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Abstract
Operations research is a well established field that uses computational systems to sup-
port decisions in business and public life. Good solutions to operations research prob-
lems can make a large difference to the efficient running of businesses and organisa-
tions and so the field often searches for new methods to improve these solutions. The
high school timetabling problem is an example of an operations research problem and
is a challenging task which requires assigning events and resources to time slots sub-
ject to a set of constraints. In this paper a new sequence-based selection hyper-heuristic
is presented that produces excellent results on a suite of high school timetabling prob-
lems. In this study, we present an easy-to-implement, easy-to-maintain and effective
sequence-based selection hyper-heuristic to solve high school timetabling problems
using a benchmark of unified real-world instances collected from different countries.
We show that with sequence-based methods, it is possible to discover new best known
solutions for a number of the problems in the timetabling domain. Through this inves-
tigation, the usefulness of sequence-based selection hyper-heuristics has been demon-
strated and the capability of these methods has been shown to exceed the state-of-the-
art.

Keywords
Hyper-heuristic, Educational Timetabling, Computational Design, Combinatorial Op-
timisation, Hidden Markov Model.

1 Introduction

The field of search and optimisation in operations research has a long and varied his-
tory. Many methods have been developed that solve specific problems well and rely on
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problem-specific knowledge to function. Although highly computationally efficient,
many of these methods are necessarily specific to each problem and so cannot easily
be applied to other problems without significant modification. The research commu-
nity has therefore looked to meta-heuristics as generic problem solving methods, for
example genetic algorithms (Holland, 1975), tabu search methods (Glover, 1986) and
other nature-inspired methods such as simulated annealing (Kirkpatrick et al., 1983)
are widely used. However, these methods usually require significant expertise to im-
plement and tune for specific problems, and in their standard versions at least, are un-
able to adapt to changing search spaces. Despite the efforts of the scientific community
in developing a variety of search methodologies, there is no known efficient method
that offers the best performance for solving different problems and for all possible situ-
ations, and in fact it has been proved that this is unachievable (Wolpert and Macready,
1997). Despite this, there has been scientific progress in designing general methods
which are valid for a wide range of, rather than all, problem domains. Such systems are
applicable to different instances from not only the same domain but also other problem
domains. Moreover, they are easy to build and maintain and so are less costly in terms
of the investment in time required to apply them to new problems. Hyper-heuristics
have emerged as such general purpose high level search methodologies which are mo-
tivated by the goal of selecting or generating heuristics automatically to solve a wide
range of difficult optimisation problems (Burke et al., 2013). This work focuses on the
selection type of hyper-heuristics.

Traditional selection hyper-heuristics have focussed on the improvement that sin-
gle or paired low level heuristics can bring to an optimisation. The task for these meth-
ods is to select the most appropriate and best performing heuristic for a given point
in the optimisation. A wide number of methods have been proposed for this task in-
cluding the simple random hyper-heuristic, choice function hyper-heuristic and other
methods presented in (Burke et al., 2013). However, in scientific fields where sequences
are known to be prevalent, for example in bioinformatics and language processing, a
key feature is that context is found to be important and that the ‘meaning’ of a token
in the sequence cannot be determined unless the context in which it finds itself is also
considered. Here it is proposed that it is possible to extend this context principle to the
selection of heuristics within the search domain, noting that the effectiveness of search
operations is determined to a certain extent by those that have been executed before
it. In this paper we extend this principle to investigate the potential for the analysis
of sequences of operations in search and optimisation problems to construct building
blocks of good heuristic combinations.

This work studies and analyses the performance of two sequence-based meth-
ods, a simple fixed parametrised method and a hidden Markov model (HMM) ap-
proach (Kheiri and Keedwell, 2015b; Kheiri et al., 2015). A hyper-heuristic with a fixed
parametrised sequence size is implemented to allow for experimentation on the se-
quence lengths and to discover information regarding the information that can be
gained from each such sequence. In addition, the HMM method is shown to learn
online the optimum sequence lengths automatically and is able to adapt the probabil-
ity of heuristic application and sequence-based acceptance strategy to the search land-
scape. Experimentation with these methods is conducted on difficult problems from
timetabling, a key problem area in operational research.

High school timetabling problem is a hard combinatorial optimisation problem
(Even et al., 1976). A solution requires the scheduling of events and resources in time
slots subject to a set of hard and soft constraints. A solution is expected to satisfy all

2 Evolutionary Computation Volume x, Number x



Sequence-based Selection Hyper-heuristics

the hard constraints and as many of the soft constraints as possible. The importance
of the high school timetabling problem stems from its difficulty due to the number of
constraints involved, the NP nature of the problem (Even et al., 1976), and the need to
perform this hard task by educational institutions everywhere, thus it became neces-
sary to search for methods that help with automating this process.

The paper is structured as follows. Section 2 overviews selection hyper-heuristics
and high school timetabling problems. Section 3 describes the high school timetabling
benchmark used for the experimentation. Section 4 describes the developed method
including the algorithmic components and low level heuristics. In Section 5, the perfor-
mance of the developed methods is analysed and compared against the state-of-the-art
approaches. Section 6 provides conclusions and areas for further work.

2 Background

2.1 Hyper-heuristics

The term hyper-heuristic was used by Cowling et al. (2001) to describe a high level
problem-independent method that provides a solution methodology to solve a wide
range of optimisation algorithms. Hyper-heuristics can be broadly classified into se-
lection hyper-heuristics to select from a set of predefined heuristics, and generation
hyper-heuristics which differ from selection methods in that they generate heuristics
(Burke et al., 2013). This work focuses on the former class of hyper-heuristics.

Selection hyper-heuristics are motivated by the understanding that each heuris-
tic performs differently on different problem instances and an approach that combines
them could yield better overall performance (Burke et al., 2013). An iterated selection
hyper-heuristic method (Özcan et al., 2008) aims to improve the current solution by
selecting and applying a low level heuristic from a set of predefined low level heuris-
tics (e.g. mutation operators and local search heuristics), leading to a new solution,
then the move acceptance method decides whether to accept or reject the modified solu-
tion. This cycle of applying selection and move acceptance methods is repeated until a
termination criterion is satisfied. The number of studies on selection hyper-heuristics
is growing massively (Burke et al., 2013) and as such space prevents us reviewing all
such approaches. However, we will overview the methods that are relevant to those
techniques proposed in this study.

The heuristic selection method is described in Section 4 but this must be coupled
with a move acceptance method to determine whether to select or reject the generated
solutions. A set of well known meta-heuristic inspired move acceptance methods, in-
cluding hill climbing (only improving) (HC), simulated annealing (SA), great deluge
(GD), record-to-record travel (RR) and late acceptance (LA) methods are used as move
acceptance criteria in this study.

A deterministic move acceptance method which accepts only improved solutions
is described by Cowling et al. (2001). We refer to this method as the hill climbing move
acceptance method.

