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A comparative study between NURBS surfaces and voxels to simulate the wear
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ABSTRACT

The prediction of the tool wear phenomenon in the micro electro discharge machining technology
would be of a great use in the optimization of tool shapes. In order to do so, the ability to rapidly and
precisely simulate the process is required. The choice of a geometrical model for the electrodes is of
the utmost importance as it will condition the available methods for the simulation.

Two geometrical models have been tested and implemented: NURBS and voxels embedded in
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an octree data structure. A limited experimental validation has been conducted and the results
compared to the simulation through the use of the Hausdorff metric.

1. Introduction

Micro Electrical Discharge Machining (micro-EDM)
is a micro-manufacturing process that involves the
removal of material through electrical discharges. Its
main strength resides in the fact that it is able to machine
any electrically conductive material independently of its
hardness [9]. The process involves two electrodes (one
being referred to as the tool while the other is the work-
piece) that are submitted to an electrical current and
immerged in a dielectric fluid. As the distance separat-
ing both electrodes decreases, there is a point (known
as the machining gap) where the dielectric fluid isn’t
able to insulate both electrodes from each other anymore
and breaks down leading to the apparition of a plasma
channel between both electrodes. The resulting thermal
energy leads to melting and vaporization of the mate-
rial on both electrodes and the removal of material as
craters. A visual description of this process is available
in Fig. 1.

The main issue is that material is also removed from
the tool (tool wear) and therefore influences the final
shape obtained on the workpiece. The influence of tool
wear is significantly greater when tackling with micro-
scale features and can be observed in Fig. 2. While proven
methods exist for micro- EDM milling [2,9,10] to com-
pensate for the tool wear, die-sinking micro-EDM would
require the use of multiple tools to obtain the desired
geometries.

Most previous efforts have been focused on the mod-
eling of single-spark discharges through the solving of

thermal equations and specific boundary conditions. A
few [1,4,8] have proposed simulation methods of micro-
EDM usually using a grid of points to model the involved
geometries. A recent work [5] has tackled with the geo-
metrical simulation of a whole process through the use of
Z-maps but those are inherently limited when it comes to
representing overhangs.

The main idea is to develop a geometrical simulation
method with the final objective of optimizing the initial
shape of the tool by adding material on it to counteract
the effects of tool wear. In order to do so, the simulation
must be fast considering that the optimization method
is likely to require at least several iterations. Actually, in a
later stage, this method will take part in a shape optimiza-
tion process where tens of simulations will be performed
(Fig. 3).

2. The simulation tool
2.1. Introduction

Section 1 has given an overview of the micro-EDM pro-
cess and the elements that are involved. What is pro-
posed in the present paper is to represent the electrodes’
geometries with:

e A representation of their boundaries with NURBS
e A volumetric representation with voxels.

The main aspects of the simulation, despite the dif-
ferences in the proposed geometric representations, are
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Figure 1. Basic principle of micro-EDM.
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Figure 2. The influence of tool wear in micro-EDM. a) Desired
result. b) Obtained result.

the same in both cases. It is an iterative process that
ends when the desired tool movement is achieved. In
the particular case of die-sinking micro-EDM, it is usu-
ally a simple vertical movement made by the tool until it
reaches a depth name the objective depth, Dp;.

An iteration starts with the search for the locations
of the craters. The main assumption that is being made
is that the sparks takes the path of least resistance and
therefore occurs at the minimum distance between both
geometries. The distance search algorithm returns d, the
minimum distance as well as P; and P,,, the correspond-
ing points.

The minimum distance value is then compared to
another value known as the machining gap (defined in
Fig. 1), M, to determine if a spark can occur. Should the
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minimum distance be smaller than My, it is possible for
a spark to appear and craters to be formed.

The apparition of a spark consists in volume removals
for the voxel method and surface deformations for the
NURBS method in order for predetermined volumes V;
and V), to be removed on the tool and the workpiece,
respectively. If no spark can take place, the tool is move
down with a small increment A,.

The process is repeated until a total vertical movement
Dypj is achieved. A visual representation of the global
algorithm is given in Fig. 4.

Tnitialise Dgyprent = 0

>| d, P,, P, = minimumDistance(T, W) |

No

Yes
crater(T, Py V), crater(W, Py, Vy)

moveDown(0¢, A,)

Deurrent = Deurrent + Az

Figure 4. Global overview of the simulation process.

