ORCA - Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/91685/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:
Broadley, Kenneth John, Burnell, Erica, Davies, Robin H., Lee, Alan T. L., Snee, Stephen and Thomas, Eric J. 2016. The synthesis of a series of adenosine A3 receptor agonists. Organic \& Biomolecular Chemistry 14 (15), pp. 3765-3781.
10.1039/C6OB00244G

Publishers page: http://dx.doi.org/10.1039/C6OB00244G

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

The synthesis of a series of adenosine A_{3} receptor agonists

Kenneth J. Broadley, ${ }^{a}$ Erica Burnell, ${ }^{b}$ Robin H. Davies, ${ }^{\dagger c}$ Alan T. L. Lee, ${ }^{b}$ Stephen Snee ${ }^{b}$ and Eric J. Thomas ${ }^{b *}$

A series of $1^{\prime}-(6$-aminopurin- $9-y l)-1^{\prime}$-deoxy- N-methyl- β-D-ribofuranuronamides characterised by 2-dialkylamino-7-methyloxazolo[4,5-b]pyridin-5-ylmethyl substituents on N6 of interest for screening as selective adenosine A_{3} receptor agonists, have been synthesised. This work involved the synthesis of 2-dialkylamino-5-aminomethyl-7-methyloxazolo[4,5-b]pyridines and analogues that were coupled with the known 1^{\prime}-(6-chloropurin- 9 -yl)-1'-deoxy- N-methyl- β-D-ribofuranuronamide. The oxazolo[4,5-b]pyridines were synthesized by regioselective functionalisation of 2,4dimethylpyridine N-oxides. The regioselectivities of these reactions were found to depend upon the nature of the heterocycle with 2-dimethylamino-5,7-dimethyloxazolo[4,5-b]pyridine- N-oxide undergoing regioselective functionalisation at the 7 -methyl group on reaction with trifluoroacetic anhydride in contrast to the reaction of 4,6-dimethyl-3-hydroxypyridine- N-oxide with acetic anhydride that resulted in functionalisation of the 6-methyl group. To optimise selectivity for the A3 receptor, 5-aminomethyl-7-bromo-2-dimethylamino-4-[(3-methylisoxazol-5yl)methoxy]benzo[d]oxazole was synthesised and coupled with the 1^{\prime}-(6-chloropurin- $\left.9-\mathrm{yl}\right)-1^{\prime}$-deoxy- N -methyl- β-D-ribofuranuronamide. The products were found to act as adenosine A_{3} agonists but further work is required to optimise potency and selectivity.

Introduction

The G-protein-coupled adenosine receptors are important in regulating a wide range of physiological functions. Specifically A_{3} receptor agonists have been identified as being of interest for the treatment of cardiac ischaemia ${ }^{1}$ and many compounds have been evaluated for selective A_{3} receptor agonist activity. ${ }^{2}$ Indeed, N6 substituted derivatives of adenosine and analogues have been found to exhibit useful A_{3} agonist activity, the N6(iodobenzyl)purinylribofuranuronamide $\mathbf{1}^{3 \mathrm{a}}$ being an early example, see Figure 1, with many more homologues subsequently synthesized and evaluated. ${ }^{2,4}$ In particular, the N6(benzoxazolylmethyl)purinyluronamide $\mathbf{2}$ was identified as a promising lead. ${ }^{5}$ However, concerns about toxicity issues due to the iodine substituent and the possible improvement in selectivity following incorporation of an oxazolopyridine rather than a benzoxazole into the $N 6$ substituent, led to the selection of the
ribofuranuronamide $\mathbf{3}$ as the next target for synthesis, ${ }^{6}$ see Figure 2. We here report a synthesis of this compound and several of its homologues together with the results of preliminary biological evaluation of these compounds.

Figure 1 Examples of adenosine A_{3} receptor agonists

3

Figure 2 The N6-substituted purinylribofuranuronamide $\mathbf{3}$ selected for evaluation as an A_{3} receptor agonist

Results and discussion

Synthesis of oxazolopyridine derived adenosine derivatives

Following well established literature precedent, ${ }^{2-4}$ the uronamide 3 was to be prepared from the 2-dimethylamino-5-aminomethyl-7-methyloxazolo[4,5-b]pyridine 5 and the known 6chloropurinyluronamide $4,{ }^{7}$ the challenge in the work being to develop a synthesis of the oxazolopyridine 5. Initially it was intended to prepare this oxazolopyridine from 5,7-dimethyl-2-dimethylamino-oxazolopyridine 6 by rearrangement of the corresponding pyridine N-oxide. In turn the oxazolopyridine 6 was to be prepared from 5-hydroxy-6-nitro-2,4-lutidine (7) that it was intended to prepare from 2,4-lutidine (8), see Figure 3.

Figure 3 Planned synthesis of the target compound $\mathbf{3}$
Nitration of 2,4-lutidine (8) using potassium nitrate in fuming sulfuric acid gave a mixture of 5-nitro-2,4-lutidine (9) and its 3-nitro isomer from which the required isomer 9 was isolated by fractional distillation albeit in only a low yield. ${ }^{8 a}$ Hydrogenation gave the 5-amino-2,4-lutidine ($\mathbf{1 0}$) that was converted into the 5 -hydroxy-2,4lutidine (11) by diazotisation using sodium nitrite in aqueous sulfuric acid. In this reaction it was important to use just a small excess of sulfuric acid to avoid the formation of the pyrazolopyridine $\mathbf{1 2 .}{ }^{9}$ Nitration of the hydroxylutidine $\mathbf{1 1}$ using concentrated nitric and sulfuric acids ${ }^{10}$ led to decomposition but the use of ceric ammonium nitrate and sodium bicarbonate in acetonitrile heated under reflux ${ }^{11}$ gave the required 5-hydroxy-6-nitro-2,4-lutidine (7) in a modest but reproducible yield. Hydrogenation of the nitrolutidine 7 gave the corresponding hydroxyaminolutidine $\mathbf{1 3}$ that was converted into the 2-dimethylamino-oxazolopyridine $\mathbf{6}$ using dichloromethylene(dimethyl)ammonium chloride, see Scheme 1.

Scheme 1 Synthesis and hydroxylation of the 2-dimethylaminooxazolopyridine 6 Reagents and conditions (i) fuming $\mathrm{H}_{2} \mathrm{SO}_{4}, 0^{\circ} \mathrm{C}$, add KNO_{3}, heat slowly to $100{ }^{\circ} \mathrm{C}, 8 \mathrm{~h}(17 \%)$; (ii) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}$, rt, $16 \mathrm{~h}(c a .100 \%)$; (iii) aq. $\mathrm{H}_{2} \mathrm{SO}_{4}, 0^{\circ} \mathrm{C}, \mathrm{NaNO}_{2}, \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 15$ min, reflux 15 min ($\mathbf{1 1}, 47 \%$; with a slight excess of $\mathrm{H}_{2} \mathrm{SO}_{4}$); (iv) CAN, NaHCO_{3}, MeCN, reflux, 6 h (42\%); (v) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{EtOAc}$, rt, 16 h ; (vi) $\mathrm{Cl}_{2} \mathrm{C}=\mathrm{NMe}_{2} \mathrm{Cl}, \mathrm{DCM}$, reflux, 5 h ; (vii) $m \mathrm{CPBA}, \mathrm{CHCl}_{3}$, rt, 16 h (78\%); (viii) ($\left.\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$, DCM, reflux, 16 h (29\%).

Oxidation of the oxazolopyridine 6 using meta-chloroperoxybenzoic acid gave the N-oxide 14, an X-ray crystal structure confirming that the product was the pyridine N-oxide shown, see Figure 4 . When this N-oxide was reacted with an excess of acetic anhydride, standard conditions for effecting regioselective hydroxylation of a methyl group ortho to an N-oxide, ${ }^{8,12}$ a mixture of several products was obtained. However, the use of trifluoroacetic anhydride in dichloromethane under reflux, ${ }^{13}$ followed by saponification, gave a single product 15 in which the methyl group remote from the N oxide had been hydroxylated, albeit in only a modest yield, see Scheme 1.

The regioselectivity of this hydroxylation was initially indicated by the ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ gHMBC NMR spectrum that showed a three-bond coupling of 5.0 Hz between the remaining aryl methyl group at $\delta 1.5$ and the pyridine nitrogen in contrast to the small coupling of 0.5 Hz between the aryl methylene protons at $\delta 5.0$ and the pyridine nitrogen. This structural assignment was eventually confirmed by Xray diffraction, see Figure 5.

Figure 4 The structure of the N-oxide 14 as established by X-ray crystallography

Figure 5 The structure of 2-dimethylamino-7-hydroxymethyl-5-methyloxazolo[4,5-b]pyridine (15) as established by X-ray crystallography

The selective formation of the 7-hydroxymethyloxazolopyridine $\mathbf{1 5}$ rather than its 5-hydroxymethyl isomer was unexpected since typically an ortho methyl group is hydroxylated on treatment of a pyridine N-oxide with an acyl anhydride. ${ }^{8}$ This meant that it was necessary to hydroxylate the ortho methyl group before assembling the oxazolopyridine.

In our hands, oxidation of the 5-hydroxy-2,4-lutidine $\mathbf{1 1}$ to its N oxide 16 was carried out using meta-chloroperoxybenzoic acid. The conversion of the N-oxide 16 into the bis-acetate $\mathbf{1 7}$ using acetic anhydride is known and proceded without incident, the structure of the product being assigned according to the literature. ${ }^{8}$ Selective deacetylation of the aromatic hydroxyl group was carried out using pyrrolidine in DCM, ${ }^{14}$ as sodium hydroxide was less selective and gave a mixture of products, and nitration of the resulting hydroxypyridine $\mathbf{1 8}$ to the nitropyridine $\mathbf{1 9}$ was best achieved using ceric ammonium nitrate as before. Attempts to reduce the nitropyridine 19 to the corresponding aminopyridine by hydrogenation were complicated by hydrogenolysis of the acetoxy group. To convert the acetoxy group into a less good leaving group, it was saponified to give the alcohol 20 and hydrogenation of this now proceeded uneventfully to give 2 -amino-3-hydroxy-6-hydroxymethyl-4-methylpyridine (21). However, it transpired that this compound was relatively insoluble in many organic solvents and correspondingly difficult to functionalise. The dihydroxynitropyridine 20 was therefore converted into its mono-tert-butyldiphenylsilyl ether 22. Hydrogenation of this gave the aminopyridine 23 that on treatment with dichloromethylene(dimethyl)ammonium chloride gave the required oxazolopyridine 24 . Desilylation provided the 5 -hydroxymethyl-7-methyloxazolo[4,5-b]pyridine 25, see Scheme 2.

The structures of the products in Scheme 2 were assigned on the basis of the literature precedent for the pyridine N -oxide reaction ${ }^{8}$ and from spectroscopic data. The 5-hydroxymethyl-7methyloxazolopyridine $\mathbf{2 5}$ was distinctly different from its 7-hydroxmethyl-5-methyl isomer $\mathbf{1 5}$ prepared earlier.

To complete the synthesis of the uronamide 3, the hydroxymethyloxazolopyridine $\mathbf{2 5}$ had to be converted into its aminomethyl homologue 5. This was achieved using a Mitsunobu reaction ${ }^{15}$ of the alcohol 25 with 2-nitrobenzene sulfonamide to prepare the N-alkylsulfonamide 26. This reaction was complicated by bis-alkylation of the 2-nitrobenzene sulfonamide but was not optimised at this stage. Desulfonylation gave the primary amine $\mathbf{5}$ and coupling this with the 6 -chloropurine 4 gave the $N 6$-substituted purinyluronamide 27. Selective hydrolysis of this acetonide 27 gave the required ribofuranuronamide 3, see Scheme 3.

The products in Scheme 3 were identified on the basis of their spectrocopic data. Following evaluation of the uronamide $\mathbf{3}$ for biological activity, vide infra, it was decided to prepare homologues for further studies.

17

".

23
22
Scheme 2 Preparation of the 5-hydroxymethyloxazolopyridine 25 Reagents and conditions (i) $m \mathrm{CPBA}, \mathrm{DCM}, \mathrm{rt}, 16 \mathrm{~h}$ (85%); (ii) $\mathrm{Ac}_{2} \mathrm{O}, 110{ }^{\circ} \mathrm{C}, 2.5 \mathrm{~h}$ (80\%); (iii) pyrrolidine, DCM, rt, 16 h (ca. 100%); (iv) $\mathrm{CAN}, \mathrm{NaHCO}_{3}, \mathrm{MeCN}$, reflux, 5 h (38\%); (v) NaOH , $\mathrm{MeOH}, \mathrm{rt}, 1 \mathrm{~h}$; (vi) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{EtOAc}, \mathrm{rt}, 2 \mathrm{~h}$; (vii) ${ }^{\mathrm{H}} \mathrm{BuPh}{ }_{2} \mathrm{SiCl}$, imid., DMF, rt, 12 h (75\%); (viii) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{EtOAc}, \mathrm{rt}, 16 \mathrm{~h}$; (ix) $\mathrm{Cl}_{2} \mathrm{C}=\mathrm{NMe}_{2} \mathrm{Cl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}$, reflux, 6 h (86%); (x) TBAF, THF, rt, 1 h (92\%).

Scheme 3 Completion of a synthesis of the A_{3} receptor agonist 3 Reagents and conditions (i) $2-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{NH}_{2}, \mathrm{Ph}_{3} \mathrm{P}$, THF, ${ }^{i} \mathrm{PrO}_{2} \mathrm{CN}=\mathrm{NCO}_{2}{ }^{\mathrm{i}} \mathrm{Pr}, \mathrm{rt}, 16 \mathrm{~h}(31 \%)$; (ii) $\mathrm{PhSH}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeCN}, \mathrm{rt}, 16$ h (84%); (iii) $4, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{EtOH}, 80^{\circ} \mathrm{C}, 16 \mathrm{~h}(90 \%)$; (iv) aq. $\mathrm{HCl}, 65^{\circ} \mathrm{C}$, $1 \mathrm{~h}(76 \%)$.

The next compound identified for synthesis was the diethylamino analogue 37, see Scheme 4. This required the synthesis of the 2-diethylamino-5-aminomethyl-7-methyloxazolo[4,5b]pyridine 35. As dichloromethylene(diethyl)ammonium chloride was not commercially available at the time, the original synthesis had to be modified. Therefore, following the literature precedent, the aminophenol 23 was converted into the thione 28 using carbon disulfide and potassium hydroxide in ethanol, ${ }^{16}$ the product being identified as the thione tautomer by analogy with the literature. ${ }^{17}$ The
attempted direct conversion of the thione $\mathbf{2 8}$ into the corresponding diethylamino-oxazole using diethylamine delivered unchanged starting material, perhaps because of the volatility of diethylamine. The thione was therefore converted into the 2-chloro-oxazole 29 using thionyl chloride. Displacement of chloride using diethylamine gave the required 2-diethylamino-oxazole $\mathbf{3 0}{ }^{17}$ that was desilylated to give the alcohol 31. To avoid the bis-alkylation side-reaction observed during the synthesis of the amine 5, the Mitsunobu reaction of the alcohol 31 was carried out using the N-Boc-protected 2 nitrobenzene sulfonamide $\mathbf{3 2} .^{18}$ A good yield of the alkylated sulfonamide 33 was obtained and, following removal of the Bocgroup, denosylation of the resulting sulfonamide $\mathbf{3 4}^{19}$ gave the required primary amine 35 , see Scheme 4.

The primary amine 35 was coupled with the 6 -chloropurine 4 as before to obtain the $N 6$-substituted purinyluronamide 36 and this was deprotected to give the target uronamide 37, see Scheme 4. The structures of the products in Scheme 4 were assigned using spectroscopic data.

32

31 iv

30

Scheme 4 Synthesis of the diethylamino substituted adenosine uronamide 37 Reagents and conditions (i) $\mathrm{CS}_{2}, \mathrm{KOH}, \mathrm{EtOH}$, reflux, 3 h (83\%); (ii) $\mathrm{SOCl}_{2}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, benzene, $50{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (iii) $\mathrm{Et}_{2} \mathrm{NH}$, benzene, rt, 1 h (70% from 28); (iv) TBAF, THF, rt, 1 h (93\%); (v) $\mathrm{Ph}_{3} \mathrm{P}$, THF, DIAD, rt, 16 h (98\%); (vi) TFA, rt, 1 h (79\%); (vii) $\mathrm{PhSH}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeCN}, \mathrm{rt}, 16 \mathrm{~h}(85 \%)$; (viii) 4, Et3N, EtOH, reflux, $16 \mathrm{~h}(55 \%)$; (ix) aq. $\mathrm{HCl}, 65^{\circ} \mathrm{C}, 1 \mathrm{~h}(46 \%)$.

At this point it was decided to investigate the effect of a methyl substituent on the methylene group attached to $N 6$. This introduces a
new stereogenic centre but initially mixtures of epimers were prepared for studies of their biological activity although the synthesis that was developed could be modified to control the chirality at this position if required, see Scheme 5.

Oxidation of the alcohols 25 and $\mathbf{3 1}$ gave the corresponding aldehydes 38 and 39. Reaction of these with racemic tertbutanesulfinamide gave the racemic sulfinimides 40 and 41. ${ }^{20}$ The reaction of these with methylmagnesium bromide was stereoselective and gave, in each case, essentially a single, albeit racemic, adduct 42 and 43 . The relative configurations of the two stereogenic centres were assigned by analogy with the literature. ${ }^{21}$ Methanolysis gave the racemic amines 44 and 45 and these were coupled with the 6 -chloropurine 4 to give mixtures of the epimeric purinyluronamides 46 and 47 . A small amount of kinetic resolution was observed in these reactions as the products were found to correspond to $60: 40$ mixtures of the two diastereoisomers. Finally deprotection gave the target compounds 48 and 49. Again mixtures of epimers were obtained but as the Grignard addition reactions had been highly diastereoselective, the use of enantiomerically enriched tert-butanesulfinamide would have delivered one or other of the epimers selectively. The structures shown were assigned to the products in Scheme 5 using spectroscopic data.