Simulated Annealing (SA) (Abramson et al., 1999) is a probabilistic meta-heuristic
method, motivated by an analogy to the process of annealing in solids. At each step
a new solution is generated. The new solution is accepted if it improved the previous
solution. To prevent premature convergence on a local optimum, non-improving solu-

tions are accepted with a probability of p = e−
∆
T , where ∆ is the quality (cost) change,

and T is the method parameter, known as temperature which regulates the probability
to accept solutions with higher cost. Generally speaking, the method starts with a high
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temperature, then according to the cooling schedule, the temperature decreases gradu-
ally towards the end of the search process. One way of reducing the temperature is to
apply the geometric cooling schedule: Ti+1 = Ti.β, where β can be empirically tuned
for a particular problem domain (Hajek, 1988). Simulated annealing has been used as
a move acceptance method within the selection hyper-heuristics in (Bilgin et al., 2007),
at which the non-improving solutions are accepted with a probability given by the fol-
lowing equation:

p = e
−

∆

F (1−
tcurrent
tlimit

)
(1)

where ∆ is the change in the cost at time tcurrent, tlimit is the time limit, F is the ex-
pected maximum change in the cost. Note that ∆ is positive for non-improving moves
when the objective is minimising rather than maximising; and F is empirically deter-
mined in this work.

The Great Deluge (GD) algorithm was first introduced by Dueck (1993). GD is
based on a stochastic framework which allows improving moves by default. Non-
improving moves are accepted if the cost of the candidate solution is better than an
expected cost, named as the water level at each step. The water level gets updated
according to the ‘rain speed’ parameter. Dueck (1993) argued that if the rain speed
value is chosen to be very small then the algorithm requires high computational time to
produce a high quality solution. The cost value of the first generated candidate solution
can be used as the initial level in GD. Great deluge is utilised as a move acceptance
method within selection hyper-heuristics in (Kendall and Mohamad, 2004), at which
the threshold level (τ ) at time tcurrent is updated with the following equation:

τ = f + F × (1−
tcurrent

tlimit
) (2)

where tlimit is the time limit, F is the expected maximum change in the cost, and f is
the expected final cost value. In this work F and f are empirically determined.

Dueck (1993) proposed another variant of GD named Record-to-Record Travel
(RR) method. The idea of RR is based on the simple notion that any new solution,
which is not much worse than the best solution recorded, is accepted.

The late acceptance method (Burke and Bykov, 2008) is a variant of hill climbing
method. A candidate solution in the late acceptance method is accepted if its qual-
ity is better than a solution which was obtained L steps before. The method requires
an implementation of a circular queue of size L which maintains the cost values of L
previously visited solutions.

2.2 High School Timetabling Problems

Due to the extreme difficulty of high school timetabling problems, meta-heuristics
are preferred in most of the studies. Abramson (1991) described the high school
timetabling problem and then proposed a simulated annealing solution method. The
author presented a parallel algorithm and proved experimentally that the developed
method works faster than the equivalent sequential algorithm. The tests were made on
data from an Australian school. The THOR school timetabling tool was developed by
Melı́cio et al. (2006) for Portuguese schools. An initial solution is first created using a
heuristic construction algorithm, which is improved further by applying fast simulated
annealing. The tool was used by more than 100 Portuguese schools and was applied
with great success. Zhang et al. (2010) used a simulated annealing based algorithm
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with a newly designed neighbourhood structure to solve the high school timetabling
problem.

One of the earliest studies that applied the tabu search to solve the high school
timetabling problem was suggested by Wright (1996). The conducted study produced
a timetable for a large comprehensive school in England, using a solution method that
involved heuristic search and a form of tabu search. Alvarez-Valdés et al. (2002) devel-
oped an algorithm based on tabu search for teacher assignment in Spanish secondary
schools. The algorithm was implemented in three phases. In the first phase a parallel
heuristic algorithm is used to build an initial solution, and in the second phase the so-
lution is improved using the tabu search to obtain feasible solutions. In the third phase
the solution is improved further. The algorithm was applied to 12 Spanish school in-
stances and proved to provide better allocations than the manual ones. Jacobsen et al.
(2006) developed an approach that generates an initial solution using a construction
heuristic with a graph colouring algorithm. The solution is then improved using tabu
search. The algorithm was tested on data from German high schools. Bello et al. (2008)
treated the high school timetabling problem as a graph colouring problem, and used
it in association with the tabu search algorithm. The system was applied to instances
from Brazilian high schools.

Colorni et al. (1992) used several meta-heuristics based on genetic algorithms
(GA), simulated annealing (SA) and tabu search (TS) and compared them using in-
stances of Italian high school data. The research results showed that a hybrid of a ge-
netic algorithm with local search could give promising performance. Calderia and Ross
(1997) evaluated the use of genetic algorithms to solve instances of school timetabling
that are randomly generated. An initial population of feasible timetables are produced
in an initial procedure and the GA is used to improve the quality of the generated pop-
ulation. A highly constrained school timetabling problem extracted from the require-
ments of a German high school was investigated by Bufé et al. (2001) using a hybrid
approach. An evolutionary algorithm combined with local search that uses specific
mutation operators to optimise the given timetables was used to find feasible solutions.
Filho et al. (2001) used a new representation for the high school timetabling problem
by forming clusters from pairs of teachers and classes. The authors applied a con-
structive genetic algorithm to solve instances of two Brazilian high schools. Wilke et al.
(2002) presented a genetic algorithm for solving the German high school timetabling
problem. A hybrid genetic approach is applied using multiple genetic operators which
proved to perform better than the traditional genetic algorithm. Beligiannis et al. (2008)
solved high school timetabling problem using an adaptive evolutionary algorithm.
The algorithm did not employ a crossover operator, and the results showed the suc-
cess of the approach when applied on the Greek high school timetabling problem.
Raghavjee and Pillay (2008) applied a genetic algorithm to the school timetabling prob-
lem. The algorithm is based on creating an initial population of timetables and then
applying a mutation operator to refine this population. It was tested with five high
school timetabling problems and proved to generate better results than all the meth-
ods tested with the same set. Raghavjee and Pillay (2012) compared the performance
of a genetic algorithm and genetic programming using Abramson (1991) dataset of five
high school timetabling problems. The genetic programming approach proved to give
a better performance in the five problems over other approaches including genetic algo-
rithm, neural networks, tabu search and greedy search, especially in the large problems
in the set.

Other approaches used in high school timetabling problem include adaptive
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large neighbourhood search (Sørensen et al., 2012), integer programming (Birbas et al.,
2009), particle swarm optimisation (Tassopoulos and Beligiannis, 2012), tiling algo-
rithms (Kingston, 2005), bee algorithms (Lara et al., 2008), Hopfield neural networks
(Smith et al., 2003), walk down jump up algorithm (Wilke and Killer, 2010), greedy ran-
domised adaptive search procedure (Moura and Scaraficci, 2010) and constraint pro-
gramming approach (Valouxis and Housos, 2003). For the recent survey on high school
timetabling problem the reader is directed to (Pillay, 2013).

3 High School Timetabling Benchmark

Due to the different education systems and constraints imposed by different educa-
tional institutions, a group of researchers (Post et al., 2012) has proposed a unified
high school timetabling format that fits with the different education systems across
the world. To encourage scientists and practitioners to provide solution methods for
high school timetabling problem, an international timetabling competition (ITC 2011)
(Post et al., 2013) using the unified benchmark instances collected from over 10 coun-
tries was organised.

The competition consisted of three rounds. In the first and third rounds, com-
petitors were expected to submit solutions to a set of instances without any restriction
on the resources or techniques used to generate these solutions. In the second round,
solvers were submitted to the organisers and tested on a set of instances in a specified
time limit of 1000 seconds.

