, other alkenes and dienes are the 

major products. Since the conversion of alkanes to alkenes in the radiant tube is highly 

endothermic, high energy input rates are needed. The reaction products leave the radiant 

tube at high temperature and are cooled to 550–650 °C in a few seconds to prevent 

degradation of the highly reactive products by secondary reactions. The resulting product 

mixtures are then separated into the desired products by using a complex sequence of 

separation and chemical-treatment steps which can vary widely, depending on feedstock 

and severity of the cracking operation. 

The steam cracking reaction is highly endothermic requires substantial energy to activate 

the reactant molecules. In steam cracking, radical chain reactions are the reaction 

pathway in which radicals or hydrogen atoms react with other radicals to form a series of 

products [18]. Energy costs typically account for 60 % of total production cost in the 

steam cracking. Additionally, coke deposition is a major drawback. Coking occurs on the 

reactor lowering heat transfer, increasing pressure drop through the reactor and causes 

corrosion. Consequently, commercial reactors must be periodically de-coked resulting in 

increased downtime.  

1.2.2 Catalytic cracking 

Propene is formed mainly as a by-product of fluid catalytic cracking (FCC) of gas oils in 

the refinery [19]. In FCC units, small amounts of ethene are produced but generally not 
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recovered, except in a few locations where large FCC units are adjacent to petrochemical 

facilities. This refinery process produces a mixture of butenes and butanes with very 

small amounts of butadiene as well. Whereas in Europe, refineries satisfy an average of 

only 20 % of the chemical industry's requirement of propene, in the United States they 

meet more than 40 % of the consumption demand [20]. In Western Europe propene 

demand is predicted to grow faster than that of ethene (3.7 % vs. 2.4 %) in the coming 

years [4], so additional propene sources are highly needed. 

The conversion reactions of partially vaporized crude oil distillates in the FCC process 

occur mainly at elevated temperatures in the presence of a cracking catalyst. The acid 

catalysts first used in catalytic cracking were low alumina catalysts comprising 

amorphous solids composed of approximately 87% silica, (SiO2), and 13 % alumina, 

(Al2O3) [21]. Later, high alumina catalysts containing 25 % alumina and 75 % silica were 

used [21]. However, this type of catalyst has largely been replaced by catalysts 

comprising crystalline aluminosilicates (zeolites) or molecular sieves [22]. The cracking 

reactions occurring at the active sites of the catalyst proceed via a carbenium ion 

mechanism that predominantly affects the formation of alkenes, isomeric components, 

and aromatics (the latter via intermediate formation of cycloalkenes) [23]. The formation 

of low-boiling alkenes, branched alkanes, and aromatics favours the production of 

gasoline with high octane levels. Overall FCC produces gasoline-boiling-range 

hydrocarbons, C4 and lighter gas, and coke. Gaseous components are separated in a gas 

plant into fuel gas (containing hydrogen, methane, ethane, ethene, and hydrogen sulfide) 

and LPG fractions, i.e., propane–propene and butane–butene. The propene yield varies, 

depending on reaction conditions, but yields of 2–5 % based on feedstock [24]. 
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1.2.3 Catalytic dehydrogenation 

Alkane dehydrogenation, also a heterogeneous catalytic process, usually uses either a 

Cr2O3/Al2O3 or Pt/Sn/Al2O3 catalyst [25]. In this reaction, the alkane decomposes into 

alkene and H2. 

(C2H6   C2H4 + H2)  (ΔHº = 137 kJ/mol)  (1.1) 

Dehydrogenation suffers the same difficulties as encountered in steam cracking and FCC, 

namely; high endothermicity of the reaction and catalyst deactivation due to coke 

formation. An additional difficulty encountered with dehydrogenation is the 

thermodynamic limitation of the reaction. Direct dehydrogenation is thermodynamically 

limited at low temperature making it impossible to achieve acceptable yields [26]. The 

endothermic reaction makes the process very energy intensive. 

The limitation of the current alkene production methods is clear. All three of these 

processes are endothermic and require high temperatures to obtain acceptable yields. A 

number of alternative technologies have been investigated including: coupling direct 

alkane dehydrogenation with alkane combustion or hydrogen combustion to supply the 

required heat, membrane assisted direct dehydrogenation to separate hydrogen from the 

products to bypass the thermodynamic limitations and the other is the ODH reaction [5, 

6]. Among these options ODH appears to be the simplest and the production of ethene by 

ODH does not suffer the same shortcoming as thermal cracking, FCC and direct 

dehydrogenation [7]. 

1.3 Oxidative methods for alkene production 

Alkene production through oxidative routes, oxidative coupling and ODH has been 

recognized as a potentially attractive alternative since the presence of oxygen offers 
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thermodynamic advantages in equilibrium limited processes catalytic dehydrogenation 

and limits coking on the catalysts. 

1.3.1 Oxidative dehydrogenation (ODH) 

In view of the limitations of the dehydrogenation equilibrium, research has focused on 

ways to remove one of the products, namely hydrogen, by chemical methods. In this way, 

hydrogen is oxidized to water and hence there is no equilibrium limitation to the alkane 

conversion. 

(C2H6 + 1/2 O2   C2H4 + H2O)  (ΔHº= -105 kJ/mol)  (1.2) 

ODH, unlike steam cracking and direct dehydrogenation, is a thermodynamically 

favourable exothermic reaction making water and alkene. Additionally, ODH can operate 

at lower temperatures (250-550 ºC) than any of the aforementioned processes when using 

an appropriate catalyst [27]. The exothermic nature of the reaction together with the 

lower temperature requirement leads to substantial energy saving when using ODH as 

compared to direct dehydrogenation. In fact, the energy consumption is expected to be 

substantially less than any of the current alkene production methods due to their 

endothermic nature. Furthermore, the deposition of coke is largely eliminated due to the 

presence of oxygen, which can oxidize coke to form carbon dioxide preventing the 

routine de-coking procedures necessary in current commercial processes. 

There are, however, a number of current challenges preventing ODH from being widely 

implemented. The difficulties inherent in ODH reactions revolve around selectivity 

control. Typically, alkane activation (which requires abstraction of the first hydrogen 

atom) is considered to be the rate limiting step. Unfortunately, at the temperatures 

required for alkane activation, the alkene product is easily oxidized. In these undesired 
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pathways, lattice, adsorbed or gas phase oxygen can be inserted into ethane or ethene to 

ultimately form combustion products. 

(C2H6 + 5/2 O2   2CO + 3H2O)  (ΔHº= -860 kJ/mol)  (1.3) 

(C2H6 + 7/2 O2   2CO2 + 3H2O)  (ΔHº= -1430 kJ/mol)  (1.4) 

However, the same oxygen species also oxidizes the alkane and alkene to CO2 and other 

oxygenated products. Therefore, alkene selectivity remains a serious problem, as it limits 

the maximum achievable yield. Despite the research efforts invested to date the 

maximum yield in propane ODH reported in the literature is 30 %, which is 

unsatisfactory for commercialization [5]. Only the ODH of ethylbenzene to styrene has 

been commercialized to date [28]. Besides the challenge of finding a selective catalyst to 

perform the desired reaction, other issues such as safety in handling hydrocarbon-oxygen 

mixtures, have to be considered. Several approaches were taken to arrive to a well 

performing ODH catalyst. Basically three types of catalytic materials were investigated: 

redox catalysts, non-redox catalysts, noble metal (Pt, Rh, Ir) coated monolith [29]. The 

reaction mechanism over the different type of catalysts is also considered to be dependent 

on the materials used; Baerns proposed three types of mechanism being operative over 

different types of metal oxide materials [30].  

1.3.1.1 Redox catalysis 

Most literature data concerning redox catalysts are reported for transition metal 

containing materials. There are excellent reviews that summarize the work done on the 

ODH of low alkanes [5, 6]. Magnesia-supported vanadium (VMgO) has been a 

commonly studied catalyst. The reaction mechanism is typical of the Mars-van Krevelen 

description, where the transition metal oxide is reduced by the hydrocarbon in the first 
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step and it is reoxidized by gas-phase oxygen in a subsequent step [31]. Different alkanes 

showed different conversion, depending on the most labile C-H bond, showing that 

splitting the carbon-hydrogen bond is the rate-determining step. Over redox catalysts 

alkenes reacted generally faster than alkanes, except for ethene. Because of the higher 

activity of alkenes, finding a suitable redox catalyst seems to be an elusive goal [29]. In 

order to avoid contact of oxygen with the product alkene, reactor operation has been 

carried out in a cyclic mode, similar to the catalytic dehydrogenation in the CATOFIN 

process. CATOFIN dehydrogenation is a continuous process with cyclic reactor 

operation in which multiple reactors go through a controlled sequence of reaction reheat / 

regeneration from Abb Lummus Technology [32]. 

1.3.1.2 Non-redox catalysis 

Primarily ODH of ethane was studied over non-redox type materials such as alkali 

promoted alkali-earth oxides and rare-earth oxides [33], often as an extension of the 

methane oxidative coupling reaction [34]. Propane ODH has been less studied over non-

redox catalysts, but the best propene yields reported in the literature (~30 %) involve the 

use of non-redox materials [35]. Propane ODH over non-redox catalysts does not result 

propene exclusively, ethene is produced in large amounts as well. Although there are 

only a few studies of propane ODH conversion over non-redox type catalysts, it is 

apparent that gas-phase reactions contribute to alkene formation [36]. However, it is 

unclear from the literature whether catalytic or noncatalytic contributions to propane 

ODH conversion are more important, unlike in methane oxidative coupling where the 

role of catalytic and homogeneous reactions is well established [37]. Some authors 

explain their results of propane conversion to alkene only in terms of catalytic reactions, 

due to either weakly adsorbed or lattice oxygen, not affected by homogeneous gas-phase 
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contribution [39, 39], while others describe their results in terms of radical reactions in 

the gas-phase initiated on the catalyst, and radical-surface interactions [40].  

1.3.1.3 Noble metal catalysis 

Although noble metals are known to be very good combustion catalysts, under certain 

conditions, namely with a limited oxygen concentration and very low contact times, 

alkanes can be converted to alkene with high selectivity [41]. The product spectrum 

resembles the one over non-redox catalysts. The mechanism of this process is described 

by an initial full combustion of alkanes until total oxygen conversion, accompanied by 

heat generation and further thermal cracking of the remaining alkanes with the heat 

generated in the first step [42]. A different approach was taken when an effective 

dehydrogenation catalyst (Pt) was used in combination with a selective hydrogen 

combustion catalyst [Bi2O3] in order to perform the ODH in a continuous process [43]. In 

practice, Pt coated monoliths are used under very high flow conditions, contact times are 

as low as one millisecond [44]. 

1.3.2 Oxidative coupling 

Oxidative coupling uses methane as feedstock and results in higher hydrocarbons, mostly 

ethene. It is difficult to break the C–H bond in methane; therefore it occurs at high 

temperatures (750-950 ºC). In the reaction, methane is activated heterogeneously on the 

catalyst surface, forming methyl radicals. These methyl radicals then couple in the gas 

phase to form ethane, which subsequently undergoes dehydrogenation to form ethene 

[45]. The yield of desired C2 products is reduced by the nonselective reactions of methyl 

radicals with either surface or gas phase oxygen to produce carbon monoxide and carbon 

dioxide. The process could be economical when methane is available in abundance at 

extremely low cost, such as in Saudi Arabia. Since this process does not depend on crude 
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oil as a feed stock, research has continued in recent years, and it is possible that it may 

soon be commercialized. In the methane oxidative coupling reaction typically non-redox 

catalysts are employed. It is believed that the active (or activated) lattice oxygen abstracts 

the hydrogen from the methane molecule forming a surface hydroxyl [46]. It was first 

proposed in the methane coupling literature that the active sites of Li-promoted magnesia 

are the oxygen trapped by an electron hole next to a cation defect caused by 

stoichiometric Li+ replacement for Mg2+ in the magnesia lattice [47]. This active site was 

commonly noted as [Li+O-]. When activating a methane molecule this active site 

transforms to [Li+OH-]. Regarding the regeneration of the active site there are two 

principally different propositions; in the mechanism proposed by Ito [47] the site is 

regenerated by dehydroxylation, that implies removal of lattice oxygen, while there are 

alternative propositions that do not require the costly removal of lattice oxygen [48].  

An important element of the reaction mechanism in methane coupling is the release of 

radicals from the surface of the catalyst into the gas-phase. There is a vast body of 

evidence that radicals are released from the catalyst. These include mass-spectrometry, 

matrix isolation IR and matrix-isolation EPR [49]. Furthermore, a good correlation has 

been found between the EPR signals of the [Li+O-] sites, the amount of radicals produced 

and the catalytic activity [47]. The kinetics of the methane coupling reaction has been 

described by mixed heterogeneous-homogeneous kinetic models [50]. These models 

included heterogeneous generation of radicals and some heterogeneous radical reactions. 

The kinetic parameters of the gas-phase reactions were generally provided by the 

extensive literature in combustion chemistry [51]. The role of homogeneous and 

heterogeneous reactions was critically discussed and the two contributions were 

rigorously defined [37]. A number of computational studies of the [Li+O-] active sites and 

processes occurring on this site for methane coupling have been carried out [52, 53], 
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while extraction of hydrogen either from molecular hydrogen or methane on the active 

site has also been studied [54].  

1.4 Limitations of ODH 

The selective conversion of alkanes into alkenes is an important reaction both in 

fundamental research and in industrial applications. The ODH of alkanes produces 

usually a considerable amount of carbon oxide because of the low selectivity of the 

catalyst employed [55]. Although the process o f ODH has been widely implemented to 

solve the problem of an unfavourable equilibrium in the absence of oxygen, a high 

reaction temperature is necessary and poor selectivity to the alkanes has often resulted. 

The key aspect of this technology is, therefore, the development of catalysts capable of 

activating only the C-H bonds of the alkane molecule in a flow of oxygen. Designing the 

catalyst with a function to produce lower alkenes is a globally important issue to the 

petrochemical industries [56, 57]. 

In ODH reactions, oxygen or air has been used as oxidant because it is cheap and readily 

available. Substantial gains in process efficiency may be realized by consideration of less 

conventional oxidants such as N2O and CO2. A better understanding of each one of the 

above factors means a better comprehension of the overall process of alkane 

transformation, and hence an improved possibility of increasing the catalytic performance 

to make these processes more attractive to obtain the desired products.  

There are still a number of current research challenges preventing ODH from becoming 

commercial. Due to these limitations, the only current commercial process that utilizes 

lower alkanes as a feedstock in an oxidation reaction is the selective oxidation of butane 

to maleic anhydride and acetic acid. It has been suggested that, due to the well 

established, highly efficient and fully depreciated existing plants, ODH will need to 
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achieve even higher selectivity than the current technologies. Currently, there are no 

commercial processes producing ethene from ethane using ODH and yields up to 70 % 

may be necessary to compete with the current technology [58, 59].  

1.5 Catalytic systems of ODH for lower alkane 

ODH of ethane as an alternative to the highly endothermic thermal pyrolysis has been the 

subject of many studies [60] in which a great variety of catalysts have been formulated 

and tested in the temperature range from 350 ºC to 1000 ºC. Ethene can also be 

synthesized by auto-thermal ODH. Huff and Schmidt [61] reported the conversion of 

ethane in the presence of oxygen over Pt- and Rh- coated ceramic foam monoliths in an 

auto-thermal reactor at very low contact times in the order of milliseconds. Ducarme [62] 

studied the activity of the Co, Ni, and Fe oxides catalytic systems. Conversion of ethane 

was very low at the temperature range of 487 ºC to 585 ºC for Co, Ni and Fe, 

respectively. The specific activity sequence for the three metal oxides is Co > Ni > Fe. In 

the case of Co and Fe oxide catalyst, selectivity to ethene decreases when conversion 

increases with temperature. But this is not observed with Ni even at high temperature and 

this makes nickel the most attractive metal but yielded less promising results for ODH.   

Other catalysts have been divided into two groups, high temperature catalysts and low 

temperature catalysts [63, 64] due to activity dependence on temperature; catalyst activity 

data are given in Table 1.1-1.3. At temperatures lower than 600 ºC, the ethene selectivity 

of 89 % and 91 % at ethane conversion of 19 % and 15 % were reported at 470 ºC on 

B2O3/Al2O3 catalyst at 550 ºC and on K2P1.2Mo10W1Sb1-Fe1Cr0.5Ce0.75On catalysts 

respectively [63]. Catalysts that show high selectivity at higher temperatures (temperature 

higher than 600 ºC) generally do not contain easily reducible metals ions (such as V, Mo, 

W and Sb). The high temperature catalysts typically contain ions and oxides of group IA 
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or IIA metals (alkali or alkali earth metals) such as Li, K and Mg. Low temperature 

catalysts generally contain easily reducible transition metal oxides such as V, Mo and Nb. 

1.5.1 High temperature catalysts 

Catalysts containing ions and oxides of group IA and IIA metals such as Li and Mg are 

active and selective in the ODH of ethane. High selectivity can be achieved when 

chlorine compounds are added to the feed components or if catalysts are modified with 

halide compounds [65]. Kung [66] suggests that these catalysts may work in two ways: 

through a surface reaction or a homogeneous gas phase reaction. An ethane species 

adsorbs onto a surface oxygen atom before having a C-H bond cleaved to form a surface 

ethyl. This ethyl species can then further reacts with an oxygen molecule to form ethene. 

Alternatively, the adsorbed ethyl species can desorb from the surface into the gas phase. 

In this case, the catalyst mainly works as a radical initiator creating charged ethyl radicals 

through heterolytic C-H bond cleavage. The radicals then desorb from the surface and 

participate in homogeneous gas phase radical chemistry. 

Table 1.1: High temperature catalytic system used for the ODH of ethane. 

Catalysts 

Composition 

Temp. 

(ºC) 

Conv. (%) 

C2H6 

Selectivity (%) Yield (%) 

C2H4 

Ref. 

No. C2H4 COx 

SrBi3O4Cl3  660 19.5 89.4 10.6 17.4 67 

KSr2Bi3O4Cl6  660 45.3 92.2 7.8 41.8 67 

Li-Mg-Cl 620 63 72.2 26.4 45.5 68 

Sn/Li-Mg-Cl 620 78.7 71.6 26.1 56.4 68 

Li-Mg  625 53.9 63.8 28.7 34.4 69 

Li-Na-Mg  625 38.0 86.4 13.1 32.8 93 

Li-Co-Mg  550 20.0 70.5 29.6 14.1 93 
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It has been reported, that these gas phase radical reactions can be more selective than the 

heterogeneous reactions leading to an increase in ethene selectivity as temperature is 

increased [67]. Large void fractions and high temperatures are employed to maximize the 

homogeneous gas phase reaction and it has been reported that packing a reactor with 

quartz wool can suppress this homogeneous reaction [68]. Over this class of catalysts, the 

yield improves with increasing temperature due to ethyl radical desorption into the gas 

phase to undergo homogeneous gas phase reactions with oxygen, ultimately forming 

ethene.  It has been demonstrated by many researchers that the activity of Li-Mg base 

catalyst for the conversion of ethane to ethene can be further increased by treatment with 

chlorine [68, 69, 71]. The Li-Mg base catalyst has good activity at 620 ºC, giving 63 % 

ethane conversion without treatment with chlorine. After treating this catalyst with 

chlorine, its activity increased the ethane conversion 81.3 % with ethene selectivity 76 %, 

operating at a lower temperature (570 ºC) [69]. At higher temperatures the catalyst 

assisted homogeneous reactions play an important role [69]. Burch and Crabb [70] also 

show that a significant non-catalytic oxidation dehydrogenation occurs already at 600 ºC. 

Kung [66] agreed that the achieving high activity and selectivity in high temperature 

ODH generally do not contain transition metals that reduce easily. As noted earlier, most 

widely studied catalyst is Li-MgO which abstracts hydrogen on Li+-O- defect sites to 

create alkyl radicals [69, 70]. High performance can be also achieved using Li/MgO 

catalysts promoted with dysprosium [71], with the highest ethene yields being achieved 

when the catalyst is doped with chlorine [72]. It has been suggested that halides are 

beneficial because they help to generate ethyl radical through heterolytic cleavage of the 

C-H bond. The ethyl radical reacts with surface oxygen atoms to form an ethoxide 

species which can decompose to ethene or desorbs into the gas phase and engage in free 

radical chemistry.  
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1.5.2 Low temperature catalysts 

It should be noted that the work presented in this dissertation will deal with a low 

temperature ODH catalyst. The low temperature ODH catalysts contain easily reducible 

transition metal oxides (e.g. V, Mo, Sb, Nb) and are used in a wide array of selective 

oxidation reactions including ODH of ethane, propane, butane, 1-butene and 

ethylbenzene [73-84]. These catalysts operate by a Mars-van-Krevelen type redox 

mechanism. Vanadium and molybdenum oxides are the most studied active catalysts for 

ODH of lower alkanes and have been extensively investigated [78, 80, 81, 83-84]. Often, 

these metal oxides are deposited on the surface of another metal oxide (the support) such 

as SiO2, TiO2, Al2O3 or ZrO2 resulting in improved activity, selectivity and mechanical 

strength. One well known catalyst is Mo/V/Nb oxide [85-87] and can be improved with 

the incorporation of tellurium [88]. Mo/V/Sb mixed oxides are also active and selective 

in ethane ODH achieving ethene selectivity of 80 % at ethane conversions of 65 % [89]. 

Vanadium pyrophosphate (VPO) catalyst has been extensively been studied by Cantuic 

[90] and others [91-94] for ODH reaction. VPO shows very low activity for ethane 

oxidation as compared to mixed metal oxide catalyst [90]. However, the VPO catalyst 

shows a high selectivity to oxygenated products such as acetic acid and acetaldehyde.  

In fact, the choice of support is of fundamental importance in the design of effective 

oxidation catalysts. The choice of support can affect the metal oxide dispersion through 

the number and activity of support hydroxyl groups. Many authors have demonstrated 

that the nature of the support can influence the catalytic activity in selective oxidation 

reactions (including ODH) by over an order of magnitude [95-97]. By first constructing 

TiOx, AlOx and ZrOx monolayers on a SiO2 support and then anchoring isolated VO3 

species on these, turnover frequencies in methanol selective oxidation to formaldehyde 

were modified by a factor of 10. They suggest that the electronegativity of the V-O-V 
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bond influences the activity. By using supports with lower electronegativities, it is 

possible to increase the electron density of the oxygen atom making it more active [98]. 

Table 1.2: Low temperature catalytic system used for the ODH of ethane. 

Catalyst  

Composition 

Temp.  

(ºC) 

Conv. (%)  

C2H6 

Selectivity (%) Yield (%)  

C2H4 

Ref.  

Nos. C2H4 COx 

MoVNbTe600 400 27.3 94.9 5.1 25.9 73 

MoVTe-600 400 2.7 48.2 51.8 1.3 73 

MoVNbTe 400 35.6 93.6 6.5 33.3 79 

MoVNbTe-Si 400 18.0 95.4 4.6 17.2 79 

MoOx  440 0.13 52.1 47.9 0.1 80 

MoVOx 440 9.4 57.9 42.1 5.4 80 

MoVTeNbOx  440 65.0 91.9 7.1 59.7 80 

5% V-TiO2 550 8.0 42.5 56.8 3.4 82 

5% V-Nb2O5 550 8.0 39.6 60.3 3.2 82 

5% V2O5/SiO2 530 5.6 62.0 29.3 3.5 84 

2% V2O5/SiO2 538 30.0 22.0 3.0 6.6 85 

V2O5/Al2O3+K 530 6.2 39.1 34.7 2.4 86 

Mg2V2O7 571 6.5 25.0 75.0 1.6 99 

VMgO 560 21.0 22.0 88.0 4.6 99 

MoVWMn 400 58.0 58.0 42.0 33.6 101 

LiVSb 500 10.0 50.0 50.0 5.0 102 

 

1.5.3 Metal oxide catalysts 

Most of the previous literature discusses the use of mixed metal oxide catalysts for the 

ODH of lower alkanes [99-103]. The most commonly used mixed oxides catalysts are 

shown in Table 1.3. For the mixed metal catalyst, mixed supports (consisting of more 

than one support) can provide benefits beyond those of using single supports [104]. In 

particular, a silica-titanium mixed oxide support is able to preserve the catalytic active 



 

 18 

 

sites of a [VOx/TiO2] or [MoOx/TiO2] catalyst while gaining the mechanical and thermal 

stability of silica based catalysts [105]. These materials also possess new catalytic active 

sites [106]. These types of catalysts often have enhanced acidity due to the creation of 

unique Si-O-Ti sites not present on the individual oxides. Additionally, it has been 

demonstrated that the typical octahedral coordination state of the anatase form of TiO2 

can be accompanied by small tetrahedral sites when using a mixed silica-titanium oxide 

[107, 108]. These new catalytic sites can lead to improved chemical properties and active 

sites useful for catalytic reactions. Other benefits, not observed with single metal oxides, 

are also possible such as higher surface areas and higher active metal dispersions [109]. 

Table 1.3: The catalytic system used for the ODH of ethane. 

Catalysts  

Composition 

Temp.  

(ºC) 

Conv. (%)  

C2H6 

Selectivity (%) Yield (%)  

C2H4 

Ref.  

Nos. C2H4 COx 

MoTeNb 420 0.2 10.3 89.7 0.1 76 

MoVTeNb 380 6.3 95.9 4.1 6.1 76 

MoVTeNb 380 29.0 94.5 5.6 27.4 76 

MoVTeNb 380 12.5 94.5 5.6 11.8 76 

MVNb- A-600 380 9.5 73.0 27.0 6.9 77 

MVTe- A-600 380 39.0 93.0 7.0 36.3 77 

MVTNb-A-600 380 10.0 96.0 4.0 9.6 77 

Mo/V-M-Al 580 33.8 70.7 29.3 23.9 78 

Mo/V 580 21.2 56.4 43.5 11.9 78 

MoVNbTe-γAl 400 23.9 93.6 6.4 22.4 79 

MoVNbTe-αAl 400 29.5 95.0 5.0 28.1 79 

MoVNbTe-Ni 400 18.8 93.2 6.8 17.5 79 

MoVNbTe-Zr 400 14.2 93.6 6.3 13.3 79 

 

In addition to using different support materials, the surface characteristics of a catalyst 

can be tuned by the addition of small quantities of another metal as a promoter. These 

promoters affect the surface properties of a catalyst by creating active sites, improving 
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dispersion, modifying lattice oxygen diffusivity, and adjusting the reducibility of the 

metal cation [92]. Hence, the surface properties of a catalyst can be “tuned” by the 

addition of promoter metals and extensively investigated on silica-titanium supported 

molybdenum catalysts [86, 110-111].  

Mo (V) is considered to be the active site in this reaction but the electronic nature of the 

coordinated oxygen atoms is likely the underlying cause of its activity [92]. Electron spin 

resonance experiments showed that the presence of potassium alters the electronic 

structure of the surface Mo (V) species, lowering molybdenum’s coordination sphere 

from 6 to 5. This change of coordination creates highly distorted molybdenum species 

and may be responsible for the observed increase in propane ODH reactivity [112].  

Though it is understood how these structural changes affect the oxidation/reduction cycle, 

their influence on the nature of oxygen species during reaction remains unclear. Other 

work has focused on the addition of halide promoters to silica-titanium supported 

molybdenum catalysts [78, 80, 85, 111]. Post-reduction X-ray photoelectron 

spectroscopy studies demonstrated that the addition of chlorine strongly influenced the 

reducibility of surface molybdenum oxide species. In the presence of chlorine, propane 

was only able to reduce molybdenum to Mo (V) whereas in the absence of chlorine, 

propane reduced some molybdenum to Mo (IV) [111]. Steady state reaction experiments 

showed improved alkane conversion and alkene yield in ODH reactions over chlorine 

doped catalysts [113]. 

Using V2O5 Le Bars [83] suggested the improved selectivity seems to be a characteristic 

of the reduced surface of the mixed oxide catalyst. However, it can hardly be maintained 

under the reaction conditions because of oxygen diffusion from the bulk. At the steady 

state, the surface of V2O5 is close to being fully oxidized and does not retain any strong 
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acid sites. To enhance the ethene selectivity, an optimum regeneration of the surface, 

acidic properties, and a rapid removal of the ethene from the reaction zone are claimed to 

be essential [114]. Vanadium pentaoxide supported on silica or alumina [64-67] is 

reported to be an active functionalization element of ethane molecule relatively at higher 

temperature. 

