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Abstract: Inorganic nanoparticles are typically used as electrode materials in lithium batteries. 

However, to cope with the most challenge that solid electrolytes have low ionic conductivity at room 



or lower temperatures, here we show graphene-analogues boron nitride (g-BN) nanosheets 

absorbing a large quantity of ILs as a solid-like electrolyte. The layered g-BN nanosheets have very 

high specific surface area, and they could absorb the IL as much as 10 times of its own weight. The 

ionic conductivity of the solid-like electrolyte is 3.85×10-3 S cm-1 at 25 ℃, even though at -20 ℃ 

it still reaches 2.32×10-4 S cm-1, which are very close to that of the ionic liquid electrolytes. The 

high ionic conductivity is attributed to ordered lithium ion transport channels within g-BN 

nanolayers which are formed as the IL solution fills in. Furthermore, the electrolyte displays 

outstanding electrochemical properties and battery performance. This work opens up a new field for 

the application of layered nanomaterials in energy conversion devices. 
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Solid electrolytes are the most attractive alternative to liquid carbonate-based electrolytes to 

improve the safety of rechargeable lithium batteries because they prevent leakage, volatilization, 

and flammability1-4. Solid electrolytes generally include inorganic and polymer solid electrolytes. 

In past decade, although much endeavor has been devoted to improve the ionic conductivity of those 

electrolytes, they still suffer from relatively poor ionic conductivity at low temperatures5. Another 

challenge in terms of the application of the solid electrolytes in lithium batteries comes from high 

interface resistance related to an instable contact between the solid electrolyte and the electrode. In 

past decade, although much endeavor has been made to address these issues, it is still difficult to 

acquire both high ion conductivity and a good contact between electrode/electrolyte interfaces, 

when only solid electrolyte materials are used in battery systems6. 

Ionic liquids (ILs) have concentrated great interest for their unique characteristics such as 

negligible vapor pressure, nonflammability, good thermal stability, and wide electrochemical 

windows7, 8. Incorporation of ILs into polymers or inorganic materials can effectively improve the 

ionic conductivity of the solid electrolytes, as well as distinctly reduce the interface resistance 

between the electrode and the electrolyte. Typically, polymer electrolytes consisting of lithium salt, 

ILs and various polymer host such as poly(ethylene oxide)9-11, PVdF-HFP12-14, and polymerized 

ionic liquids (PILs)15-19 have been synthesized and their applications in batteries at elevated 



temperatures were reported. Although ILs in these polymer electrolytes increase the ionic 

conductivity and decrease the electrode/electrolyte interface resistance, the ionic conductivity of 

them at room temperature is still low and the battery performance is not favorable, which is 

attributed to the discontinuous transport channels of lithium ions formed by a little amount of ILs. 

Recently, inorganic hybrid solid electrolytes were developed, which consisted of lithium salt, IL and 

SiO2 or TiO2 nanoparticles20-22. The nanoparticles can provide an effective pathway for the transport 

of lithium ions by their self-arrangement. Hence, the ionic conductivity at room temperature and the 

interface compatibility between the electrolytes and electrodes improve obviously. However, 

restricted to smaller specific surface area, the amount of IL encapsulated by the nanoparticles is 

limited. 

Graphene-analogue boron nitride (g-BN) nanosheets have drawn much attention due to their 

remarkable properties23- 24, such as a wide energy band gap25, high thermal conductivity26, good 

chemical stability27, high surface area28, 29 and excellent adsorption performance30-32. On account of 

its high specific surface area and special interlayer structure, the g-BN nanosheets could remain 

solid phase even if they absorb the ten-fold mass equivalent of ILs33. More importantly, the special 

layer structure of the IL confined between the g-BN nanosheets leads to the formation of continuous 

transport channels for lithium ions, greatly increasing the ionic conductivity. Moreover, the ultrahigh 

ionic-liquid uptake capacity of g-BN results in low interface resistance due to the stable contact 

between the solid electrolyte and electrodes. 

Inspired by that concept, in this work the few-layered g-BN with a highly abundant nanoporous 

structure is developed as an electrolyte host. A solid-like electrolyte is designed by which the g-BN 

nanosheet absorbs a large quantity of ILs. The solid-like electrolyte displays not only the exceptional 

ionic conductivity (more than 10-3 S cm-1) at room temperature but also the low interface resistance 

and improved interface compatibility. Furthermore, batteries derived from the above quasi-solid 

electrolyte display a high capacity and good cycling stability. 