The problem instance consists of times which are the intervals of time in which
events run; resources which are the entities that attend events; and events which specify
the coordination of resources. Solutions to the timetabling problem consist of the al-
location of resources to events. The resources that must be allocated are the group of
students (known as a class), the teacher and the room in which the event will take place.
Each resource has a set of constraints associated with it (e.g. limitations on the number
of classes students are required to take in one day, teacher workload and room capac-
ities). Events can be single lessons or a set of lessons (an event group) and each event
has a number of properties that influence the allocation of resources to them through
constraints or other optimality criteria. These are the event duration, pre-assigned re-
sources (e.g. some events must take place in certain rooms), the contribution of the
event to workload and pre-assigned time slots. Fifteen hard/soft constraints are ex-
pected to be satisfied (Post et al., 2013):

• C01 Assign resource: Assign resource to event.

• C02 Assign time: Assign time to event.

• C03 Split events: Split event into sub-events under specific constraints.

• C04 Distribute split events: Split event into sub-events under constrained dura-
tions.

• C05 Prefer resources: Assign specific resource(s) to event.

• C06 Prefer times: Assign specific time(s) to event.

• C07 Avoid split assignments: Assign the same resource to a set of events.

http://www.utwente.nl/ctit/hstt/itc2011/
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• C08 Spread events: Spread events evenly through the cycle.

• C09 Link events: Assign the same time to a set of events.

• C10 Avoid clashes: Assign resources without having clashes.

• C11 Avoid unavailable times: Avoid assigning resources at unavailable times.

• C12 Limit idle times: Avoid having idle times for resources.

• C13 Cluster busy times: For a number of days, resources must be busy.

• C14 Limit busy times: For a number of times, resources must be busy.

• C15 Limit workload: Schedule the workload without exceeding a limit.

The quality of a solution is evaluated in terms of (hardViolation-
Score,softViolationScore). A solution with a cost of (25,78) indicates an infeasibility
value of 25 (sum of weighted hard constraints violations) and objective value of 78
(sum of weighted soft constraints violations). The weight value and whether the
constraint is hard or soft per each constraint type are presented in the instance.

The instances used during ITC 2011 are still available online in the competition
website, but deprecated. The developers of the benchmark project suggested the focus
on solving a set of instances, referred to as XHSTT-2014 instances, which contains a
carefully selected set of worldwide instances in their most up-to-date form. However,
in this work we used the ITC 2011 instances of round 2 and compared the performance
of our approach against the ITC 2011 solvers using the same rules imposed for the
second round of the competition. We then applied the developed method on XHSTT-
2014 instances. Table 1 summarises the main characteristics of the ITC 2011 and XHSTT-
2014 instances obtained from 12 countries.

Due to space restrictions, we only provided a brief description of the studied prob-
lem. For a full description of the problem, the reader is directed to (Post et al., 2012,
2013).

Four competitors (GOAL, HySST, Lectio and HFT) submitted solvers to the sec-
ond round of the ITC 2011 competition (Post et al., 2013; Kheiri, 2014). GOAL com-
bined iterated local search with simulated annealing (Fonseca et al., 2014). HySST ap-
plied a stochastic local search hyper-heuristic (Kheiri et al., 2016). Lectio employed an
approach based on adaptive large neighbourhood search (Sørensen et al., 2012). HFT
developed an evolutionary algorithm as a solution method (Domrös and Homberger,
2012). The ranking method was based on the average rank of 10 independent trials
with 10 seeds chosen at random over eighteen selected instances per team with each
run for 1000 seconds. The GOAL team obtained the lowest mean rank and were there-
fore deemed the winner of the second round of ITC 2011. Soon after the competition,
the results of the GOAL team have been improved using a late acceptance hill-climbing
method as reported in (Fonseca et al., 2015).

4 Overall Approach

Hyper-heuristic methods operate above the level of heuristics and so do not deal di-
rectly with the problem representation, the low level heuristics provided are designed
to work at this level. As such, the proposed hyper-heuristic algorithm works simply
by invoking the KHE platform (an open source software tool written by Jeff Kingston

http://sydney.edu.au/engineering/it/˜jeff/khe/
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Table 1: Characteristics of ITC 2011 and XHSTT-2014 problem instances

Round 2 of ITC 2011 set
Country-Instance Times Teachers Rooms Classes Students Events Duration
Brazil-Instance3 25 16 8 69 200
Finland-ElementarySchool 35 22 21 60 291 445
Finland-SecondarySchool2 40 22 21 36 469 566
Greece-Aigio1stHighSchool2010 35 37 208 283 532
Netherlands-Kottenpark2008 40 81 11 34 1047 1118
Greece-WesternUniversityInstance3 35 19 6 210 210
Greece-WesternUniversityInstance5 35 18 6 184 184

Common to both sets
Brazil-Instance2 25 14 6 63 150
Brazil-Instance4 25 23 12 127 300
Brazil-Instance6 25 30 14 140 350
Spain-School 35 66 4 21 225 439
Greece-WesternUniversityInstance4 35 19 12 262 262
Italy-Instance4 36 61 38 748 1101
Kosova-Instance1 62 101 63 809 1912
Netherlands-Kottenpark2003 38 75 41 18 453 1156 1203
Netherlands-Kottenpark2005 37 78 42 26 498 1235 1272
Netherlands-Kottenpark2009 38 93 53 48 1148 1274
South Africa-Woodlands2009 42 40 30 278 1353

XHSTT-2014 set
Australia-BGHS98 40 56 45 30 387 1564
Australia-SAHS96 60 43 36 20 296 1876
Australia-TES99 30 37 26 13 308 806
Denmark-FalkonergaardensGymnasium2012 50 90 69 279 1077 1077
Denmark-HasserisGymnasium2012 50 100 71 523 1235 1235
Denmark-VejenGymnasium2009 60 46 53 163 918 918
Finland-College 40 46 34 31 387 854
Finland-HighSchool 35 18 13 10 172 297
Finland-SecondarySchool 35 25 25 14 280 306
Greece-HighSchool1 35 29 66 372 372
Greece-ThirdHighSchoolPatras2010 35 29 84 178 340
England-StPaul 25 68 67 67 1227 1227
USA-Westside2009 100 134 108 628 6354
South Africa-Lewitt2009 148 19 2 16 185 838
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(Kingston, 2014)) which constructs initial solutions using the concept of hierarchical
timetabling which utilises a tree structure to represent resource allocations to events.
The exact implementation of the solution is not of concern from a hyper-heuristic per-
spective, but the interested reader is directed to (Kingston, 2014). However, an initial
produced solution of a given problem instance generally violates many of the problem
constraints (see (Kingston, 2014)). The proposed hyper-heuristic is, therefore, used to
fix as many of these violated constraints.

Recall that hyper-heuristics are composed of two components: the selection com-
ponent and the move acceptance component. In the selection component, a low level
heuristic will be selected and applied to a current solution (Scurrent) and that will gen-
erate a new solution (Snew). Now, given Scurrent and Snew, the move acceptance will
decide whether to accept or reject Snew. In this work, a sequence-based selection (SS)
method described in Section 4.1 is used to select and apply sequences of heuristics.
Five different reusable meta-heuristics inspired methods are used as move acceptance
including hill climbing local search (HC), simulated annealing (SA), great deluge (GD),
record-to-record travel (RR) and late acceptance (LA) methods. For example, if we used
HC as a move acceptance, then Snew will only be accepted if its quality is better than
Scurrent, otherwise it will be rejected. If we used SA, then Snew will be accepted if its
quality is better than Scurrent or it will be accepted with a given probability.

