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Abstract 

This study investigates petrophysical characteristics of lacustrine Permian Murteree and 

Roseneath shales in relation to reservoir evaluation of the most prospective gas shale plays in 

the Cooper Basin, Australia. Both shales were investigated for gas volumes by employing 

unconventional petrophysical techniques through a combination of source rock parameters 

acquired by geochemical analysis, and integrating the extracted parameters into log 

interpretation and core studies. Modeling mineralogical composition using wireline logs 

require the selection of a proper mineral model. In this study, the mineral model was built in 

the Interactive Petrophysics (IP’s) Mineral Solver module by integrating all regional 

sedimentological, petrographic, SEM (Scanning electronic microscope), pulse decay and X-ray 

diffraction data (XRD) from core and chip cutting samples.  This study developed a mineral 

grouping framework to assist in the selection of a proper model to easily solve complex shale 

gas reservoirs for gas volumes. Furthermore, the permeability of both shales depends on in-

situ confining stress and permeability of these cores and can be calculated through decay rate 

of a pressure pulse applied to experimental data.  Subsequent to the integrated study as 

explained above, it is concluded on the basis of extruded parameters (shale porosity, 

permeability, volume of kerogen, volume of brittle minerals and water saturation) that 

Murteree formation exhibits better potential than Roseneath formation in and around 

Nappameri, Patchawarra and Tenappera troughs, while poor potential is exhibited in the 

Allunga trough. The only location where Roseneath exhibits better potential is in Encounter-01 

well. 
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Introduction 

Advancements in drilling and well completion techniques over the last 20 years have resulted 

in the exploration of many unconventional liquid and gas reservoirs around the globe (Wust et 

al., 2015). Unconventional hydrocarbon reservoirs differ from conventional reservoirs in that 

they commonly represent both source and reservoir for hydrocarbon- generation and 

accumulation. During burial and diagenesis, some hydrocarbons may be lost due to migration, 

but much remains in place due to the low permeability of the host rock (Myers, 2008). To date, 

the vast bulk of unconventional shale gas has been developed in North America, with the 

minimal exploitation of this resource in other parts of the world (e.g. S-America, China, Europe, 

and Australia). 

       The Cooper Basin (Fig. 1) is widely regarded as one of the most prospective basins in 

Australia for shale gas. Its sedimentary succession hosts a significant amount of Australia’s 

onshore oil and gas, which has been in production, mainly for natural gas (with some liquids), 

since 1963. The basin is the largest onshore petroleum province in Australia (Hill and 

Gravestock, 1995) and has both conventional and unconventional reservoirs. The main 

hydrocarbon reservoir intervals in the basin are located within the Late Paleozoic Gidgealpa 

Group (Fig. 2). 

        After Santos successfully started gas production at the Moomba-191 in shale gas 

reservoirs, unconventional exploration expanded and various companies, including Beach 

Energy, Senex, Drillsearch, Strike Energy, Santos and a number of joint ventures, initiated shale 

and tight gas and oil exploration and evaluation programs in Cooper Basin. The exploration and 

exploitation history in the Cooper Basin means that significant infrastructure for gas 

exploitation is already present, which is advantageous to the development of shale gas and gas 

shale reservoirs. There are three main prospective deep troughs present in the basin which has 

the greatest unconventional oil and gas potential; the troughs are Nappamerri, Patchawara 

and Tenappera troughs (PESA, 2014). 

       Since earlier exploration concentrated on conventional clastic and carbonate reservoirs, 

only conventional logging was used to investigate the potential of conventional reservoirs. The 

logs include gamma ray, resistivity, neutron-density, and sonic log, with limited formation tests 



and rotary sidewall coring (Vallee, 2013). However, shale gas formation evaluation requires 

more than the logs available in the basin. Luckily, a small number of cores for the Roseneath 

and Murteree formations are available in the core archive of Department for Manufacturing, 

Innovation, Trade, Resources and Energy by the Government of South Australia (DMITRE).  

     The DMITRE cores from the Murteree and Roseneath shale intervals and wireline logs were 

interpreted in this study to evaluate the potential for lacustrine shale gas reservoirs in the 

Cooper Basin.  Integration of cores and logs are presented in Table. 1-2. The following 

parameters were taken from both core/cuttings and logs and matched with each other in order 

to get these parameters from top to bottom of the formation. Total organic carbon content 

(TOC) from  pyrolysis, powder x-ray diffraction (XRD), permeability(pulse decay) porosity, grain 

density and water saturation (Sw) data were all measured and compiled in this project.   

      The primary aims of this study are: 1) to determine the shale gas potential of lacustrine 

shale by estimating organic content, mineral content, porosity and permeability of the 

Roseneath and Murteree shales; 2) to make a mineral and petrophysical model which can be 

used to help analyse and evaluate nearby wells  ; 3) to measure permeability from same core 

plugs; 4) to investigate the petrography and perform SEM analysis of selected core samples for 

mineralogical analysis; and 5) to develop a simple workflow which can be adapted even with 

handful of conventional logs. 

 

Methodology 

     This study presents an integrated analysis of drill core, wireline logs, geochemistry and XRD, 

which are utilized in the mineral and petrophysical modeling presented below. Wireline data, 

including gamma ray (GR), sonic (DT), density (Rhob), Photo electric effect (PEF) neutron(NPHI) 

and resistivity (MSFL, LLS, LLD) logs and drill core samples collected from twenty one wells in 

the Nappameri, Allunga, and Tenappera troughs were available for study. Core plugs were 

sampled and quality checked at the Department of Manufacturing, Innovation, Trade, 

Resources and Energy (DIMITRE) South Australia and Queensland Department of Natural 

Resources and Mines core library facilities (DNRM). Wireline data (Log ASCII Standard-LAS files) 

for  GR, Rhob, PEF, Nphi, DT and MSFL, LLS, LLD records were loaded into IP 4.3 (Interactive 



petrophysics) Senergy software, first edited/reviewed and then integrated with core and 

cutting data for mineral modeling recognition in the intersections of the Roseneath and 

Murteree shales in exploration wells. 

     Detailed methodology of mineral modeling is reported in (Jadoon et al., 2016), this study 

further extends the mineral modeling methodology to calculate the volume of kerogen along 

with lithology volumes in wells having a complete log and core data and then this methodology 

extends this to wells having limited data with the help of parameters taken from wells having 

full data. All sample location information, including formation, well, stratigraphic position and 

types of analyses performed for each sample are provided in Appendix-1. Petrophysical 

properties estimated include shale porosity, permeability, water saturation, kerogen, mineral 

volumes and CEC are reported in (Tables 3-4).  