Table 1.4: Catalytic performance of the different catalytic systems 

 Catalyts  Temperature 

(ºC) 

Conv.-C2H6 

(Min-Max. %) 

Sel-C2H4 

(Min-Max. %) 

Ref. 

A Li-Mg-Cl 580 – 660 38 – 80 64 - 80 [69,70,93] 

B Mo-V/Support 530 – 550 10 – 21 56 - 58 [78,80,81] 

C Mo-V -Nb-Te 380 – 440 6 – 2 90 - 95 [73,76,77,79] 

D V2O5/Support 530 – 550 5 – 30 22 - 62 [72,84,85,86] 

 

1.6 ODH reaction mechanism for lower alkanes 

Mainly there are three types of initial mechanism for the primary reaction of the ODH of 

alkanes on metal oxide catalysts that have been considered in the literature [99]. These 

are based on the type of oxygen species involved in alkane oxidation which is illustrated 

in Fig.1.1. 

(A) In the redox mechanism, the oxygen of the metal oxide takes part in the reaction 

by abstraction and oxidation of the hydrogen from the hydrocarbon. The OH 

groups being formed in this way are then removed from the surface by 

dehydration. The catalyst is subsequently reoxidized by oxygen from the gas 

phase.                                        

(B) In this mechanism, oxygen participates via its adsorbed state, hydrogen is 

abstracted forming as OH group on the catalyst surface which is removed by 
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dehydration. The active surface oxygen in then restored by oxygen adsorption 

from the gas phase. 

(C) In this mechanism, it is assumed that strongly bound lattice oxygen abstracts 

hydrogen, which is, removed from the surface by hydration with gas-phase 

oxygen. 

CnH2n+2 

  

A) Redox mechanism     CnH2n+1 + MOxH 

     MOx 

       CnH2n + MOx-1 + H2O 

0.5 O2 

       

B) Activation by adsorbed    CnH2n+1 + MOx -OH 

     oxygen     MOx – O(ad.)     

 CnH2n + MOx -OH 

 0.5 O2  

  

C) Activation by lattice oxygen    CnH2n+1 + MOxH 

     (No redox mechanism)  MOx      

       

0.5 O2 

        CnH2n + MOx + H2O 

 

Fig.1.1: Initial mechanism for the ODH of alkanes on metal oxide catalyst [68]. 
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1.7 ODH ethane reaction mechanism 

The reaction mechanism proposed in the literature for ODH of ethane [64, 96, 100] are 

based on consecutive and parallel reactions. These proposed mechanism and the 

associated kinetic modeling have been mainly applied to Mo and V based catalysts. The 

generally accepted mechanism for the oxidation of a hydrocarbon over a reducible metal 

oxide catalyst is the Mars-van Krevelen mechanism. Kung [7] suggested that rupture of 

the first C-H bond is generally slowest step in the ODH reaction, and that the activation 

of the C-H bond by a metal oxide leads to the formation of alkyl or alkoxide species. 

However, the high reactivity of surface intermediates has made direct observation of 

these species difficult and the detailed reaction mechanism for light alkane oxidation 

remains elusive. The ethane molecule is adsorbed on the catalyst surface in the form of an 

ethoxide species, as proposed for the case of V5+ by Oyama [96] or for the case of Mo6+ 

by Thornsteinson [64] and by Lin [101] for the Ni, Cu, Fe metal oxides catalysts. 

Experimental data suggest two types of pathways for ODHE (oxidative dehydrogenation 

of ethane) [115]: 

(A) C2H6 reacts with surface oxides to form a metal-ethoxide and a surface 

hydroxyl,  

(C2H6 + 2M–O    —›     C2H5 –O–M   +     M– O–H)  (1.5) 

The metal ethoxide may then undergo two possible reactions: α- hydrogen abstraction or 

β- hydrogen abstraction, which leads to an aldehyde or C2H4, respectively. 

(CH3CH2 –O–M    —›     CH3 –CHO    +     M–H )  (1.6) 

(CH3CH2 –O–M    —›     CH2 = CH2    +     M– O –H)  (1.7) 
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(B)  C2H6 reacts with surface oxides to form a ethyl-metal complex followed by 

β- hydrogen elimination to give C2H4 and a metal-hydride site, 

(C2H6 + M–O + M    —›     C2H5–M   +     M– O–H)  (1.8) 

(C2H5 – M    —›     C2H4    +     M–H)    (1.9) 

After the reactions in either pathways (A) or (B) take place, surface hydroxyl and/or 

surface hydrogen may undergo the following reactions to produce a reduced metal site 

and water. 

(M-H   + M– O    —›     M    +   M– O–H)   (1.10) 

(M-H   + M– O–H    —›    2M    +   H2O)   (1.11) 

(2M– O–H   —›     M – O +   M + H2O)   (1.12) 

Oxidation of the reduced metal site by O2 then regenerates the oxidized metal site, 

completing the catalytic cycle. 

(M + ½ O2   —›        M– O)     (1.13) 

Thornsteinson [64] suggested schemes for the interaction of ethane with the surface of 

the catalyst to form the ethoxy complex followed by formation of ethene. In preparation 

step, the Mo6+ atoms are reduced to Mo5+ species, treatment with ethane causes Mo5+ to 

disproportionate into Mo4+ and Mo6+. Ethane reacts with the oxoligand on Mo6+ giving an 

ethoxyhydroxyl species. The ethoxy species releases ethene and ultimately Mo4+ is 

produced. Vanadium and niobium help the re-oxidation of Mo4+ to Mo6+ which is the 

species acting as a catalyst for the ODH of ethane into ethene. A hydroxyl ethoxy 

molybdenum is formed and that is decomposes into ethene, water and Mo4+. 
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1.8 Mars-van Krevelen mechanism 

Ethane ODH is typically considered to occur by a network of consecutive and parallel 

reactions as shown in Fig. 1.2 [116]. The three primary reactions that occur are (1) ODH 

of ethane, (2) the undesired direct combustion of ethane and (3) the undesired secondary 

combustion of ethene. Many studies have investigated the reaction mechanism in propane 

and ethane ODH [117-122]. Burch and others have been demonstrated that the 

reducibility of the active metal is closely related to catalytic activity [123-125]. It has also 

been suggested that the ODH reaction rates more closely correlate with UV-Vis 

adsorption edge energy which indicates the ease that lattice oxygen atoms transfer 

electron to the metal center [126]. These results suggest that the reduction of the catalyst 

is involved in the ODH mechanism. Steady State Transient Isotopic Kinetic Analysis 

(SSTIKA) has been used to probe the ODH reaction mechanism. In SSITKA, a reaction 

is allowed to reach steady state. Then the isotopic composition of one of the reactants is 

abruptly switched while maintaining the concentration of the gas. For instance, a feed 

containing 5 % 16O would be abruptly changed to 5 % 18O. The resulting relaxation and 

evolution of products containing 18O atoms provides information about the reaction 

mechanism and can be monitored with a mass spectrometer. 

 

Fig. 1.2: ODH reaction scheme. 

Similar results have been demonstrated for vanadium catalysts as well as it is now widely 

accepted that the ODH of lower alkanes by transition metal catalysts occurs by a Mars-

van Krevelen redox mechanism. During oxidation, the catalyst surface is reduced as 
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lattice oxygen atoms activate ethane molecules; ultimately forming alkenes (Fig.1.3). 

First ethane must adsorb to a surface oxygen atom (O*) and a C-H bond must be cleaved 

forming an alkyl intermediate and a hydroxyl group on the catalyst surface. This initial 

cleavage of the ethane C-H bond is widely considered the rate limiting step and the 

literature consistently shows that consumption rates are first order in ethane concentration 

[119, 120]. The adsorbed alkyl species, which is adsorbed onto oxygen atom, then loses a 

second hydrogen atom forming ethene and another hydroxyl group on the catalyst 

surface. Finally, two hydroxyl groups combine to form water and a lattice vacancy (V*) 

where there was initially an oxygen atom. Gas phase oxygen then adsorbs to the surface 

and undergoes a series of electron transfer processes before being incorporated back into 

the lattice and restoring the initial oxidation state of the catalyst, thus completing the 

redox cycle given in Fig. 1.3 [127]. 

        

Fig. 1.3: Proposed Mars van Krevelen redox mechanism. Left- catalyst reduction by 

alkane. Right-catalyst re-oxidation with O2. 

(½ O2 + Z  —›      [O– Z])     (1.14) 

(CnH2n+2 + [O-Z] —›     CnH2n+1 + [OH] – Z)   (1.15) 

(CnH2n+1 + [O-H]—›      CnH2n+1 + [OH] - Z M– O)  (1.16) 

(2[OH] - Z  —›       H2O + [O-Z] + Z)   (1.17) 

Mars-van Krevelen redox mechanism over reducible metal oxide catalysts shows the 

formation of an OH group and a carbanion, where Z is a vacant site. 
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When in equilibrium with the gas phase, the surface is populated by short-lived oxygen 

species (O2)- and O- that can affect catalyst performance (Fig. 1.4). The strongly 

electrophilic species, O2- and O-, are considered to be responsible for the unselective 

complete oxidation of lower alkanes leading to partial combustion products, CO and CO2, 

while nucleophilic species of metal oxo (M=O) with lattice oxygen anions is believed to 

selectively produce alkene, though the lattice oxygen could participate in the partial 

combustion of ethene [126, 128]. The nature of these oxygen species depends on reaction 

conditions, degree of catalyst surface reduction, the counter metal oxide cation and the 

structure of surface species but the exact relationship is difficult to characterize [129]. 

 

 

Fig. 1.4: Electron transfer processes during catalyst re-oxidation [128]. 

Chen and co-workers [130] have explored the ODH reaction mechanism on MoOx/ZrO2 

catalysts and determined a number of important points. Lattice oxygen is required for 

ODH as evidenced by the slow incorporation of (18O) in the reaction products after an 

isotopic switch. C-H bond activation is irreversible as evidenced by the lack of C3H8 with 

mixed deuterium-hydrogen content during ODH with a C3H8/C3D8 mixture. Kinetic 

isotope effects were observed during propane dehydrogenation and propene combustion 

suggesting that C-H bond dissociation is a kinetically relevant reaction step. These data 

suggest a redox type mechanism where lattice oxygen atoms react with the alkane to 

produce an alkene. The catalyst is reduced during this process and gas phase oxygen must 

then reoxidize the catalyst in a separate step. 
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1.9 Summary of the work described in this thesis  

It is clear from the preceding literature review that MoV oxide catalysts are effective for 

ethane ODH. Hence, in the present study the synthesis of vanadium mixed oxide catalysts 

has been investigated. MoV oxide catalysts have prepared under modified well-controlled 

preparation conditions and are further studied by adding of several different supports.  

In summary, Chapter 1 discusses motivation for research to obtain lower alkenes, mainly 

on vanadium based catalysts. Following this introduction, Chapter 2 presents the 

experimental methods which are mainly focused on the catalyst preparation, catalyst 

characterization, and catalytic reaction procedure and data analysis. Results of metal 

ratios (MoV) variation and reaction variables on MoV oxide catalysts have been 

discussed in Chapter 3. An influence of the addition of oxalic acid in the catalyst 

preparation and its effect on the activity has been studied and discussed in Chapter 4. 

Chapter 5 discusses the results obtained from the effect of various supports on the activity 

of the catalyst and the support loading concentration on the catalyst activity. Chapter 6 

concludes all the investigation made on catalytic systems in the present study with 

proposed future work followed by Appendix 1-5 with detailed description of reactor 

system, GC configuration with data evaluation methods. 
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        Chapter 2 

 

 

 

Chapter 2 

 

Experimental  

 

2.1 Introduction 

In this chapter the details of catalyst preparation, materials and experimental 

measurement procedures used in this thesis are given. 

2.2 Materials used 

The following materials have been used: ammonium molybdate tetrahydrate 

((NH4)6Mo7O24.4H2O) (Sigma-Aldrich,99%), ammonium metavandate NH4VO3 (Sigma-

Aldrich, 99%), oxalic acid (C2H2O4.2H2O) (Riedel-deHaen, 99.5%), alumina (α-Al2O3) 

(Engelhard-Germany), silica amorphous (SiO2) (Aerosil Ox-50 Degussa-Germany), 

Zirconia ( monoclinic zirconium(IV) oxide, ZrO2) (Fluka Chemie AG), niobia 



 

 39 

 

(amorphous niobium(V) oxide, Nb2O5) (Sigma-Aldrich-203920), titania (anatase titanium 

dioxide, TiO2) (Alfa Aesar), quartz-wool, ethane, oxygen, hydrogen, air, helium, argon. 

2.3 Catalyst preparation 

There are several methods for the preparation of metal oxides and each catalyst can be 

prepared through different routes including: precipitation, slurry formation, gelation and 

thermal transformation followed by drying and calcining. There are various preparation 

variables involved in these methods, which can affect the morphology and catalytic 

activity. Heat treatment, pH, temperature and ageing time affects the nature of catalyst in 

precipitation, slurry and deposition precipitation methods.  

2.3.1 Preparation of MoV catalysts by slurry  

Ammonium molybdate tetrahydrate (21.7 g, 0.13 mol), ammonium metavandate (5.7 g, 

0.049 mol) and oxalic acid (10.0 g, 0.079 mol) were mixed in water (75 ml) at room 

temperature then heated at 80 ºC with continuous stirring, resulting a thick dark bluish 

slurry. This slurry was dried at 120 ºC for 16 hours (h) in an oven. The resulting material 

was crushed to form a powder and calcined at 350 ºC for 4 h in flowing air 2 ºC/min 

ramp rate in a furnace.  

2.3.2 Preparation of MoV catalysts by precipitation 

Ammonium metavandate (21.7 g, 0.13 mol) was dissolved in water (50 ml) and heated to 

80 ºC, and then solid oxalic acid (10.0 g, 0.079 mol) was added. The dark redish yellow 

suspension changed to a yellow coloured solution. A second aqueous solution of 

ammonium molybdate tetrahydrate (5.7 g, 0.049 mol) was prepared in water (25 ml) at 

50 ºC with continuous stirring. This ammonium molybdate tetrahydrate solution was 

added into the first solution slowly, and a greenish brown to a dark blue precipitate 
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formed. This was left stirring at 80 ºC to remove excess water until a thick slurry was 

formed. This slurry was dried at 120 ºC for 16 h in an oven. The obtained material was 

crushed and calcined at 350 ºC for 4 h in flowing air 2 ºC/min ramp rate.  

2.3.3 Preparation of supported MoV catalysts by precipitation-deposition 

Catalysts were prepared in similar way to the catalyst prepared in section 2.3.2., with the 

addition of a support material. 30 wt% of amorphous silica (13.10 g, 0.22 mol) powdered 

form was added after the precipitation step, under continuous stirring at 80 ºC to remove 

excess water and to obtain a thick slurry. This slurry was dried at 120 ºC for 16 h in an 

oven. The resultant catalyst was crushed and calcined at 350 ºC for 4 h in flowing air 2 

ºC/min ramp rate. The resulted catalyst was pressed and crushed, and then sieved to 40-

60 mesh size particles for the use in the catalytic reaction tests. Other support materials 

were also used with a similar procedure. 30 wt% of zirconium (IV) oxide monoclinic 

type (ZrO2), niobium (V) oxide (Nb2O5), titanium dioxide anatase (TiO2) and α-alumina 

(Al2O3) were added into the slurry of MoV oxides respectively and then dried into oven 

at 120 °C for 16 h. The precursor powders were then calcined in air at 350 °C for 4 h, in 

separate batches. 

2.4 Catalytic activity measurements 

Steady state catalytic measurements were carried out in a fixed bed stainless steel reactor 

(i.d. 3/8 ”) using 1 g amount of catalyst of 40-60 mesh size particles. The catalyst bed 

was held in the middle of the reactor using glass wool. The catalyst bed was located in 

the isothermal heating zone of the reactor. The reaction temperature was measured by 

using a thermocouple located in the catalyst bed. All transfer lines were kept heated 

above 150 ºC to avoid condensation. The catalyst bed was packed between two quartz-

wool plugs, before and after the catalyst bed to minimize the empty reactor volume. The 
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feed consisted of 15-50 % hydrocarbon, 10-20 % oxygen, with the balance nitrogen. The 

total flow rates ranged between 25 and 100 ml/min. Different pressures (atmospheric 

pressure to 200 psig) and temperatures between 250-340 ºC were used. The reactor 

system is shown in Fig. 2.1. 

 
Fig.2.1: Catalytic reactor set-up system. 
 

Feed and effluent composition analyses were conducted using an Agilent HP gas 

chromatogram (GC) equipped with Porapak N, Hayesep Q and Molecular Sieve columns. 

All columns elluted to TCD and FID detectors using helium as a carrier gas. GC data 

points were collected and averaged after 60 minutes of stabilization on stream and all 

carbon balances were close to 100 % (ie. ±5 %). Conversion, selectivity and yield are all 

calculated on a carbon atom basis.  

Ethane conversion is defined as: 
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where ni and Ci are the number of moles of and carbon atoms in molecule i, respectively. 

It should be noted that the numerator summation contains only the products formed, not 

ethane.  

The selectivity of component i is defined as: 
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And the yield of component i defined as: 
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Using these definitions, the yield of a given component is simply the selectivity of that 

component times the conversion of ethane. The specific details on the various experiment 

regarding product analysis and data evaluation method used is given in Appendix 4. 

2.5 Analysis of products 

The total gas phase product stream was analyzed by online gas chromatography, using a 

TCD and FID. The detailed description of gas chromatography used in this study is 

discussed in Appendix 3. 
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2.5.1 Gas chromatography (GC) 

Gas chromatography (GC) is a physical separation of two or more compounds based on 

their differential distribution between two phases, one of which is stationary and the other 

fluid (mobile phase i.e. carrier gas).  In the case of gas chromatography the mobile phase 

is a gas. This technique specifically involves a sample being vaporized and injected into 

the head of chromatographic column. 

2.5.1.1 Instrumental components 

Gas chromatography mainly consists of five components; i) carrier gas, ii) sample 

injection port, iii) column,  iv) detector and v) data acquisition system (recorder).   

 

Fig.2.2: Schematic diagram of a GC system [1]. 

(i) Carrier gas 

The most common carrier gases used in GC are He, Ar, H2, and N2.  Selection of carrier 

gases depends on the nature of the detector being used. The carrier gas selected must be 
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inert, dry, and pure and may not be adsorbed by the column material. When analyzing gas 

samples, however, the carrier is sometimes selected based on the sample's composition, 

for example, when analyzing a mixture in argon, an argon carrier is preferred, because 

the argon in the sample does not show up on the chromatogram. Helium is commonly 

used as a carrier gas. The carrier gas is also called the mobile phase because it transports 

the sample through the columns. The GC system used in this study used helium as the 

carrier gas. 

(ii) Sample injection port  

The sample to be analyzed is introduced at the injection port via a micro syringe.  The 

injection port is heated in order to volatilize the sample.  Once in the gas phase, the 

sample is carried onto the column by the carrier gas. The volume injected can be further 

reduced by using a split injection system in which a controlled fraction of the injected 

sample is carried away by a gas stream before entering the column.  
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Fig.2.3: Diagram of a sample injection port [1]. 

(iii) Columns 

The column is where the components of the sample are separated and contains the 

stationary phase.  GC columns are of two types, packed and capillary, and are composed 

of three elements; 

1) the container for the packing  

2) the solid support 

3) stationary phase 

The solid support provides a large inert surface area to hold the fluid phase. The 

stationary phase is the only active portion of the column. Separation takes place between 

the carrier gas and this material.  The affinity of the sample for the stationary phase 

determines the length of the time individual sample components will remain in the 
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column.  Those compounds with the least affinity emerge first and those with the greatest 

affinity emerge last. Materials for use as stationary phase are classed as polar or non-

polar in nature. 

As the components move into the column from the injection port they adsorb in the 

stationary phase and are retained.  Upon desorption into the mobile phase they are carried 

further down the column.  This process is repeated many times as the components 

migrate through the column.  Components that interact more strongly with the stationary 

phase spend proportionally less time in the mobile phase and therefore move through the 

column more slowly.  Normally the column is chosen such that its polarity matches that 

of the sample.  When this is the case, the interaction and elution times can be rationalized 

according to Raoult’s law and the relationship between vapor pressure and enthalpy of 

vaporization.   

(iv) Detectors  

If the column conditions are chosen correctly, the components in the sample will exit the 

column and flow past the detector one at a time.  There are several different types of 

detectors that can be connected to a GC. Flame-ionization detectors (FID), flame 

photometric detectors (FPD) and thermal conductivity detectors (TCD) are very common 

and are useful for determining the concentration of specific compounds. The choice of 

detector is determined by the general class of compounds being analyzed and the 

sensitivity required.  

(a) Flame ionization detector (FID)   

Flame ionization detectors (FID) are the most widely used detectors for organic samples.  

FIDs use an air/hydrogen flame to pyrolyze the sample.  The pyrolysis of the compounds 
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in the flame creates ions.  A voltage is applied across the flame and the resulting flow of 

ions is detected as a current.  The number of ions produced, and therefore the resulting 

current, depends on the flame conditions and the identity of the molecule in question (the 

current is proportional to the number of reduced carbons in the molecule).  In other 

words, the detector shows a different response to each compound. For this reason, 

separate calibrations must be performed for each compound analyzed.  

(b) Thermal conductivity detector (TCD) 

TCD is used to analyse inorganic gases (argon, nitrogen, hydrogen, etc) and lower 

hydrocarbon molecules. The TCD is often called a universal detector because it responds 

to all compounds. The TCD works by measuring the change in carrier gas thermal 

conductivity caused by the presence of the sample, which has a different thermal 

conductivity from that of the carrier gas. The TCD compares the thermal conductivity of 

two gas flows carrier (reference) gas and the sample. Helium is typically used as the 

carrier gas for the TCD because of its high thermal conductivity. Changes in the 

temperature of the electrically-heated wires in the detector are affected by the thermal 

conductivity of the gas which flows around this. The changes in this thermal conductivity 

are sensed as a change in electrical resistance and are measured. The TCD can detect 

concentrations from down to around 100 ppm on a flat baseline with sharp peaks. The 

concentration of a sample component can be estimated by the ratio of the analyzed peak 

area to all components (peaks) areas in the sample. Calibration with a standard mixture is 

required, both to check linearity and as calibration for the sample. 

 

 



 

 48 

 

(v) Data acquisition 

Computer based systems are extensivly used for the analysis of data from the GC 

systems. The raw data can be plotted to from the chromatographs in variable scales of 

components with a retention time and the response axis.   

2.6 Surface and bulk characterization 

2.6.1 Surface area (BET) 

In the field of heterogeneous catalysis, the surface area is an important factor in the 

catalytic activity. BET serves as the basis for an important analysis technique for the 

measurement of the specific surface area of a material. There are different methods used 

to measure surface area and each method can yield different results. Most methods are 

based on the physisorption of nitrogen and either a single point or multipoint method is 

used to calculate the surface area. A common and widely used technique for the 

estimation of surface area is the BET meyhod, named after Brunauer, Emmet and Teller 

and developed in 1938.     

The BET method is widely used in surface science for the calculation of surface areas of 

solids by physical adsorption of gas molecules. A total surface area Stotal and a specific 

surface area S are evaluated by the following equations: 

SBET,total = (vm Ns) / V           (2.4) 

vm =  va(1-P/P0)            (2.5) 

where N is the Avogadro's number, S: cross section of the adsorbing species, V: molar 

volume of adsorbate gas, P: partial pressure of adsorbate gas, ɑ: mass of adsorbent (g). 

http://en.wikipedia.org/wiki/Area
http://en.wikipedia.org/wiki/Solid
http://en.wikipedia.org/wiki/Specific_surface_area
http://en.wikipedia.org/wiki/Specific_surface_area
http://en.wikipedia.org/wiki/Avogadro%27s_number
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In the present study the surface areas of the samples were determined by the BET method 

using a Micrometrics ASAP2000 (Gemini) instrument. Measurement of the surface area 

was achieved by N2 physisorption at -196 ºC, the temperature of liquid nitrogen. Before 

each measurement, the sample was degassed for 1 h at 100 ºC under flowing N2. The 

sample tube (with sample) was first evacuated and the void volume of the apparatus 

measured using helium. Afterwards the sample tube was again evacuated after immersed 

into liquid nitrogen, followed by adsorption of the nitrogen gas. The pressure drop versus 

volume of nitrogen adsorbed was then recorded, which could be used to calculate the 

surface area according to the method described above. 

2.6.2 X-Ray diffraction (XRD) 

XRD is a versatile, non-destructive technique that reveals detailed information about the 

crystallographic structure of solid materials.  

The technique is based on observing the scattered intensity of an X-ray beam hitting a 

sample as a function of incident and scattered angle, polarization, and wavelength or 

energy. Diffraction occurs when electromagnetic radiation impinges on a material with a 

comparable length scale to the wavelength of radiation. The distances of crystal lattices 

are between 0.15-0.4 nm in the electromagnetic spectrum of X-ray, which allows 

diffraction to occur. 
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Fig.2.4: A simple illustration of X-ray diffraction [2].  

Two X-ray beams with wavelength λ are reflected from two adjacent crystal lattices. The 

resulting diffraction follows a mathematical equation called Bragg’s law. 

d = n λ /2sin θ    (2.6)  

where d is the interplanar spacing, θ is the diffraction angle, n is an integer and λ is the 

wavelength of the radiation. When the distances A-B and B-C are a whole number of 

wavelengths there will be constructive interference and a reflection will be observed. The 

equation can be applied to both single crystal and crystalline powders due to the random 

orientation of the crystallites.  

This study used an Enraf Nonius PSD120 diffractometer with a monochromatic [CuKα] 

source operated at 40 keV and 30 mA. Phase identification was performed by matching 

experimental patterns to the JCPDS.    
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2.6.3 X-ray fluorescence (XRF) 

X-ray fluorescence (XRF) spectrometry is an elemental analysis technique with broad 

application. XRF is based on the principle that individual atoms, when excited by an 

external energy source, emit X-ray photons of a characteristic energy or wavelength. By 

counting the number of photons of each energy level emitted from a sample, the elements 

present may be identified and quantified. XRF is capable of analyzing solid, liquid, and 

thin-film samples for both major and trace (ppm-level) components.  

The identification of elements by XRF is possible due to the characteristic radiation 

emitted from the inner electronic shells of the atoms under certain conditions. The 

emitted quanta of radiation are X-ray photons whose specific energies permit the 

identification of their source atoms. X-rays are generated using an X-ray tube and 

focused onto the surface to be analyzed. At its simplest, the technique examines the 

signal given by an object which has had X-rays directed at it. This signal shows which 

chemical elements are present and at what quantity. The technique is capable of great 

accuracy with clean and flat samples that can be compared with standards of similar, 

known, composition. Without the limitation of a sample chamber, objects of any size can 

be investigated without the need for sample removal. In most XRF systems the beam of 

X-rays incident on the sample are produced with a vacuum tube and created by 

bombarding a target (such as Rh, W, Cu, or Mo) with highly accelerated electrons. 
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Fig.2.5: Diagram of the Bremsstrahlung effect in XRF [3]. 

 

The electrons as shown in Fig.2.5 penetrate the target atoms, they may have their 

direction changed as they pass near the nucleus of the target atoms causing a sudden 

deceleration and loss of kinetic energy. In this loss of kinetic energy the electron may 

emit an X-ray with energy related to the amount of energy lost. As a result a broad 

spectrum of X-ray energies, known as a Bremsstrahlung continuum, is emitted from the 

X-ray tube target. This continuum can be adjusted by tube high voltage settings, beam 

filtering and secondary targets to focus on detection of specific elements within the 

sample. This capitalizes on the different absorption edges of each element. The 

accelerated electrons also cause the target to fluoresce. These target characteristic X-rays 

are also incident on the sample, and must be considered during data analysis. 

In the present study, the XRF analysis was performed using Horiba XGT-7000 X-ray 

analytical microscope fitted with a rhodium X-ray tube operating at 50 kV, with a nickel 

filter with a spot size of 1.2 mm and a silicon detector. 
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2.6.4 Scanning electron microscopy (SEM) 

Scanning electron microscopy (SEM) is a powerful technique in the examination of 

materials morphology.The SEM uses a focused beam of high-energy electrons to 

generate a variety of signals at the surface of sample. The signals that derive from 

electron-sample interactions reveal information about the sample including external 

morphology (texture), crystalline structure and orientation of materials making up the 

sample. In most applications, data are collected over a selected area of the surface of the 

sample, and a 2-dimensional image is generated that displays special variations in these 

properties. Areas ranging from approximately 1 cm to 5 µm in width can be imaged in a 

scanning mode using conventional SEM techniques (magnification ranging from 20 times 

to approximately 30,000 times, with resolution of 50 to 100 nm).  