2.2. The NURBS method

2.2.1. Introduction
In the NURBS method, both electrodes are modeled
as single NURBS patches. The patches are then refined

Be ol i | Toolidentification »| Tool optimization '
1 - . . 4 H .
PE——— & parameterization and adaptation Optimal
(workpiece) shape (tool)
simulated shape

Wear simulation

= &
- v bl

Physical param

(crater-by-crater)
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Figure 3. The crater-by-crater simulation module plugged within a shape optimization loop.
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Figure 5. Definition of the various elements involved in the crater insertion process.

using the Boehm’s knot insertion algorithm [7]) in order
to obtain a million (1000 1000) control points for each
patch and, therefore, to increase local control. The crater
insertion method is illustrated by Fig. 5. and implements
the surface warping technique.

For the current depth, the minimum distance search
is done with the use of Particle Swarm Optimization
(PSO) with four variables that are the NURBS patches
parameters [6]. The output gives two points S¢(uy,v;) and
Sty V).

2.2.2. Crater insertion

Then, it is supposed that, during the manufacturing pro-
cess, all sparks transfer the same energy therefore remov-
ing the same volumes V; and V, for each iteration. Those
volumes are computed by modeling the craters as spher-
ical caps and experimentally measuring the mean depth
D", Dy and radius R}", R} of craters.

m

R!
Vie=m- ?’[311;”2 +D!",i € {t,w) (2.1)

Furthermore, this leads to the definition of what is
known as the spherical caps’ support spheres which have
a radius R;.

m2 m2
R; = u (2.2)
2D7"

If the minimum distance condition described previ-
ously is met (the distance is smaller than the machining
gap), the crater insertion technique is applied. A crater
will be inserted on each surface S; i € {t, w}).

The first step is to compute the displacement direc-
tions given by two warping unit vectors that are given in
Eq.2.3.

w[k] = sg(i) - Si(urs vr) — Sy (t, Vi)
' IS¢ (14, V1) — S (thy Vi) |

(2.3)

with sg(i) = { gg; i=! " and k values refer to the kth
crater inserted on each surface. Note that the superscript
k has been omitted for the u; values for the sake of clarity.

Fig. 5(a) shows the warping vector wl[k] corresponding
to the case where the workpiece is to be deformed. The
figure gives a two-dimensional version of the process to
simplify the representation.

The second step consists in identifying the control
points in the neighborhood of S; (u;, v;) that need to be
moved. In order to do so, the support sphere’s center C;¥!
has to be moved along the spark line so that the intersec-
tion volume between the sphere and the NURBS patch
is equal to the volume V; to be removed within a cer-
tain tolerance. (Fig. 5(b)). The search for this location is
made through the use of an iterative dichotomy method
(also known as binary search or bisection method). At
each step, the intersection volume (the hashed part of
Fig. 5(b)) is computed. If the volume is too small (infe-
rior to (1-Ty)*V where Ty is a tolerance parameter), the
sphere is moved towards the surface. In the opposite
case (it is greater than (14 Ty)*V, it is moved away. The
process stops when a volume within 1% of V; is found.

Once the C;l¥ adequate positions are found, it is pos-
sible to determine the N;*! control points of the two S;
surfaces that need to be moved. This is done by comput-
ing for each control point the distance that separates them
from the center of the sphere. If the distance is smaller
than the radius of the sphere, the control point is added
to the list of points to be displaced. At the end, two lists
of control points are obtained.

In order to displace the control points to mimic the
shape of a sphere, a reference is needed. Let ;¥ be the
plane that includes the center of the sphere C;*! and that
has @;!¥) as normal vector. Then, for all the control points,
P,',j[k],j e{1, ... ,N;jM) and i € {t, w}, the new position
are computed as follows (Fig. 5(c)):

Skl k k1, lk k
P =Pl 4 (M) ol (2.4)

Lj



with £9() = R~ 17 — @B ) ana ¥ =
||7tl[§»] - Cl[-k] | being 71,'1[’];-] the projection of Pl[,];-] on the
plane Hl[k]

This process is repeated iteratively until no more
craters can be inserted for the actual depth. Then, the tool
is moved down along the z axis with an increment of A,

and the craters insertion process starts again.