Scheme 5 Synthesis of adenosine uronamides 48 and 49 Reagents and conditions (i) Dess-Martin periodinane, DCM, rt, 20 min ; (ii) $(\pm)-{ }^{t} \mathrm{BuS}(\mathrm{O}) \mathrm{NH}_{2}, \mathrm{CuSO}_{4}, \mathrm{DCM}, \mathrm{rt}, 16 \mathrm{~h}$ ((40, 70\% from 25; 41, 90% from 31); (iii) $\mathrm{MeMgBr}, \mathrm{THF},-78^{\circ} \mathrm{C}, 1 \mathrm{~h}(\mathbf{4 2}, 76 \%$; 43, 76%); (iv) aq. HCl , dioxane, $\mathrm{MeOH}, \mathrm{rt}, 30 \mathrm{~min}(\mathbf{4 4}, 83 \%$; 45, 82%); (v) 4, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{EtOH}$, reflux, 16 h ; (vi) aq. $\mathrm{HCl}, 65^{\circ} \mathrm{C}, 1 \mathrm{~h}(\mathbf{4 8}, 50 \%$ from 44; 49, 60% from 45).

Synthesis of an N6-benzoxazolylmethylpurinyluronamide

Although the biological activities of the uronamides 3, 36, 48 and 49 were promising, it was decided that further structural changes in the $N 6$ substituent were required to achieve the required biological activity and selectivity. The (N6-benzoxazolylmethylpurinyl)uronamide $\mathbf{5 0}$ was selected as the next synthetic target, see Figure $4 .{ }^{6}$

This is analogous to the known agonist 2 but with a bromine substituent rather than the labile iodide and an extra hetarylmethoxy substituent to facilitate selective binding.

Figure 4 The strategy for the synthesis of the (N6 benzoxazolylpurinyl)uronamide 50

As before it was the synthesis of the heavily substituted benzoxazole 51 that constituted the challenge in preparing uronamide 50. Embedded within the benzoxazole is a pentasubstituted benzene ring. It was decided to use 2-nitroresorcinol (52) as the starting material for this synthesis, see Figure 4. The conversion of this resorcinol into the benzoxazole $\mathbf{5 1}$ would require introduction of the bromine and aminomethyl substituents and discrimination between the two hydroxyls so that one could be incorporated into the oxazole and the other one alkylated.

Initial studies involved the known ${ }^{22}$ carboxymethylation of the protected aminoresorcinol 53 that was readily available from 2 nitroresorcinol in three steps. However in our hands only complex mixtures of products were obtained using n-butyllithium and either Mander's reagent ${ }^{23}$ or methyl chloroformate as the electrophile, see Scheme 6.

Scheme 6 Unsuccessful carboxymethylation of the protected resorcinol 53.

Carboxymethylation of the bis-MOM-protected iodonitroresorcinol 56 using phenylmagnesium bromide to effect halogen-metal exchange followed by reaction of the organometallic intermediate with Mander's reagent is reported to give the regioselectively monodeprotected ester 57, see Scheme 7. ${ }^{24}$ The starting material 56 for this conversion is available in two steps from 2-nitroresorcinol 52. ${ }^{24}$ However, in our hands the reported procedure for the conversion of the iodide $\mathbf{5 6}$ into the ester $\mathbf{5 7}$ gave a complex mixture of products. Attempts to effect this conversion using different electrophiles were similarly unsuccessful. However, studies into palladium(0) catalysed methoxycarbonylation procedures were more successful. ${ }^{25,26}$ The optimum catalyst system was palladium(II) acetate and the hindered electron-rich 2,3,5,7-tetramethyl-2,4,8-trioxa-6-phenyl-6-phospha-adamantane $\mathbf{6 5}$ with methanol as the solvent rather than a methanol - N, N-dimethylformamide mixed solvent system, and gave an excellent yield of the mono-deprotected ester $\mathbf{5 7}$ after 12 h at $80^{\circ} \mathrm{C}$, see Scheme 7 .

The regioselectivity of the monodeprotection was not confirmed at this stage but the product had NMR data identical to those reported in the literature for isomer 57. ${ }^{24}$

Bromination of ester 57 was regioselective as would be expected but was accompanied by loss of the remaining MOM-ether and gave the resorcinol 58. This was slighly disappointing since it meant that discrimination between the two hydroxyl groups had to be carried out. Nevertheless the synthesis was continued in that reduction of the nitro group was achieved using zinc and acetic acid in methanol, conditions known to be compatible with both phenolic and ester groups, to give the aminoresorcinol 59.

At this point it was decided to investigate the introduction of the oxazole since it was hoped that hydrogen bonding between the ester and the ortho phenolic hydroxyl group would reduce its reactivity relative to the hydroxyl group that was para to the carboxymethyl substituent. In the event, reaction with dichloromethylene(dimethyl)ammonium chloride gave a single product that was provisionally identified as the required isomer $\mathbf{6 0}$. This structural assignment was confirmed later in the synthesis.

With the assumption that the oxazole was the required regioisomer 60, the free hydroxyl group was alkylated using 5-hydroxymethyl-3-methylisoxazole under Mitsunobu conditions to provide 61. Reduction of the ester $\mathbf{6 1}$ using lithium aluminium hydride was accompanied by debromination but calcium borohydride ${ }^{27}$ was both sufficiently reactive and selective and gave the alcohol 62 in a good yield. Long-range correlation in the ${ }^{1} \mathrm{H}$ NMR spectrum of the alcohol $\mathbf{6 2}$ between the two benzylic methylene groups were consistent with the required ortho-orientation of the hydroxymethyl and alkoxy side chains and the structure of the alcohol 62 was finally confirmed by X-ray diffraction, see Figure 5.

Figure 5 The structure of the alcohol 62 as confirmed by X-ray diffraction

The alcohol $\mathbf{6 2}$ was converted into the required primary amine $\mathbf{5 1}$ by a Mitsunobu reaction using 2-nitrobenzene sulfonamide, monoalkylation being the major reaction pathway in this hindered system. Denosylation of the intermediate sulfonamide 63 then gave the primary amine 51. Substitution of the chloride from the 6chloropurine $\mathbf{4}$ using the amine $\mathbf{5 1}$ proceded uneventfully, and deprotection of the resulting acetonide $\mathbf{6 4}$ gave the required N6substituted purinyluronamide $\mathbf{5 0}$.

This potentially selective adenosine A_{3} receptor agonist $\mathbf{5 0}$ had been prepared in twelve steps from the commercially available resorcinol 62 in an overall yield of 21%. The structures of the products shown in Scheme 7 were consistent with their spectroscopic data, the structures of the benzoxazoles being confirmed by the X-ray crystal structure of the alcohol 62.

Scheme 7 Synthesis of the adenosine A_{3} receptor agonist 50 Reagents and conditions (i) NIS, TFA, rt, 16 h (ca. 100\%); (ii) MOMCl, ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}$, DMF, rt, $1.5 \mathrm{~h}(96 \%)$; (iii) 65, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, \mathrm{CO}, 60{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}$ (94\%); (iv) $\mathrm{Br}_{2}, \mathrm{CHCl}_{3}, \mathrm{rt}, 48 \mathrm{~h}(83 \%$); (v) Zn , $\mathrm{AcOH}, \mathrm{MeOH}, \mathrm{rt}, 2 \mathrm{~min}(98 \%)$; (vi) $\left(\mathrm{Cl}_{2} \mathrm{C}=\mathrm{NMe}_{2} \mathrm{Cl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}\right.$, reflux, 2 h (56%); (vii) 5-hydroxymethyl-3-methylisoxazole, $\mathrm{Ph}_{3} \mathrm{P}$, THF, DIAD, $0^{\circ} \mathrm{C}$, then rt, $16 \mathrm{~h}\left(99 \%\right.$); (viii) $\mathrm{NaBH}_{4}, \mathrm{CaCl}_{2}, \mathrm{THF}, \mathrm{rt}, 2 \mathrm{~h}$, add 61, rt, 48 h (75%); (ix) $\mathrm{NsCl}, \mathrm{Ph} 3$ P, DIAD, DCM, $0^{\circ} \mathrm{C}$ then $\mathrm{rt}, 16 \mathrm{~h}(87 \%)$; (x) $\mathrm{PhSH}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeCN}, \mathrm{rt}, 16 \mathrm{~h}(98 \%)$; (xi) 4, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{EtOH}$, reflux, $18 \mathrm{~h}\left(91 \%\right.$); (xii) aq. $\mathrm{HCO}_{2} \mathrm{H}$, $\mathrm{rt}, 16 \mathrm{~h}$ (85\%).

Summary and conclusions

Compounds 3, 36, 48, 49 and 50, were screened for activity as adenosine A3 receptor agonists and were found to demonstrate useful activity.

Of interest in the synthetic work described here is the unexpected regioselectivity of the redox reaction of the pyridine N oxide $\mathbf{1 4}$ since usually an ortho-methyl substituent is oxidised in 2,4dimethylpyridines, ${ }^{12}$ as was observed for the analogous reaction of the 5 -hydroxy-2,4-dimethylpyridine N-oxide 16. The origin of this unexpected regioselectivity in the reaction of pyridine N-oxide $\mathbf{1 4}$ is not obvious, but must involve the selective deprotonation of the 7methyl group to give the p-quinoidal intermediate $\mathbf{6 6}$ that reacts with trifluoroacetate via an intermolecular process, see Figure 6. Hydrolysis of the resulting product 67 could then deliver the observed product 15. The oxazole ring clearly has a role in influencing this regioselectivity and may well be protonated or trifluoroacetylated under the reaction conditions. The enhanced acidity of the p-methyl group may then be due to an electrostatic effect involving the proximate oxazole ring.

Figure 6 Intermediates that may be involved with the regioselective redox reaction of pyridine N -oxide $\mathbf{1 4}$

Other aspects of the syntheses that may be of some interest are the mild conditions used for the nitration of the hydroxypyridines 11 and 18; the improved conditions of the conversion of iodide 56 into the ester 57, and the acccompanying regioselective monodeprotection; the regioselective formation of the benzoxazole $\mathbf{6 0}$; and the overall strategies used in the synthesis of the highly substituted pyridine and benzene derivatives used in this work. Further studies leading to the additional development of these adenosine A_{3} receptor agonists would be of interest.

Experimental

General experimental details

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Varian Unity Inova 400 and Varian Unity Inova 300 spectrometers with residual nondeuterated solvent as the internal standard. Only distinguishable peaks are reported for minor isomers in isomeric mixtures. IR spectra were recorded on an ATI Mattson Genesis FTIR as thin films produced by evaporation of a dichloromethane solution on sodium chloride plates unless otherwise stated. Mass spectra were recorded on Fison VG Trio 2000 and Kratos Concept spectrometers. Chromatography refers to flash column chromatography using Merck silica gel 60 H (230-300 mesh). Tetrahydrofuran (THF) was dried and distilled from sodium metal using benzophenone as an indicator under an atmosphere of nitrogen. Dichloromethane was dried and distilled from calcium hydride under an atmosphere of nitrogen. Ether refers to diethyl ether, which was dried and distilled from sodium metal using benzophenone as an indicator under an atmosphere of nitrogen. Light petroleum refers to the fraction of petroleum ether distilled between $40-60{ }^{\circ} \mathrm{C}$. Benzene and hexane were dried over sodium metal. Butyllithium (1.6 M in hexanes) was titrated against a solution of propan-2-ol in xylene with 2,2'bipyridine as an indicator. Triethylamine and di-isopropylamine were dried over potassium hydroxide pellets. Brine refers to saturated aqueous sodium chloride.

4,6-Dimethyl-3-hydroxy-2-nitropyridine (7)

Fuming sulfuric acid ($147 \mathrm{~g}, 1.498 \mathrm{~mol}$) was added slowly with stirring to 2,4-lutidine $(8)(15 \mathrm{~g}, 140 \mathrm{mmol})$ cooled in an ice bath. Potassium nitrate ($25.5 \mathrm{~g}, 252 \mathrm{mmol}, 1.8 \mathrm{eq}$) was added slowly, and the reaction mixture gradually heated to $100{ }^{\circ} \mathrm{C}$ and maintained at this temperature for 8 h . The reaction mixture was then heated at 120 ${ }^{\circ} \mathrm{C}$ for 8 h . After cooling to rt , the reaction mixture was poured onto ice (300 g), then neutralized to pH 7 using $\mathrm{K}_{2} \mathrm{CO}_{3}$ and filtered. The filtrate was extracted with chloroform $(5 \times 300 \mathrm{~mL})$ and the organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ then concentrated under reduced pressure and the residue distilled to give 5 -nitro-2,4-lutidine $(\mathbf{9})^{8 \mathrm{a}}$ as a pale oil ($3.62 \mathrm{~g}, 17 \%)$, b.p. $79{ }^{\circ} \mathrm{C}(3.73 \mathrm{~mm} \mathrm{Hg})\left[\mathrm{lit} .{ }^{8 \mathrm{a}} 44{ }^{\circ} \mathrm{C}(0.17\right.$ $\mathrm{mm} \mathrm{Hg})], \mathrm{R}_{f} 0.60\left(\mathrm{Et}_{2} \mathrm{O}\right) ; v_{\max } / \mathrm{cm}^{-1} 2930,1610,1557,1519,1346$ and 838 ; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.62$ and 2.63 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), $7.15(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$ and $9.10(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 20.5$, $24.5,126.9,143.6,145.9$ and $163.5 ; \mathrm{m} / \mathrm{z}(\mathrm{ES}+) 153.1\left(\mathrm{M}^{+}+1\right.$, 100%).

Palladium on charcoal ($10 \%, 280 \mathrm{mg}, 2 \mathrm{~mol} \%$) was added to 5-nitro-2,4-lutidine (9) ($2 \mathrm{~g}, 13.1 \mathrm{mmol}$) in methanol (39 mL). The mixture was stirred at rt under hydrogen at atmospheric pressure for 16 h then filtered, and concentrated under reduced pressure to leave 5-amino-2,4-lutidine (10) ${ }^{8 \mathrm{a}}(1.67 \mathrm{~g}$, ca. $100 \%)$ used without purification, $\mathrm{R}_{f} 0.13\left(10 \% \mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}\right) ; v_{\max } / \mathrm{cm}^{-1} 3375,3338,3209$, $1651,1612,1505,1448,1242$ and 868 ; δ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 2.12 ($3 \mathrm{H}, \mathrm{s}, 4-\mathrm{CH}_{3}$), $2.39\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}\right), 3.37\left(2 \mathrm{H}\right.$, br. s, $3-\mathrm{NH}_{2}$), 6.82 ($1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}$) and $7.91(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H})$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.0,23.4$, $124.8,131.8,136.3,139.1$ and $148.6 ; \mathrm{m} / \mathrm{z}(\mathrm{ES}+) 123.1\left(\mathrm{M}^{+}+1\right.$, 100%).

Sodium nitrite ($1.47 \mathrm{~g}, 21.3 \mathrm{mmol}, 1.1 \mathrm{eq}$) in water (15 mL) was added over a period of 7 min to 5 -amino-2,4-lutidine (10) $(2.37 \mathrm{~g}$, $19.4 \mathrm{mmol})$ in aqueous sulfuric acid $(4.8 \%, 37.8 \mathrm{~mL})$ cooled to $0^{\circ} \mathrm{C}$ using dry ice/acetone bath. The solution was maintained at $0^{\circ} \mathrm{C}$ for 15 min and then heated under reflux for 5 min . After cooling to room temperature, the solution was neutralised to pH 7 with $\mathrm{K}_{2} \mathrm{CO}_{3}$ and the mixture extracted with methanol in dichloromethane ($10 \%, 10 \times$ $100 \mathrm{~mL})$. The organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue (50% to
$90 \% \mathrm{Et}_{2} \mathrm{O} /$ light petroleum) gave 5-hydroxy-2,4-lutidine (11) ${ }^{8 \mathrm{a}}$ as a white solid ($1.13 \mathrm{~g}, 47 \%$), m.p. $146-148{ }^{\circ} \mathrm{C}$ (lit. ${ }^{8 \mathrm{a}} 146-148{ }^{\circ} \mathrm{C}$), R_{f} 0.61 ($10 \% \mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$); $\nu_{\max } / \mathrm{cm}^{-1}$ 2922, 2618, 2554, 1612, 1504 , 1462, 1423, 1295, 1219 and 946; $\delta \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.28(3 \mathrm{H}, \mathrm{s}$, $\left.4-\mathrm{CH}_{3}\right), 2.46\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}\right), 6.98(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$ and $8.08(1 \mathrm{H}, \mathrm{s}, 6-$ $\mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 16.1,22.1,126.5,134.0,137.2,147.8$ and 152.4; $m / z(\mathrm{ES}+) 124.2\left(\mathrm{M}^{+}+1,100 \%\right)$.

Ceric ammonium nitrate ($8.90 \mathrm{~g}, 16.24 \mathrm{mmol}, 2.0 \mathrm{eq}$) was added to 5-hydroxy-2,4-lutidine (11) ($1.00 \mathrm{~g}, 8.12 \mathrm{mmol}$) and NaHCO_{3} $(2.05 \mathrm{~g}, 24.36 \mathrm{mmol}, 3.0 \mathrm{eq})$ in anhydrous acetonitrile $(93 \mathrm{~mL})$ at rt . The mixture was heated under reflux for 6 h then filtered and the filtrate concentrated under reduced pressure. The residue was taken up into water (30 mL) and extracted with dichloromethane (3×30 $\mathrm{mL})$. The organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. Chromatography of the residue (10% to $30 \% \mathrm{Et}_{2} \mathrm{O} / \mathrm{light}$ petroleum) gave the title compound 7 as yellow solid ($577 \mathrm{mg}, 42 \%$), $\mathrm{R}_{f} 0.63\left(\mathrm{Et}_{2} \mathrm{O}\right)$, m.p. $63-65^{\circ} \mathrm{C}$; $v_{\mathrm{max}} / \mathrm{cm}^{-1} 3228,2966$, 2933, 1573, 1538, 1479, 1447, 1385, 1360, 1323, 1256, 1229, 1184, $1036,1019,913,896,807,772$ and 765 ; $\delta \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.42$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.57\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.36(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H})$ and $10.45(1 \mathrm{H}$, $\mathrm{s}, 3-\mathrm{OH}) ; \delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 15.8,23.3,133.0,141.1,141.4$, 148.3 and $149.0 ; \mathrm{m} / \mathrm{z}(\mathrm{ES}-) 151.2\left(\mathrm{M}^{+}-1,100 \%\right)$.