Accelerated electrons in an SEM carry significant amounts of kinetic energy, and this 

energy is dissipated as a variety of signals produced by electron-sample interactions when 

the incident electrons are decelerated in the solid sample. These signals include 

secondary electrons that produce SEM images. Secondary electrons and backscattered 

electrons are commonly used for imaging samples: secondary electrons are most valuable 

for showing morphology and topography on samples. X-ray generation is produced by 

inelastic collisions of the incident electrons with electrons in discrete orbitals (shells) of 

atoms in the sample. As the excited electrons return to lower energy states, they yield X-

rays that are of a fixed wavelength that is related to the difference in energy levels of 

electrons in different shells for a given element. 

The SEM analysis was performed using a Zeiss Evo-40 series scanning electron   

microscope in the present work. 
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2.6.5 Energy dispersive X-ray analysis (EDX) 

EDX is an X-ray technique used to identify the elemental composition of a sample. 

During EDX Analysis, the sample is bombarded with an electron beam inside the 

scanning electron microscope. The incident beam excites an electron in inner shell 

prompting its ejection resulting in the formation of an electron hole within the atom’s 

electronic structure. A position vacated by an ejected inner shell electron is eventually 

occupied by a higher-energy electron from an outer shell. To be able to do so, however, 

the transferring outer electron must give up some of its energy by emitting an X-ray. 

The amount of energy released by the transferring electron depends on which shell it is 

transferring from, as well as which shell it is transferring to. Furthermore, the atom of 

every element releases X-rays with unique amounts of energy during the transferring 

process. Thus, by measuring the amounts of energy present in the X-rays being released 

by a specimen during electron beam bombardment, the identity of the atom from which 

the X-ray was emitted can be established. 

The EDX detector measures the number of emitted X-rays versus their energy .The 

energy of the X-rays is characteristic of the element from which X-ray was emitted. The 

EDX detector converts the energy of each individual X-ray into voltage signal of 

proportional size. This is achieved through a three stage process. Firstly the X-ray is 

converted into a charge by an ionization of atoms in the semiconductor crystals. Secondly 

this charge converted into the voltage signal by the field effect transmitter amplifier. 

Finally the voltage signal is input the pulse processor for measurement. The output from 

the amplifier is a voltage ramp where each X-ray appears as a voltage step on the ramp.  

The EDX analysis in the present study was carried out on a Zeiss Evo-40 series SEM in 

conjunction with INCAx-sight EDX detector equipment. 
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2.6.6 X-ray photoelectron spectroscopy (XPS) 

X-ray photoelectron spectroscopy (XPS) is used to characterize the surface region of 

materials, as it provides information on the elemental composition, the oxidation state of 

elements and, dispersion of one phase over another by analyzing the energy distribution 

of electrons ejected from the material when it is exposed to X-rays of a well-defined 

energy. XPS reveals which chemical elements are present at the surface and the nature of 

the chemical that exists between these elements. It can detect all of the elements except 

hydrogen and helium.  

XPS is based on photoelectron emission principle. In a common XPS spectrum some of 

the photo-ejected electrons inelastically scatter through the sample to the surface, while 

others undergo prompt emission and suffer no energy loss in escaping the surface and 

into the surrounding vacuum. Once these photo-ejected electrons are in the vacuum, they 

are collected by an electron analyzer that measures their kinetic energy. An electron 

energy analyzer produces an energy spectrum of intensity (number of photo-ejected 

electrons versus time) versus binding energy (the energy the electrons had before they 

left the atom). Each prominent energy peak on the spectrum corresponds to a specific 

element. 

E = hν       (2.7) 

There is a threshold in frequency below which light, regardless of intensity, fails to eject 

electrons from a metallic surface.  

hνc > eΦm       (2.8) 

where, h- is Planck’s constant (6.62 x 10-34 J s), ν– is the frequency (Hz) of the radiation 

and Φm is the work function. 
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Fig.2.6: Energy distribution of the emitted photoelectrons in XPS [4]. 

 

In photoelectron spectroscopy such as XPS, AES (Auger Electron Spectroscopy) and 

UPS (Ultravilot Photoemission Spectroscopy), the photon energies range from 1200-1500 

eV much greater than any typical work function values (2-5 eV). In these techniques, the 

kinetic energy distribution of the emitted photoelectrons (i.e. the number of emitted 

electrons as a function of their kinetic energy) can be measured using an appropriate 

electron energy analyzer and a photoelectron spectrum can thus be recorded. 

In the present study, XPS spectra were recorded using a Kratos Axis Ultra-DLD 

photoelectron spectrometer. Samples were run using a monochromatic aluminum X-ray 

source (hν =1486.6 eV). A Kratos charge neutralization system was used to minimize 

sample charging. All high-resolution spectra were run at pass energy of 40 eV, whilst 

survey spectra were run at energy of 160 eV. 
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2.6.7 Transmission electron microscopy (TEM) 

Transmission electron microscopy (TEM) is useful for understanding the internal 

microstructure of materials at the nanometer level. It allows real-space images of 

materials with resolutions on the order of a few tenths to a few nanometers to be 

obtained, depending on the imaging conditions, and simultaneously obtain diffraction 

information from specific regions in the images. Variations in the intensity of electron 

scattering across a thin specimen can be used to image strain fields, defects such as 

dislocations and second-phase particles, and even atomic columns in materials under 

certain imaging conditions. 

In addition to diffraction and imaging, the high-energy electrons (usually in the range of 

100 to 400 keV of kinetic energy) in TEM cause electronic excitations of the atoms in the 

specimen. Two important spectroscopic techniques make use of these excitations by 

incorporating suitable detectors into the transmission electron microscope, energy-

dispersive X-ray spectroscopy (EDS), and electron energy loss spectroscopy (EELS). 

Nanometer-scale chemical compositional analysis can be performed by using a focused 

electron probe. Special distribution of elements can be obtained by scanning the probe 

over the specimen, or by energy-filtered imaging, a special mode in advanced EELS 

spectrometer. 

Electrons are usually generated in an electron microscope by a process known as 

thermionic emission from a filament, usually tungsten, in the same manner as a light 

bulb, or alternatively by field electron emission [5]. The electrons are then accelerated by 

an electric potential and focused by electrostatic and electromagnetic lenses onto the 

sample. The transmitted beam contains information about electron density, phase and 
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periodicity and this beam is used to form an image. Layout of optical components in a 

TEM is given in Fig. 2.7. 

 

  

Fig.2.7: Layout of optical components of TEM [5]. 

 

In the present study, samples analyzed by TEM were prepared by dipping a carbon-

coated copper TEM grid directly into the finely ground dry catalyst powder and then 

shaking off any loosely bound residue. Scanning transmission electron microscopy 
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(STEM) high angle annular dark field (HAADF) imaging was used to image the 

individual nanoparticles at atomic resolution with an aberration corrected JEOL 2200FS 

(S) TEM operating at 200 kV. 

2.6.8 Raman spectroscopy 

Raman spectroscopy is useful analytical tool for quickly identifying structure of the 

catalysts. Vibrational information is specific to the chemical bonds and symmetry of 

molecules. Therefore, it provides a fingerprint by which the molecule can be identified. 

Raman scattering (or the Raman Effect) was discovered in 1928 by C. V. Raman who 

won the Nobel Prize for his work. Raman spectroscopy offers several advantages for 

microscopic analysis. Since it is a scattering technique, specimens do not need to be fixed 

or sectioned. Raman spectra can be collected from a very small volume (< 1 µm in 

diameter); these spectra allow the identification of species present in that volume. Water 

does not generally interfere with Raman spectral analysis.  

When light is scattered from a molecule or crystal, most photons are elastically scattered. 

The scattered photons have the same energy (frequency) and, therefore, wavelength, as 

the incident photons. However, a small fraction of light is scattered at optical frequencies 

different from, and usually lower than, the frequency of the incident photons. The process 

leading to this inelastic scatter is termed the Raman effect. Raman scattering can occur 

with a change in vibrational, rotational or electronic energy of a molecule. If the 

scattering is elastic, the process is called Rayleigh scattering. If it is inelastic, the process 

is called Raman scattering. 

The Raman scattering arises when a photon is incident on a molecule and interacts with 

the electric dipole of the molecule. When a probe beam of radiation described by an 
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electric field E interacts with a material, it induces a dipole moment, μ, in the molecules 

that make up the material: 

μ = a x E     (2.9)    

where, a is the polarizability of the molecule. The polarizability is a proportionality 

constant describing the deformability of the molecule. In order for a molecule to be 

Raman-active, it must possess a molecular bond with a polarizability that varies as a 

function of interatomic distance. Light striking a molecule with such a bond can be 

absorbed and then re-emitted at a different frequency (Raman-shifted), corresponding to 

the frequency of the vibrational mode of the bond. 

It is a form of electronic spectroscopy, although the spectrum contains vibrational 

frequencies. In classical terms, the interaction can be viewed as a perturbation of the 

molecule’s electric field. In quantum mechanics the scattering is described as an 

excitation to a virtual state lower in energy than a real electronic transition with nearly 

coincident de-excitation and a change in vibrational energy. The scattering event occurs 

in 10-14 seconds or less. The virtual state description of scattering is shown in Fig. 2.8. 

 
Fig.2.8: Energy-level diagram showing the states involved in Raman signal [6]. 
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The energy difference between the incident and scattered photons is represented by the 

arrows of different lengths in Fig. 2.8. Numerically, the energy difference between the 

initial and final vibrational levels, or Raman shift is calculated using equation 2.10. 

  ῡ = (1/λincident) -  (1/λscattered)  (2.10) 

In which λincident and λscattered are the wavelengths (in cm) of the incident and Raman 

scattered photons, respectively. The vibrational energy is ultimately dissipated as heat. 

Because of the low intensity of Raman scattering, the heat dissipation does not cause a 

measurable temperature rise in a material. At room temperature the thermal population of 

vibrational excited states is low, although not zero. Therefore, the initial state is the 

ground state, and the scattered photon will have lower energy (longer wavelength) than 

the exciting photon [6].  

A small fraction of the molecules are in vibrationally excited states. Raman scattering 

from vibrationally excited molecules leaves the molecule in the ground state. The 

scattered photon appears at higher energy, as shown in Fig. 2.8. This anti-Stokes-shifted 

Raman spectrum is always weaker than the Stokes-shifted spectrum, but at room 

temperature it is strong enough to be useful for vibrational frequencies less than about 

1500 cm-1. The Stokes and anti-Stokes spectra contain the same frequency information. 

The ratio of anti-Stokes to Stokes intensity at any vibrational frequency is a measure of 

temperature. Anti-Stokes Raman scattering is used for contactless thermometry. The anti-

Stokes spectrum is also used when the Stokes spectrum is not directly observable, for 

example because of poor detector response or spectrograph efficiency. 

Raman spectroscopy was carried out in the present work with a Renishaw inVia Raman 

Microscope using a 514 nm laser source. For initial studies, samples were mounted on a 

microscope slide and spectra recorded under ambient conditions in the open atmosphere. 
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A series of Raman measurements were also made in an environment cell under controlled 

conditions. All catalysts were heated from ambient temperature to 150 ºC in a flow of dry 

nitrogen and spectra were collected at intervals of 10 ºC. 

2.6.9 Thermogravimetric analysis (TGA) 

Thermogravimetric analysis (TGA) is a method of thermal analysis in which changes in 

physical and chemical properties of materials are measured as a function of increasing 

temperature (with constant heating rate), or as a function of time (with constant 

temperature and/or constant mass loss). The technique can characterize materials that 

exhibit weight loss or gain due to decomposition, oxidation, or dehydration.  

TGA is a type of testing that is performed on samples to determine changes in weight in 

relation to change in temerature. As many weight loss curves look similar, the weight loss 

curve may require transformation before results may be interpreted. A derivative weight 

loss curve can identify the point where weight loss is most apparent [7]. Again, 

interpretation is limited without further modifications and deconvolution of the 

overlapping peaks may be required. TGA is a process that utilizes heat and stoichiometry 

ratios to determine the percent by mass ratio of a solute. If the compounds in the mixture 

that remain are known, then the percentage by mass can be determined by taking the 

weight of what is left in the mixture and dividing it by the initial mass. The 

stoichiometric ratio can be used to calculate the percent mass of the substance in a 

sample. 

In the present study, TGA analysis of the catalyst was carried out using a Setaram Labsys 

instrument enabling concurrent weight loss with heat flow changes (TG-DTA). The 

experiments were carried out in an inert N2 atmosphere from 30 ºC to 600 ºC with a ramp 

rate of 5 ºC/min. 
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Chapter 3 

 

 

 

Chapter 3 

 

Results of metal ratio impact on the catalytic performance of 

MoV oxide catalysts 

 

3.1 Introduction 

This chapter includes the results and discussion of the catalyst preparation by varying the 

vanadium concentration and using molybdenum as a base metal oxide. A list for all of the 

catalysts prepared with different metal ratios is given in Table 3.1. Catalytic activity tests 

were carried out as explained in Chapter 2. The feed consisted of ethane, oxygen and 

nitrogen in the molar ratio of 40:10:50. The feed and reaction products were analyzed 

online by a GC equipped with a TCD and FID. 
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Table 3.1: Catalysts prepared by varying the vanadium concentrations. 

Catalyst Ref. Metal ratio (Mo/V) 

Mo1V0.12           1 : 0.12 

Mo1V0.25           1 : 0.25 

Mo1V0.40           1 : 0.40 

Mo1V0.60           1 : 0.60 

Mo1V0.80           1 : 0.80 

Mo1V1           1 : 1 

  

3.2 Experimental results 

3.2.1 Effect of vanadium concentration on the catalytic activity 

The conversion of ethane and product selectivities of these catalysts was tested at 

different temperatures (270 - 310 °C). Tables 3.2 - 3.4 presents catalysts testing results 

for all catalysts. Among these catalysts series, Mo1V0.40 shows the highest activity with 70 

% selectivity to ethene and  15 % conversion of ethane at low temperature (270 °C), 

although it produces a significant amount of acetic acid (AA) and a lower amount of 

carbon oxide (COx). Mo1V1 was used as a reference as this gives the lowest ethene 

selectivity and highest carbon oxide formation. The catalyst with the lowest vanadium 

concentration (Mo1V0.12) shows poor activity and high selectivity to carbon oxide 

formation, the same behavior as seen with the catalyst prepared with the highest 

concentration of vanadium (Mo1V1). However, the carbon monoxide formation is high 

with low vanadium concentration and increases rapidly with increasing concentration of 

vanadium from 1:0.60 – 1:1. 
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Table 3.2: Catalytic activity results at 270 ºC. 

Cat. Conv. (%) Selectivity (%) Yield (%) 

Ref. C2H6 O2 CO2 CO C2H4 AA C2H4 

Mo1V0.12 2.8 4.4 8.6 34.7 55.6 1.1 1.6 

Mo1V0.25 11.3 31.6 4.7 15.2 65.8 14.3 7.5 

Mo1V0.40 16.7 60.4 3.4 6.6 69.6 20.4 10.3 

Mo1V0.60 11.2 28.1 8.7 16.6 59.3 15.4 6.6 

Mo1V0.80 9.2 23.9 8.9 20.7 57.3 13.1 5.3 

Mo1V1 5.7 13.7 9.1 44.5 39.7 6.7 2.3 

Reaction conditions: Pressure = 70 psig, Temp. = 270 ºC, feed ratio = ethane: 

oxygen: nitrogen (40:10:50), catalyst weight = 1 g, feed flow = 25 ml/min. 

 

Table 3.3: Catalytic activity results at 290 ºC. 

Cat. Conv. (%) Selectivity (%) Yield (%) 

Ref. C2H6 O2 CO2 CO C2H4 AA C2H4 

Mo1V0.12 4.0 8.5 9.9 37.6 50.9 1.6 2.1 

Mo1V0.25 16.1 46.8 5.1 16.9 60.6 17.5 9.8 

Mo1V0.40 21.8 80.2 6.4 8.8 66.5 18.4 14.5 

Mo1V0.60 17.2 62.7 10.1 20.4 52.7 16.9 9.1 

Mo1V0.80 14.8 54.1 10.4 24.0 51.0 14.6 7.6 

Mo1V1 9.9 47.3 11.6 48.1 28.4 11.9 2.8 

Reaction conditions: Pressure = 70 psig, Temp. = 290 ºC, feed ratio = ethane: 

oxygen: nitrogen (40:10:50), catalyst weight = 1 g, feed flow = 25 ml/min. 

 

Table 3.4: Catalytic activity results at 310 ºC. 

Cat. Conv. (%) Selectivity (%) Yield (%) 

Ref. C2H6 O2 CO2 CO C2H4 AA C2H4 

Mo1V0.12 6.0 14.6 11.4 39.4 47.3 1.9 2.8 

Mo1V0.25 19.1 71.3 7.8 16.5 57.5 18.2 11 

Mo1V0.40 23.9 98.6 8.6 10.4 62.9 20.1 15 

Mo1V0.60 21.2 88.1 11.6 22.4 48.3 17.7 10.2 

Mo1V0.80 17.4 68.8 12.4 26.1 45.1 15.4 7.9 

Mo1V1 12.7 56.4 13.2 50.3 24.2 12.3 3.2 

Reaction conditions: Pressure = 70 psig, Temp. = 310 ºC, feed ratio = ethane: 

oxygen: nitrogen (40:10:50), catalyst weight = 1 g, feed flow = 25 ml/min. 
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Catalytic activity data shows that the catalyst prepared with composition Mo1V0.40 gives 

ethane conversion of 22 % with 67 % selectivity to ethene at 290 °C. This catalyst shows 

higher activity at all the reaction conditions tested and gives highest yield of ethene 15 % 

at 310 °C. Catalyst Mo1V0.40 is more active, as reported by many researchers, than a 

catalyst with a 2.5:1 molar ratio of Mo: V in a molybdenum and vanadium mixed oxides 

catalyst which has 5 % ethane conversion with 86 % selectivity to ethene at similar 

process conditions [1-2].  

In a recent study, a bimetallic catalytic system prepared with 2.5:1 ratio of molybdenum 

vanadium did not give 100 % ethene selectivity even at the lowest ethane conversion. 

Using Mo8V2Nb1Ox, Thorsteinson reported 100 % ethene selectivity for a ratio (2.5:1) of 

molybdenum vanadium in mixed metal oxides compositions, although the experimental 

conditions are in that case very dissilar to the conditions used in the present experiments.  

3.2.2 Effect of feed composition on the catalytic activity 

Based on the result of tests (Table 3.2 - 3.4), Mo1V0.40 was selected as an optimum 

catalyst and used for further studies. In the first instance, the feed composition was 

changed in order to see the effect of ethane concentration on the catalyst performance. 

Four different ethane concentrations were introduced into the feed gas while the oxygen 

concentration was kept constant in the feed gas. Feed concentrations ratio is given in 

Table: 3.5.   

Table 3.5: Ethane concentration variation in the feed gas. 

Feed Gas Mole (%) 

 
Feed-1 Feed-2 Feed-3 Feed-4 

Ethane 50 40 30 15 

Oxygen 10 10 10 10 

Nitrogen 40 50 60 75 
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In these experiments, the catalyst (Mo1V0.40) was tested for four different feed gas 

composition at different reaction temperatures (250 – 310 ºC) to optimize the feed gas 

ratio. 

3.2.2.1 Ethane concentration impact at 250 ºC. 

Table 3.6: Testing results with varying ethane concentration in the feed at 250 ºC 

Feed Conv. (%) Selectivity (%) Yield (%) 

Ref. C2H6 O2 CO2 CO C2H4 AA C2H4 

Feed-1 6.9 25.8 2.6 5.4 75.6 16.4 5.2 

Feed-2 8.9 36.4 3.1 5.7 77.1 14.1 6.9 

Feed-3 13.4 30.7 5.3 7.1 69.8 17.8 9.4 

Feed-4 17.3 23.1 6.9 8.3 65.3 19.5 11.3 

Reaction conditions: Pressure = 70 psig, temp. = 250 ºC, catalyst wt. = 1 g, feed flow 

= 25 ml/min. 

 

3.2.2.2 Ethane concentration impact at 270 ºC. 

 

Table 3.7: Testing results with varying ethane concentration in the feed at 270 ºC 

Feed Conv. (%) Selectivity (%) Yield (%) 

Ref. C2H6 O2 CO2 CO C2H4 AA C2H4 

Feed-1 13.3 46.6 3.1 6.1 68.7 22.1 9.2 

Feed-2 16.7 60.4 5.4 6.6 69.6 18.4 10.2 

Feed-3 18.2 56.1 6.9 7.6 63.6 21.9 11.6 

Feed-4 22.4 41.6 8.8 9.6 55.8 25.8 12.5 

Reaction conditions: Pressure = 70 psig, temp. = 270 ºC, catalyst wt. = 1 g, feed flow 

= 25 ml/min. 

At low temperature (250 - 270 ºC), when the ethane and oxygen ratio changes from 50:10 

to 15:10 in the feed gas the ethane conversion increases from 7 to 22 % and the 

distribution of other products is slightly affected by the change in the feed composition. 

With a fixed concentration of O2 in the feed, the oxygen conversion increases with 
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increasing concentration of ethane. Ethene selectivity behavior depends mainly on ethane 

conversion but COx behaves different and show highest ethene selectivity with Feed-2 

(composition of ethane 40 %, oxygen 10 % and nitrogen 50 %) with low selectivities of 

COx and AA. 

3.2.2.3 Ethane concentration impact at 290 ºC. 

Table 3.8: Testing results with varying ethane concentration in the feed at 290 ºC. 

Feed Conv. (%) Selectivity (%) Yield (%) 

Ref. C2H6 O2 CO2 CO C2H4 AA C2H4 

Feed-1 17.8 67.5 4.5 7.1 59.4 29 10.6 

Feed-2 21.8 80.2 6.4 8.1 66.5 20.3 14.5 

Feed-3 24.7 69.7 9.9 9.6 56.6 23.9 14 

Feed-4 27.4 51.3 12.1 11.7 49.1 28.2 13.5 

Reaction conditions: Pressure = 70 psig, temp. = 290 ºC, catalyst wt. = 1 g, feed flow 

= 25 ml/min. 

3.2.2.4 Ethane concentration impact at 310 ºC. 

Table 3.9: Testing results with varying ethane concentration in the feed at 310 ºC. 

Feed Conv. (%) Selectivity (%) Yield (%) 

Ref. C2H6 O2 CO2 CO C2H4 AA C2H4 

Feed-1 22.2 95.6 6.2 7.6 57.3 28.9 12.7 

Feed-2 23.9 98.6 8.6 10.4 60.9 20.1 14.6 

Feed-3 28.6 95.7 11.3 10.9 51.1 27.1 14.5 

Feed-4 33.6 91.4 18.2 13.2 40.7 29.9 13.7 

Reaction conditions: Pressure = 70 psig, temp. = 310 ºC, catalyst wt. = 1 g, feed flow 

= 25 ml/min. 

Catalytic activity tested at all temperatures shows that the catalyst has highest selectivity 

to ethene with Feed-2 with low carbon oxide formation. Catalyst activity increases with 

decreasing concentration of ethane in the feed and the selectivity to ethene also decreases 
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with the formation of more carbon oxide in the products. Hoever, there is no significant 

change in the acetic acid formation. With a fixed concentration of oxygen in the feed, the 

oxygen conversion increases with increasing concentration of ethane. 

As expected, the ethane conversion is increased with temperature to a maximum at 290 

°C and then remained more or less constant. This levelling-off appears to be due to non-

availability of surplus oxygen in the reaction mixture. However, the ethane conversion is 

highest in Feed-4 (ethane 15 %) with high carbon monoxide and carbon dioxide 

selectivities of 13 % and 18 % respectively at 310 ºC, while Feed-2 (ethane 40 %) shows 

highest activity in terms of having high selectivity to ethene with low carbon oxide 

formation. The catalyst activity increases with decreasing ethane concentration in the 

feed from 50 % to 15 % whilst generating a large amount of carbon oxide and low ethene 

formation with no significant changes in acetic acid selectivity.  

3.2.3 Temperature effect on catalyst (Mo1V0.40) activity.  

Fig. 3.1 shows clearly the temperature dependence of ethane conversion to ethene, carbon 

dioxide and carbon monoxide selectivities for tested temperatures (250 - 310 ºC) for the 

Mo1V0.40 catalyst with 25 ml/min. of Feed-2. Ethene selectivity decreases rapidly with 

increasing temperature, while carbon oxide and AA selectivities increase slightly. 

However, low (250 ºC) temperature reaction shows low ethane conversion with high 

selectivity to ethene and low formation of carbon oxide and AA. At higher temperatures 

(310 ºC), selectivity of ethene decreases as the deep oxidation starts and increases carbon 

oxide and AA formation.  
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Fig.3.1: Mo1V0.40 catalyst activity with Feed-2 at different temperature . 

3.2.4 Pressure effect on catalyst (Mo1V0.40) activity. 

Selected catalyst (Mo1V0.4) was further tested at different pressures from atmospheric to 

200 psig to observe catalytic behavior. Catalytic data shows that the catalyst activity at 

atmospheric pressure is moderate but has high selectivity to ethene at three different 

temperatures tested. At atmospheric pressure, the catalytic activity increases with 

temperature with a slight increase in both carbon oxide and acetic acid formation. 

(i) Catalytic activity data at atmospheric pressure.  

Catalytic activity is low at atmospheric pressure and at low temperatures. However, at 

high temperatures ethane conversion is high with high ethene yield. Low pressure favours 

lower selectivity to the COx and acetic acid, however this slightly increases with 

temperature. At atmospheric pressure, the most favourable condition is a high 

temperature which results in a high ethane conversion with a high yield of ethene. 
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Table 3.10: Temperature impact on catalytic activity at atmospheric pressure.  

Temp. Conv. (%) Selectivity (%) Yield (%) 

(ºC) C2H6 O2 CO2 CO C2H4 AA C2H4 

270 10.2 26.5 5.9 9.6 74.3 10.2 7.6 

290 16.7 58.4 7.3 12.1 68.2 12.4 11.4 

310 21.0 88.6 8.9 15.3 61.5 14.3 12.9 

Reaction conditions: Pressure = atmospheric, feed gas = ethane: oxygen: nitrogen 

(50:10:40), catalyst wt. = 1 g, feed flow = 25 ml/min. 

 (ii) Catalytic activity data at 70 psig pressure.  

At 70 psig, catalyst activity slightly increases at the three tested temperatures as 

compared to atmospheric pressure test.  At this pressure, the catalyst shows higher acetic 

acid formation which also increases with temperature, whilst the carbon oxide selectivity 

remains low. Catalyst performance data at the three different temperatures and constant 

pressure (70 psig) are given in Table 3.11. 

Table 3.11: Temperature impact on catalytic activity at 70 psig pressure. 

Temp. Conv. (%) Selectivity (%) Yield (%) 

(ºC) C2H6 O2 CO2 CO C2H4 AA C2H4 

270 13.3 43.6 5.5 7.8 69.9 16.8 10.1 

290 17.8 67.5 6.4 8.8 66.4 18.4 13.8 

310 22.2 95.6 7.2 11.6 58.3 22.9 12.9 

Reaction conditions: Pressure = 70 psig, feed gas = ethane: oxygen: nitrogen 

(50:10:40), catalyst wt. = 1 g, feed flow = 25 ml/min. 

(iii) Catalytic activity data at 140 psig pressure.  

At 140 psig, the catalytic activity is higher than at 70 psig. The acetic acid selectivity 

increases with higher temperature, whilst carbon oxide formation increases marginally. 

At 200 psig, the catalytic activity remains similar to that at 140 psig, while AA and COx 

have higher selectivity, both increasing with greater temperature.  
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Table 3.12: Temperature impact on catalytic activity at 140 psig pressure. 

Temp. Conv. (%) Selectivity (%) Yield (%) 

(ºC) C2H6 O2 CO2 CO C2H4 AA C2H4 

270 16.0 58.1 5.2 6.8 65.3 22.7 10.5 

290 23.6 93.1 6.8 7.7 59.4 26.1 14 

310 25.4 98.3 10.0 8.2 52.5 28.3 13.4 

Reaction conditions: Pressure = 140 psig, feed gas = ethane: oxygen: nitrogen 

(50:10:40), catalyst wt. = 1 g, feed flow = 25 ml/min. 

