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Interleukin-22 (IL-22) is a member of the IL-10 family of cytokines. Hematopoietic cells 
express IL-22, and this cytokine signals through the heterodimeric IL-22 receptor 
expressed by non-hematopoietic cells. A growing body of evidence points toward a 
role for IL-22 in a diverse array of biological functions ranging from cellular proliferation, 
tissue protection and regeneration, and inflammation. In recent years, the role that IL-22 
plays in antiviral immune responses has been examined in a number of infection models. 
Herein, we assess our current understanding of how IL-22 determines the outcome 
of viral infections and define common mechanisms that are evident from, sometimes 
paradoxical, findings derived from these studies. Finally, we discuss the potential thera-
peutic utility of IL-22 manipulation in the treatment and prevention of viral infections and 
associated pathologies.
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tHe iL-22–iL-22r PAtHWAY

Interleukin-22 (IL-22) is a member of the IL-10 family of cytokines that was originally identified 
as an IL-9-inducible gene produced by mouse T cells (1, 2). Since its discovery, IL-22 expression by 
a number of immune cell subsets has been detected, including activated natural killer (NK) cells, 
NKT cells, neutrophils, γδ T cells, innate lymphoid cells (ILCs), and CD8+ T cells (3–9). In addition, 
IL-22 is expressed by CD4+ T cells of the TH17 (4) and TH1 lineage (10). Moreover, TH22, a CD4+ 
T cell subset distinct from TH1 and TH17 cells, has been described (11). TH22 cells produce IL-22 
independently of IFN-γ and IL-17 production and can be distinguished from TH17 cells by the 
expression of CCR10 (11–14). Given the diversity of the innate and adaptive cells that can produce 
IL-22 and plasticity among T helper cell subsets, there have been significant efforts to identify com-
mon regulators of leukocyte IL-22 production. Subsequently, IL-23 and aryl hydrocarbon receptor 
(AhR) have emerged as key inducers of IL-22 production in NK cells, ILCs, CD4+ T cells, and γδ T 
cells (6, 15–23).

The IL-22 receptor (IL-22R) is a heterodimer that is composed of IL-22Rα and IL-10Rβ (24). 
IL-22Rα also forms a complex with IL-20Rβ, which is an alternative receptor complex for IL-20 and 
IL-24, and is thought to induce signals and biological effects similar to those elicited by the IL-22 
receptor complex (25, 26). IL-10Rβ is ubiquitously expressed by most cell types, whereas the expression 
of IL-22Rα, which ultimately determines the target sites of IL-22, is restricted to non-hematopoietic 
cells, predominantly epithelial cells of the skin, lung, small intestine, kidney, colon, liver, and pancreas 
(24, 27). IL-22 binding to the dimeric IL-22R triggers phosphorylation and subsequent activation 
of the kinases Jak1 and Tyk2, which leads to the activation of the transcription factor STAT3, and 
also STAT5 and STAT1. Furthermore, MAP kinase and p38 pathways are involved in downstream 
IL-22R signaling (27, 28). In addition, a soluble, secreted single-chained IL-22-binding receptor, IL-22 
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binding protein (IL-22BP), can bind IL-22 with stronger affinity 
than membrane-bound IL-22R, thus antagonizing IL-22  signaling 
(29–31). IL-22BP expression has been reported in multiple tissues, 
including the spleen, lung, skin, and female reproductive system 
(29, 31), and by several hematopoietic cells including immature 
dendritic cells (DCs) and eosinophils (32–34). IL-22BP is highly 
expressed in steady-state conditions and downregulated in 
response to inflammasome activation during tissue damage, coin-
ciding with IL-22 expression, thereby reducing the suppression 
that IL-22BP exerts on IL-22 signaling (34).

The IL-22–IL-22R pathway exerts a broad array of biological 
effects in different systems. Experimental models have shown 
that IL-22 prevents tissue destruction and mediates regeneration 
of damaged tissue by inducing expression of genes regulating 
proliferation, survival, and wound healing, ameliorating tissue 
damage in colitis (35, 36), hepatitis (37, 38), and lung fibrosis (39). 
Paradoxically, in certain contexts, IL-22 can promote inflamma-
tion. For example, overexpression of IL-22 has been associated 
with psoriasis (5, 40, 41), inflammatory bowel disease (42), and 
arthritis (43, 44).