Most of the parameters involved with the move acceptance methods are set to
values which were suggested in previous studies. In the case of solutions with hard
constraint violations, the F value in both simulated annealing and great deluge cri-
teria is assigned to 0.01% of the cost of the best recorded solution during the search
process, otherwise, the value is set to 1% of the cost of the best recorded solution in
hand. Similarly, the value of f in GD is set to 0.001% of the cost of the best solution
in hand, and to 0.1% if the best solution violates only soft constraints. These settings
are suggested in (Kalender et al., 2013; Ahmed et al., 2015). The memory size L of the
LA acceptance method is set to 500 as suggested in (Özcan et al., 2009). The RR accepts
the non-improving solution if its cost is not worse than the cost of the best recorded
solution in hand plus 0,5. This parameter is chosen after light experimentation.

The sequence-based selection hyper-heuristic approach in this study manages a set
of fifteen low level heuristics to improve the quality of a single solution:

• LLH0: swap the time slots of two randomly selected events. As an example, as-
sume that a Geography class event is assigned to the second time slot on Monday
and the History class event is assigned to the third time slot on Friday. LLH0 will
assign History class to the second time slot on Monday, and Geography class to the
third time slot on Friday.

• LLH1: select two random events and swap their time slots in case they have the
same duration or not adjacent, otherwise the swap occurs but the first event is
moved to follow the last time slot occupied by the second event. As an example,
assume that a Geography class event with a duration of one is assigned to the first
time slot on Monday and the History class event with a duration of two is assigned
to the second time slot on Monday. LLH1 will assign Geography class to the third
time slot on Monday (not to the second time slot on Monday), and History class
to the first time slot on Monday. However, if both events have the same duration,
then LLH0 will be invoked.

• LLH2: randomly select an event and reschedule to a random time slot. As an
example, assume that a Mathematics class event is assigned to the first time slot
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on Monday. LLH2 will select a new random time slot, for example the last time
slot on Tuesday, and then it will unassign Mathematics from the first time slot on
Monday and then assign it to the last time slot on Tuesday.

• LLH3: randomly select an unassigned event and then assign it to a random time
slot. This low level heuristic works similarly to LLH2; however, the event is ex-
pected to be unassigned to begin with. As an example, assume that a Mathematics
class event is unassigned to any time slot. LLH3 will select a random time slot, for
example last time slot on Tuesday, and then it will assign Mathematics to the last
time slot on Tuesday.

• LLH4: randomly select an assigned event and then unassign it. This low level
heuristic is the opposite of LLH3.

• LLH5: randomly assign and unassign several events. This is a ruin and recre-
ate low level heuristic which has a parameter that takes a value between 1 to 10.
This parameter will be selected randomly each time this heuristic is invoked. The
parameter represents the number of events to be assigned or unassigned. If, for ex-
ample, the parameter has a value of 5, then LLH5 will select five events at random
and then at each selected event the heuristic either applies LLH2, LLH3 or LLH4
(selected randomly with an equal distribution).

• LLH6: shuffle the assignment of several events. This heuristic has a parameter
that takes a value between 1 to 10. This parameter will be selected randomly each
time this heuristic is invoked. The parameter represents the number of events to
be shuffled. If, for example, the parameter has a value of 5, then LLH6 will select
five events at random and then shuffle their assignments.

• LLH7: split a randomly selected event into two events. This heuristic divides a
randomly chosen event if it has an assignment of a time block of at least two con-
secutive time slots into two events such that their durations should sum to the
duration of the original event. As an example, assume that a Geography class event
with a duration of three is assigned to the first time slot on Monday, LLH7 will di-
vide the teaching of Geography into two separate (still consecutive) time slots with
one event having a duration of one and the other event having a duration of two.
This low level heuristic will allow for future moves to operate on those two events
separately.

• LLH8: merge two randomly selected events adjacent in time and sharing the same
events. This heuristic is the opposite of LLH7.

• LLH9: swap two random resources. As an example, assume that a Geography
class event is assigned to Class Room A and the History class event is assigned to
Class Room B. LLH9 will assign History class to Class Room A, and Geography class
to Class Room B.

• LLH10: reschedule a resource element of an event. As an example, assume that
Class Room A is assigned to Geography class event. LLH10 could re-assign Class
Room A to History class.

• LLH11: randomly select an unassigned resource and then assign it at random. This
low level heuristic works similarly to LLH10; however, the resource is expected to
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be unassigned to begin with. As an example, assume that Teacher A is unassigned
to any class. LLH11 will select a random class event and then it will assign Teacher
A to the selected class.

• LLH12: randomly select an assigned resource and then unassign it. This low level
heuristic is the opposite of LLH11. As an example, assume that Teacher A is as-
signed to a given class. LLH12 will unassign Teacher A to the given class.

• LLH13: randomly assign and unassign several resources. This is a ruin and recre-
ate low level heuristic which has a parameter that takes a value between 1 to 10.
This parameter will be selected randomly each time this heuristic is invoked. The
parameter represents the number of resources to be assigned or unassigned. If,
for example, the parameter has a value of 5, then LLH13 will select five resources
at random and then at each selected resource the heuristic either applies LLH10,
LLH11 or LLH12 (selected randomly with an equal distribution).

• LLH14: shuffle the assignment of several resources. This heuristic has a parameter
that takes a value between 1 to 10. This parameter will be selected randomly each
time this heuristic is invoked. The parameter represents the number of resources
to be shuffled. If, for example, the parameter has a value of 5, then LLH14 will
select five resources at random and then shuffle their assignments.

4.1 Sequence-based Selection Hyper-heuristic

The hyper-heuristic implemented in this study aims to select and apply sequences of
heuristics instead of selecting and applying a single heuristic. This section introduces a
modified framework for selection hyper-heuristics enabling the operation of selecting
sequences of heuristics. Figure 1 illustrates how a generic sequence-based selection
hyper-heuristic framework operates.

This study applies a hidden Markov model (Baum and Petrie, 1966) approach for
the sequence-based selection method (Figure 4). The goal is to learn and generate se-
quences of low level heuristics where low level heuristics represent hidden states of
the model. Each state (low level heuristic) has a transition probability to move to an-
other state (or itself) and a sequence-based acceptance strategy probability to decide
whether a sequence of heuristics is constructed or not. Therefore we define two matri-
ces: one to store the scores, hence the probabilities, to move from a heuristic to another;
and the other to store the scores of the acceptance strategy for each low level heuristic.
We refer to the first matrix as TransitionScore and the second as ASScore. Note that
Markov chain model employed in the work in Kheiri and Keedwell (2015a) is a simpler
Markov model where the state is directly visible to the observer and therefore the state
(low level heuristic) transition probabilities are the only parameters.