(iv) Catalytic activity data at 200 psig pressure. 

Table 3.13: Temperature impact on catalytic activity at 200 psig pressure. 

Temp. Conv. (%) Selectivity (%) Yield (%) 

(ºC) C2H6 O2 CO2 CO C2H4 AA C2H4 

270 18.5 67.8 10.7 7.6 57.9 23.8 10.7 

290 24.5 95.6 11.2 8.9 53.1 26.8 13 

310 26.1 99.6 12.9 9.3 47.5 30.3 12.4 

Reaction conditions: Pressure = 200 psig, feed gas = ethane: oxygen: nitrogen 

(50:10:40), catalyst wt. = 1 g, feed flow = 25 ml/min. 
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Fig.3.2: Pressure impact on Mo1V0.4 catalyst activity at 310 ºC. 
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At high temperature (310 ºC), high pressure favours acetic acid selectivity and this 

increases rapidly when pressure increases from atmospheric to 200 psig, as shown in Fig. 

3.2. However, at 310 ºC, ethane conversion and carbon oxide selectivity do not change 

significantly at higher pressure (140 – 200 psig) and shows that high pressure is not 

favourable for the ODH of ethane as shown in Fig. 3.2. 

3.3 Gas hourly space velocity (GHSV) impact on the catalyst activity 

The selected catalyst (Mo1V0.4) was tested for ethane ODH at different temperatures (270, 

290, 310 and 330 ºC) with different feed flows to see the GHSV impact on the catalyst 

activity and selectivity to ethene. 

3.3.1 Experimental results and discussions 

Catalytic results were obtained for the ODH of ethane to ethene at different GHSVs are 

shown in Tables 3.14 - 3.17 at atmospheric pressure. Ethene, carbon dioxide and carbon 

monoxide, acetic acid (AA) were the main reaction products. At atmospheric pressure, 

ethene selectivity remains high, while the AA and COx selectivities were low at all tested 

temperature. From these results, it can be concluded that the activity decreases as GHSV 

increases. The catalytic activity increases with increasing temperature but the ethene 

selectivity decreases.  

Ethane conversion levels were varied by changing the GHSV to determine the relative 

contributions of primary and secondary reaction pathways to ethene, COx and AA 

formation. Acetic acid selectivity first increased slightly then fell again with increasing 

GHSV by 4-7 % while ethene selectivity concurrently decreased (from 89 to 77 %), 

consistent with involvement of the ethene as a reactive intermediate [3, 4]. The non-zero 

acetic acid selectivity, evidenced by extrapolation to lower ethane conversion (Fig. 3.3), 
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suggest, however, that a substantial fraction of AA forms via direct oxidation of ethane 

[5]. At high GHSV, ethene selectivity increases but AA selectivity does not.  

Table 3.14: GHSV impact at 270ºC, and at atmospheric pressure. 

GHSV Conv. (%) Selectivity (%) Yield (%) 

(h-1) C2H6 O2 CO2 CO C2H4 AA C2H4 

780 9.3 29.8 7.5 11.5 76.7 4.3 8.7 

1350 6.5 16.6 5.8 8.4 80 5.9 5.2 

1620 5.4 12.2 5 6.9 81.7 6.4 4.4 

1890 4.8 10.9 4.1 5.9 83.8 6.2 4.0 

2250 4 9.6 3.5 5 85.9 5.6 3.4 

3000 2.9 5.4 2.8 3.9 88.7 4.6 2.6 

Reaction conditions: Pressure = atmospheric, Temp. = 270ºC, feed gas = ethane: 

oxygen: nitrogen (50:10:40), catalyst wt. = 1 g. 
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 Fig.3.3: Ethane conversion versus products selectivity at 270 °C. 

Reaction temperatures were varied to see the GHSV impact on catalytic activity of the 

catalyst, and the data is presented in Tables 3.14 - 3.17. Ethane conversion increases with 

increasing temperature at all tested GHSVs. However, there is no significant change in 
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AA selectivity at these reaction temperatures. The COx selectivity increases rapidly with 

increasing ethane conversion and reaction temperature [6]. 

Table 3.15: GHSV impact at 290 ºC and at atmospheric pressure. 

GHSV Conv. (%) Selectivity (%) Yield (%) 

(h-1) C2H6 O2 CO2 CO C2H4 AA C2H4 

780 15.6 39.9 8.9 13.5 72.1 5.5 11.2 

1350 9.8 18.2 7.3 8.7 76.2 7.8 6.1 

1620 7.6 16.0 5.1 7.1 79.2 8.5 5.2 

1890 6.3 14.6 4.9 6.8 80.9 7.4 4.4 

2250 5.1 13.6 4.7 6.1 82.1 7.1 4.2 

3000 4.7 12.7 3.8 5.9 83.3 6.9 3.9 

Reaction conditions: Pressure = atmospheric, Temp. = 290ºC, feed gas = ethane: 

oxygen: nitrogen (50:10:40), catalyst wt. = 1 g. 

Activity result at 290 °C and atmospheric pressure show that the conversion decreases as 

the GHSV increases. Temperature impact at atmospheric pressure has a much lower 

impact on the AA selectivity, while the carbon oxide selectivity significantly changes 

with GHSV. Similar trends were observed when catalysts were tested at 310 and 330 °C. 

However, high reaction temperature favours greater carbon oxide (COx) formation.  

Table 3.16: GHSV impact at 310 ºC and at atmospheric pressure. 

GHSV Conv. (%) Selectivity (%) Yield (%) 

(h-1) C2H6 O2 CO2 CO C2H4 AA C2H4 

780 18.2 54.8 13.6 17.1 62.5 6.8 11.4 

1350 13.9 48.7 8.3 13.6 69.7 8.5 9.7 

1620 10.6 42.3 7.4 12.2 71.7 8.7 7.8 

1890 9.3 35.2 6.9 11.2 72.5 9.4 6.4 

2250 7.9 31.7 6.6 11 73.2 9.1 5.8 

3000 6.3 22.3 6.3 9.5 75.4 8.9 4.8 

Reaction conditions: Pressure = atmospheric, Temp. = 310ºC, feed gas = ethane: 

oxygen: nitrogen (50:10:40), catalyst wt. = 1 g. 
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Table 3.17: GHSV impact at 330 ºC and at atmospheric pressure. 

GHSV Conv. (%) Selectivity (%) Yield (%) 

(h-1) C2H6 O2 CO2 CO C2H4 AA C2H4 

780 25.4 92.0 12 19.2 59.6 9.1 16.3 

1350 20.1 64.7 10.2 18.2 62.8 8.9 12.6 

1620 17.8 59.3 9.4 16.4 65 9.2 11.7 

1890 15.4 55.3 9 15.7 67 8.3 10.3 

2250 13.5 50.9 8.9 15.2 68.1 7.8 9.2 

3000 10.8 36.7 7.9 11.7 72.8 7.5 7.9 

Reaction conditions: Pressure = atmospheric, Temp. = 330ºC, feed gas = ethane: 

oxygen: nitrogen (50:10:40), catalyst wt. = 1 g. 

The catalyst was tested at two different pressures; atmospheric and 70 psig at constant 

temperature (270 °C). The main impact of reaction pressure was on the selectivity to 

acetic acid. In the product distribution, ethene selectivity decreases due to an increase in 

AA formation, whilst ethane conversion increases from 3-11 % to 8-20 % at different 

GHSVs. Results are presented in Tables 3.14 and 3.18. 

 Table 3.18: GHSV impact at 270ºC and at 70 psig pressure.  

GHSV Conv. (%) Selectivity (%) Yield (%) 

(h-1) C2H6 O2 CO2 CO C2H4 AA C2H4 

780 20 98.6 8.8 12.7 61.2 17.3 12.2 

1350 15.8 56.5 6.3 9 69 15.6 10.9 

1890 12 36.8 4.8 7.7 71.8 15.8 8.6 

2250 10.5 30.1 4.4 7.1 72.8 15.6 7.6 

3120 9.4 25.3 4 6.6 74.5 15 7 

3630 7.9 21.2 3.1 5.4 76.7 14.7 6.1 

Reaction conditions: Pressure = 70 psig, Temp. = 270ºC, feed gas = ethane: oxygen: 

nitrogen (50:10:40), catalyst wt. = 1 g. 
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Fig. 3.4 shows that the ethane conversion is inversely related to GHSV. This study was 

also conducted at various temperatures. These results suggest that the oxidation of ethane 

occurs mainly at the catalyst surface through a heterogeneous mechanism, and that the 

product formation does not inhibit the reaction [7]. The yield of ethene (C2H4) product 

increases proportionally with decreasing GHSV, whilst AA formation does not increase 

significantly. 

At higher GHSV the yield of C2H4 decreases whereas the carbon oxide yield increases 

significantly as result of ethene over-oxidation to carbon oxide. Therefore as the GHSV 

decreases the selectivity to carbon oxide increases and the selectivity to ethene decreases. 

However sum of these products remains unchanged. 

 
Fig.3.4: GHSV effect on ethane conversion at different temperatures. 

 

3.3.2 Conclusion 

Conversion of ethane decreases with increasing GHSV and hence ethene selectivity 

increases with the GHSV. Catalytic activity increases with increasing temperature. 

Catalytic performance data shows that by increasing temperature, there is a very small 
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change in AA (5 - 10 %) formation, whilst the carbon oxide formation increases 

drastically due to partial combustion reactions of ethene to COx [8]. Similar catalytic 

behavior is seen with decreasing GHSV. 

Conversion of ethane also increases with increasing pressure. Data shows that pressure 

has a large impact on AA formation, whilst the carbon oxide has low formation. With 

increasing temperature or pressure, catalytic activity increases with a subsequent decrease 

in ethene selectivity, consistent with the involvement of ethene as a reactive intermediate 

for the formation of AA [9]. At lower ethane conversion, AA formation does not change 

significantly even at high reaction pressures. 

3.4 Results of catalyst characterization 

3.4.1 BET 

The surface area (BET) of the catalyst was measured using Micrometrics ASAP2000 

(Gemini) apparatus as described in Chapter 2. The surface area of these catalysts was in 

the range of 11-49 m2/g as given in Table 3.19. Catalyst (Mo1V0.40) has a surface area of 

21 m2/g and shows high activity towards ethane oxidative hydrogenation to ethene. 

Table 3.19: Surface area of catalysts varying with Mo and V ratio. 

Cat. Ref. Surface area (m2/g) 

Mo1V0.12 11 

Mo1V0.25 17 

Mo1V0.40 21 

Mo1V0.60 49 

Mo1V0.80 28 

Mo1V1 26 
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The surface area of the catalyst increases with increasing Mo: V ratio until (1:0.6) after 

which it decreases. The surface area of the catalyst prepared with the lowest ratio of Mo 

and V (1:0.12) has a low surface area. 

3.4.2 XPS 

XPS was performed by using the Kratos Axis Ultra-DLD spectrometer as detailed in 

Chapter 2. The binding energies (BE) of O (1s), C (1s), Mo (3d5/2), and V (2p3/2) for MoV 

oxide catalysts are reported in Table 3.20. In the literature, the standard binding energy 

values are 232.2 ± 0.2 eV for (Mo6+), 516.6 ± 0.1 eV for (V5+), and 515.9 ± 0.4 eV for 

(V4+) oxides and these match with literature [10-13].  

Of the samples studied, the Mo photopeak is characteristic of Mo6+ by its binding energy 

(BE), while reduced Mo species such as Mo5+ (230.8-231.8 eV) or Mo4+ [10-11] are 

absent. XPS data as shown in Table 3.1 shows a good trends of V5+ and V4+ area ratio 

with the variation of metal (Mo : V) ratio. Area (%) of V5+ is higher when vanadium 

concentration was minimum (Mo1V0.12) and start decreasing till Mo: V (1: 0.25) and after 

that it increases with vanadium concentration. Same behavior with V4+, first increases and 

then decrease with vanadium concentration. Concentration of both V5+ and V4+ is equal in 

catalytst Mo1V0.40 (1: 0.25). 
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Table 3.20: Binding energies of MoV catalysts calcined at 350°C. 

Cat. Ref. Name BE (eV) FWHM (eV) Atom (%) 

  

Mo1V0.12 

  

  

O 1s 530.9 2.71881 48.91 

C 1s 284.9 3.28633 34.67 

V2p3/2 516.9 2.67982 1.86 

Mo3d5/2 232.9 5.06633 14.57 

  

Mo1V0.25 

  

  

O 1s 530.5 2.74981 49.78 

C 1s 284.5 2.93690 35.82 

V2p3/2 516.5 2.75401 2.58 

Mo3d5/2 232.5 5.09253 13.82 

  

Mo1V0.40 

  

  

O 1s 530.8 3.10955 50.24 

C 1s 284.8 3.51211 35.00 

V2p3/2 516.8 2.65931 3.83 

Mo3d5/2 232.8 5.22010 11.02 

  

Mo1V0.60 

  

  

O 1s 530.5 2.71903 50.18 

C 1s 284.5 2.94377 30.61 

V2p3/2 516.5 2.80031 6.57 

Mo3d5/2 232.5 5.09382 13.64 

  

Mo1V0.80 

  

  

O 1s 530.5 2.71534 49.78 

C 1s 284.5 3.10670 30.31 

V2p3/2 516.5 2.87955 7.27 

Mo3d5/2 232.5 5.35963 12.63 

  

Mo1V1 

  

  

O 1s 530.5 2.73434 52.39 

C 1s 284.5 2.89255 26.95 

V2p3/2 516.5 2.80241 10.33 

Mo3d5/2 232.5 5.28462 10.34 
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Table 3.21: XPS results concentration of V and Mo oxidation in the MoV catalysts. 

Cat. Ref. 
 

BE (eV) FWHM (eV) Area (%) 

Mo1V0.12 

V2p3/2 - (V5+) 517.6 1.36403 70.02 

V2p3/2 - (V4+) 516.4 1.32491 29.98 

Mo3d5/2 233.2 1.24751 60.62 

Mo3d3/2 236.3 1.25663 39.38 

Mo1V0.25 

V2p3/2 - (V5+) 517.6 1.38655 59.29 

V2p3/2 - (V4+) 516.5 1.34191 40.71 

Mo3d5/2 233 1.32773 60.78 

Mo3d3/2 236.2 1.32262 39.22 

Mo1V0.40 

V2p3/2 - (V5+) 517.4 1.32661 48.72 

V2p3/2 - (V4+) 516.4 1.41755 51.28 

Mo3d5/2 232.7 1.35551 60.33 

Mo3d3/2 235.9 1.36762 39.67 

Mo1V0.60 

V2p3/2 - (V5+) 517.5 1.49801 64.82 

V2p3/2 - (V4+) 516.4 1.30903 35.18 

Mo3d5/2 232.9 1.36082 60.53 

Mo3d3/2 236.1 1.36804 39.47 

Mo1V0.80 

V2p3/2 - (V5+) 517.6 1.45093 75.07 

V2p3/2 - (V4+) 516.3 1.17484 24.93 

Mo3d5/2 233.1 1.46575 60.51 

Mo3d3/2 236.2 1.45663 39.49 

Mo1V1 

V2p3/2 - (V5+) 517.6 1.40334 74.72 

V2p3/2 - (V4+) 516.3 1.20861 25.28 

Mo3d5/2 233 1.47164 60.38 

Mo3d3/2 236.1 1.47037 39.62 

 

The comparison of atomic ratios in the MoV catalyst series reveals the influence of 

vanadium on the surface composition. The addition of V to Mo (V/Mo = 0.20 to 1.0), 

results in an increase in the amount of vanadium present on to the surface of the catalyst 

(and also show that the amount of molybdenum on the surface decreases).The amount of 
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oxygen determined from the surface composition is lower than when calculated from the 

bulk stoichiometry, when all V assumed to be V4+. The relative amounts of V5+ and V4+ 

are given in Tables 3.21 and 3.22 after peak decomposition. 

Table 3.22: XPS experiments atomic ratios and stoichiometry of MoV catalysts. 

Catalyst BE (eV) Atomic ratios 

Ref. Mo6+ V5+ V4+ V/Mo O/V O/Mo V5+/Vtotal 

Mo1V0.12 233.2 517.6 516.4 0.20 13.67 3.36 0.70 

Mo1V0.25 233.0 517.6 516.5 0.26 13.07 3.38 0.59 

Mo1V0.40 232.7 517.4 516.4 0.36 14.73 5.33 0.49 

Mo1V0.60 232.9 517.5 516.4 0.41 9.01 3.68 0.65 

Mo1V0.80 233.1 517.6 516.3 0.58 6.85 3.94 0.75 

Mo1V1 233.0 517.6 516.3 1.00 5.07 5.07 0.75 

 

The   V5+/ Vtotal ratio ranges from 0.49-0.75 as shown in Table 3.22, which shows the 

reducibility of vanadium. When the catalysts are prepared with a moderate amount of 

vanadium (V0.25-V0.60), this ratio is lower than the catalysts containing lower or higher 

vanadium content. This means that the reducibility has increased, which may be a result 

of less vanadium present in the mixed MoV phase(s). The use of a vacuum, necessary in 

XPS apparatus, is also known to induce the reduction of some V5+, but this occurs only if 

these ions are not properly stabilized in an oxide matrix [14]. The relative amount of V4+ 

is highet in the catalyst Mo1V0.25, which means that the number reducible vanadium sites 

are greatest. The amount of V4+ decreases at greater concentrations of vanadium and in 

the Mo1V0.12 catalyst. 

3.4.3 XRD 

XRD patterns of the materials were obtained as described in Chapter 2. X-ray diffraction 

patterns of all catalysts are presented in Fig.3.5. 
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In XRD, two main types of diffraction patterns are observed as the ratio of Mo:V in the 

catalysts is varied (Fig. 3.5); (i) crystalline patterns for samples with a low vanadium 

content, (ii) almost amorphous patterns for the catalyst with 0.25 vanadium content. A 

commn feature to all MoV catalysts is the presence of peaks at d (Å) / 2θ = 3.46 / 25.7°. 

Many α-MoO3 phases have been identified in the catalysts containing a vanadium ratio of 

0.12 and 1 as shown in Fig. 3.5. The majority of the α-MoO3 peaks are shifted compared 

to the standard pattern (JCPDS 76-1003) which may be the result of a modification by 

vanadium, VxMo1-xO3-0.5x or due to the formation of oxygen vacancies, such as MoO3-x. 

While the materials prepared with varying vanadium ratio are similar, a common phase is 

due to the hexagonal defective oxide h-MoO3, their XRD patterns being very similar to 

V0.12Mo0.88O2.94 catalyst (JCPDS 81-2414). 

 

Fig.3.5: XRD patterns of catalysts varying with (MoV) molar ratio. 

The pattern of Mo1V0.40 catalyst exhibits a disordered character (Fig. 3.5); several broad 

reflections at d-spacing [Å] 10.55, 3.95, 3.27 and 1.8 have been assigned to particles of α-
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MoO3 by Mestl [15], emphasising the nanocrystalline character of that material. Peaks at 

2θ ≈ 7.8, 8.7 and 22.2° (the latter being the most intense) correspond to (200), (210) and 

(001) planes and are characteristic of the θ-Mo5O14 structure [16]. The pattern of 

V6Mo4O25 (JCPDS 34-0527) shows intense reflections at d (Å)/2θ = 10.92/8.08 and 

4.00/22.2°. This is very close to that of (Nb0.09Mo0.91)O2.80 (JCPDS 27-1310) which 

occurs with the catalyst V/Mo=0.12. Because of the amorphous character of the pattern, it 

is not possible to determine whether (Mo-X)5O14 (JCPDS 31-1437), (V0.95Mo0.97)5O5 

(JCPDS 77-0649) or a ternary solid solution VOMoO4 (JDPDS 18-1454) are the closest 

matching structure. The pattern of Mo1V0.40 (Fig. 3.5) exhibits the main peaks of h-MoO3 

(or of VxMo1-xO3-0.5x) superimposed on the preceding pattern. 

3.4.4 SEM 

MoV based catalysts were analyzed for surface morphology using SEM as described in 

Chapter 2. The SEM images reveal that large parts of the MoV mixed oxide consist of 

coarse and irregularly shaped particles.  

 

The catalyst sample Mo1V0.12 was composed of both coarse and fine irregularly shaped 

particles (Fig. 3.6). The surface of the particles contained cracks and bundles of thin flake 

like crystals arranged in a flower-like morphology. All of the remaining catalyst samples 

were composed of irregular shaped particles of variable size. For catalyst sample 

Mo1V0.25, the individual particles had both rough and smooth sides. The surface contained 

cracks and fine irregularly shaped particles. The surface of catalyst sample Mo1V0.40 

contained cracks and fine irregularly shaped particles.The individual particles of catalyst 

sample Mo1V0.60 had generally rough surfaces. The individual particles of catalyst sample 

Mo1V0.80 and catalyst sample Mo1V1 had both smooth and rough surfaces.  The surfaces 

contained cracks and fused fine particles and long elongated flakes.  
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Mo1V0.12 Mo1V0.25 

Mo1V0.40 Mo1V0.60 

Mo1V0.80 Mo1V1 

Fig.3.6: SEM images of catalysts with varying (MoV) molar ratio. 

 

3.4.5 EDX 

 

The elemental contents of surface particles were analyzed by EDX combined with SEM. 

Secondary electron (SE) imaging and backscattered electron (BSE) imaging modes of 

operation were used in combination with EDX analysis to investigate the elemental 

distribution of Mo, V and O. The elemental compositions of different regions in the BSE 

image were determined by EDX. The EDX analysis suggested the presence of O, Mo and 
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V in all catalysts that were prepared with varying vanadium concentration.Their surface 

compositions are given in Table 3.23. 

 Table 3.23: Elemental concentration (wt %) of the catalysts with varying MoV 

molar ratio. 

Cat. Ref. O Mo V 

Mo1V0.12 33 61 6 

Mo1V0.25 32 60 8 

Mo1V0.40 30 58 12 

Mo1V0.60 32 50 18 

Mo1V0.80 31 48 21 

Mo1V1 30 44 26 

 

EDX analysis revealed that all catalysts contained both Mo and V and the matrix of 

material was confirmed which showed the presence of V in all samples. The variation in 

elemental concentration of Mo and V for all catalysts was comparable. 

3.5 Discussion 

In the present study results revealed that the activity and selectivity depends on the ratio 

of the base (MoV) binary components and it varies with the ratio. The catalytic activity 

data obtained show that the catalysts having 2.5:1 ratio of molybdenum and vanadium 

gives best results.  

The catalytic properties of the mixed MoV oxide have been influenced by several 

parameters. The nature and the crystallinity of phases and the surface composition 

depend on the ratio of V/Mo, the method of preparation of the precursor and the 

calcination temperature. Chemical analyses show that the vanadium concentration is the 

determining factor for active phase formation. Extensive works carried out by Desponds 

[1] on the binary catalytic system prior to the addition of a third transition metal (Nb) 
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enhance the catalytic activity toward ethane ODH. Desponds [1] made a series 

(Mo4V1Ox, Mo4Nb1Ox , V5Nb1Ox) of  binary catalysts  and  found that Mo4V1Ox, was the 

most active catalyst. Desponds also prepared catalysts of Mo4V1Ox with and without the 

addition of oxalic acid in the preparation step and discovered that catalysts prepared with 

oxalic acid performed better than those prepared without. 

 

By comparing the catalytic activities and the ethene selectivities of the binary catalysts 

and the three component catalysts, it was shown that three component catalysts 

performbetter. This is an agreement with the findings of Burch and Swarnkar [17] who 

observed a strong improvement in the efficiency of the catalysts due to the addition of a 

third chemical component. Similarly, Thorsteinson et al. [2] found that the Mo8V2Nb1Ox 

catalyzed ethane oxidation exclusively to ethene at low temperature (215 ⁰C), whereas a 

temperature of 500 ⁰C was necessary for the catalyst without niobium. However this 

current study on binary catalyst systems proves that it is possible to achieve a high 

activity even at low temperatures without the addition of a third metal.   

 

Moreover the activity and selectivity depend on the ratio of the base (MoV) binary 

components. A high activity is achieved with a Mo and V ratio of 2.5:1 and a third 

component can improve the ethene selectivity while the product distribution is not 

severely altered. If the ratio of Mo and V is changed from (2.5:1) then the activity and 

selectivity will decrease even after the addition of a third component (Nb). The 

superiority, in terms of selectivity, of a 2.5:1 ratio ofmolybdenum and vanadium is not 

unique in this case but improves greatly upon previous reports on binary catalytic system. 

Many examples can be found in the results published by Thorsteinson et al. [2], from 

binary to multicomponent with vanadium catalytic system. 
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Fig.3.7: Plot of catalyst activity vs O/(Mo+V) ratio at different temperatures ( 270 

oC; 290 oC;  310 oC). 

The primary reason for the varying performances of the synthesized catalysts with 

different Mo/V ratios (Tables 3.1 -3.4) can be understood when the XPS results presented 

in Tables 3.20 and 3.21 are taken into consideration. Figure 3.7 shows the variation of 

catalyict activity with O / (Mo+V) ratios – the ratio of surface oxygen to base binary 

metal components at three temperatures. It is clear from Fig. 3.7 that catalytic activity, 

and hence the ethane conversion, increases with increasing O/(Mo+V) ratios, with an 

initial rapid increase before leveling off. The observed profile suggests that changes in 

O/(Mo+V) ratios determine the amount of O2 available for ethane ODH. Further to this, 

the observed trend of Fig. 3.7 suggests that the dependency of ethane conversion on 

surface O2 concentration is in agreement with previously published work by Dinse [18]. 
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Fig.3.8: Catalyst selectivity vs V5+/Vtotal ratio at different temperatures ( 270 oC; 

290 oC;  310 oC). 

 

The influence of the oxidation state of vanadium on ethane ODH selectivity can be seen 

by combining catalyst performance testing results with XPS results, as shown in Fig. 3.8. 

V5+/Vtotal depicted in Fig. 3.8 is the ratio of vanadium in the 5+ oxidation state to total 

vanadium cations present (i.e., 4+ and 3+ states). It is assumed that a change in this ratio 

is due to the reduction of V5+ to V4+ and V3+. It can be seen from Fig. 3.8 that, in general, 

ethane ODH selectivity decreases monotonically with an increasing ratio of V5+/ Vtotal. 

The observed trend can be rationalized by the adsorption strength and Lewis acidity of 

vanadium cations which decreases in the order V5+ > V4+ > V3+ [18]. Due to the strong 

acidity of V5+, it can be postulated that these cations adsorbed strongly to the catalyst 

surfaces causing some of the produced ethane to be further converted to secondary 

products, such as carbon oxide. In contrast, at lower ratios of V5+/ Vtotal the less strongly 

adsorbing V4+ and V3+ are more prevalent leading to minimal combustion of the ethene 

product to side products.  
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The catalytic activity data obtained in the present study show that an oxide mixture 

having 2.5:1 atomic proportion of molybdenum and vanadium gives the best results. The 

very low carbon dioxide and carbon monoxide selectivity observed with this ratio (2.5:1) 

indicates that the total oxidation of ethane is inhibited. 

The tests performed on the binary series of catalysts composed of molybdenum and 

vanadium show several interesting features; Mo1V0.12 is the poorest catalyst of the series, 

Mo1V1 inhibits the total oxidation of ethane to carbon dioxide as compared the other 

ratios and Mo1V0.4Ox catalysts are still the most efficient in the series of the binary 

catalysts. As reported by Oyama [19], the addition of a third component to the most 

active MoV system is not enough to have a significant effect on the activity; the rate of 

formation of carbon oxide is reduced as compared to Mo4V1Ox catalysts. 

 According these findings, it appears that the activity and selectivity of these catalysts 

depend on the molybdenum and vanadium ratio. This ratio can be altered to considerably 

enhance the activity and selectivity by inhibiting the total oxidation reaction. In the 

present study, the 2.5:1 ratio between molybdenum and vanadium is optimum. 

Thus, during the ODH of ethane it appears that carbon oxide are being formed mainly 

due to the direct oxidation of ethane and to lesser extent due to the secondary oxidation of 

ethene. This is in agreement with the findings of Burch et al. [17] who observed that most 

of the carbon monoxide and carbon dioxide was produced directly from ethane using 

their Mo1V3Nb1Ox catalyst. Lunsford [20] also observed on a lithium-promoted 

magnesium oxide catalyst that the oxidation of ethane yielded most of the carbon oxide 

formed during the reaction. Burch [17] reported a first order rate with respect to ethane 

partial pressure over a Mo6V3Nb1Ox catalyst. The reaction order with respect to oxygen 

showed a more complex pattern. The reaction order was almost independent of the 
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oxygen partial pressure at low temperature, whereas the reaction was half order for 

oxygen partial pressure below 1 psig at high temperature. The first order dependence with 

respect to the ethane partial pressure was consistent with a mechanism in which the 

breaking of a C-H bond is rate determining. The dependence of the oxygen reaction order 

on the temperature was explained in terms of lattice oxygen composition and the speed of 

reoxidation of the catalyst.  