The role of IL-22 in tumor development has been reported 
in several types of cancers, including gastric, lung, colon, hepa-
tocellular, and pancreatic carcinoma, where studies have shown 
upregulation of IL-22 by tumor-infiltrating lymphocytes in the 
tumor microenvironment, in addition to the expression of its 
receptor on cancerous cells (45–49). In hepatocellular carcinoma, 
pancreatic cancer, and colorectal cancer, IL-22 expression posi-
tively correlated with tumor growth, metastasis, and tumor stages 
(46, 47, 50, 51). This was associated with STAT3 phosphorylation 
and upregulation of downstream genes Cyclin D (proliferation), 
Bcl-xl (cell survival), and VEGF (metastasis) (46, 47). Furthermore, 
recent studies using mouse models of colon cancer have shown 
that IL-22 produced by CD4+ T cells acts upon cancer cells to 
activate STAT3 and promote the expression of the histone 3 lysine 
79 (H3K79) methyltransferase DOT1L, which induces key cancer 
stem cell genes that contribute to tumor progression (34, 52, 53). 
Additionally, in colorectal cancer and lung cancer cells, IL-22 
contributes to resistance to chemotherapy by activating STAT3 
and subsequently upregulating antiapoptotic genes (48, 54).

Interleukin-22 plays an important protective role in host 
defense responses during bacterial infections. For example, 
IL-22R signaling increases the production of antibacterial 
peptides and proteins (27, 40), acute-phase proteins (2, 42), 
mucins (35, 55), and increases the production of neutrophilic 
granulocyte-attracting chemokines [as reviewed in Ref. (56)].

The impact of IL-22R signaling extends beyond pathogenic 
bacterial infections. IL-22 also influences host resistance to 
bacterial pathogens through regulation of the interface between 
epithelial cells and microbiota. Germ-free mice exhibit reduced 
numbers of intestinal ILCs that express IL-22 (57). Tryptophan 
metabolites produced by intestinal microbiota activate the AhR 
in ILC3s to produce IL-22, contributing to the containment of 
commensal bacteria, limiting inflammation, and preserving gut 
immune homeostasis (58, 59). In return, IL-22 regulates the gene 
Fut2 that encodes the enzyme α1,2-fucosyltransferase that cata-
lyzes the addition of fucose residues to glycoproteins on epithelial 
cells. This influences the nutrient environment of the microbiota 

and thus impacts on the diversity and composition of the gut flora 
and subsequently prevents colonization of pathogens (60–62). 
Indeed, defective fucosylation has been associated with increased 
susceptibility to candidiasis (63) and the opportunistic pathogen 
Enterococcus faecalis (61). However, IL-22 favors Salmonella 
infection by inducing antimicrobial proteins that sequester metal 
ions allowing Salmonella, which can overcome metal starvation, 
to outcompete other commensals (64). Thus, context is critical in 
determining antimicrobial or pathogenic function of IL-22.

Interleukin-22 also contributes to protective immunity in the 
early stages of fungal infection with Candida albicans (65, 66), 
Aspergillus fumigatus (67), and Rhizomucor pusilluscan (68). In 
candidiasis, IL-22 is produced by innate (DCs and CD3 −NKp46+ 
cells) and adaptive (TH17 and memory C. albicans-specific 
IL-22+CD4+ cells) immune cells (65, 66), with IL-23 regulating 
IL-22 production by TH17 cells (66). IL-22 targets epithelial cells 
to release S100A8 and S10A9 peptides that participate in antifun-
gal protection (66). In A. fumigatus infections, β-glucan recogni-
tion via Dectin-1 as well as IL-23 induces lung IL-22 production 
for antifungal protection (67). Thus, IL-22 orchestrates immune 
responses to bacterial and fungal pathogens directly, and through 
the regulation of the intestinal microbiota.

iL-22 PrODUctiON DUriNG  
virAL iNFectiONs

Although the role that IL-22 plays in bacterial and fungal infec-
tions is reasonably well-defined, a picture of how IL-22 functions 
in viral infections is still being constructed. Experiments using 
IL-22 fate-tracker mice have demonstrated IL-22+ cells in this 
model are predominantly ILCs, γδ T cells, and CD4+ T cells in 
the gut, skin, and lung under homeostatic conditions (69). IL-22 
reporter mice also highlighted the lamina propria as a rich source 
of IL-22+ T cells in steady state (70). However, it is clear that upon 
viral exposure, IL-22 is produced by a number of leukocytes in 
response to a broad array of virus infections. For example, pul-
monary NK cells produce IL-22 in response to influenza infection 
(71). IL-23 stimulates the production of IL-22 during bacterial 
infections (22, 72), and IL-22 expression by pulmonary NK cells 
is induced by IL-23 in vitro (71). Furthermore, influenza induces 
IL-22 expression by invariant NK T cells in manner dependent 
upon triggering of the viral RNA sensors TLR7 and RIG-I in DCs 
and subsequent production of IL-1β and IL-23 (73).