  

Results 

Synthesis and characterization of g-BN.  

We explored a synthesis route of porous BN nanosheets depending on a template-free method, as 

illustrated in Scheme 1. The mixture of boron oxide (B2O3) and urea (CON2H4) in ethanol aqueous 



was recrystallized. Then the obtained mixture was heated gradually in tube furnace under nitrogen. 

Based on the intricate urea pyrolysis procedure34, we propose the formation process of few-layered 

nanoporous g-BN (see Supplementary Scheme S1). When the temperature was raised to 200℃, urea 

transferred to liquid and polycondensated to the intermediate cyanuric acid (C3H3N3O3)35. Urea 

melted into liquid, functionalizing not only as solvothermal solvent to promote the molecular 

diffusion but as the peeling role to control formation of few-layered g-BN.36, 37 Increasing the 

temperature continuously, g-BN grows up. During this process, urea and formed urea intermediates 

decomposed to NH3, CO2 and H2O bubbles which play a pores-creating role for the resultant 

nanoporous structure. Finally, few-layered and nanoporous g-BN could be fabricated. 

 

 

Scheme 1 ｜Schematic of the synthesis process of g-BN 

 

The g-BN nanosheets with porous structure have been verified by a BET measurement. Figure 1a) 

and 1b) indicate nitrogen isotherms and pore size distribution curves of the nanosheets, which can be 

categorized as type II based on the IUPAC classification, and type H3 hysteresis loop in the relative 

pressure range of 0.45–1.0 indicates the presence of nanosheets materials.38 Additionally, very Low 

pressure adsorption presents a micropore-filling behavior. Moreover, the type H3 hysteresis loop at a 

relative pressure of 0.45 to 1.0 suggests the presence of slits-shaped pores, in line with the shape of the 

sheet-like nanostructures. The total BET surface area, micropore surface area, micropore volume, and 

pore diameter of the g-BN, which are 860 m2ˑg-1, 602 m2ˑg-1, 0.2 cm3ˑg-1 and 2 nm, respectively 

(Supplementary Table S1). High surface area and the surface micropore nanostructure contribute to high 

adsorptive capability for the IL solution. The g-BN nanosheets can adsorb ten-fold Li-IL to form a solid-

like electrolyte. 



 

 

Figure 1 ｜Structure and surface property of g-BN. a) N2-sorption isotherms of g-BN. b) BJH 

pore size distribution. c) XRD patterns of g-BN and Li-IL/g-BN. d) FT-IR spectra of g-BN and Li-

IL/g-BN.  

 

The XRD patterns of both g-BN and g-BN-supported Li-IL solid-like electrolyte are shown in Figure 

1c. The two peaks corresponding to the (002) and (100) planes of g-BN are readily in accordance with 

the standard hexagonal phase of h-BN (JCPDS Card No. 34-0421), demonstrating that the as-obtained 

g-BN has a hexagonal structure.26 When the g-BN adsorbs Li-IL, an obvious shift from 2θ=24o to low 

angles can be observed, indicating that Li-IL may embed the inter-layer space of the g-BN.38 Hence, the 

increase of inter-distance between the (002) basal planes may be responsible for the intercalation of the 

Li-IL in the inter-layer space. The g-BN absorbing with Li-IL was further determined by FT-IR spectrum 

in Fig. 1d). In the case of g-BN, the absorption band centered around 1360 cm-1 and 795 cm-1 can 

be attributed to the in-plane B-N transverse optional mode and out-of-plane B-N-B bending mode 

of hexagonal boron nitride.39 After absorbing Li-IL, four peaks in the appeared (1340, 1177, 1128, and 

1050 cm-1) that could be assigned to the vibration sorption of TFSI anions of ILs (νa(SO2), νa(CF3), 

νs(SO2), and νa(S-N-S)40, respectively. 