Therefore, at low ethane conversion and at low temperature, the reoxidation of the 

catalyst is so fast that it is not a rate limiting process. However, at high conversion of 

ethane at high temperature, the reoxidation is rate limiting if the oxygen partial pressure 

is low. This means that the reaction rate is dependent on oxygen partial pressure. The 

lability of the lattice oxygen had been demonstrated by Thorsteinson [2]. They also 

reported that the presence of vanadium increased the oxidation rate of the molybdenum 

dioxide. It has been found [17] using pulse experiments that molecular oxygen may be 

responsible for total oxidation of ethane whereas lattice oxygen is involved only in ethene 

formation.  

It can be reasonably assumed that the breaking of a C-H bond is also rate limiting for the 

Mo1V0.40 catalyst and as a consequence, the reaction is first order with respect to ethane 

partial pressure for these catalysts. Therefore, the results obtained by varying ethane: 

oxygen ratio, which shows that the ethane conversion increases when the ethane: oxygen 

ratio is decreased from 5:1 to 1.5:1 in the feed. Moreover the rates of formation of the 

carbon oxide increased with oxygen partial pressure. At high oxygen partial pressure, the 

carbon oxide formation rate increases rapidly with increasing temperature. 

Phases in the materials are primarily crystalline in the Mo1V0.12, Mo1V0.25, Mo1V0.80, and 

Mo1V1 catalysts and amorphous in Mo1V0.40 and Mo1V0.60, as shown in Fig. 3.3. During 
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calcination of the precursors up to 350 °C, the remaining oxalates and ammonium groups 

are eliminated as CO2, and NH3 or NO, depending on the atmosphere, heating rate and 

precursor type. In particular, it is well known [21] that the oxidation of ammonia to NOx 

occurs because vanadium and or molybdenum undergo reduction. In the presence of 

vanadium, mixed hydrated hexagonal oxides isotopic to h-MoO3, such as AxVxMo1-xO3 

(x=0.13-0.20) and HxVxMo1-xO3 (0.06 ≤ x ≤ 0.18), have also been synthesized [22-23]. 

These phases are stable as long as ammonium or alkaline cations and/or protons remain 

in the channels. According to Dupont [22], the heating of H0.13 V0.13 Mo0.87O3 in air at 350 

°C leads to the formation of hexagonal (V0.13 Mo0.87)O3, which is stable up to 460 °C. 

Moreover, the authors showed that above this temperature this solid is irreversibly 

transformed into a stable orthorhombic mixed oxide to α-MoO3, which preserves the 

same V/Mo= 0.13/0.87 ratio. With the exception of α-MoO3 which is most likely V-

doped and V2O5 which are typically observed, hexagonal mixed oxides such as (V0.12 

Mo0.88)O2.94 or V0.13 Mo0.87)O2.925 remain stable. 

Alternatively, θ-(VMo)5O14 could serve as a basis which would stabilize or isolate 

surface patches of (Mo,V)Ox. In both hypotheses, the main active sites are most likely to 

be the vanadium atoms, which according to XPS analyses contain a near surface slightly 

enriched with vanadium. In such cases the interphases must be coherent for the redox 

V5+/V4+ to occur at the boundaries between θ-(VMo)5O14 and (Mo,V)Ox, or to help O2- 

diffusion to the surface [24-26]. This redox system would proceed faster with an 

increased vanadium concentration or with the addition of other elements (Nb, Pd) to the 

catalytic system. The possibility of a complementary redox system between Mo6+ and 

Mo5+ at the steady state cannot be ruled out. However, if it proceeds, the rate of 

reoxidation of Mo5+ to Mo6+ would be greatly enhanced by the neighboring vanadium, in 

the presence of which Mo5+ species are known to be rather unstable. 
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3.6 Conclusion 

The present work, devoted to the study of MoV oxide catalysts, indicate that the 

composition and the properties of the catalytically active phases in the MoV oxide system 

are determined by the Mo:V ratio. A comparison of the catalytic properties and phase 

compositions indicate that the variation in the MoV oxide activity and selectivity can be 

due to variation in the phase compositions. However, solid solutions of MoO3 in 

vanadium oxides have low catalytic activity and selectivity [27]. Compounds of 

vanadium and molybdenum shift the ethane ODH towards ethene formation and have 

different activity and selectivity depending on the phases formed during the catalyst 

preparation. Differences in the catalytic properties of these phases can be due to many 

factors: structure, Mo: V ratio, oxygen binding energies, valance state of vanadium and 

molybdenum, etc. 

The type, amount and characteristics of the oxides, identified by several methods of 

analysis, depend on the vanadium concentration in Mo-containing catalysts. The catalysts 

are characterized by the presence of several crystalline oxide structures including 

hexagonal and orthorhombic (α-MoO3) molybdenum trioxide, which are likely to contain 

vanadium. Varying the vanadium concentration in the Mo V catalysts affects the stability 

of these crystalline oxides. This is particularly evident in the case of hexagonal MoO3 (or 

h-Mo1-xVxO3-0.5) which formsα-MoO3 (or α-Mo1-xVxO3-x/2), resulting in a lower catalytic 

performance [28-31]. The catalysts which have 1: 2.5 ratio of vanadium to molybdenum 

have amorphous structures that are likely to be composed of nanocrystalline Mo1-xVxO3-

0.5 oxides. The high degree of disorder in the stacking of these layered oxides is attributed 

to ions of V, sandwiched between the layers if they are not inserted in the constituent 

oxides. The catalysts with a 1:2.5 vanadium ratio in molybdenum (Mo1V0.40), are more 

selective to ethene and mildly selective to oxidation products (CO2) and which is due to 
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synergetic effects instead of the very specific properties of any given phases [32-38]. 

Indeed, the fact that an excess of vanadium and molybdenum, compared to the known θ-

V0.07Mo0.93O2.80 or V0.13Mo0.87O2.925 is needed to ensure high catalytic performance in 

ethane oxidation, must also be taken into account. 

The Mo1V0.12 and Mo1V1 catalysts have low activity at the tested operating process 

conditions. The range of conversion of ethane is smaller (Conv.C2H6 = 4 - 10 mol %, 

depending on Tc) and these catalysts have lower ethene selectivity and higher oxidation 

products than V:Mo of 0.12-0.60 (Mo1V0.12 - Mo1V0.60), which have moderate conversion 

(Conv.C2H6 = 16 - 25 mol %, depending on Tc) of ethane, with high ethene selectivity  and 

low oxidation products. However, these poorly active catalysts give more partial 

combustion products and proportionally higher COx than those with a lower vanadium 

concentration on the surface. 

The products obtained by ethane ODH are mainly ethene, carbon monoxide, carbon 

dioxide and AA. Experiments were carried out at different reaction conditions while 

maintaining the same GHSV. When examining the activity of the catalysts with varying 

vanadium content that were calcined at 350 °C, important observations were noted. Very 

low vanadium (Mo1V0.12) and very high vanadium contents (Mo1V1) are poorly active 

(Conv.C2H6 = 3, 6 mol %) catalysts, while the ethane conversion varies and strongly 

depends on temperature, e.g. - the ethane conversion is almost doubled on increasing 

reaction temperature by only 20 ºC. The selectivity to carbon oxide when compared with 

the total selectivity (SEE +SAA) is also higher for these catalysts. However, catalysts with 

moderate vanadium ratios are more active and have less selectivity to carbon oxide.  

The catalyst Mo1V0.40 shows optimum activity with the highest yield to ethene. This 

catalyst was further studied to optimize the ethane concentration in feed while keeping 
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oxygen concentration constant in all ratios as shown in Table 3.4. The ethane conversion 

is lower when the ethane concentration (50 mol %) is greater and conversion increases 

when the ethane concentration in the feed is decreased, while oxygen behavior is reverse 

except in higher ethane concentration feed. Due to a constant concentration of oxygen, its 

conversion decreases with decreasing ethane concentration in the feed. The feed ratio 

ethane and oxygen (40:10) shows maximum conversion of both reactants over the 

selected catalyst (Table 3.5 and 3.6).   

Reaction temperature and pressure both impact upon the catalytic activity. Three 

temperatures at different pressures from atmospheric to 200 psig have been studied using 

the Mo1V0.4 catalyst. Increasing the temperature or pressure results in a higher conversion 

of ethane as shown in Tables 3.7 to 3.11. Higher temperature increases the ethane 

conversion and results in an increase of COx at the expense of ethene, whilst the 

selectivity of AA has not changed significantly. Pressure also increases ethane 

consumption during the reaction over the selected catalyst but with a lower degree of 

impact. Pressure has a direct impact on AA formation at the expense of ethene while 

carbon oxide formation remains stable. The activity of the selectedcatalyst can be 

maximized at mild temperature and pressure to obtain maximum yield of ethene during 

the ethane ODH. 

Experimental data indicate that the most promising results occur at a temperature of 290 

ºC for 70 psig pressure. This temperature and pressure results in the lowest amount of 

carbon oxide formation and greater activity in terms of ethane conversion and ethene 

selectivity. However, at a higher temperature of 310 ºC, the conversion increases, which 

is associated with an increase in carbon oxide formation due to a high consumption of 

oxygen as the temperature increases. There is also a significant impact on the AA 

selectivity which increases with temperature and pressure in the reaction process. 
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         Chapter 4 

 

 

 

Chapter 4 

 

Results of oxalic acid addition on MoV oxide catalyst activity for 

the oxidative dehydrogentation (ODH) of ethane 

 

4.1 Introduction 

 

MoV catalysts have been investigated extensively for their high selectivity to lower 

molecular weight alkenes, especially ethene [1-2]. The catalyst preparation is mostly 

performed by the hydrothermal method. However, it is difficult to control key properties 

such as crystal structure, particle shape, and surface area that determine the performance 

of the catalysts, hence reproducibility is difficult. The studies presented in this chapter 

focus mainly on the improvement of the preparation method and the characterization of 

the catalysts. Parameters such as pH, temperature, molybdate solution temperature, and 

rate of addition can be altered in order to produce the desired catalytic phase with high 

ethene selectivity. In the present study, the variables investigated include the final pH of 

the obtained precipitated slurry (achieved via the addition of different acids), the 
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temperature of precipitation, and the calcination temperature of precursor materials. 

Optimum preparation conditions have been achieved on the basis of the catalytic 

performance. The effects of reaction variables (reaction temperature and pressure) have 

also been studied in order to define the optimum reaction conditions for further studies. 

Particular effort was made to collect stable product data in the gas phase to ensure full 

mass balance.  

 The objective of this chapter is to determine the optimum mass of oxalic acid for 

addition at the precursor stage of catalyst preparation of molybdenum vanadium oxide 

catalysts (Mo1V0.4), and to identify the optimum preparation conditions with respect to 

catalytic activity.  

For this study, seven catalysts (with 2.5:1 ratios of Mo and V) were prepared with 

different masses of oxalic acid in the preparation step to observe the role of oxalic acid 

for ethane ODH to ethene. The details of oxalic acid addition are given in Table 4.1. All 

catalysts were prepared by precipitating precursor solutions and drying the slurry at 120 

ºC in an oven for 16 h as described in Chapter 2. 

Table 4.1: Slurry pH with different amount of oxalic acid used in catalysts. 

Catalyst Ref.  Oxalic acid (g) Slurry pH 

MoV-0 0.0 5.43 @ 81 ºC 

MoV-1 1.0 4.76 @ 81 ºC 

MoV-2.5 2.5 4.34 @ 81 ºC 

MoV-5 5.0 3.71 @ 81 ºC 

MoV-7.5 7.5 3.56 @ 80 ºC 

MoV-10 10.0 3.21 @ 80 ºC 

MoV-12.5 12.5 1.67 @ 81 ºC 
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4.2 Experimental results  

All prepared catalysts were tested as discussed in Chapter 2. The experiments were 

carried out at 70 psig in a fixed bed tubular reactor at different temperatures (270 - 310 

ºC). A stabilization period of 2 h was maintained for all catalysts tested to have steady 

state data collection. Reactants and products were analyzed by online GC. The catalytic 

performance data are presented in Tables 4.2 - 4.4. 

4.2.1 Catalyst testing data at 270 ºC. 

Table 4.2: ODH of ethane data on MoV oxide catalysts at 270 ºC. 

Catalyst Conv. (%) Selectivity (%) Yield (%) 

Ref. C2H6 O2 CO2 CO C2H4 AA C2H4 

MoV-0 1.4 5.7 6.4 38.1 55.1 0.3 0.8 

MoV-1 3.7 11.3 10.3 24.1 64.5 1.1 2.4 

MoV-2.5 11.7 43.9 6.1 17.2 69.2 7.5 8.1 

MoV-5 18.3 66.8 5.1 8.9 71.2 14.9 13.1 

MoV-7.5 19.1 71.3 3.4 8.5 71.8 16.3 13.7 

MoV-10 17.5 58.8 3.1 7.3 77.1 12.5 13.5 

MoV-12.5 5.5 17.1 3.8 11.4 70.3 14.5 3.9 

Reaction conditions: Pressure = 70 psig, temp. = 270 ºC, feed gas = ethane: oxygen: 

nitrogen (40:10:50), catalyst wt. = 1 g, feed flow = 25 ml/min. 

 Catalysts prepared with varying amounts of oxalic acid were calcined at 350 ºC in air, 

and tested at the same process conditions to compare their activity. Catalytic activity data 

shows that the catalyst prepared without oxalic acid has the lowest activity, compared 

with catalysts prepared with oxalic acid. Selectivity to ethene increases with increasing 

oxalic acid addition but carbon oxide selectivity decreases with the exception of the 

catalyst prepared with 12.5 g of oxalic acid. Maximum ethene selectivity is obtained with 

the catalyst prepared with 10 g oxalic acid. Acetic acid (AA) selectivity initially increases 

with oxalic acid addition, reaching a maximum upon the addition of 7.5 g of oxalic acid. 
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4.2.2 Catalyst testing data at 290 ºC. 

Table 4.3: ODH of ethane data on MoV oxide catalysts at 290 ºC. 

Catalyst Conv. (%) Selectivity (%) Yield (%) 

Ref. C2H6 O2 CO2 CO C2H4 AA C2H4 

MoV-0 2.7 9.4 8.5 48.0 43.1 0.4 1.2 

MoV-1 5.9 18.4 12.4 31.7 54.5 1.5 3.2 

MoV-2.5 18.5 60.6 8.1 19.1 61.6 11.2 11.4 

MoV-5 23.1 91.5 6.4 10.2 65.2 18.2 15.1 

MoV-7.5 24.2 90.9 5.9 9.3 64.4 20.3 15.6 

MoV-10 21.8 88.1 4.6 8.7 69.2 17.5 15.1 

MoV-12.5 8.3 29.1 6.1 12.4 63.0 18.6 5.2 

Reaction conditions: Pressure = 70 psig, temp. = 290 ºC, feed gas = ethane: oxygen: 

nitrogen (40:10:50), catalyst wt. = 1 g, feed flow = 25 ml/min. 

4.2.3 Catalyst testing data at 310 ºC. 

Table 4.4:  ODH of ethane data on MoV oxide catalysts at 310 ºC. 

Catalyst Conv. (%) Selectivity (%) Yield (%) 

Ref. C2H6 O2 CO2 CO C2H4 AA C2H4 

MoV-0 3.6 16.4 9.5 50.7 39.3 0.6 1.4 

MoV-1 7.4 31.9 14.7 34.4 49.0 1.8 3.6 

MoV-2.5 25.0 93.8 10.3 21.6 55.0 13.1 13.8 

MoV-5 27.6 99.8 6.8 11.7 62.2 19.3 17.2 

MoV-7.5 27.8 100 5.9 10.6 63.1 20.5 17.6 

MoV-10 26.6 96.6 6.1 10.2 67.7 16.1 18.0 

MoV-12.5 12.9 52.7 7.0 15.8 59.5 17.7 7.7 

Reaction conditions: Pressure = 70 psig, temp. = 310 ºC, feed gas = ethane: oxygen: 

nitrogen (40:10:50), catalyst wt. = 1 g, feed flow = 25 ml/min. 

Although the catalytic activity increases for all catalysts as temperature increases from 

270 ºC to 310 ºC, the product selectivity remains almost constant. Catalysts prepared with 

little or no oxalic acid have low ethane conversion as well as low selectivity towards 
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ethene formation. However catalyst prepared by adding more oxalic acid (2.5 - 10 g) 

showed increased ethane conversion as well as increased ethene selectivity. 

At the highest temperature, the catalytic activity increased to a maximum as oxygen is 

almost fully consumed. At this temperature carbon oxide and acetic acid (AA) formation 

increase while ethene selectivity decreases, though the activity behavior remains the same 

for all catalysts. 

4.3 Results and discussion  

Catalytic activity data showed very clearly a modification in the catalytic property or the 

active center of the catalysts upon addition of oxalic acid. The main products obtained by 

ODH of ethane are ethene, carbon monoxide, carbon dioxide and AA. Experimental data 

shows that oxygen conversion increases with temperature and reached 100% with the 

MoV-7.5 at 310 °C. The catalyst prepared without oxalic acid has very poor activity at all 

three tested temperatures. Selectivity to ethene and carbon oxide is 40 and 60 mol % 

respectively, with a very small (∼1 mol %) formation of AA (Fig.4.2). 

  

Fig.4.1: Catalytic activity trends of catalysts varying with oxalic acid at 310 ºC. 
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Fig.4.2: Selectivity to ethene (C2H4) and carbon oxide (COx) vs. reaction 

temperature for all catalysts. 

Examining the catalytic activity behavior at different reaction temperatures (between 270 

and 310 °C), two trends were observed (except for the case of MoV-0): activity first 

increases with increasing mass of oxalic acid and then begins to decrease with an excess 

addition of oxalic acid, whereas the conversion varies strongly with increasing reaction 

temperature. This trend is the same for all temperatures. Catalytic activity data are given 

in Tables 4.2 - 4.4. The formation of carbon monoxide compared to that of carbon 

dioxide is also quite informative. The SCO/SCO+SCO2 amounts to 0.8-0.7 for the catalysts 

prepared with lower amounts of oxalic acid and the catalysts are less active, whereas 

SCO/SCO+SCO2 remains constant at 0.6 for all the catalysts prepared with more than 5 g 

oxalic acid and the activity is high.  

It has been reported that addition of oxalic acid during catalyst preparation by slurry or 

hydrothermal methods strongly influences both the nature of the phases and their 

catalytic activity [1-2]. The variation in amount of oxalic acid results in significant 

changes in the phase composition and catalytic characteristics [2] due to the fact that the 
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oxidation states of elements and the nature of crystalline phases in the catalyst depend on 

the oxalic acid content. 

 These findings matched those of Popova et al. [3] over MoVNbTe oxide catalysts for 

propane ammoxidation which showed that catalysts prepared without the addition of 

oxalic acid have low activity which increases with the addition of oxalic acid, added with 

niobium in the preparation slurry. The addition of oxalic acid resulted in increased 

activity and ethene selectivity with decreased carbon oxide formation, whilst AA 

formation also increases slowly. Selectivity to ethene decreases with increasing 

temperature, while the carbon oxide selectivity increases (Fig.4.2). This indicates that the 

reaction performance is highly temperature dependent.  

Thorsteinson [4] studied catalysts consisting of a mixture of the oxides of molybdenum 

and vanadium as well as the with the addition of third metals for ODH of ethane at 

various process conditions. Kinetics of the process were performed and it was found that 

under super-atmospheric pressures AA becomes a coproduct of the reaction. The rate 

equation for AA production shows a first order dependence which means that it is 

independent of partial pressure of ethane and dependent on ethene and oxygen pressures. 

Similarly, the expression for the production of COx is independent of the ethane partial 

pressure. This suggests that the primary product of ethane ODH is ethene and that acetic 

acid and carbon oxide are formed by its subsequent oxidation.  

Further to this, a significant change in the product selectivity is also observed with the 

catalysts prepared with oxalic acid.  There is a decrease in the total oxidation products 

such as carbon monoxide and carbon dioxide, while the product selectivity to ethene and 

AA increases and is constant until an excess amount of oxalic acid is used.  
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4.4 Results of catalyst characterization  

MoV catalysts with oxalic acid showed that the oxidation states of V and Mo are changed 

to an optimum redox level, which enhances the ODH function of the MoV and decreases 

the number of active sites responsible for the total oxidation; this can be verified by 

Raman spectroscopy, XRD, XPS and TEM analysis of the material. 

4.4.1 BET 

The catalyst prepared without oxalic acid has a surface area of 12 m2/g. The surface area 

increases with the addition of oxalic acid. Catalysts prepared with zero/low or higher than 

10 g of oxalic acid have a surface area of 12 - 14 m2/g and have low catalytic activity; 

whilst the catalysts prepared with 2.5 - 10 g of oxalic acid have a high surface area 18 - 

23 m2/g and show good catalytic activity. The surface area of the catalysts prepared by 

varying oxalic amount is given in Table 4.5. 

Table 4.5: Surface area of catalysts prepared with different amounts of oxalic acid. 

Cat. Ref. Oxalic acid (g) Surface area (m2/g) 

MoV-0 0 12 

MoV-1 1 13 

MoV-2.5 2.5 18 

MoV-5 5 23 

MoV-7.5 7.5 20 

MoV-10 10 21 

MoV-12.5 12.5 14 

 

4.4.2 Raman spectroscopy 

To analyze the nature of the surface species of bulk MoO3, and V2O5 samples were 

calcined at 350 °C prior Raman spectroscopy. Fig. 4.3 shows Raman spectra of bulk 
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MoO3 and bulk V2O5, obtained by calcining ammonium molybdate and ammonium 

metavandate precursor. The major vibrational modes of MoO3 are located at 995, 819, 

667 and 290 cm-1 and have been assigned to the Mo=O stretching mode, the Mo-O-Mo 

asymmetric stretching mode, the Mo-O-Mo symmetric stretching mode, and M=O 

bending mode, respectively. The Raman spectra for the bulk V2O5 displayed bands of 

406, 528, 702, and 996 cm-1, all of which are characteristic of crystalline V2O5. The 996 

cm-1 band is assigned to the vibration of the short vanadium and oxygen bond normally 

regarded as a V=O species. 

 

Fig.4.3: Raman analysis result for bulk salts of molybdenum (ammonium 

molybdate) and vanadium (ammonium metavandate) after calcination at 350 °C. 

Fig. 4.4 shows Raman spectra of MoV oxide catalysts prepared by addition of different 

amounts of oxalic acid. The first two samples prepared with 0 g and 1 g of oxalic acid 

showing main bands at 996, 820, and 406 cm-1 have poor activity, while other catalysts 

showing broad and low intensity bands in these positions have greater catalytic activity.  
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Fig.4.4: Raman spectra of catalysts prepared by varying oxalic acid amount; MoV-

0-(a), MoV-1-(b), MoV-2.5-(c), MoV-5-(d), MoV-7.5-(e), MoV-10-(f), MoV-12.5-(g). 

The Raman spectra of all MoV oxides catalysts are characterized by an intense peak in 

the range 950-820 cm-1, a wide medium peak centered ca. 700 cm-1 and a small sharp 

peak at 407 cm-1. Slight differences seem to be related to the addition of different 

amounts of oxalic acid in the catalyst preparation. In MoV oxide, some lines assigned to 

MoO3 (particularly the vibration of Mo-O-Mo and Mo=O bonds at 820 and 995 cm-1, 

respectively) are more intense as seen in Fig.4.4. Lines observed at 995, 820, 700 and 405 

cm-1 are slightly shifted and contain more peaks with the addition of more oxalic acid. 

Raman lines at 860-940 cm-1 are assigned to the M-O-M stretching mode of 

polycrystalline M-M-O mixed metal oxide while those ca. 1000 cm-1 are assigned to the 

M=O (or Mʹ=O) stretching mode. In particular, lines at 932 and 873 cm-1 are related to 

M-O-V phases. Mestl [5], in their study of an Mo-V-O system doped with tungsten, 

assigned lines at 940-860 cm-1 and a broad peak at ca. 700 cm-1 to a nanocrystalline 

Mo5O14-type mixed oxide with partial substitution of Mo by V and/or W. Niobium and 

tungsten also affects the crystallinity of Mo mixed oxide [6]. Therefore the present 

samples do have the same phase and do contain (VMo)5O14. However, hexagonal mixed 
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oxides also present as shown by their main line located in the same range, in accordance 

with the XRD patterns. However, a noticeable difference exists between the catalyst 

without oxalic acid and those with oxalic acid; the characteristic lines of nanocrystalline 

Mo5O14 types disappeared or their intensity considerably decreases with oxalic acid. 

However, the latter modification occurs simultaneously with a relatively strong increase 

of the intensity of hexagonal molybdenum oxide [h-MoO3] type’s lines.  

Raman spectral adsorption bands of MoO3 at 810, 662 and 340 cm-1 were observed for 

the materials prepared without oxalic acid. These are shifted or disappear (in d, e, f 

spectra in Fig. 4.4) with the addition of oxalic acid, especially the intense band at 810 cm-

1. The addition of oxalic acid led to an anisotropic deformation of vanadium oxide 

parallel to the (010) plane and a chaotic degradation of molybdenum oxide. In this case, 

the supporting of vanadium oxide on molybdenum and surface coverage of the latter with 

V2O5 took place; this is reflected in a decrease of the adsorption band at 810 cm-1. 

4.4.3 XRD 

XRD patterns of the bulk salts of ammonium molybdate and ammonium metavandate 

without any treatment showed crystalline structures. When these salts were calcined at 

350 ºC for 4 h, the XRD showed a more crystalline structure as given in Fig. 4.5. XRD 

patterns of bulk salts of ammonium molybdate and ammonium metavandate calcined at 

350 °C (Fig. 4.5) correspond to several Mo phases containing ammonium, including 

ammonium heptamolybdate tetra-hydrate (JCPDS 70-1707), (NH4)2Mo4O13 (JCPDS 80-

0757) and an intense line at 8.3 ° which is isostructural to hexagonal molybdenum oxide 

h-MoO3, the structure of which is known to be stabilized by ammonium ions and/or 

protons [7-8]. 
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Fig.4.5: XRD patterns of vanadium and molybdenum salt (normal and dried at 350 

ºC). 

The catalysts prepared with addition of oxalic acid showed a significant change in their 

morphology where the structure changes from crystalline to amorphous. The catalysts 

prepared with little or no oxalic acid showed crystalline structure. The same behavior is 

seen with MoV-12.5 which clearly shows a crystalline structure as shown in Fig. 4.6. 

However, the catalysts prepared by the addition of 5 - 10 g of oxalic acid show 

amorphous structure and have higher activity than the catalysts with crystalline 

structures. The catalysts with amorphous character (Fig. 4.6) centered at 2θ = 22.2 ° and 

the broad line at 25.5 ° (corresponding to several lines) may be assigned to NH4VO3, but 

also to Mo5O14 (called θ-phase) stabilized by vanadium [9], respectively. The other 

patterns also exhibit a partly amorphous character with a small number of sharp lines 

belonging to ammonium vanadium oxides (NH4)VyOz (including NH4VO3) and V2O5. 

A feature common to all MoV oxide catalysts is the presence of reflections at  

d(Å)/2θ=4.0/22.2 ° and d(Å)/2θ= 3.46/25.7 °. In addition to h-MoO3, several phases have 



 

 112 

 

been identified in these samples. The fact that most of h-MoO3 is shifted compared to the 

standard patterns (JCPDS 21-0569) may be due to a modification by vanadium or to the 

formation of oxygen vacancies, as in MoO3-x. The presence of Mo5O14-type structure is 

ascertained by the strong reflections at d(Å)/2θ = 4.02/22.2 ° and 3.56/25.54 °. 

 

 

Fig.4.6: XRD patterns of catalysts prepared by varying oxalic acid amount. 