5,7-Dimethyl-2-dimethylamino-oxazolo[4,5-b]pyridine (6)

A mixture of the nitropyridine $7(768 \mathrm{mg}, 4.60 \mathrm{mmol})$ and palladium on charcoal ($10 \%, 10 \mathrm{mg}, 2 \mathrm{~mol} \%$) in ethyl acetate (17 mL) was stirred at rt for 16 h under an atmosphere of hydrogen then filtered through a pad of Celite. ${ }^{\circledR}$ The filtrate was concentrated under reduced pressure to leave 2-amino-3-hydroxy-4,6-dimethylpyridine $13(660 \mathrm{mg})$ used without purification, $\mathrm{R}_{f} 0.15\left(10 \% \mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}\right)$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.18$ and 2.27 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 6.30(1 \mathrm{H}, \mathrm{s}$, $5-\mathrm{H})$ and $6.55\left(3 \mathrm{H}\right.$, br. $\mathrm{s}, \mathrm{NH}_{2}$ and OH$) ; \delta \mathrm{c}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 16.4$, 21.2, 116.3, 134.7, 139.4, 139.9 and 149.8; m/z (ES+) $139\left(\mathrm{M}^{+}+1\right.$, $100 \%)$.

A solution of 2-amino-3-hydroxy-4,6-dimethylpyridine $\mathbf{1 3}$ ($685 \mathrm{mg}, 4.96 \mathrm{mmol}$) and dichloromethylene(dimethyl)ammonium chloride ($1.29 \mathrm{~g}, 7.93 \mathrm{mmol}, 1.6 \mathrm{eq}$) in dry dichloromethane (52 mL) was heated under reflux for 5 h . After cooling, the mixture was poured into saturated aqueous sodium bicarbonate $(30 \mathrm{~mL})$ and the mixture extracted with dichloromethane $(4 \times 30 \mathrm{~mL})$. The organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to give the title compound $\mathbf{6}$ as a pale solid $(1.05 \mathrm{~g})$ used without purification, $\mathrm{R}_{f} 0.38\left(10 \% \mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}\right)$, m.p. $128-130{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}+\mathrm{H}$, 192.1134. $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}$ requires M, 192.1131); $v_{\text {max }} / \mathrm{cm}^{-1} 2952,2925,1664,1644,1567,1446,1425$, $1379,1223,1192,1142,1044,956,892,875$ and $730 . \delta_{\mathrm{H}}(300 \mathrm{MHz}$, CDCl_{3}) 2.39 and 2.53 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), $3.26\left[6 \mathrm{H}, \mathrm{s}, 2-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$ and $6.60(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H})$; $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 13.6, 22.9, $36.4,115.6$, $125.3,138.2,151.9,156.5$ and $163.2 ; \mathrm{m} / \mathrm{z}$ (ES+) $405.2\left(2 \mathrm{M}^{+}+23\right.$, $18 \%), 383.2\left(2 \mathrm{M}^{+}+1,11\right)$ and $192.2\left(\mathrm{M}^{+}+1,100\right)$.

5,7-Dimethyl-2-dimethylamino-oxazolo[4,5-b]pyridine
 4-oxide

 (14)m-Chloroperoxybenzoic acid $(77 \%, 1.60 \mathrm{~g}, 7.14 \mathrm{mmol}, 1.3 \mathrm{eq})$ was added to the oxazolopyridine $6(1.05 \mathrm{~g}, 5.49 \mathrm{mmol})$ in chloroform $(11 \mathrm{~mL})$ and the mixture stirred for 16 h . After concentrated under reduced pressure, chromatography of the residue (5% to 10% $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave the title compound 14 ($1.09 \mathrm{~g}, 78 \%$), $\mathrm{R}_{f} 0.13$ $\left(30 \% \mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}\right)$, m.p. $204-206{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}+\mathrm{H}, 208.1084$. $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $M, 208.1081$); $v_{\text {max }} / \mathrm{cm}^{-1} 3396,2927,1675$, $1592,1464,1426,1375,1358,1234,1190,1118,943,891,748$ and 723 ; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.37$ and 2.57 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), $3.29[6$ $\left.\mathrm{H}, \mathrm{s}, 2-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$ and $6.65(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}) ; \mathrm{m} / \mathrm{z}(\mathrm{ES}+) 437.3\left(2 \mathrm{M}^{+}+23\right.$,
$70 \%), 414.9\left(2 \mathrm{M}^{+}+1,25\right), 230.1\left(\mathrm{M}^{+}+23,62\right)$ and $208.2\left(\mathrm{M}^{+}+1\right.$, 100).

2-Dimethylamino-7-hydroxymethyl-5-methyloxazolo[4,5b]pyridine (15)

Trifluoroacetic anhydride ($5.20 \mathrm{~mL}, 37.21 \mathrm{mmo}$, 10.0 eq.) was added to the N-oxide $14(771 \mathrm{mg}, 3.72 \mathrm{mmol})$ in dry dichloromethane (21 mL) and the mixture heated under reflux for 16 h. After concentration under reduced pressure, the solid residue was dissolved in dichloromethane (15 mL). Aqueous potassium carbonate ($2 \mathrm{M}, 5 \mathrm{~mL}$) was added and the biphasic mixture stirred for 1 h . Water (10 mL) was added and the aqueous phase was extracted with dichloromethane $(6 \times 15 \mathrm{~mL})$. The organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue $\left(\mathrm{Et}_{2} \mathrm{O} \%\right.$ to 10% $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$) gave the title compound $\mathbf{1 5}$ as a pale solid (220 mg , 29%), $\mathrm{R}_{f} 0.17$ ($10 \% \mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$), m.p. $188-190^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}+\mathrm{H}$, 208.1088, $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $M, 208.1081$); $v_{\max } / \mathrm{cm}^{-1} 3163,2925$, $1664,1640,1567,1399,1283,1195,1043,891$ and 725 ; $\delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.54\left(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{CH}_{3}\right), 3.24\left[6 \mathrm{H}, \mathrm{s}, 2-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 4.88(2$ $\left.\mathrm{H}, \mathrm{s}, 7-\mathrm{CH}_{2}\right)$ and $6.84(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}) ; \delta_{\mathrm{c}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 22.9$, $36.5,57.5,112.1,129.3,136.0,152.0,156.6$ and $163.3 ; \mathrm{m} / \mathrm{z}$ (ES+) $437.1\left(2 \mathrm{M}^{+}+23,21 \%\right)$ and $208.2\left(\mathrm{M}^{+}+1,100\right)$.

2-Acetoxymethyl-5-hydroxy-4-methylpyridine (18)

m-Chloroperoxybenzoic acid $(77 \%, 2.25 \mathrm{~g}, 10.5 \mathrm{mmol}, 1.1 \mathrm{eq})$ was added to 2,4-dimethyl-5-hydroxypyridine $8(1.13 \mathrm{~g}, 9.17 \mathrm{mmol})$ in dichloromethane $(18 \mathrm{~mL})$ and the mixture stirred at rt for 16 h . After concentration under reduced pressure, chromatography of the residue ($\mathrm{Et}_{2} \mathrm{O}$ to $10 \% \mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$) gave 2,4-dimethyl-5-hydroxypyridine N oxide (16) ${ }^{8 \mathrm{a}}(1.09 \mathrm{~g}, 85 \%)$, m.p $227-229{ }^{\circ} \mathrm{C}$ (lit. ${ }^{8 \mathrm{a}} 229^{\circ} \mathrm{C}$), $\mathrm{R}_{f} 0.55$ ($10 \% \mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$); $v_{\max } / \mathrm{cm}^{-1} 3390$, 2961, 2921, 1514, 1491, 1434, 1310, 1189, 1105, 879 and 844 ; $\delta \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 2.25(3 \mathrm{H}, \mathrm{s}$, $\left.4-\mathrm{CH}_{3}\right), 2.43\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}\right), 7.26(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$ and $7.89(1 \mathrm{H}, \mathrm{s}, 6-$ $\mathrm{H})$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 13.9,15.4,126.1,127.7,131.1,140.2$ and 153.0; m / z (ES+) $140.1\left(\mathrm{M}^{+}+1,100 \%\right)$.

A mixture of 2,4-dimethyl-5-hydroxypyridine N-oxide (16) $(1.09 \mathrm{~g}, 7.8 \mathrm{mmol})$ and acetic anhydride (20 mL) was heated at 110 ${ }^{\circ} \mathrm{C}$ with stirring for 2.5 h . After cooling and concentration under reduced pressure, chromatography of the residue (30% to 50% $\mathrm{Et}_{2} \mathrm{O}$ /light petroleum) gave 5-acetoxy-2-acetoxymethyl-4methylpyridine ($\mathbf{1 7})^{8 \mathrm{a}}$ as a pale oil $(1.40 \mathrm{~g}, 80 \%), \mathrm{R}_{f} 0.11$ (50% $\mathrm{Et}_{2} \mathrm{O} /$ light petroleum); $v_{\text {max }} / \mathrm{cm}^{-1} 1760,1747,1609,1486,1440$, $1371,1268,1232,1218,1194,1135,1048,1013$ and $892 ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.16\left[3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{2} \mathrm{OC}(\mathrm{O}) \mathrm{CH}_{3}\right], 2.23[3 \mathrm{H}, \mathrm{s}, 5-$ $\left.\mathrm{OC}(\mathrm{O}) \mathrm{CH}_{3}\right], 2.36\left(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{CH}_{3}\right), 5.18\left(2 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{2}\right), 7.16(1 \mathrm{H}, \mathrm{s}$, $3-\mathrm{H})$ and $8.28(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H})$; $\delta_{c}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 16.2,20.9,21.2$, $66.6,124.6,140.5,143.5,146.2,153.2,169.0$ and $170.9 ; \mathrm{m} / \mathrm{z}(\mathrm{CI}+)$ $224\left(\mathrm{M}^{+}+1,100 \%\right)$.

Pyrrolidine ($215 \mu \mathrm{~L}, 2.57 \mathrm{mmol}$) was added to the bis-acetate $17(574 \mathrm{mg}, 2.57 \mathrm{mmol})$ in dichloromethane (7.2 mL) and the mixture stirred at rt for 16 h . After concentration under reduced pressure, chromatography of the residue (50% to $100 \% \mathrm{Et}_{2} \mathrm{O} / \mathrm{light}$ petroleum) gave the title compound 18 as a pale oil (467 mg , ca. $100 \%), \mathrm{R}_{f} 0.23\left(\mathrm{Et}_{2} \mathrm{O}\right)$ (Found : $\mathrm{M}^{+}+\mathrm{Na}, 204.0627 . \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{Na}$ requires M, 204.0631); $v_{\text {max }} / \mathrm{cm}^{-1} 3028,2959,1747,1611,1505$, $1455,1363,1293,1229,1032$ and $879 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.10$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}$), $2.34\left(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{CH}_{3}\right)$, $5.16\left(2 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{2}\right), 7.25(1$ $\mathrm{H}, \mathrm{s}, 3-\mathrm{H})$ and $8.16(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 16.2,21.1$, $65.9,126.4,134.7,137.2,145.4,154.0$ and $171.1 ; \mathrm{m} / \mathrm{z}$ (ES+) 204 $\left(\mathrm{M}^{+}+23,25 \%\right)$ and $182\left(\mathrm{M}^{+}+1,100\right)$.

2-Acetoxymethyl-5-hydroxy-4-methyl-6-nitropyridine (19)

Ceric ammonium nitrate ($1.55 \mathrm{~g}, 2.84 \mathrm{mmol}, 1.1 \mathrm{eq}$) was added to $2-$ acetoxymethyl-5-hydroxy-4-methylpyridine (18) (467 mg , 2.58 mmol), and sodium hydrogen carbonate ($346 \mathrm{mg}, 4.12 \mathrm{mmol}, 1.6 \mathrm{eq}$) in anhydrous acetonitrile (29 mL) at rt and the mixture stirred under reflux for 5 h . The mixture was filtered, and the filtrate washed with water then extracted with dichloromethane $(3 \times 20 \mathrm{~mL})$. The organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced presure. Chromatography of the residue (10% to $30 \% \mathrm{Et}_{2} \mathrm{O} /$ light petroleum) gave the title compound 19 as yellow solid (223 mg , 38%), $\mathrm{R}_{f} 0.65$ ($\mathrm{Et}_{2} \mathrm{O}$), m.p. $84-87{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}+\mathrm{Na}, 249.0489$. $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O} 5 \mathrm{Na}$ requires $M, 249.0482$); $v_{\text {max }} / \mathrm{cm}^{-1} 3297$, 2962, 1744, $1615,1573,1543,1482,1440,1410,1380,1356,1322,1229,1049$, 917 and 773 ; $\delta \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.16$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}$), 2.44 (3 $\left.\mathrm{H}, \mathrm{s}, 4-\mathrm{CH}_{3}\right), 5.16\left(2 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{2}\right), 7.55(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$ and $10.19(1 \mathrm{H}$, br. s, $5-\mathrm{OH}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 16.2,21.1,65.9,131.6,141.2$, 142.6, 146.3, 149.6 and $170.8 ; m / z(\mathrm{ES}-) 225\left(\mathrm{M}^{+}-1,100 \%\right)$.

3-Hydroxy-6-hydroxymethyl-4-methyl-2-nitropyridine (20)

Aqueous sodium hydroxide ($2 \mathrm{M}, 2.21 \mathrm{~mL}, 4.42 \mathrm{mmol}, 2.0 \mathrm{eq}$) was added to the acetoxymethylpyridine $19(500 \mathrm{~g}, 2.21 \mathrm{mmol})$ in methanol (16 mL) and the mixture was stirred at rt for 1 h . After concentration under reduced pressure, the residue was taken up in water (15 mL) and the solution neutralised using aqueous hydrogen chloride (2 M) and extracted with dichloromethane ($6 \times 20 \mathrm{~mL}$). The organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to give the title compound $\mathbf{2 0}$ that was used without purification, $\mathrm{R}_{f} 0.52$ ($\mathrm{Et}_{2} \mathrm{O}$), m.p. $136-139{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}+\mathrm{Na}$, 207.0380. $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O} 4 \mathrm{Na}$ requires $M, 207.0376$); $v_{\text {max }} / \mathrm{cm}^{-1} 3321$, $2474,1535,1478,1362,1307,1257,1200$ and 1089 ; $\delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) 2.45\left(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{CH}_{3}\right)$, $4.63\left(2 \mathrm{H}, \mathrm{s}, 6-\mathrm{CH}_{2}\right)$ and $7.74(1 \mathrm{H}, \mathrm{s}$, $5-\mathrm{H})$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 15.0$, 63.6, 129.7, 142.5, 147.8 and 151.3; $m / z(\mathrm{ES}+) 207.1\left(\mathrm{M}^{+}+23,100 \%\right)$ and $185.1\left(\mathrm{M}^{+}+1,32\right)$.

2-Amino-3-hydroxy-6-hydroxymethyl-4-methylpyridine (21)

A mixture of the nitropyridine $20(52 \mathrm{mg}, 0.19 \mathrm{mmol})$ and palladium on charcoal $(10 \%, 10 \mathrm{mg})$ in ethyl acetate (15 mL) was stirred at rt for 2 h under an atmosphere of hydrogen. The reaction mixture was then filtered through a pad of Celite ${ }^{\circledR}$ and the filtrate concentrated under reduced pressure to leave the title compound 21, $\mathrm{R}_{f} 0.07(20 \%$ $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$) (Found: $\mathrm{M}^{+}+\mathrm{H}, 155.0820 . \mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires M, $155.0815)$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 2.22\left(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{CH}_{3}\right), 4.44(2 \mathrm{H}$, $\left.\mathrm{s}, 6-\mathrm{CH}_{2}\right)$ and $6.57(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}) ; m / z(\mathrm{CI}+) 155\left(\mathrm{M}^{+}+1,100 \%\right)$ and 154 (93).

6-tert-Butyldiphenylsilyloxymethyl-3-hydroxy-4-methyl-2nitropyridine (22)

tert-Butyldiphenylsilyl chloride ($245 \mu \mathrm{~L}, 0.94 \mathrm{mmol}, 1.05 \mathrm{eq}$) was added to the hydroxymethylpyridine $20(165 \mathrm{mg}, 0.90 \mathrm{mmol})$ and imidazole ($305 \mathrm{mg}, 4.48 \mathrm{mmol}, 5 \mathrm{eq}$) in N, N-dimethylformamide $(3.6 \mathrm{~mL})$ and the mixture was stirred at room temperature for 12 h . Water (20 mL) was added and the mixture was extracted with dichloromethane $(6 \times 20 \mathrm{~mL})$. The organic extracts were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated under reduced pressure. Chromatography of the residue (2% to $10 \% \mathrm{Et}_{2} \mathrm{O} /$ light petroleum) gave the title compound 22 as a yellow solid ($285 \mathrm{mg}, 75 \%$), $\mathrm{R}_{f} 0.63\left(\mathrm{Et}_{2} \mathrm{O}\right)$, m.p. $84-86{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}+\mathrm{H}, 423.1746 . \mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}$ requires M, 423.1735); $v_{\text {max }} / \mathrm{cm}^{-1} 3233,2957,2929,2857,1577,1540,1473$, 1427, 1409, 1358, 1307, 1263, 1111, 824, 741 and 701; $\delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.18\left[9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.49\left(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{CH}_{3}\right), 4.85(2$ $\left.\mathrm{H}, \mathrm{s}, 6-\mathrm{CH}_{2}\right), 7.39-7.51(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.68-7.72(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $7.83(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 10.47(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$; $\delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 16.5$, 19.6, 27.2, 66.1, 128.1, 130.0, 130.2, 133.0, 135.8, 142.1, 149.0 and $151.5 ; \mathrm{m} / \mathrm{z}(\mathrm{ES}+) 867.6\left(2 \mathrm{M}^{+}+23,57 \%\right), 445.3\left(\mathrm{M}^{+}+23,75 \%\right)$ and $423.3\left(\mathrm{M}^{+}+1,100\right)$.

2-Amino-6-tert-butyldiphenylsilyloxymethyl-3-hydroxy-4methylpyridine (23)

A mixture of the nitropyridine $22(285 \mathrm{mg}, 0.67 \mathrm{mmol})$ and palladium on charcoal ($10 \%, 14 \mathrm{mg}, 2 \mathrm{~mol} \%$) in ethyl acetate (2.5 mL) was stirred at rt for 16 h under an atmosphere of hydrogen. The reaction mixture was then filtered through a pad of Celite ${ }^{\circledR}$ and the filtrate was concentrated under reduced pressure to give the title compound 23 (290 mg) used without further purification, $\mathrm{R}_{f} 0.21$ ($\mathrm{Et}_{2} \mathrm{O}$), m.p. $131-133{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}+\mathrm{H}, 393.1999 . \mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}$ requires M, 393.1993); $v_{\max } / \mathrm{cm}^{-1} 3478$, 3377, 2957, 2930, 2857, $1623,1474,1427,1162,1113,823,740$ and $702 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.13\left[9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.18\left(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{CH}_{3}\right), 4.64(2 \mathrm{H}, \mathrm{s}$, $\left.6-\mathrm{CH}_{2}\right), 5.02\left(3 \mathrm{H}\right.$, br. s, $2-\mathrm{NH}_{2}$ and $\left.3-\mathrm{OH}\right), 6.71(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 7.35-$ $7.47(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.69-7.72(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $\delta_{\mathrm{c}}(75 \mathrm{MHz}$, CDCl_{3}) 16.1, 19.6, 27.2, 65.7, 113.4, 128.0, 130.0, 133.1, 133.6, 135.1, 135.8, 137.2 and $149.1 ; \mathrm{m} / \mathrm{z}(\mathrm{ES}+) 393.3\left(\mathrm{M}^{+}+1,100 \%\right)$.