     The database is divided into key and non-key wells according to data available. The wells 

which had full logs and core data were termed key wells and the wells having limited data were 

termed non-keys wells (Table-02). The parameters of key wells were used in non-keys wells to 

extend the approach defined in all wells across the basin. Table-01 shows which information 

we can get from which kind of data. Below are the steps which are necessary to perform any 

multiple mineral modeling for evaluation of gas shale reservoirs. 

     First re-normalize the XRD and TOC weight percent values so that all the minerals and 

organic content sums to 100%. Then convert weight percent to volume percent by equation 1,  

WVP = (DW%) * (1-PHIT) * (RGD)/ (MGD)………………………………………………………………1 

Where, 

WVP = Wet volume percent, DW% = Dry Weight %), PHIT= Total Porosity, RGD = Rock Grain 

Density, MGD = Mineral Grain Density.  

Use rock grain density and porosity from the routine core analysis. If a porosity 

measurement doesn’t consist of enough data points (as the case of this project) then it is 

first needed to calculate porosity and match with core sample before converting weight 

percent to volume percent. The details of porosity quantification and eradication of clay and 

kerogen effects from the porosity are given in the porosity quantification in detail. The 



conversion from weight to volume percent can be done by using the mineral solver 

processing utility in the software package (IP4.3), which converts weight percent into 

volume percent using the equation 1. After conversion, put kerogen as a separate mineral 

along with dominant and auxiliary minerals to solve for its volumes.  Common default values 

of kerogen density are between 1.3 to 1.35 g/cc, so 1.30 g/cc density for kerogen was used 

consistently in the project. It is ensured that the output curves don’t exceed the input curves 

because software can’t solve more minerals than input curves. The default values for minerals 

are set to those that have been put in the mineral solver. Finally, set parameters for Sw before 

running the model for several iterations until a fair match is achieved between the XRD volume 

percent and mineral solver output and input curves. 

      Water saturation has been calculated by the classical shaly sand equations i.e, Dual water 

equation (Clavier et al., 1977), Waxman Smit’s equation (Waxman and Smits, 1968) and 

Juhasz’s equation (Juhasz et aI., 1981, Normalized Qv). After attaining reasonable match 

between log and core outputs, the parameters and approach specified above has been used in 

evaluating the adjoining wells with no core data. 

    The Permeability of the core is calculated through decay rate of a pressure pulse applied.  

Sample preparation included cutting, grinding, drying and pre-stressing, which has been 

conducted at Trican Lab Calgary Canada. All the measurements have been using helium as a 

test gas (Cui et al., 2009; Kowalczyk et al., 2010). The pulse decay method involves creating an 

instant pressure difference or pulse commonly less than 50 psi between the upstream and 

downstream reservoirs a tightly jacketed core plug in a biaxial core holder. The decay of the 

initial pressure pulse is monitored with time and used to calculate the permeability along the 

axis of the core plugs. Pore pressure of samples is maintained at about 1000 psi to reduce the 

gas diffusion effects. Increasing confining pressure that imitates the in-situ reservoir stress path 

can be applied to the jacketed samples in the core holder and the corresponding permeability 

is then measured. While the sample was under compressive stress the pulse decay permeater 

was used to measure the permeability of cut samples at certain confining pressures and flow 

rates. 



Quantification of porosity: 

       Since very few core porosity data points were available for the project, a log-derived 

porosity curve was created from the density curve. This curve was then used in the 

transformation of XRD weight percent to volume percent. TOC remains indistinguishable from 

porosity on the density log in organic shales (Cluff, 2012).  A kerogen correction needed to be 

applied to the porosity computed with density log because the conventional method can lead 

to overestimation of porosity. Better porosity estimates were computed either by density log 

or by stochastic well log interpretation. Porosity was computed for conversation of weight 

percent to volume percent density method. Then the porosity was computed with following 

density log equations (Krygowsk, 2003).  

 

фD = (ρM - ρB) / (ρM - ρF) 

Where 

фD = Density porosity 

ρM = Matrix density 

ρB = Bulk density from the density Log 

ρF = Fluid density 

 

Porosity correction for Kerogen 

фDKC = фD - (VKF * фDK) 

Where, 

фDKC = Density porosity corrected for kerogen content. 

фDK = Density porosity of kerogen. 

VKF= Volume of Kerogen in fraction 

 

Mineral Modeling Methods 

       A mineral model is necessary for understanding any gas shale reservoir. It helps to quantify 

each mineral’s volume present from top to bottom of a reservoir, providing indications of 

brittleness and ductile nature of reservoir, in addition to prospectivity.  It helps to correct the 



porosity from extreme clay and kerogen effects.  Evaluation of shale gas reservoirs can be done 

by integration of the XRD, wireline logs and geochemical data (Bust, 2011). This can be 

achieved by performing XRD analysis on core or cutting data, which can be matched with the 

log-driven mineral volumes output to get a consistent litho-curve in volume percent from top 

to bottom of a reservoir. In stochastic approach, models can be used in adjoining wells because 

of the utility of reconstruction curves which are reconstructed from the built petrophysical and 

mineral model. If the input curves and reconstructed curves match well then it gives an 

assurance that the model is appropriate for that region too. If it doesn’t match then reiteration 

can be done to match them.   

       Shale units of REM (Roseneath Epsilon Murteree) consist of about 10 or so essential and 

auxiliary minerals, including predominant minerals like quartz, carbonates, feldspar, titanium-

oxides, illite, kaolinite and muscovite. Only four log measurements were available for most of 

the wells, although a few wells had complete conventional log suites. The limitation with 

multiple mineral analyses that it can’t solve more minerals than the number of input curves 

handicapped the analysis because 4-5 mineral curves were present for most of the wells. So, in 

order to solve the formation having 10 minerals, the mineral should have to be grouped on the 

basis of their genesis to proper evaluation of reservoirs. The grouping was done on the basis of 

the genesis of the minerals constituents. For Example, muscovite and chlorite were grouped in 

illite mineral because illite was dominant amongst the clay minerals. Albite and K-feldspar were 

grouped with quartz mineral because of two reasons, quartz was the most dominant mineral 

amongst brittle minerals and the proportion of albite and K-feldspar was nominal. Mg-siderite 

was grouped in siderite mineral because both are carbonates.  Tri-oxides being brittle minerals 

were grouped with other brittle oxide minerals. Two different approaches were used to make 

two different models for this study due to data constraints. For wells having all conventional 

log suits available, mineral volumes for quartz, siderite, illite/mica, kaolinite and kerogen were 

calculated separately (Figs. 3-5).  For wells having only sonic, resistivity and GR logs, the brittle 

minerals were grouped as one mineral and the clay minerals were grouped as another mineral 

along with kerogen as a separate mineral (Fig.6). For wells having limited data, adjoining 

mineral model was used to solve for Sw if there was full conventional log data (Fig.7). The 

sensitivity of sonic logs to textures rather than volumes skewed the process but the 



reconstructed curves utility of multiple minerals was used to validate the model. The mineral 

model was validated by the direct comparison of mineral compositions obtained by XRD 

analysis of the core, which was later transformed to volume percent. 