Given the current low level heuristic (llhc), the hyper-heuristic uses a roulette
wheel selection strategy to select the next low level heuristic (llhn) with a probability
given by:

TransitionScorellhc,llhn∑
∀j(TransitionScorellhc,llhj

)
(3)

The hyper-heuristic will then select the sequence-based acceptance strategy l for the
selected heuristic llhn with a probability given by:

ASScorellhn,l∑
∀j(ASScorellhn,j)

(4)
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Figure 1: A sequence-based selection hyper-heuristic framework
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The sequence-based acceptance strategy (AS) has two options. If the first option is
selected (i.e. l = 1), this means the sequence of heuristics is now completed and
the heuristics in the sequence will be applied to the candidate solution to generate a
new solution. The move acceptance of the hyper-heuristic will be applied to decide
whether to accept or reject the new solution. The relevant transition and sequence-
based acceptance strategy scores will be updated where the new solution has a quality
better than the quality of the best solution in hand. If the second option is selected
(i.e. l = 2), then the selected heuristic will be added to the sequence of heuristics
and no evaluation is conducted. Initially, the hyper-heuristic mechanism assigns an
equal probability to move from any heuristic to another and the probability of select-
ing the associated sequence-based acceptance strategy in order to allow all the low level
heuristics to process the given solutions. In other words, TransitionScorellhi,llhj

= 1
for all i, j; and ASScorellhi,l = 1 for all i, l. These scores are updated as long as the
best solution recorded in hand is improved. Consequently, after a number of steps the
hyper-heuristic learns and detects a list of sequences of low level heuristics that per-
form well. The hyper-heuristic assigns a higher probability of calling and applying
these sequences and hence a lower probability of the use of heuristics that generate
worsening results. In (Kheiri and Keedwell, 2015b), score values are simply increased
by 1 as a reward mechanism as long as the best recorded solution in hand is improved.

We provide an example of how the developed method would work on five low
level heuristics. Figure 2 shows the initial score values of the two HMM matrices. For
example, if llh2 is initially selected as the current low level heuristic and considering the
scores in the transition matrix, the probability to move from llh2 to any other heuristic
is 1/5. The hyper-heuristic applies the roulette wheel selection method to select the
next low level heuristic. We assume that llh1 is selected next. The hyper-heuristic will
then select the sequence-based acceptance strategy of llh1. The probability at this point
of selecting any of the two acceptance strategies is 1/2. We assume that the hyper-
heuristic selects the acceptance strategy l = 2, meaning that llh1 will be added to the
sequence but an evaluation is not conducted. We move on to the next step and that we
are now on llh1. Again, we select the next low level heuristic using the scores in the
transition matrix to move from llh1 and in this example, llh4 is selected. The probability
of selecting any of the two acceptance strategies for llh4 is 1/2. Assume that the hyper-
heuristic uses the roulette wheel selection strategy to select the acceptance strategy
l = 1. This means that the sequence of heuristics is now constructed and it will be
applied to the current solution. The constructed sequence is llh1,llh4 meaning that a
sequence of heuristics of size 2 is generated. This sequence will be applied sequentially
to the current solution, returning a new solution. Assume that the new solution is
better than the current best obtained solution during the optimisation. In this case the
relevant scores will be updated and increased by 1. The scores of moving from llh2 to
llh1 and from llh1 to llh4 will be updated. Also the sequence-based acceptance strategy
l = 2 of llh1 and the sequence-based acceptance strategy l = 1 of llh4 will be updated as
illustrated in Figure 3. Note that if the new solution does not improve the quality of the
best solution in hand, then the scores in the HMM matrices will not be updated. The
next component of the hyper-heuristic is the move acceptance method. If, for example,
we are using HC move acceptance, then the new solution will be accepted if its quality
is better than the candidate solution; otherwise, the new solution will be rejected. We
are now at llh4, and we continue with the same strategy to construct and apply the next
sequence of heuristics using the new scores and so on.

In this work we investigate the performance of three further variants of this
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 llh0 llh1 llh2 llh3 llh4 

llh0 1 1 1 1 1 

llh1 1 1 1 1 1 

llh2 1 1 1 1 1 

llh3 1 1 1 1 1 

llh4 1 1 1 1 1 
 

TransitionScore           ASScore 

 

 

 

 l=1 l=2 

llh0 1 1 

llh1 1 1 

llh2 1 1 

llh3 1 1 

llh4 1 1 

Figure 2: Initial score values of the HMM matrices for five low level heuristics

 llh0 llh1 llh2 llh3 llh4 

llh0 1 1 1 1 1 

llh1 1 1 1 1 2 

llh2 1 2 1 1 1 

llh3 1 1 1 1 1 

llh4 1 1 1 1 1 
 

TransitionScore           ASScore 

 

 

 

 l=1 l=2 

llh0 1 1 

llh1 1 2 

llh2 1 1 

llh3 1 1 

llh4 2 1 

Figure 3: Updated score values of the HMM matrices

method. They all adopt a similar selection strategy but differ in the reward mecha-
nism.

• Sequence-based Selection Hyper-heuristic with Linear Update (SSHH-L): Cor-
responding score values are increased linearly by t as a reward mechanism as long
as the best recorded solution in hand is improved; where t is the time elapsed in
seconds.

• Sequence-based Selection Hyper-heuristic with Non-linear Update (SSHH-N):
Corresponding score values are increased non-linearly by et/c as a reward mecha-
nism as long as the best recorded solution in hand is improved; where t is the time
elapsed in seconds and c is a constant assigned arbitrarily to 30 in this work.

• Sequence-based Selection Hyper-heuristic with Delta Update (SSHH-D): In-
stead of a predefined rewarding mechanism, the difference in objective value be-
tween the newly generated solution and the best recorded solution after the appli-
cation of the selected sequence of heuristics is used as a score value.

5 Results

5.1 Experimental Setup

The experimentation is conducted on an i7-4770K CPU at 3.50GHz with a memory
of 16.00GB. The Mann-Whitney-Wilcoxon test (Fagerland and Sandvik, 2009; Kruskal,
1957) is performed with a 95% confidence level in order to compare pairwise perfor-
mance variations of two given algorithms statistically. The following notations are
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Figure 4: A sequence-based selection hyper-heuristic utilising HMM; where LLHc and
LLHn are the current and next selected low level heuristics, respectively, and ASn is the
next selected sequence-based acceptance strategy

used: Given algorithm A versus algorithm B, (i) + (−) denotes that A (B) is better
than B (A) and this performance variance is statistically significant, (ii) A ≃ B indicates
that there is no statistical significant between A and B. In the first set of experiments,
eight selected instances from the ITC 2011 set (one instance per each country) are used.
The termination criterion is set to 200 seconds for the preliminary experiments.

5.2 Comparison of the Different Move Acceptance Methods

Table 2 summarises the performance of the sequence-based selection (SS) method with
the different move acceptance methods, where the SS prefix refers to the Sequence-
based Selection approach and the suffixes refer to the various move acceptance meth-
ods. As expected, the results confirm that the move acceptance method does not in-
fluence the overall performance greatly. Based on the Mann-Whitney-Wilcoxon test
with respect to the averages over 10 runs on the selected instances, there is no statisti-
cally significant performance differences between the different methods on almost all
instances. The only exception is on South Africa-Woodlands2009 instance, at which
simulated annealing seems to perform better than the others.

Based on the ranking strategy employed during the second round of ITC 2011, the
sequence-based selection method when combined with record-to-record travel move
acceptance method seems to perform slightly better than the other hyper-heuristic
methods as shown in Figure 5. Hence, SS-RR is taken under consideration from this
point onwards for further performance analysis, and we will refer to SS-RR as SSHH.