During acute murine cytomegalovirus (MCMV) infection, 
T cells, NK T cells, and NK cells produce IL-22 (74). NK cells, 
which restrict MCMV replication in the spleen, liver, and lung 
(75, 76), produce IL-22 in response to MCMV infection in the 
liver and lung but not spleen, demonstrating that IL-22 induction 
in systemic viral infection is organ-specific (Figure 1A). Similarly, 
significant IL-22 expression by intrahepatic but not peripheral NK 
T cells, γδ T cells, and NK cells in hepatitis B virus (HBV)-infected 
individuals has been demonstrated (77). IL-22-producing NK cells 
within the peripheral sites of MCMV infection are phenotypically 
indicative of classical NK cells (Figure 1B). In this infection model, 
NK cells are stimulated through the activating receptor Ly49H, 
following recognition of the MCMV m157 protein (78). However, 
despite expressing significant levels of Ly49H (Figure 1B), mice 
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FiGUre 1 | iL-22 production by NK cells during murine cytomegalovirus infection. (A) C57BL/6 mice were infected or not with 5 × 105 pfu of wild-type 
(pARK25) or m157 knock out (Δm157) K181 strain MCMV. At day 4 postinfection, spleen, liver, and lung were harvested, leukocytes isolated, and stained against 
NK1.1, CD49b, CD3, NKp46, and IL-22. Representative plots of IL-22 versus NK1.1 expression by NK1.1+CD49b+NKp46+CD3− cells are shown. Results represent 
three mice/group. (B) C57BL/6 mice were infected or not with salivary gland-propagated Smith strain MCMV (5 × 104 pfu). Surface marker expression by pulmonary 
NK1.1+IL-22+ and NK1.1+IL-22− cells was assessed by flow cytometry. Representative overlay histograms of pulmonary NK1.1+IL-22+ (dashed purple line) and 
NK1.1+IL-22− (solid blue line) at day 4 postinfection are shown (shaded histogram = FMO control from infected mice). Results are representative of four mice per 
group.
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challenged with m157-deficient (Δm157) MCMV induced 
 comparable pulmonary and hepatic IL-22+ NK cell responses 
to those in WT MCMV infection (Figure 1A). Δm157 and WT 
MCMV infections also induced comparable early contraction of 
NK cell responses in the initial phase of infection (76) as indicated 
by a comparable reduction in NK1.1+ cells, as compared to naive 
mice (Figure 1A). Collectively, experimental data point toward an 
important function of IL-22 production by NK cells during certain 
viral infections and suggest a role for cytokines, but not activation 
receptor ligation in inducing NK cell expression of IL-22.

T cells also produce IL-22 in response to some viruses. 
Activated T cells isolated from blood of healthy individuals 

that are repeatedly exposed to human immunodeficiency virus  
(HIV-1) overproduce IL-22 (79). IL-22-expressing CD4+ and 
CD8+ T cells reactive to HIV Gag proteins in uninfected partners 
of HIV+ individuals have been identified (80). T cells isolated 
from liver and peripheral blood of HBV-infected individuals also 
express IL-22, as do CD161+ CD4+ and CD8+ T cells enriched 
in liver of hepatitis C virus (HCV)-infected patients (81, 82). In 
intestinal rotavirus infection, ILCs are also implicated as a signifi-
cant source of IL-22 (83, 84), in accordance with the established 
role of ILCs as IL-22 producers in mucosal tissue [as reviewed in 
Ref. (85)]. Thus, innate and adaptive antiviral cellular responses 
can produce IL-22 following viral exposure.
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iL-22 AND PrOtectiON FrOM virAL 
iNFectiON AND AssOciAteD 
PAtHOLOGies

A number of studies have identified or implied an antiviral func-
tion for IL-22. IL-22 exerts critical control of rotavirus infection 
(83, 84) and can cooperate with IL-18 (83) or with IFN-λ (84). In 
the case of cooperation with IFN-λ, IL-22 augments interferon-
stimulated gene (ISG) expression by intestinal epithelial cells (84). 
In contrast to the dominant induction of STAT3 by IL-22R signal-
ing, IL-22 augmentation of IFN-λ ISG expression in response to 
rotavirus infection is dependent upon STAT1 activation (84).