Results and Discussion 

      The results for both Roseneath and Murteree formations have been tabulated in the 

table (Table 3). Average porosity, clay volume, total organic content, water saturation and 

permeability are presented.  The averages of properties measured indicate that Murteree 

Formation exhibits better potential in terms of Sw. The porosity and TOC are significant in 

both the formations in Allunga and Tennapera troughs which can be conductive for 

harbouring of adsorb gas. Grouping of minerals on the basis of their genesis has provided a 

good means for making of a reliable mineral and petrophysical model which give favourable 

results in terms of required properties. The stochastic mineral models provide the best 

means to calculate the tabulated properties (Bust et al., 2011 and Ramez et al., 2011).  

Plug permeability measurements 

      The permeability of Roseneath and Murteree was measured at pore pressure of (10- 70 

Mpa) (1400-990 psi). Pulse Decay permeability (PDP) data is presented from Roseneath and 

Murteree shales samples Dirkala-2, Encounter-1 and Ashby-1 wells (Appendix-1 Table.7).  

Permeability provides an indication of matrix permeability but does not account for large scale 

fabric or microfractures. Permeability measured on sample plugs under confining stress with 

pressure -pulse-decay shows a large spread in permeability with several orders of magnitude 

differences between the lowest and the highest samples (Figs 8-10). Roseneath and Murtreee 

shales samples were measured perpendicular to bedding plane direction. The samples are in 

outlier and after testing, showed a marked fracture network that developed under confined 

pressure.  Roseneath Shale in Encounter well confining pressure from 23.77- 61.44 Mpa (23.77-

61.44 Mpa). The Helium gas pressure 20 to 1024 psi (0.14 to 692 Mpa). In Murteree Shale 

Dirkala-2 confining pressure from 1400 to 5838 psi (9.65 – 40.25Mpa), while in Ashby confining 

pressure 2426 to 6390 psi (16.75- 44.06 Mpa). The Helium gas pressure in Murteree 993 to 

1042 psi (6.85 to 7.19 Mpa). These data were fit to an effective stress law. The permeability 



under stress results for the Encounter-1, Dirkala-2 and Ashby-1 wells were selected for 

variation. Permeability versus modified effective stress is plotted in (Figs. 8-10) using the same 

effective stress law for each sample. Most of the samples less than 1md indicating the rocks 

are more sensitive to changes in pore pressure. Noting that permeability as a function of 

modified effective stress forms a trend enables us to attribute all permeability variation 

observed >1000 psi (7.4 Mpa). Permeability units for samples Encounter-1, Dirkala-2, Ashby-1, 

are in milidarcy range. All the wells lie less than 1 md except Tirrawara-2(Fig. 11).  In 

Petrophysical model the log derived permeability in Dikala-2, Ashby-01, and Encounter-1 

match very well with core measured permeability. It was estimated by Coates equation.  

Resistivity of Water: 

        Formation water resistivity (Rw) was computed by a combination of SP, apparent water 

resistivity calculated from logs and Picket cross-plots (Figs. 12 -13). A minimum value of Rw for 

both the formations was used because the determinations of the shale-gas potential of the 

Roseneath and Murteree formations are at the initial phase. An optimistic approach was 

followed to begin with since the projects are large scale. Generally, in the Permian shale wells 

in this study area Rw corresponds to a water salinity of 6000-8000 ppm Nacl. It also match to 

the regional Rw from analyses of water from drill stem tests that are taken from the well 

completion reports of Ashbay-01, Dirkala-01, 02, Encounter-01. 

Water Saturation: 

      Water saturation is generally computed by the conventional Archie approach which 

requires total porosity, resistivity, Rw, m, n and a .There is no assurance that the rocks being 

analyzed act like Archie or shaly-sand systems (Cluff, 2012). The water saturation (Sw ) for this 

project is calculated by using the standard shaly sand equations, which include the Waxman-

Smits equation (Waxman and Smits, 1968), the Dual Water equation (Clavier, 1977; Coates and 

Dumanoir, 1984) and the Juhasz equation Normalized Qv (Juhasz, et., 1981).None of these 

equations can be considered as ‘the best’ equation since such equations tend to give better 

results in some situations rather than others and usually for unknown reasons. The Juhasz 

equation was selected initially because no Cation Exchange Capacity (CEC) data from core 



samples were available. In the absence of special core analysis, (SCAL) Qv can be calculated by 

logs through Juhasz’s method and replaced in the W-S equation. The Qvn is defined as 

normalized Qv:  Qv  = Qvn/ Qv shl. 

      The use of Juhasz’s equation includes the assumption that the approach can be applicable 

to formations of constant salinity and clay mineralogy; the zones conforming to the 

assumptions specified above are facilitated by pattern recognition based on Qv(cation 

exchange capacity per unit total pore volume)and log response in general (Juhasz et al., 1981, 

Normalized Qv),(Figs.15 and 16). Historically Qv has been calculated by core data and is 

correlated with some appropriate logs in order to define the Qv profile over the hydrocarbon 

bearing sections. Here it was correlated with porosity and a linear relationship between Qv 

total porosity (фT) was observed, which was extended to the hydrocarbon bearing sections. 