5.3 Comparison of SSHH to the Parametrised Sequence Approaches

In this section we describe a set of exhaustive experiments to determine the extent
to which sequences of heuristics are useful in comparison to single heuristics and
compared this with SSHH’s ability to discover these online. We implemented a sim-
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Table 2: Pairwise performance comparison of SS-HC, SS-SA, SS-GD, SS-RR and SS-LA
(row vs column) using Mann-Whitney-Wilcoxon test based on average over 10 runs for
eight instances

Brazil-Instance2 (BR) and Finland-ElementarySchool (FI) instances
BR SS-HC SS-SA SS-GD SS-RR SS-LA FI SS-HC SS-SA SS-GD SS-RR SS-LA

SS-HC ≃ ≃ ≃ ≃ SS-HC ≃ ≃ ≃ ≃
SS-SA ≃ ≃ ≃ ≃ SS-SA ≃ ≃ ≃ ≃
SS-GD ≃ ≃ ≃ ≃ SS-GD ≃ ≃ ≃ ≃
SS-RR ≃ ≃ ≃ ≃ SS-RR ≃ ≃ ≃ ≃
SS-LA ≃ ≃ ≃ ≃ SS-LA ≃ ≃ ≃ ≃

Greece-Aigio1stHighSchool2010 (GR) and Italy-Instance4 (IT) instances
GR SS-HC SS-SA SS-GD SS-RR SS-LA IT SS-HC SS-SA SS-GD SS-RR SS-LA

SS-HC ≃ ≃ ≃ ≃ SS-HC ≃ ≃ ≃ ≃
SS-SA ≃ ≃ ≃ ≃ SS-SA ≃ ≃ ≃ ≃
SS-GD ≃ ≃ ≃ ≃ SS-GD ≃ ≃ ≃ ≃
SS-RR ≃ ≃ ≃ ≃ SS-RR ≃ ≃ ≃ ≃
SS-LA ≃ ≃ ≃ ≃ SS-LA ≃ ≃ ≃ ≃

Kosova-Instance1 (KS) and Netherlands-Kottenpark2009 (NL) instances
KS SS-HC SS-SA SS-GD SS-RR SS-LA NL SS-HC SS-SA SS-GD SS-RR SS-LA

SS-HC ≃ ≃ ≃ ≃ SS-HC ≃ ≃ ≃ ≃
SS-SA ≃ ≃ ≃ ≃ SS-SA ≃ ≃ ≃ ≃
SS-GD ≃ ≃ ≃ ≃ SS-GD ≃ ≃ ≃ ≃
SS-RR ≃ ≃ ≃ ≃ SS-RR ≃ ≃ ≃ ≃
SS-LA ≃ ≃ ≃ ≃ SS-LA ≃ ≃ ≃ ≃

South Africa-Woodlands2009 (ZA) and Spain-School (ES) instances
ZA SS-HC SS-SA SS-GD SS-RR SS-LA ES SS-HC SS-SA SS-GD SS-RR SS-LA

SS-HC − − − ≃ SS-HC ≃ ≃ ≃ ≃
SS-SA + + + + SS-SA ≃ ≃ ≃ ≃
SS-GD + − ≃ + SS-GD ≃ ≃ ≃ ≃
SS-RR + − ≃ + SS-RR ≃ ≃ ≃ ≃
SS-LA ≃ − − − SS-LA ≃ ≃ ≃ ≃
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Figure 5: Comparisons of the different move acceptance methods when combined with
the sequence-based selection method. The vertical axis shows the score values using
ITC 2011 ranking strategy over 10 runs from eight instances

ple hyper-heuristic to create and evaluate sequences of heuristics rather than apply-
ing single heuristics. Given n low level heuristics {LLH0, . . . , LLHn−1}, we form
other sequences of heuristics of size 2 and size 3 and then invoke them successively.
The total number of sequences of low level heuristics is n + n2 + n3 in the overall:
{LLH0, . . . , LLHn−1, LLH0 + LLH0, LLH0 + LLH1, . . . , LLHn−1 + LLHn−1, LLH0 +
LLH0 +LLH0, . . . , LLHn−1 +LLHn−1 +LLHn−1}, where LLHi +LLHj +LLHk de-
notes the sequence of applying LLHi followed by LLHj and followed by LLHk.

We are able to present results for a sequence size of up to 3 where 3615 permu-
tations are investigated. There are 54240 permutations of 4 heuristics and an analysis
of this space was too computationally complex to execute here. The proposed SSHH
does not take the size of sequences as a parameter, but rather it learns the optimum size
during the optimisation (in an online manner).

10000 solutions are randomly generated and applied each sequence to these gener-
ated solutions over eight ITC 2011 instances (a representative instance from each coun-
try). The utilisation rate for each sequence is equal but that does not mean that applying
all these sequences would improve the quality of the input solutions. We therefore com-
puted the utilisation rate considering only improving moves per sequence and for each
instance. Table 3 provides the top five sequences that generate the highest utilisation
rate of improving moves. From the table, we observe that sequences of size 3 are the
dominants. This is perhaps to be expected as a greater movement in search space can
be accomplished with the application of three well selected heuristics, although poorer
performance could also perhaps be expected if the heuristics are not well matched. It
is clear from the table that heuristic 5 is particularly important for generating new bet-
ter solutions in these problems, and the 3-fold combination of LLH5 appears top for
4/8 instances. However, it should also be noted that for the other half, LLH5 is best
combined with other heuristics to deliver optimal performance. This study of heuristic
sequence behaviour is important in determining heuristic performance in context as
part of the overall search process, rather than as single application events.

Now that the potential for applying sequences of heuristics has been established,
the performance of two hyper-heuristic methods is compared, one method has a fixed
parametrised sequence size and the other is SSHH that learns the optimum sequence
lengths automatically during the search process. The selection method of the fixed
parametrised hyper-heuristic (FPHH) method selects at each decision point the size of
the sequence l randomly (limited to three in this work), and then selects randomly a
sequence of size l and applies it to the candidate solution. The same record-to-record
travel move acceptance method employed for SSHH is used in FPHH. Table 4 provides
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Table 3: The performance of applying sequences of low level heuristics of size one, two
and three and applying them on randomly generated solutions. LLHi-j-k denotes the
sequence LLHi + LLHj + LLHk

Instance First Second Third Fourth Fifth

Brazil-Instance2 LLH5-5-5 LLH1-5-5 LLH5-1-5 LLH5-0-5 LLH1-5-4
Finland-ElementarySchool LLH5-5-5 LLH5-5-1 LLH1-5-5 LLH5-0-5 LLH5-1-5
Greece-Aigio1stHighSchool2010 LLH5-5-5 LLH6-5-5 LLH5-5-6 LLH5-6-5 LLH5-4-5
Italy-Instance4 LLH1-5-0 LLH5-0-1 LLH5-0-0 LLH4-5-5 LLH5-13-0
Kosova-Instance1 LLH4-5-1 LLH5-4-4 LLH0-4-6 LLH5-4-0 LLH4-5-4
Netherlands-Kottenpark2009 LLH1-5-10 LLH4-5-5 LLH5-0-5 LLH5-3-5 LLH0-0-5
South Africa-Woodlands2009 LLH5-5-5 LLH5-0-5 LLH0-5-5 LLH5-5-1 LLH1-5-5
Spain-School LLH1-5-4 LLH5-4-4 LLH4-5-0 LLH4-4-5 LLH5-4-1

Table 4: Score of SSHH and FPHH for each selected instance over 10 runs which is com-
puted using the scoring scheme utilised in the second round of ITC 2011 competition
for ranking different approaches. The best score values are highlighted in bold

Instance SSHH FPHH

Brazil-Instance2 1.45 1.55
Finland-ElementarySchool 1.50 1.50
Greece-Aigio1stHighSchool2010 1.20 1.80
Italy-Instance4 1.40 1.60
Kosova-Instance1 1.20 1.80
Netherlands-Kottenpark2009 1.40 1.60
South Africa-Woodlands2009 1.60 1.40
Spain-School 1.50 1.50

the ranking score of SSHH and FPHH for eight ITC 2011 selected instances over 10 runs
using the ITC 2011 ranking method. The table shows that SSHH performs the best in 9
instances including two draws. This provides evidence that the size of the sequences of
heuristics should not be fixed, but rather that the hyper-heuristic method should take
the responsibility of detecting the optimum size of sequences during the optimisation.