In order to further investigate the formation of continuous transport channels of lithium ions, the 



microscopic performance of the g-BN and solid electrolyte samples were used to determine. From the 

SEM images (Supplementary Figure S1), the nanosheets of the g-BN can be clearly observed, and after 

absorbing the Li-IL solution they still exist around the groups of nanosheets of the g-BN. The lower 

magnification STEM images in Figure 2(a) and 2(d) also verify that g-BN maintained a graphene-

like flake morphology after the absorption of IL. Higher magnification images in Figure 2(b) and 

2(e) further reveal the polycrystalline feature of the g-BN with few-layers structure (3~4 layers). 

Moreover, the hexagonal structure of g-BN (Fig. 2c and 2f) can also be seen clearly from the lattice 

fringes. After absorbing the IL solution, the g-BN nanosheets supported with Li-IL still remain graphene-

like layered structure (Fig. 2e) and the width of polycrystalline fringe increases compared to the g-BN 

(Fig. 2e), indicating the distance of nanolayers is wider due to the insertion of ILs, which is in accordance 

with the XRD results. Furthermore, it is also seen the IL solution disperse on the surface of the g-BN, 

and thus the transport channel for lithium ions in interlayer and out-of-layer can be developed. Scheme 

2 illustrates the fabrication of the quasi-solid electrolytes (SE) and the pathway for lithium ion transport 

formed by the IL solution in the interlayer and out-of-layer of g-BN. The continuous transport channels 

are favorable for the fast-transport of lithium ions and may result in the high ionic conductivity.  

 

 

Figure 2 ｜Representative STEM bright field (BF) images. (a-c) g-BN and (d-f) 2-fold IL/g-

BN samples. Lower magnification images in (a) and (d) shows that BN maintained a flake 

morphology after the absorption of ionic liquid. Higher magnification images (b) and (e) reveal the 

layer structure at the edges of the flakes, where the materials appeal to be curved into edge-on 

condition (white arrows). The EELS spectrum of the 2-fold IL/g-BN specimen was overlayed with (d) 

showing the B and N K-edges. The C K edge comes from the hydrocarbon contamination. These images 

also reveal the poly-crystalline nature of the material. The hexagonal BN structures for both 

materials can be seen from the lattice fringes shown in (c) and (f).  

 

    



 

Scheme 2 ｜ SE pathway for lithium ion transport formed by the IL solution in the interlayer 

and out-of-layer of g-BN 

 

Measurement of electrochemical properties. To verify the above hypothesis, the ionic 

conductivity at different temperatures has been characterized. Figure.3a) shows the result of ionic 

conductivity for the SE and the Li-IL electrolyte control. The plot of SE electrolyte as the same with 

the Li-IL electrolyte exhibits the Vogel-Tamman-Fulcher (VTF)-type temperature dependence, 

which indicates the value of ionic conductivity of SE correlates with the viscosity of the solution 

and the hopping species in SE are determined by the property of Li-IL electrolyte41. It should be 

noted the ionic conductivity of SE is very high at room temperature that reaches 3.85×10-3 S cm-1, 

even though at -20 ℃ it still is 2.32×10-4 S cm-1. The high ionic conductivity is attributed to ordered 

lithium ion transport channels in g-BN nanolayers which are formed when the Li-IL fills in, as 

observed by STEM. The outstanding property of SE at lower temperatures opens a promising 

perspective as a new solid-like electrolyte in application to low temperatures for lithium batteries.  
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Figure 3｜Electrochemical performance of SE. a) The temperature dependence of ionic 

conductivity for the SE and Li-IL electrolytes. b) The linear sweep voltammetry curve with a 

Li/SE/SS cell at room temperature SS: stainless steel. c) Cyclic voltammograms with a Li/SE/Pt 

cell. Working electrode: Pt; counter electrode and reference electrode: lithium; scan rate: 10 mV s-

1. d) Voltage vs. discharge capacity profile of a Li/SE/LiFePO4 cell. e) Discharge capacity as a 

function of cycle number for a Li/SE/LiFePO4 cell. Charge–discharge current rate is 0.1 C. 

 

The electrochemical stability is an important index which determines the availability of 

electrolytes. The electrochemical stability of the SE electrolyte was characterized by linear sweep 



voltammetry with a Li/SE/SS cell at room temperature, as shown in Fig. 3b). In Fig.3b), a peak 

appears at about 4.5 V versus Li/Li which is associated with the oxidation decomposition of 

immidazolium cations in the IL. The oxidation stability of the SE electrolyte agrees with that of the 

IL, which is 4.3 V (corresponding to a current density of 10 mA cm-2). This result demonstrates that 

the electrolyte has good electrochemical stability, thus confirming its feasibility for application in 

Li/LiFePO4 batteries. 