         The dispersed clay (generally clay and usually authigenic), laminated clay/shale (probably 

shale), and structural clay (shale rip-up clasts) were assumed not to affect the estimation of 

total porosity (фT) and water saturation (Sw).The shale gas petrophysical models define the 

existence of additional conductivity due to clay surface Cation Exchange Capacity (CEC) to the 

conductivity due to normal brine in the reservoirs. The additional conductivity exerts adverse 

effects when the water in the formation is relatively fresh. The Sw calculations are very 

sensitive to the additional conductivity measurements (Waxman and Smits, 1968). The 

additional conductivity is usually shown in terms of the Cation Exchange Capacity normalised to 

the total pore volume (Qv) (Waxman and Smits, 1968). 

Where,  

a = tortuosity factor  

m = cementation factor 

n = saturation exponent 



Replacing Qv with log data: 

       The derived Qv or pore volume concentration of clay exchange cations (meq/mL) was then 

correlated with total porosity (фT) in order to define the Qv -profile over the hydrocarbon 

bearing sections for calculation of Sw. Qv -total porosity (фT) correlations have been used in the 

past for validation of Qv values so it was used in the model (Juhaz,1971).The parameter B 

(equivalent conductance of the Na ⁺ exchange cations mho.m⁻¹/ meq.com⁻³) has been 

experimentally defined by Waxman and Thomas to be a function of salinity and temperature. 

The approximate values can be computed by the expression (Waxman et al., 1974) 

B = -1.28 + 0.225t – 0.0004059t²/1  + Rw ¹̇
.
²³ (0.045t – 0.27) 

Where t is in °C and Rw in ohm.m.  

Juhasz 1971 clearly illustrates that BQv computed for any shale volume is the difference 

between the two water conductivities or the apparent water conductivity of the water-bearing 

shaly sand and the conductivity of the formation water. Knowing B, Qv can be calculated by the 

following equation with the help of resistivity and porosity logs, 

Qv = Cwe – Cw /B = 1/B (ф-m /Ro – 1/ Rw) 

This approach has been successfully used when there is no core derived CEC is available (Juhasz 

et al., 1981).Qv obtained from this equation was then plotted (Fig. 14) against the 

corresponding total porosity (фT) in order to define a Qv - фT relationship either in the form of  

Qv = a фT ^-b   

Or Qv = a/фT –b  

Where ‘a’ and ‘b’ are the entered Qv a and b constant parameters taken from the cross-plot 

(Figs. 14) since the true relationship between Qv and фT is a reciprocal, (Qv = CEC/PV), the Qv – 

1/фT plot is always a straight line in shales where it meets the assumption specified above 

(Juhasz et al., 1981).  A linear relation between Qv and 1/ фT was observed on the cross-

sections (Fig. 14) in water zone. 



Petrography and SEM of the Roseneath and Murteree shales 

           On the basis of detailed petrographic analysis of the Permian Murteree and Roseneath 

shales, discrete mineralogy has been recognized in this study. Thin section and SEM 

descriptions focus on the morphology of mineralogy, texture, quartz-mud ratio and kerogen. 

The kerogen is  classified on the basis of  maceral analysis in the  Roseneath and Murteree 

shales in Cooper Basin are generally thought to have originated from the abundant dispersed 

organic matter (3 to 6% TOC wt) (Jadoon et al., 2016).  The Roseneath and Murteree shales are 

very heterogeneous formations. Clay-rich intervals with coal interbeds can easily be identified 

by visual inspection of the core. XRD analysis demonstrates that both shales primarily contain 

clay minerals; kaolinite, illite, muscovite and quartz (Appendix-1). The shales are composed 

mainly of clay, authigenic quartz, siderite and kerogen. Thin section images show that organic 

matter is present and aligned parallel to bedding planes accounting for the TOC  (as 

determined from logs and core). SEM and thin section analyses provide much needed visual 

evidence to understand how the porosity and fractures are distributed at the micro-scale. 

 

Uncertainty analysis: 

       Uncertainty analysis was used to estimate the errors in a petrophysical analysis. The 

petrophysical analysis was aided with the most reliable core studies, most of the core derived 

parameters (mineral constituents, porosity, TOC, permeability) were matched with 

petrophysical driven parameters except for Sw. The core derived Sw couldn’t be validated with 

the log derived Sw because the core derived Sw was too low to be considered reliable. The 

shale reservoirs consist of clay which consists of bound water and the small sediment size is 

always related to higher irreducible water, so Sw of 0.03-0.09 can be taken as reliable outcome 

keeping in view the above constraints. For mitigating the Sw issue, all the parameters were 

matched with core parameter and log-derived qv was validated with the representative clay 

interval to calculate the Sw. It became inevitable to run the sensitivity analysis on the 

calculated Sw to check for the sensitivity of the input parameters. The whole results of the 

petrophysical campaign are tabulated in the (Tables 4-5). The tornado chart (Fig.17) shows the 

impact of the uncertainty of each variable used in the uncertainty analysis. The Tornado chart 



shows that the largest impact on the water saturation (Sw) calculation is of Porosity of shale, 

bound water, m exponent and resistivity respectively. This further supports the idea of having 

core derived CEC to calculate Sw with better accuracy. 

Conclusions 

       On the basis of porosity, permeability, TOC, Sw, mineral model and petrophysical model 

outcome, the Murteree Shale exhibits better potential basin-wide than the Roseneath Shale, 

which looks prospective in and near Encounter-01 well area in (Table. 3).  

· Multiple mineral analysis yields better results than simple deterministic petrophysical 

analysis.  The matching of input curves and output curves utility of multiple mineral 

analyses makes it a better choice to validate the model in surrounding of the analysed 

well.   

· A mineral model can only be validated in an area if the XRD mineral analysis is present, 

which can be grouped according to a necessity to compute output. This can also be done 

by acquiring ECS logs but they still needs to be calibrated against a more direct 

measurement i.e. XRF and XRD. 

· The Juhasz normalized Qv approach can be used in the evaluation of shale gas reservoirs 

with considerable accuracy even when the reservoir consists of relatively fresh water. In 

fresh water formations the Sw estimation is very sensitive to bound water (Dual water 

model) and Qv (Juhasz), so it need to validate these parameters to representative shales. 

It was done by correlating Qv with representative shale (Fig. 14). 

· On the basis of uncertainty analysis, caution is required to compute porosity of shale, 

bound water, m exponent and processing and environmental corrections of resistivity. 

· The dean stark Sw was not useable because it was giving too low of values. It may be 

either due to cores were lying for years in a yard to extreme environmental conditions 

or that the cores were mishandled.  

· PDP results show permeability of Roseneath and Murteree to be more sensitive to 

changes in confining pressure rather than pore pressure. 