5-tert-Butyldiphenylsilyloxymethyl-2-dimethylamino-7-methyloxazolo[4,5-b]pyridine (24)

A solution of the pyridine 23 ($265 \mathrm{mg}, 0.67 \mathrm{mmol}$), dichloromethylene(dimethyl)ammonium chloride (175 mg , 1.08 $\mathrm{mmol}, 1.6 \mathrm{eq}$), and triethylamine ($301 \mu \mathrm{~L}, 2.16 \mathrm{mmol}, 3.2 \mathrm{eq}$) in dry dichloromethane (7.1 mL) was heated under reflux for 6 h . After cooling, the solution was poured into saturated aqueous sodium bicarbonate (20 mL) and the mixture extracted with dichloromethane $(4 \times 20 \mathrm{~mL})$. The organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue $\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ gave the title compound 24 as a pale oil ($260 \mathrm{mg}, 86 \%$), $\mathrm{R}_{f} 0.16$ ($\mathrm{Et}_{2} \mathrm{O}$) (Found: $\mathrm{M}^{+}+\mathrm{H}, 446.2257$. $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Si}$ requires $M, 446.2258$); $v_{\max } / \mathrm{cm}^{-1}$ 2952, 2931, 2857 , 2359, 2346, 1660, 1570, 1428, 1386, 1139, 1112, 1089, 894 and 837 ; $\delta \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.17$ [$\left.9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.48(3 \mathrm{H}, \mathrm{s}, 7-$ $\left.\mathrm{CH}_{3}\right), 3.25\left[6 \mathrm{H}, \mathrm{s}, 2-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 4.90\left(2 \mathrm{H}, \mathrm{s}, 5-\mathrm{CH}_{2}\right), 7.13(1 \mathrm{H}, \mathrm{s}, 6-$ $\mathrm{H}), 7.37-7.48(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.73-7.76 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $\delta_{\mathrm{C}}(75$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 15.2, 19.6, 27.2, 37.7, 67.0, 113.9, 126.7, 128.0, $129.9,133.8,135.8,140.3,155.6,157.7$ and 164.6; m/z (ES+) 446.4 $\left(\mathrm{M}^{+}+1,100 \%\right)$.

2-Dimethylamino-5-hydroxymethyl-7-methyloxazolo[4,5b]pyridine (25)

Tetrabutylammonium fluoride in tetrahydrofuran $(1 \mathrm{M}, 0.7 \mathrm{~mL}, 0.70$ $\mathrm{mmol}, 1.2 \mathrm{eq})$ was added to the silyl ether $24(260 \mathrm{mg}, 0.58 \mathrm{mmol})$ in tetrahydrofuran $(10 \mathrm{~mL})$ at rt and the solution stirred for 1 h . After concentration under reduced pressure, chromatography of the residue $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave the title compound 25 as a white solid (111 mg, 92\%), $\mathrm{R}_{f} 0.24$ ($10 \% \mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$), m.p. 203-205 ${ }^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}+\mathrm{H}$, 208.1084. $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires M, 208.1081); $\nu_{\max } / \mathrm{cm}^{-1} 3235,2925,2873,1662,1644,1574,1403,1383,1136$, 1064, 895, 837, 776 and 726; $\delta \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$) 2.47 ($3 \mathrm{H}, \mathrm{s}, 7-$ $\left.\mathrm{CH}_{3}\right), 3.26\left[6 \mathrm{H}, \mathrm{s}, 2-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 4.65\left(2 \mathrm{H}, \mathrm{s}, 5-\mathrm{CH}_{2}\right)$ and $7.00(1 \mathrm{H}$, $\mathrm{s}, 6-\mathrm{H}) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 13.5,36.5,64.5,114.6,127.8,140.3$, 155.3, 157.2 and $164.8 ; \mathrm{m} / \mathrm{z}(\mathrm{ES}+) 437.0\left(2 \mathrm{M}^{+}+23,20 \%\right), 230.1$ $\left(\mathrm{M}^{+}+23,22\right)$ and $208.2\left(\mathrm{M}^{+}+1,100 \%\right)$.
N-(2-Dimethylamino-7-methyloxazolo[4,5-b]pyridin-5-ylmethyl) 2-nitrobenzenesulfonamide (26)
Di-isopropylazodicarboxylate ($104 \mu \mathrm{~L}, 0.53 \mathrm{mmol}, 1.3 \mathrm{eq}$) was added to 2-nitrobenzenesulfonamide ($123 \mathrm{mg}, 0.61 \mathrm{mmol}, 1.5 \mathrm{eq}$), triphenylphosphine ($139 \mathrm{mg}, 0.53 \mathrm{mmol}, 1.3 \mathrm{eq}$) and the alcohol 25 $(84.2 \mathrm{mg}, 0.41 \mathrm{mmol})$ in tetrahydrofuran $(10 \mathrm{~mL})$ and the reaction mixture stirred at rt for 16 h . After concentration under reduced pressure, chromatography of the residue $\left(\mathrm{Et}_{2} \mathrm{O}\right.$ to $\left.10 \% \mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}\right)$ gave the title compound $26(50 \mathrm{mg}, 31 \%), \mathrm{R}_{f} 0.36$ (10%
$\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$) (Found: $\mathrm{M}^{+}+\mathrm{H}, 392.1027 . \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~S}$ requires M, 392.1023); $v_{\max } / \mathrm{cm}^{-1} 3330,3094,3031,1664,1572,1540,1430$, 1393, 1372, 1341, 1291, 1167, 895, 854, 782 and 733 ; $\delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 2.38\left(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{CH}_{3}\right), 3.26\left[6 \mathrm{H}, \mathrm{s}, 2-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 4.38(2 \mathrm{H}, \mathrm{d}$, $\left.J 5.4 \mathrm{~Hz}, 5-\mathrm{CH}_{2}\right), 6.43(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 6.73(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 7.64-7.71(2$ $\mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.84(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $8.13(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $\delta_{\mathrm{c}}(75$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $14.9,37.8,48.7,116.1,125.4,127.0,131.1,132.7$, $133.5,133.9,140.6,148.2,149.5,158.1,164.8 ; \mathrm{m} / \mathrm{z}$ (ES+) 450.3 $(85 \%), 414.2\left(\mathrm{M}^{+}+23,18\right)$ and $392.2\left(\mathrm{M}^{+}+1,100\right)$. The bisalkylated sulfonamide, bis- N -(2-dimethylamino-7-methyloxazolo[4,5-b]pyridin-5-ylmethyl) 2-nitrobenzenesulfonamide was also isolated (Found: $\mathrm{M}^{+}+\mathrm{H}, 581.1917$. $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{8} \mathrm{O}_{6} \mathrm{~S}$ requires M, 581.1925); $v_{\max } / \mathrm{cm}^{-1} 3417$, 2960, 2928, $1729,1664,1568,1543,1390,1287,1163,1075,894,791$ and 734 ; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.34\left(6 \mathrm{H}, \mathrm{s}, 2 \times 7-\mathrm{CH}_{3}\right), 3.27[12 \mathrm{H}, \mathrm{s}, 2 \times 2-$ $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 4.79\left(4 \mathrm{H}, \mathrm{s}, 2 \times 5-\mathrm{CH}_{2}\right), 6.83(2 \mathrm{H}, \mathrm{s}, 2 \times 6-\mathrm{H}), 7.50-7.64$ $(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $8.15(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \mathrm{m} / \mathrm{z}(\mathrm{ES}+) 581.4\left(\mathrm{M}^{+}+1\right.$, 100%).

5-Aminomethyl-2-dimethylamino-7-methyloxazolo[4,5b]pyridine (5)

A mixture of the sulfonamide $26(50 \mathrm{mg}, 0.13 \mathrm{mmol})$, thiophenol ($039 \mu \mathrm{~L}, 0.38 \mathrm{mmol}, 3.0 \mathrm{eq}$) and potassium carbonate ($70 \mathrm{mg}, 0.51$ mmol) in acetonitrile (2.1 mL) was stirred at rt for 16 h . Direct chromatography (10% to $20 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} / 1 \% \mathrm{Et} 3 \mathrm{~N}$) gave the title compound 5 as a pale oil ($22 \mathrm{mg}, 84 \%$), $\mathrm{R}_{f} 0.57$ (20% $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) (Found: $\mathrm{M}^{+}+\mathrm{H}$, 207.1232. $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~N}_{7}$ requires M, 207.1227); $v_{\max } / \mathrm{cm}^{-1} 3368,2928,1667,1572,1431,1394,1288$, 1220, 1142, 896 and 733 ; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 2.46$ ($3 \mathrm{H}, \mathrm{s}, 7-$ $\left.\mathrm{CH}_{3}\right), 3.27\left[6 \mathrm{H}, \mathrm{s}, 2-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 3.93\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 5-\mathrm{CH}_{2}\right)$ and $6.88(1$ $\mathrm{H}, \mathrm{s}, 6-\mathrm{H})$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 13.4,36.6,45.3,115.8,127.8$, $140.5,153.0,157.5$ and $164.8 ; \mathrm{m} / \mathrm{z}(\mathrm{ES}+) 207.2\left(\mathrm{M}^{+}+1,100 \%\right)$.

1'-[6-(2-Dimethylamino-7-methyloxazolo[4,5-b]pyridin-5-ylmethylamino)-9H-purin-9-yl]-2', $\mathbf{3}^{\prime}$ - O-isopropylidene- 1^{\prime}-deoxy-N-methyl- β-D-ribofuranuronamide (27)

A solution of 6-chloropurine-2', $3^{\prime}-\mathrm{O}$-isopropylidene- N methyluronamide 4 ($38 \mathrm{mg}, 0.11 \mathrm{mmol}$), amine 5 ($22 \mathrm{mg}, 0.11$ mmol) and triethylamine ($30 \mu \mathrm{~L}, 0.21 \mathrm{mmol}, 2.0 \mathrm{eq}$) in ethanol (1.1 mL) was stirred at $80^{\circ} \mathrm{C}$ for 16 h then comcentrated under reduced pressure. Chromatography of the residue (20% to 30% $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O} / 1 \% \mathrm{Et}_{3} \mathrm{~N}$) gave the title compound 27 as a white solid ($51 \mathrm{mg}, 90 \%$), $\mathrm{R}_{f} 0.27$ ($20 \% \mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$), m.p. $>250{ }^{\circ} \mathrm{C}$ (dec.) (Found: $\mathrm{M}^{+}+\mathrm{Na}, 546.2178 . \mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{9} \mathrm{O} 5 \mathrm{Na}$ requires M, 546.2184); $v_{\max } / \mathrm{cm}^{-1} 3380,2986,2939,1652,1644,1621,1615,1574,1480$, 1430, 1393, 1333, 1290, 1266, 1213, 1157, 1092, 977, 895, 869, 851,797 and $734 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 1.27$ and 1.44 (each 3 H , $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 2.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NHCH}_{3}\right), 2.20\left(3 \mathrm{H}, \mathrm{s}, 7^{\prime \prime}-\mathrm{CH}_{3}\right), 3.08[6 \mathrm{H}, \mathrm{s}$, $\left.2^{\prime \prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 4.50\left(1 \mathrm{H}, \mathrm{d}, J 1.0 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right), 4.68\left(2 \mathrm{H}, \mathrm{br} . \mathrm{s}, 5^{\prime \prime}-\mathrm{CH}_{2}\right)$, $5.32\left(1 \mathrm{H}, \mathrm{dd}, J 6.0,1.0 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 5.44\left(1 \mathrm{H}, \mathrm{dd}, J 6.0,2.0 \mathrm{~Hz}, 3^{\prime}-\right.$ H), $6.19\left(1 \mathrm{H}, \mathrm{d}, J 1.0 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 6.69\left(1 \mathrm{H}, \mathrm{s}, 6^{\prime \prime}-\mathrm{H}\right), 8.06(1 \mathrm{H}, \mathrm{s}, 8-$ $\mathrm{H})$ and $8.07(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 8.14,13.5,24.3$, 24.7, 26.0, 36.6, 84.0, 84.2, 87.4, 91.4, 113.8, 115.2, 119.7, 127.6, $140.2,141.0,147.7,152.5,152.7,154.8,157.5,164.8$ and $171.1 ; \mathrm{m} / \mathrm{z}$ $(\mathrm{ES}+) 655.8(100 \%), 562.7\left(\mathrm{M}^{+}+39,2\right)$ and $546.6\left(\mathrm{M}^{+}+23,26\right)$.

1'-[6-(2-Dimethylamino-7-methyloxazolo[4,5-b]pyridin-5-ylmethylamino)-9H-purin-9-yl]-1'-deoxy- N-methyl- β-Dribofuranuronamide (3)

A solution of the acetonide 27 ($51 \mathrm{mg}, 0.10 \mathrm{mmol}$) in aqueous hydrogen chloride ($1 \mathrm{M}, 793 \mu \mathrm{~L}$) was stirred at $65^{\circ} \mathrm{C}$ for 1 h . After cooling, saturated aqueous sodium hydrogen carbonate was added until pH 7 and the mixture was concentrated under reduced pressure. Chromatography of the residue $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} / 1 \%$
$\mathrm{Et}_{3} \mathrm{~N}$) gave the title compound $\mathbf{3}$ as a white solid ($35 \mathrm{mg}, 76 \%$), R_{f} 0.17 ($20 \% \mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$), m.p. $>228{ }^{\circ} \mathrm{C}$ (dec.) (Found: $\mathrm{M}^{+}+\mathrm{H}$, 484.2055. $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{9} \mathrm{O}_{5}$ requires $M, 484.2051$); $v_{\max } / \mathrm{cm}^{-1} 3336$, 3241, 3086, 2938, 1660, 1618, 1573, 1483, 1399, 1385, 1371, 1330, 1294 , 1283, 1232, 1226, 1192, 1136, 1099, 1050, 898, 851, 797, 745 and 732 ; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}\right.$, DMSO- d_{6}) 2.38 ($3 \mathrm{H}, \mathrm{s}, 7^{\prime \prime}-\mathrm{CH}_{3}$), 2.78 ($3 \mathrm{H}, \mathrm{d}, J$ $\left.4.8 \mathrm{~Hz}, \mathrm{NHCH}_{3}\right), 3.21\left[6 \mathrm{H}, \mathrm{s}, 2^{\prime \prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 4.21(1 \mathrm{H}, \mathrm{td}, J 4.3,1.3$ $\left.\mathrm{Hz}, 3^{\prime}-\mathrm{H}\right), 4.38\left(1 \mathrm{H}, \mathrm{d}, J 0.8 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right), 4.67(1 \mathrm{H}, \mathrm{td}, J 6.9,4.8 \mathrm{~Hz}$, $\left.2^{\prime}-\mathrm{H}\right), 4.80\left(2 \mathrm{H}\right.$, br. d, $\left.J 5.0 \mathrm{~Hz}, 5^{\prime \prime}-\mathrm{CH}_{2}\right), 5.67\left(1 \mathrm{H}, \mathrm{d}, J 6.3 \mathrm{~Hz}, 2^{\prime}-\right.$ $\mathrm{OH}), 5.84\left(1 \mathrm{H}, \mathrm{d}, J 4.3 \mathrm{~Hz}, 3^{\prime}-\mathrm{OH}\right), 6.05\left(1 \mathrm{H}, \mathrm{d}, J 7.6 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right)$, $6.81\left(1 \mathrm{H}, \mathrm{s}, 6^{\prime \prime}-\mathrm{H}\right), 8.35(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 8.47(1 \mathrm{H}$, br. t, $J 5.0 \mathrm{~Hz}, 6-$ $\mathrm{NH}), 8.53(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H})$ and $9.01(1 \mathrm{H}, \mathrm{q}, J 4.5 \mathrm{~Hz}, \mathrm{NHCO})$; $\delta_{\mathrm{C}}(100$ MHz, DMSO- d_{6}) 14.3, 25.3, 37.0, 44.6, 72.0, 73.1, 84.7, 87.8, 113.9, 120.1, 126.1, 139.3, 140.7, 148.1, 152.5, 153.0, 154.6, 157.2, 164.0 and 169.8; $\mathrm{m} / \mathrm{z}(\mathrm{ES}+) 506.2\left(\mathrm{M}^{+}+23,3 \%\right)$ and $484.3\left(\mathrm{M}^{+}+1,100\right)$.

5-tert-Butyldiphenylsilyloxymethyl-7-methyloxazolo[4,5-b]pyridine-2(3H)-thione (28)

Carbon disulfide ($0.468 \mathrm{~mL}, 7.7 \mathrm{mmol}$) was added to the aminopyridine 23 ($200 \mathrm{mg}, 0.509 \mathrm{mmol}$) and potassium hydroxide $(65 \mathrm{mg}, 1.16 \mathrm{mmol})$ in ethanol $(1.42 \mathrm{~mL})$ at rt and the mixture heated under reflux for 3 h then concentrated under reduced pressure. The residue was partitioned between aqueous hydrogen chloride ($5 \mathrm{M}, 10 \mathrm{~mL}$) and ethyl acetate ($4 \times 15 \mathrm{~mL}$), and the organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ then concentrated under reduced pressure to yield the title compound $\mathbf{2 8}$ a yellow solid ($184 \mathrm{mg}, 83$ $\%$), $\mathrm{R}_{f} 0.37$ ($50 \% \mathrm{Et}_{2} \mathrm{O} /$ light petroleum), m.p. $166.4-168.2{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}+\mathrm{H}, 435.1550 . \mathrm{C}_{24} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{SSi}$ requires M, 435.1557); $v_{\max } / \mathrm{cm}^{-1} 3070,2930,2857,1654,1613,1488,1449,1427,1391$, $1378,1289,1269,1180,1114,906,835,822,739$ and 701 ; δ н (300 $\left.\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.20\left[9 \mathrm{H}, \mathrm{s}, \mathrm{SiCCH}_{3}\right)_{3}\right], 2.53\left(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{CH}_{3}\right), 5.19(2$ $\left.\mathrm{H}, \mathrm{s}, 5-\mathrm{CH}_{2}\right), 7.36-7.51(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.71-7.77 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 15.3,19.6,27.3,66.5,117.7,128.1,130.2$, $130.8,133.2,135.9,140.8,145.7,156.6$ and $181.1 ; \mathrm{m} / \mathrm{z}$ (ES-) 433.5 $\left(\mathrm{M}^{+}-1,100 \%\right)$.