2.3. The voxels method

2.3.1. Introduction

Voxel stands short for “volumetric pixel” and, as the
name implies, can be considered as being the three-
dimensional equivalent of pixels. As mentioned before,
they are used for the representation of three-dimensional
elements. The most common approach is to set them in a
uniform grid aligned with the coordinate axes. Although
some recent developments have increased their use in the
computer graphics industry, their discrete nature have
made them unsuitable for the representation of detailed
scenes. Consequently, voxels have mostly been used in
the visualization of volumetric data such as in the medical
imagery field.

The voxels in this method are embedded in an octree
structure (Fig. 6.) and used to model both electrodes in
a volumetric and discrete manner. The octree provides
with the ability to represent large sections of the volumes
as bigger voxels and therefore reduces memory usage.
Additionally, it provides with a hierarchical structure that
is useful when querying a specific voxel. An octree is
composed of nodes that have a parent node and up to
eight children nodes. A node with no children is said to
be aleaf node. The topmost node in the structure is called
the root node.

2.3.2. Minimum distance search
This section deals with the search of the minimal distance
between two disjoint octrees. In addition, both of those
are axis-aligned. The presented method is based on [3]
with the addition of some fast exit conditions.
The smallest distance d between two octree nodes can
be bounded by two values such as:
dlower <d< dupper (2.5)
In the situation where both nodes are leaves (they
don’t contain any children), equation 1 becomes:
Alower = d = dupper (2.6)
Additionally, in the case where one node is a leaf but
the other isn’t, the calculation of the maximum distance
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Root node
Level 1

Level 2

Figure 6. The tree view of an octree and its three-dimensional
representation. The leaves are colored.

between them can be modified to take that fact into
account and further refine the value of d,ppe;.

The search algorithm starts with the two octrees root
nodes and, for each non-empty children, compares the
minimum and maximum distance of each voxel couple.
Those distances are easy to compute since the nodes are
axis-aligned.

Node pairs that are still viable candidates for the mini-
mum distance couple are kept and subdivided at the next
iteration.

The viability condition is based on a global value,
the smallest of upper bounds or supremum, dgaiestUpper-
Any couple that has a lower bound distance equal or
smaller to that value is kept regardless of the mini-
mum distance. The viability condition is formally written
as:

diower < dsmallestUpper (2.7)

The process goes on until the voxels have been sub-
divided to a size s, a parameter of the algorithm. Since
the algorithm relies on a bounding of the minimal dis-
tance, there is no guarantee that, after the number of
iterations required to reach s, only a single couple is
returned.

Additionally if all couples of candidate nodes are
leaves, then, given the way the candidate nodes are culled,
it stand to reason that all of those couples have the same
Amin. At this stage, the algorithm may be terminated and
a pair of nodes can be selected at random without having
reached a resolution of s,;.

Two other early stop conditions can be added specifi-
cally for the present problem: in this case it doesn’t matter
whether the smallest distance is found.
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Firstly, the returned result must only comply with
the condition that it is smaller than the machining
gap.

If at any iteration of the search, a couple with a d,pper
< Mj, than the algorithm can be stopped and that couple
returned. A couple with an actually lower d;, that has
been ignored in that way will be used in another iteration
of the simulation.

Figure 7. Single crater at a resolution of one voxel per 125 nm.

Secondly, if at any iteration of the search, the list of
candidate couples doesn’t contain any couple with a djyyer
< Mg, the process can be stopped and return null.

Another matter needs to be handled. Since the
algorithm might return a list of couples that aren’t nec-
essary leaves (in the case where the algorithm exits after
having reached a certain number of iterations), a couple
is chosen at random. The algorithm is then re-applied on
the selected couple and forced to exit after having found
only leaf nodes.

Using a Particle Swarm Optimization Method has
been tested but has been found to give worse results.

2.3.3. Crater insertion

Once the closest nodes have been identified, the crater
insertion method on an octree starts with the root node.
The children are tested for intersection with a sphere
defined in the same way as in section 2.2: the support
sphere is displaced along the spark line until a tolerance
condition on the volume to be removed is met.

Similarly to the distance algorithm, the volume
removal algorithm searches the octrees in a top-down
manner keeping only nodes that intersect with the sphere
and deleting those that are inside. The intersection test is
made by finding the smallest cubed distance d between a
cube and a point and comparing it to Ri’. The intersection
test returns true if:

d <R/ (2.8)

Fig. 7. shows an example of a single crater with the
octrees data structure visible underneath and a detail
of the voxels at the bottom. One voxel’s dimension is
125 nm.

3. Experimental validation and comparative
study

3.1. The experiment

In order to assess the performances of each method, an
experiment was devised in order to measure the shape
differences between simulated and experimental results.
The used machining parameters are displayed in Tab. 1.