Future Considerations: 

· To fully understand the shale gas potential of the basin there is an intense need to run 

Elemental Capture Spectroscopy (ECS), Nuclear Magnetic Resonance (NMR) and 

extensive coring along with conventional wireline logs. This would greatly enhance the 

core-to-log tie and would aid in understanding of the pore geometry of the shale gas 

reservoirs, subsequently helping in better understanding the shale gas reservoirs and 

their producibility. This study also demonstrates the importance of obtaining the Cation 

Exchange Capacity (CEC) from the core along with Archie exponents and capillary 

pressure data. 
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Figure 1: Map of study area, star symbols showing cored wells and blue dots showing well locations in 

the Cooper Basin, Australia (modified after Chaney et al., 1997). 

Figure 2:  Stratigraphy of the Cooper Basin (PIRSA, 2007). Arrow shows the study interval that includes 

the Roseneath and Murteree shales. PIRSA 200171_2 and 200171_004. 

Figure 3:  Comparison of petrophysical model and core data from the Roseneath Shale of the 

Encounter-1 well: gamma ray (GR), resistivity (M2RX, M2R2), Density (RHOB), neutron 

(PHIN) and sonic (DT) logs. Mineralogical model demonstrating composition of clays, Illite - 

arylide yellow,  kaolinite -olive green, siderite- blue shading, quartz- yellow, and kerogen 

with black colour. Red dots represent XRD core data. Volume of silt and clay is depicted in 

Track 15 and Track 16 shows log derived permeability matched with core derived 

permeability depicted by red dots. 

Figure 4:  Comparison of petrophysical model and core data from the Murteree Shale of the 

Ashbay-1 well: Gamma ray (GR), resistivity (LLD, LLS, and MSFL), Density (RHOB), neutron 

(PHIN) and sonic (DT) logs. Mineralogical model demonstrating composition of illite in 

arylide yellow , Kaolinite -olive green, siderite- blue shading, quartz- yellow, and kerogen 

with black colour. Red dots represent XRD core data and porosity and permeability. Volume 

of silt and clay are depicted in Track 16
 
while Track 17

 
shows comparison of log derived 

permeability with core derived permeability. 

Figure 5: Comparison of petrophysical model and core data from the Murteree Shale of the 

Dirkala-02 well: Track-1 to 16. Track-1: gamma ray (GR), Track-3: Resistivity (RESS, RESM, 

RESD), Track-4: Caliper (CALI). Track-05: Density (RHOB), Neutron (NPHI) and sonic (DT), 

Track 12: Estimation of Porosity,  In Track 13: Mineralogical model demonstrating 

composition of illite in arylide yellow colour, Kaolinite -olive green, siderite- blue shading, 

quartz- yellow, and kerogen with black colour. Red dots represent XRD core data, Track15: 

volume of silt and clay, Track 16:  Shows permeability. 

Figure 6: Comparison of well log interpretation and core data for Moomba-73 well, Murteree 

shale section: Track1: gamma ray (GR), Track4: Resistivity (LLS, LLD), Track5: Caliper (CALI), 

Track6: Sonic (DT) Track9: Estimation of Porosity, Mineralogical model demonstrating 

composition of clay in green colour, quartz- yellow, and kerogen with black colour. Track 12: 

showing match between input and model generated sonic curve, Track 13: showing match 

between input and model generated Gamma ray curve, Track 14: Shows log derived 

permeability. 



Figure 7: Mineral model for the Murteree Shale in Dirkala-01 well. No core data was present 

for this well so the output parameters of Dirkala-02 were used as input for this well. Track 8: 

mineralogical model demonstrating composition of illite in grey colour, kaolinite -olive 

green, siderite- bright green shading, quartz- yellow, and kerogen with black colour. 

Figure 8: Corss-plot between permeability and total confining pressure:  Permeability points were 

selected for true effective stress values of 18, 39, and 62 MPa to get a relationship between the 

permeability and total confining stress. It was later used to remove the overburden effects. The 

sample represents a depth of 3387.39 of Encounter-01 well.  

Figure 9:  Corss-plot between permeability and total confining pressure:  Permeability points were 

selected for true effective stress values of 9, 23, and 33 MPa to get a relationship between the 

permeability and total confining stress. It was later used to remove the overburden effects. The 

sample represents a depth of 1892.8 of Dirkala-02 well.  

Figure 10: Corss-plot between permeability and total confining pressure:  Permeability points were 

selected for true effective stress values of 15, 32, and 45 MPa to get a relationship between the 

permeability and total confining stress. It was later used to remove the overburden effects from core 

permeability. The sample represents a depth of 2080.11 of Ashbay-01 well.  

Figure 11:  Permeability versus depth plot of samples from 5 different wells Encounter-1, 

Tirrawarra-1, Dirkala-2, Big Lake 48(South Australia) Ashby-1 and Epsilon (Queensland area) 

Permeability is in range of milidarcy md in all wells except Tirrawara-2 and Epsilon-2. 

Figure 12:  Picket plot of resistivity (Ohm.m) against total porosity (V/V) for Ashbay-01 well 

showing a classical example to find Rw in water zone. The linear trend at the south west of 

the cluster represents a water wet zone and Ro line was set at its base. An Rw of 0.5 was 

computed. Picket plot being graphical representation of Archie equation shows wet point in 

linear form. 

Figure 13: Picket plot of resistivity (ohm.m) versus total porosity (V/V) a threshold of 0.25 was 

set in order to take Rwb in the shaly part of the formation.  Rwb of 0.11 was computed. 

Figure 14: Cross plot between the PHIT and App Qv, a linear relationship can be seen in green 

water wet interval. Waxman and Smit’s ‘a’ and ‘b’ are determined by this cross-plot. The 

blue circle shows area of Glauconite and red circle shows area of Orthoclase. Both the 

circles are situated at higher Qv value suggesting that both the minerals have Qv higher than 

other clay minerals. Since the log derived Qv should be correlated to an appropriate 

porosity measurement in order to define a Qv –фT   relationship, either in the form of Qv = a 

фT ^-b  Or Qv = a/фT –b. The obtained relationship is then applied to the hydrocarbon 

bearing section to calculate Qv. 

Figure 15: Kerogen embedded in a clay-rich matrix with low porosity in the Murteree Shale in Dirkala-2 

well. Open pores measure from 10-50 nm to ~ 2 µm.  Some authigenic quartz coatings are observed 

(Jadoon et al., 2016) 

Figure 16: Photomicrograph of an organic rich shale in Murteree Dirkala-2 showing well-opaque 

organic material nearly 2mm wide. Cross Polarized light (60X). 