5-tert-Butyldiphenylsiloxymethyl-2-diethylamino-7methyloxazolo $[4,5-b]$ pyridine (30)

Thionyl chloride ($12.6 \mu \mathrm{~L}, 0.15 \mathrm{mmol}$) was added to a suspension of the thione $28(50 \mathrm{mg}, 0.1 \mathrm{mmol})$ and sodium carbonate $(18 \mathrm{mg}, 0.15$ $\mathrm{mmol})$ in benzene (0.13 mL) at $0^{\circ} \mathrm{C}$ and the reaction mixture warmed to $50^{\circ} \mathrm{C}$ for 3 h then allowed to cool to rt. Diethylamine (66 $\mu \mathrm{L}, 0.55 \mathrm{mmol}$) was added dropwise and the reaction mixture stirred at rt for 1 h . The mixture was partitioned between water $(10 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(4 \times 15 \mathrm{~mL})$. The organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ then concentrated under reduced pressure. Chromatography of the residue $\left(\mathrm{Et}_{2} \mathrm{O}\right.$ to $\left.10 \% \mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}\right)$ gave the title compound $\mathbf{3 0}$ as a pale oil which solidified upon storage ($37 \mathrm{mg}, 70 \%$), $\mathrm{R}_{f} 0.38\left(50 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ light petroleum), m.p. $90.3-91.6^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}+\mathrm{H}, 474.2567$. $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{~N}_{3} \mathrm{Si}$ requires $M, 474.2571$); $\nu_{\text {max }} / \mathrm{cm}^{-1} 3067$, 2959, 2929, 2890, 2855, 2355, 1655, 1565, 1461, 1445, 1427, 1389, 1361, 1138, $1112,1082,968,822$ and $700 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.19[9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.33\left(6 \mathrm{H}, \mathrm{t}, J 7.1 \mathrm{~Hz}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 2.49(3 \mathrm{H}, \mathrm{s}, 7-$ $\left.\mathrm{CH}_{3}\right), 3.65\left(4 \mathrm{H}, \mathrm{q}, J 7.1 \mathrm{~Hz}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 4.92\left(2 \mathrm{H}, \mathrm{s}, 5-\mathrm{CH}_{2}\right)$, $7.13(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 7.35-7.47(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.74-7.79 $(4 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$; $\delta \mathrm{c}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.7,15.3,19.6,27.2,43.2,67.0,113.7$, $126.5,128.0,129.9,133.8,135.8,140.0,155.5,157.8$ and $163.9 ; \mathrm{m} / \mathrm{z}$ $(\mathrm{ES}+) 947.6\left(2 \mathrm{M}^{+}+1,24 \%\right)$ and $474.4\left(\mathrm{M}^{+}+1,100\right)$.

2-Diethylamino-5-hydroxymethyl-7-methyloxazolo[4,5b]pyridine (31)

Tetrabutylammonium fluoride in tetrahydrofuran $(1 \mathrm{M}, 0.8 \mathrm{~mL}, 0.77$ $\mathrm{mmol})$ was added to the silyl ether $\mathbf{3 0}(303 \mathrm{mg}, 0.64 \mathrm{mmol})$ in tetrahydrofuran $(10.7 \mathrm{~mL})$ and the reaction mixture stirred for 1 h at
rt. After concentration under reduced pressure, the residue was partitioned between water (20 mL) and $\mathrm{Et}_{2} \mathrm{O}(4 \times 20 \mathrm{~mL})$. The organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concntrated under reduced pressure. Chromatography of the residue ($\mathrm{Et}_{2} \mathrm{O}$ to10 $\% \mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$) gave the title compound $\mathbf{3 1}$ as a pale oil ($139 \mathrm{mg}, 93 \%$), $\mathrm{R}_{f} 0.45$ (10 $\% \mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$) (Found: $\mathrm{M}^{+}+\mathrm{H}, 236.1396 . \mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~N}_{3}$ requires M, 236.1394); $v_{\max } / \mathrm{cm}^{-1} 3309,2974,2934,2360,2340,1650,1636$, $1570,1448,1388,1363,1205,1137,1071,968,876,778$, and 734; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.23\left(6 \mathrm{H}, \mathrm{t}, J 7.3 \mathrm{~Hz}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 2.32(3$ $\left.\mathrm{H}, \mathrm{s}, 7-\mathrm{CH}_{3}\right), 3.55\left(4 \mathrm{H}, \mathrm{q}, J 7.3 \mathrm{~Hz}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 4.61(2 \mathrm{H}, \mathrm{s}, 5-$ CH_{2}) and $6.57(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H})$; $\delta \mathrm{c}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.4,14.7$, 43.0 , 64.1, 113.7, 126.8, 139.8, 153.7, 157.3 and 163.6; m/z (ES+) 236.2 $\left(\mathrm{M}^{+}+1,100 \%\right)$.

N-(2-Diethylamino-7-methyloxazolo[4,5-b]pyridin-5-yl)methylN -tert-butoxcarbonyl 2-nitrophenylsulfonamide (33)

Di-isopropylazo dicarboxylate ($22 \mu \mathrm{~L}, 0.11 \mathrm{mmol}$) was added to the alcohol 31 ($20 \mathrm{mg}, 0.087 \mathrm{mmol}$), sulfonamide $\mathbf{3 2}$ ($39 \mathrm{mg}, 0.13$ mmol) and triphenylphosphine ($29 \mathrm{mg}, 0.11 \mathrm{mmol}$) in tetrahydrofuran $(2.2 \mathrm{~mL})$ at rt and the reaction mixture stirred for 16 h. After concentration under reduced presssure, chromatography of the residue $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ gave the title compound 33 as a pale oil $(44 \mathrm{mg}$, $98 \%), \mathrm{R}_{f} 0.24\left(\mathrm{Et}_{2} \mathrm{O}\right)$ (Found: $\mathrm{M}^{+}+\mathrm{H}, 520.1860 . \mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{7} \mathrm{~N}_{5} \mathrm{~S}$ requires M, 520.1860); $v_{\max } / \mathrm{cm}^{-1} 2979,1735,1652,1640,1565$, $1544,1365,1149$ and 1123 ; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.30[9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.33\left(6 \mathrm{H}, \mathrm{t}, J 7.2 \mathrm{~Hz}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 2.44(3 \mathrm{H}, \mathrm{s}, 7-$ $\left.\mathrm{CH}_{3}\right), 3.67\left(4 \mathrm{H}, \mathrm{q}, J 7.2 \mathrm{~Hz}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 5.11\left(2 \mathrm{H}, \mathrm{s}, 5-\mathrm{CH}_{2}\right)$, $6.87(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 7.76-7.84(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $8.52-8.60(1 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.7,15.1,28.0,43.2,52.5,85.2,114.1$, 124.6, 126.6, 132.1, 133.7, 133.9, 134.3, 140.1, 148.1, 150.8, 151.7, 158.1 and $164.0 ; \mathrm{m} / \mathrm{z}(\mathrm{ES}+) 1061.5\left(2 \mathrm{M}^{+}+23,80 \%\right), 542.3\left(\mathrm{M}^{+}+\right.$ $23,78)$ and $520.4\left(\mathrm{M}^{+}+1,100 \%\right)$.

N-(2-Diethylamino-7-methyloxazolo[4,5-b]pyridin-5-yl)methyl 2nitrobenzenesulfonamide (34)

Sulfonamide 33 ($102 \mathrm{mg}, 0.2 \mathrm{mmol}$) was dissolved in trifluoroacetic acid $(0.51 \mathrm{~mL})$ and the solution stirred at rt for 1 h . Ethyl acetate was added and the mixture was partitioned between saturated aqueous sodium bicarbonate (5 mL) and $\mathrm{Et}_{2} \mathrm{O}(5 \times 50 \mathrm{~mL})$. The organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue $\left(\mathrm{Et}_{2} \mathrm{O}\right.$ to 10% $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$) gave the title compound 34 as a pale yellow oil (64 $\mathrm{mg}, 79 \%) \mathrm{R}_{f} 0.1\left(\mathrm{Et}_{2} \mathrm{O}\right)$ (Found: $\mathrm{M}^{+}+\mathrm{H}, 420.1330 . \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~N}_{5} \mathrm{~S}$ requires M, 420.1336); $v_{\max } / \mathrm{cm}^{-1} 2978,2360,1655,1640,1568$, 1540, 1445, 1393, 1363, 1207, 1167, 1081, 970, 853, 785 and 734; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.32\left(6 \mathrm{H}, \mathrm{t}, J 7.2 \mathrm{~Hz}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 2.39(3$ $\left.\mathrm{H}, \mathrm{s}, 7-\mathrm{CH}_{3}\right), 3.64\left(4 \mathrm{H}, \mathrm{q}, J 7.2 \mathrm{~Hz}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 4.38(2 \mathrm{H}, \mathrm{d}, J$ $\left.2.7 \mathrm{~Hz}, 5-\mathrm{CH}_{2}\right), 6.41(1 \mathrm{H}$, br. t, $J 2.7 \mathrm{~Hz}, \mathrm{NH}), 6.72(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H})$, 7.63-7.71 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.85(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $8.10(1 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$; $\delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.6,14.9,43.3,48.8,115.9,125.5$, 126.7, 131.1, 132.6, 133.4, 134.1, 140.3, 149.4, 158.2 and $164.0 ; \mathrm{m} / \mathrm{z}$ $(\mathrm{ES}+) 839.4\left(2 \mathrm{M}^{+}+1,30 \%\right), 442.3\left(\mathrm{M}^{+}+23,37\right)$ and $420.3\left(\mathrm{M}^{+}+\right.$ $1,100)$.

5-Aminomethyl-2-diethylamino-7-methyloxazolo[4,5-b]pyridine (35)

Thiophenol ($17 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$) was added to a suspension of the sulfonamide $34(24 \mathrm{mg}, 0.084 \mathrm{mmol})$ and potassium carbonate (31 $\mathrm{mg}, 0.34 \mathrm{mmol})$ in acetonitrile $(0.95 \mathrm{~mL})$ at rt and the reaction mixture was stirred for 16 h . After concentration under reduced pressure, chromatography of the residue $\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ containing $1 \% \mathrm{NEt}_{3}$) gave the title compound $\mathbf{3 5}$ as a pale yellow oil ($12 \mathrm{mg}, 85 \%$), $\mathrm{R}_{f} 0.1$ ($10 \% \mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$) (Found: $\mathrm{M}^{+}+\mathrm{H}$, 235.1558. $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{ON} 4$ requires $M, 235.1553$); $v_{\max } / \mathrm{cm}^{-1} 3369,2976$,

1651, 1567, 1448, 1392, 1364, 1319, 1209, 1083, 1027, 877, 786 and 732 ; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.29\left(6 \mathrm{H}, \mathrm{t}, J 7.2 \mathrm{~Hz}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{3}\right)$, $2.38\left(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{CH}_{3}\right), 3.62\left(4 \mathrm{H}, \mathrm{q}, J 7.2 \mathrm{~Hz}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 4.22(2$ $\left.\mathrm{H}, \mathrm{s}, 5-\mathrm{CH}_{2}\right)$, $5.28\left(2 \mathrm{H}\right.$, br. s, $\left.\mathrm{NH}_{2}\right)$ and $6.77(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H})$; $\delta_{\mathrm{c}}(75$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 13.6, 14.9, 43.3, 47.0, 115.2, 126.7, 140.0, 155.0, 158.2 and 163.8; $\mathrm{m} / \mathrm{z}(\mathrm{ES}+) 257.2\left(\mathrm{M}^{+}+23,52 \%\right)$ and $235.2\left(\mathrm{M}^{+}+\right.$ $1,100)$.

1'-[6-(2-Diethylamino-7-methyloxazolo[4,5-b]pyridin-5-ylmethylamino)-9H-purin-9-yl]-1'-deoxy- N-methyl- β-Dribofuranuronamide (37)

The chloropurine $\mathbf{4}(17 \mathrm{mg}, 0.049 \mathrm{mmol})$ was added to the amine 35 $(12 \mathrm{mg}, 0.049 \mathrm{mmol})$ and triethylamine ($13.7 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) in ethanol (0.5 mL) and the reaction mixture heated under reflux for 16 h. Concentration by distillation under reduced pressure gave the $2^{\prime}, 3^{\prime}-\mathrm{O}$-isopropylidene-1-deoxy- N -methyl- β-D-ribofuranuronamide 36 as an oil ($15 \mathrm{mg}, 55 \%$), $\mathrm{R}_{f} 0.41$ ($10 \% \mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$) (Found: M^{+} $+\mathrm{H}, 552.2684$. $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{9} \mathrm{O}_{5}$ requires $M, 552.2677$); $\delta_{\mathrm{H}}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.24\left(6 \mathrm{H}, \mathrm{t}, J 7.0 \mathrm{~Hz}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.32$ and 1.54 (each 3 $\left.\mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.31\left(3 \mathrm{H}, \mathrm{s}, 7^{\prime \prime}-\mathrm{CH}_{3}\right), 2.53\left(3 \mathrm{H}, \mathrm{d}, J 3.0 \mathrm{~Hz}, \mathrm{NHCH}_{3}\right)$, $3.55\left(4 \mathrm{H}, \mathrm{q}, J 7.0 \mathrm{~Hz}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 4.62\left(1 \mathrm{H}, \mathrm{s}, 4^{\prime}-\mathrm{H}\right), 4.80(2 \mathrm{H}$, $\left.\mathrm{m}, 5^{\prime \prime}-\mathrm{CH}_{2}\right), 5.28\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right.$ and $\left.3^{\prime}-\mathrm{H}\right), 5.98\left(1 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{H}\right), 6.69$ ($\left.1 \mathrm{H}, \mathrm{s}, 6^{\prime \prime}-\mathrm{H}\right), 7.10(1 \mathrm{H}$, br. s, $6-\mathrm{NH}), 7.22\left(1 \mathrm{H}\right.$, br. s, $\left.\mathrm{NHCH}_{3}\right)$, $7.73(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and $8.27(1 \mathrm{H}$, br. s, $8-\mathrm{H})$; $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 13.4, 14.7, 25.1, 25.6, 27.1, 30.3, 43.1, 45.3, 82.5, 83.7, 85.8, 92.1, $114.4,115.4,120.8,126.6,139.3,140.0,151.0,153.2,154.9,157.9$, 163.6 and $169.5 ; \mathrm{m} / \mathrm{z}(\mathrm{ES}+) 574.4\left(\left(\mathrm{M}^{+}+23,100 \%\right)\right.$ and 552.7 (20). This was immediately dissolved in aqueous hydrogen chloride (1 M , 1.5 mL) and the mixture stirred at $65^{\circ} \mathrm{C}$ for 1 h . The mixture was neutralised to pH 7 using saturated aqueous sodium hydrogen carbonate then concentrated under reduced pressure. Chromatography of the residue $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $\left.20 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ gave the title compound $\mathbf{3 7}$ as a white solid ($12 \mathrm{mg}, 46 \%$), $\mathrm{R}_{f} 0.1$ (20 \% MeOH/DCM) (Found: $\mathrm{M}^{+}+\mathrm{H}, 512.2373 . \mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{~N}_{9}$ requires $M, 512.2364)$; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}\right.$, DMSO- d_{6}) $1.23(6 \mathrm{H}, \mathrm{t}, J 6.9$ $\left.\mathrm{Hz}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 2.33\left(3 \mathrm{H}, \mathrm{s}, 7^{\prime \prime}-\mathrm{CH}_{3}\right), 2.73(3 \mathrm{H}, \mathrm{d}, J 4.4 \mathrm{~Hz}$, $\left.\mathrm{NHCH}_{3}\right), 3.57\left(4 \mathrm{H}, \mathrm{q}, J 6.9 \mathrm{~Hz}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 4.16\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right)$, $4.33\left(1 \mathrm{H}, \mathrm{s}, 4^{\prime}-\mathrm{H}\right), 4.62\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 4.74\left(2 \mathrm{H}, \mathrm{d}, J 4.7 \mathrm{~Hz}, 5^{\prime \prime}-\right.$ $\left.\mathrm{CH}_{2}\right), 5.61\left(1 \mathrm{H}, \mathrm{d}, J 6.3 \mathrm{~Hz}, 2^{\prime}-\mathrm{OH}\right), 5.78\left(1 \mathrm{H}, \mathrm{d}, J 4.4 \mathrm{~Hz}, 3^{\prime}-\mathrm{OH}\right)$, $6.00\left(1 \mathrm{H}, \mathrm{d}, J 7.5 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 6.76\left(1 \mathrm{H}, \mathrm{s}, 6^{\prime \prime}-\mathrm{H}\right), 8.30(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$, $8.42(1 \mathrm{H}, \mathrm{br}$ s, $6-\mathrm{NH}), 8.47(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H})$ and $8.96(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{NHCH}_{3}\right) ; m / z(\mathrm{ES}+) 533.8\left(\mathrm{M}^{+}+23,85 \%\right)$ and $512.2\left(\mathrm{M}^{+}+1,100\right)$.