  Lithium redox in the SE electrolyte was characterized by cyclic voltammograms (CVs) with a 

Li/SE/Pt cell, as shown in Fig. 3c). The plating of lithium on the nickel electrode could be clearly 

observed like EMI-TFSI IL electrolytes 42, 43. In the first cycle for the SE electrolyte, the cathodic 

peak corresponding to the plating of lithium is about -0.12 V vs. Li/Li+, and in the returning scan 

the anodic peak corresponding to the stripping of lithium is around 0.15 V vs. Li/Li+. It is noteworthy 

that in case of the Pt electrode, the peak at 0.7 V vs. Li/Li+ due to the formation of a Li-Pt alloy 

could be clearly observed44. The lithium redox in the SE electrolyte could be generated by forming 

a certain surface film (SEI) on the Pt electrode. The redox peak currents decrease gradually with the 

cycle numbers. This suggests that the SEI film turns thicker and thicker so that the lithium reduction 

and oxidation is restrained gradually. 

The charge–discharge performance of Li/SE/LiFePO4 batteries was characterized at room 

temperature, and their cycling properties are presented in Fig. 3e. The discharge capacity and the 

coulombic efficiency of the battery are found to be 149 mAh g−1 and 90.5% in the first cycle, 

respectively. During the initial 4 cycles, the discharge capacity and the culombic efficiency 

increased gradually, perhaps as a result of generation of improved penetration and contact of the IL 

component from the electrolyte into the electrode material. After an increasing step, the cell delivers 

a maximum capacity of about 155 mAh g−1, and the culombic efficiency reaches 99%. Subsequently, 

the battery capacity decreases slowly during cycling. It is found that the battery performance is 

greatly associated with the thickness of the solid-like electrolyte membrane and the shaping stress 

of the membrane. The optimizing technology of the fabrication for SE membranes is ongoing.  

 

Discussion 

The g-BN nanosheets have high specific surface area which is attributed to its poly-crystalline 

nature and few-layer structure. When the small amount of Li-IL is supported on g-BN, the Li-IL 



could cover the outside surface of the nanolayers. As the amount of the Li-IL increases, the Li-IL 

gradually enter the inter-layer space of g-BN, which is demonstrated by XRD patterns for different 

contents of the Li-IL showed in Figure 4. The (002) diffraction peak hardly shift when the content 

of the Li-IL is less than 0.4-fold of the weight ratio of g-BN, and afterwards a clear shift of the (002) 

diffraction peak to low angles is observed and the intensity of the peaks increases obviously as the 

content of the Li-IL increases, which verified the distance between the (002) basal planes is 

broadened. Thus, it could be inferred the pathway for lithium ions transport in SE consists of two 

parts, the outside surface space and the inter-layer space of g-BN. 
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Figure 4｜XRD patterns for different contents of the Li-IL in g-BN nanosheets 

 

Additionally, the content of ILs greatly affects the electrochemical performance of the SE. From 

the Supplementary Figure S3, the temperature dependence of ionic conductivity for the different 

contents of the SE, we can know the ionic conductivity increases apparently as the content of ILs, 

and it more and more approaches the value of the IL electrolyte. Another advantage of increasing 

the IL solution is that the interface resistance between the SE and electrodes decreases and the 

interface compatibility improves, as the content of ILs increases. 

In conclusion, graphene-analogues g-BN nanosheets have been synthesized using a thermal 

treatment process without utilization of any catalyst and ex situ template. The obtained g-BN 

nanosheets have a very high specific surface area, and they could absorb the IL solution as much as 



10-fold of its own weight. The quasi-solid electrolyte has excellent ionic conductivity at room and 

lower temperature, and it is 3.85×10-3 S cm-1 at 25 ℃ and 2.32×10-4 S cm-1 at -20 ℃. The 

distinguished property of SE at lower temperatures opens a promising perspective as a new solid-

like electrolyte in application to low temperatures for lithium batteries. The high ionic conductivity 

is resulted from ordered lithium ion transport pathways between g-BN nanolayers which are 

developed as the IL solution fills in. This work explores a new field for the application of layered 

nanomaterials as electrolyte host in energy conversion devices. 