 



Figure 17: shows the impact of the uncertainty of each variable used in the uncertainty analysis. 

The Tornado chart show that that the largest impact on the water saturation (Sw) 

calculation is of Porosity of shale and bound water resistivity, followed by m exponent and 

resistivity respectively. This further supports the idea of getting special core analysis (SCAL) 

to determine core derived CEC, electrical properties (a,m & n)  to calculate Sw with better 

accuracy. 

 

 

Table.1: Showing use of core and log data (modified after Cluff, 2012) 

Property of Interest Core data Log data 

Porosity Crushed dry rock 

He porosimetry 

Density (mostly) 

TOC Rock Eval GR, density, resistivity 

Water saturation As- received retort or  

Dean-Stark 

Resistivity +kerogen corrected 

porosity 

Mineralogy XRD, SEM, Thin section, ICPMS Density, neutron, PE, ECS-type 

logs 

Permeability Pulse decay Permeability Core plugs 

Geomechanics Static moduli DTC,DTS,RHOB, & Synthetic 

substitutes 

Geochemistry R0, S1-S2-S3, etc. Resistivity 

 

 

Table.2: Showing the methodology for Petrophysical analysis, modified after (Bust et al., 

2011) 

Key wells 

 

Non- key wells 

TOC Determination 

Core-TOC measurement (Rock-Eval 

Pyrolysis/Leco TOC) 

Log standard logs (density, spectral GR, 

resistivity, sonic). 

Log-standard logs (density, spectral, GR, 

resistivity, sonic) 

 

Log VS TOC  

relationship 

TOC Determination 

Log- standard logs (density, 

spectral GR, resistivity, sonic). 



Mineral Modelling 

Core –XRD, SEM, Staining, , SPECTRA, ICPMS 

Log-Spectral gamma, Mineral Elemental logs. 

 

Mineral end- 

point model 

Mineral Modelling 

Log-Standard logs for multi 

minerals analysis (density, 

neutron, PEF, GR). 

Qualification of Porosity 

Core – GRI data, grain density 

Log- mineral model (grain density), density, 

sonic. 

 

Estimation 

Kerogen 

Qualification of Porosity 

Log- Standard logs (density) 

Evaluation of Water Saturation 

Core- GRI data, water salinity 

Log- Standard logs (density, resistivity). 

Shaly sand  

parameters 
Evaluation of Water Saturation 

Log- Standard logs (density, 

resistivity). 

 

Table 3: Roseneath, Murteree Shale Shows key information of porosity, VCL, TOC, Sw and 

permeability. 

Well name Shale Avg Phi% Avg Sw% Avg VCL% Avg TOC 

wt % 

Permeability   

nd 

Dirkala-1 Roseneath 2 100 50 1.5 5.5 * 10
-5

 

Baratta-2 Roseneath 4 90 75 1 - 

Ashbay-1 Roseneath 4 76 48 1.5 - 

Moomba-73 Roseneath 2 63 47 4 5.1 * 10
-5

 

Toolache-N-1 Roseneath 5 70 53 2.6 - 

Moomba-66 Roseneath 4 60 50 3 6 * 10
-5

 

Toolache-39 Roseneath 5 90 55 1.8 - 

Big Lake-70 Roseneath 3.5 - 80 - 4.5 *10
-6

 

Della-1 Roseneath 1.5 95 58 0.9 - 

Dirkala-2 Roseneath 3 90 60 1 3 * 10
-5

 

Encounter-1 Murteree 4.5 60 60 3.5 1.5 * 10
-5

 

Dirkala-1 Murteree 10.2 60 52.1 1.6 3.5 * 10
-5 

Barata-02 Murteree 3.5 85 70 1.1         - 

Ashbay-01 Murteree 3.6 65 41 1.4 5.1 * 10
-5 

Moomba-73 Murteree 8 59 55 4.1 4.1 * 10
-5 

Toolache-N-1 Murteree 4.8 50 54 3.3        - 

Moomba-66 Murteree 4.4 62 49 3.3 3.5 * 10
-5

 

Toolache-39 Murteree 6 79 50 2.5         - 

 



Big Lake-70 Murteree 3.2 - 75 - 4.14 *10
-6 

Della-01 Murteree 4.1 55 55 2.1         - 

Dirkala-02 Murteree 10 48 48 1.6 3.8 * 10
-5 

Encounter Murteree 6 55 57 2.2 1.92 * 10
-5 

 

Highlights 

· Format the whole paper is changed according to the reviewers  

· Paper name is modified 

· Delete some unrelated information in the Geological Setting part. 

· Changed the map and stratigraphy section 

· Add the Pulse decay data and Figs (Permeability derived from core plugs and match with 

Petrophysical models). 

· Improved the Petrophysical models and mineral model with kerogen precisely rather than 

TOC and add the permeability track in the model and tie up with core. Add the more tracks 

in the models. 

 



  Figure 1: Map of study area, star symbols showing cored wells and blue dots showing 

well locations in the Cooper Basin, Australia (modified after Chaney et al., 

1997). 

 



 

 
Figure 2:  Stratigraphy of the Cooper Basin (PIRSA, 2007). Arrow shows the study interval 

that includes the Roseneath and Murteree shales. PIRSA 200171_2 and 

200171_004. 



 

F
ig

u
re

 3
: 

 C
o

m
p

a
ri

so
n

 o
f 

p
e

tr
o

p
h

ys
ic

a
l 

m
o

d
e

l 
a

n
d

 c
o

re
 d

a
ta

 f
ro

m
 t

h
e

 R
o

se
n

e
a

th
 S

h
a

le
 o

f 
th

e
 E

n
co

u
n

te
r-

1
 w

e
ll

: 
g

a
m

m
a

 r
a

y 
(G

R
),

 r
e

si
st

iv
it

y 
(M

2
R

X
, 

M
2

R
2

),
 D

e
n

si
ty

 (
R

H
O

B
),

 

n
e

u
tr

o
n

 (
P

H
IN

) 
a

n
d

 s
o

n
ic

 (
D

T
) 

lo
g

s.
 M

in
e

ra
lo

g
ic

a
l m

o
d

e
l d

e
m

o
n

st
ra

ti
n

g
 c

o
m

p
o

si
ti

o
n

 o
f 

cl
a

ys
, 

Il
li

te
 -

 a
ry

li
d

e
 y

e
ll

o
w

, 
 k

a
o

lin
it

e
 -

o
li

ve
 g

re
e

n
, 

si
d

e
ri

te
- 

b
lu

e
 s

h
a

d
in

g
, 

q
u

a
rt

z-
 

ye
ll

o
w

, 
a

n
d

 k
e

ro
g

e
n

 w
it

h
 b

la
ck

 c
o

lo
u

r.
 R

e
d

 d
o

ts
 r

e
p

re
se

n
t 

X
R

D
 c

o
re

 d
a

ta
. 