(\pm)-5-[(E)-tert-Butylsulfinyliminomethyl]-2-dimethylamino-7-methyloxazolo[4,5-b]pyridine (40)

Dess-Martin periodinane ($399 \mathrm{mg}, 0.94 \mathrm{mmol}$) was added to the alcohol $25(130 \mathrm{mg}, 0.63 \mathrm{mmol})$ in dichloromethane $(4.5 \mathrm{~mL})$ and the solution stirred for 20 min at rt . The reaction mixture was concentrated under reduced pressure to give an oil, $\mathrm{R}_{f} 0.36$ (10 \% $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$), that was dissolved in dichloromethane (1.6 mL). Anhydrous copper sulphate ($200 \mathrm{mg}, 1.25 \mathrm{mmol}$) and racemic tertbutanesulfinamide ($84 \mathrm{mg}, 0.69 \mathrm{mmol}$) were added and the mixture was stirred at rt for 16 h . The reaction mixture was then filtered and the filtrate concentrated under reduced pressure. Chromatography of the residue $\left(0.5 \%\right.$ to $\left.2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ gave the title compound $\mathbf{4 0}$ as a pale oil ($135 \mathrm{mg}, 70 \%$), $\mathrm{R}_{f} 0.43\left(10 \% \mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}\right)$ (Found: $\mathrm{M}^{+}+\mathrm{Na}, 331.1195 . \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~N}_{4} \mathrm{NaS}$ requires $M, 331.1199$); $\nu_{\text {max }} / \mathrm{cm}^{-1} 2927,1664,1600,1558,1430,1393,1285,1188,1138$, $1085,891,772$ and $732 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.21[9 \mathrm{H}, \mathrm{s}$, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$], $2.40\left(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{CH}_{3}\right), 3.21\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{NCH}_{3}\right), 7.47(1 \mathrm{H}$, $\mathrm{s}, 6-\mathrm{H})$ and $8.57(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{CH})$; $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.7,22.1$, 22.7, 57.8, 118.7, 126.4, 142.7, 147.6, 158.6 and 164.0; m/z (ES+) $331\left(\mathrm{M}^{+}+23,100 \%\right)$.

(\pm)-5-[(E)-tert-Butylsulfinyliminomethyl]-2-diethylamino-7-methyl-oxazolo[4,5-b]pyridine (41)

Following the procedure outlined for the synthesis of imine 40, alcohol $31(116 \mathrm{mg}, 0.5 \mathrm{mmol})$ in dichloromethane $(3.5 \mathrm{~mL})$ and the Dess-Martin periodinane ($315 \mathrm{mg}, 0.74 \mathrm{mmol}$) gave the aldehyde 39, $\mathrm{R}_{f} 0.510 \% \mathrm{MeOH}$. This aldehyde without purification, in dichloromethane (1.24 mL), anhydrous copper sulphate (158 mg , 0.99 mmol) and racemic tert-butanesulfinamide ($66 \mathrm{mg}, 0.54 \mathrm{mmol}$), after chromatography $\left(0.5 \%\right.$ to $\left.2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ gave the title compound 41 as a pale yellow oil $(150 \mathrm{mg}, 90 \%), \mathrm{R}_{f} 0.57(10 \%$ $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$) (Found: $\mathrm{M}^{+}+\mathrm{H}, 337.1704 \mathrm{C}_{16} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{~N}_{4} \mathrm{~S}$ requires M, 337.1693); $v_{\max } / \mathrm{cm}^{-1} 3434,2971,2361,1647,1601,1553,1450$, 1393, 1210, 1138, 1084, 872 and $769 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.21$ [9 $\left.\mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.24\left(6 \mathrm{H}, \mathrm{t}, J 7.2 \mathrm{~Hz}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 2.40(3 \mathrm{H}, \mathrm{s}$, $\left.7-\mathrm{CH}_{3}\right), 3.58\left(4 \mathrm{H}, \mathrm{q}, J 7.2 \mathrm{~Hz}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 7.45(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H})$ and $8.56(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{CH}) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.6,15.0,22.9,43.4$, 58.1, 118.8, 126.5, 142.7, 147.7, 158.9 and 164.2; m/z (ES+) 337.2 $\left(\mathrm{M}^{+}+1,100 \%\right)$.

5-\{(RS)-1-[(RS)-tert-Butylsulfinylamino]ethyl\}-2-dimethylamino-7-methyloxazolo[4,5-b]pyridine (42)

Methylmagnesium bromide in ether ($3 \mathrm{M}, 0.51 \mathrm{~mL}, 1.6 \mathrm{mmol}$) was added dropwise to the sulfinimine $40(132 \mathrm{mg}, 0.43 \mathrm{mmol})$ in tetrahydrofuran $(4.3 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h and then saturated aqueous ammonium chloride (5 $\mathrm{mL})$ was added. The mixture was extracted with ethyl acetate $(6 \times 5$ $\mathrm{mL})$ and the organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $4 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave the title compound $\mathbf{4 2}$ as a pale oil (119 $\mathrm{mg}, 76 \%$), $\mathrm{R}_{f} 0.1$ (EtOAc) (Found: $\mathrm{M}^{+}+\mathrm{H}, 325.1691 . \mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{~N}_{4} \mathrm{~S}$ requires $M, 325.1693$); $v_{\max } / \mathrm{cm}^{-1} 3234,2927,1667,1570,1430$, $1389,1290,1190,1145,1063$ and $894 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.16$ [$9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$], $1.42\left(3 \mathrm{H}, \mathrm{d}, J 6.6 \mathrm{~Hz}, 5-\mathrm{CHCH}_{3}\right), 2.31(3 \mathrm{H}, \mathrm{s}, 7-$ $\left.\mathrm{CH}_{3}\right), 3.16\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{NCH}_{3}\right), 4.42(1 \mathrm{H}$, quin, $J 6.6 \mathrm{~Hz}, 5-\mathrm{CH})$, $4.51(1 \mathrm{H}, \mathrm{d}, J 6.3 \mathrm{~Hz}, \mathrm{NH})$ and $6.64(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$, CDCl_{3}) 15.0, 22.4, 23.0, 24.2, 37.7, 56.4, 115.2, 126.9, 140.4, 157.4, 158.0 and $164.7 ; \mathrm{m} / \mathrm{z}(\mathrm{ES}+) 325\left(\mathrm{M}^{+}+1,100 \%\right)$.

5-\{(RS)-1-[(RS)-tert-Butylsulfinylamino]ethyl\}-2-diethylamino-7-methyloxazolo[4,5-b]pyridine (43)

Following the procedure outlined for the synthesis of amine 42, the sulfinimine $41(150 \mathrm{mg}, 0.45 \mathrm{mmol})$ in tetrahydrofuran (4.45 mL) and methylmagnesium bromide in ether ($3 \mathrm{M}, 0.53 \mathrm{~mL}, 1.6 \mathrm{mmol}$), after chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $\left.4 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, gave the title compound 43 as a pale yellow oil ($119 \mathrm{mg}, 76 \%$), $\mathrm{R}_{f} 0.1$ (EtOAc) (Found: $\mathrm{M}^{+}+\mathrm{Na}, 375.1834 . \mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{~N}_{4} \mathrm{NaS}$ requires M, 375.1825); $v_{\max } / \mathrm{cm}^{-1} 2974,1654,1565,1388$ and 1069 ; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $1.15\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.22\left(6 \mathrm{H}, \mathrm{t}, J 7.2 \mathrm{~Hz}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.43$ $\left(3 \mathrm{H}, \mathrm{d}, J 6.6 \mathrm{~Hz}, 5-\mathrm{CHCH}_{3}\right), 2.31\left(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{CH}_{3}\right), 3.55(4 \mathrm{H}, \mathrm{q}, J$ $\left.7.2 \mathrm{~Hz}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 4.40(1 \mathrm{H}$, quin, $J 6.7 \mathrm{~Hz}, 5-\mathrm{CH}), 4.49(1 \mathrm{H}$, $\mathrm{d}, J 6.9 \mathrm{~Hz}, \mathrm{NH})$ and $6.62(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}) ; \delta_{\mathrm{c}} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $12.4,13.7,21.7,22.9,42.0,54.6,55.4,113.7,125.4,138.9,156.0$, 156.9 and $162.6 ; \mathrm{m} / \mathrm{z}(\mathrm{ES}+) 374.9\left(\mathrm{M}^{+}+23,100 \%\right)$.

(\pm)-5-(1-Aminoethyl)-2-dimethylamino-7-methyloxazolo[4,5b]pyridine (44)

Hydrogen chloride in dioxane ($4 \mathrm{M}, 0.61 \mathrm{~mL}, 2.4 \mathrm{mmol}$) was added to the sulfinamide $42(132 \mathrm{mg}, 0.407 \mathrm{mmol})$ in $\mathrm{MeOH}(4.1 \mathrm{~mL})$ and the reaction mixture was stirred at rt for 30 min . Saturated aqueous sodium bicarbonate was added until the mixture was basic. After concentration under reduced pressure, chromatography of the residue $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ with $\left.0.5 \% \mathrm{NEt}_{3}\right)$ gave the title compound 44 as a pale waxy solid ($74 \mathrm{mg}, 83 \%$), $\mathrm{R}_{f} 0.3$ (10 \%/
$\mathrm{MeOH} / \mathrm{DCM}$) (Found: $\mathrm{M}^{+}+\mathrm{H}$, 221.1397. $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{ON}_{4}$ requires M, 221.1397); $v_{\max } / \mathrm{cm}^{-1} 3365,2920,2361,1659,1572,1431,1392,896$ and $734 ; \delta_{\mathrm{H}}\left(300 \mathrm{Mz}, \mathrm{CDCl}_{3}\right) 1.49\left(3 \mathrm{H}, \mathrm{d}, J 6.6 \mathrm{~Hz}, 5-\mathrm{CHCH}_{3}\right)$, $2.41\left(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{CH}_{3}\right), 3.01\left(2 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{NH}_{2}\right), 3.27\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{NCH}_{3}\right)$, $4.15(1 \mathrm{H}$, br. q, $J 6.7 \mathrm{~Hz}, 5-\mathrm{CH})$ and $6.72(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$ CDCl_{3}) 15.0, 24.5, 37.7, 52.4, 114.4, 126.8, 140.2, 157.9, 159.8 and $164.6 ; m / z(\mathrm{ES}+) 441.5\left(2 \mathrm{M}^{+}+1,16 \%\right)$ and $221.1\left(\mathrm{M}^{+}+1,100\right)$.

(\pm)-5-(1-Aminoethyl)-2-diethylamino-7-methyloxazolo[4,5b]pyridine (45)

Following the procedure outlined for the synthesis of amine 44, sulfinamide 43 ($110 \mathrm{mg}, 0.313 \mathrm{mmol}$) in $\mathrm{MeOH}(3.1 \mathrm{~mL})$ and hydrogen chloride in dioxane ($4 \mathrm{M}, 0.47 \mathrm{~mL}, 1.88 \mathrm{mmol}$), after chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ with $\left.0.5 \% \mathrm{NEt}_{3}\right)$ gave the title compound $\mathbf{4 5}$ as a pale oil ($64 \mathrm{mg}, 82 \%$), $\mathrm{R}_{f} 0.2(10 \% /$ $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) (Found: $\mathrm{M}^{+}+\mathrm{H}, 249.1705 . \mathrm{C}_{13} \mathrm{H}_{21} \mathrm{ON}_{4}$ requires M, 249.1710); $v_{\max } / \mathrm{cm}^{-1} 3356,2973,1652,1565,1447,1387$ and 1081; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.21\left(6 \mathrm{H}, \mathrm{t}, J 7.1 \mathrm{~Hz}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.41$ (3 $\left.\mathrm{H}, \mathrm{d}, J 6.6 \mathrm{~Hz}, 5-\mathrm{CHCH}_{3}\right), 2.32\left(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{CH}_{3}\right), 3.12(2 \mathrm{H}$, br. s, $\left.\mathrm{NH}_{2}\right), 3.55\left(4 \mathrm{H}, \mathrm{q}, J 7.1 \mathrm{~Hz}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 4.08(1 \mathrm{H}$, br. q, $J 6.3$ $\mathrm{Hz}, 5-\mathrm{CH})$ and $6.61(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H})$; $\delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.4,14.7$, 24.7, 42.9, 52.3, 113.7, 126.2, 139.5, 157.9, 160.5 and $163.6 ; \mathrm{m} / \mathrm{z}$ (ES+) $249\left(\mathrm{M}^{+}+1,100 \%\right)$.

1'-\{6-[(RS)-1-(2-Dimethylamino-7-methyloxazolo[4,5-b]pyridin-5-yl)ethylamino]-9H-purin-9-yl\}-1'-deoxy- N-methyl- β-Dribofuranuronamide (48)

The chloropurine $4(111 \mathrm{mg}, 0.313 \mathrm{mmol})$ was added to the amine $44(69 \mathrm{mg}, 0.313 \mathrm{mmol})$ and triethylamine ($87 \mu \mathrm{~L}, 0.626 \mathrm{mmol}$) in ethanol (3.1 mL) and the reaction mixture was stirred under reflux for 16 h . Concentration under reduced pressure gave $2^{\prime}, 3^{\prime}-O-$ isopropylidene-1'-deoxy- N-methyl- β-D-ribofuranuronamide 46 as a pale oil, $\mathrm{R}_{f} 0.38$ ($20 \% \mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$) (Found: $\mathrm{M}^{+}+\mathrm{H}, 538.2523$. $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{9} \mathrm{O}_{5}$ requires $M, 538.2521$); m/z (ES+) $538.1\left(\mathrm{M}^{+}+1,100\right.$ $\%$). This was immediately dissolved in aqueous hydrogen chloride (1 $\mathrm{M}, 1.5 \mathrm{~mL}$). The reaction mixture stirred at $65{ }^{\circ} \mathrm{C}$ for 1 h and saturated aqueous sodium bicarbonate was added until the reaction mixture was neutral. After concentration under reduced pressure, chromatography of the residue $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $\left.20 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ gave the title compound 48 as a white solid ($77 \mathrm{mg}, 50 \%$), $\mathrm{R}_{f} 0.6(20 \%$ $\mathrm{MeOH} / \mathrm{DCM}$), m.p. $171-173{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}+\mathrm{H}, 498.2206$. $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{~N}_{9}$ requires $M, 498.2208$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}\right.$, DMSO- d_{6}) 1.55 ($3 \mathrm{H}, \mathrm{d}, J 6.9 \mathrm{~Hz}, 5^{\prime \prime}-\mathrm{CHCH}_{3}$), $2.35\left(3 \mathrm{H}, \mathrm{s}, 7^{\prime \prime}-\mathrm{CH}_{3}\right), 2.71(3 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{NHCH}_{3}\right), 3.17\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{NCH}_{3}\right), 4.16\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 4.32(1 \mathrm{H}, \mathrm{s}$, $\left.4^{\prime}-\mathrm{H}\right), 4.61\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 5.47\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime \prime}-\mathrm{CH}\right), 5.54(1 \mathrm{H}, \mathrm{br} . \mathrm{d}, J$ $\left.6.0 \mathrm{~Hz}, 2^{\prime}-\mathrm{OH}\right), 5.72\left(1 \mathrm{H}, \mathrm{d}, J 4.5 \mathrm{~Hz}, 3^{\prime}-\mathrm{OH}\right), 5.98(1 \mathrm{H}, \mathrm{d}, J 7.3$ $\left.\mathrm{Hz}, 1^{\prime}-\mathrm{H}\right), 6.91\left(1 \mathrm{H}, \mathrm{s}, 6^{\prime \prime}-\mathrm{H}\right), 8.10(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{NH}), 8.29(1 \mathrm{H}, \mathrm{s}, 2-$ H), $8.46(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}), 8.87\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{ES}+) 995.5\left(2 \mathrm{M}^{+}\right.$ $+1,17 \%)$ and $498.4\left(\mathrm{M}^{+}+1,100\right)$.

1'-\{6-[(RS)-1-(2-Diethylamino-7-methyloxazolo[4,5-b]pyridin-5-yl)ethylamino]-9H-purin-9-yl\}-1'-deoxy- N-methyl- β-Dribofuranuronamide (49)
Following the procedure outlined for the synthesis of the adenosine uronamide 48 , the amine 45 ($64 \mathrm{mg}, 0.258 \mathrm{mmol}$) and triethylamine $(72 \mu \mathrm{~L}, 0.52 \mathrm{mmol})$ in ethanol $(2.6 \mathrm{~mL})$ together with the chloropurine $4(92 \mathrm{mg}, \quad 0.258 \mathrm{mmol})$ gave the $2^{\prime}, 3^{\prime}-O-$ isopropylidene-1-deoxy- N-methyl- β-D-ribofuranuronamide 47 as a pale oil ($120 \mathrm{mg}, 82 \%$), $\mathrm{R}_{f} 0.25$ ($10 \% \mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$) (Found: $\mathrm{M}^{+}+$ $\mathrm{Na}, 588.2645$. $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{9} \mathrm{O}_{5} \mathrm{Na}$ requires M, 588.2653); $v_{\max } / \mathrm{cm}^{-1}$ $3348,2977,1654,1613,1565,1381,1213,1088,871,756$ and 733 ; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.25\left(6 \mathrm{H}, \mathrm{t}, J 7.0 \mathrm{~Hz}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.30$ and 1.54 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), $1.54\left(3 \mathrm{H}, \mathrm{d}, J 4.5 \mathrm{~Hz}, 5^{\prime \prime}-\mathrm{CHCH}_{3}\right), 2.33$
($3 \mathrm{H}, \mathrm{s}, 7^{\prime \prime}-\mathrm{CH}_{3}$), $2.57\left(3 \mathrm{H}\right.$, narrow $\left.\mathrm{m}, \mathrm{NHCH}_{3}\right), 3.57(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{x}$ $\left.\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 4.61\left(1 \mathrm{H}, \mathrm{s}, 4^{\prime}-\mathrm{H}\right), 5.24\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right.$ and $\left.3^{\prime}-\mathrm{H}\right), 5.44(1$ $\left.\mathrm{H}, \mathrm{m}, 5^{\prime \prime}-\mathrm{H}\right), 5.95\left(1 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{H}\right), 6.69\left(1 \mathrm{H}, \mathrm{s}, 6^{\prime \prime}-\mathrm{H}\right), 7.01$ and 7.22 (each $1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 7.69(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and $8.23(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H})$; $\delta_{\mathrm{c}}(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.6,15.0,23.1,25.4,25.8,27.4,43.3,51.0,82.7$, $83.9,85.9,92.3,114.7,115.1,126.8,139.3,140.2,153.4,154.4$, 156.1, 158.2, 163.9 and $169.8 ; \mathrm{m} / \mathrm{z}(\mathrm{ES}+) 588.5\left(\mathrm{M}^{+}+23,100 \%\right)$. This residue with aqueous hydrogen chloride ($1 \mathrm{M}, 1.5 \mathrm{~mL}$) as before, after chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $\left.20 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ gave the title compound $\mathbf{4 9}$ as a white solid ($80 \mathrm{mg}, 60 \%$), $\mathrm{R}_{f} 0.58(20 \%$ $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$), m.p. $143-146{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}+\mathrm{H}, 526.2532$. $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{~N}_{9}$ requires $M, 526.2521$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) 1.28$ $\left(6 \mathrm{H}, \mathrm{t}, J 7.1,2 \times \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.60\left(3 \mathrm{H}, \mathrm{d}, J 6.9,5^{\prime \prime}-\mathrm{CHCH}_{3}\right), 2.39$ ($3 \mathrm{H}, \mathrm{s}, 7^{\prime \prime}-\mathrm{CH}_{3}$), $2.77\left(1.2 \mathrm{H}, \mathrm{d}, J 4.5 \mathrm{~Hz}, \mathrm{NHCH}_{3}\right), 2.78(1.8 \mathrm{H}, \mathrm{d}, J$ $\left.4.4 \mathrm{~Hz}, \mathrm{NHCH}_{3}\right), 3.62\left(4 \mathrm{H}, \mathrm{q}, J 7.1 \mathrm{~Hz}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 4.21(1 \mathrm{H}$, s, $\left.3^{\prime}-\mathrm{H}\right), 4.38\left(1 \mathrm{H}, \mathrm{s}, 4^{\prime}-\mathrm{H}\right), 4.66\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 5.51\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime \prime}-\right.$ $\left.\mathrm{CHCH}_{3}\right), 5.64\left(1 \mathrm{H}, \mathrm{d}, J 6.0 \mathrm{~Hz}, 2^{\prime}-\mathrm{OH}\right), 5.81\left(1 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{OH}\right), 6.04$ $\left(1 \mathrm{H}, \mathrm{d}, J 7.6,1^{\prime}-\mathrm{H}\right), 6.95\left(1 \mathrm{H}, \mathrm{s}, 6^{\prime \prime}-\mathrm{H}\right), 8.10(1 \mathrm{H}, \mathrm{d}, J 6.9 \mathrm{~Hz}, 6-$ NH), $8.35(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 8.53(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}), 8.95(0.4 \mathrm{H}, \mathrm{q}, J 4.5 \mathrm{~Hz}$, $\left.\mathrm{NHCH}_{3}\right)$ and $8.97(0.6 \mathrm{H}, \mathrm{q}, J 4.4 \mathrm{~Hz}, \mathrm{NHCH}) ; m / z(\mathrm{ES}+) 526\left(\mathrm{M}^{+}\right.$ $+1,100 \%$).