Table 1. Used machining parameters.

Parameter Value
Energy level (index) 200
Voltage (V) 90
Current (index) 20
Time on (ms) 5
Objective depth (um) 100

The experiments were conducted using a Sarix SX-200
micro-EDM machine. The tools were made of tungsten



carbide while aluminium was used for the workpiece. A
depth of 100 pum is set for the machining operation. This
depth was selected in order to provide a noticeable wear
on the tool without completely destroying the features
on it.

The tool that was used is of a spherical shape as
visible in Fig. 7(a). and it has been obtained through
wire-dressing of a cylindrical electrode of nominal diam-
eter 300 um. The nominal diameter of the sphere is
250 pm.

This tool was measured with the help of a micro-
tomographer of a resolution of 1um. The resulting
workpiece was exported as a three-dimensional mesh.
(Fig. 7(c)) The tool was also measured in the same man-
ner after the experiment (Fig. 7(b)).

The machining parameters were:

The craters were also measured using the 3D meshes
and the results are tabulated in Tab. 2.

Table 2. Experimental average craters dimensions.

Parameter Value
Workpiece crater diameter (um) 13.30
Workpiece crater depth (um) 442
Tool crater diameter (um) 12.40
Tool crater depth (um) 439

3.2. The simulations

The NURBS elements used were a sphere of diame-
ter 250 um for the tool and a flat square surface with
a side length of 500 um for the workpiece as shown in
Fig. 8(a).

The voxel tool was created from the micro-tomo-
grapher STL files as shown in Fig. 8(b). The workpiece
is a cube of dimension 512 um. Contrary as to what is

(@)
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depicted in the figure, only the tip of the spherical shape
was kept in order to reduce the octree’s memory foot-
print. Those two models do represent the same extrem-
ity of the tool using a sphere-like shape. The various
tolerances used are shown in Table 3.

Table 3. Tolerances used in the simulations.

Parameter Value
NURBS volume removal (in %) 1
Voxel volume removal (in %) 1
Voxel crater resolution (voxels per micron) 4
Voxel distance precision (voxel size) 0.25

The NURBS simulation ended after 2040 minutes
while the voxels simulation took 126 minutes and is
therefore more than 16 times faster.

After the simulation, the resulting models (NURBS
and voxels) were compared to the experimental ones with
the use of the Hausdorff metric. The Hausdorff metric
results are given in Tab. 4, including the minimum, max-
imum, mean and RMS values of each set of sampled
points’ Hausdorft distance.

Table 4. Hausdorff metric results.

NURBS Voxels
Tool Workpiece Tool Workpiece
dy min (um) 0.000000 0.000107 0.008184 0.000000
dy max (um) 8.629291 14.886533 2.163380 14.917241
dy mean (um) 1.449477 3.073571 0.858142 0.718315
dy RMS (um) 2.521132 3.626015 0.971600 1.682061

Fig. 9. depicts the maps of the calculated Haus-
dorff distances. A red color represents a small difference
between the experimental and simulated elements while
a blue color indicates a larger difference.

(©

Figure 8. 3-D mesh of the experimental tool. a) before and b) after machining. c) workpiece after machining.
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Figure 9. Hausdorff distance maps depicts the maps of the calculated Hausdorff distances. A red color represents a small difference
between the experimental and simulated elements while a blue color indicates a larger difference.

4. Conclusions

Considering the Hausdorff distance RMS values, both
methods offer a good prediction of the experimental
results with values in the range of 2-3 um for the NURBS
method and 1-2 um for the voxel method. Those values
are to be compared with the dimensions of the models
(bounding box diagonal of 403 pm for the workpiece and
366 pm for the tool).

While the NURBS method offers geometries with no
sharp edges, the voxel method is significantly faster and
therefore more efficient when used as part of a shape
optimization loop.

Acknowledgements

This work was supported by the Engineering and Physical Sci-
ences Research Council [EP/F056745/1, EP/J004901/1]. Infor-
mation on data that supports the results presented in this
article, including how to access them, can be found in the
Cardiff University research-data catalogue at http://dx.doi.org/
10.17035/d.2016.0008385063.