5.4 Comparison of the Different Variants of SSHH

The performance of the different variants of SSHH described in Section 4 are inves-
tigated over eight ITC 2011 instances (a representative instance from each country).
Table 5 and Figure 6 summarise the performance of each variant based on 10 runs for
each selected instance using the ranking strategy employed in the second round of
the ITC 2011 competition. The results show that SSHH-L with linear update performs
overall better than SSHH, SSHH-N and SSHH-D. SSHH-L generates the best score in
four instances including one draw. SSHH-N obtains the best results in three instances
including a draw. The ranking results put SSHH-D third with best score in two in-
stances. SSHH performs worse than the other algorithms considering that the number
of instances for which it produces the best ranking score is zero.

The best and the worst performing methods (SSHH-L and SSHH) are taken for-
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Table 5: Score of each SSHH variant for each selected instance over 10 runs which is
computed using the scoring scheme utilised in the second round of ITC 2011 competi-
tion for ranking different approaches. The best score values are highlighted in bold

Instance SSHH SSHH-L SSHH-N SSHH-D

Brazil-Instance2 2.55 1.70 2.95 2.80
Finland-ElementarySchool 2.70 2.10 2.70 2.50
Greece-Aigio1stHighSchool2010 3.10 2.15 2.80 1.95
Italy-Instance4 2.80 2.30 2.70 2.20
Kosova-Instance1 3.00 2.30 2.00 2.70
Netherlands-Kottenpark2009 2.20 2.15 2.15 3.50
South Africa-Woodlands2009 3.05 2.15 1.95 2.85
Spain-School 3.20 1.80 2.80 2.20

0
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3

 

 

SSHH

SSHH−L

SSHH−N

SSHH−D

Figure 6: Overall scores of the different variants of SSHH using ITC 2011 ranking strat-
egy over 10 runs from eight instances

ward for the performance comparison to previously proposed approaches.

5.5 An Analysis of SSHH and SSHH-L Methods

Figure 7 depicts the average heuristic utilisation rate using SSHH over 10 runs of each
low level heuristic considering only invocations that generated improvement on the
best-of-run solution and AS=1 while solving two selected sample instances of Spain-
School and South Africa-Woodlands2009. Figure 8 shows the same but considering
both AS=1 and AS=2. It can be observed in Figure 7 that LLH0, LLH1 and LLH5 are
the most successful heuristics, generating the highest utilisation rate in both instances.
LLH2 seems to perform well in the Spain-School instance, and the same applies to
LLH6 in South Africa-Woodlands2009 instance. The remaining heuristics appear to
provide poor performance. One may notice from the figure that the most successful
heuristics are event-oriented operators (LLH0-LLH8) rather than resource-oriented op-
erators (LLH9-LLH14). Having said that and by examining Figure 8, the results show
that resource-oriented operators are useful when combined and applied within a se-
quence of operations.

We repeat the same experiments for SSHH-L. Figure 9 and 10 provide the average
utilisation rate when AS=1 and AS=1&2, respectively, while solving two selected sam-
ple instances of Spain-School and South Africa-Woodlands2009. Again and from Fig-
ure 9, LLH0, LLH1 and LLH5 are the most successful heuristics, generating the highest
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Figure 7: Average utilisation rate of each low level heuristic considering only invoca-
tions that generated improvement on the best-of-run solution and AS=1 from 10 runs
using SSHH while solving Spain-School and South Africa-Woodlands2009 instances
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Figure 8: Average utilisation rate of each low level heuristic considering only invo-
cations that generated improvement on the best-of-run solution and AS=1 & 2 from
10 runs using SSHH while solving Spain-School and South Africa-Woodlands2009 in-
stances
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Figure 9: Average utilisation rate of each low level heuristic considering only invoca-
tions that generated improvement on the best-of-run solution and AS=1 from 10 runs
using SSHH-L while solving Spain-School and South Africa-Woodlands2009 instances
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Figure 10: Average utilisation rate of each low level heuristic considering only invo-
cations that generated improvement on the best-of-run solution and AS=1 & 2 from
10 runs using SSHH-L while solving Spain-School and South Africa-Woodlands2009
instances

utilisation rate in both instances. We also observe from Figure 10 the involvement of
resource-oriented operators showing that they are useful when combined and applied
within sequence of heuristics.

Figure 11 provides the average probabilities of the HMM matrices for each low
level heuristic over 10 runs using SSHH while solving two selected sample problem in-
stances of Spain-School and South Africa-Woodlands2009. By examining the transition
figure for Spain-School instance, the following exploitative heuristics LLH0, LLH5 and
LLH1 appear to be more successful than others in delivering best-of-run solutions as
shown by the probability matrix in South Africa-Woodlands2009 problem instance. In
the latter, LLH9 is an exploration heuristic that needs to be combined with (preferably)
LLH1.

Figure 12 shows the average probabilities of the HMM matrices for each low level
heuristic over 10 runs using SSHH-L while solving the same two selected instances.
In the Spain-School instance, the heuristic LLH1 seems to dominate the search process
with the help of several exploration heuristics such as LLH2, LLH7, LLH11 and LLH13.
Sets of likely sequences have been generated using a roulette wheel simulator (Algo-
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Figure 11: Average probabilities of the HMM matrices for each low level heuristic from
10 runs using SSHH while solving Spain-School and South Africa-Woodlands2009 in-
stances
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Figure 12: Average probabilities of the HMM matrices for each low level heuristic from
10 runs using SSHH-L while solving Spain-School and South Africa-Woodlands2009
instances

rithm 1) and the final HMM probability matrices as input for the Spain-School and
South-Africa-Woodlands2009 problem instances. Table 6 summarises the results. Al-
though single heuristics are frequently used, the approach clearly identifies sequences
of size 2 and 3 as useful to the search. In the South Africa-Woodlands2009 instance, the
sequences LLH14-LLH5 and LLH9-LLH0 are identified amongst the top 10 generated
sequences. An interesting finding is that the exploration heuristics LLH9 and LLH14
are resource-oriented operators whilst LLH0 and LLH5 are event-oriented operators.
In the Spain-School instance, the sequence of size 3, LLH13-LLH9-LLH0, is also iden-
tified being generated 153 times. It should be noted here that this represents the set of
sequences generated from the final learned matrix for each problem and the approach
may also have identified alternative sequences during the search process.