1,3-Dihydroxy-4-iodo-2-nitrobenzene (55) ${ }^{24}$

N-Iodosuccinimide ($3.16 \mathrm{~g}, 12.9 \mathrm{mmol}$) was added slowly to the nitroresorcinol $52(2.00 \mathrm{~g}, 12.9 \mathrm{mmol})$ in trifluoroacetic acid (50 mL , 0.65 mol) at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred at rt for 16 h , then poured onto ice water $(30 \mathrm{~mL})$. The mixture was extracted with toluene ($3 \times 10 \mathrm{~mL}$) and the organic extracts were washed with saturated sodium bisulphite, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to give the title compound $55(3.60 \mathrm{~g}, 100 \%)$ as an orange solid, $\mathrm{R}_{f} 0.57$ ($20 \% \mathrm{EtOAc} /$ light petroleum), m.p. 140-148 ${ }^{\circ} \mathrm{C}$; (Found: $\mathrm{M}^{+}-\mathrm{H}, 279.9112$. $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NO}_{4} \mathrm{I}$ requires M, 279.9112); $\delta \mathrm{H}$ (300 MHz, DMSO- d_{6}) $6.43(1 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.63(1 \mathrm{H}, \mathrm{d}, J$ $9.0 \mathrm{~Hz}, 5-\mathrm{H}), 10.50(1 \mathrm{H}$, br. s, $1-\mathrm{OH})$ and $11.01(1 \mathrm{H}$, br. s, $3-\mathrm{OH})$; $\mathrm{m} / \mathrm{z}(\mathrm{ES}-) 280\left(\mathrm{M}^{+}-1,100 \%\right)$.

1-Iodo-2,4-bis(methoxymethoxy)-3-nitrobenzene (56) ${ }^{24}$

N, N-Di-isopropylethylamine ($16.0 \mathrm{~mL}, 0.092 \mathrm{~mol}$) and chloromethyl methyl ether ($6.51 \mathrm{~mL}, 0.086 \mathrm{~mol}$) were added sequentially at $0^{\circ} \mathrm{C}$ to the resorcinol $55(8.60 \mathrm{~g}, 0.031 \mathrm{~mol})$ in N, N-dimethylformamide $(100 \mathrm{~mL})$ and the reaction mixture stirred at rt for 1.5 h . Brine (250 $\mathrm{mL})$ was added and the mixture was extracted with ether (3×250 mL). The organic extracts were washed with aqueous sodium hydroxide $(2 \mathrm{M}, 3 \times 200 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to give the title compound 56 ($10.9 \mathrm{~g}, 96 \%$) as a yellow solid, $\mathrm{R}_{f} 0.37$ ($20 \% \mathrm{EtOAc} /$ light petroleum), m.p. 82 $84{ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.41$ and 3.47 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), 5.06 and 5.15 (each $2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}$), $6.82(1 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}, 5-\mathrm{H})$ and $7.72(1 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}, 6-\mathrm{H})$; $\delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 56.8,58.1,82.2$, $95.2,101.0,113.9,138.3,140.5,149.6$ and $149.7 ; \mathrm{m} / \mathrm{z}$ (ES+) 391.8 $\left(\mathrm{M}^{+}+23,100 \%\right)$.

Methyl 2-hydroxy-4-methoxymethoxy-3-nitrobenzoate (57) ${ }^{24}$

 1,3,5,7-Tetramethyl-2,4,8-trioxa-6-phenyl-6-phospha-adamantane ($79 \mathrm{mg}, 0.27 \mathrm{mmol}$), palladium(II) acetate ($61 \mathrm{mg}, 0.27 \mathrm{mmol}$) and caesium carbonate ($264 \mathrm{mg}, 0.81 \mathrm{mmol}$) were added to the iodide $\mathbf{5 6}$ ($200 \mathrm{mg}, 0.542 \mathrm{mmol}$) in methanol $(3.6 \mathrm{~mL}$) and the reaction mixture de-gassed, then stirred at $60{ }^{\circ} \mathrm{C}$ under an atmosphere of carbon monoxide for 16 h . Saturated aqueous ammonium chloride (5 $\mathrm{mL})$ was added and the mixture extracted with ethyl acetate (3×5 $\mathrm{mL})$. The organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue (10% EtOAc/light petroleum) gave the title compound 57 ($130 \mathrm{mg}, 94 \%$) as a white solid, $\mathrm{R}_{f} 0.2(20 \% \mathrm{EtOAc} / \mathrm{light}$ petroleum), mp 124-125${ }^{\circ} \mathrm{C}$; (Found: $\mathrm{M}^{+}-\mathrm{H}, 256.0464 . \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NO}_{7}$ requires M, 256.0452); $\left.\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OCH}\right)_{3}\right), 3.90(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 5.22\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.71(1 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}, 5-\mathrm{H}), 7.81(1 \mathrm{H}$, d, $J 9.0 \mathrm{~Hz}, 6-\mathrm{H})$ and $11.32(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $52.8,56.9,94.8,105.8,107.6,131.5,132.4,154.0,154.5$ and 169.4; $m / z(\mathrm{ES}-) 256\left(\mathrm{M}^{+}-1,100 \%\right)$.

Methyl 5-bromo-2,4-dihydroxy-3-nitrobenzoate (58)

Bromine ($0.22 \mathrm{~mL}, 0.0043 \mathrm{~mol}$) was added dropwise to the ester $\mathbf{5 7}$ $(1.09 \mathrm{~g}, 4.24 \mathrm{mmol})$ in chloroform $(50 \mathrm{~mL})$ and the reaction mixture stirred at rt for 48 h . The mixture was then washed with saturated aqueous sodium bisulphite (50 mL) and water $(2 \times 50 \mathrm{~mL})$ then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Recrystallisation of the residue from light petroleum/ethyl acetate gave the title compound $58(0.99 \mathrm{~g}, 83 \%)$ as a yellow crystalline solid, R_{f} 0.23 (20 \% EtOAc/light petroleum); m.p. $137{ }^{\circ} \mathrm{C}$ (Found: C, 33.09; $\mathrm{H}, 1.61 ; \mathrm{N}, 4.81$; $\mathrm{Br}, 27.21 . \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{NO}_{6} \mathrm{Br}$ requires $\mathrm{C}, 32.90 ; \mathrm{H}, 2.07$; $\mathrm{N}, 4.80$; Br. 27.36: Found: $\mathrm{M}^{+}-\mathrm{H}, 289.9297 . \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{NO}_{6}{ }^{79} \mathrm{Br}$ requires $M, 289.9305) ; \nu_{\max } / \mathrm{cm}^{-1} 3080,2957,1670,1584,1533,1436,1339$, $1253,1138,966,895,818,793$ and 775 ; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.93$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}$), $8.20(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 11.37(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{OH})$ and 12.64 $(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{OH}) ; \delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 53.3,101.0,106.6,126.1$, 139.2, 157.1, 158.9 and $169.0 ; \mathrm{m} / \mathrm{z}(\mathrm{ES}-) 292\left(\mathrm{M}^{+}-1,70 \%\right), 290$ $\left(\mathrm{M}^{+}-1,63\right), 260$ (100) and 258 (98).

Methyl 3-amino-5-bromo-2,4-dihydroxybenzoate (59)

Concentrated acetic acid (0.8 mL) and zinc ($67 \mathrm{mg}, 1.02 \mathrm{mmol}$) were added sequentially to the nitro compound $58(50.0 \mathrm{mg}, 0.171 \mathrm{mmol})$ in methanol $(3.3 \mathrm{~mL})$ and the resulting mixture was stirred at rt for 2 min . After filtering through a plug of silica, the filtrate was diluted with water $(5 \mathrm{~mL})$ and brine $(5 \mathrm{~mL})$ then extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$. The organic extracts were washed with saturated aqueous sodium bicarbonate (5 mL) and water (5 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The residue was chromatographed ($10 \% \mathrm{EtOAc}$ in light petroleum) to give the title compound 59 ($44 \mathrm{mg}, 98 \%$) as a white solid, $\mathrm{R}_{f} 0.37$ (30% EtOAc/light petroleum), m.p. $160{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}-\mathrm{H}, 261.9530$. $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{4}{ }^{81} \mathrm{Br}$ requires M, 261.9543); $v_{\text {max }} / \mathrm{cm}^{-1} 3181$, 2949, 2916, 2848, 1666, 1623, 1548, 1522, 1430, 1340, 1256, 1200, 1150, 1089, $1015,981,890,796$ and 778 ; $\delta \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.85(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 7.38(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H})$ and $10.79(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \mathrm{m} / \mathrm{z}(\mathrm{ES}-) 262$ $\left(\mathrm{M}^{+}-1,98 \%\right), 260\left(\mathrm{M}^{+}-1,100\right), 230(15)$ and 228 (13).

Methyl 7-bromo-2-dimethylamino-4-hydroxybenz[d] oxazole-5carboxylate (60)

Triethylamine $\quad(80 \quad \mu \mathrm{~L}, \quad 0.574 \quad \mathrm{mmol}) \quad$ and dichloromethylene(dimethyl)ammonium chloride ($28 \mathrm{mg}, 0.172$ $\mathrm{mmol})$ were added to the aminophenol 59 ($30 \mathrm{mg}, 0.114 \mathrm{mmol}$) in dichloromethane (2 mL) and the reaction mixture was heated under reflux for 2 h . After cooling to rt , the mixture was washed with saturated aqueous sodium bicarbonate (10 mL) and extracted with dichloromethane $(3 \times 10 \mathrm{~mL})$. The organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The residue was chromatographed ($10 \% \mathrm{EtOAc}$ in light petroleum) to give the title compound 60 ($20 \mathrm{mg}, 56 \%$) as a white solid, $\mathrm{R}_{f} 0.17$ (30% $\mathrm{EtOAc} /$ light petroleum), m.p. $95-97{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}+\mathrm{H}, 314.9972$. $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{79} \mathrm{Br}$ requires $M, 314.9975$); $v_{\max } / \mathrm{cm}^{-1} 3224$, 2952, 1651, $1435,1311,1220,1160,1078,1014,978,887,788$ and $731 ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.17\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{NCH}_{3}\right), 3.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 7.62$ $(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H})$ and $10.95(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 37.9$, $52.5,91.2,109.7,124.5,132.9,151.0,151.3,162.2$ and $170.1 ; \mathrm{m} / \mathrm{z}$ (ES-) $315\left(\mathrm{M}^{+}-1,100 \%\right)$ and $313\left(\mathrm{M}^{+}-1,83\right)$.

Methyl-7-bromo-2-dimethylamino-4-(3-methylisoxazol-5

ylmethoxy)benz[d]oxazole-5-carboxylate (61)

5-Hydroxymethyl-3-methylisoxazole ($43 \mathrm{mg}, 0.38 \mathrm{mmol}$) and triphenylphosphine ($125 \mathrm{mg}, 0.477 \mathrm{mmol}$) were added to the phenol $60(100 \mathrm{mg}, 0.317 \mathrm{mmol})$ in tetrahydrofuran $(10 \mathrm{~mL})$ and the mixture cooled to $0{ }^{\circ} \mathrm{C}$. Di-isopropyl azodicarboxylate ($93.5 \mu \mathrm{~L}$, $0.476 \mathrm{mmol})$ in tetrahydrofuran (5 mL) was added dropwise and the reaction mixture was stirred at rt for 16 h . The reaction mixture was concentrated under reduced pressure and the residue was chromatographed (10% EtOAc in light petroleum) to give the title compound 61 as a white solid ($130 \mathrm{mg}, 99 \%$), $\mathrm{R}_{f} 0.33$ (50\% EtOAc/light petroleum), m.p. $106-110{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}+\mathrm{H}$, 410.0347. $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{5}{ }^{79} \mathrm{Br}$ requires M, 410.0346); $\nu_{\text {max }} / \mathrm{cm}^{-1} 2945$, 1696, 1651, 1618, 1428, 1404, 1380, 1339, 1303, 1251, 1189, 1165, $1027,978,897,885,857,798,781$ and $716 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $2.30\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{3}\right), 3.24\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{NCH}_{3}\right), 3.89(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 5.73\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.26\left(1 \mathrm{H}, \mathrm{s}, 4^{\prime}-\mathrm{H}\right)$ and $7.64(1 \mathrm{H}, \mathrm{s}, 6-$ $\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 11.5,37.7,52.3,65.2,94.3,103.9,119.9$, $126.0,135.8,145.8,150.6,159.8,161.7,165.7$ and $168.4 ; \mathrm{m} / \mathrm{z}$ (ES+) $434\left(\mathrm{M}^{+}+23,63 \%\right)$ and $432\left(\mathrm{M}^{+}+23,76\right), 412\left(\mathrm{M}^{+}+1,90\right)$ and $410\left(\mathrm{M}^{+}+1,100\right)$.

7-Bromo-2-dimethylamino-5-hydroxymethyl-4-(3-methylisoxazol-5 ylmethoxy)benz[d]oxazole (62)

A mixture of sodium borohydride ($46 \mathrm{mg}, 1.22 \mathrm{mmol}$) and calcium chloride ($54 \mathrm{mg}, 0.487 \mathrm{mmol}$) in tetrahydrofuran (2 mL) was stirred at rt for 2 h before adding the ester $\mathbf{6 1}(100 \mathrm{mg}, 0.244 \mathrm{mmol})$. The resulting mixture was stirred at rt for 48 h and the pH was adjusted to 7 using aqueous hydrogen chloride (1 M). The mixture was concentrated under reduced pressure and the residue was chromatographed (40% EtOAc in light petroleum) to give the title compound 62 as a white solid ($70 \mathrm{mg}, 75 \%$), $\mathrm{R}_{f} 0.27$ (50% EtOAc/light petroleum), m.p. $140-142{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}+\mathrm{Na}$, 404.0227. $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Na}^{79} \mathrm{Br}$ requires M, 404.0217); $v_{\text {max }} / \mathrm{cm}^{-1}$ 3352, 3139, 2934, 1649, 1616, 1593, 1432, 1377, 1271, 1248, 1226, 1194, 1092, 1067, 1017, 960. 892, 801, 753 and 722 ; δ н (400 MHz , $\left.\mathrm{CDCl}_{3}\right) 2.04(1 \mathrm{H}, \mathrm{m}, \mathrm{OH}), 2.20\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{3}\right), 3.15(6 \mathrm{H}, \mathrm{s}, 2 \times$ $\left.\mathrm{NCH}_{3}\right), 4.54-4.58\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime \prime}-\mathrm{CH}_{2}\right), 5.69\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 6.03(1 \mathrm{H}$, $\left.\mathrm{s}, 4^{\prime}-\mathrm{H}\right)$ and $7.00(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 11.4,37.7$, 61.4, 63.7, 93.6, 104.2, 123.2, 128.5, 134.2, 143.0, 148.1, 159.8, 161.5 and 168.2; $m / z(\mathrm{ES}+) 406\left(\mathrm{M}^{+}+23,100 \%\right)$ and $404\left(\mathrm{M}^{+}+23\right.$, 92%).

N-[7-Bromo-2-dimethylamino-4-(3-methylisoxazol-5-ylmethoxy)benz[d]oxazol-5-yl]methyl 2nitrobenzenesulfonamide (63)

2-Nitrobenzene sulphonamide ($222 \mathrm{mg}, \quad 1.10 \mathrm{mmol}$) and triphenylphosphine ($72 \mathrm{mg}, 0.275 \mathrm{mmol}$) were added to the alcohol $62(70 \mathrm{mg}, 0.183 \mathrm{mmol})$ in dichloromethane (14 mL) and the mixture cooled to $0{ }^{\circ} \mathrm{C}$. Di-isopropyl azodicarboxylate ($54.1 \mu \mathrm{~L}$, $0.275 \mathrm{mmol})$ in dichloromethane $(3.5 \mathrm{~mL})$ was added dropwise and the reaction mixture was stirred at rt for 16 h . After concentration under reduced pressure, chromatography of the residue (10% to 30% EtOAc/light petroleum) gave the title compound 63 as a pale yellow oil ($90 \mathrm{mg}, 87 \%$), $\mathrm{R}_{f} 0.2$ ($50 \% \mathrm{EtOAc} /$ light petroleum) (Found: M^{+} $+1,566.0344, \mathrm{C}_{21} \mathrm{H}_{21}{ }^{79} \mathrm{BrN}_{5} \mathrm{O}_{7} \mathrm{~S}$ requires $\left.M, 566.0340\right) ; v_{\mathrm{max}} / \mathrm{cm}^{-1}$ 3364, 3265, 2931, 1655, 1617, 1588, 1537, 1483, 1433, 1359, 1345, $1268,1246,1168,1123,1099,1035,897,859,782,738$ and $720 ; \delta_{\mathrm{H}}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $2.20\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{3}\right), 3.10\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{NCH}_{3}\right)$, $4.18\left(2 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}, 5-\mathrm{CH}_{2}\right), 5.60\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 5.99(1 \mathrm{H}, \mathrm{t}, J$ $6.5 \mathrm{~Hz}, \mathrm{NH}), 6.04\left(1 \mathrm{H}, \mathrm{s}, 4^{\prime}-\mathrm{H}\right), 6.75(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 7.51$ and 7.54 (each $\left.1 \mathrm{H}, \mathrm{m}, 4^{\prime \prime}-\mathrm{H}, 5^{\prime \prime}-\mathrm{H}\right), 7.68\left(1 \mathrm{H}, \mathrm{m}, 6^{\prime \prime}-\mathrm{H}\right)$ and $7.92(1 \mathrm{H}, \mathrm{m}$, $\left.3^{\prime \prime}-\mathrm{H}\right)$; $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 11.4,37.7,44.2,63.6,92.9,104.4$, $122.8,124.1,125.2,131.1,132.5,133.1,133.7,134.3,143.1,147.4$, 148.3, 159.8, 161.4 and 167.7; m/z (ES-) $566\left(\mathrm{M}^{+}-1,100 \%\right)$ and
$564\left(\mathrm{M}^{+}-1,99\right)$.