V
o

lu
m

e
 o

f 
si

lt
 a

n
d

 c
la

y 
is

 d
e

p
ic

te
d

 i
n

 T
ra

ck
 1

5
 a

n
d

 T
ra

ck
 1

6
 s

h
o

w
s 

lo
g

 d
e

ri
ve

d
 p

e
rm

e
a

b
il

it
y 

m
a

tc
h

e
d

 w
it

h
 c

o
re

 d
e

ri
ve

d
 p

e
rm

e
a

b
il

it
y 

d
e

p
ic

te
d

 b
y 

re
d

 d
o

ts
. 



F
ig

u
re

 4
: 

 
C

o
m

p
a

ri
so

n
 o

f 
p

e
tr

o
p

h
ys

ic
a

l 
m

o
d

e
l 

a
n

d
 c

o
re

 d
a

ta
 f

ro
m

 t
h

e
 M

u
rt

e
re

e
 S

h
a

le
 o

f 
th

e
 A

sh
b

a
y-

1
 w

e
ll:

 G
a

m
m

a
 r

a
y 

(G
R

),
 r

e
si

st
iv

it
y 

(L
LD

, 
LL

S
, 

a
n

d
 M

S
F

L)
, 

D
e

n
si

ty
 (

R
H

O
B

),
 n

e
u

tr
o

n
 

(P
H

IN
) 

a
n

d
 s

o
n

ic
 (

D
T

) 
lo

g
s.

 M
in

e
ra

lo
g

ic
a

l 
m

o
d

e
l 

d
e

m
o

n
st

ra
ti

n
g

 c
o

m
p

o
si

ti
o

n
 o

f 
il

li
te

 i
n

 a
ry

li
d

e
 y

e
ll

o
w

 ,
 K

a
o

li
n

it
e

 -
o

li
ve

 g
re

e
n

, 
si

d
e

ri
te

- 
b

lu
e

 s
h

a
d

in
g

, 
q

u
a

rt
z-

 y
e

ll
o

w
, 

a
n

d
 

ke
ro

g
e

n
 w

it
h

 b
la

ck
 c

o
lo

u
r.

 R
e

d
 d

o
ts

 r
e

p
re

se
n

t 
X

R
D

 c
o

re
 d

a
ta

 a
n

d
 p

o
ro

si
ty

 a
n

d
 p

e
rm

e
a

b
il

it
y.

 V
o

lu
m

e
 o

f 
si

lt
 a

n
d

 c
la

y 
a

re
 d

e
p

ic
te

d
 i

n
 T

ra
ck

 1
6

 
w

h
il

e
 T

ra
ck

 1
7

 
sh

o
w

s 

co
m

p
a

ri
so

n
 o

f 
lo

g
 d

e
ri

ve
d

 p
e

rm
e

a
b

il
it

y 
w

it
h

 c
o

re
 d

e
ri

ve
d

 p
e

rm
e

a
b

il
it

y.
 



 
F

ig
u

re
 5

: 
C

o
m

p
a

ri
so

n
 o

f 
p

e
tr

o
p

h
ys

ic
a

l 
m

o
d

e
l 

a
n

d
 c

o
re

 d
a

ta
 f

ro
m

 t
h

e
 M

u
rt

e
re

e
 S

h
a

le
 o

f 
th

e
 D

ir
ka

la
-0

2
 w

e
ll

: 
T

ra
ck

-1
 t

o
 1

6
. 

T
ra

ck
-1

: 
g

a
m

m
a

 r
a

y 
(G

R
),

 T
ra

ck
-3

: 
R

e
si

st
iv

it
y 

(R
E

S
S

, 
R

E
S

M
, 

R
E

S
D

),
 T

ra
ck

-4
: 

C
a

li
p

e
r 

(C
A

LI
).

 T
ra

ck
-0

5
: 

D
e

n
si

ty
 (

R
H

O
B

),
 N

e
u

tr
o

n
 (

N
P

H
I)

 a
n

d
 s

o
n

ic
 (

D
T

),
 T

ra
ck

 1
2

: 
E

st
im

a
ti

o
n

 o
f 

P
o

ro
si

ty
, 

 I
n

 T
ra

ck
 1

3
: 

M
in

e
ra

lo
g

ic
a

l 
m

o
d

e
l 

d
e

m
o

n
st

ra
ti

n
g

 

co
m

p
o

si
ti

o
n

 o
f 

il
lit

e
 i

n
 a

ry
li

d
e

 y
e

ll
o

w
 c

o
lo

u
r,

 K
a

o
li

n
it

e
 -

o
li

ve
 g

re
e

n
, 

si
d

e
ri

te
- 

b
lu

e
 s

h
a

d
in

g
, 

q
u

a
rt

z-
 y

e
ll

o
w

, 
a

n
d

 k
e

ro
g

e
n

 w
it

h
 b

la
ck

 c
o

lo
u

r.
 R

e
d

 d
o

ts
 r

e
p

re
se

n
t 

X
R

D
 c

o
re

 d
a

ta
, 

T
ra

ck
1

5
: 

vo
lu

m
e

 o
f 

si
lt

 a
n

d
 c

la
y,

 T
ra

ck
 1

6
: 

 S
h

o
w

s 
p

e
rm

e
a

b
il

it
y.