Interleukin-22 receptor signaling can induce the expression 
of chemokines thereby orchestrating recruitment of immune 
cell subsets to sites of infection. In MCMV infection, IL-22 has 
a protective role in the lung and liver, where it recruits antiviral 
neutrophils via induction of CXCL1 (74). In contrast, IL-22 does 
not influence MCMV replication or neutrophil recruitment 
in the spleen, suggesting that the influence of IL-22 in a viral 
infection may depend upon the tissue microenvironment and/
or IL-22-responsive cells (74). Chemokine-inducing properties 
of IL-22 may also be important in the induction of virus-specific 
antibody responses. Direct cannulation of replication-deficient 
adenovirus into murine salivary glands induces formation of ter-
tiary lymphoid organs and autoantibody production. This process 
is dependent upon IL-22 and is associated with  IL-22-mediated 
induction of CXCL13 and CXCL12 (86). Although studies from 
our own lab using the MCMV infection model demonstrate no 
protective function of IL-22 in orchestrating T  cell-dependent 
control of virus replication within the salivary glands (unpub-
lished data), it is conceivable that IL-22 may afford mucosal 
protection from viral infections through the induction of local 
T:B cell aggregates and virus-specific antibody generation.

Current evidence suggests that IL-22 may exhibit antiviral 
activity in HIV-infected individuals. IL-22 stimulates production 
of acute-phase serum amyloid A, which can induce phosphoryla-
tion and downregulation of CCR5 expression on immature DCs, 
thus decreasing susceptibility to HIV-1 infection (79). Also, high 
systemic levels of IL-22 in Indian individuals infected with HIV-1 
subtype C is associated with low viral replication in vitro, which 
was attributed to IL-22 interacting with IL-10 and C-reactive 
protein (87). Furthermore, loss of IL-22-producing CD4+ T cells 
during chronic HIV infection has been associated with increased 
damage to the gut epithelium and microbial translocation (88), 
although IL-22-producing ILCs may compensate for the loss 
of IL-22+ CD4+ T cells and maintain mucosal integrity (89). 
Irrespective of the cellular source of IL-22, systemic IL-22 levels 
negatively correlate with plasmatic lipopolysaccharide, an indica-
tor of microbial translocation from the gut (87). Thus, IL-22R 
signaling may also be beneficial in HIV-infected individuals by 
maintaining barrier function.

In a number of viral infections, IL-22 signaling in the liver pro-
vides protection against virus-induced pathology without actually 
influencing virus replication. IL-22 produced by CD4+ T cells is 
cytoprotective during lymphocytic choriomeningitis virus infec-
tion in mice, where it reduces the development of hepatitis (90). 

In accordance, during HBV infection,  IL-22-expressing cells 
 co-localize with liver progenitor cells, and IL-22 promotes STAT3-
dependent liver stem/progenitor cells (LPC) proliferation (91). 
IL-22 also restricts hepatic damage and inflammation induced 
by dengue virus, a phenotype associated with the suppression 
of the IL-17R pathway (92). IL-22 is also important for the 
regeneration of tracheal and lung epithelial cells after influenza 
infection, preventing lung pathology and secondary bacterial 
infection (93–95). IL-22−/− mice exhibit impaired regeneration 
of tracheal epithelium and exacerbated weight loss after clear-
ance of influenza infection; a phenotype rescued by transfer of 
IL-22-proficient but not deficient NK cells (93). Finally, IL-22 
restricts myocardial fibrosis induced by coxsackie virus infection 
(96), demonstrating the importance for IL-22 restriction of tis-
sue damage and pathology that occurs as a consequence of viral 
infections.

iL-22 As A cONtriBUtOrY FActOr  
iN virAL PAtHOGeNesis

In certain contexts, IL-22 is harmful to virus-infected hosts. As 
observed in MCMV infection, IL-22 promotes recruitment of 
neutrophils in response to West Nile virus (WNV) infection. 
However, in contrast to the antiviral role for neutrophils in 
MCMV infection, IL-22-induced neutrophil responses in the 
central nervous system (CNS) during WNV infection lead to 
exacerbated pathology and mortality (97). Rather than exhibit-
ing antiviral activity, here neutrophils act as vehicles for WNV 
dissemination into the CNS, thus aiding the establishment of 
infection and subsequent inflammation within this site (97).