ORCID

Anthony Surleraux "= http://orcid.org/0000-0002-2101-9259
Jean-Philippe Pernot "= http://orcid.org/0000-0002-9061-2937

Samuel Bigot " http://orcid.org/0000-0002-0789-4727

References

[1] Bigot, S.; Surleraux, A.; Bissacco, G.; Valentincic, J.: A New
Modelling Framework for Die-Sinking Micro EDM, Pro-
ceedings of the 9th International Conference on Multi-
Material Manufacture, 2012, 51-55. http://dx.doi.org/10.
3850/978-981-07-3353-7_309

[2] Bleys, P; Kruth, J.-P; Lauwers, B.; Zryd, A.; Delpretti,
R.; Tricarico, C.: Real-time Tool Wear Compensation in
Milling EDM, Annals of the CIRP, 51(1), 2002, 157-160.
http://dx.doi.org/10.1016/s0007-8506(07)61489-9.

[3] Borrmann, A.; Schraufstetter, S.; van Treeck, C.; Rank,
E.: An Iterative, Octree-Based Algorithm for Distance
Computation Between Polyhedra with Complex Sur-
faces, Proceedings of the International ASCE Work-
shop on Computing in Civil Engineering: 2007, 103-110.
http://dx.doi.org/10.1061/40937(261)13.

[4] Heo, S.; Jeong, YH.; Min, B.-K.: Virtual EDM Sim-
ulator: Three-Dimensional Geometric Simulation of
Micro-EDM Milling Processes, International Journal
of Machine Tools and Manufacture, 49(12-13), 2009,
1029-1034. http://dx.doi.org/10.1016/j.ijmachtools.2009.
07.005

[5] Heo. S.; Kim, T.-G.; Lee, C.-H.; Min, B.-K.; Lee, S.J.:
Geometric Simulation Based Tool Wear Compensation
in Micro Die-Sinking EDM Process, Poster presented at
the 29th Annual Meeting of the American Society for
Precision Engineering, 2014, Boston, MA.

[6] Kennedy, J.; fEberhart, R.: Particle Swarm Optimization,
Proceedings of IEEE International Conference on Neural
Networks IV, 1995, 1942-1948. http://dx.doi.org/10.1109/
ICNN.1995.488968

[7] Piegl, L.; Tiller, W.: The NURBS Book, Springer, 1997.
http://dx.doi.org/10.1007/978-3-642-59223-2

[8] Tricarico, C.; Delpretti, R.; Dauw, D.E: Geometrical Sim-
ulation of the Die-Sinking Process, Annals of the CIRP,
37(1), 1988, 191-196. http://dx.doi.org/10.1016/S0007-
8506(07)61616-3

[9] Yu, Z.Y; Masuzawa, T.; Fujino, M.: Micro-EDM for
Three- Dimensional Cavities Development of Uniform
Wear Method, Annals of the CIRP, 47(1), 1998, 169-172.
http://dx.doi.org/10.1016/s0007-8506(07)62810-8

[10] Yuzawa, T.; Magara, T; Imai, Y,; Sato, T.: Micro Elec-
tric Discharge Scanning Using a Mini-Size Cylindrical
Electrode, Kata Gijutsu, 12(8), 1997, 104-105.


http://dx.doi.org/10.17035/d.2016.0008385063
http://dx.doi.org/10.17035/d.2016.0008385063
http://orcid.org/0000-0002-2101-9259
http://orcid.org/0000-0002-9061-2937
http://orcid.org/0000-0002-0789-4727
http://dx.doi.org/10.3850/978-981-07-3353-7_309
http://dx.doi.org/10.3850/978-981-07-3353-7_309
http://dx.doi.org/10.1016/s0007-8506(07)61489-9
http://dx.doi.org/10.1061/40937(261)13
http://dx.doi.org/10.1016/j.ijmachtools.2009.07.005
http://dx.doi.org/10.1016/j.ijmachtools.2009.07.005
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1007/978-3-642-59223-2
http://dx.doi.org/10.1016/S0007-8506(07)61616-3
http://dx.doi.org/10.1016/S0007-8506(07)61616-3
http://dx.doi.org/10.1016/s0007-8506(07)62810-8

	1. Introduction
	2. The simulation tool
	2.1. Introduction
	2.2. The NURBS method
	2.2.1. Introduction
	2.2.2. Crater insertion

	2.3. The voxels method
	2.3.1. Introduction
	2.3.2. Minimum distance search
	2.3.3. Crater insertion


	3. Experimental validation and comparative study
	3.1. The experiment
	3.2. The simulations

	4. Conclusions
	Acknowledgements
	ORCID
	References