5.6 Comparison of SSHH and SSHH-L to the Best Known Methods

Although the ITC 2011 set of instances is deprecated, we would like to obtain an ap-
proximate idea of the relative performance of SSHH and SSHH-L with respect to ITC
2011 solvers. For the comparisons with ITC 2011 solvers, a trial terminates after the
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Algorithm 1: Simulator

1 Let LLH = {llh1, llh2, . . .} represents set of low level heuristics;
2 Let TransitionScorellhc,llhn

represents score of moving from llhc to llhn;
3 Let ASScorellhn,l represents score of applying acceptance strategy l for llhn;
4 Let S represents the number of sequences to be constructed;
5 llhn ← SelectRandom(LLH); AS ← 2;
6 for i← 1, 2, . . . , S do
7 SEQ .Clear();
8 while AS == 2 do
9 llhc ← llhn;

10 llhn ← RouletteWheel(TransitionScore, llhc);
11 AS ← RouletteWheel(ASScore, llhn);
12 SEQ .Add(llhn);

13 end
14 RECORD .Add(SEQ);

15 end
16 return RECORD;

Table 6: The top ten constructed sequences of low level heuristics while solving Spain-
School and South Africa-Woodlands2009 instances using the developed simulator

Spain-School South Africa-Woodlands2009

Sequence Count Sequence Count

LLH1 2759 LLH5 1021
LLH0 1081 LLH0 595
LLH5 394 LLH1 338
LLH8 + LLH0 333 LLH14 326
LLH10 227 LLH14 + LLH5 263
LLH7 + LLH1 201 LLH2 + LLH5 259
LLH13 + LLH1 198 LLH6 229
LLH13 + LLH8 + LLH0 153 LLH10 200
LLH2 + LLH1 145 LLH13 189
LLH11 + LLH1 134 LLH9 + LLH0 187
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Figure 13: Comparisons of ITC solvers, SSHH and SSHH-L based on ITC 2011 ranking
strategy over 10 runs for each ITC 2011 instances

equivalent to timeLimit=1000 seconds is reached as the competition requires. A bench-
marking software tool provided at the competition website is used to report the equiv-
alent time value in the used machine. It reported that our machine should take 492
seconds per run. Using the results of the second round of ITC 2011 solvers provided at
the competition website, Figure 13 summarises the performance comparison of SSHH
and SSHH-L to the ITC 2011 methods (GOAL, HySST, Lectio and HFT) over 18 ITC
2011 instances, each with ten runs. The results show that the SSHH-L method is the
winner with a score of 2.22 in the overall, with SSHH slightly behind, indicating that
the sequence selection based approach produces best-in-class results on this problem
set.

Table 7 summarises the results on XHSTT-2014 benchmark over 10 runs. The
solvers (SSHH and SSHH-L) terminate as long as there is no improvement to the best
solution in hand for 200 seconds. At time of submission, our solvers managed to de-
liver 9 best known solutions, and match the best known solutions in 4 instances. The
performance is superior on most of the large instances including those from Australia,
Denmark, Netherlands and USA. They also perform well on the problem instances
from Greece and Kosova. The performance on the instances from Brazil, Spain, Fin-
land, England and Italy is average but still our solvers can deliver near best known
solutions. However, they cannot generate the best or near the best known solutions on
the problem instances from South Africa.

Considering the averages performance, SSHH-L is the winner in 18 instances in-
cluding 3 ties; while SSHH wins in 10 instances including 3 ties. Overall, the linear
nature of SSHH-L and it’s ability to weight improvements later in the search as more
important appears to preserve diversity and improve on the standard SSHH imple-
mentation.

6 Conclusion

The goal in hyper-heuristic research is to raise the level of generality by offering
search methodologies that are easier to use, cheaper to implement and maintain than
knowledge-intensive methods and yet deliver better average-case performance across
a range of problems.

A sequence-based selection hyper-heuristic framework is introduced in this study
whose selection component aims to discover sequences of heuristics.
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Table 7: The performance of SSHH and SSHH-L over 10 trials showing the average and the best obtained solution in terms of hardViola-
tionScore,softViolationScore on XHSTT-2014 benchmark. The table shows also the current best known quality of solution and the highest
known lower bound, as reported in the benchmark website (at time of submission, April 2015), per each instance. The best cost values
are highlighted in bold

Instance SSHH avg SSHH best SSHH-L avg SSHH-L best Best known Lower bound

Australia-BGHS98 5,548 0,520 5,542 0,493 1,386 0,0
Australia-SAHS96 2,15 0,2 2,15 0,2 0,24 0,0
Australia-TES99 2,99 0,61 2,89 0,65 0,125 0,0
Brazil-Instance2 0,48 0,10 0,35 0,10 0,5 0,5
Brazil-Instance4 7,116 2,117 6,114 2,117 0,51 0,51
Brazil-Instance6 0,163 0,101 0,129 0,101 0,35 0,35
Denmark-FalkonergaardensGymnasium2012 0,1807 0,1522 0,1806 0,1522 0,3310 0,285
Denmark-HasserisGymnasium2012 12,2863 12,2628 12,2916 12,2641 12,3124 0,7
Denmark-VejenGymnasium2009 2,2829 2,2731 2,2827 2,2720 2,4097 0,0
Spain-School 0,1025 0,517 0,940 0,517 0,336 0,334
Finland-College 3,49 0,8 2,22 0,8 0,0 0,0
Finland-HighSchool 0,43 0,7 0,27 0,7 0,1 0,0
Finland-SecondarySchool 0,103 0,89 0,105 0,89 0,83 0,77
Greece-HighSchool1 0,0 0,0 0,0 0,0 0,0 0,0
Greece-ThirdHighSchoolPatras2010 1,29 0,0 1,20 0,0 0,0 0,0
Greece-WesternUniversityInstance4 0,16 0,4 0,13 0,4 0,4 0,0
Italy-Instance4 0,169 0,38 0,62 0,38 0,34 0,27
Kosova-Instance1 0,18 0,3 0,18 0,3 0,3 0,0
Netherlands-Kottenpark2003 0,934 0,466 0,933 0,466 0,617 0,0
Netherlands-Kottenpark2005 4,1175 0,811 4,1161 0,811 0,1078 0,89
Netherlands-Kottenpark2009 12,14061 2,7495 13,8500 2,8505 0,9180 0,170
England-StPaul 29,1235 19,1294 31,1212 19,1306 16,2258 0,0
USA-Westside2009 0,582 0,512 0,584 0,512 0,697 0,0
South Africa-Lewitt2009 2,57 0,52 4,48 1,104 0,0 0,0
South Africa-Woodlands2009 14,0 9,0 15,0 10,0 0,0 0,0 26
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In this paper it has been shown:

• That the selection strategy of a hyper-heuristic is more important than the move
acceptance method for this range of problems.

• That sequences of heuristics are able to deliver improved performance over single
applications of a heuristic and that some problem instances benefit from the use of
multiple heuristic types working together in sequence.

• That sequence lengths are better to be optimised on a per instance basis rather than
randomly chosen.

• That an approach that prioritises heuristics that are able to generate better solu-
tions towards the end of the search performs better than an approach that does
not. This stands to reason, because as the search progresses, it becomes increas-
ingly difficult to find solutions that achieve better performance than the current
solution and so those heuristics capable of discovering these later on in the search
should be rewarded accordingly. This method also provides a mechanism for the
hyper-heuristic to modify its learned behaviour later in the search, something that
is possible, but less prevalent in the standard SSHH method.

In conclusion, the empirical results indicate that the proposed method is powerful
and an effective general search methodology performing better than the current state-
of-the-art methods in solving high school timetabling problems.

Future work will focus on the automated adaptation of the single parameter of the
method within the move acceptance component.
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Bilgin, B., Özcan, E., and Korkmaz, E. E. (2007). An experimental study on hyper-heuristics
and exam scheduling. In Burke, E. K. and Rudová, H., editors, Practice and Theory of Automated
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