The phases and crystallinity of the synthesized materials as seen in Fig. 4.6 depict sharp 

diffraction reflections for MoV-0 and MoV-12.5 and the peaks are well matched with a 

standard data card (JCPDS 21-0569; a=10.53 Å and c=14.9 Å) and indexed as hexagonal 

phase MoO3. The intense peak at 27.8 ° is associated with the (210) plane of h-MoO3 as 

bulk molybdate oxide (Fig.4.5) shifted towards a higher diffraction angle (2θ) in MoV 

oxide materials, revealing the changes in the inter-planar distance (d210). The d210 value of 

synthesized material is 3.43 Å, which is lower than pure bulk molybdate oxide (3.46 Å). 

The reflection intensities of the MoO3 decrease to a lesser extent with the addition of 

oxalic acid. 
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4.4.4 XPS 

Binding energies (BE) were referenced to O 1s core (530.40 eV). The area of Mo and V 

(3d3/2, 3d5/2), (2p3/2) peaks was measured for each sample and the surface stoichiometry 

determined. Signals were deconvoluted in order to obtain the relative amount of oxidized 

and reduced cations. The extreme values were obtained from bulk stoichiometry by 

considering the cations in their oxidized or reduced forms, respectively given in Table 

4.7. 

MoV-0 

 

MoV-1 

 

 

MoV-2.5 
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MoV-5.0 

 

 

MoV-7.5 

 

 

MoV-10 
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MoV-12.5 

 

Fig.4.7: X-ray photoelectron spectra of catalysts showing ‘V’ binding energies 

prepared by varying oxalic acid amount. 

 

The surface coverage of vanadium oxide was investigated by XPS as shown in Fig. 4.7. 

In these catalyst samples, Mo photopeaks, characteristic of Mo6+, are determined by the 

BE as well as full width half maximum (FWHM) values. The standard values of these 

cations, as detailed in literature, are 232.4 ± 0.2 eV for Mo6+, 230.8 – 231.8 eV for Mo5+, 

516.6 ± 0.1 eV for V5+, and 515.9 ± 0.4 eV for V4+ oxides [10-14]. These match with 

those of the samples, as shown in Table 4.6.  
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Table 4.6: XPS results of V concentrations in the MoV catalysts varying with oxalic 

acid amount. 

Cat. Ref. V BE (eV) FWHM (eV) Area (%) 

MoV-0 
V2p3/2 (V5+) 517.6 1.45438 87.03 

V2p3/2 (V4+) 516.3 0.98454 12.97 

MoV-1 
V2p3/2 (V5+) 517.6 1.61161 89.72 

V2p3/2 (V4+) 516.4 1.03409 10.28 

MoV-2.5 
V2p3/2 (V5+) 517.7 1.37427 76.01 

V2p3/2 (V4+) 516.5 1.19068 23.99 

MoV-5 
V2p3/2 (V5+) 517.4 1.5361 71.51 

V2p3/2 (V4+) 516.3 1.22657 28.49 

MoV-7.5 
V2p3/2 (V5+) 517.6 1.4573 60.52 

V2p3/2 (V4+) 516.6 1.46924 38.38 

MoV-10 
V2p3/2 (V5+) 517.4 1.32657 48.72 

V2p3/2 (V4+) 516.4 1.41749 51.28 

MoV-12.5 
V2p3/2 (V5+) 517.6 1.61612 70.74 

V2p3/2 (V4+) 516.3 1.33459 29.26 

 

The calculated values of oxidation state of vanadium can be explained with the equation 

proposed by Coulston [15] for individual vanadium oxides. In the presence of certain 

types of atoms (V and Mo in the present case), the capability of the oxygen atom to 

withdraw electron density from them should be taken into account and the so-called 

group shift [16-17] should be determined by the summation of Madelung energies over 

all types of atoms. The amount of oxygen, determined from the surface composition, is 

lower than when calculated from the bulk stoichiometry (where all V is assumed to be 

V4+). 

The XPS data in Table 4.7 shows that the V/Mo ratio remains the same in catalysts 

prepared with the addition of oxalic acid from 1 - 10 g, while the reducibility of 

vanadium is enhanced. This ratio decreases with the addition of oxalic acid, as the 
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reducibility has increased. The O/V value changes with increasing addition of oxalic acid, 

and shows different oxygen stoichiometry, while the O/Mo ratios do not change greatly. 

The relative amount of V4+ is smaller in the cases of MoV-0 and MoV-1, meaning the 

vanadium is less reducible when there is little or no oxalic acid used. XPS data clearly 

shows that the reducibility of vanadium is highly dependent on the presence of oxalic 

acid. 

Table 4.7: Atomic ratios and stoichiometry of MoV catalyst varying with oxalic acid. 

Catalysts Binding energies (eV) Atomic ratio 

Ref. Mo6+ V5+ V4+ V:Mo O:V O:Mo V5+:Vtotal 

MoV-0 233.1 517.6 516.3 0.22 11.34 3.29 0.87 

MoV-1 233.2 517.6 516.4 0.24 11.39 3.51 0.90 

MoV-2.5 233.1 517.7 516.5 0.28 9.51 3.65 0.76 

MoV-5 232.9 517.4 516.3 0.26 10.55 3.63 0.72 

MoV-7.5 233.0 517.6 516.6 0.25 9.58 3.18 0.61 

MoV-10 232.7 517.4 516.4 0.26 9.87 3.43 0.51 

MoV-12.5 233.1 517.6 516.3 0.36 7.35 4.06 0.71 

 

4.4.5 TEM  

The Transmission electron microscopy (TEM) utilizes energised electrons to provide 

morphological, compositional and crystallographic information on samples. TEM images 

were obtained for the samples in order to study the oxalic acid impact on the catalysts 

morphologic and crystallographic properties. MoV-0 shows agglomerations of needle 

like particles or “nano-rods” of non-uniform length and width interconnected with an 

amorphous top layer, indicated by the arrow in the images. The catalyst also shows a 

significant amount of small <20 nm particles inter-dispersed within the needles, shown in 

Fig.4.8. MoV-1 has the same morphology but fewer small particles compared to the 

samples prepared without the addition of oxalic acid.  
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MoV-7.5 

 
MoV-10 

 
MoV-12.5 

 

Fig.4.8: TEM images of catalysts prepared with different amount of oxalic acid. 

Addition of 2.5 g of oxalic acid in the sample preparation affects the morphology of the 

sample as very uniform rods of micrometre (μm) sized length and equal width are 

formed. MoV-5 shows “nano-rods” beginning to grow into one-another via an amorphous 

over layer, as seen in the top of the right hand side image, and is no longer uniform as 
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seen in sample MoV-2.5. Upon further addition of oxalic acid, 7.5 g (MoV-7.5), the 

formation of “saw” or “tooth” like growths along the edges of the rods growing into other 

rods are visible. For MoV-10, the morphology changed completely and only a few nano-

rods are present.  The material comprises of agglomerations, and amorphous and 

crystalline particles of irregular structure. The structure of MoV-12.5 is the same as that 

of MoV-10, but is more crystalline and less amorphous. 

4.4.6 SEM and EDX  

Surface morphology was examined for all catalysts using SEM and EDX analysis. All 

samples were composed of irregular particles with variable sizes. The individual particles 

contained a variable content of surface particles and surface cracks. The particles in 

sample MoV-0 were composed of agglomerated coarse crystals of different shapes, 

whilst the surface of sample MoV-1 shows a depression with fine crystals. The surface of 

sample MoV-2.5 has coarse flakes and irregular particles. The surfaces of the particles in 

samples MoV-5, MoV-7.5 and MoV-10 contain embedded fine needle like crystals, 

whilst sample MoV-12.5 shows a more crystalline surface [Fig.4.9]. 

The elemental composition of catalysts with the general formula MoV prepared with 

adding different amount of oxalic acid was determined by EDX. EDX analysis of 

multiple particles in all samples showed the presence of O, Mo and V and showed that 

the relative concentration of the elements are not affected, as evident from Table 4.8.  

Compositional variability was observed in almost all samples. 
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MoV-0 MoV-1 

MoV-2.5  MoV-5 

MoV-7.5 MoV-10 

                                  

MoV-12.5 

Fig.4.9: SEM images of catalysts prepared by varying oxalic acid amount. 
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Table 4.8: Elemental content of particles determined by EDX (wt %). 

Cat. Ref. O Mo V 

MoV-0 33.0 57.2 9.8 

MoV-1 28.5 58.3 13.2 

MoV-2.5 28.9 56.0 14.0 

MoV-5 31.7 55.4 11.7 

MoV-7.5 32.2 55.6 12.3 

MoV-10 32.6 55.2 13.2 

MoV-12.5 30.1 59.3 10.7 

 

4.5 Effect of the calcination temperature on the catalyst performance  

The MoV-10 catalyst was further prepared as described in Chapter 2, and calcined at 

different temperatures of 200, 350, 400, 450 and 700 ºC. These catalysts were denoted as 

MoV-200, MoV-350, MoV-400, MoV-450 and MoV-700 respectively, as given in Table 

4.9. These samples were tested in a fixed bed reactor as detailed in Chapter 2. The 

catalytic experiments were carried out for these samples at three different temperatures; 

290 ºC, 310 ºC and 340 ºC, while pressure, feed flows and feed ratios were kept constant 

to determine the effect on catalytic activity. These samples were further characterized 

with BET total surface area analysis. XPS, XRD, SEM and EDX were also conducted. 

Table 4.9: Catalysts calcined at different temperature. 

Catalyst Ref. Calcination temp. (°C) 

MoV-Un Uncalcined 

MoV-200 200 

MoV-350 350 

MoV-400 400 

MoV-450 450 

MoV-700 700 
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4.5.1 Results of calcined catalysts 

Catalysts calcined at different temperatures were tested at the same process conditions 

keeping pressure, feed flow and catalyst amount constant. Reaction temperatures were 

varied to evaluate the catalytic activities. 

4.5.1.1 Reaction temperature impact on calcined catalyst activity  

Calcined catalysts were tested at different reaction temperatures (290 - 340 °C), and their 

catalytic activity data are given in Tables 4.10 - 4.12. The catalytic activity of the catalyst 

first increases as the calcination temperature increases from 200 - 350 °C and then starts 

to decreases at higher calcination temperatures. The catalysts calcined at higher 

temperatures behave differently; MoV-450 calcined at 450 °C has a high CO selectivity, 

whilst MoV-700 calcined at 700 °C has a higher CO2 selectivity with low ethane 

conversion. 

Table 4.10: Catalyst activity results at 290 ºC and 70 psig pressure.  

Catalyst        Conv. (%) Selectivity (%) Yield-(%) 

Ref.  C2H6 O2 CO2 CO C2H4 AA C2H4 

MoV-Un 1.8 8.2 16.5 10.8 70.1 2.7 1.3 

MoV-200 2.9 9.6 10.5 12.0 72.9 4.6 2.1 

MoV-350 21.8 68.9 4.3 8.4 68.8 18.5 15.0 

MoV-400 10.1 33.5 5.3 11.2 61.9 21.6 6.3 

MoV-450 5.7 12.1 8.3 48.1 37.6 6.0 2.1 

MoV-700 0.8 1.5 34.4 10.6 55.0 0.0 0.4 

Reaction conditions: Pressure = 70 psig, temp. = 290 ºC, feed gas = ethane: oxygen: 

nitrogen (40:10:50), catalyst wt. = 1 g, feed flow = 25 ml/min. 

The increasing reaction temperature favours the formation of carbon monoxide and 

carbon dioxide, while AA selectivity remains constant. In the product distribution the 

carbon oxide selectivity increases and ethene selectivity decreases with increasing 
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reaction temperature. Catalysts calcined at 350 °C and 400 °C show high activity with 

high ethane conversion and low carbon monoxide and carbon dioxide formation, while 

also showing high AA formation, compared with the catalysts calcined at other 

temperatures. 

Table 4.11: Catalyst activity results at 310 ºC and 70 psig pressure.  

Catalyst        Conv. (%) Selectivity (%) Yield-(%) 

Ref.  C2H6 O2 CO2 CO C2H4 AA C2H4 

MoV-Un 2.7 10.6 19.6 13.6 63.2 3.6 1.8 

MoV-200 4.3 12.1 10.9 19.1 64.7 5.2 2.8 

MoV-350 27.2 96.6 6.7 11.3 66.6 15.4 18.2 

MoV-400 14.2 47.0 6.6 15.2 57.9 20.3 8.2 

MoV-450 7.1 23.5 8.8 53.4 32.8 5.0 2.3 

MoV-700 1.7 3.6 35.8 11.3 49.2 3.7 0.8 

Reaction conditions: Pressure = 70 psig, temp. = 310 ºC, feed gas = ethane: oxygen: 

nitrogen (40:10:50), catalyst wt. = 1 g, feed flow = 25 ml/min. 

 

Table 4.12: Catalyst activity results at 340 ºC and 70 psig pressure.  

Catalyst        Conv. (%) Selectivity (%) Yield-(%) 

Ref.  C2H6 O2 CO2 CO C2H4 AA C2H4 

MoV-Un 4.8 14.2 23.8 17.6 53.9 4.7 2.6 

MoV-200 6.2 21.6 12.0 24.3 56.1 7.6 3.5 

MoV-350 28.4 99.4 8.4 12.5 62.4 16.7 17.7 

MoV-400 22.0 95.8 9.6 19.9 53.1 17.4 11.7 

MoV-450 11.7 57.2 10.7 57.6 27.1 4.6 3.2 

MoV-700 2.3 5.6 40.2 11.2 44.3 4.4 1.0 

Reaction conditions: Pressure = 70 psig, temp. = 340 ºC, feed gas = ethane: oxygen: 

nitrogen (40:10:50), catalyst wt. = 1 g, feed flow = 25 ml/min. 

 

This data clearly shows a modification in the catalytic properties of the catalysts at 

various calcination temperatures for both oxygen and ethane conversion. These catalysts 
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show a clear trend in ethane conversion (Fig. 4.10). The optimum performance is 

achieved with the catalyst calcined at 350 ºC which has low carbon oxide formation and 

high ethane conversion. The decrease in activity of the catalysts calcined above 350 °C 

could be due to a decrease in surface area or the formation of different phases or 

crystallinity of the materials, as discussed in the characterization sections. 
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Fig.4.10: Ethane conversion vs. temperature for different calcined catalysts. 

Both ethene selectivity and ethane conversion first increase, then decrease above 350 °C. 

The behavior of the catalysts varies at higher calcinations temperatures. The catalyst 

samples calcined at 450 °C and 700 °C show very different activity. The activity of 

MoV-450 does not increase with increasing reaction temperature, and only carbon 

monoxide formation increases significantly whilst the activity of sample MoV-700 

decreases drastically and produces only carbon dioxide with increasing reaction 

temperature. The catalyst calcined at the lowest temperature, 200 ºC, has very low 

conversion of ethane and high selectivity towards ethene formation. The catalyst calcined 

at the moderate temperature of 350 ºC shows very high activity, with high ethane 
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conversion, high ethene selectivity and low COX formation.  The catalysts calcined at 400 

- 450 ºC, show significant change in their activity.  

4.5.2 Characterization of catalysts calcined at different temperatures 

 (i) BET 

Table 4.13 shows the surface area of the MoV oxide catalysts calcined at different 

temperatures. The BET data shows the influence that calcination temperature has on the 

surface area of the samples. There is a small decrease in the surface area from uncalcined 

materials to calcined 400 ºC (MoV-400), whilst there is sharp decrease in surface area 

from the samples calcined at 450 to 700 ºC. Sample MoV-700 shows a large loss in 

surface area which could be due to the formation of the bulk phase at 700 ºC. 

Table 4.13: Surface area of catalysts calcined at different temperature. 

Catalyst Surface area (m2/g) 

Ref. Before calcination After calcination 

MoV-Un 25 25 

MoV-200 24 24 

MoV-350 23 20 

MoV-400 24 19 

MoV-450 23 15 

MoV-700 24 2 

 

(ii) XRD 

The XRD patterns of the uncalcined sample and samples calcined at different 

temperatures show typical changes from amorphous to crystalline morphology. The 

comparison pattern presented in Fig. 4.11 shows some initial peaks being shifted from the 

amorphous phase. 
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Fig.4.11: XRD patterns of calcined catalysts at different temperature. 

Fig. 4.11 depicts the XRD patterns for the catalysts calcined at various temperatures. 

They contain reflection lines of different phases which were found to evolve as the 

calcination temperature was increased. The MoV-350 sample is amorphous with 

hexagonal phases observed. At the calcination temperature of 400 °C, crystalline 

structure starts to emerge with orthorhombic and hexagonal phases. For samples calcined 

at temperatures higher than 400 °C, the presence of the orthorhombic phase decreases and 

hexagonal phases becomes more prominent. However, at 700 °C the sample becomes 

more crystalline in structure with monoclinic phases. This phase transition is clearly 

evident from the diffractogram of samples calcined at different temperatures. 

(iii) XPS 

Binding energies (BE) of C, O, Mo and V and reduced vanadium species of the catalyst 

samples are given in Table 4.14-4.15, which match with literature values [10-11]. 
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Table 4.14: Chemical content and their binding energies of all calcined catalysts. 

Catalyst Binding Energies (eV) Contents (At %) Ratio 

Ref. C1s O1s Mo3d V2p C1s O1s Mo3d V2p V:Mo 

MoV-Un 284.5 530.7 232.5 516.8 30.4 56.0 9.9 3.7 0.37 

MoV-200 284.5 530.7 232.6 516.9 28.2 56.2 11.4 4.2 0.37 

MoV-350 284.5 530.4 232.8 517.4 24.1 56.3 13.5 6.1 0.45 

MoV-400 284.4 530.6 233 517.6 23.8 56.4 14 5.8 0.41 

MoV-450 284.5 530.6 232.9 517.4 23.8 56.9 13.9 5.4 0.39 

MoV-700 286.2 530.5 232.8 516.7 24.4 57.8 14.5 3.2 0.22 

 

Table 4.15: Oxidation ratios of V4+ and V5+ and their binding energies of catalysts. 

Catalyst BE (eV) FMHM (eV) Ratio 

Ref. V2p V2p5+ V2p4+ V2p V2p5+ V2p4+ V4+:V5+ 

MoV-Un 516.8 - - 1.867 - - - 

MoV-200 516.9 - - 1.979 1.75 0.67 0.07 

MoV-350 517.4 517.3 516.2 1.812 1.36 1.16 0.32 

MoV-400 517.6 517.6 516.5 1.913 1.34 0.98 0.26 

MoV-450 517.4 517.4 516.3 1.553 1.43 0.95 0.17 

MoV-700 516.7 - - 0.28 - - - 

 

All calcined catalyst with V2p and Mo3d peaks have BEs of 516.8 and 232.6 

respectively, which are typical for V (V) and Mo (VI). The uncalcined catalyst and the 

calcined catalyst at 700 °C do not show the presence of V5+ and V4+. However, all 

catalysts show V and Mo content. The atomic ratio of catalyst MoV-700 is the lowest 

compared to the other samples, as shown in Table 4.14. Catalyst MoV-700 has a low V 

content possibly due to elemental vanadium caused by the calcination at 700 °C. 
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(iv) SEM and EDX 

Surface morphology with elemental composition analysis of all calcined catalysts was 

carried out with SEM and EDX, as explained in Chapter 2. All samples were composed 

of irregular particles having variable size, as shown in Fig. 4.11.   

MoV-Un MoV-200 

MoV-350 MoV-400 

MoV-450 MoV-700 

Fig.4.12: SEM images of samples calcined at different temperature. 

The individual particles have variable contents of surface particles with surface cracking. 

The rough surfaces generally contained embedded and agglomerated crystals of variable 

size, as in Fig. 4.11. MoV-Un and MoV-200 both show embedded crystal like features. 
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MoV-350 and MoV-400 both show fine structure with cracks and surface attached 

particles. MoV-450 and MoV-700 show agglomerated surface crystals and the catalyst 

shows much lower activity towards ODH of ethane. 

Table 4.16: Elemental content of particles determined by EDX (wt %). 

Cat. Ref. C O Mo V 

MoV-Un 1.7 43.3 44.8 9.3 

MoV-200 1.6 48.1 42.0 8.3 

MoV-350 0.0 32.8 55.4 11.8 

MoV-400 0.0 31.0 55.4 13.6 

MoV-450 0.0 30.4 56.3 13.4 

MoV-700 0.0 32.7 56.3 11.1 

EDX analysis of multiple particles in all samples showed the presence of O, Mo and V. 

The MoV-Un and MoV-200 samples showed a small amount of carbon. Compositional 

variability was observed in almost all samples, as shown in Table 4.16. 

4.6 Catalyst reproducibility and stability test 

Catalyst Mo1V0.40 with a molybdenum and vanadium ratio of 2.5:1 was prepared in three 

different batches to determine the reproducibility of catalyst activity and product 

selectivity. These catalysts were prepared using the same preparation procedure 

(temperature, pH and drying time), calcined at 350 ºC for 4 h in air and labeled MoV-

350-1, MoV-350-2 and MoV-350-3. 

4.6.1 Results of reproduced catalysts 

Catalytic activity data of the three batches is presented in Table 4.17. 
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Table 4.17: Catalytic activity data of reproduced catalysts. 

Catalyst Conv. (%) Selectivity (%) Yield (%) 

Ref. C2H6 O2 CO2 CO C2H4 AA C2H4 

MoV-350-1 21.8 68.9 5.3 8.4 67.8 18.5 14.8 

MoV-350-2 22.4 70.8 6.1 8.1 67.3 18.6 15.1 

MoV-350-3 22.9 69.2 6.6 7.5 67.8 18.1 15.5 

Reaction conditions: Pressure = 70 psig, temp. = 290 ºC, feed gas = ethane: oxygen: 

nitrogen (40:10:50), catalyst wt. = 1 g, feed flow = 25 ml/min. 

The reproduced catalysts data indicate that the catalysts of similar composition prepared 

with the same procedure at different times show very good reproducibility of the catalyst. 

4.6.2 Characterization of reproduced catalyst 

(i) BET 

Table 4.18 shows surface area of molybdenum vanadium (MoV-350) catalysts prepared 

in different batches. The surface area results show that all three batches of MoV-350 

catalyst have a similar surface area, from 21 - 22 m2/g. The surface area of these catalysts 

indicates good reproducibility. 

Table 4.18: Surface area of reproduced (MoV-350) catalysts. 

Catalyst Ref. Surface area (m2/g) 

MoV-350-1 21 

MoV-350-2 22 

MoV-350-3 22 

 

(ii) TGA 

Thermogravimetric analysis (TGA) was carried out on an uncalcined sample and a 

calcined sample (standard that was calcined at 350 °C) to determine the weight changes 



 

 132 

 

upon thermal activation in air at 10 °C/min ramp until 800 °C, as shown in Figs. 4.13 and 

4.14. During thermal activation, initial mass loss occurred due to the removal of H2O and 

NH3, ≈ 4.4 wt% up to 200 °C. After 200 °C, there was a sharp loss in weight (≈ 27 wt %) 

up to 300 °C. There was a slight weight gain between 300-390 °C and then a further 

decrease. This transient behavior may be interpreted as the establishment of a steady state 

of an average oxide stoichiometry, below the nominally fully oxidized composition. The 

thermal graph shows slight weight loss (≈ 31wt %) until 400 °C. There is no weight 

change in the temperature range between 400 and 650 °C. However, above 650 °C a large 

endotherm is observed, which is likely to be due to phase changes and the sudden weight 

loss (≈ 59 wt %) until the final activation temperature is reached (Fig. 4.13). 

 

Fig.4.13: TGA of uncalcined (MoV) precursor weight losses upon thermal 

activation. 
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Fig.4.14: TGA of standard (MoV-350) sample weight losses upon thermal activation. 

The TGA of the standard catalyst sample (MoV) that was calcined at 350 °C upon 

thermal activation is shown in Fig. 4.14. There was little weight loss (≈ 4 wt %) until 650 

°C. Similar behavior was observed between 300-350 °C with a slight weight gain, as seen 

in both the uncalcined precursor and calcined sample. The sample material calcined at 

350 °C is more active than any of the catalysts calcined at other temperatures, meaning 

that this catalyst has active phases that are the most favourable for the ODH of ethane to 

ethene.  

4.6.3 Catalyst stability test 

Catalyst MoV-350 was tested for a longer time on stream to determine the stability of the 

catalyst over time. The catalytic experiments were carried out at 70 psig in a fixed bed 

tubular reactor (i.d. 3/8”) at a fixed temperature (290 ºC). Reaction analysis was 

maintained for 30 days online. This catalytic analysis data is shown in Fig. 4.14. 
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Fig.4.15: Catalyst (MoV-350) stability runs on time on stream 739 h. 

4.6.3.1 Results of stability test 

Catalytic data shows that catalyst MoV-350 was run on stream for more than one month 

(739 h) without any decrease in ethane conversion or product selectivity. This catalyst 

was analyzed for its characteristic properties.  

(i) BET  

Table 4.19 shows fresh and spent catalysts have similar surface area, between 21 - 22 

m2/g. These results indicate that there is no effect on catalyst surface area after running 

under reaction conditions for 739 h. 

Table 4.19: Surface area of spent (MoV-350) catalyst.  

Catalyst Ref. Surface area (m2/g) 

MoV-350-fresh 21 

MoV-350-spent 22 
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(ii) XPS 

XPS results indicate that there is no change in surface of the catalyst after running under 

reaction conditions for 739 h. The binding energies as well the ratio of reduced vanadium 

remain the same. These results are presented in Table 4.20. 

Table 4.20: Oxidation states ratios of V4+ and V5+ and their binding energies.  

Catalyst BE (eV) FMHM (eV) Ratio 

Ref. V2p V2p5+ V2p4+ V2p V2p5+ V2p4+ V4+:V5+ 

MoV-350-fresh 517.4 517.3 517.3 1.812 1.36 1.16 0.33 

MoV-350-spent 517.3 517.3 516.2 1.813 1.35 1.16 0.32 

 

4.7 Discussion 

The interpretation of different characterization techniques propose that the MoV oxide 

composition constitutes an extremely efficient intermediate for the ODH process. The 

calcination temperature has a direct impact on the catalytic activity of the sample as a 

result in the formation of active phases. The surface area of the samples calcined at 

different temperatures decreases with increasing calcination temperature. The surface 

area decreases from 25 to 2 m2/g when temperature increases from 200 - 700 °C. XRD of 

the samples calcined at different temperatures as depicted in Fig.4.10 shows complex 

phase patterns. These phases formed in the Mo-V-O system are orthorhombic, hexagonal 

and tetragonal [18]. For most of the samples small lines were observed, indicating 

amorphosity with the formation of MoO3 in hexagonal and orthorhombic forms. With 

increasing calcination temperature the formation of (V0.07Mo0.93)5O14 was noted. Calcined 

catalysts showed sharp and intense peaks after 350 °C, presented in all samples at 2θ = 

9.7, 13.4 and 25.6 ° [19]. These suggest a crystalline structure of the orthorhombic and 
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hexagonal phases. Orthorhombic phases of MoO3 and tetragonal (V0.07Mo0.93)5O14 

(JCPDS 31-1437) reflections at 22 °, 27.8 ° were present [20]. 

The XPS data also showed the presence of MoO3 and V2O5 in the samples. The 

reduciblity property of the vanadium species decreases when the samples are calcined at 

temperatures higher than 350 °C. There are no reduced vanadium species seen in either 

MoV-Un or MoV-700. This clearly indicates that the catalytic activity also depends on 

the presence of V4+ species in samples. As seen in Table 6.7, the ratio of V4+/ V5+ species 

is highest when the sample was calcined at 350 °C and this ratio lessens with further 

increasing calcination temperature. 

The SEM micrographs of samples exhibit agglomerated crystals with a rod-like 

morphology. There is no clear dependency of the morphology on the various calcination 

temperatures used. They fully support the trends understood from EDX composition, 

BET, and due to phase changes. . The calcination temperature determines the effect on 

the physiochemical properties of MoV mixed oxide catalysts. Phase evolution was clearly 

evident due to variation of calcination temperature. The results highlight the benefits of 

the study on various calcination temperatures in order to reach the required active phase. 