 

 

Methods 

Materials synthesis. 

Preparation of g-BN: 1.64 g boron oxide (B2O3) and 24 g urea(CON2H4) were dissolved in mixture 

of 40 mL ethanol and 20 mL ultra-pure water. The solution was stirred and heated at 70 ℃ until the 

solvent was boiled away. Then the white solid was transferred to a tube furnace, and heated to 900℃at a 

heating rate of 4℃/min under N2 atmosphere. After the temperature reached 900℃, the tube furnace was 

kept for another 2 h. Then, the tube furnace freely cooled to room temperature，and finally the g-BN 

product was obtained.25 

  The ionic liquid, EMI-TFSI was prepared according to a reference method45. A lithium salt-ionic liquid 

solution of molality 0.5 mol kg-1 (Li-IL) was prepared by adding a proper amount of LiTFSI to the ionic 

liquid. The water content of EMI-TFSI was measured by coulometric Karl Fischer titration to be 20 ppm. 

  Solid-like electrolytes were prepared by g-BN and the Li-IL mixed simply with the weight ratio of 

1:10 in argon atmosphere, noted as SE. The ratio in the electrolyte has been optimized so as to obtain Li-

IL as much as possible. This sample was used during all the electrochemical tests except battery 

performance. 

 

Materials characterization. 

X-ray diffraction patterns of the samples were collected using a Panalytical X’Pert PRO diffraction 

system with a Cu Kα radiation. Scanning electron microscopy (SEM) was performed by a Zeiss Supra 

55 VP SEM. Nitrogen adsorption and desorption isotherms were obtained using a Tristar 3000 apparatus 



at 77K. FTIR spectra were obtained with a Nicolet 7199 FTIR spectrometer. The specimen for electron 

microscopy was prepared by grinding and dispersing dry powders of the material onto 400 mesh holey 

carbon copper grid. The Scanning transmission electron microscopy (STEM) image was performed on 

Nion UltraSTEM 100 (operated at 100kV) in Oak Ridge National Laboratory.  

 

Electrochemical measurements. 

  The ionic conductivity of the gel polymer electrolytes were determined from the impedance spectrum 

using a blocking cell of which the electrolyte was sandwiched between two stainless steel electrodes in 

a Swagelok cell. Electrochemical impedance spectrum measurements were performed using a VMP3 

(BioLogic) over a frequency range of 1 MHz to 100 mHz with a potentiostatic signal amplitude of 10 

mV. Linear sweep voltammetry (LSV) was performed at 25 ℃ (scan rate 10 mV s-1) using a Pt/Solid-

like electrolyte/Li Swagelok cell. 

 

Battery test. 

Lithium foil (battery grade) was used as a negative electrode. And the positive electrode was fabricated 

by spreading the mixture of LiFePO4, acetylene black and PVdF (initially dissolved in N-methyl-2-

pyrrolidone) with a weight ratio of 8:1:1 onto Al current collector (battery use). Loading of active 

material was about 2.0 mg cm−2 corresponding to 0.3 mAh cm−2 and this thinner electrode was directly 

used without pressing.  

The solid-like electrolyte used in batteries was fabricated by a squash technique. g-BN and Li-IL with 

a weight ratio of 1:5 were dispersed in ethanol for 8 h. Then the solvent was removed at 80 ℃, and the 

obtained white powder was pressed into pellets with the diameter of 12 mm and the thicknesses of 0.35 

mm. The as-prepared pellets were dried at 110 ℃ under vacuum for 24 h. 

Li/LiFePO4 polymer batteries were fabricated (in an argon-filled glove box) by laminating the lithium 

foil, the solid-like electrolyte and a LiFePO4 cathode tape in a button cell. 

Preliminary cycling tests on Li/LiFePO4 polymer batteries were performed at 25 ℃ using a CT2001A 

cell test instrument (LAND Electronic Co., Ltd.). The charge and discharge current rates were fixed to 

C/10. The voltage cut-offs were fixed at 4.0 (charge step) and 2.0 V (discharge step), respectively. 
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