Intriguingly and in contrast to studies describing a cytoprotec-
tive role for IL-22 in tissue repair following HBV infection (91), in 
a murine model of HBV infection IL-22 supported virus-driven 
inflammation and consequential liver damage without affecting 
virus replication. In this model, IL-22 promoted chemokine 
expression and the recruitment of inflammatory leukocytes 
(98). Similarly, IL-22 promotes HBV-induced pathology through 
chemokine-mediated recruitment of TH17 cells (77), thus dem-
onstrating that IL-22 can mediate paradoxical tissue-protective 
and proinflammatory functions in response to the same viral 
pathogen. HBVs and HCVs are implicated in the development 
of certain cancers [reviewed in Ref. (99)]. IL-22 protein levels in 
serum of patients with HBV- and HCV-associated hepatocellular 
carcinomas is an indicator of poor prognosis (100, 101), imply-
ing that virus-induced IL-22 may promote tumor development 
associated with these infections. Clearly, the possible role that 
IL-22 plays in the development of other virus-associated cancers 
(e.g., human papilloma virus-induced cervical cancer) requires a 
better understanding.

is iL-22 A POteNtiALLY UseFUL 
tHerAPeUtic tArGet iN virAL 
iNFectiON?

Overall, current data suggest that IL-22 may have an important role 
in a number of virus infections (as summarized in Figures 2A,B). 
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FiGUre 2 | iL-22 in viral infections. (A) Summary of impact of IL-22 in experimental viral infections. (B) Schematic representation of protective (green) and 
pathological (red) functions of IL-22 in viral infections.

However, the broad and sometimes paradoxical protective and 
proinflammatory functions exhibited by IL-22 highlights the 
complex nature of this cytokine. Thus, does IL-22 represent 

a useful therapeutic target for clinical intervention strategies for 
viral infections, and can we predict how IL-22 will influence an 
immune response induced by a particular virus?
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Understanding the cytokine signature induced by a virus in 
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(102). Although IL-17 and IL-22 mediate synergistic protective 
immunity in bacterial infection (55, 103, 104), the combination 
of these cytokines in viral infections may have pathological 
consequences.

Should a more defined role for IL-22 during viral infections 
be elucidated, manipulating the production/availability of IL-22 
could prove therapeutically beneficial in treatment and, possibly, 
prevention of viral-associated disease. For example, administra-
tion of IL-22 may accelerate patient recovery from influenza or 
cytomegalovirus infections by improving lung barrier function 
or innate antiviral immune responses, respectively. Conversely, 
IL-22 neutralization could ameliorate virus-induced inflamma-
tion in certain infections. However, alteration of IL-22 signaling 
could have undesired consequences. Blocking the action of IL-22 
could increase host susceptibility to bacterial and fungal infec-
tion. Conversely, given the protumoral role for T cell-expressed 
IL-22 in cancer (45, 46, 49, 52, 53, 68), prolonged therapeutic 
administration IL-22 has the risk of promoting tumor develop-
ment. Furthermore, more information regarding the mechanisms 
that regulate IL-22 production by virus-specific T cells is essential 

before IL-22-inducing vaccines and other therapies are consid-
ered for clinical utility.

Given the established role of IL-22 in bacterial infections, the 
interaction between viruses and bacteria should also be considered 
when manipulating IL-22 in virus-infected individuals. Antibiotic 
treatment impairs the induction of protective immunity during 
influenza infection (105), suggesting that IL-22 modulation of 
the microbiota may impact on patient outcome. Furthermore, 
bacterial coinfections cause pathogenesis in individuals infected 
with viruses such as influenza (106). Thus, diagnosis of bacterial 
coinfections in patients and understanding how IL-22 impacts on 
these bacteria will be an important consideration in IL-22-based 
clinical intervention strategies.

Thus, overall, although IL-22 is clearly an important cytokine 
in antiviral immune responses, more information regarding the 
context-dependent nature of IL-22 regulation and function is 
required before manipulation of this cytokine can be considered 
in the treatment of virus-infected individuals.
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