The amorphous character of the active catalysts (MoV oxide) prepared with oxalic acid 

make it difficult to propose an accurate description of these catalysts. Hexagonal mixed 

oxides like VxMo1-xO3-x/2 and tetragonal θ-(VMo)5O14 cannot be distinguished by XRD 

(most of the major XRD reflections lie in the same 2θ-range), nor by Raman 

spectroscopy (Mo-O-V vibrations give rise to similar peaks of Mo-O-Mo in the same 

range of wavenumbers). Merzouki et al. [21] assumed that MoV(Nb) catalysts are 

composed of θ-(VMo)5O14 and α-MoO3 nanoparticles. Similar phases were assumed to be 

present on MoVNbPd catalysts by Mestl [5], although some of the excess of V is 
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certainly present as α-VxMo1-xO3-0.5x. Indeed, the presence of the θ-phase accounts for the 

similarity between MoVNb catalysts and the industrial MoVW catalyst of acrolein 

oxidation [22, 23], because W, like V and Nb, is known to stabilize the θ-oxide [9]. The 

frame work of θ-Mo5O14 contains MoO7 pentagonal bipyramids, the equatorial edges of 

which are shared with five MoO6 distorted octahedral ([MoO7], 5MoO6) clusters. This 

pattern is isolated from three others by corner shared MoO6 octahedra. Vanadium (as V4+) 

replaces Mo in the octahedral structure, whilst Nb5+, whose size is large enough to be 7-

coordinated (ionic radius r = 0.69Å), shown in Table 4.21, reported by Shannon [24] with 

the optical basicity of some cations [25, 26], may be located in pentagonal bipyramids. 

Because of this, there is no need to consider Mo4+ ions (r = 0.65Å) which are known to 

be detrimental to catalytic activity. The large width of the (001) line of θ-(VMoNb)5O14 

nanocrystal accounts for a high degree of disorder in the stacking of (001) planes, which 

could be promoted by insertion of V or Nb. The same interpretation may be proposed for 

V in the case of stacked (010) planes of orthorhombic α-VxMo1-xO3-0.5x.  

Table 4.21: Ionic radius [24] and optical basicity Λ [25, 26] of some active cations. 

Cation 

Ionic 

radius(Å) CN* 

Optical 

basicity(Λ) Cation 

Ionic 

radius(Å) CN* 

Optical 

basicity(Λ) 

V5+ 0.36 4 0.69 V4+ 0.54 6 0.63 

V5+ 0.58 6 0.68 V3+ 0.64 6 0.55 

Mo6+ 0.41 4 0.55 Mo5+ 0.59 6 0.52 

Mo6+ 0.61 6 1.17 Mo4+ 0.65 6 0.96 

Nb5+ 0.48 4 0.64 Nb5+ 0.64 6 0.61 

Nb5+ 0.69 7 0.6 Nb4+ 0.68 6 0.81 

W6+ 0.42 4 0.54 W6+ 0.60 6 0.51 

Fe2+ 0.61 6 1.00 Fe3+ 0.55 6 0.77 

Pd2+ 0.64 4(square) 0.85 Pd2+ 0.86 6 1.11 

*CN: Coordination number 
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Merzouki [27] for V-P-O catalyst and Seoane [28] for V2O5 reported that palladium 

(Pd2+) accelerates the rate of the V5+ + e ↔ V4+ redox couple. When comparing the ionic 

radius and optical basicity for the same 6-coordination, V5+ (Λ = 0.63) or V4+ (Λ = 0.63) 

are close to those of Nb5+ (Λ = 0.63), while Mo6+ (Λ = 0.52) and W6+ (Λ = 0.51), both 

hexacoordinated, are slightly more acidic (Table 4.21). Conversely, Pd2+ is a soft cation, 

is more basic then the early transition metal cations (Λ = 1.11) and has a larger ionic 

radius, therefore the only way for Pd to be stabilized is to be trapped between layers. 

Indeed, these catalysts contain hexagonal channels. In the present MoV-oxides, oxalic 

acid reduces the vanadium oxides, shown in the XPS spectra (Fig. 4.7) by the varying 

ratio of V5+/V4+ in the calcined catalysts, prepared with varying oxalic concentrations.  

The growth of α-MoO3 and α-VxMo1-xO3-0.5x particles is seen in the MoV-400 oxides but 

not in Nb-containing catalysts (MoVNb-400 and MoVNbPd-400), noted by Bouchard 

[29]. This means that these crystals are stabilized at a nanometer scale, which is more 

indirect evidence of the insertion of V in θ-(VMoNb)5O14 and in VxMo1-xO3-0.5x. Bouchard 

[29] observed, during in-situ XRD reduction of MoVNb-350 by H2, the formation of a 

VxMo1-xO2 solid solution, while only MoO2 was identified in MoV-350. For reasons as 

yet unknown, it seems that Nb promotes the formation of solid solutions of (VMo)Ox. 

Initially, attempts were made to explain this stabilization by considering the formation 

and ‘isolation’ [30] of the [MoO7], 5MoO6 clusters of θ-(VMoNb)5O14 coherently grown 

in a matrix of (010) α-MoO3 [31-33].  

The catalysts prepared with oxalic acid addition and all calcined at 350 °C behave 

similarly to those of Bouchard [29], who observed the crystals stabilized as nanometer 

size particles, as observed in high resolution transmission electron microscopy (TEM) 

Fig. 4.8. This also shows nano-rods beginning to grow into one-another via an amorphous 

top layer. The present studied findings concur with the findings of Werner [34] on 
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Mo4VO14, which is isostructural to θ-oxides. Using high resolution transmission electron 

microscopy, the authors showed that “a continuum random network of basic structural 

units (distorted octahedra) was detected made up of approximately circular clusters 

embedded in a quadratic network”. However, the surface composition of several MoV 

catalysts with different amounts of oxalic acid do not show an excess of Mo, but 

typicallyshow a slight excess of V (except MoV-0 and MoV-12.5), as compared with the 

bulk stoichiometry. The crystal structure of V2O5 and related VnO2n+1 suboxides is very 

close to that of α-MoO3 (and thus of V0.13Mo0.87O2.935), has a similar framework (corner-

sharing and/or edge-sharing octahedral) and the same mean octahedral size. This is the 

reason why so many mixed oxides exist in the Mo-V-O system [35]. Therefore, layers or 

intergrowths of VOx with θ-oxides (or part of its framework) could also be considered. 

Bouchard [29] reported that both MoV-350 and MoVNb-350 have similar catalytic 

activity. They displayed the same high selectivity to ethene, which was attributed to the 

presence of θ-oxides. These catalysts are more active and selective to mild oxidation 

products (ethene and acetic acid) than MoVPd and VNbPd. The conversion of ethane 

varies by a factor of 2-3, the selectivity to AA is much lower than to ethene (SAA/SAA+SEE 

≈ 0.2), and the selectivity to COx is about 4-15 % that of total selectivity of SAA+SEE. The 

direct contribution of Nb5+ as an active site in VNbO5 seems very small [36], although Nb 

in Mo-V-Nb oxide was found to inhibit the total oxidation to carbon oxide [37]. 

Therefore, the catalytic properties of VNbPd are mainly due to vanadium oxide (also 

doped with Pd) as opposed to VNbO5. It may be inferred that (Pd)VOx is responsible for 

the high selectivity to AA, possibly by facilitating the selective oxidation of ethene [38-

40]. 

In the MoV oxide catalysts, Mo-oxides (MoOx) and/or V-oxides (VOx) (according to bulk 

and surface stoichiometry) are also present besides the θ-phase. According to the majority 
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of the studies, the optimum range of Mo/V/Nb/Pd is 1/0.25-0.40/0.10-0.12/0.05-0.10, and 

it seems virtually impossible for a unique phase to be responsible for catalytic properties, 

as in the existence of M1 and M2 [41, 42]. However, the main role is played by only Mo 

and V oxides as presently discussed based due to their ionic radius/coordination. The two 

MoV oxide based catalysts known to have a definite composition, and claimed to be 

highly active and selective in the (amm)oxidation of propane to acrylonitrile or acrylic 

acid [43-45], provide the opportunity for comparison with the present catalytic results of 

ODH of ethane to ethene (Tables 4.2 - 4.4).  

4.8 Conclusion 

Catalysts prepared with oxalic acid showed a greater activity compared to the catalysts 

prepared without oxalic acid using the slurry method. Catalysts prepared with oxalic acid 

with a pH between 3 – 4 shows a greater activity compared to catalysts with a lower or 

higher pH. Catalytic activity increases upon the addition of oxalic acid from 2.5 - 7.5 g, 

and then begins to decrease after the addition of more than 10 g of oxalic acid in the 

preparation procedure. 

Catalysts prepared with little or no oxalic acid and those prepared with higher than 10 g 

of oxalic acid have a lower surface area of 12 - 14 m2/g as well as a lower catalytic 

activity, showing lower ethane conversion. The other catalysts prepared with 2.5 - 10 g of 

oxalic acid have a relatively high surface area of 19 - 23 m2/g and show high catalytic 

activity with high ethene selectivity and lower carbon oxide formation in the product 

stream. 

The catalysts prepared with the addition of oxalic acid showed a significant change in 

their morphology and their structure changed from crystalline to amorphous. Catalysts 

prepared with little or no oxalic acid showed crystalline structure. The same behavior is 
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observed with catalysts prepared by the addition of 12.5 g of oxalic acid and shows a 

clear crystalline structure as depicted in Fig. 4.6. The catalysts prepared by the addition 

of 5 - 10 g of oxalic acid show amorphous structure and have higher activity than the 

catalysts with crystalline structure.  

Oxalic acid was successfully used during catalyst preparation to modify the 

physiochemical properties of the Mo1V0.4Ox catalyst for ethane ODH. Comparison shows 

that the addition of oxalic acid not only enhances the ethane conversion of the catalyst, 

but also improves its ethene selectivity and reduces the carbon oxide formation. This is 

due to the reduction of  V5+ to V4+ by oxalic acid in the starting solution to provide a 

driving force for formation of VxMo1-xO3-0.5x, which remains stable and enhances the 

ODH of ethane to produce ethene. In addition, the performance of the catalyst is strongly 

related to the amount of oxalic acid used during catalyst preparation. Catalysts prepared 

with 5 to 10 g of oxalic acid showed the highest ethane conversion and ethene selectivity 

as they contain the desired phase composition and good redox capacity. Therefore, 

employment of reductive oxalic acid improves the catalytic performance of the 

Mo1V0.4Ox catalyst. 
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                  Chapter 5 

 

 

 

Chapter 5 

 

Influence of the different oxide supports on the activity of MoV 

oxides catalyst.  

 

5.1 Introduction 

 

This chapter focuses on studying the influence of oxide supports of zirconium, titanium, 

niobium, silica and alumina on MoV oxide based (Mo1V0.4Ox) catalyst, and compares the 

influence of the specific oxide support phase on base oxide catalysts. The MoV oxide 

catalyst has some unique physical and chemical characteristics compared to other 

supported oxide catalysts for the ODH of ethane. The supported oxide catalysts were 

investigated by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and 

surface area (BET) in order to determine the molecular structure and monolayer coverage 

of the surface MoV oxide phase, on oxide supports (ZrO2, Nb2O5, TiO2, SiO2 and Al2O3).  
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Catalysts were prepared with 30 wt% support as described in Chapter 2, keeping the  Mo 

and V molar ratio at 2.5:1, denoted as MoV-Zr, MoV-Nb, MoV-Ti, MoV-Si and MoV-Al 

respectively. These samples were tested under standard process conditions to observe 

their ODH of ethane activity at different temperatures.  

5.2 Experimental results 

The details of catalyst testing have been discussed in Chapter 2. Catalysts were tested for 

the ethane ODH reaction at temperatures in the range of 290 – 330 ºC.  

5.2.1 Supports impact on catalytic activity 

The catalytic ODH of ethane to ethene over supported MoV oxide catalysts in the gas 

phase was carried out at different reaction temperatures. The catalytic performance at 

each reaction temperature is illustrated in Fig. 5.1, and the catalytic activity and 

selectivity at each temperature are summarized in Table 5.2. The products detected 

included ethene, acetic acid (AA), CO and CO2. Among the supported cataysts tested, the 

highest ethane conversion was obtained on the zirconia supported catalysts. However, it 

was slightly less active than the unsupported catalyst at low temperature (290 °C). At low 

conversion under low reaction temperatures, the selectivity to ethene over the supported 

catalysts was more than 80 %, which decreased gradually upon increasing temperature. 

Ethane conversion and selectivities were measured for all supported catalysts at constant 

temperature (290 °C) and reactant pressure (70 psig) to determine their catalytic 

performance. Data for all supported catalysts are presented in Table 5.1.  

 

 



 

 148 

 

Table 5.1: Catalytic activity results of supported catalysts at 290 °C.  

Catalyst Conversion (%) Selectivity (%) Yield (%) 

 Ref. C2H6 O2 CO2 CO AA  C2H4  C2H4 

MoV-Zr 14.1 51.6 6.3 11.4 3.7 78.7 11.1 

MoV-Nb 13.5 49.7 8.0 13.4 2.4 76.3 10.3 

MoV-Ti 12.9 43.4 7.8 14.6 2.6 75.0 9.7 

MoV-Si 7.4 24.8 6.3 12.6 1.8 79.4 5.8 

MoV-Al 10.3 32.8 5.2 11.8 2.2 80.7 8.3 

MoV-std 16.8 55.9 7.2 14.3 2.8 75.8 12.8 

Reaction conditions: Pressure = 70 psig, temp. = 290 ºC, feed gas = ethane: oxygen: 

nitrogen (40:10:50), catalyst wt. = 1 g, feed flow = 25 ml/min. 

The standard unsupported catalyst gave 17 % ethane conversion with 13 % ethene yield, 

higher than all supported catalysts. Zirconia, niobium oxide and titania supported 

catalysts have high ethane conversion compared to the silica and alumina supported 

catalysts at this temperature. Ethene selectivity is similar for all and the alumina 

supported catalyst shows the highest 81 %. Silica supported catalysts show low activity 

with 7 % ethane conversion. Results also show a slight decrease in carbon oxide (COx) 

selectivity in all supported catalysts compared to the standard unsupported catalyst, 

which could be due to a low concentration of active metals, as a result of up to 30 wt% 

supports used. These activity trends match those reported by Iglesia [1] for MoVNbOx 

catalysts supported over TiO2, ZrO2, and Al2O3. 

5.2.2 Temperature impact on catalytic activity 

To evaluate the ethane conversion levels and product selectivities of the supported 

catalysts, they were tested at different temperatures (290 - 330 °C). The temperature 

increment has a direct impact on ethane conversion and product selectivities. The COx 

selectivity increases greatly with ethane conversion, as temperature increases. AA 

selectivity increases marginally with temperature as ethene selectivity decreases (from 81 
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to 64 %). Niobium oxide, titania and silica supported catalysts show a greater COx 

formation compared to zirconia and alumina supported catalysts. At high (330 °C) 

temperature, alumina supported catalysts gave the highest ethene selectivity (64 %) with 

24 % ethane conversion. Data of all supported catalysts at different temperatures are 

presented in Table 5.2. 

Table 5.2: Supported catalysts activity at different temperatures.  

Temp. (°C) 290 310 320 330 

 (%) Conv. Sel. Conv. Sel. Conv. Sel. Conv. Sel. 

Cat. Ref. C2H6 C2H4 C2H6 C2H4 C2H6 C2H4 C2H6 C2H4 

MoV-Zr 14.1 78.7 17.4 73.6 23.1 68.1 25.3 59.7 

MoV-Nb 13.5 76.3 18.3 68.2 23.7 58.9 24.2 56.5 

MoV-Ti 12.9 75 16.4 69.7 19.5 65.1 20.4 62.6 

MoV-Si 7.4 79.4 15 68.9 19.2 65.2 20.9 59.1 

MoV-Al 10.3 80.7 17.9 74.9 22.8 70.1 24.2 63.8 

MoV-std 16.8 75.8 19.8 66.2 23.5 58.6 23.7 57.2 

Reaction conditions: Pressure = 70 psig, feed gas = ethane: oxygen: nitrogen 

(40:10:50), catalyst wt. = 1 g, feed flow = 25 ml/min. 

In terms of selectivity to carbon dioxide and AA, only a slight difference among the 

supported catalysts is observed. Significant changes were observed in the ethene and 

carbon monoxide formation and ethane conversion at the different temperatures. Ethane 

conversion increases with increasing temperature for all tested catalysts. At 320 °C the 

unsupported catalyst reaches a saturation point where all oxygen is consumed 

(conversion of O2 = 100 %) with 23.5 % ethane conversion, while supported catalysts 

continue to consume oxygen. At 330 °C, the ethane conversion of unsupported catalysts 

remains the same but activity decreases due to increasing COx formation. Zirconia, 

niobium oxide and alumina supported catalysts show higher ethane conversion (>24 %) 

compared to that of unsupported catalyst at high temperature (330 °C). 
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At 290 °C zirconia, niobium oxide and titania supported catalysts have better activity 

than alumina and silica supported catalysts. Silica supported catalyst show the lowest 

activity compared with other supported catalysts at all temperatures tested. While at 

higher temperatures (greater than 300 °C) supported catalysts ethane conversion pattern 

changed as depicted in Fig.5.1. In many oxidation reactions moisture is usually present as 

a component in the feed as well as a product of the reaction. Wachs [2] reported that the 

oxide supports have different capabilities to activate oxygen. Catalyst with vanadium 

species supported on Al2O3, TiO2, Nb2O5 and CeO2 had an effect of oxygen species 

transform upon adsorption on the metal oxide surface but it has less effect on silica 

supported vanadium catalysts. 

 

Fig.5.1: Supported catalysts activity, temperatures vs. ethane conversion. 

 

Catalysts supported with alumina and zirconia has a greater activity at higher 

temperatures compared to the other supported catalysts. These catalysts display a greater 

activity than the unsupported standard catalysts in terms of ethane conversion and ethene 
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selectivity and have low COx formation, though the formation of AA remains almost 

constant. Overall, the zirconia catalyst is the best supported catalyst. 

5.3 Results of characterization of supported catalysts 

5.3.1 BET 

The surface area (BET) of the catalysts was measured for all supported material as 

described in Chapter 2. The surface areas of the oxide supports (calcined at 350 °C) were 

slightly higher than the supported catalysts. The surface areas of the supported catalysts 

were in the range of 17-53 m2/g as given in Table 5.3.  

Table 5.3: Surface area of the catalysts prepared with different supports. 

Catalyst 

Ref. 

Oxide supports  

(m2/g) 

Uncalcined catalyst 

(m2/g) 

Calcined catalysts 

(m2/g) 

MoV-Zr 22 20 17 

MoV-Nb 27 25 23 

MoV-Ti 26 23 21 

MoV-Si 56 55 53 

MoV-Al 23 21 19 

MoV-std - 25 23 

The uncalcined catalysts have a higher surface area than the calcined catalysts. The 

standard catalyst without a support has a moderate surface area (23 m2/g). The silica 

supported catalyst shows a higher surface area than the other supported catalysts and also 

shows least activity towards ethane oxidative hydrogenation. 

5.3.2 XRD 

XRD patterns of all supported catalysts obtained show that the phases change with the 

support used. The majority of peaks assigned to α-MoO3 are shifted from the standard 

pattern (JCPDS 76-1003). Other than these shifted peaks several other phases can be 
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identified in other samples. In all samples, a common Mo-containing peak is indicated by 

the presence of a line at d (Å)/2θ = 3.56/25.7 °.   

 

Fig.5.2: XRD patterns of different oxide supported catalysts. 

Fig. 5.2 shows XRD patterns for supported and unsupported catalysts. From the XRD, 

two types of patterns are seen; unsupported, MoV-Nb, and MoV-Si are similar and have 

amorphous structure, while MoV-Zr, MoV-Ti and MoV-Al have crystalline structure [3]. 

These XRD patterns for bulk (unsupported) and supported MoV oxide on titania supports 

resemble those reported in previously prepared samples [4].  The peaks at 2θ value of 

22.5 ° get weaker due to the crystallinity of the patterns while the lines at 25-30 ° become 

stronger. The use of ZrO2 and Al2O3 supports results in different oxide structures to those 

of unsupported or Nb2O5 and SiO2 supported catalysts, while the titania supported 

catalyst shows a semi-crystalline structure.  

5.3.3 XPS 
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XPS of all catalyst was performed as outlined in Chapter 2. The binding energies (BE) of 

Mo (3d3/2, 3d5/2), V (2p3/2), Zr (3d3/2), Nb (3d3/2,), Ti (2p3/2), Si (2p3/2) Al (2p3/2) peaks 

were measured for each sample and the surface stoichiometry determined as given in 

Table 5.4.  

Table 5.4: Binding energies of elements of supported catalysts.  

Catalyst BE (eV) 

Ref. Mo3d V2p Zr3d Nb3d Ti2p Si2p Al2p 

MoV-Zr 232.5 517.0 182.3 - - -  

MoV-Nb 232.6 517.1 - 207.2 - - - 

MoV-Ti 232.4 516.9 - - 458.9 - - 

MoV-Si 232.6 517.1 - - - 103.5 - 

MoV-Al 232.9 517.3 - - - - - 

MoV-std 232.8 517.3 - - - - - 

 

 

Table 5.5: Results of V5+ and V4+ and compounds identified in supported catalysts 

Catalyst 

Ref. 

BE (eV) 

V2p3/2 

BE (eV) 

V5+ (V2p3/2) 

BE (eV) 

V4+ (V2p3/2) 

V4+/V5+ 

ratio 

Identified compounds 

MoV-Zr 1.920 1.45 1.09 0.28 MoO3, V2O5, V2O4, ZrO2 

MoV-Nb 2.040 1.30 1.30 0.60 MoO3, V2O5, V2O4, Nb2O5 

MoV-Ti 2.139 1.39 1.24 0.39 MoO3, V2O5, V2O4, TiO2 

MoV-Si 2.050 1.61 1.08 0.24 MoO3, V2O5, V2O4, SiO2 

MoV-Al 2.044 1.27 1.20 0.44 MoO3, V2O5, V2O4 

MoV-std 1.812 1.36 1.16 0.32 MoO3, V2O5, V2O4 

 

XPS analysis clearly shows the presence of molybdenum oxide, vanadium oxides and the 

oxide support in all catalysts. XPS results show the oxidation state of the surface 

vanadium species in supported and unsupported MoV catalysts, as in Table 5.5. 

XPS analysis of the alumina sample (MoV-Al) does not show the presence of 
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aluminium oxide compound, though Mo and V oxides were identified in the 

sample. 

5.3.4 SEM 

Images of all catalyst samples are shown in Fig. 5.3. 

 

MoV-Zr 

 

MoV-Nb 

 

MoV-Ti 

 

MoV-Si 

 

MoV-Al 

 

MoV-Std. 

Fig.5.3: SEM images of catalyts with different oxide supports. 
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All samples are composed of irregularly shaped particles of variable size.  The surface of 

the catalyst particles in all the samples are generally rough with surface cracks and fine 

irregularly shaped particles present. 

5.3.5 EDX  

EDX analysis results are given in Table 5.6. All samples prepared with the addition of 

different oxide supports show almost the same concentration ratio of Mo and V. 

However, silica concentration was lower than other prepared supported catalysts. 

Table 5.6: Elemental content of particles determined by EDX (wt %). 

Cat. Ref. O Mo V Zr Nb Ti Si Al Mo/V 

MoV-Zr 28.1 50.9 12.7 8.3 - - - - 4.0 

MoV-Nb 33.8 45.2 10.7 - 10.4 - - - 4.2 

MoV-Ti 30.7 47.7 11.6 -  10.0 - - 4.1 

MoV-Si 30.4 50.1 11.9 - - - 7.7 - 4.2 

MoV-Al 32.6 47.9 11.3 - - - - 8.6 4.2 

MoV-std 31.5 55.6 13.0 - - - - - 4.3 

SEC Factors: EDAX 

5.4 Discussion  

The results described above indicate that several parameters influence the physiochemical 

and catalytic properties of supported oxides. The nature and phases of surface 

composition depend on the oxide supports (ZrO2, Nb2O5, TiO2, SiO2 and Al2O3). 

Characterization studies have revealed that many factors play a role in the activity of the 

supported catalysts over MoV oxide. Bond [7] has studied various factors that impact the 

catalytic activity of supported catalysts. These include monolayer coverage of the surface 

vanadium species, stability of the monolayer coverage of surface vanadium species, 

oxidation state of the surface vanadium species, influence of environments upon the 
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molecular structures and oxidation state, acidity of the surface vanadium species and the 

influence of the oxide support on the vanadium surface and reactivity.  

This study has primarily focused on a well-defined model of supported MoV oxide 

catalysts. This study addresses fundamental issues about the supported catalysts by 

reaction and characterization analysis. The oxidation state of the surface vanadium 

species (XPS), influence of environments upon the molecular structures and oxidation 

state, acidity of the surface vanadium species and the influence of the oxide support on 

the vanadium surface (XPS and XRD) were also examined. 

The extent of V reduction during steady-state ODH is much lower than for the 

stoichiometric reduction of V5+ to V4+ or V3+, reported by Banares and Gao [8].  

Furthermore, only a fraction of the reduced centers are catalytically active in the reaction. 

The number of catalytically significant reduced centers depends only on alkane/O2 ratios. 

The extent of reduction of the surface V5+ species also depends on the specific oxide 

support: V2O5-ZrO2 > V2O5-Al2O3 > V2O5-SiO2; the reactivity of the catalysts, for ethane 

ODH, follows the same ranking. This reported behavior of the supports matches the 

results found in this study of ethane ODH. 

The ODH reaction of C2–C4 alkanes over supported transition metal oxides proceeds 

through a Mars-van Krevelen mechanism, which involves reduction of the catalyst by the 

alkane with participation of the lattice oxygen, followed by re-oxidation of the lattice 

with gaseous oxygen. As is well known, the catalyst performance depends on a number 

of factors, such as the chemical nature of the active oxygen species, the redox properties 

and the acid–base character, which in turn depend on transition metal loading, dispersion 

and support effects [9–11]. The different overall activities of reducible supported 

catalysts are most probably related to the influence of the support than to the structure of 
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the active species [12, 13]. The activity of the active metal sites is governed by the bonds 

formed with the support (and the activity of oxygen species in these bonds) during the 

chemical interaction of the surface hydroxyl groups and precursor salts. This in turn 

highly depends on the acid–base properties of the supporting material. 

The investigation of the catalytic properties of supported vanadium catalysts for propane 

ODH showed that more selective catalysts were obtained on basic metal oxide supports 

[11, 14]. The presence of basic sites enhances the rapid desorption of the produced alkene 

from the catalytic surface, resulting in higher selectivities. Additionally, according to 

Kung [15], the selectivity for dehydrogenation versus formation of oxygen-containing 

products is strongly affected by the ability of the catalyst to form C-O bonds with the 

surface hydrocarbon, which depends on the reactivity of the oxygen species, and the 

number of reactive oxygens available at the reaction site. Reducibility has also been 

claimed to greatly affect the catalytic performance. Reports in literature have correlated 

variations in ODH activity with the ease of reducibility of the MOx species on different 

supports [16], however other studies do not support such a trend [17]. 

For both propane and ethane, reactivity data for catalysts made of supported vanadium 

oxide are consistent both with kinetically relevant steps involving the dissociation of C–H 

bonds (methylenic C atom in propane) and with a Mars-van Krevelen redox mechanism 

involving lattice oxygen in C–H bond activation. The resulting alkyl species desorb as 

alkenes and the remaining O–H group recombines with neighboring O–H groups in order 

to form water and reduced V centers; the latter are re-oxidized by irreversible dissociative 

chemisorption of O2. Surface oxygen, O–H groups and, especially, oxygen vacancies are 

the most abundant reactive intermediates during ODH on active VOx domains [18–20]. 

The contribution to COx formation, conversely, mainly derives from adsorbed O species, 

at least in ethane ODH [21, 22].  
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The fraction of V-atoms that exist as catalytically reduced centers increases with 

increasing vanadium surface density and domain size up to surface densities typical of 

polyvanadate monolayers, and then reaches nearly constant values at higher surface 

densities; therefore, both isolated and polymeric species are active [23-26, 29, 46]. 

However, polymerized surface VO4 species are more extensively reduced than the 

isolated species during steady-state alkane oxidation. The selectivity to propene 

formation is affected by surface reduction: the higher the surface reduction, the higher the 

selectivity [27]. The use of N2O to replace O2 causes the development of a more reduced, 

and more selective, surface [28, 30-35]. The reduction of the surface V5+ species 

significantly depends on the type of oxide support [36-37]. 

The acid character of a hydrocarbon decreases as the number of carbon atoms and/or the 

degree of saturation decrease. Thus, less acidic alkenes require stronger basic catalysts to 

limit the interaction of the alkene with the catalytic surface and preserve the alkene from 

further degradation. Furthermore, catalytic results for the ODH of propane and n-butane 

on VMgO catalysts suggest that, depending on the size of the reactant, the distance 

between the active sites on the catalytic surface can influence the selectivity in the ODH 

reactions [38]. 