 



 
F

ig
u

re
 6

: 
C

o
m

p
a

ri
so

n
 o

f 
w

e
ll

 l
o

g
 i

n
te

rp
re

ta
ti

o
n

 a
n

d
 c

o
re

 d
a

ta
 f

o
r 

M
o

o
m

b
a

-7
3

 w
e

ll
, 

M
u

rt
e

re
e

 s
h

a
le

 s
e

ct
io

n
: 

T
ra

ck
1

: 
g

a
m

m
a

 r
a

y 
(G

R
),

 T
ra

ck
4

: 
R

e
si

st
iv

it
y 

(L
LS

, 
LL

D
),

 T
ra

ck
5

: 
C

a
li

p
e

r 

(C
A

LI
),

 T
ra

ck
6

: 
S

o
n

ic
 (

D
T

) 
T

ra
ck

9
: 

E
st

im
a

ti
o

n
 o

f 
P

o
ro

si
ty

, 
M

in
e

ra
lo

g
ic

a
l 

m
o

d
e

l 
d

e
m

o
n

st
ra

ti
n

g
 c

o
m

p
o

si
ti

o
n

 o
f 

cl
a

y 
in

 g
re

e
n

 c
o

lo
u

r,
 q

u
a

rt
z-

 y
e

ll
o

w
, 

a
n

d
 k

e
ro

g
e

n
 w

it
h

 b
la

ck
 

co
lo

u
r.

 T
ra

ck
 1

2
: 

sh
o

w
in

g
 m

a
tc

h
 b

e
tw

e
e

n
 i

n
p

u
t 

a
n

d
 m

o
d

e
l 

g
e

n
e

ra
te

d
 s

o
n

ic
 c

u
rv

e
, 

T
ra

ck
 1

3
: 

sh
o

w
in

g
 m

a
tc

h
 b

e
tw

e
e

n
 i

n
p

u
t 

a
n

d
 m

o
d

e
l 

g
e

n
e

ra
te

d
 G

a
m

m
a

 r
a

y 
cu

rv
e

, 
T

ra
ck

 

1
4

: 
Sh

o
w

s 
lo

g
 d

e
ri

ve
d

 p
e

rm
e

a
b

il
it

y.
 



 
F

ig
u

re
 7

: 
M

in
e

ra
l 

m
o

d
e

l 
fo

r 
th

e
 M

u
rt

e
re

e
 S

h
a

le
 i

n
 D

ir
ka

la
-0

1
 w

e
ll

. 
N

o
 c

o
re

 d
a

ta
 w

a
s 

p
re

se
n

t 
fo

r 
th

is
 w

e
ll

 s
o

 t
h

e
 o

u
tp

u
t 

p
a

ra
m

e
te

rs
 o

f 
D

ir
ka

la
-0

2
 w

e
re

 u
se

d
 a

s 
in

p
u

t 
fo

r 

th
is

 w
e

ll
. 

T
ra

ck
 8

: 
m

in
e

ra
lo

g
ic

a
l 

m
o

d
e

l 
d

e
m

o
n

st
ra

ti
n

g
 c

o
m

p
o

si
ti

o
n

 o
f 

il
lit

e
 i

n
 g

re
y 

co
lo

u
r,

 k
a

o
li

n
it

e
 -

o
li

ve
 g

re
e

n
, 

si
d

e
ri

te
- 

b
ri

g
h

t 
g

re
e

n
 s

h
a

d
in

g
, 

q
u

a
rt

z-
 y

e
ll

o
w

, 

a
n

d
 k

e
ro

g
e

n
 w

it
h

 b
la

ck
 c

o
lo

u
r.

 

 



 

Well Name: Encounter-1   Sample depth: 3387.39 m 

 
 

 

 

            

Figure 8: Corss-plot between permeability and total confining pressure:  Permeability points were 

selected for true effective stress values of 18, 39, and 62 MPa to get a relationship 

between the permeability and total confining stress. It was later used to remove the 

overburden effects. The sample represents a depth of 3387.39 of Encounter-01 well.  
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Well name: Dirkala-2   Sample depth:  1892.88 m 
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Figure 9:  Corss-plot between permeability and total confining pressure:  

Permeability points were selected for true effective stress values of 9, 23, 

and 33 MPa to get a relationship between the permeability and total 

confining stress. It was later used to remove the overburden effects. The 

sample represents a depth of 1892.8 of Dirkala-02 well.  



Well Name: Ashby-1   Sample depth:  2080.11 m 
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Figure 10: Corss-plot between permeability and total confining pressure:  

Permeability points were selected for true effective stress values 

of 15, 32, and 45 MPa to get a relationship between the 

permeability and total confining stress. It was later used to 

remove the overburden effects from core permeability. The 

sample represents a depth of 2080.11 of Ashbay-01 well.  
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Figure 12:  Picket plot of resistivity (Ohm.m) against total porosity (V/V) for Ashbay-01 

well showing a classical example to find Rw in water zone. The linear trend at 

the south west of the cluster represents a water wet zone and Ro line was set 

at its base. An Rw of 0.5 was computed. Picket plot being graphical 

representation of Archie equation shows wet point in linear form. 



 

Figure 13: Picket plot of resistivity (ohm.m) versus total porosity (V/V) a threshold of 0.25 

was set in order to take Rwb in the shaly part of the formation.  Rwb of 0.11 was 

computed. 



 

 

Figure 14: Cross plot between the PHIT and App Qv, a linear relationship can be seen in 

green water wet interval. Waxman and Smit’s ‘a’ and ‘b’ are determined by this 

cross-plot. The blue circle shows area of Glauconite and red circle shows area of 

Orthoclase. Both the circles are situated at higher Qv value suggesting that both 

the minerals have Qv higher than other clay minerals. Since the log derived Qv 

should be correlated to an appropriate porosity measurement in order to define 

a Qv –фT   relationship, either in the form of Qv = a фT ^-b  Or Qv = a/фT –b. The 

obtained relationship is then applied to the hydrocarbon bearing section to 

calculate Qv. 

 



 

Figure 15: Kerogen embedded in a clay-rich matrix with low porosity in the Murteree Shale in 

Dirkala-2 well. Open pores measure from 10-50 nm to ~ 2 µm.  Some authigenic quartz 

coatings are observed (Jadoon et al., 2016) 



 

 Figure 16: Photomicrograph of an organic rich shale in Murteree Dirkala-2 showing well-opaque 

organic material nearly 2mm wide. Cross Polarized light (60X). 

 

 

 



 

Figure 17: shows the impact of the uncertainty of each variable used in the uncertainty 

analysis. The Tornado chart show that that the largest impact on the water saturation (Sw) 

calculation is of Porosity of shale and bound water resistivity, followed by m exponent and 

resistivity respectively. This further supports the idea of getting special core analysis (SCAL) 

to determine core derived CEC, electrical properties (a,m & n)  to calculate Sw with better 

accuracy. 
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