5-Aminomethyl-7-bromo-2-dimethylamino-4-(3-methylisoxazol-5- ylmethoxy)benz[d]oxazole (51)

Thiophenol ($49 \mu \mathrm{~L}, 0.477 \mathrm{mmol}$) and potassium carbonate $(88 \mathrm{mg}$, $0.636 \mathrm{mmol})$ were added to the sulfonamide $\mathbf{6 3}(90 \mathrm{mg}, 0.16 \mathrm{mmol})$ in acetonitrile (10 mL) and the reaction mixture was stirred at rt for 16 h . After concentration under reduced pressure, chromatography of the residue ($1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ with a drop of $\mathrm{Et}_{3} \mathrm{~N}$) gave the title compound 51 as a white solid ($60 \mathrm{mg}, 98 \%$), $\mathrm{R}_{f} 0.13$ (10 \% $\mathrm{MeOH} / \mathrm{EtOAc}$), m.p. $212-218{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}+1,381.0553$, $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3}{ }^{79} \mathrm{Br}$ requires $M, 381.0557$); $v_{\text {max }} / \mathrm{cm}^{-1} 3386,2926,1655$, 1610, 1593, 1428, 1377, 1273, 1252, 1227, 1194, 1098, 1073, 1021, $969,893,846$ and 724 ; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.94\left(2 \mathrm{H}\right.$, br. s, $\left.\mathrm{NH}_{2}\right)$, $2.19\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{3}\right), 3.14\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{NCH}_{3}\right), 3.70\left(2 \mathrm{H}, \mathrm{s}, 5-\mathrm{CH}_{2}\right)$, $5.67\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 6.03\left(1 \mathrm{H}, \mathrm{s}, 4^{\prime}-\mathrm{H}\right)$ and $6.92(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}) ; \delta \mathrm{c}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 11.4, 37.7, 42.1, 63.7, 93.4, 104.1, 123.0, 130.6, 134.3, 143.0, 147.5, 159.7, 161.5 and 168.4; m/z (ES+) $383\left(\mathrm{M}^{+}+1\right.$, $100 \%), 381\left(\mathrm{M}^{+}+1,96\right), 366(85)$ and 364 (80).

1'-\{6-[7-Bromo-2-dimethylamino-4-(3-methylisoxazol-5-

 ylmethoxy)benz[d] oxazol-5-ylmethylamino]-9H-purin-9-yl\}-2', $\mathbf{3}^{\prime}$ -O-isopropylidene- ${ }^{\prime}$-deoxy- N-methyl- β-D-ribofuranuronamide (64)Triethylamine ($44 \mu \mathrm{~L}, 0.315 \mathrm{mmol}$) and purine $4(56 \mathrm{mg}, 0.157$ $\mathrm{mmol})$ were added to the amine $\mathbf{5 1}(60 \mathrm{mg}, 0.157 \mathrm{mmol})$ in ethanol $(2.5 \mathrm{~mL})$ and the reaction mixture was heated under reflux for 18 h . After concentration under reduced pressure, chromatography of the residue (EtOAc to $10 \% \mathrm{MeOH} / \mathrm{EtOAc}$) gave the title compound $\mathbf{6 4}$ as a transparent solid ($100 \mathrm{mg}, 91 \%$), Rf 0.17 (EtOAc), m.p. $105-$ $110{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}+1$, 698.1662. $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~N}_{9} \mathrm{O}_{7}{ }^{79} \mathrm{Br}$ requires M, 698.1681); $v_{\max } / \mathrm{cm}^{-1} 3288$, 3082, 2928, 2805, 2358, 1653, 1612, $1535,1476,1429,1406,1377,1328,1273,1211,1156,1088,981$, $899,869,850,796$ and $726 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.30$ and 1.55 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), $2.18\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime \prime}-\mathrm{CH}_{3}\right), 2.55(3 \mathrm{H}, \mathrm{d}, J 5.0 \mathrm{~Hz}$, $\left.\mathrm{NHCH}_{3}\right), 3.14\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{NCH}_{3}\right), 4.64\left(1 \mathrm{H}, \mathrm{s}, 4^{\prime}-\mathrm{H}\right), 4.74(2 \mathrm{H}, \mathrm{br}$. s, $\left.5^{\prime \prime}-\mathrm{CH}_{2}\right), 5.26\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right.$ and $\left.3^{\prime}-\mathrm{H}\right), 5.70\left(2 \mathrm{H}, \mathrm{d}, J 1.0 \mathrm{~Hz}, 5^{\prime \prime \prime}-\right.$ $\left.\mathrm{CH}_{2}\right), 5.95\left(1 \mathrm{H}, \mathrm{d}, J 2.0 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 6.05\left(1 \mathrm{H}, \mathrm{s}, 4^{\prime \prime \prime}-\mathrm{H}\right), 6.35(1 \mathrm{H}$, br. s, 6-NH), $7.05\left(1 \mathrm{H}, \mathrm{s}, 6^{\prime \prime}-\mathrm{H}\right), 7.27\left(1 \mathrm{H}\right.$, br. s, $\left.\mathrm{NHCH}_{3}\right)$, 7.68 (1 $\mathrm{H}, \mathrm{s}, 2-\mathrm{H}$) and 8.27 (1 H , br. s, $8-\mathrm{H}$); $\delta \mathrm{c}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 11.4$, 14.2, 21.1, 25.1, 25.6, 27.1, 37.7, 60.4, 63.8, 82.5, 83.7, 85.7, 92.1, $93.5,104.2,114.5,123.6,134.3,139.2,143.3,148.0,153.2,154.8$, 159.7, 161.5, 168.2 and 169.5; m/z (ES+) $700\left(\mathrm{M}^{+}+1,100 \%\right)$ and $698\left(\mathrm{M}^{+}+1,93\right)$.

1'-\{6-[7-Bromo-2-dimethylamino-4-(3-methylisoxazol-5-

 ylmethoxy)benz[d]oxazol-5-ylmethylamino]-9H-purin-9-yl\}-1'-deoxy- N -methyl- $\boldsymbol{\beta}$-D-ribofuranuronamide (50).A solution of the acetonide $\mathbf{6 4}(50.0 \mathrm{mg}, 0.0716 \mathrm{mmol})$ in aqueous formic acid ($80 \%, 0.5 \mathrm{~mL}$) was stirred at rt for 16 h then concentrated under reduced pressure. Chromatography of the residue $(1 \% \mathrm{MeOH} / \mathrm{EtOAc})$ and recrystallisation from ethyl acetate gave the title compound $50(40 \mathrm{mg}, 85 \%)$ as a white solid, $\mathrm{R}_{f} 0.37$ (10% $\mathrm{MeOH} / \mathrm{EtOAc}$), m.p. $235-237{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}+1$, 658.1373. $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{9} \mathrm{O}_{7}{ }^{79} \mathrm{Br}$ requires $M, 658.1368$); $v_{\text {max }} / \mathrm{cm}^{-1} 3198,2939,2360$, $1666,1591,1625,1484,1432,1405,1385,1360,1339,1299,1260$, $1189,1145,1093,1065,1026,961,894,857,794,756724$ and 638; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) 1.96\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime \prime}-\mathrm{CH}_{3}\right)$, $2.47(3 \mathrm{H}, \mathrm{d}, J 4.5$ $\left.\mathrm{Hz}, \mathrm{NHCH}_{3}\right), 2.91\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{NCH}_{3}\right), 3.91\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 4.08(1$ $\left.\mathrm{H}, \mathrm{s}, 4^{\prime}-\mathrm{H}\right), 4.33\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 4.44\left(2 \mathrm{H}\right.$, br. s, $\left.5^{\prime \prime}-\mathrm{CH}_{2}\right), 5.34(1 \mathrm{H}$, d, $\left.J 6.0 \mathrm{~Hz}, 2^{\prime}-\mathrm{OH}\right), 5.49\left(2 \mathrm{H}, \mathrm{s}, 5^{\prime \prime \prime}-\mathrm{CH}_{2}\right), 5.52(1 \mathrm{H}, \mathrm{d}, J 4.3 \mathrm{~Hz}$, $\left.3^{\prime}-\mathrm{OH}\right), 5.74\left(1 \mathrm{H}, \mathrm{d}, J 7.3 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 6.21\left(1 \mathrm{H}, \mathrm{s}, 4^{\prime \prime \prime}-\mathrm{H}\right), 6.74(1 \mathrm{H}$, s, $\left.6^{\prime \prime}-\mathrm{H}\right), 8.03$ ($1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}$), 8.16 (1 H , br. s, 6-NH), 8.21 ($1 \mathrm{H}, \mathrm{s}, 8-$
H), $8.66\left(1 \mathrm{H}, \mathrm{q}, J 4.5 \mathrm{~Hz}, \mathrm{NHCH}_{3}\right) ; \delta \mathrm{c}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) 10.9$, $25.3,37.3,60.1,63.2,72.1,73.0,84.6,87.8,92.8,104.6,120.0$, $121.0,127.4,134.3,140.8,142.2,146.5,148.2,152.5,154.4,159.6$, $161.2,167.8$ and $169.8 ; \mathrm{m} / \mathrm{z}(\mathrm{ES}+) 682\left(\mathrm{M}^{+}+23,100 \%\right), 680\left(\mathrm{M}^{+}+\right.$ $23,75), 660\left(\mathrm{M}^{+}+1,49\right)$ and $658\left(\mathrm{M}^{+}+1,58\right)$.

X-Ray crystal data

5,7-Dimethyl-2-dimethylamino-oxazolo[4,5-b]pyridine 4-oxide (14): $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2}$; unit cell parameters: a 16.652(2), b 6.8992(9), c 18.610(3); Pbca, CCDC number 1442372.

2-Dimethylamino-7-hydroxymethyl-5-methyloxazolo[4,5-
b]pyridine (15): $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$; unit cell parameters: a 7.6207(7), b 12.3266(12), c 11.1367(11); P21, CCDC number 1442373.

7-Bromo-2-dimethylamino-5-hydroxymethyl-4-(3-
methylisoxazol-5 ylmethoxy)benz[d]oxazole (62): $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{O}_{4}$; unit cell parameters: a 27.5444(14), b 4.0773(4), c 26.9996(14); Pca21, CCDC number 1442374.

Acknowledgements

We thank Muscagen Ltd., for studentships (to E. B. and S. S.) and for aditional support (to A. T. L. L.).

Notes and references

${ }^{\text {a }}$ Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, UK
${ }^{b}$ The School of Chemistry, The University of Manchester, Manchester, M13 9PL, UK
${ }^{\text {c }}$ Muscagen Limited, 10, North Road, Cardiff, CF10 3DY
\dagger Deceased October 2011.
Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/

1. (a) V. E. Laubach, B. A. French and M. D. Okusa, Expert. Opin. Ther. Targets, 2011, 15, 103; (b) P. Fishman, S. Bar-Yehuda, B. T. Liang and K. A. Jacobson, Drug Discov. Today, 2012, 17, 359; (c) V. J. McIntosh and R. D. Lasley, J. Cardiovasc. Pharmacol. Therapeutics, 2012, 17, 21; (d) P. G. Baraldi, D. Preti, P. A. Borea and K. Varani, J. Med. Chem., 2012, 55, 5676; (e) A. M. Almerico, M. Tutone, L. Pantano and A. Lauria, J. Mol. Graphics Modell., 2013, 42, 60.
2. P. A. Borea, K. Varani, F. Vincenzi, P. G. Baraldi, M. A Tabrizi, S. Merghi and S. Gessi, Pharmacol. Rev., 2015, 67, 74.
3. C. Gallo-Rodriguez, X.-d. Ji, N. Melman, B. D. Siegman, L. H. Sanders, J. Orlina, B. Fischer, Q. Pu, M. E. Olah, P. J. M. van Galen, G. L. Stiles and K. A. Jacobson, J. Med. Chem., 1994, 37, 636.
4. (a) P. G. Baraldi, B. Cacciari, G. Spalluto, X.-d. Ji, M. E. Olah, G. Stiles, S. Dionisotti, C. Zocchi, E. Ongini and K. A. Jacobson, J. Med. Chem., 1996, 39, 802; (b) M. P. DeNinno, H. Masamune, L. K. Chennard, K. J. DiRico, C. Eller, J. B. Etienne, J. E. Tichner, S. P. Kennedy, D. R. Knight, J. Kong, J. J. Oleynek, W. R. Tracey and R. J. Hill, J. Med. Chem., 2003, 46, 353; (c) S. M. Devine, A. Gregg, H. Figler, K. McIntosh, V. Urmaliya, J. Linden, C. W. Pouton, P. J. White, S. E. Bottle, P. J. Scammells, Bioorg. Med. Chem., 2010, 18, 3078.
5. R. H. Davies, C. McGuigan, unpublished observations.
6. R. H. Davies, unpublished observations.
7. R. A. Olsson, S. Kusachi, R. D. Thompson, D. Ukena, W. Padgett and J. W. Daly, J. Med. Chem., 1986, 29, 1683.
8. (a) Y. Wang, M.-C. Liu, T.-S. Lin and A. C. Sartorelli, J. Med. Chem., 1992, 35, 3667; (b) E. Blanz and F. French, Cancer Res., 1968, 28, 2419; (c) K. C. Agrawal, A. J. Lin, B. A. Booth, J. R. Wheaton and A. C. Sartorelli, J. Med. Chem., 1974, 17, 631; (d) V. J. Traynelis and P. L. Pacini, J. Am. Chem. Soc., 1964, 86, 4917.
9. (a) D. Chapman and J. Hurst, J. Chem. Soc., Perkin Trans. I, 1980, 2398; (b) S. Furukawa, Yakugaku Zasshi, 1956, 76, 900.
10. R. C. De Selms, J. Org. Chem., 1968, 33, 478.
11. (a) R. Sathunuru, U. N. Rao and E. Biehl, Arkivoc, 2003, 15, 124; (b) N. C. Ganguly, M. Datta, P. De and R. Chakravarty, Synth. Commun., 2003, 33, 647; R. Sathunuru and E. Biehl, Arkivoc, 2004, 14, 89.
12. (a) M. Katada, Yakugagu Zasshi, 1947, 67, 51; (b) S. Furukawa, Pharm. Bull., 1955, 3, 413.
13. C. Fontenas, E. Bejan, H. A. Haddou and G. G. A. Balavoine, Synth. Commun., 1995, 25, 629.
14. P. Månsson, Tetrahedron Lett., 1982, 23, 1845.
15. T. Fukuyama, C.-K. Jow and M. Cheung, Tetrahedron Lett., 1995, 36, 6373.
16. (a) Y. Sato, M. Yamada, S. Yoshida, T. Soneda, M. Ishikawa, T. Nizato, K. Suzuki and F. Konno, J. Med. Chem., 1998, 41, 3015; (b) S. Yoshida, S. Shiokawa, K. Kawano, T. Ito, H. Marakami, H. Suzuki and Y. Sato, J. Med. Chem., 2005, 48, 7075.
17. (a) K. Gunnar and J. Sandström, Acta Chem. Scand., 1969, 23, 2888; (b) I. J. Turchi and M. J. S. Dewar, Chem. Rev., 1975, 75, 389.
18. T. Fukuyama, M. Cheung and T. Kan, Synlett, 1999, 1301.
19. T. Kan and T. Fukuyama, Chem. Commun., 2004, 353.
20. (a) G. Liu, D. A. Cogan and J. A. Ellman, J. Am. Chem. Soc., 1997, 119, 9913; (b) D. A. Cogan, G. Liu, K. Kim, B. J. Backes and J. A. Ellman, J. Am. Chem. Soc., 1998, 120, 8011.
21. J. A. Ellman, T. D. Owens and T. P. Tang, Acc. Chem. Res., 2002, 35, 984.
22. (a) K. C. Nicolaou, A. Li and D. J. Edmonds, Angew. Chem. Int. Edn., 2006, 45, 7086; (b) K. C. Nicolaou, A. Li, D. J. Edmonds, G. S. Tria and S. P. Ellery, J. Am. Chem. Soc., 2009, 131, 16905.
23. (a) S. R. Crabtree, W. L. A. Chu and L. N. Mander, Synlett, 1990, 169; L. N. Mander and S. P. Sethi, Tetrahedron Lett., 1983, 24, 5425; (c) S. R. Crabtree, L. N. Mander and S. P. Sethi, Org. Synth., 1991, 70, 256.
24. J. Wang, V. Lee and H. O. Sintim, Chem. Eur. J., 2009, 15, 2747.
25. J. McNulty, J. J. Nair and A. Capretta, Tetrahedron Lett., 2009, 50, 4087.
26. (a) J. Liu, B. Liang, D. Shu, Y. Hu, Z. Yang and A. Lei, Tetrahedron, 2008, 64, 9581; C. F. J. Barnard, Org. Process Res. Devel., 2008, 12, 566.
27. (a) S. Narasimban, K. G. Prasad and S. Madhavan, Synth. Comm., 1995, 25, 1689; (b) J. W. Lampe, Y.-L. Chou, R. G. Hanna, S. V. DiMeo, P. W. Erhardt, A. A. Hegedorn, III, W. R. Ingebretson and E. Cantor, J. Med. Chem., 1993, 36, 1041.