Apart from the redox characteristics, the acid-base property of catalysts also plays a very 

important role for the initial activation of the C-H bond in the hydrocarbon. The acid-

base interaction between alkane and the surface of catalysts can promote the approach of 

the hydrocarbon to the active sites. Banares [39] pointed out that for metal oxides, the 

surface acid-base features depend on the charge and radius of the cation. A new concept 

related to selectivity in mild oxidation catalysis of hydrocarbons was established [40-41] 

and a relationship between optical basicity and selectivity was found by Bordes et al. 
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[42]. Here the concept of optical basicity was defined as the electron donor power of the 

catalyst lattice oxygen.   

5.5 Conclusion  

Supported catalysts at low temperature have low activity; though zirconia and alumina 

supported catalysts have better activity even at low temperature as compared with other 

supported catalysts. The silica supported catalyst has the lowest activity compared to the 

other catalysts at low as well as high temperatures, which may be due to many factors, 

such as complete coverage of the active surface of the catalysts with silica oxide,  or due 

to its higher surface area compared to the other supported catalysts, as reported by many 

researchers [43-44]. 

Alumina and zirconia supported catalysts have higher activity at higher temperatures. 

These catalysts have greater ethane conversion, with higher ethene selectivity and lower 

carbon oxide selectivity than the unsupported standard catalyst. The overall activity of 

the alumina supported catalyst is better than that of the zirconia and unsupported 

catalysts. Cavani et al. [43] reported that supported catalytic activity also depends on the 

process conditions. 

5.6 Alumina loading impact on catalytic activity 

5.6.1 Catalyst preparation 

Catalysts were prepared as described in Chapter 2, maintaining the Mo and V molar ratio, 

2.5:1. Three samples were prepared by adding 30, 50 and 70 wt. % alumina into the 

slurry of molybdenum and vanadium respectively as the support material. These samples 

were labelled as MoV-Al-30, MoV-Al-50 and MoV-Al-70 respectively. These catalysts 

were tested at different temperatures. Samples were characterized by BET, XRF, XRD, 
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SEM and EDX techniques to analyze various structural and compositional properties of 

the materials. 

5.6.2 Experimental results 

Catalysts prepared with an alumina support showed low activity. Product distributions 

showed that the carbon monoxide, carbon dioxide and acetic acid (AA) selectivity 

decreases while the ethene selectivity inreases with increasing alumina support 

concentration. Ethane conversion decreases with increasing alumina concentration. Data 

for alumina supported catalysts are presented in Table 5.7. 

Table 5.7: Alumina supported catalytic activity at 290 ºC. 

Catalysts Conv. (%) Selectivity (%) Yield (%) 

Ref. C2H6 O2 CO2 CO AA  C2H4  C2H4 

MoV-Std 16.8 68.9 6.3 10.4 8.5 74.8 12.6 

MoV-Al-30 10.3 39.8 5.2 11.3 3.2 80.2 8.3 

MoV-Al-50 8.2 30.1 4.8 10.2 3.7 81.3 6.7 

MoV-Al-70 5.7 19.4 3.5 6.1 5.1 85.3 4.9 

Reaction conditions: Pressure = 70 psig, temp. = 290 ºC, feed gas = ethane: oxygen: 

nitrogen (40:10:50), catalyst wt. = 1 g, feed flow = 25 ml/min. 

 

5.6.2.1 Reaction temperature impact on alumina supported catalysts 

Alumina supported catalysts were tested at different reaction temperatures to see their 

catalytic behaviour. Temperature has a direct impact on the catalytic activity; increased 

temperature results in increased activity.  
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(i)  Catalyst MoV-Al-30 activity at different temperatures 

Catalytic activity data shows a slight decrease in ethene selectivity as ethane conversion 

increases with increasing reaction temperature. At higher temperatures MoV-Al-30 has a 

high ethane conversion and ethene yield; however there is a slight increase in carbon 

oxide and AA formation. The catalytic activity results for MoV-Al-30 are given in Table 

5.8.  

Table 5.8: MoV-Al-30 catalytic activity at different temperatures. 

Temp. Conv. (%) Selectivity (%) Yield (%) 

(ºC) C2H6 O2 CO2 CO AA  C2H4  C2H4 

290 10.3 39.8 5.2 11.3 3.2 80.2 8.3 

310 17.9 71.6 7.1 16.4 4.5 72.1 12.9 

320 22.8 91.2 8.6 18.4 5.6 67.4 15.4 

330 24.6 100.0 10.3 21.3 7.1 61.3 15.0 

Reaction conditions: Pressure = 70 psig, feed gas = ethane: oxygen: nitrogen 

(40:10:50), catalyst wt. = 1 g, feed flow = 25 ml/min. 

(ii) Catalyst MoV-Al-50 activity at different temperatures 

The catalyst prepared with 50 wt. % alumina support (MoV-Al-50) showed lower ethane 

conversion compared to 30 wt. % alumina supported catalyst, but gives higher ethene 

selectivity. Ethene selectivity decreases as ethane conversion increases with increasing 

reaction temperature. At higher temperatures, MoV-Al-50 performs well with moderate 

ethane conversion. At 330 °C oxygen is not completely consumed (converted), although, 

there is a slight increase in carbon oxide and AA formation. MoV-Al-50 activity results 

are given in Table 5.9.   
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Table 5.9: MoV-Al-50 catalytic activity at different temperatures. 

Temp. Conv. (%) Selectivity (%) Yield (%) 

(ºC) C2H6 O2 CO2 CO AA  C2H4  C2H4 

290 8.2 30.1 4.8 10.2 3.7 81.3 6.7 

310 15.3 67.0 6.5 15.1 5.1 73.3 11.2 

320 19.4 79.6 8.1 17.2 6.8 67.9 13.2 

330 21.9 91.2 9.5 19.1 8.5 62.9 13.8 

Reaction conditions: Pressure = 70 psig, feed gas = ethane: oxygen: nitrogen 

(40:10:50), catalyst wt. = 1 g, feed flow = 25 ml/min. 

(iii) Catalyst MoV-Al-70 activity at different temperatures 

The catalyst prepared with 70 wt. % alumina support (MoV-Al-70) has very low activity 

compared to the other (30, 50 wt. %) alumina supported catalysts. Ethene selectivity 

decreases as ethane conversion increases with increasing reaction temperature. Even at 

330 °C, MoV-Al-70 gives low ethane conversion.  

Table 5.10: MoV-Al-70 catalytic activity at different temperatures. 

Temp. Conv. (%) Selectivity (%) Yield (%) 

(ºC) C2H6 O2 CO2 CO AA  C2H4  C2H4 

290 5.7 19.4 3.5 6.1 5.1 85.3 4.9 

310 8.1 28.3 4.9 7.1 8.8 79.2 6.4 

320 9.6 31.6 5.6 7.7 11.3 75.4 7.2 

330 11.7 36.8 6.8 8.4 13.4 71.4 8.4 

Reaction conditions: Pressure = 70 psig, feed gas = ethane: oxygen: nitrogen 

(40:10:50), catalyst wt. = 1 g, feed flow = 25 ml/min. 

 

At high temperature, a low oxygen consumption (only 40 mol %) was observed. The 

catalytic activity could increase further at higher temperatures as more oxygen remains 

unconverted at 330 °C. However, there is a slight increase in the formation of carbon 

monoxide and carbon dioxide. It is interesting that at high temperature, 70 wt. % alumina 



 

 163 

 

supported catalyst gives a higher AA formation compared with those using a lower 

concentration of alumina. Data for MoV-Al-70 activity are given in Table 5.10.  

Fig. 5.4 clearly shows that increasing the reaction temperature increases the ethane 

conversion for all alumina supported catalysts. However, catalysts with a higher alumina 

concentration are less active compared to low alumina concentration catalysts. 

 

Fig.5.4: Alumina supported catalytic activity at different temperatures. 

5.6.3 Catalyst Characterization 

These samples were characterized by BET, XRF, XRD, SEM and EDX techniques. 

(i) BET 

Surface area (BET) of MoV oxides catalyst prepared with alumina support was 

measured. There is a slight decrease in the surface area from lower concentration to 

higher concentration of alumina supported catalysts. Alumina supported catalysts BET 

data is shown in Table 5.11. 
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Table 5.11: Surface area of alumina supported catalysts. 

Catalyst Ref.  Surface area (m2/g) 

MoV-Al-30 19 

MoV-Al-50 17 

Mov-Al-70 14 

 

(ii) XRF 

The bulk composition of catalysts prepared with alumina support was determined by 

XRF spectroscopy. The bulk composition of catalysts is given in Table 5.12. 

Table 5.12: Alumina supported catalyst composition by XRF analysis. 

Catalyst Ref. MoO3 V2O5 Al2O3 

Loading (%) (%) (%) 

MoV-Al-30 55.9 19.6 24.4 

MoV-Al-50 50.9 17.5 31.5 

MoV-Al-70 41.4 12.5 45.8 

 

(iii) XPS 

XPS was performed using a Kratos Axis Ultra-DLD photoelectron spectrometer as 

described in Chapter 2. Binding energy (BE) was referenced to O 1s core (530.40 eV).  

Table 5.13: Binding energies of elements and identified compounds of alumina 

supported catalysts. 

 

 

 

Catalyst Binging Energy (eV) Identified compounds 

Ref. Mo3d5/2 V2p3/2 Al2p3/2  

MoV-Al-30 232.9 517.4 - MoO3, V2O5 

MoV-Al-50 232.9 517.3 74.5 MoO3, V2O5, Al2O3 

MoV-Al-70 232.8 517.3 74.4 MoO3, V2O5, Al2O3 
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The BE of Mo 3d5/2, V2p3/2 for MoV oxide with alumina supported catalysts are reported 

in Table 5.13. In these samples, the standard binding energies are 232.2 ± 0.2 for Mo6+, 

516.6 ± 0.1 for V5+, 515.9 ± 0.4 for V4+ oxides. These values match those of the literature 

[44-47]. The Mo photopeak is characteristic of Mo6+ by its BE as well as by its FWHM. 

Reduced Mo species, Mo5+ (230.8-231.8 eV) and Mo4+ [44-45] are absent; whilst some 

vanadium is reduced. The relative ratios of V5+ and V4+ are given in Table 5.14 after peak 

decomposition. The relative ratio of V5+ to V4+ does not change with the concentration of 

alumina support, as shown in Table 5.14. 

Table 5.14: Concentration and ratios of V5+ and V4+ in alumina supported catalysts. 

Catalyst 

 Ref. 

FMHM 

V2p(eV) 

FWHM 

V2p5+(eV) 

FWHM 

V2p4+(eV) 

V4+/V5+ 

Ratio 

MoV-Al-30 2.044 1.27 1.20 0.44 

MoV-Al-50 2.080 1.49 1.23 0.36 

MoV-Al-70 1.980 1.38 1.21 0.39 

 

(iv) XRD 

The XRD patterns of the alumina supported catalysts shows a crystalline type structure in 

the samples. The patterns with varying alumina concentration are presented in Fig. 5.5. 

These show that the some peaks in the beginning shifted in the crystalline phase. The 

peaks corresponding to a lower concentration of alumina increases with increasing 

alumina concentration (70 wt %). However, the catalysts with less amount of alumina are 

catalytically more active compared to the samples with a higher concentration of 

alumina. 
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Fig.5.5: XRD patterns of alumina supported catalysts. 

 

Fig. 5.5 depicts the XRD patterns of the catalysts prepared by the addition of different 

amounts of alumina as a support. They contain reflection lines of different phases which 

were found to change slightly with varying alumina concentration. The crystalline 

structure is represented with the orthorhombic and hexagonal phases. The orthorhombic 

phase decreases and the hexagonal phases become more prominent as alumina 

concentration increases. 

(v) SEM and EDX 

Surface morphology examination was carried by using SEM with EDX. All alumina 

supported catalysts were analyzed for surface morphology as described in Chapter 2. 

Images are shown in Fig. 5.6. 



 

 167 

 

(a) General view- (MoV-Al-30) (b) Close-up- (MoV-Al-30) 

(a) General view- (MoV-Al-50) (b) Close-up- (MoV-Al-50) 

(a) General view- (MoV-Al-70) (b) Close-up- (MoV-Al-70) 

Fig.5.6: SEM images of catalysts prepared with different concentrations of alumina. 

The catalyst samples MoV-Al-30, MoV-Al-50, and MoV-Al-70 are composed of both 

coarse and fine irregularly shaped particles. The individual particles had both rough and 

smooth sides. The surface of the particles contained cracks and bundles of thin flake like 

crystal arranged in flower-like morphology (Figs. 5.6).  
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Table 5.15: Elemental content of alumina supported catalysts determined by EDX 

(wt %). 

Catalyst Ref. O Mo V Al 

MoV-Al-30 31.6 50.9 11.3 6.6 

MoV-Al-50 29.7 49.6 10.3 10.4 

MoV-Al-70 29.1 45.8 8.2 16.9 

 

The elemental compositions of catalysts prepared with different concentrations of 

alumina support were determined by EDX. These showed the presence of O, Mo, V and 

Al as given in Table 5.15. Particle to particle compositional variability was observed in 

almost all samples. Data indicate a proportional concentration of alumina support in the 

catalysts. 

5.6.4 Discussion 

The effect of calcination temperatures on the physiochemical properties of MoV mixed 

oxides was clearly observed as phase evolution as the calcination temperature was varied. 

However, the various calcination temperatures were not found to have a large impact on 

the morphology of the samples, rod-like structure as seen by SEM, an observation fully 

supported by the BET and XRD measurements. The results of these samples, calcined at 

different temperatures, highlights the benefits of the study of these calcination 

temperatures in order to reach the required active phase, which has a significant impact 

on the activity. 

Though it is difficult to formulate an exact reaction mechanism with the present 

investigation, a tentative surface mechanism for the ODH of ethane over MoVAl based 

catalysts has been proposed based on the information obtained. The efficiency of the 

present catalyst system for the selective ethane oxidation is assumed to be due to the 



 

 169 

 

presence of MoV2O8 and other reduced species supporting the MoO3 phase [48]. 

Activation of the C–H bond of ethane on the catalytic surface, possibly via an unstable 

ethoxy intermediate, leads to ethene formation. Part of the produced ethene adsorbs either 

weakly or strongly, selectivity on the site of the catalyst surface in the presence of water 

and oxygen,which leads to the formation of intermediates such as ethanol and 

acetaldehyde and finally to acetic acid. Although alcohol/aldehyde products were not 

seen as final products, their concentration up to 150 ppm could be detected in the GC 

analysis. With the present experimental conditions, the oxidation rate of these alcohol/ 

aldehyde intermediates, leading to the formation of AA, might be very high. Any of these 

intermediates, ethane and/or AA, are oxidized to COx, if they are strongly adsorbed on 

any non-selective phase (e.g., alumina or V2O5). Desorption of ethene is easier if it is 

bound on a weak acid site such as MoO3 [49]. 

GHSV has strong effect on the catalytic activity as evident from the catalytic results 

obtained during the ODH of ethane. Ethene, carbon dioxide, carbon monoxides and 

acetic acid are the main reaction products. The AA selectivity is lower than 10 %, 

especially at atmospheric pressure. From these results it can be concluded that activity 

increases as GHSV decreases. The catalytic activity increases with increasing 

temperature whilst ethene selectivity decreases. The highest activity is obtained at a 

GHSV of 780 h-1, 330 ºC and atmospheric pressure, showing 16.3 % ethene yield at 27.4 

mol % ethane conversion. The activity is roughly doubled by increasing the reaction 

pressure from atmospheric to 70 psig. 

5.6.5 Conclusion 

This study establishes the impact of various parameters that directly influence the 

catalytic activity towards the ODH of ethane to ethene. The reduction of V5+ to V4+ has a 
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significant contibution to this reaction. The catalytic oxidation cycle is completed by 

reoxidation of the vanadium V4+ to V5+, which is supported by XPS data.  The production 

of carbon oxide shows dependence on the ethane partial pressure whilst AA production is 

independent of ethane partial pressure. This strongly suggests that the primary ODH 

product of ethane is ethene and that carbon oxide and AA are formed by its subsequent 

oxidation. The role of reaction temperature and pressure upon the acetic acid production 

is informative. The oxidation of  ethene to acetic acid may involve an analogous first 

step, giving an ethoxide species, (MOH + C2H4 = MOC2H5). Certainly this oxidation of 

ethene to AA is well known for  molybdenum- and vanadium containing catalysts 

[50].The activity results highlight the impacts of various parameters which can be 

optimised to produce the most active MoV oxide catalysts. 
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Chapter 6 

 

 

 

Chapter 6 

 

Conclusions and Proposed Future Work     

    

This thesis has attempted to examine some important aspects of ethane ODH since its 

initial development. A detailed historical review is provided in Chapter 1 in which a 

comparison of the commonly used catalysts is given, along with proposed mechanisms 

for ethane ODH. Chapter 2 is devoted to a detailed description of the equipment and 

methods used during this study. 

One of the main objectives of the current thesis was the reproducible synthesis of a 

catalyst which is highly selective to ethene and consequently shows low selectivity 

towards carbon oxide formation. MoV oxide catalysts have been found to be an active 

and selective in the reaction. The oxides are usually prepared by employing hydrothermal 

method as reported by numerous references that contain both the single hexagonal phase 
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and the single orthorhombic phase of MoV mixed oxide. This method, however, is only 

applicable at lab scale synthesis due to uneconomical scaled up production. Therefore, in 

this work it was desired to synthesize an active and selective catalyst using a more 

conventional method. The method chosen is a slurry preparation followed by drying in an 

oven; followed by calcination of the obtained solid. In order to study the chemical 

properties of the catalyst many parameters have been studied. 

Various preparation variables for this catalysts have been studied in order to find out the 

optimum preparation conditions. Catalysts prepared by precipitation and drying to 

remove the excess water from the slurry by heating with continuous stirring has been 

found better than that prepared by the previously studied methods of spray drying or 

hydrothermal treatment in an autoclave. A detailed investigation has been done for the 

optimization of the reaction conditions. The optimum process condition was found at 

temperature 290 ºC and pressure 70 psig with ethane oxygen ratio 4:1. It has been 

observed that at atmospheric pressure, the activity was low but with the highest ethene 

selectivity. At pressures higher than 70 psig the activity increases with increasing 

temperature to more than 290 ºC and ethene selectivity decreases rapidly followed by 

increase in carbon oxide formation. 

Catalytic results with high conversion of ethane at low feed concentrations show high 

selectivity towards carbon oxide and low selectivity of ethene. While high concentration 

of ethane in the feed gas shows lower conversion of ethane but a higher selectivity to 

ethene with low carbon oxide formation. However, at higher temperature e.g. 310 ºC, 

conversion increases followed by increasing carbon oxide formation due to the high 

consumption of oxygen at the higher temperature. There is also a significant impact on 

the acetic acid (AA) selectivity at higher temperature and pressure in the reaction. 
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The requirement for an improved catalyst for the selective synthesis of ethene from 

ethane encouraged an investigation of the effect of adding oxalic acid on an existing but 

modified MoV catalyst. Catalysts prepared with oxalic acid showed higher activity 

compared to catalysts prepared without oxalic acid in the slurry method. It was shown 

that a catalyst prepared with oxalic acid with a pH lower than 4 has more activity than 

prepared at different pH catalysts. Catalyst activity increases with the addition of oxalic 

acid from 2.5 to 7.5 g, but starts to decrease on adding more than 10 g of oxalic acid in 

the preparation procedure. Catalysts prepared with zero or very low amounts of oxalic 

acid and those prepared with higher than 10 g of oxalic acid have lower surface area (12-

14 m2/g) and these catalysts have low catalytic activity. On the other hand, catalysts 

prepared with 2.5-10.0 g of oxalic acid have high surface areas (19-26 m2/g) and show 

high catalytic activity giving high conversion of ethane as well as more selectivity to 

ethene with lower formation of carbon oxide in the products. Catalysts prepared with the 

addition of oxalic acid showed significant changes in their morphology and their structure 

changes from crystalline to amorphous. Catalysts prepared without the addition of oxalic 

acid or the addition of very small amount (1 g) of oxalic acid showed a crystalline 

structure. Similar behavior is seen with catalysts prepared by adding more than 10 g of 

oxalic acid, which show a good crystalline structure. On the other hand, other catalysts 

prepared by adding from 5-10 g of oxalic acid gave an amorphous structure and these 

also showed higher activity than catalysts having a crystalline structure.  

Oxalic acid was used successfully during catalyst preparation to modify the 

physiochemical properties of the Mo1V0.4Ox catalyst for ethane ODH. Comparison shows 

that the addition of oxalic acid not only enhances the ethane conversion, but also 

improves its ethene selectivity while also reducing carbon oxide formation. This is due to 

oxalic acid converting V5+ to V4+ in the starting solution to provide a driving force for the 
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formation of an active phase in the MoV material, which is directly related to ethene 

formation. In addition, the performance of the catalyst is strongly related to the amount of 

oxalic acid used during the catalyst preparation. Catalysts prepared with 5 to 10 g oxalic 

acid addition showed the highest ethane conversion and ethene selectivity because it 

contains the expected phase composition and good redox capacity. Therefore, 

employment of reductive oxalic acid improves the catalytic performance of the 

Mo1V0.4Ox catalyst. 

The effect of the addition of a support for MoV mixed oxide catalyst on the performance 

was also studied. Different supports like zirconia, niobium oxide, titania, silica and 

alumina at a particular concentration of 30 wt. % were used to see their impact on ethane 

ODH to ethene. Variation of the supports shows significant impact even at lower 

temperature. Zirconia and niobium oxide seems to be good at lower temperatures (290 

ºC), while titania and silica give low activity. At higher temperatures, alumina shows 

higher activity and ethene selectivity compared to zirconia and niobium oxide supported 

catalysts. 

An additional effort has been made for the study of synthesis of catalysts with varying 

concentration of alumina over the MoV mixed metal catalysts. It has been found that the 

catalyst with a high support concentration of 70 wt. % was still very active. It gave 12 % 

ethane conversion at 330 ºC temperatures with small amount of carbon oxide formation. 

Alumina has good effect of lowering COx formation with increasing loading over the 

catalyst, with slight increases in acetic acid formation. 
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Proposed future work  

The catalytic (MoV) system can be further improved by the addition of dopants (e.g. K, 

Mg etc.) that can further suppress the COx and acetic acid formation. Variation in 

reaction pressure, temperature and ethane oxygen ratio can also be studied in the future. 

Varying the concentrations of the dopant can influence the surface basicity or acidity 

leading to different reaction pathways.  

Various aspects of adding transition metals as promoters (e.g. Cr, Pd, Nb, W and Re) into 

the catalyst can change the physicochemical properties and catalytic performance of the 

catalyst. As molybdenum-vanadium compounds retain their high selectivity to desired 

products at higher temperatures, it would be necessary to attempt to increase the 

conversion of the reactant with a known promoter which produces a high conversion of 

reactant. 

Attempting to increase the surface area of the catalyst is possible as all of the catalysts in 

this study have been found to have a low surface area, hence there may only be a fraction 

of active sites available. By increasing the surface area of the catalyst, potentially more 

active sites within the catalyst would become available, increasing the conversion of 

reactant. 
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Appendix 1 

Appendix 1 

Fixed bed reactor 

A schematic representation of the single fixed bed reactor system is shown below. The 

reactor unit made of stainless steel tube (3/8 inch i.d) housed within the furnace. The 

furnace controlled the temperature of the reactor through a thermocouple dipped inside 

the middle of the catalyst bed. The temperature displayed set values and real temperature 

values on the monitor. 

 

Fig. 1: Fixed bed reactor system, hot box chamber, reactor thermocouple, tubular 

reactor, 6-port valve, gas preheated coil, radiant furnace.  
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Appendix 2 

Appendix 2 

Flow Diagram of Fixed bed reactor 

A schematic diagram of the feed gas flows to the fixed bed reactor. All lines are equipped 

with mass flow controllers, filters, pressure gauge, pressure regulators and check valves. 

The system has both functioned to collect liquid product stream and also send only gas to 

the GC for analysis and as well sending entire product stream as vapor phase to the GC 

for the product analysis without condensing the liquid. 
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Fig. 2: Flow Diagram of Fixed bed reactor, feed gas lines, two port valves, and 

condenser 
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Appendix 3 

Appendix 3 

Product Analysis by GC 

Product Analysis for catalysts tested in fixed bed reactor by GC 

Reaction products (gaseous stream) of the lower hydrocarbons, oxygenated and other 

products were analyzed by an online gas chromatography instrument. The gas 

chromatography (GC) used for the online sample analysis was HP Model Agilent 6890 

instrument, fitted with injector and two detectors (TCD and FID).  

The GC configuration consists of switching valves, sample loop, separating columns and 

data acquisition system. GC was configured with one 10 port and one 6-port valve, and 

have three different columns to analyze the gaseous stream.  

1)  Molecular sieve : 6’ X 1/8” SS Placed into oven at 100 C. 

2)  Hayesep Q  : 6’ X 1/8” SS Placed into oven at 100 C. 

3)  Porapak N  : 0.62’ X 1/8” SS Placed in the heated zone at 180 C  

The first two columns (Molecular sieve and Haysep Q) were connected to a TCD, while 

the third column (Porapak N) was connected to a FID. Oxygen, nitrogen and CO 

separated on the Molecular sieve column, CO2, C2H4, C2H6, C3H6, C3H8, and water on 

Hayesep Q while acetic acid, acetone, and acrolein were separated on Porapak N column.  

Following components can be separated and quantified by using this configuration; 

ethane, ethene, propane, propene, nitrogen, oxygen, carbon monoxide, carbon dioxide, 

acetic acid, acetone, acrolein, and water. 
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Appendix 4 

Appendix 4 

Data evaluation 

To obtain quantitative data, a procedure of data manipulation was required in the form of 

individual product selectivities from the integrated response factor of the gas 

chromatographs. The method was based on use of online response factors of particular 

products in gas phase and for liquids made separate calculation based on the injected 

amount of known concentration into GC of the product. 

Standard gas mixtures of known volume percentage compositions were used to obtain 

components response factor based on components area counts.  

Calculation of the Response Factor 

The response factor of each component was calculated as follows: 

Response factor  = amount (moles) / area of component 

Amount moles can be calculated based on the standard gas mixture concentrations 

(volume %) of each component. 

Calculation of moles of each component: 

Volume (%) of component  = for each components of gas mixture 

Mole amount of components  = component conc. Vol (%)/100/22.4 

Standard gas mixture consist the following gas components:  
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CO2, C2H4, C2H6, N2, CO (10.1: 15.01: 14.9: 57.0: 3.1) %. 

Using the area counts and no. of moles of each component can calculate the response 

factors for individual components. 

Response factor = No. of moles of the component/ GC area counts of component  

Calibration of oxygen was done by using air sample: 

Several injections of air were made till get consistent results. The nitrogen response 

factor calculated from the calibration mixture was used to find the number of moles of 

nitrogen from which oxygen moles can be calculated from air. Dividing the oxygen 

moles with area, we get oxygen response factor. 

Acetic acid calibration was done by using acetic acid solutions of known different 

concentrations.  0.6 ml of each standard solution of (2, 3, 5, 7 wt %) acetic acid was 

injected several time till get consistent results.  The areas under the curve were found for 

each concentration.  

Calculation to find acetic acid (AA) response factor is given below: 

Concentration of Acetic acid solution = 2 wt%   

2 gm of AA    = 100 ml. 

2/60 g moles of AA   = 0.1 L. 

moles     = 0.6 x 10-6 L. 

0.6 is the amount of injection (0.6 µL) 
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Moles of AA injected   = 
1.060

6106.02



 e
 

= 2 x 10-6 moles  

Calculation of conversion and selectivity 

An indication of the catalyst activity was determined by the extent of conversion of 

ethane or by the extent of volume reduction of the reagent gases. The ethane conversion 

and selectivity of ethene were calculated by the following equations:  

Conv. Ethane (C2H6) % =   *100 

Sel. Ethene (C2H4) % =  *100 

Data collection by using online response factor 

The varying response of the detector to each component was multiplying them with 

calibration factors. Then these were converted into moles by taking account the flows out 

of the feed. Moles of each product were converted into mole % and then selectivity was 

measured by taking carbon numbers into account.   

Product analysis 

Product data collection starts after the reaction gets stabilized. All products were in 

gaseous phase, therefore online analysis used to get the catalyst activity data.   
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         Appendix 5 

Appendix 5  

 

GC Configuration diagram 

 

 




